vm_pageout.c revision 291933
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: stable/10/sys/vm/vm_pageout.c 291933 2015-12-07 11:12:03Z kib $");
77
78#include "opt_vm.h"
79#include "opt_kdtrace.h"
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/eventhandler.h>
84#include <sys/lock.h>
85#include <sys/mutex.h>
86#include <sys/proc.h>
87#include <sys/kthread.h>
88#include <sys/ktr.h>
89#include <sys/mount.h>
90#include <sys/racct.h>
91#include <sys/resourcevar.h>
92#include <sys/sched.h>
93#include <sys/sdt.h>
94#include <sys/signalvar.h>
95#include <sys/smp.h>
96#include <sys/time.h>
97#include <sys/vnode.h>
98#include <sys/vmmeter.h>
99#include <sys/rwlock.h>
100#include <sys/sx.h>
101#include <sys/sysctl.h>
102
103#include <vm/vm.h>
104#include <vm/vm_param.h>
105#include <vm/vm_object.h>
106#include <vm/vm_page.h>
107#include <vm/vm_map.h>
108#include <vm/vm_pageout.h>
109#include <vm/vm_pager.h>
110#include <vm/vm_phys.h>
111#include <vm/swap_pager.h>
112#include <vm/vm_extern.h>
113#include <vm/uma.h>
114
115/*
116 * System initialization
117 */
118
119/* the kernel process "vm_pageout"*/
120static void vm_pageout(void);
121static void vm_pageout_init(void);
122static int vm_pageout_clean(vm_page_t);
123static void vm_pageout_scan(struct vm_domain *vmd, int pass);
124static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
125
126SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
127    NULL);
128
129struct proc *pageproc;
130
131static struct kproc_desc page_kp = {
132	"pagedaemon",
133	vm_pageout,
134	&pageproc
135};
136SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
137    &page_kp);
138
139SDT_PROVIDER_DEFINE(vm);
140SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
141SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
142
143#if !defined(NO_SWAPPING)
144/* the kernel process "vm_daemon"*/
145static void vm_daemon(void);
146static struct	proc *vmproc;
147
148static struct kproc_desc vm_kp = {
149	"vmdaemon",
150	vm_daemon,
151	&vmproc
152};
153SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
154#endif
155
156
157int vm_pages_needed;		/* Event on which pageout daemon sleeps */
158int vm_pageout_deficit;		/* Estimated number of pages deficit */
159int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
160int vm_pageout_wakeup_thresh;
161
162#if !defined(NO_SWAPPING)
163static int vm_pageout_req_swapout;	/* XXX */
164static int vm_daemon_needed;
165static struct mtx vm_daemon_mtx;
166/* Allow for use by vm_pageout before vm_daemon is initialized. */
167MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
168#endif
169static int vm_max_launder = 32;
170static int vm_pageout_update_period;
171static int defer_swap_pageouts;
172static int disable_swap_pageouts;
173static int lowmem_period = 10;
174static time_t lowmem_uptime;
175
176#if defined(NO_SWAPPING)
177static int vm_swap_enabled = 0;
178static int vm_swap_idle_enabled = 0;
179#else
180static int vm_swap_enabled = 1;
181static int vm_swap_idle_enabled = 0;
182#endif
183
184SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
185	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
186	"free page threshold for waking up the pageout daemon");
187
188SYSCTL_INT(_vm, OID_AUTO, max_launder,
189	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
190
191SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
192	CTLFLAG_RW, &vm_pageout_update_period, 0,
193	"Maximum active LRU update period");
194
195SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
196	"Low memory callback period");
197
198#if defined(NO_SWAPPING)
199SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
200	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
201SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
202	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
203#else
204SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
205	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
206SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
207	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
208#endif
209
210SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
211	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
212
213SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
214	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
215
216static int pageout_lock_miss;
217SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
218	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
219
220#define VM_PAGEOUT_PAGE_COUNT 16
221int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
222
223int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
224SYSCTL_INT(_vm, OID_AUTO, max_wired,
225	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
226
227static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
228static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
229    vm_paddr_t);
230#if !defined(NO_SWAPPING)
231static void vm_pageout_map_deactivate_pages(vm_map_t, long);
232static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
233static void vm_req_vmdaemon(int req);
234#endif
235static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
236
237/*
238 * Initialize a dummy page for marking the caller's place in the specified
239 * paging queue.  In principle, this function only needs to set the flag
240 * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
241 * to one as safety precautions.
242 */
243static void
244vm_pageout_init_marker(vm_page_t marker, u_short queue)
245{
246
247	bzero(marker, sizeof(*marker));
248	marker->flags = PG_MARKER;
249	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
250	marker->queue = queue;
251	marker->hold_count = 1;
252}
253
254/*
255 * vm_pageout_fallback_object_lock:
256 *
257 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
258 * known to have failed and page queue must be either PQ_ACTIVE or
259 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
260 * while locking the vm object.  Use marker page to detect page queue
261 * changes and maintain notion of next page on page queue.  Return
262 * TRUE if no changes were detected, FALSE otherwise.  vm object is
263 * locked on return.
264 *
265 * This function depends on both the lock portion of struct vm_object
266 * and normal struct vm_page being type stable.
267 */
268static boolean_t
269vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
270{
271	struct vm_page marker;
272	struct vm_pagequeue *pq;
273	boolean_t unchanged;
274	u_short queue;
275	vm_object_t object;
276
277	queue = m->queue;
278	vm_pageout_init_marker(&marker, queue);
279	pq = vm_page_pagequeue(m);
280	object = m->object;
281
282	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
283	vm_pagequeue_unlock(pq);
284	vm_page_unlock(m);
285	VM_OBJECT_WLOCK(object);
286	vm_page_lock(m);
287	vm_pagequeue_lock(pq);
288
289	/*
290	 * The page's object might have changed, and/or the page might
291	 * have moved from its original position in the queue.  If the
292	 * page's object has changed, then the caller should abandon
293	 * processing the page because the wrong object lock was
294	 * acquired.  Use the marker's plinks.q, not the page's, to
295	 * determine if the page has been moved.  The state of the
296	 * page's plinks.q can be indeterminate; whereas, the marker's
297	 * plinks.q must be valid.
298	 */
299	*next = TAILQ_NEXT(&marker, plinks.q);
300	unchanged = m->object == object &&
301	    m == TAILQ_PREV(&marker, pglist, plinks.q);
302	KASSERT(!unchanged || m->queue == queue,
303	    ("page %p queue %d %d", m, queue, m->queue));
304	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
305	return (unchanged);
306}
307
308/*
309 * Lock the page while holding the page queue lock.  Use marker page
310 * to detect page queue changes and maintain notion of next page on
311 * page queue.  Return TRUE if no changes were detected, FALSE
312 * otherwise.  The page is locked on return. The page queue lock might
313 * be dropped and reacquired.
314 *
315 * This function depends on normal struct vm_page being type stable.
316 */
317static boolean_t
318vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
319{
320	struct vm_page marker;
321	struct vm_pagequeue *pq;
322	boolean_t unchanged;
323	u_short queue;
324
325	vm_page_lock_assert(m, MA_NOTOWNED);
326	if (vm_page_trylock(m))
327		return (TRUE);
328
329	queue = m->queue;
330	vm_pageout_init_marker(&marker, queue);
331	pq = vm_page_pagequeue(m);
332
333	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
334	vm_pagequeue_unlock(pq);
335	vm_page_lock(m);
336	vm_pagequeue_lock(pq);
337
338	/* Page queue might have changed. */
339	*next = TAILQ_NEXT(&marker, plinks.q);
340	unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
341	KASSERT(!unchanged || m->queue == queue,
342	    ("page %p queue %d %d", m, queue, m->queue));
343	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
344	return (unchanged);
345}
346
347/*
348 * vm_pageout_clean:
349 *
350 * Clean the page and remove it from the laundry.
351 *
352 * We set the busy bit to cause potential page faults on this page to
353 * block.  Note the careful timing, however, the busy bit isn't set till
354 * late and we cannot do anything that will mess with the page.
355 */
356static int
357vm_pageout_clean(vm_page_t m)
358{
359	vm_object_t object;
360	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
361	int pageout_count;
362	int ib, is, page_base;
363	vm_pindex_t pindex = m->pindex;
364
365	vm_page_lock_assert(m, MA_OWNED);
366	object = m->object;
367	VM_OBJECT_ASSERT_WLOCKED(object);
368
369	/*
370	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
371	 * with the new swapper, but we could have serious problems paging
372	 * out other object types if there is insufficient memory.
373	 *
374	 * Unfortunately, checking free memory here is far too late, so the
375	 * check has been moved up a procedural level.
376	 */
377
378	/*
379	 * Can't clean the page if it's busy or held.
380	 */
381	vm_page_assert_unbusied(m);
382	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
383	vm_page_unlock(m);
384
385	mc[vm_pageout_page_count] = pb = ps = m;
386	pageout_count = 1;
387	page_base = vm_pageout_page_count;
388	ib = 1;
389	is = 1;
390
391	/*
392	 * Scan object for clusterable pages.
393	 *
394	 * We can cluster ONLY if: ->> the page is NOT
395	 * clean, wired, busy, held, or mapped into a
396	 * buffer, and one of the following:
397	 * 1) The page is inactive, or a seldom used
398	 *    active page.
399	 * -or-
400	 * 2) we force the issue.
401	 *
402	 * During heavy mmap/modification loads the pageout
403	 * daemon can really fragment the underlying file
404	 * due to flushing pages out of order and not trying
405	 * align the clusters (which leave sporatic out-of-order
406	 * holes).  To solve this problem we do the reverse scan
407	 * first and attempt to align our cluster, then do a
408	 * forward scan if room remains.
409	 */
410more:
411	while (ib && pageout_count < vm_pageout_page_count) {
412		vm_page_t p;
413
414		if (ib > pindex) {
415			ib = 0;
416			break;
417		}
418
419		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
420			ib = 0;
421			break;
422		}
423		vm_page_test_dirty(p);
424		if (p->dirty == 0) {
425			ib = 0;
426			break;
427		}
428		vm_page_lock(p);
429		if (p->queue != PQ_INACTIVE ||
430		    p->hold_count != 0) {	/* may be undergoing I/O */
431			vm_page_unlock(p);
432			ib = 0;
433			break;
434		}
435		vm_page_unlock(p);
436		mc[--page_base] = pb = p;
437		++pageout_count;
438		++ib;
439		/*
440		 * alignment boundry, stop here and switch directions.  Do
441		 * not clear ib.
442		 */
443		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
444			break;
445	}
446
447	while (pageout_count < vm_pageout_page_count &&
448	    pindex + is < object->size) {
449		vm_page_t p;
450
451		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
452			break;
453		vm_page_test_dirty(p);
454		if (p->dirty == 0)
455			break;
456		vm_page_lock(p);
457		if (p->queue != PQ_INACTIVE ||
458		    p->hold_count != 0) {	/* may be undergoing I/O */
459			vm_page_unlock(p);
460			break;
461		}
462		vm_page_unlock(p);
463		mc[page_base + pageout_count] = ps = p;
464		++pageout_count;
465		++is;
466	}
467
468	/*
469	 * If we exhausted our forward scan, continue with the reverse scan
470	 * when possible, even past a page boundry.  This catches boundry
471	 * conditions.
472	 */
473	if (ib && pageout_count < vm_pageout_page_count)
474		goto more;
475
476	/*
477	 * we allow reads during pageouts...
478	 */
479	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
480	    NULL));
481}
482
483/*
484 * vm_pageout_flush() - launder the given pages
485 *
486 *	The given pages are laundered.  Note that we setup for the start of
487 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
488 *	reference count all in here rather then in the parent.  If we want
489 *	the parent to do more sophisticated things we may have to change
490 *	the ordering.
491 *
492 *	Returned runlen is the count of pages between mreq and first
493 *	page after mreq with status VM_PAGER_AGAIN.
494 *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
495 *	for any page in runlen set.
496 */
497int
498vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
499    boolean_t *eio)
500{
501	vm_object_t object = mc[0]->object;
502	int pageout_status[count];
503	int numpagedout = 0;
504	int i, runlen;
505
506	VM_OBJECT_ASSERT_WLOCKED(object);
507
508	/*
509	 * Initiate I/O.  Bump the vm_page_t->busy counter and
510	 * mark the pages read-only.
511	 *
512	 * We do not have to fixup the clean/dirty bits here... we can
513	 * allow the pager to do it after the I/O completes.
514	 *
515	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
516	 * edge case with file fragments.
517	 */
518	for (i = 0; i < count; i++) {
519		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
520		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
521			mc[i], i, count));
522		vm_page_sbusy(mc[i]);
523		pmap_remove_write(mc[i]);
524	}
525	vm_object_pip_add(object, count);
526
527	vm_pager_put_pages(object, mc, count, flags, pageout_status);
528
529	runlen = count - mreq;
530	if (eio != NULL)
531		*eio = FALSE;
532	for (i = 0; i < count; i++) {
533		vm_page_t mt = mc[i];
534
535		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
536		    !pmap_page_is_write_mapped(mt),
537		    ("vm_pageout_flush: page %p is not write protected", mt));
538		switch (pageout_status[i]) {
539		case VM_PAGER_OK:
540		case VM_PAGER_PEND:
541			numpagedout++;
542			break;
543		case VM_PAGER_BAD:
544			/*
545			 * Page outside of range of object. Right now we
546			 * essentially lose the changes by pretending it
547			 * worked.
548			 */
549			vm_page_undirty(mt);
550			break;
551		case VM_PAGER_ERROR:
552		case VM_PAGER_FAIL:
553			/*
554			 * If page couldn't be paged out, then reactivate the
555			 * page so it doesn't clog the inactive list.  (We
556			 * will try paging out it again later).
557			 */
558			vm_page_lock(mt);
559			vm_page_activate(mt);
560			vm_page_unlock(mt);
561			if (eio != NULL && i >= mreq && i - mreq < runlen)
562				*eio = TRUE;
563			break;
564		case VM_PAGER_AGAIN:
565			if (i >= mreq && i - mreq < runlen)
566				runlen = i - mreq;
567			break;
568		}
569
570		/*
571		 * If the operation is still going, leave the page busy to
572		 * block all other accesses. Also, leave the paging in
573		 * progress indicator set so that we don't attempt an object
574		 * collapse.
575		 */
576		if (pageout_status[i] != VM_PAGER_PEND) {
577			vm_object_pip_wakeup(object);
578			vm_page_sunbusy(mt);
579			if (vm_page_count_severe()) {
580				vm_page_lock(mt);
581				vm_page_try_to_cache(mt);
582				vm_page_unlock(mt);
583			}
584		}
585	}
586	if (prunlen != NULL)
587		*prunlen = runlen;
588	return (numpagedout);
589}
590
591static boolean_t
592vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
593    vm_paddr_t high)
594{
595	struct mount *mp;
596	struct vnode *vp;
597	vm_object_t object;
598	vm_paddr_t pa;
599	vm_page_t m, m_tmp, next;
600	int lockmode;
601
602	vm_pagequeue_lock(pq);
603	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
604		if ((m->flags & PG_MARKER) != 0)
605			continue;
606		pa = VM_PAGE_TO_PHYS(m);
607		if (pa < low || pa + PAGE_SIZE > high)
608			continue;
609		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
610			vm_page_unlock(m);
611			continue;
612		}
613		object = m->object;
614		if ((!VM_OBJECT_TRYWLOCK(object) &&
615		    (!vm_pageout_fallback_object_lock(m, &next) ||
616		    m->hold_count != 0)) || vm_page_busied(m)) {
617			vm_page_unlock(m);
618			VM_OBJECT_WUNLOCK(object);
619			continue;
620		}
621		vm_page_test_dirty(m);
622		if (m->dirty == 0 && object->ref_count != 0)
623			pmap_remove_all(m);
624		if (m->dirty != 0) {
625			vm_page_unlock(m);
626			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
627				VM_OBJECT_WUNLOCK(object);
628				continue;
629			}
630			if (object->type == OBJT_VNODE) {
631				vm_pagequeue_unlock(pq);
632				vp = object->handle;
633				vm_object_reference_locked(object);
634				VM_OBJECT_WUNLOCK(object);
635				(void)vn_start_write(vp, &mp, V_WAIT);
636				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
637				    LK_SHARED : LK_EXCLUSIVE;
638				vn_lock(vp, lockmode | LK_RETRY);
639				VM_OBJECT_WLOCK(object);
640				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
641				VM_OBJECT_WUNLOCK(object);
642				VOP_UNLOCK(vp, 0);
643				vm_object_deallocate(object);
644				vn_finished_write(mp);
645				return (TRUE);
646			} else if (object->type == OBJT_SWAP ||
647			    object->type == OBJT_DEFAULT) {
648				vm_pagequeue_unlock(pq);
649				m_tmp = m;
650				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
651				    0, NULL, NULL);
652				VM_OBJECT_WUNLOCK(object);
653				return (TRUE);
654			}
655		} else {
656			/*
657			 * Dequeue here to prevent lock recursion in
658			 * vm_page_cache().
659			 */
660			vm_page_dequeue_locked(m);
661			vm_page_cache(m);
662			vm_page_unlock(m);
663		}
664		VM_OBJECT_WUNLOCK(object);
665	}
666	vm_pagequeue_unlock(pq);
667	return (FALSE);
668}
669
670/*
671 * Increase the number of cached pages.  The specified value, "tries",
672 * determines which categories of pages are cached:
673 *
674 *  0: All clean, inactive pages within the specified physical address range
675 *     are cached.  Will not sleep.
676 *  1: The vm_lowmem handlers are called.  All inactive pages within
677 *     the specified physical address range are cached.  May sleep.
678 *  2: The vm_lowmem handlers are called.  All inactive and active pages
679 *     within the specified physical address range are cached.  May sleep.
680 */
681void
682vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
683{
684	int actl, actmax, inactl, inactmax, dom, initial_dom;
685	static int start_dom = 0;
686
687	if (tries > 0) {
688		/*
689		 * Decrease registered cache sizes.  The vm_lowmem handlers
690		 * may acquire locks and/or sleep, so they can only be invoked
691		 * when "tries" is greater than zero.
692		 */
693		SDT_PROBE0(vm, , , vm__lowmem_cache);
694		EVENTHANDLER_INVOKE(vm_lowmem, 0);
695
696		/*
697		 * We do this explicitly after the caches have been drained
698		 * above.
699		 */
700		uma_reclaim();
701	}
702
703	/*
704	 * Make the next scan start on the next domain.
705	 */
706	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
707
708	inactl = 0;
709	inactmax = cnt.v_inactive_count;
710	actl = 0;
711	actmax = tries < 2 ? 0 : cnt.v_active_count;
712	dom = initial_dom;
713
714	/*
715	 * Scan domains in round-robin order, first inactive queues,
716	 * then active.  Since domain usually owns large physically
717	 * contiguous chunk of memory, it makes sense to completely
718	 * exhaust one domain before switching to next, while growing
719	 * the pool of contiguous physical pages.
720	 *
721	 * Do not even start launder a domain which cannot contain
722	 * the specified address range, as indicated by segments
723	 * constituting the domain.
724	 */
725again:
726	if (inactl < inactmax) {
727		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
728		    low, high) &&
729		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
730		    tries, low, high)) {
731			inactl++;
732			goto again;
733		}
734		if (++dom == vm_ndomains)
735			dom = 0;
736		if (dom != initial_dom)
737			goto again;
738	}
739	if (actl < actmax) {
740		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
741		    low, high) &&
742		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
743		      tries, low, high)) {
744			actl++;
745			goto again;
746		}
747		if (++dom == vm_ndomains)
748			dom = 0;
749		if (dom != initial_dom)
750			goto again;
751	}
752}
753
754#if !defined(NO_SWAPPING)
755/*
756 *	vm_pageout_object_deactivate_pages
757 *
758 *	Deactivate enough pages to satisfy the inactive target
759 *	requirements.
760 *
761 *	The object and map must be locked.
762 */
763static void
764vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
765    long desired)
766{
767	vm_object_t backing_object, object;
768	vm_page_t p;
769	int act_delta, remove_mode;
770
771	VM_OBJECT_ASSERT_LOCKED(first_object);
772	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
773		return;
774	for (object = first_object;; object = backing_object) {
775		if (pmap_resident_count(pmap) <= desired)
776			goto unlock_return;
777		VM_OBJECT_ASSERT_LOCKED(object);
778		if ((object->flags & OBJ_UNMANAGED) != 0 ||
779		    object->paging_in_progress != 0)
780			goto unlock_return;
781
782		remove_mode = 0;
783		if (object->shadow_count > 1)
784			remove_mode = 1;
785		/*
786		 * Scan the object's entire memory queue.
787		 */
788		TAILQ_FOREACH(p, &object->memq, listq) {
789			if (pmap_resident_count(pmap) <= desired)
790				goto unlock_return;
791			if (vm_page_busied(p))
792				continue;
793			PCPU_INC(cnt.v_pdpages);
794			vm_page_lock(p);
795			if (p->wire_count != 0 || p->hold_count != 0 ||
796			    !pmap_page_exists_quick(pmap, p)) {
797				vm_page_unlock(p);
798				continue;
799			}
800			act_delta = pmap_ts_referenced(p);
801			if ((p->aflags & PGA_REFERENCED) != 0) {
802				if (act_delta == 0)
803					act_delta = 1;
804				vm_page_aflag_clear(p, PGA_REFERENCED);
805			}
806			if (p->queue != PQ_ACTIVE && act_delta != 0) {
807				vm_page_activate(p);
808				p->act_count += act_delta;
809			} else if (p->queue == PQ_ACTIVE) {
810				if (act_delta == 0) {
811					p->act_count -= min(p->act_count,
812					    ACT_DECLINE);
813					if (!remove_mode && p->act_count == 0) {
814						pmap_remove_all(p);
815						vm_page_deactivate(p);
816					} else
817						vm_page_requeue(p);
818				} else {
819					vm_page_activate(p);
820					if (p->act_count < ACT_MAX -
821					    ACT_ADVANCE)
822						p->act_count += ACT_ADVANCE;
823					vm_page_requeue(p);
824				}
825			} else if (p->queue == PQ_INACTIVE)
826				pmap_remove_all(p);
827			vm_page_unlock(p);
828		}
829		if ((backing_object = object->backing_object) == NULL)
830			goto unlock_return;
831		VM_OBJECT_RLOCK(backing_object);
832		if (object != first_object)
833			VM_OBJECT_RUNLOCK(object);
834	}
835unlock_return:
836	if (object != first_object)
837		VM_OBJECT_RUNLOCK(object);
838}
839
840/*
841 * deactivate some number of pages in a map, try to do it fairly, but
842 * that is really hard to do.
843 */
844static void
845vm_pageout_map_deactivate_pages(map, desired)
846	vm_map_t map;
847	long desired;
848{
849	vm_map_entry_t tmpe;
850	vm_object_t obj, bigobj;
851	int nothingwired;
852
853	if (!vm_map_trylock(map))
854		return;
855
856	bigobj = NULL;
857	nothingwired = TRUE;
858
859	/*
860	 * first, search out the biggest object, and try to free pages from
861	 * that.
862	 */
863	tmpe = map->header.next;
864	while (tmpe != &map->header) {
865		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
866			obj = tmpe->object.vm_object;
867			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
868				if (obj->shadow_count <= 1 &&
869				    (bigobj == NULL ||
870				     bigobj->resident_page_count < obj->resident_page_count)) {
871					if (bigobj != NULL)
872						VM_OBJECT_RUNLOCK(bigobj);
873					bigobj = obj;
874				} else
875					VM_OBJECT_RUNLOCK(obj);
876			}
877		}
878		if (tmpe->wired_count > 0)
879			nothingwired = FALSE;
880		tmpe = tmpe->next;
881	}
882
883	if (bigobj != NULL) {
884		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
885		VM_OBJECT_RUNLOCK(bigobj);
886	}
887	/*
888	 * Next, hunt around for other pages to deactivate.  We actually
889	 * do this search sort of wrong -- .text first is not the best idea.
890	 */
891	tmpe = map->header.next;
892	while (tmpe != &map->header) {
893		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
894			break;
895		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
896			obj = tmpe->object.vm_object;
897			if (obj != NULL) {
898				VM_OBJECT_RLOCK(obj);
899				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
900				VM_OBJECT_RUNLOCK(obj);
901			}
902		}
903		tmpe = tmpe->next;
904	}
905
906#ifdef __ia64__
907	/*
908	 * Remove all non-wired, managed mappings if a process is swapped out.
909	 * This will free page table pages.
910	 */
911	if (desired == 0)
912		pmap_remove_pages(map->pmap);
913#else
914	/*
915	 * Remove all mappings if a process is swapped out, this will free page
916	 * table pages.
917	 */
918	if (desired == 0 && nothingwired) {
919		pmap_remove(vm_map_pmap(map), vm_map_min(map),
920		    vm_map_max(map));
921	}
922#endif
923
924	vm_map_unlock(map);
925}
926#endif		/* !defined(NO_SWAPPING) */
927
928/*
929 *	vm_pageout_scan does the dirty work for the pageout daemon.
930 *
931 *	pass 0 - Update active LRU/deactivate pages
932 *	pass 1 - Move inactive to cache or free
933 *	pass 2 - Launder dirty pages
934 */
935static void
936vm_pageout_scan(struct vm_domain *vmd, int pass)
937{
938	vm_page_t m, next;
939	struct vm_pagequeue *pq;
940	vm_object_t object;
941	long min_scan;
942	int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
943	int vnodes_skipped = 0;
944	int maxlaunder, scan_tick, scanned;
945	int lockmode;
946	boolean_t queues_locked;
947
948	/*
949	 * If we need to reclaim memory ask kernel caches to return
950	 * some.  We rate limit to avoid thrashing.
951	 */
952	if (vmd == &vm_dom[0] && pass > 0 &&
953	    (time_uptime - lowmem_uptime) >= lowmem_period) {
954		/*
955		 * Decrease registered cache sizes.
956		 */
957		SDT_PROBE0(vm, , , vm__lowmem_scan);
958		EVENTHANDLER_INVOKE(vm_lowmem, 0);
959		/*
960		 * We do this explicitly after the caches have been
961		 * drained above.
962		 */
963		uma_reclaim();
964		lowmem_uptime = time_uptime;
965	}
966
967	/*
968	 * The addl_page_shortage is the number of temporarily
969	 * stuck pages in the inactive queue.  In other words, the
970	 * number of pages from the inactive count that should be
971	 * discounted in setting the target for the active queue scan.
972	 */
973	addl_page_shortage = 0;
974
975	/*
976	 * Calculate the number of pages we want to either free or move
977	 * to the cache.
978	 */
979	if (pass > 0) {
980		deficit = atomic_readandclear_int(&vm_pageout_deficit);
981		page_shortage = vm_paging_target() + deficit;
982	} else
983		page_shortage = deficit = 0;
984
985	/*
986	 * maxlaunder limits the number of dirty pages we flush per scan.
987	 * For most systems a smaller value (16 or 32) is more robust under
988	 * extreme memory and disk pressure because any unnecessary writes
989	 * to disk can result in extreme performance degredation.  However,
990	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
991	 * used) will die horribly with limited laundering.  If the pageout
992	 * daemon cannot clean enough pages in the first pass, we let it go
993	 * all out in succeeding passes.
994	 */
995	if ((maxlaunder = vm_max_launder) <= 1)
996		maxlaunder = 1;
997	if (pass > 1)
998		maxlaunder = 10000;
999
1000	/*
1001	 * Start scanning the inactive queue for pages we can move to the
1002	 * cache or free.  The scan will stop when the target is reached or
1003	 * we have scanned the entire inactive queue.  Note that m->act_count
1004	 * is not used to form decisions for the inactive queue, only for the
1005	 * active queue.
1006	 */
1007	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1008	maxscan = pq->pq_cnt;
1009	vm_pagequeue_lock(pq);
1010	queues_locked = TRUE;
1011	for (m = TAILQ_FIRST(&pq->pq_pl);
1012	     m != NULL && maxscan-- > 0 && page_shortage > 0;
1013	     m = next) {
1014		vm_pagequeue_assert_locked(pq);
1015		KASSERT(queues_locked, ("unlocked queues"));
1016		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
1017
1018		PCPU_INC(cnt.v_pdpages);
1019		next = TAILQ_NEXT(m, plinks.q);
1020
1021		/*
1022		 * skip marker pages
1023		 */
1024		if (m->flags & PG_MARKER)
1025			continue;
1026
1027		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1028		    ("Fictitious page %p cannot be in inactive queue", m));
1029		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1030		    ("Unmanaged page %p cannot be in inactive queue", m));
1031
1032		/*
1033		 * The page or object lock acquisitions fail if the
1034		 * page was removed from the queue or moved to a
1035		 * different position within the queue.  In either
1036		 * case, addl_page_shortage should not be incremented.
1037		 */
1038		if (!vm_pageout_page_lock(m, &next)) {
1039			vm_page_unlock(m);
1040			continue;
1041		}
1042		object = m->object;
1043		if (!VM_OBJECT_TRYWLOCK(object) &&
1044		    !vm_pageout_fallback_object_lock(m, &next)) {
1045			vm_page_unlock(m);
1046			VM_OBJECT_WUNLOCK(object);
1047			continue;
1048		}
1049
1050		/*
1051		 * Don't mess with busy pages, keep them at at the
1052		 * front of the queue, most likely they are being
1053		 * paged out.  Increment addl_page_shortage for busy
1054		 * pages, because they may leave the inactive queue
1055		 * shortly after page scan is finished.
1056		 */
1057		if (vm_page_busied(m)) {
1058			vm_page_unlock(m);
1059			VM_OBJECT_WUNLOCK(object);
1060			addl_page_shortage++;
1061			continue;
1062		}
1063
1064		/*
1065		 * We unlock the inactive page queue, invalidating the
1066		 * 'next' pointer.  Use our marker to remember our
1067		 * place.
1068		 */
1069		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1070		vm_pagequeue_unlock(pq);
1071		queues_locked = FALSE;
1072
1073		/*
1074		 * We bump the activation count if the page has been
1075		 * referenced while in the inactive queue.  This makes
1076		 * it less likely that the page will be added back to the
1077		 * inactive queue prematurely again.  Here we check the
1078		 * page tables (or emulated bits, if any), given the upper
1079		 * level VM system not knowing anything about existing
1080		 * references.
1081		 */
1082		act_delta = 0;
1083		if ((m->aflags & PGA_REFERENCED) != 0) {
1084			vm_page_aflag_clear(m, PGA_REFERENCED);
1085			act_delta = 1;
1086		}
1087		if (object->ref_count != 0) {
1088			act_delta += pmap_ts_referenced(m);
1089		} else {
1090			KASSERT(!pmap_page_is_mapped(m),
1091			    ("vm_pageout_scan: page %p is mapped", m));
1092		}
1093
1094		/*
1095		 * If the upper level VM system knows about any page
1096		 * references, we reactivate the page or requeue it.
1097		 */
1098		if (act_delta != 0) {
1099			if (object->ref_count) {
1100				vm_page_activate(m);
1101				m->act_count += act_delta + ACT_ADVANCE;
1102			} else {
1103				vm_pagequeue_lock(pq);
1104				queues_locked = TRUE;
1105				vm_page_requeue_locked(m);
1106			}
1107			VM_OBJECT_WUNLOCK(object);
1108			vm_page_unlock(m);
1109			goto relock_queues;
1110		}
1111
1112		if (m->hold_count != 0) {
1113			vm_page_unlock(m);
1114			VM_OBJECT_WUNLOCK(object);
1115
1116			/*
1117			 * Held pages are essentially stuck in the
1118			 * queue.  So, they ought to be discounted
1119			 * from the inactive count.  See the
1120			 * calculation of the page_shortage for the
1121			 * loop over the active queue below.
1122			 */
1123			addl_page_shortage++;
1124			goto relock_queues;
1125		}
1126
1127		/*
1128		 * If the page appears to be clean at the machine-independent
1129		 * layer, then remove all of its mappings from the pmap in
1130		 * anticipation of placing it onto the cache queue.  If,
1131		 * however, any of the page's mappings allow write access,
1132		 * then the page may still be modified until the last of those
1133		 * mappings are removed.
1134		 */
1135		if (object->ref_count != 0) {
1136			vm_page_test_dirty(m);
1137			if (m->dirty == 0)
1138				pmap_remove_all(m);
1139		}
1140
1141		if (m->valid == 0) {
1142			/*
1143			 * Invalid pages can be easily freed
1144			 */
1145			vm_page_free(m);
1146			PCPU_INC(cnt.v_dfree);
1147			--page_shortage;
1148		} else if (m->dirty == 0) {
1149			/*
1150			 * Clean pages can be placed onto the cache queue.
1151			 * This effectively frees them.
1152			 */
1153			vm_page_cache(m);
1154			--page_shortage;
1155		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1156			/*
1157			 * Dirty pages need to be paged out, but flushing
1158			 * a page is extremely expensive verses freeing
1159			 * a clean page.  Rather then artificially limiting
1160			 * the number of pages we can flush, we instead give
1161			 * dirty pages extra priority on the inactive queue
1162			 * by forcing them to be cycled through the queue
1163			 * twice before being flushed, after which the
1164			 * (now clean) page will cycle through once more
1165			 * before being freed.  This significantly extends
1166			 * the thrash point for a heavily loaded machine.
1167			 */
1168			m->flags |= PG_WINATCFLS;
1169			vm_pagequeue_lock(pq);
1170			queues_locked = TRUE;
1171			vm_page_requeue_locked(m);
1172		} else if (maxlaunder > 0) {
1173			/*
1174			 * We always want to try to flush some dirty pages if
1175			 * we encounter them, to keep the system stable.
1176			 * Normally this number is small, but under extreme
1177			 * pressure where there are insufficient clean pages
1178			 * on the inactive queue, we may have to go all out.
1179			 */
1180			int swap_pageouts_ok;
1181			struct vnode *vp = NULL;
1182			struct mount *mp = NULL;
1183
1184			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1185				swap_pageouts_ok = 1;
1186			} else {
1187				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1188				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1189				vm_page_count_min());
1190
1191			}
1192
1193			/*
1194			 * We don't bother paging objects that are "dead".
1195			 * Those objects are in a "rundown" state.
1196			 */
1197			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1198				vm_pagequeue_lock(pq);
1199				vm_page_unlock(m);
1200				VM_OBJECT_WUNLOCK(object);
1201				queues_locked = TRUE;
1202				vm_page_requeue_locked(m);
1203				goto relock_queues;
1204			}
1205
1206			/*
1207			 * The object is already known NOT to be dead.   It
1208			 * is possible for the vget() to block the whole
1209			 * pageout daemon, but the new low-memory handling
1210			 * code should prevent it.
1211			 *
1212			 * The previous code skipped locked vnodes and, worse,
1213			 * reordered pages in the queue.  This results in
1214			 * completely non-deterministic operation and, on a
1215			 * busy system, can lead to extremely non-optimal
1216			 * pageouts.  For example, it can cause clean pages
1217			 * to be freed and dirty pages to be moved to the end
1218			 * of the queue.  Since dirty pages are also moved to
1219			 * the end of the queue once-cleaned, this gives
1220			 * way too large a weighting to defering the freeing
1221			 * of dirty pages.
1222			 *
1223			 * We can't wait forever for the vnode lock, we might
1224			 * deadlock due to a vn_read() getting stuck in
1225			 * vm_wait while holding this vnode.  We skip the
1226			 * vnode if we can't get it in a reasonable amount
1227			 * of time.
1228			 */
1229			if (object->type == OBJT_VNODE) {
1230				vm_page_unlock(m);
1231				vp = object->handle;
1232				if (vp->v_type == VREG &&
1233				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1234					mp = NULL;
1235					++pageout_lock_miss;
1236					if (object->flags & OBJ_MIGHTBEDIRTY)
1237						vnodes_skipped++;
1238					goto unlock_and_continue;
1239				}
1240				KASSERT(mp != NULL,
1241				    ("vp %p with NULL v_mount", vp));
1242				vm_object_reference_locked(object);
1243				VM_OBJECT_WUNLOCK(object);
1244				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1245				    LK_SHARED : LK_EXCLUSIVE;
1246				if (vget(vp, lockmode | LK_TIMELOCK,
1247				    curthread)) {
1248					VM_OBJECT_WLOCK(object);
1249					++pageout_lock_miss;
1250					if (object->flags & OBJ_MIGHTBEDIRTY)
1251						vnodes_skipped++;
1252					vp = NULL;
1253					goto unlock_and_continue;
1254				}
1255				VM_OBJECT_WLOCK(object);
1256				vm_page_lock(m);
1257				vm_pagequeue_lock(pq);
1258				queues_locked = TRUE;
1259				/*
1260				 * The page might have been moved to another
1261				 * queue during potential blocking in vget()
1262				 * above.  The page might have been freed and
1263				 * reused for another vnode.
1264				 */
1265				if (m->queue != PQ_INACTIVE ||
1266				    m->object != object ||
1267				    TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1268					vm_page_unlock(m);
1269					if (object->flags & OBJ_MIGHTBEDIRTY)
1270						vnodes_skipped++;
1271					goto unlock_and_continue;
1272				}
1273
1274				/*
1275				 * The page may have been busied during the
1276				 * blocking in vget().  We don't move the
1277				 * page back onto the end of the queue so that
1278				 * statistics are more correct if we don't.
1279				 */
1280				if (vm_page_busied(m)) {
1281					vm_page_unlock(m);
1282					addl_page_shortage++;
1283					goto unlock_and_continue;
1284				}
1285
1286				/*
1287				 * If the page has become held it might
1288				 * be undergoing I/O, so skip it
1289				 */
1290				if (m->hold_count != 0) {
1291					vm_page_unlock(m);
1292					addl_page_shortage++;
1293					if (object->flags & OBJ_MIGHTBEDIRTY)
1294						vnodes_skipped++;
1295					goto unlock_and_continue;
1296				}
1297				vm_pagequeue_unlock(pq);
1298				queues_locked = FALSE;
1299			}
1300
1301			/*
1302			 * If a page is dirty, then it is either being washed
1303			 * (but not yet cleaned) or it is still in the
1304			 * laundry.  If it is still in the laundry, then we
1305			 * start the cleaning operation.
1306			 *
1307			 * decrement page_shortage on success to account for
1308			 * the (future) cleaned page.  Otherwise we could wind
1309			 * up laundering or cleaning too many pages.
1310			 */
1311			if (vm_pageout_clean(m) != 0) {
1312				--page_shortage;
1313				--maxlaunder;
1314			}
1315unlock_and_continue:
1316			vm_page_lock_assert(m, MA_NOTOWNED);
1317			VM_OBJECT_WUNLOCK(object);
1318			if (mp != NULL) {
1319				if (queues_locked) {
1320					vm_pagequeue_unlock(pq);
1321					queues_locked = FALSE;
1322				}
1323				if (vp != NULL)
1324					vput(vp);
1325				vm_object_deallocate(object);
1326				vn_finished_write(mp);
1327			}
1328			vm_page_lock_assert(m, MA_NOTOWNED);
1329			goto relock_queues;
1330		}
1331		vm_page_unlock(m);
1332		VM_OBJECT_WUNLOCK(object);
1333relock_queues:
1334		if (!queues_locked) {
1335			vm_pagequeue_lock(pq);
1336			queues_locked = TRUE;
1337		}
1338		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1339		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1340	}
1341	vm_pagequeue_unlock(pq);
1342
1343#if !defined(NO_SWAPPING)
1344	/*
1345	 * Wakeup the swapout daemon if we didn't cache or free the targeted
1346	 * number of pages.
1347	 */
1348	if (vm_swap_enabled && page_shortage > 0)
1349		vm_req_vmdaemon(VM_SWAP_NORMAL);
1350#endif
1351
1352	/*
1353	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1354	 * and we didn't cache or free enough pages.
1355	 */
1356	if (vnodes_skipped > 0 && page_shortage > cnt.v_free_target -
1357	    cnt.v_free_min)
1358		(void)speedup_syncer();
1359
1360	/*
1361	 * Compute the number of pages we want to try to move from the
1362	 * active queue to the inactive queue.
1363	 */
1364	page_shortage = cnt.v_inactive_target - cnt.v_inactive_count +
1365	    vm_paging_target() + deficit + addl_page_shortage;
1366
1367	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1368	vm_pagequeue_lock(pq);
1369	maxscan = pq->pq_cnt;
1370
1371	/*
1372	 * If we're just idle polling attempt to visit every
1373	 * active page within 'update_period' seconds.
1374	 */
1375	scan_tick = ticks;
1376	if (vm_pageout_update_period != 0) {
1377		min_scan = pq->pq_cnt;
1378		min_scan *= scan_tick - vmd->vmd_last_active_scan;
1379		min_scan /= hz * vm_pageout_update_period;
1380	} else
1381		min_scan = 0;
1382	if (min_scan > 0 || (page_shortage > 0 && maxscan > 0))
1383		vmd->vmd_last_active_scan = scan_tick;
1384
1385	/*
1386	 * Scan the active queue for pages that can be deactivated.  Update
1387	 * the per-page activity counter and use it to identify deactivation
1388	 * candidates.
1389	 */
1390	for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
1391	    min_scan || (page_shortage > 0 && scanned < maxscan)); m = next,
1392	    scanned++) {
1393
1394		KASSERT(m->queue == PQ_ACTIVE,
1395		    ("vm_pageout_scan: page %p isn't active", m));
1396
1397		next = TAILQ_NEXT(m, plinks.q);
1398		if ((m->flags & PG_MARKER) != 0)
1399			continue;
1400		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1401		    ("Fictitious page %p cannot be in active queue", m));
1402		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1403		    ("Unmanaged page %p cannot be in active queue", m));
1404		if (!vm_pageout_page_lock(m, &next)) {
1405			vm_page_unlock(m);
1406			continue;
1407		}
1408
1409		/*
1410		 * The count for pagedaemon pages is done after checking the
1411		 * page for eligibility...
1412		 */
1413		PCPU_INC(cnt.v_pdpages);
1414
1415		/*
1416		 * Check to see "how much" the page has been used.
1417		 */
1418		act_delta = 0;
1419		if (m->aflags & PGA_REFERENCED) {
1420			vm_page_aflag_clear(m, PGA_REFERENCED);
1421			act_delta += 1;
1422		}
1423		/*
1424		 * Unlocked object ref count check.  Two races are possible.
1425		 * 1) The ref was transitioning to zero and we saw non-zero,
1426		 *    the pmap bits will be checked unnecessarily.
1427		 * 2) The ref was transitioning to one and we saw zero.
1428		 *    The page lock prevents a new reference to this page so
1429		 *    we need not check the reference bits.
1430		 */
1431		if (m->object->ref_count != 0)
1432			act_delta += pmap_ts_referenced(m);
1433
1434		/*
1435		 * Advance or decay the act_count based on recent usage.
1436		 */
1437		if (act_delta) {
1438			m->act_count += ACT_ADVANCE + act_delta;
1439			if (m->act_count > ACT_MAX)
1440				m->act_count = ACT_MAX;
1441		} else {
1442			m->act_count -= min(m->act_count, ACT_DECLINE);
1443			act_delta = m->act_count;
1444		}
1445
1446		/*
1447		 * Move this page to the tail of the active or inactive
1448		 * queue depending on usage.
1449		 */
1450		if (act_delta == 0) {
1451			/* Dequeue to avoid later lock recursion. */
1452			vm_page_dequeue_locked(m);
1453			vm_page_deactivate(m);
1454			page_shortage--;
1455		} else
1456			vm_page_requeue_locked(m);
1457		vm_page_unlock(m);
1458	}
1459	vm_pagequeue_unlock(pq);
1460#if !defined(NO_SWAPPING)
1461	/*
1462	 * Idle process swapout -- run once per second.
1463	 */
1464	if (vm_swap_idle_enabled) {
1465		static long lsec;
1466		if (time_second != lsec) {
1467			vm_req_vmdaemon(VM_SWAP_IDLE);
1468			lsec = time_second;
1469		}
1470	}
1471#endif
1472
1473	/*
1474	 * If we are critically low on one of RAM or swap and low on
1475	 * the other, kill the largest process.  However, we avoid
1476	 * doing this on the first pass in order to give ourselves a
1477	 * chance to flush out dirty vnode-backed pages and to allow
1478	 * active pages to be moved to the inactive queue and reclaimed.
1479	 */
1480	vm_pageout_mightbe_oom(vmd, pass);
1481}
1482
1483static int vm_pageout_oom_vote;
1484
1485/*
1486 * The pagedaemon threads randlomly select one to perform the
1487 * OOM.  Trying to kill processes before all pagedaemons
1488 * failed to reach free target is premature.
1489 */
1490static void
1491vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1492{
1493	int old_vote;
1494
1495	if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1496	    (swap_pager_full && vm_paging_target() > 0))) {
1497		if (vmd->vmd_oom) {
1498			vmd->vmd_oom = FALSE;
1499			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1500		}
1501		return;
1502	}
1503
1504	if (vmd->vmd_oom)
1505		return;
1506
1507	vmd->vmd_oom = TRUE;
1508	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1509	if (old_vote != vm_ndomains - 1)
1510		return;
1511
1512	/*
1513	 * The current pagedaemon thread is the last in the quorum to
1514	 * start OOM.  Initiate the selection and signaling of the
1515	 * victim.
1516	 */
1517	vm_pageout_oom(VM_OOM_MEM);
1518
1519	/*
1520	 * After one round of OOM terror, recall our vote.  On the
1521	 * next pass, current pagedaemon would vote again if the low
1522	 * memory condition is still there, due to vmd_oom being
1523	 * false.
1524	 */
1525	vmd->vmd_oom = FALSE;
1526	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1527}
1528
1529void
1530vm_pageout_oom(int shortage)
1531{
1532	struct proc *p, *bigproc;
1533	vm_offset_t size, bigsize;
1534	struct thread *td;
1535	struct vmspace *vm;
1536
1537	/*
1538	 * We keep the process bigproc locked once we find it to keep anyone
1539	 * from messing with it; however, there is a possibility of
1540	 * deadlock if process B is bigproc and one of it's child processes
1541	 * attempts to propagate a signal to B while we are waiting for A's
1542	 * lock while walking this list.  To avoid this, we don't block on
1543	 * the process lock but just skip a process if it is already locked.
1544	 */
1545	bigproc = NULL;
1546	bigsize = 0;
1547	sx_slock(&allproc_lock);
1548	FOREACH_PROC_IN_SYSTEM(p) {
1549		int breakout;
1550
1551		PROC_LOCK(p);
1552
1553		/*
1554		 * If this is a system, protected or killed process, skip it.
1555		 */
1556		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1557		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1558		    p->p_pid == 1 || P_KILLED(p) ||
1559		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1560			PROC_UNLOCK(p);
1561			continue;
1562		}
1563		/*
1564		 * If the process is in a non-running type state,
1565		 * don't touch it.  Check all the threads individually.
1566		 */
1567		breakout = 0;
1568		FOREACH_THREAD_IN_PROC(p, td) {
1569			thread_lock(td);
1570			if (!TD_ON_RUNQ(td) &&
1571			    !TD_IS_RUNNING(td) &&
1572			    !TD_IS_SLEEPING(td) &&
1573			    !TD_IS_SUSPENDED(td) &&
1574			    !TD_IS_SWAPPED(td)) {
1575				thread_unlock(td);
1576				breakout = 1;
1577				break;
1578			}
1579			thread_unlock(td);
1580		}
1581		if (breakout) {
1582			PROC_UNLOCK(p);
1583			continue;
1584		}
1585		/*
1586		 * get the process size
1587		 */
1588		vm = vmspace_acquire_ref(p);
1589		if (vm == NULL) {
1590			PROC_UNLOCK(p);
1591			continue;
1592		}
1593		_PHOLD(p);
1594		if (!vm_map_trylock_read(&vm->vm_map)) {
1595			_PRELE(p);
1596			PROC_UNLOCK(p);
1597			vmspace_free(vm);
1598			continue;
1599		}
1600		PROC_UNLOCK(p);
1601		size = vmspace_swap_count(vm);
1602		vm_map_unlock_read(&vm->vm_map);
1603		if (shortage == VM_OOM_MEM)
1604			size += vmspace_resident_count(vm);
1605		vmspace_free(vm);
1606		/*
1607		 * if the this process is bigger than the biggest one
1608		 * remember it.
1609		 */
1610		if (size > bigsize) {
1611			if (bigproc != NULL)
1612				PRELE(bigproc);
1613			bigproc = p;
1614			bigsize = size;
1615		} else {
1616			PRELE(p);
1617		}
1618	}
1619	sx_sunlock(&allproc_lock);
1620	if (bigproc != NULL) {
1621		PROC_LOCK(bigproc);
1622		killproc(bigproc, "out of swap space");
1623		sched_nice(bigproc, PRIO_MIN);
1624		_PRELE(bigproc);
1625		PROC_UNLOCK(bigproc);
1626		wakeup(&cnt.v_free_count);
1627	}
1628}
1629
1630static void
1631vm_pageout_worker(void *arg)
1632{
1633	struct vm_domain *domain;
1634	int domidx;
1635
1636	domidx = (uintptr_t)arg;
1637	domain = &vm_dom[domidx];
1638
1639	/*
1640	 * XXXKIB It could be useful to bind pageout daemon threads to
1641	 * the cores belonging to the domain, from which vm_page_array
1642	 * is allocated.
1643	 */
1644
1645	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1646	domain->vmd_last_active_scan = ticks;
1647	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1648
1649	/*
1650	 * The pageout daemon worker is never done, so loop forever.
1651	 */
1652	while (TRUE) {
1653		/*
1654		 * If we have enough free memory, wakeup waiters.  Do
1655		 * not clear vm_pages_needed until we reach our target,
1656		 * otherwise we may be woken up over and over again and
1657		 * waste a lot of cpu.
1658		 */
1659		mtx_lock(&vm_page_queue_free_mtx);
1660		if (vm_pages_needed && !vm_page_count_min()) {
1661			if (!vm_paging_needed())
1662				vm_pages_needed = 0;
1663			wakeup(&cnt.v_free_count);
1664		}
1665		if (vm_pages_needed) {
1666			/*
1667			 * We're still not done.  Either vm_pages_needed was
1668			 * set by another thread during the previous scan
1669			 * (typically, this happens during a level 0 scan) or
1670			 * vm_pages_needed was already set and the scan failed
1671			 * to free enough pages.  If we haven't yet performed
1672			 * a level >= 2 scan (unlimited dirty cleaning), then
1673			 * upgrade the level and scan again now.  Otherwise,
1674			 * sleep a bit and try again later.  While sleeping,
1675			 * vm_pages_needed can be cleared.
1676			 */
1677			if (domain->vmd_pass > 1)
1678				msleep(&vm_pages_needed,
1679				    &vm_page_queue_free_mtx, PVM, "psleep",
1680				    hz / 2);
1681		} else {
1682			/*
1683			 * Good enough, sleep until required to refresh
1684			 * stats.
1685			 */
1686			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1687			    PVM, "psleep", hz);
1688		}
1689		if (vm_pages_needed) {
1690			cnt.v_pdwakeups++;
1691			domain->vmd_pass++;
1692		} else
1693			domain->vmd_pass = 0;
1694		mtx_unlock(&vm_page_queue_free_mtx);
1695		vm_pageout_scan(domain, domain->vmd_pass);
1696	}
1697}
1698
1699/*
1700 *	vm_pageout_init initialises basic pageout daemon settings.
1701 */
1702static void
1703vm_pageout_init(void)
1704{
1705	/*
1706	 * Initialize some paging parameters.
1707	 */
1708	cnt.v_interrupt_free_min = 2;
1709	if (cnt.v_page_count < 2000)
1710		vm_pageout_page_count = 8;
1711
1712	/*
1713	 * v_free_reserved needs to include enough for the largest
1714	 * swap pager structures plus enough for any pv_entry structs
1715	 * when paging.
1716	 */
1717	if (cnt.v_page_count > 1024)
1718		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1719	else
1720		cnt.v_free_min = 4;
1721	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1722	    cnt.v_interrupt_free_min;
1723	cnt.v_free_reserved = vm_pageout_page_count +
1724	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1725	cnt.v_free_severe = cnt.v_free_min / 2;
1726	cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1727	cnt.v_free_min += cnt.v_free_reserved;
1728	cnt.v_free_severe += cnt.v_free_reserved;
1729	cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1730	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1731		cnt.v_inactive_target = cnt.v_free_count / 3;
1732
1733	/*
1734	 * Set the default wakeup threshold to be 10% above the minimum
1735	 * page limit.  This keeps the steady state out of shortfall.
1736	 */
1737	vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
1738
1739	/*
1740	 * Set interval in seconds for active scan.  We want to visit each
1741	 * page at least once every ten minutes.  This is to prevent worst
1742	 * case paging behaviors with stale active LRU.
1743	 */
1744	if (vm_pageout_update_period == 0)
1745		vm_pageout_update_period = 600;
1746
1747	/* XXX does not really belong here */
1748	if (vm_page_max_wired == 0)
1749		vm_page_max_wired = cnt.v_free_count / 3;
1750}
1751
1752/*
1753 *     vm_pageout is the high level pageout daemon.
1754 */
1755static void
1756vm_pageout(void)
1757{
1758	int error;
1759#if MAXMEMDOM > 1
1760	int i;
1761#endif
1762
1763	swap_pager_swap_init();
1764#if MAXMEMDOM > 1
1765	for (i = 1; i < vm_ndomains; i++) {
1766		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1767		    curproc, NULL, 0, 0, "dom%d", i);
1768		if (error != 0) {
1769			panic("starting pageout for domain %d, error %d\n",
1770			    i, error);
1771		}
1772	}
1773#endif
1774	error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
1775	    0, 0, "uma");
1776	if (error != 0)
1777		panic("starting uma_reclaim helper, error %d\n", error);
1778	vm_pageout_worker((void *)(uintptr_t)0);
1779}
1780
1781/*
1782 * Unless the free page queue lock is held by the caller, this function
1783 * should be regarded as advisory.  Specifically, the caller should
1784 * not msleep() on &cnt.v_free_count following this function unless
1785 * the free page queue lock is held until the msleep() is performed.
1786 */
1787void
1788pagedaemon_wakeup(void)
1789{
1790
1791	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1792		vm_pages_needed = 1;
1793		wakeup(&vm_pages_needed);
1794	}
1795}
1796
1797#if !defined(NO_SWAPPING)
1798static void
1799vm_req_vmdaemon(int req)
1800{
1801	static int lastrun = 0;
1802
1803	mtx_lock(&vm_daemon_mtx);
1804	vm_pageout_req_swapout |= req;
1805	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1806		wakeup(&vm_daemon_needed);
1807		lastrun = ticks;
1808	}
1809	mtx_unlock(&vm_daemon_mtx);
1810}
1811
1812static void
1813vm_daemon(void)
1814{
1815	struct rlimit rsslim;
1816	struct proc *p;
1817	struct thread *td;
1818	struct vmspace *vm;
1819	int breakout, swapout_flags, tryagain, attempts;
1820#ifdef RACCT
1821	uint64_t rsize, ravailable;
1822#endif
1823
1824	while (TRUE) {
1825		mtx_lock(&vm_daemon_mtx);
1826		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
1827#ifdef RACCT
1828		    racct_enable ? hz : 0
1829#else
1830		    0
1831#endif
1832		);
1833		swapout_flags = vm_pageout_req_swapout;
1834		vm_pageout_req_swapout = 0;
1835		mtx_unlock(&vm_daemon_mtx);
1836		if (swapout_flags)
1837			swapout_procs(swapout_flags);
1838
1839		/*
1840		 * scan the processes for exceeding their rlimits or if
1841		 * process is swapped out -- deactivate pages
1842		 */
1843		tryagain = 0;
1844		attempts = 0;
1845again:
1846		attempts++;
1847		sx_slock(&allproc_lock);
1848		FOREACH_PROC_IN_SYSTEM(p) {
1849			vm_pindex_t limit, size;
1850
1851			/*
1852			 * if this is a system process or if we have already
1853			 * looked at this process, skip it.
1854			 */
1855			PROC_LOCK(p);
1856			if (p->p_state != PRS_NORMAL ||
1857			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1858				PROC_UNLOCK(p);
1859				continue;
1860			}
1861			/*
1862			 * if the process is in a non-running type state,
1863			 * don't touch it.
1864			 */
1865			breakout = 0;
1866			FOREACH_THREAD_IN_PROC(p, td) {
1867				thread_lock(td);
1868				if (!TD_ON_RUNQ(td) &&
1869				    !TD_IS_RUNNING(td) &&
1870				    !TD_IS_SLEEPING(td) &&
1871				    !TD_IS_SUSPENDED(td)) {
1872					thread_unlock(td);
1873					breakout = 1;
1874					break;
1875				}
1876				thread_unlock(td);
1877			}
1878			if (breakout) {
1879				PROC_UNLOCK(p);
1880				continue;
1881			}
1882			/*
1883			 * get a limit
1884			 */
1885			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1886			limit = OFF_TO_IDX(
1887			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1888
1889			/*
1890			 * let processes that are swapped out really be
1891			 * swapped out set the limit to nothing (will force a
1892			 * swap-out.)
1893			 */
1894			if ((p->p_flag & P_INMEM) == 0)
1895				limit = 0;	/* XXX */
1896			vm = vmspace_acquire_ref(p);
1897			PROC_UNLOCK(p);
1898			if (vm == NULL)
1899				continue;
1900
1901			size = vmspace_resident_count(vm);
1902			if (size >= limit) {
1903				vm_pageout_map_deactivate_pages(
1904				    &vm->vm_map, limit);
1905			}
1906#ifdef RACCT
1907			if (racct_enable) {
1908				rsize = IDX_TO_OFF(size);
1909				PROC_LOCK(p);
1910				racct_set(p, RACCT_RSS, rsize);
1911				ravailable = racct_get_available(p, RACCT_RSS);
1912				PROC_UNLOCK(p);
1913				if (rsize > ravailable) {
1914					/*
1915					 * Don't be overly aggressive; this
1916					 * might be an innocent process,
1917					 * and the limit could've been exceeded
1918					 * by some memory hog.  Don't try
1919					 * to deactivate more than 1/4th
1920					 * of process' resident set size.
1921					 */
1922					if (attempts <= 8) {
1923						if (ravailable < rsize -
1924						    (rsize / 4)) {
1925							ravailable = rsize -
1926							    (rsize / 4);
1927						}
1928					}
1929					vm_pageout_map_deactivate_pages(
1930					    &vm->vm_map,
1931					    OFF_TO_IDX(ravailable));
1932					/* Update RSS usage after paging out. */
1933					size = vmspace_resident_count(vm);
1934					rsize = IDX_TO_OFF(size);
1935					PROC_LOCK(p);
1936					racct_set(p, RACCT_RSS, rsize);
1937					PROC_UNLOCK(p);
1938					if (rsize > ravailable)
1939						tryagain = 1;
1940				}
1941			}
1942#endif
1943			vmspace_free(vm);
1944		}
1945		sx_sunlock(&allproc_lock);
1946		if (tryagain != 0 && attempts <= 10)
1947			goto again;
1948	}
1949}
1950#endif			/* !defined(NO_SWAPPING) */
1951