vm_pageout.c revision 288288
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: stable/10/sys/vm/vm_pageout.c 288288 2015-09-27 01:35:32Z alc $");
77
78#include "opt_vm.h"
79#include "opt_kdtrace.h"
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/eventhandler.h>
84#include <sys/lock.h>
85#include <sys/mutex.h>
86#include <sys/proc.h>
87#include <sys/kthread.h>
88#include <sys/ktr.h>
89#include <sys/mount.h>
90#include <sys/racct.h>
91#include <sys/resourcevar.h>
92#include <sys/sched.h>
93#include <sys/sdt.h>
94#include <sys/signalvar.h>
95#include <sys/smp.h>
96#include <sys/time.h>
97#include <sys/vnode.h>
98#include <sys/vmmeter.h>
99#include <sys/rwlock.h>
100#include <sys/sx.h>
101#include <sys/sysctl.h>
102
103#include <vm/vm.h>
104#include <vm/vm_param.h>
105#include <vm/vm_object.h>
106#include <vm/vm_page.h>
107#include <vm/vm_map.h>
108#include <vm/vm_pageout.h>
109#include <vm/vm_pager.h>
110#include <vm/vm_phys.h>
111#include <vm/swap_pager.h>
112#include <vm/vm_extern.h>
113#include <vm/uma.h>
114
115/*
116 * System initialization
117 */
118
119/* the kernel process "vm_pageout"*/
120static void vm_pageout(void);
121static void vm_pageout_init(void);
122static int vm_pageout_clean(vm_page_t);
123static void vm_pageout_scan(struct vm_domain *vmd, int pass);
124static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
125
126SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
127    NULL);
128
129struct proc *pageproc;
130
131static struct kproc_desc page_kp = {
132	"pagedaemon",
133	vm_pageout,
134	&pageproc
135};
136SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
137    &page_kp);
138
139SDT_PROVIDER_DEFINE(vm);
140SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
141SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
142
143#if !defined(NO_SWAPPING)
144/* the kernel process "vm_daemon"*/
145static void vm_daemon(void);
146static struct	proc *vmproc;
147
148static struct kproc_desc vm_kp = {
149	"vmdaemon",
150	vm_daemon,
151	&vmproc
152};
153SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
154#endif
155
156
157int vm_pages_needed;		/* Event on which pageout daemon sleeps */
158int vm_pageout_deficit;		/* Estimated number of pages deficit */
159int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
160int vm_pageout_wakeup_thresh;
161
162#if !defined(NO_SWAPPING)
163static int vm_pageout_req_swapout;	/* XXX */
164static int vm_daemon_needed;
165static struct mtx vm_daemon_mtx;
166/* Allow for use by vm_pageout before vm_daemon is initialized. */
167MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
168#endif
169static int vm_max_launder = 32;
170static int vm_pageout_update_period;
171static int defer_swap_pageouts;
172static int disable_swap_pageouts;
173static int lowmem_period = 10;
174static time_t lowmem_uptime;
175
176#if defined(NO_SWAPPING)
177static int vm_swap_enabled = 0;
178static int vm_swap_idle_enabled = 0;
179#else
180static int vm_swap_enabled = 1;
181static int vm_swap_idle_enabled = 0;
182#endif
183
184SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
185	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
186	"free page threshold for waking up the pageout daemon");
187
188SYSCTL_INT(_vm, OID_AUTO, max_launder,
189	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
190
191SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
192	CTLFLAG_RW, &vm_pageout_update_period, 0,
193	"Maximum active LRU update period");
194
195SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
196	"Low memory callback period");
197
198#if defined(NO_SWAPPING)
199SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
200	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
201SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
202	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
203#else
204SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
205	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
206SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
207	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
208#endif
209
210SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
211	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
212
213SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
214	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
215
216static int pageout_lock_miss;
217SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
218	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
219
220#define VM_PAGEOUT_PAGE_COUNT 16
221int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
222
223int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
224SYSCTL_INT(_vm, OID_AUTO, max_wired,
225	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
226
227static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
228static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
229    vm_paddr_t);
230#if !defined(NO_SWAPPING)
231static void vm_pageout_map_deactivate_pages(vm_map_t, long);
232static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
233static void vm_req_vmdaemon(int req);
234#endif
235static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
236
237/*
238 * Initialize a dummy page for marking the caller's place in the specified
239 * paging queue.  In principle, this function only needs to set the flag
240 * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
241 * to one as safety precautions.
242 */
243static void
244vm_pageout_init_marker(vm_page_t marker, u_short queue)
245{
246
247	bzero(marker, sizeof(*marker));
248	marker->flags = PG_MARKER;
249	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
250	marker->queue = queue;
251	marker->hold_count = 1;
252}
253
254/*
255 * vm_pageout_fallback_object_lock:
256 *
257 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
258 * known to have failed and page queue must be either PQ_ACTIVE or
259 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
260 * while locking the vm object.  Use marker page to detect page queue
261 * changes and maintain notion of next page on page queue.  Return
262 * TRUE if no changes were detected, FALSE otherwise.  vm object is
263 * locked on return.
264 *
265 * This function depends on both the lock portion of struct vm_object
266 * and normal struct vm_page being type stable.
267 */
268static boolean_t
269vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
270{
271	struct vm_page marker;
272	struct vm_pagequeue *pq;
273	boolean_t unchanged;
274	u_short queue;
275	vm_object_t object;
276
277	queue = m->queue;
278	vm_pageout_init_marker(&marker, queue);
279	pq = vm_page_pagequeue(m);
280	object = m->object;
281
282	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
283	vm_pagequeue_unlock(pq);
284	vm_page_unlock(m);
285	VM_OBJECT_WLOCK(object);
286	vm_page_lock(m);
287	vm_pagequeue_lock(pq);
288
289	/* Page queue might have changed. */
290	*next = TAILQ_NEXT(&marker, plinks.q);
291	unchanged = (m->queue == queue &&
292		     m->object == object &&
293		     &marker == TAILQ_NEXT(m, plinks.q));
294	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
295	return (unchanged);
296}
297
298/*
299 * Lock the page while holding the page queue lock.  Use marker page
300 * to detect page queue changes and maintain notion of next page on
301 * page queue.  Return TRUE if no changes were detected, FALSE
302 * otherwise.  The page is locked on return. The page queue lock might
303 * be dropped and reacquired.
304 *
305 * This function depends on normal struct vm_page being type stable.
306 */
307static boolean_t
308vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
309{
310	struct vm_page marker;
311	struct vm_pagequeue *pq;
312	boolean_t unchanged;
313	u_short queue;
314
315	vm_page_lock_assert(m, MA_NOTOWNED);
316	if (vm_page_trylock(m))
317		return (TRUE);
318
319	queue = m->queue;
320	vm_pageout_init_marker(&marker, queue);
321	pq = vm_page_pagequeue(m);
322
323	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
324	vm_pagequeue_unlock(pq);
325	vm_page_lock(m);
326	vm_pagequeue_lock(pq);
327
328	/* Page queue might have changed. */
329	*next = TAILQ_NEXT(&marker, plinks.q);
330	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
331	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
332	return (unchanged);
333}
334
335/*
336 * vm_pageout_clean:
337 *
338 * Clean the page and remove it from the laundry.
339 *
340 * We set the busy bit to cause potential page faults on this page to
341 * block.  Note the careful timing, however, the busy bit isn't set till
342 * late and we cannot do anything that will mess with the page.
343 */
344static int
345vm_pageout_clean(vm_page_t m)
346{
347	vm_object_t object;
348	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
349	int pageout_count;
350	int ib, is, page_base;
351	vm_pindex_t pindex = m->pindex;
352
353	vm_page_lock_assert(m, MA_OWNED);
354	object = m->object;
355	VM_OBJECT_ASSERT_WLOCKED(object);
356
357	/*
358	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
359	 * with the new swapper, but we could have serious problems paging
360	 * out other object types if there is insufficient memory.
361	 *
362	 * Unfortunately, checking free memory here is far too late, so the
363	 * check has been moved up a procedural level.
364	 */
365
366	/*
367	 * Can't clean the page if it's busy or held.
368	 */
369	vm_page_assert_unbusied(m);
370	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
371	vm_page_unlock(m);
372
373	mc[vm_pageout_page_count] = pb = ps = m;
374	pageout_count = 1;
375	page_base = vm_pageout_page_count;
376	ib = 1;
377	is = 1;
378
379	/*
380	 * Scan object for clusterable pages.
381	 *
382	 * We can cluster ONLY if: ->> the page is NOT
383	 * clean, wired, busy, held, or mapped into a
384	 * buffer, and one of the following:
385	 * 1) The page is inactive, or a seldom used
386	 *    active page.
387	 * -or-
388	 * 2) we force the issue.
389	 *
390	 * During heavy mmap/modification loads the pageout
391	 * daemon can really fragment the underlying file
392	 * due to flushing pages out of order and not trying
393	 * align the clusters (which leave sporatic out-of-order
394	 * holes).  To solve this problem we do the reverse scan
395	 * first and attempt to align our cluster, then do a
396	 * forward scan if room remains.
397	 */
398more:
399	while (ib && pageout_count < vm_pageout_page_count) {
400		vm_page_t p;
401
402		if (ib > pindex) {
403			ib = 0;
404			break;
405		}
406
407		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
408			ib = 0;
409			break;
410		}
411		vm_page_test_dirty(p);
412		if (p->dirty == 0) {
413			ib = 0;
414			break;
415		}
416		vm_page_lock(p);
417		if (p->queue != PQ_INACTIVE ||
418		    p->hold_count != 0) {	/* may be undergoing I/O */
419			vm_page_unlock(p);
420			ib = 0;
421			break;
422		}
423		vm_page_unlock(p);
424		mc[--page_base] = pb = p;
425		++pageout_count;
426		++ib;
427		/*
428		 * alignment boundry, stop here and switch directions.  Do
429		 * not clear ib.
430		 */
431		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
432			break;
433	}
434
435	while (pageout_count < vm_pageout_page_count &&
436	    pindex + is < object->size) {
437		vm_page_t p;
438
439		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
440			break;
441		vm_page_test_dirty(p);
442		if (p->dirty == 0)
443			break;
444		vm_page_lock(p);
445		if (p->queue != PQ_INACTIVE ||
446		    p->hold_count != 0) {	/* may be undergoing I/O */
447			vm_page_unlock(p);
448			break;
449		}
450		vm_page_unlock(p);
451		mc[page_base + pageout_count] = ps = p;
452		++pageout_count;
453		++is;
454	}
455
456	/*
457	 * If we exhausted our forward scan, continue with the reverse scan
458	 * when possible, even past a page boundry.  This catches boundry
459	 * conditions.
460	 */
461	if (ib && pageout_count < vm_pageout_page_count)
462		goto more;
463
464	/*
465	 * we allow reads during pageouts...
466	 */
467	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
468	    NULL));
469}
470
471/*
472 * vm_pageout_flush() - launder the given pages
473 *
474 *	The given pages are laundered.  Note that we setup for the start of
475 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
476 *	reference count all in here rather then in the parent.  If we want
477 *	the parent to do more sophisticated things we may have to change
478 *	the ordering.
479 *
480 *	Returned runlen is the count of pages between mreq and first
481 *	page after mreq with status VM_PAGER_AGAIN.
482 *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
483 *	for any page in runlen set.
484 */
485int
486vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
487    boolean_t *eio)
488{
489	vm_object_t object = mc[0]->object;
490	int pageout_status[count];
491	int numpagedout = 0;
492	int i, runlen;
493
494	VM_OBJECT_ASSERT_WLOCKED(object);
495
496	/*
497	 * Initiate I/O.  Bump the vm_page_t->busy counter and
498	 * mark the pages read-only.
499	 *
500	 * We do not have to fixup the clean/dirty bits here... we can
501	 * allow the pager to do it after the I/O completes.
502	 *
503	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
504	 * edge case with file fragments.
505	 */
506	for (i = 0; i < count; i++) {
507		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
508		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
509			mc[i], i, count));
510		vm_page_sbusy(mc[i]);
511		pmap_remove_write(mc[i]);
512	}
513	vm_object_pip_add(object, count);
514
515	vm_pager_put_pages(object, mc, count, flags, pageout_status);
516
517	runlen = count - mreq;
518	if (eio != NULL)
519		*eio = FALSE;
520	for (i = 0; i < count; i++) {
521		vm_page_t mt = mc[i];
522
523		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
524		    !pmap_page_is_write_mapped(mt),
525		    ("vm_pageout_flush: page %p is not write protected", mt));
526		switch (pageout_status[i]) {
527		case VM_PAGER_OK:
528		case VM_PAGER_PEND:
529			numpagedout++;
530			break;
531		case VM_PAGER_BAD:
532			/*
533			 * Page outside of range of object. Right now we
534			 * essentially lose the changes by pretending it
535			 * worked.
536			 */
537			vm_page_undirty(mt);
538			break;
539		case VM_PAGER_ERROR:
540		case VM_PAGER_FAIL:
541			/*
542			 * If page couldn't be paged out, then reactivate the
543			 * page so it doesn't clog the inactive list.  (We
544			 * will try paging out it again later).
545			 */
546			vm_page_lock(mt);
547			vm_page_activate(mt);
548			vm_page_unlock(mt);
549			if (eio != NULL && i >= mreq && i - mreq < runlen)
550				*eio = TRUE;
551			break;
552		case VM_PAGER_AGAIN:
553			if (i >= mreq && i - mreq < runlen)
554				runlen = i - mreq;
555			break;
556		}
557
558		/*
559		 * If the operation is still going, leave the page busy to
560		 * block all other accesses. Also, leave the paging in
561		 * progress indicator set so that we don't attempt an object
562		 * collapse.
563		 */
564		if (pageout_status[i] != VM_PAGER_PEND) {
565			vm_object_pip_wakeup(object);
566			vm_page_sunbusy(mt);
567			if (vm_page_count_severe()) {
568				vm_page_lock(mt);
569				vm_page_try_to_cache(mt);
570				vm_page_unlock(mt);
571			}
572		}
573	}
574	if (prunlen != NULL)
575		*prunlen = runlen;
576	return (numpagedout);
577}
578
579static boolean_t
580vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
581    vm_paddr_t high)
582{
583	struct mount *mp;
584	struct vnode *vp;
585	vm_object_t object;
586	vm_paddr_t pa;
587	vm_page_t m, m_tmp, next;
588	int lockmode;
589
590	vm_pagequeue_lock(pq);
591	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
592		if ((m->flags & PG_MARKER) != 0)
593			continue;
594		pa = VM_PAGE_TO_PHYS(m);
595		if (pa < low || pa + PAGE_SIZE > high)
596			continue;
597		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
598			vm_page_unlock(m);
599			continue;
600		}
601		object = m->object;
602		if ((!VM_OBJECT_TRYWLOCK(object) &&
603		    (!vm_pageout_fallback_object_lock(m, &next) ||
604		    m->hold_count != 0)) || vm_page_busied(m)) {
605			vm_page_unlock(m);
606			VM_OBJECT_WUNLOCK(object);
607			continue;
608		}
609		vm_page_test_dirty(m);
610		if (m->dirty == 0 && object->ref_count != 0)
611			pmap_remove_all(m);
612		if (m->dirty != 0) {
613			vm_page_unlock(m);
614			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
615				VM_OBJECT_WUNLOCK(object);
616				continue;
617			}
618			if (object->type == OBJT_VNODE) {
619				vm_pagequeue_unlock(pq);
620				vp = object->handle;
621				vm_object_reference_locked(object);
622				VM_OBJECT_WUNLOCK(object);
623				(void)vn_start_write(vp, &mp, V_WAIT);
624				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
625				    LK_SHARED : LK_EXCLUSIVE;
626				vn_lock(vp, lockmode | LK_RETRY);
627				VM_OBJECT_WLOCK(object);
628				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
629				VM_OBJECT_WUNLOCK(object);
630				VOP_UNLOCK(vp, 0);
631				vm_object_deallocate(object);
632				vn_finished_write(mp);
633				return (TRUE);
634			} else if (object->type == OBJT_SWAP ||
635			    object->type == OBJT_DEFAULT) {
636				vm_pagequeue_unlock(pq);
637				m_tmp = m;
638				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
639				    0, NULL, NULL);
640				VM_OBJECT_WUNLOCK(object);
641				return (TRUE);
642			}
643		} else {
644			/*
645			 * Dequeue here to prevent lock recursion in
646			 * vm_page_cache().
647			 */
648			vm_page_dequeue_locked(m);
649			vm_page_cache(m);
650			vm_page_unlock(m);
651		}
652		VM_OBJECT_WUNLOCK(object);
653	}
654	vm_pagequeue_unlock(pq);
655	return (FALSE);
656}
657
658/*
659 * Increase the number of cached pages.  The specified value, "tries",
660 * determines which categories of pages are cached:
661 *
662 *  0: All clean, inactive pages within the specified physical address range
663 *     are cached.  Will not sleep.
664 *  1: The vm_lowmem handlers are called.  All inactive pages within
665 *     the specified physical address range are cached.  May sleep.
666 *  2: The vm_lowmem handlers are called.  All inactive and active pages
667 *     within the specified physical address range are cached.  May sleep.
668 */
669void
670vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
671{
672	int actl, actmax, inactl, inactmax, dom, initial_dom;
673	static int start_dom = 0;
674
675	if (tries > 0) {
676		/*
677		 * Decrease registered cache sizes.  The vm_lowmem handlers
678		 * may acquire locks and/or sleep, so they can only be invoked
679		 * when "tries" is greater than zero.
680		 */
681		SDT_PROBE0(vm, , , vm__lowmem_cache);
682		EVENTHANDLER_INVOKE(vm_lowmem, 0);
683
684		/*
685		 * We do this explicitly after the caches have been drained
686		 * above.
687		 */
688		uma_reclaim();
689	}
690
691	/*
692	 * Make the next scan start on the next domain.
693	 */
694	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
695
696	inactl = 0;
697	inactmax = cnt.v_inactive_count;
698	actl = 0;
699	actmax = tries < 2 ? 0 : cnt.v_active_count;
700	dom = initial_dom;
701
702	/*
703	 * Scan domains in round-robin order, first inactive queues,
704	 * then active.  Since domain usually owns large physically
705	 * contiguous chunk of memory, it makes sense to completely
706	 * exhaust one domain before switching to next, while growing
707	 * the pool of contiguous physical pages.
708	 *
709	 * Do not even start launder a domain which cannot contain
710	 * the specified address range, as indicated by segments
711	 * constituting the domain.
712	 */
713again:
714	if (inactl < inactmax) {
715		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
716		    low, high) &&
717		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
718		    tries, low, high)) {
719			inactl++;
720			goto again;
721		}
722		if (++dom == vm_ndomains)
723			dom = 0;
724		if (dom != initial_dom)
725			goto again;
726	}
727	if (actl < actmax) {
728		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
729		    low, high) &&
730		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
731		      tries, low, high)) {
732			actl++;
733			goto again;
734		}
735		if (++dom == vm_ndomains)
736			dom = 0;
737		if (dom != initial_dom)
738			goto again;
739	}
740}
741
742#if !defined(NO_SWAPPING)
743/*
744 *	vm_pageout_object_deactivate_pages
745 *
746 *	Deactivate enough pages to satisfy the inactive target
747 *	requirements.
748 *
749 *	The object and map must be locked.
750 */
751static void
752vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
753    long desired)
754{
755	vm_object_t backing_object, object;
756	vm_page_t p;
757	int act_delta, remove_mode;
758
759	VM_OBJECT_ASSERT_LOCKED(first_object);
760	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
761		return;
762	for (object = first_object;; object = backing_object) {
763		if (pmap_resident_count(pmap) <= desired)
764			goto unlock_return;
765		VM_OBJECT_ASSERT_LOCKED(object);
766		if ((object->flags & OBJ_UNMANAGED) != 0 ||
767		    object->paging_in_progress != 0)
768			goto unlock_return;
769
770		remove_mode = 0;
771		if (object->shadow_count > 1)
772			remove_mode = 1;
773		/*
774		 * Scan the object's entire memory queue.
775		 */
776		TAILQ_FOREACH(p, &object->memq, listq) {
777			if (pmap_resident_count(pmap) <= desired)
778				goto unlock_return;
779			if (vm_page_busied(p))
780				continue;
781			PCPU_INC(cnt.v_pdpages);
782			vm_page_lock(p);
783			if (p->wire_count != 0 || p->hold_count != 0 ||
784			    !pmap_page_exists_quick(pmap, p)) {
785				vm_page_unlock(p);
786				continue;
787			}
788			act_delta = pmap_ts_referenced(p);
789			if ((p->aflags & PGA_REFERENCED) != 0) {
790				if (act_delta == 0)
791					act_delta = 1;
792				vm_page_aflag_clear(p, PGA_REFERENCED);
793			}
794			if (p->queue != PQ_ACTIVE && act_delta != 0) {
795				vm_page_activate(p);
796				p->act_count += act_delta;
797			} else if (p->queue == PQ_ACTIVE) {
798				if (act_delta == 0) {
799					p->act_count -= min(p->act_count,
800					    ACT_DECLINE);
801					if (!remove_mode && p->act_count == 0) {
802						pmap_remove_all(p);
803						vm_page_deactivate(p);
804					} else
805						vm_page_requeue(p);
806				} else {
807					vm_page_activate(p);
808					if (p->act_count < ACT_MAX -
809					    ACT_ADVANCE)
810						p->act_count += ACT_ADVANCE;
811					vm_page_requeue(p);
812				}
813			} else if (p->queue == PQ_INACTIVE)
814				pmap_remove_all(p);
815			vm_page_unlock(p);
816		}
817		if ((backing_object = object->backing_object) == NULL)
818			goto unlock_return;
819		VM_OBJECT_RLOCK(backing_object);
820		if (object != first_object)
821			VM_OBJECT_RUNLOCK(object);
822	}
823unlock_return:
824	if (object != first_object)
825		VM_OBJECT_RUNLOCK(object);
826}
827
828/*
829 * deactivate some number of pages in a map, try to do it fairly, but
830 * that is really hard to do.
831 */
832static void
833vm_pageout_map_deactivate_pages(map, desired)
834	vm_map_t map;
835	long desired;
836{
837	vm_map_entry_t tmpe;
838	vm_object_t obj, bigobj;
839	int nothingwired;
840
841	if (!vm_map_trylock(map))
842		return;
843
844	bigobj = NULL;
845	nothingwired = TRUE;
846
847	/*
848	 * first, search out the biggest object, and try to free pages from
849	 * that.
850	 */
851	tmpe = map->header.next;
852	while (tmpe != &map->header) {
853		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
854			obj = tmpe->object.vm_object;
855			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
856				if (obj->shadow_count <= 1 &&
857				    (bigobj == NULL ||
858				     bigobj->resident_page_count < obj->resident_page_count)) {
859					if (bigobj != NULL)
860						VM_OBJECT_RUNLOCK(bigobj);
861					bigobj = obj;
862				} else
863					VM_OBJECT_RUNLOCK(obj);
864			}
865		}
866		if (tmpe->wired_count > 0)
867			nothingwired = FALSE;
868		tmpe = tmpe->next;
869	}
870
871	if (bigobj != NULL) {
872		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
873		VM_OBJECT_RUNLOCK(bigobj);
874	}
875	/*
876	 * Next, hunt around for other pages to deactivate.  We actually
877	 * do this search sort of wrong -- .text first is not the best idea.
878	 */
879	tmpe = map->header.next;
880	while (tmpe != &map->header) {
881		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
882			break;
883		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
884			obj = tmpe->object.vm_object;
885			if (obj != NULL) {
886				VM_OBJECT_RLOCK(obj);
887				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
888				VM_OBJECT_RUNLOCK(obj);
889			}
890		}
891		tmpe = tmpe->next;
892	}
893
894#ifdef __ia64__
895	/*
896	 * Remove all non-wired, managed mappings if a process is swapped out.
897	 * This will free page table pages.
898	 */
899	if (desired == 0)
900		pmap_remove_pages(map->pmap);
901#else
902	/*
903	 * Remove all mappings if a process is swapped out, this will free page
904	 * table pages.
905	 */
906	if (desired == 0 && nothingwired) {
907		pmap_remove(vm_map_pmap(map), vm_map_min(map),
908		    vm_map_max(map));
909	}
910#endif
911
912	vm_map_unlock(map);
913}
914#endif		/* !defined(NO_SWAPPING) */
915
916/*
917 *	vm_pageout_scan does the dirty work for the pageout daemon.
918 *
919 *	pass 0 - Update active LRU/deactivate pages
920 *	pass 1 - Move inactive to cache or free
921 *	pass 2 - Launder dirty pages
922 */
923static void
924vm_pageout_scan(struct vm_domain *vmd, int pass)
925{
926	vm_page_t m, next;
927	struct vm_pagequeue *pq;
928	vm_object_t object;
929	int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
930	int vnodes_skipped = 0;
931	int maxlaunder;
932	int lockmode;
933	boolean_t queues_locked;
934
935	/*
936	 * If we need to reclaim memory ask kernel caches to return
937	 * some.  We rate limit to avoid thrashing.
938	 */
939	if (vmd == &vm_dom[0] && pass > 0 &&
940	    (time_uptime - lowmem_uptime) >= lowmem_period) {
941		/*
942		 * Decrease registered cache sizes.
943		 */
944		SDT_PROBE0(vm, , , vm__lowmem_scan);
945		EVENTHANDLER_INVOKE(vm_lowmem, 0);
946		/*
947		 * We do this explicitly after the caches have been
948		 * drained above.
949		 */
950		uma_reclaim();
951		lowmem_uptime = time_uptime;
952	}
953
954	/*
955	 * The addl_page_shortage is the number of temporarily
956	 * stuck pages in the inactive queue.  In other words, the
957	 * number of pages from the inactive count that should be
958	 * discounted in setting the target for the active queue scan.
959	 */
960	addl_page_shortage = 0;
961
962	/*
963	 * Calculate the number of pages we want to either free or move
964	 * to the cache.
965	 */
966	if (pass > 0) {
967		deficit = atomic_readandclear_int(&vm_pageout_deficit);
968		page_shortage = vm_paging_target() + deficit;
969	} else
970		page_shortage = deficit = 0;
971
972	/*
973	 * maxlaunder limits the number of dirty pages we flush per scan.
974	 * For most systems a smaller value (16 or 32) is more robust under
975	 * extreme memory and disk pressure because any unnecessary writes
976	 * to disk can result in extreme performance degredation.  However,
977	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
978	 * used) will die horribly with limited laundering.  If the pageout
979	 * daemon cannot clean enough pages in the first pass, we let it go
980	 * all out in succeeding passes.
981	 */
982	if ((maxlaunder = vm_max_launder) <= 1)
983		maxlaunder = 1;
984	if (pass > 1)
985		maxlaunder = 10000;
986
987	/*
988	 * Start scanning the inactive queue for pages we can move to the
989	 * cache or free.  The scan will stop when the target is reached or
990	 * we have scanned the entire inactive queue.  Note that m->act_count
991	 * is not used to form decisions for the inactive queue, only for the
992	 * active queue.
993	 */
994	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
995	maxscan = pq->pq_cnt;
996	vm_pagequeue_lock(pq);
997	queues_locked = TRUE;
998	for (m = TAILQ_FIRST(&pq->pq_pl);
999	     m != NULL && maxscan-- > 0 && page_shortage > 0;
1000	     m = next) {
1001		vm_pagequeue_assert_locked(pq);
1002		KASSERT(queues_locked, ("unlocked queues"));
1003		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
1004
1005		PCPU_INC(cnt.v_pdpages);
1006		next = TAILQ_NEXT(m, plinks.q);
1007
1008		/*
1009		 * skip marker pages
1010		 */
1011		if (m->flags & PG_MARKER)
1012			continue;
1013
1014		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1015		    ("Fictitious page %p cannot be in inactive queue", m));
1016		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1017		    ("Unmanaged page %p cannot be in inactive queue", m));
1018
1019		/*
1020		 * The page or object lock acquisitions fail if the
1021		 * page was removed from the queue or moved to a
1022		 * different position within the queue.  In either
1023		 * case, addl_page_shortage should not be incremented.
1024		 */
1025		if (!vm_pageout_page_lock(m, &next)) {
1026			vm_page_unlock(m);
1027			continue;
1028		}
1029		object = m->object;
1030		if (!VM_OBJECT_TRYWLOCK(object) &&
1031		    !vm_pageout_fallback_object_lock(m, &next)) {
1032			vm_page_unlock(m);
1033			VM_OBJECT_WUNLOCK(object);
1034			continue;
1035		}
1036
1037		/*
1038		 * Don't mess with busy pages, keep them at at the
1039		 * front of the queue, most likely they are being
1040		 * paged out.  Increment addl_page_shortage for busy
1041		 * pages, because they may leave the inactive queue
1042		 * shortly after page scan is finished.
1043		 */
1044		if (vm_page_busied(m)) {
1045			vm_page_unlock(m);
1046			VM_OBJECT_WUNLOCK(object);
1047			addl_page_shortage++;
1048			continue;
1049		}
1050
1051		/*
1052		 * We unlock the inactive page queue, invalidating the
1053		 * 'next' pointer.  Use our marker to remember our
1054		 * place.
1055		 */
1056		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1057		vm_pagequeue_unlock(pq);
1058		queues_locked = FALSE;
1059
1060		/*
1061		 * We bump the activation count if the page has been
1062		 * referenced while in the inactive queue.  This makes
1063		 * it less likely that the page will be added back to the
1064		 * inactive queue prematurely again.  Here we check the
1065		 * page tables (or emulated bits, if any), given the upper
1066		 * level VM system not knowing anything about existing
1067		 * references.
1068		 */
1069		act_delta = 0;
1070		if ((m->aflags & PGA_REFERENCED) != 0) {
1071			vm_page_aflag_clear(m, PGA_REFERENCED);
1072			act_delta = 1;
1073		}
1074		if (object->ref_count != 0) {
1075			act_delta += pmap_ts_referenced(m);
1076		} else {
1077			KASSERT(!pmap_page_is_mapped(m),
1078			    ("vm_pageout_scan: page %p is mapped", m));
1079		}
1080
1081		/*
1082		 * If the upper level VM system knows about any page
1083		 * references, we reactivate the page or requeue it.
1084		 */
1085		if (act_delta != 0) {
1086			if (object->ref_count) {
1087				vm_page_activate(m);
1088				m->act_count += act_delta + ACT_ADVANCE;
1089			} else {
1090				vm_pagequeue_lock(pq);
1091				queues_locked = TRUE;
1092				vm_page_requeue_locked(m);
1093			}
1094			VM_OBJECT_WUNLOCK(object);
1095			vm_page_unlock(m);
1096			goto relock_queues;
1097		}
1098
1099		if (m->hold_count != 0) {
1100			vm_page_unlock(m);
1101			VM_OBJECT_WUNLOCK(object);
1102
1103			/*
1104			 * Held pages are essentially stuck in the
1105			 * queue.  So, they ought to be discounted
1106			 * from the inactive count.  See the
1107			 * calculation of the page_shortage for the
1108			 * loop over the active queue below.
1109			 */
1110			addl_page_shortage++;
1111			goto relock_queues;
1112		}
1113
1114		/*
1115		 * If the page appears to be clean at the machine-independent
1116		 * layer, then remove all of its mappings from the pmap in
1117		 * anticipation of placing it onto the cache queue.  If,
1118		 * however, any of the page's mappings allow write access,
1119		 * then the page may still be modified until the last of those
1120		 * mappings are removed.
1121		 */
1122		if (object->ref_count != 0) {
1123			vm_page_test_dirty(m);
1124			if (m->dirty == 0)
1125				pmap_remove_all(m);
1126		}
1127
1128		if (m->valid == 0) {
1129			/*
1130			 * Invalid pages can be easily freed
1131			 */
1132			vm_page_free(m);
1133			PCPU_INC(cnt.v_dfree);
1134			--page_shortage;
1135		} else if (m->dirty == 0) {
1136			/*
1137			 * Clean pages can be placed onto the cache queue.
1138			 * This effectively frees them.
1139			 */
1140			vm_page_cache(m);
1141			--page_shortage;
1142		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1143			/*
1144			 * Dirty pages need to be paged out, but flushing
1145			 * a page is extremely expensive verses freeing
1146			 * a clean page.  Rather then artificially limiting
1147			 * the number of pages we can flush, we instead give
1148			 * dirty pages extra priority on the inactive queue
1149			 * by forcing them to be cycled through the queue
1150			 * twice before being flushed, after which the
1151			 * (now clean) page will cycle through once more
1152			 * before being freed.  This significantly extends
1153			 * the thrash point for a heavily loaded machine.
1154			 */
1155			m->flags |= PG_WINATCFLS;
1156			vm_pagequeue_lock(pq);
1157			queues_locked = TRUE;
1158			vm_page_requeue_locked(m);
1159		} else if (maxlaunder > 0) {
1160			/*
1161			 * We always want to try to flush some dirty pages if
1162			 * we encounter them, to keep the system stable.
1163			 * Normally this number is small, but under extreme
1164			 * pressure where there are insufficient clean pages
1165			 * on the inactive queue, we may have to go all out.
1166			 */
1167			int swap_pageouts_ok;
1168			struct vnode *vp = NULL;
1169			struct mount *mp = NULL;
1170
1171			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1172				swap_pageouts_ok = 1;
1173			} else {
1174				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1175				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1176				vm_page_count_min());
1177
1178			}
1179
1180			/*
1181			 * We don't bother paging objects that are "dead".
1182			 * Those objects are in a "rundown" state.
1183			 */
1184			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1185				vm_pagequeue_lock(pq);
1186				vm_page_unlock(m);
1187				VM_OBJECT_WUNLOCK(object);
1188				queues_locked = TRUE;
1189				vm_page_requeue_locked(m);
1190				goto relock_queues;
1191			}
1192
1193			/*
1194			 * The object is already known NOT to be dead.   It
1195			 * is possible for the vget() to block the whole
1196			 * pageout daemon, but the new low-memory handling
1197			 * code should prevent it.
1198			 *
1199			 * The previous code skipped locked vnodes and, worse,
1200			 * reordered pages in the queue.  This results in
1201			 * completely non-deterministic operation and, on a
1202			 * busy system, can lead to extremely non-optimal
1203			 * pageouts.  For example, it can cause clean pages
1204			 * to be freed and dirty pages to be moved to the end
1205			 * of the queue.  Since dirty pages are also moved to
1206			 * the end of the queue once-cleaned, this gives
1207			 * way too large a weighting to defering the freeing
1208			 * of dirty pages.
1209			 *
1210			 * We can't wait forever for the vnode lock, we might
1211			 * deadlock due to a vn_read() getting stuck in
1212			 * vm_wait while holding this vnode.  We skip the
1213			 * vnode if we can't get it in a reasonable amount
1214			 * of time.
1215			 */
1216			if (object->type == OBJT_VNODE) {
1217				vm_page_unlock(m);
1218				vp = object->handle;
1219				if (vp->v_type == VREG &&
1220				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1221					mp = NULL;
1222					++pageout_lock_miss;
1223					if (object->flags & OBJ_MIGHTBEDIRTY)
1224						vnodes_skipped++;
1225					goto unlock_and_continue;
1226				}
1227				KASSERT(mp != NULL,
1228				    ("vp %p with NULL v_mount", vp));
1229				vm_object_reference_locked(object);
1230				VM_OBJECT_WUNLOCK(object);
1231				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1232				    LK_SHARED : LK_EXCLUSIVE;
1233				if (vget(vp, lockmode | LK_TIMELOCK,
1234				    curthread)) {
1235					VM_OBJECT_WLOCK(object);
1236					++pageout_lock_miss;
1237					if (object->flags & OBJ_MIGHTBEDIRTY)
1238						vnodes_skipped++;
1239					vp = NULL;
1240					goto unlock_and_continue;
1241				}
1242				VM_OBJECT_WLOCK(object);
1243				vm_page_lock(m);
1244				vm_pagequeue_lock(pq);
1245				queues_locked = TRUE;
1246				/*
1247				 * The page might have been moved to another
1248				 * queue during potential blocking in vget()
1249				 * above.  The page might have been freed and
1250				 * reused for another vnode.
1251				 */
1252				if (m->queue != PQ_INACTIVE ||
1253				    m->object != object ||
1254				    TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1255					vm_page_unlock(m);
1256					if (object->flags & OBJ_MIGHTBEDIRTY)
1257						vnodes_skipped++;
1258					goto unlock_and_continue;
1259				}
1260
1261				/*
1262				 * The page may have been busied during the
1263				 * blocking in vget().  We don't move the
1264				 * page back onto the end of the queue so that
1265				 * statistics are more correct if we don't.
1266				 */
1267				if (vm_page_busied(m)) {
1268					vm_page_unlock(m);
1269					addl_page_shortage++;
1270					goto unlock_and_continue;
1271				}
1272
1273				/*
1274				 * If the page has become held it might
1275				 * be undergoing I/O, so skip it
1276				 */
1277				if (m->hold_count != 0) {
1278					vm_page_unlock(m);
1279					addl_page_shortage++;
1280					if (object->flags & OBJ_MIGHTBEDIRTY)
1281						vnodes_skipped++;
1282					goto unlock_and_continue;
1283				}
1284				vm_pagequeue_unlock(pq);
1285				queues_locked = FALSE;
1286			}
1287
1288			/*
1289			 * If a page is dirty, then it is either being washed
1290			 * (but not yet cleaned) or it is still in the
1291			 * laundry.  If it is still in the laundry, then we
1292			 * start the cleaning operation.
1293			 *
1294			 * decrement page_shortage on success to account for
1295			 * the (future) cleaned page.  Otherwise we could wind
1296			 * up laundering or cleaning too many pages.
1297			 */
1298			if (vm_pageout_clean(m) != 0) {
1299				--page_shortage;
1300				--maxlaunder;
1301			}
1302unlock_and_continue:
1303			vm_page_lock_assert(m, MA_NOTOWNED);
1304			VM_OBJECT_WUNLOCK(object);
1305			if (mp != NULL) {
1306				if (queues_locked) {
1307					vm_pagequeue_unlock(pq);
1308					queues_locked = FALSE;
1309				}
1310				if (vp != NULL)
1311					vput(vp);
1312				vm_object_deallocate(object);
1313				vn_finished_write(mp);
1314			}
1315			vm_page_lock_assert(m, MA_NOTOWNED);
1316			goto relock_queues;
1317		}
1318		vm_page_unlock(m);
1319		VM_OBJECT_WUNLOCK(object);
1320relock_queues:
1321		if (!queues_locked) {
1322			vm_pagequeue_lock(pq);
1323			queues_locked = TRUE;
1324		}
1325		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1326		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1327	}
1328	vm_pagequeue_unlock(pq);
1329
1330#if !defined(NO_SWAPPING)
1331	/*
1332	 * Wakeup the swapout daemon if we didn't cache or free the targeted
1333	 * number of pages.
1334	 */
1335	if (vm_swap_enabled && page_shortage > 0)
1336		vm_req_vmdaemon(VM_SWAP_NORMAL);
1337#endif
1338
1339	/*
1340	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1341	 * and we didn't cache or free enough pages.
1342	 */
1343	if (vnodes_skipped > 0 && page_shortage > cnt.v_free_target -
1344	    cnt.v_free_min)
1345		(void)speedup_syncer();
1346
1347	/*
1348	 * Compute the number of pages we want to try to move from the
1349	 * active queue to the inactive queue.
1350	 */
1351	page_shortage = cnt.v_inactive_target - cnt.v_inactive_count +
1352	    vm_paging_target() + deficit + addl_page_shortage;
1353
1354	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1355	vm_pagequeue_lock(pq);
1356	maxscan = pq->pq_cnt;
1357
1358	/*
1359	 * If we're just idle polling attempt to visit every
1360	 * active page within 'update_period' seconds.
1361	 */
1362	if (pass == 0 && vm_pageout_update_period != 0) {
1363		maxscan /= vm_pageout_update_period;
1364		page_shortage = maxscan;
1365	}
1366
1367	/*
1368	 * Scan the active queue for things we can deactivate. We nominally
1369	 * track the per-page activity counter and use it to locate
1370	 * deactivation candidates.
1371	 */
1372	m = TAILQ_FIRST(&pq->pq_pl);
1373	while (m != NULL && maxscan-- > 0 && page_shortage > 0) {
1374
1375		KASSERT(m->queue == PQ_ACTIVE,
1376		    ("vm_pageout_scan: page %p isn't active", m));
1377
1378		next = TAILQ_NEXT(m, plinks.q);
1379		if ((m->flags & PG_MARKER) != 0) {
1380			m = next;
1381			continue;
1382		}
1383		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1384		    ("Fictitious page %p cannot be in active queue", m));
1385		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1386		    ("Unmanaged page %p cannot be in active queue", m));
1387		if (!vm_pageout_page_lock(m, &next)) {
1388			vm_page_unlock(m);
1389			m = next;
1390			continue;
1391		}
1392
1393		/*
1394		 * The count for pagedaemon pages is done after checking the
1395		 * page for eligibility...
1396		 */
1397		PCPU_INC(cnt.v_pdpages);
1398
1399		/*
1400		 * Check to see "how much" the page has been used.
1401		 */
1402		act_delta = 0;
1403		if (m->aflags & PGA_REFERENCED) {
1404			vm_page_aflag_clear(m, PGA_REFERENCED);
1405			act_delta += 1;
1406		}
1407		/*
1408		 * Unlocked object ref count check.  Two races are possible.
1409		 * 1) The ref was transitioning to zero and we saw non-zero,
1410		 *    the pmap bits will be checked unnecessarily.
1411		 * 2) The ref was transitioning to one and we saw zero.
1412		 *    The page lock prevents a new reference to this page so
1413		 *    we need not check the reference bits.
1414		 */
1415		if (m->object->ref_count != 0)
1416			act_delta += pmap_ts_referenced(m);
1417
1418		/*
1419		 * Advance or decay the act_count based on recent usage.
1420		 */
1421		if (act_delta) {
1422			m->act_count += ACT_ADVANCE + act_delta;
1423			if (m->act_count > ACT_MAX)
1424				m->act_count = ACT_MAX;
1425		} else {
1426			m->act_count -= min(m->act_count, ACT_DECLINE);
1427			act_delta = m->act_count;
1428		}
1429
1430		/*
1431		 * Move this page to the tail of the active or inactive
1432		 * queue depending on usage.
1433		 */
1434		if (act_delta == 0) {
1435			/* Dequeue to avoid later lock recursion. */
1436			vm_page_dequeue_locked(m);
1437			vm_page_deactivate(m);
1438			page_shortage--;
1439		} else
1440			vm_page_requeue_locked(m);
1441		vm_page_unlock(m);
1442		m = next;
1443	}
1444	vm_pagequeue_unlock(pq);
1445#if !defined(NO_SWAPPING)
1446	/*
1447	 * Idle process swapout -- run once per second.
1448	 */
1449	if (vm_swap_idle_enabled) {
1450		static long lsec;
1451		if (time_second != lsec) {
1452			vm_req_vmdaemon(VM_SWAP_IDLE);
1453			lsec = time_second;
1454		}
1455	}
1456#endif
1457
1458	/*
1459	 * If we are critically low on one of RAM or swap and low on
1460	 * the other, kill the largest process.  However, we avoid
1461	 * doing this on the first pass in order to give ourselves a
1462	 * chance to flush out dirty vnode-backed pages and to allow
1463	 * active pages to be moved to the inactive queue and reclaimed.
1464	 */
1465	vm_pageout_mightbe_oom(vmd, pass);
1466}
1467
1468static int vm_pageout_oom_vote;
1469
1470/*
1471 * The pagedaemon threads randlomly select one to perform the
1472 * OOM.  Trying to kill processes before all pagedaemons
1473 * failed to reach free target is premature.
1474 */
1475static void
1476vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1477{
1478	int old_vote;
1479
1480	if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1481	    (swap_pager_full && vm_paging_target() > 0))) {
1482		if (vmd->vmd_oom) {
1483			vmd->vmd_oom = FALSE;
1484			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1485		}
1486		return;
1487	}
1488
1489	if (vmd->vmd_oom)
1490		return;
1491
1492	vmd->vmd_oom = TRUE;
1493	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1494	if (old_vote != vm_ndomains - 1)
1495		return;
1496
1497	/*
1498	 * The current pagedaemon thread is the last in the quorum to
1499	 * start OOM.  Initiate the selection and signaling of the
1500	 * victim.
1501	 */
1502	vm_pageout_oom(VM_OOM_MEM);
1503
1504	/*
1505	 * After one round of OOM terror, recall our vote.  On the
1506	 * next pass, current pagedaemon would vote again if the low
1507	 * memory condition is still there, due to vmd_oom being
1508	 * false.
1509	 */
1510	vmd->vmd_oom = FALSE;
1511	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1512}
1513
1514void
1515vm_pageout_oom(int shortage)
1516{
1517	struct proc *p, *bigproc;
1518	vm_offset_t size, bigsize;
1519	struct thread *td;
1520	struct vmspace *vm;
1521
1522	/*
1523	 * We keep the process bigproc locked once we find it to keep anyone
1524	 * from messing with it; however, there is a possibility of
1525	 * deadlock if process B is bigproc and one of it's child processes
1526	 * attempts to propagate a signal to B while we are waiting for A's
1527	 * lock while walking this list.  To avoid this, we don't block on
1528	 * the process lock but just skip a process if it is already locked.
1529	 */
1530	bigproc = NULL;
1531	bigsize = 0;
1532	sx_slock(&allproc_lock);
1533	FOREACH_PROC_IN_SYSTEM(p) {
1534		int breakout;
1535
1536		PROC_LOCK(p);
1537
1538		/*
1539		 * If this is a system, protected or killed process, skip it.
1540		 */
1541		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1542		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1543		    p->p_pid == 1 || P_KILLED(p) ||
1544		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1545			PROC_UNLOCK(p);
1546			continue;
1547		}
1548		/*
1549		 * If the process is in a non-running type state,
1550		 * don't touch it.  Check all the threads individually.
1551		 */
1552		breakout = 0;
1553		FOREACH_THREAD_IN_PROC(p, td) {
1554			thread_lock(td);
1555			if (!TD_ON_RUNQ(td) &&
1556			    !TD_IS_RUNNING(td) &&
1557			    !TD_IS_SLEEPING(td) &&
1558			    !TD_IS_SUSPENDED(td)) {
1559				thread_unlock(td);
1560				breakout = 1;
1561				break;
1562			}
1563			thread_unlock(td);
1564		}
1565		if (breakout) {
1566			PROC_UNLOCK(p);
1567			continue;
1568		}
1569		/*
1570		 * get the process size
1571		 */
1572		vm = vmspace_acquire_ref(p);
1573		if (vm == NULL) {
1574			PROC_UNLOCK(p);
1575			continue;
1576		}
1577		_PHOLD(p);
1578		if (!vm_map_trylock_read(&vm->vm_map)) {
1579			_PRELE(p);
1580			PROC_UNLOCK(p);
1581			vmspace_free(vm);
1582			continue;
1583		}
1584		PROC_UNLOCK(p);
1585		size = vmspace_swap_count(vm);
1586		vm_map_unlock_read(&vm->vm_map);
1587		if (shortage == VM_OOM_MEM)
1588			size += vmspace_resident_count(vm);
1589		vmspace_free(vm);
1590		/*
1591		 * if the this process is bigger than the biggest one
1592		 * remember it.
1593		 */
1594		if (size > bigsize) {
1595			if (bigproc != NULL)
1596				PRELE(bigproc);
1597			bigproc = p;
1598			bigsize = size;
1599		} else {
1600			PRELE(p);
1601		}
1602	}
1603	sx_sunlock(&allproc_lock);
1604	if (bigproc != NULL) {
1605		PROC_LOCK(bigproc);
1606		killproc(bigproc, "out of swap space");
1607		sched_nice(bigproc, PRIO_MIN);
1608		_PRELE(bigproc);
1609		PROC_UNLOCK(bigproc);
1610		wakeup(&cnt.v_free_count);
1611	}
1612}
1613
1614static void
1615vm_pageout_worker(void *arg)
1616{
1617	struct vm_domain *domain;
1618	int domidx;
1619
1620	domidx = (uintptr_t)arg;
1621	domain = &vm_dom[domidx];
1622
1623	/*
1624	 * XXXKIB It could be useful to bind pageout daemon threads to
1625	 * the cores belonging to the domain, from which vm_page_array
1626	 * is allocated.
1627	 */
1628
1629	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1630	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1631
1632	/*
1633	 * The pageout daemon worker is never done, so loop forever.
1634	 */
1635	while (TRUE) {
1636		/*
1637		 * If we have enough free memory, wakeup waiters.  Do
1638		 * not clear vm_pages_needed until we reach our target,
1639		 * otherwise we may be woken up over and over again and
1640		 * waste a lot of cpu.
1641		 */
1642		mtx_lock(&vm_page_queue_free_mtx);
1643		if (vm_pages_needed && !vm_page_count_min()) {
1644			if (!vm_paging_needed())
1645				vm_pages_needed = 0;
1646			wakeup(&cnt.v_free_count);
1647		}
1648		if (vm_pages_needed) {
1649			/*
1650			 * Still not done, take a second pass without waiting
1651			 * (unlimited dirty cleaning), otherwise sleep a bit
1652			 * and try again.
1653			 */
1654			if (domain->vmd_pass > 1)
1655				msleep(&vm_pages_needed,
1656				    &vm_page_queue_free_mtx, PVM, "psleep",
1657				    hz / 2);
1658		} else {
1659			/*
1660			 * Good enough, sleep until required to refresh
1661			 * stats.
1662			 */
1663			domain->vmd_pass = 0;
1664			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1665			    PVM, "psleep", hz);
1666
1667		}
1668		if (vm_pages_needed) {
1669			cnt.v_pdwakeups++;
1670			domain->vmd_pass++;
1671		}
1672		mtx_unlock(&vm_page_queue_free_mtx);
1673		vm_pageout_scan(domain, domain->vmd_pass);
1674	}
1675}
1676
1677/*
1678 *	vm_pageout_init initialises basic pageout daemon settings.
1679 */
1680static void
1681vm_pageout_init(void)
1682{
1683	/*
1684	 * Initialize some paging parameters.
1685	 */
1686	cnt.v_interrupt_free_min = 2;
1687	if (cnt.v_page_count < 2000)
1688		vm_pageout_page_count = 8;
1689
1690	/*
1691	 * v_free_reserved needs to include enough for the largest
1692	 * swap pager structures plus enough for any pv_entry structs
1693	 * when paging.
1694	 */
1695	if (cnt.v_page_count > 1024)
1696		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1697	else
1698		cnt.v_free_min = 4;
1699	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1700	    cnt.v_interrupt_free_min;
1701	cnt.v_free_reserved = vm_pageout_page_count +
1702	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1703	cnt.v_free_severe = cnt.v_free_min / 2;
1704	cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1705	cnt.v_free_min += cnt.v_free_reserved;
1706	cnt.v_free_severe += cnt.v_free_reserved;
1707	cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1708	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1709		cnt.v_inactive_target = cnt.v_free_count / 3;
1710
1711	/*
1712	 * Set the default wakeup threshold to be 10% above the minimum
1713	 * page limit.  This keeps the steady state out of shortfall.
1714	 */
1715	vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
1716
1717	/*
1718	 * Set interval in seconds for active scan.  We want to visit each
1719	 * page at least once every ten minutes.  This is to prevent worst
1720	 * case paging behaviors with stale active LRU.
1721	 */
1722	if (vm_pageout_update_period == 0)
1723		vm_pageout_update_period = 600;
1724
1725	/* XXX does not really belong here */
1726	if (vm_page_max_wired == 0)
1727		vm_page_max_wired = cnt.v_free_count / 3;
1728}
1729
1730/*
1731 *     vm_pageout is the high level pageout daemon.
1732 */
1733static void
1734vm_pageout(void)
1735{
1736	int error;
1737#if MAXMEMDOM > 1
1738	int i;
1739#endif
1740
1741	swap_pager_swap_init();
1742#if MAXMEMDOM > 1
1743	for (i = 1; i < vm_ndomains; i++) {
1744		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1745		    curproc, NULL, 0, 0, "dom%d", i);
1746		if (error != 0) {
1747			panic("starting pageout for domain %d, error %d\n",
1748			    i, error);
1749		}
1750	}
1751#endif
1752	error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
1753	    0, 0, "uma");
1754	if (error != 0)
1755		panic("starting uma_reclaim helper, error %d\n", error);
1756	vm_pageout_worker((void *)(uintptr_t)0);
1757}
1758
1759/*
1760 * Unless the free page queue lock is held by the caller, this function
1761 * should be regarded as advisory.  Specifically, the caller should
1762 * not msleep() on &cnt.v_free_count following this function unless
1763 * the free page queue lock is held until the msleep() is performed.
1764 */
1765void
1766pagedaemon_wakeup(void)
1767{
1768
1769	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1770		vm_pages_needed = 1;
1771		wakeup(&vm_pages_needed);
1772	}
1773}
1774
1775#if !defined(NO_SWAPPING)
1776static void
1777vm_req_vmdaemon(int req)
1778{
1779	static int lastrun = 0;
1780
1781	mtx_lock(&vm_daemon_mtx);
1782	vm_pageout_req_swapout |= req;
1783	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1784		wakeup(&vm_daemon_needed);
1785		lastrun = ticks;
1786	}
1787	mtx_unlock(&vm_daemon_mtx);
1788}
1789
1790static void
1791vm_daemon(void)
1792{
1793	struct rlimit rsslim;
1794	struct proc *p;
1795	struct thread *td;
1796	struct vmspace *vm;
1797	int breakout, swapout_flags, tryagain, attempts;
1798#ifdef RACCT
1799	uint64_t rsize, ravailable;
1800#endif
1801
1802	while (TRUE) {
1803		mtx_lock(&vm_daemon_mtx);
1804		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
1805#ifdef RACCT
1806		    racct_enable ? hz : 0
1807#else
1808		    0
1809#endif
1810		);
1811		swapout_flags = vm_pageout_req_swapout;
1812		vm_pageout_req_swapout = 0;
1813		mtx_unlock(&vm_daemon_mtx);
1814		if (swapout_flags)
1815			swapout_procs(swapout_flags);
1816
1817		/*
1818		 * scan the processes for exceeding their rlimits or if
1819		 * process is swapped out -- deactivate pages
1820		 */
1821		tryagain = 0;
1822		attempts = 0;
1823again:
1824		attempts++;
1825		sx_slock(&allproc_lock);
1826		FOREACH_PROC_IN_SYSTEM(p) {
1827			vm_pindex_t limit, size;
1828
1829			/*
1830			 * if this is a system process or if we have already
1831			 * looked at this process, skip it.
1832			 */
1833			PROC_LOCK(p);
1834			if (p->p_state != PRS_NORMAL ||
1835			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1836				PROC_UNLOCK(p);
1837				continue;
1838			}
1839			/*
1840			 * if the process is in a non-running type state,
1841			 * don't touch it.
1842			 */
1843			breakout = 0;
1844			FOREACH_THREAD_IN_PROC(p, td) {
1845				thread_lock(td);
1846				if (!TD_ON_RUNQ(td) &&
1847				    !TD_IS_RUNNING(td) &&
1848				    !TD_IS_SLEEPING(td) &&
1849				    !TD_IS_SUSPENDED(td)) {
1850					thread_unlock(td);
1851					breakout = 1;
1852					break;
1853				}
1854				thread_unlock(td);
1855			}
1856			if (breakout) {
1857				PROC_UNLOCK(p);
1858				continue;
1859			}
1860			/*
1861			 * get a limit
1862			 */
1863			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1864			limit = OFF_TO_IDX(
1865			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1866
1867			/*
1868			 * let processes that are swapped out really be
1869			 * swapped out set the limit to nothing (will force a
1870			 * swap-out.)
1871			 */
1872			if ((p->p_flag & P_INMEM) == 0)
1873				limit = 0;	/* XXX */
1874			vm = vmspace_acquire_ref(p);
1875			PROC_UNLOCK(p);
1876			if (vm == NULL)
1877				continue;
1878
1879			size = vmspace_resident_count(vm);
1880			if (size >= limit) {
1881				vm_pageout_map_deactivate_pages(
1882				    &vm->vm_map, limit);
1883			}
1884#ifdef RACCT
1885			if (racct_enable) {
1886				rsize = IDX_TO_OFF(size);
1887				PROC_LOCK(p);
1888				racct_set(p, RACCT_RSS, rsize);
1889				ravailable = racct_get_available(p, RACCT_RSS);
1890				PROC_UNLOCK(p);
1891				if (rsize > ravailable) {
1892					/*
1893					 * Don't be overly aggressive; this
1894					 * might be an innocent process,
1895					 * and the limit could've been exceeded
1896					 * by some memory hog.  Don't try
1897					 * to deactivate more than 1/4th
1898					 * of process' resident set size.
1899					 */
1900					if (attempts <= 8) {
1901						if (ravailable < rsize -
1902						    (rsize / 4)) {
1903							ravailable = rsize -
1904							    (rsize / 4);
1905						}
1906					}
1907					vm_pageout_map_deactivate_pages(
1908					    &vm->vm_map,
1909					    OFF_TO_IDX(ravailable));
1910					/* Update RSS usage after paging out. */
1911					size = vmspace_resident_count(vm);
1912					rsize = IDX_TO_OFF(size);
1913					PROC_LOCK(p);
1914					racct_set(p, RACCT_RSS, rsize);
1915					PROC_UNLOCK(p);
1916					if (rsize > ravailable)
1917						tryagain = 1;
1918				}
1919			}
1920#endif
1921			vmspace_free(vm);
1922		}
1923		sx_sunlock(&allproc_lock);
1924		if (tryagain != 0 && attempts <= 10)
1925			goto again;
1926	}
1927}
1928#endif			/* !defined(NO_SWAPPING) */
1929