vm_pageout.c revision 287922
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: stable/10/sys/vm/vm_pageout.c 287922 2015-09-17 17:09:03Z rstone $");
77
78#include "opt_vm.h"
79#include "opt_kdtrace.h"
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/eventhandler.h>
84#include <sys/lock.h>
85#include <sys/mutex.h>
86#include <sys/proc.h>
87#include <sys/kthread.h>
88#include <sys/ktr.h>
89#include <sys/mount.h>
90#include <sys/racct.h>
91#include <sys/resourcevar.h>
92#include <sys/sched.h>
93#include <sys/sdt.h>
94#include <sys/signalvar.h>
95#include <sys/smp.h>
96#include <sys/time.h>
97#include <sys/vnode.h>
98#include <sys/vmmeter.h>
99#include <sys/rwlock.h>
100#include <sys/sx.h>
101#include <sys/sysctl.h>
102
103#include <vm/vm.h>
104#include <vm/vm_param.h>
105#include <vm/vm_object.h>
106#include <vm/vm_page.h>
107#include <vm/vm_map.h>
108#include <vm/vm_pageout.h>
109#include <vm/vm_pager.h>
110#include <vm/vm_phys.h>
111#include <vm/swap_pager.h>
112#include <vm/vm_extern.h>
113#include <vm/uma.h>
114
115/*
116 * System initialization
117 */
118
119/* the kernel process "vm_pageout"*/
120static void vm_pageout(void);
121static void vm_pageout_init(void);
122static int vm_pageout_clean(vm_page_t);
123static void vm_pageout_scan(struct vm_domain *vmd, int pass);
124static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
125
126SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
127    NULL);
128
129struct proc *pageproc;
130
131static struct kproc_desc page_kp = {
132	"pagedaemon",
133	vm_pageout,
134	&pageproc
135};
136SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
137    &page_kp);
138
139SDT_PROVIDER_DEFINE(vm);
140SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
141SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
142
143#if !defined(NO_SWAPPING)
144/* the kernel process "vm_daemon"*/
145static void vm_daemon(void);
146static struct	proc *vmproc;
147
148static struct kproc_desc vm_kp = {
149	"vmdaemon",
150	vm_daemon,
151	&vmproc
152};
153SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
154#endif
155
156
157int vm_pages_needed;		/* Event on which pageout daemon sleeps */
158int vm_pageout_deficit;		/* Estimated number of pages deficit */
159int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
160int vm_pageout_wakeup_thresh;
161
162#if !defined(NO_SWAPPING)
163static int vm_pageout_req_swapout;	/* XXX */
164static int vm_daemon_needed;
165static struct mtx vm_daemon_mtx;
166/* Allow for use by vm_pageout before vm_daemon is initialized. */
167MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
168#endif
169static int vm_max_launder = 32;
170static int vm_pageout_update_period;
171static int defer_swap_pageouts;
172static int disable_swap_pageouts;
173static int lowmem_period = 10;
174static time_t lowmem_uptime;
175
176#if defined(NO_SWAPPING)
177static int vm_swap_enabled = 0;
178static int vm_swap_idle_enabled = 0;
179#else
180static int vm_swap_enabled = 1;
181static int vm_swap_idle_enabled = 0;
182#endif
183
184SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
185	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
186	"free page threshold for waking up the pageout daemon");
187
188SYSCTL_INT(_vm, OID_AUTO, max_launder,
189	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
190
191SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
192	CTLFLAG_RW, &vm_pageout_update_period, 0,
193	"Maximum active LRU update period");
194
195SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
196	"Low memory callback period");
197
198#if defined(NO_SWAPPING)
199SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
200	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
201SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
202	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
203#else
204SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
205	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
206SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
207	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
208#endif
209
210SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
211	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
212
213SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
214	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
215
216static int pageout_lock_miss;
217SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
218	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
219
220#define VM_PAGEOUT_PAGE_COUNT 16
221int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
222
223int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
224SYSCTL_INT(_vm, OID_AUTO, max_wired,
225	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
226
227static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
228static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
229    vm_paddr_t);
230#if !defined(NO_SWAPPING)
231static void vm_pageout_map_deactivate_pages(vm_map_t, long);
232static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
233static void vm_req_vmdaemon(int req);
234#endif
235static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
236
237/*
238 * Initialize a dummy page for marking the caller's place in the specified
239 * paging queue.  In principle, this function only needs to set the flag
240 * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
241 * to one as safety precautions.
242 */
243static void
244vm_pageout_init_marker(vm_page_t marker, u_short queue)
245{
246
247	bzero(marker, sizeof(*marker));
248	marker->flags = PG_MARKER;
249	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
250	marker->queue = queue;
251	marker->hold_count = 1;
252}
253
254/*
255 * vm_pageout_fallback_object_lock:
256 *
257 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
258 * known to have failed and page queue must be either PQ_ACTIVE or
259 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
260 * while locking the vm object.  Use marker page to detect page queue
261 * changes and maintain notion of next page on page queue.  Return
262 * TRUE if no changes were detected, FALSE otherwise.  vm object is
263 * locked on return.
264 *
265 * This function depends on both the lock portion of struct vm_object
266 * and normal struct vm_page being type stable.
267 */
268static boolean_t
269vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
270{
271	struct vm_page marker;
272	struct vm_pagequeue *pq;
273	boolean_t unchanged;
274	u_short queue;
275	vm_object_t object;
276
277	queue = m->queue;
278	vm_pageout_init_marker(&marker, queue);
279	pq = vm_page_pagequeue(m);
280	object = m->object;
281
282	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
283	vm_pagequeue_unlock(pq);
284	vm_page_unlock(m);
285	VM_OBJECT_WLOCK(object);
286	vm_page_lock(m);
287	vm_pagequeue_lock(pq);
288
289	/* Page queue might have changed. */
290	*next = TAILQ_NEXT(&marker, plinks.q);
291	unchanged = (m->queue == queue &&
292		     m->object == object &&
293		     &marker == TAILQ_NEXT(m, plinks.q));
294	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
295	return (unchanged);
296}
297
298/*
299 * Lock the page while holding the page queue lock.  Use marker page
300 * to detect page queue changes and maintain notion of next page on
301 * page queue.  Return TRUE if no changes were detected, FALSE
302 * otherwise.  The page is locked on return. The page queue lock might
303 * be dropped and reacquired.
304 *
305 * This function depends on normal struct vm_page being type stable.
306 */
307static boolean_t
308vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
309{
310	struct vm_page marker;
311	struct vm_pagequeue *pq;
312	boolean_t unchanged;
313	u_short queue;
314
315	vm_page_lock_assert(m, MA_NOTOWNED);
316	if (vm_page_trylock(m))
317		return (TRUE);
318
319	queue = m->queue;
320	vm_pageout_init_marker(&marker, queue);
321	pq = vm_page_pagequeue(m);
322
323	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
324	vm_pagequeue_unlock(pq);
325	vm_page_lock(m);
326	vm_pagequeue_lock(pq);
327
328	/* Page queue might have changed. */
329	*next = TAILQ_NEXT(&marker, plinks.q);
330	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
331	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
332	return (unchanged);
333}
334
335/*
336 * vm_pageout_clean:
337 *
338 * Clean the page and remove it from the laundry.
339 *
340 * We set the busy bit to cause potential page faults on this page to
341 * block.  Note the careful timing, however, the busy bit isn't set till
342 * late and we cannot do anything that will mess with the page.
343 */
344static int
345vm_pageout_clean(vm_page_t m)
346{
347	vm_object_t object;
348	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
349	int pageout_count;
350	int ib, is, page_base;
351	vm_pindex_t pindex = m->pindex;
352
353	vm_page_lock_assert(m, MA_OWNED);
354	object = m->object;
355	VM_OBJECT_ASSERT_WLOCKED(object);
356
357	/*
358	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
359	 * with the new swapper, but we could have serious problems paging
360	 * out other object types if there is insufficient memory.
361	 *
362	 * Unfortunately, checking free memory here is far too late, so the
363	 * check has been moved up a procedural level.
364	 */
365
366	/*
367	 * Can't clean the page if it's busy or held.
368	 */
369	vm_page_assert_unbusied(m);
370	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
371	vm_page_unlock(m);
372
373	mc[vm_pageout_page_count] = pb = ps = m;
374	pageout_count = 1;
375	page_base = vm_pageout_page_count;
376	ib = 1;
377	is = 1;
378
379	/*
380	 * Scan object for clusterable pages.
381	 *
382	 * We can cluster ONLY if: ->> the page is NOT
383	 * clean, wired, busy, held, or mapped into a
384	 * buffer, and one of the following:
385	 * 1) The page is inactive, or a seldom used
386	 *    active page.
387	 * -or-
388	 * 2) we force the issue.
389	 *
390	 * During heavy mmap/modification loads the pageout
391	 * daemon can really fragment the underlying file
392	 * due to flushing pages out of order and not trying
393	 * align the clusters (which leave sporatic out-of-order
394	 * holes).  To solve this problem we do the reverse scan
395	 * first and attempt to align our cluster, then do a
396	 * forward scan if room remains.
397	 */
398more:
399	while (ib && pageout_count < vm_pageout_page_count) {
400		vm_page_t p;
401
402		if (ib > pindex) {
403			ib = 0;
404			break;
405		}
406
407		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
408			ib = 0;
409			break;
410		}
411		vm_page_lock(p);
412		vm_page_test_dirty(p);
413		if (p->dirty == 0 ||
414		    p->queue != PQ_INACTIVE ||
415		    p->hold_count != 0) {	/* may be undergoing I/O */
416			vm_page_unlock(p);
417			ib = 0;
418			break;
419		}
420		vm_page_unlock(p);
421		mc[--page_base] = pb = p;
422		++pageout_count;
423		++ib;
424		/*
425		 * alignment boundry, stop here and switch directions.  Do
426		 * not clear ib.
427		 */
428		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
429			break;
430	}
431
432	while (pageout_count < vm_pageout_page_count &&
433	    pindex + is < object->size) {
434		vm_page_t p;
435
436		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
437			break;
438		vm_page_lock(p);
439		vm_page_test_dirty(p);
440		if (p->dirty == 0 ||
441		    p->queue != PQ_INACTIVE ||
442		    p->hold_count != 0) {	/* may be undergoing I/O */
443			vm_page_unlock(p);
444			break;
445		}
446		vm_page_unlock(p);
447		mc[page_base + pageout_count] = ps = p;
448		++pageout_count;
449		++is;
450	}
451
452	/*
453	 * If we exhausted our forward scan, continue with the reverse scan
454	 * when possible, even past a page boundry.  This catches boundry
455	 * conditions.
456	 */
457	if (ib && pageout_count < vm_pageout_page_count)
458		goto more;
459
460	/*
461	 * we allow reads during pageouts...
462	 */
463	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
464	    NULL));
465}
466
467/*
468 * vm_pageout_flush() - launder the given pages
469 *
470 *	The given pages are laundered.  Note that we setup for the start of
471 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
472 *	reference count all in here rather then in the parent.  If we want
473 *	the parent to do more sophisticated things we may have to change
474 *	the ordering.
475 *
476 *	Returned runlen is the count of pages between mreq and first
477 *	page after mreq with status VM_PAGER_AGAIN.
478 *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
479 *	for any page in runlen set.
480 */
481int
482vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
483    boolean_t *eio)
484{
485	vm_object_t object = mc[0]->object;
486	int pageout_status[count];
487	int numpagedout = 0;
488	int i, runlen;
489
490	VM_OBJECT_ASSERT_WLOCKED(object);
491
492	/*
493	 * Initiate I/O.  Bump the vm_page_t->busy counter and
494	 * mark the pages read-only.
495	 *
496	 * We do not have to fixup the clean/dirty bits here... we can
497	 * allow the pager to do it after the I/O completes.
498	 *
499	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
500	 * edge case with file fragments.
501	 */
502	for (i = 0; i < count; i++) {
503		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
504		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
505			mc[i], i, count));
506		vm_page_sbusy(mc[i]);
507		pmap_remove_write(mc[i]);
508	}
509	vm_object_pip_add(object, count);
510
511	vm_pager_put_pages(object, mc, count, flags, pageout_status);
512
513	runlen = count - mreq;
514	if (eio != NULL)
515		*eio = FALSE;
516	for (i = 0; i < count; i++) {
517		vm_page_t mt = mc[i];
518
519		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
520		    !pmap_page_is_write_mapped(mt),
521		    ("vm_pageout_flush: page %p is not write protected", mt));
522		switch (pageout_status[i]) {
523		case VM_PAGER_OK:
524		case VM_PAGER_PEND:
525			numpagedout++;
526			break;
527		case VM_PAGER_BAD:
528			/*
529			 * Page outside of range of object. Right now we
530			 * essentially lose the changes by pretending it
531			 * worked.
532			 */
533			vm_page_undirty(mt);
534			break;
535		case VM_PAGER_ERROR:
536		case VM_PAGER_FAIL:
537			/*
538			 * If page couldn't be paged out, then reactivate the
539			 * page so it doesn't clog the inactive list.  (We
540			 * will try paging out it again later).
541			 */
542			vm_page_lock(mt);
543			vm_page_activate(mt);
544			vm_page_unlock(mt);
545			if (eio != NULL && i >= mreq && i - mreq < runlen)
546				*eio = TRUE;
547			break;
548		case VM_PAGER_AGAIN:
549			if (i >= mreq && i - mreq < runlen)
550				runlen = i - mreq;
551			break;
552		}
553
554		/*
555		 * If the operation is still going, leave the page busy to
556		 * block all other accesses. Also, leave the paging in
557		 * progress indicator set so that we don't attempt an object
558		 * collapse.
559		 */
560		if (pageout_status[i] != VM_PAGER_PEND) {
561			vm_object_pip_wakeup(object);
562			vm_page_sunbusy(mt);
563			if (vm_page_count_severe()) {
564				vm_page_lock(mt);
565				vm_page_try_to_cache(mt);
566				vm_page_unlock(mt);
567			}
568		}
569	}
570	if (prunlen != NULL)
571		*prunlen = runlen;
572	return (numpagedout);
573}
574
575static boolean_t
576vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
577    vm_paddr_t high)
578{
579	struct mount *mp;
580	struct vnode *vp;
581	vm_object_t object;
582	vm_paddr_t pa;
583	vm_page_t m, m_tmp, next;
584	int lockmode;
585
586	vm_pagequeue_lock(pq);
587	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
588		if ((m->flags & PG_MARKER) != 0)
589			continue;
590		pa = VM_PAGE_TO_PHYS(m);
591		if (pa < low || pa + PAGE_SIZE > high)
592			continue;
593		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
594			vm_page_unlock(m);
595			continue;
596		}
597		object = m->object;
598		if ((!VM_OBJECT_TRYWLOCK(object) &&
599		    (!vm_pageout_fallback_object_lock(m, &next) ||
600		    m->hold_count != 0)) || vm_page_busied(m)) {
601			vm_page_unlock(m);
602			VM_OBJECT_WUNLOCK(object);
603			continue;
604		}
605		vm_page_test_dirty(m);
606		if (m->dirty == 0 && object->ref_count != 0)
607			pmap_remove_all(m);
608		if (m->dirty != 0) {
609			vm_page_unlock(m);
610			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
611				VM_OBJECT_WUNLOCK(object);
612				continue;
613			}
614			if (object->type == OBJT_VNODE) {
615				vm_pagequeue_unlock(pq);
616				vp = object->handle;
617				vm_object_reference_locked(object);
618				VM_OBJECT_WUNLOCK(object);
619				(void)vn_start_write(vp, &mp, V_WAIT);
620				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
621				    LK_SHARED : LK_EXCLUSIVE;
622				vn_lock(vp, lockmode | LK_RETRY);
623				VM_OBJECT_WLOCK(object);
624				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
625				VM_OBJECT_WUNLOCK(object);
626				VOP_UNLOCK(vp, 0);
627				vm_object_deallocate(object);
628				vn_finished_write(mp);
629				return (TRUE);
630			} else if (object->type == OBJT_SWAP ||
631			    object->type == OBJT_DEFAULT) {
632				vm_pagequeue_unlock(pq);
633				m_tmp = m;
634				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
635				    0, NULL, NULL);
636				VM_OBJECT_WUNLOCK(object);
637				return (TRUE);
638			}
639		} else {
640			/*
641			 * Dequeue here to prevent lock recursion in
642			 * vm_page_cache().
643			 */
644			vm_page_dequeue_locked(m);
645			vm_page_cache(m);
646			vm_page_unlock(m);
647		}
648		VM_OBJECT_WUNLOCK(object);
649	}
650	vm_pagequeue_unlock(pq);
651	return (FALSE);
652}
653
654/*
655 * Increase the number of cached pages.  The specified value, "tries",
656 * determines which categories of pages are cached:
657 *
658 *  0: All clean, inactive pages within the specified physical address range
659 *     are cached.  Will not sleep.
660 *  1: The vm_lowmem handlers are called.  All inactive pages within
661 *     the specified physical address range are cached.  May sleep.
662 *  2: The vm_lowmem handlers are called.  All inactive and active pages
663 *     within the specified physical address range are cached.  May sleep.
664 */
665void
666vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
667{
668	int actl, actmax, inactl, inactmax, dom, initial_dom;
669	static int start_dom = 0;
670
671	if (tries > 0) {
672		/*
673		 * Decrease registered cache sizes.  The vm_lowmem handlers
674		 * may acquire locks and/or sleep, so they can only be invoked
675		 * when "tries" is greater than zero.
676		 */
677		SDT_PROBE0(vm, , , vm__lowmem_cache);
678		EVENTHANDLER_INVOKE(vm_lowmem, 0);
679
680		/*
681		 * We do this explicitly after the caches have been drained
682		 * above.
683		 */
684		uma_reclaim();
685	}
686
687	/*
688	 * Make the next scan start on the next domain.
689	 */
690	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
691
692	inactl = 0;
693	inactmax = cnt.v_inactive_count;
694	actl = 0;
695	actmax = tries < 2 ? 0 : cnt.v_active_count;
696	dom = initial_dom;
697
698	/*
699	 * Scan domains in round-robin order, first inactive queues,
700	 * then active.  Since domain usually owns large physically
701	 * contiguous chunk of memory, it makes sense to completely
702	 * exhaust one domain before switching to next, while growing
703	 * the pool of contiguous physical pages.
704	 *
705	 * Do not even start launder a domain which cannot contain
706	 * the specified address range, as indicated by segments
707	 * constituting the domain.
708	 */
709again:
710	if (inactl < inactmax) {
711		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
712		    low, high) &&
713		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
714		    tries, low, high)) {
715			inactl++;
716			goto again;
717		}
718		if (++dom == vm_ndomains)
719			dom = 0;
720		if (dom != initial_dom)
721			goto again;
722	}
723	if (actl < actmax) {
724		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
725		    low, high) &&
726		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
727		      tries, low, high)) {
728			actl++;
729			goto again;
730		}
731		if (++dom == vm_ndomains)
732			dom = 0;
733		if (dom != initial_dom)
734			goto again;
735	}
736}
737
738#if !defined(NO_SWAPPING)
739/*
740 *	vm_pageout_object_deactivate_pages
741 *
742 *	Deactivate enough pages to satisfy the inactive target
743 *	requirements.
744 *
745 *	The object and map must be locked.
746 */
747static void
748vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
749    long desired)
750{
751	vm_object_t backing_object, object;
752	vm_page_t p;
753	int act_delta, remove_mode;
754
755	VM_OBJECT_ASSERT_LOCKED(first_object);
756	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
757		return;
758	for (object = first_object;; object = backing_object) {
759		if (pmap_resident_count(pmap) <= desired)
760			goto unlock_return;
761		VM_OBJECT_ASSERT_LOCKED(object);
762		if ((object->flags & OBJ_UNMANAGED) != 0 ||
763		    object->paging_in_progress != 0)
764			goto unlock_return;
765
766		remove_mode = 0;
767		if (object->shadow_count > 1)
768			remove_mode = 1;
769		/*
770		 * Scan the object's entire memory queue.
771		 */
772		TAILQ_FOREACH(p, &object->memq, listq) {
773			if (pmap_resident_count(pmap) <= desired)
774				goto unlock_return;
775			if (vm_page_busied(p))
776				continue;
777			PCPU_INC(cnt.v_pdpages);
778			vm_page_lock(p);
779			if (p->wire_count != 0 || p->hold_count != 0 ||
780			    !pmap_page_exists_quick(pmap, p)) {
781				vm_page_unlock(p);
782				continue;
783			}
784			act_delta = pmap_ts_referenced(p);
785			if ((p->aflags & PGA_REFERENCED) != 0) {
786				if (act_delta == 0)
787					act_delta = 1;
788				vm_page_aflag_clear(p, PGA_REFERENCED);
789			}
790			if (p->queue != PQ_ACTIVE && act_delta != 0) {
791				vm_page_activate(p);
792				p->act_count += act_delta;
793			} else if (p->queue == PQ_ACTIVE) {
794				if (act_delta == 0) {
795					p->act_count -= min(p->act_count,
796					    ACT_DECLINE);
797					if (!remove_mode && p->act_count == 0) {
798						pmap_remove_all(p);
799						vm_page_deactivate(p);
800					} else
801						vm_page_requeue(p);
802				} else {
803					vm_page_activate(p);
804					if (p->act_count < ACT_MAX -
805					    ACT_ADVANCE)
806						p->act_count += ACT_ADVANCE;
807					vm_page_requeue(p);
808				}
809			} else if (p->queue == PQ_INACTIVE)
810				pmap_remove_all(p);
811			vm_page_unlock(p);
812		}
813		if ((backing_object = object->backing_object) == NULL)
814			goto unlock_return;
815		VM_OBJECT_RLOCK(backing_object);
816		if (object != first_object)
817			VM_OBJECT_RUNLOCK(object);
818	}
819unlock_return:
820	if (object != first_object)
821		VM_OBJECT_RUNLOCK(object);
822}
823
824/*
825 * deactivate some number of pages in a map, try to do it fairly, but
826 * that is really hard to do.
827 */
828static void
829vm_pageout_map_deactivate_pages(map, desired)
830	vm_map_t map;
831	long desired;
832{
833	vm_map_entry_t tmpe;
834	vm_object_t obj, bigobj;
835	int nothingwired;
836
837	if (!vm_map_trylock(map))
838		return;
839
840	bigobj = NULL;
841	nothingwired = TRUE;
842
843	/*
844	 * first, search out the biggest object, and try to free pages from
845	 * that.
846	 */
847	tmpe = map->header.next;
848	while (tmpe != &map->header) {
849		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
850			obj = tmpe->object.vm_object;
851			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
852				if (obj->shadow_count <= 1 &&
853				    (bigobj == NULL ||
854				     bigobj->resident_page_count < obj->resident_page_count)) {
855					if (bigobj != NULL)
856						VM_OBJECT_RUNLOCK(bigobj);
857					bigobj = obj;
858				} else
859					VM_OBJECT_RUNLOCK(obj);
860			}
861		}
862		if (tmpe->wired_count > 0)
863			nothingwired = FALSE;
864		tmpe = tmpe->next;
865	}
866
867	if (bigobj != NULL) {
868		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
869		VM_OBJECT_RUNLOCK(bigobj);
870	}
871	/*
872	 * Next, hunt around for other pages to deactivate.  We actually
873	 * do this search sort of wrong -- .text first is not the best idea.
874	 */
875	tmpe = map->header.next;
876	while (tmpe != &map->header) {
877		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
878			break;
879		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
880			obj = tmpe->object.vm_object;
881			if (obj != NULL) {
882				VM_OBJECT_RLOCK(obj);
883				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
884				VM_OBJECT_RUNLOCK(obj);
885			}
886		}
887		tmpe = tmpe->next;
888	}
889
890#ifdef __ia64__
891	/*
892	 * Remove all non-wired, managed mappings if a process is swapped out.
893	 * This will free page table pages.
894	 */
895	if (desired == 0)
896		pmap_remove_pages(map->pmap);
897#else
898	/*
899	 * Remove all mappings if a process is swapped out, this will free page
900	 * table pages.
901	 */
902	if (desired == 0 && nothingwired) {
903		pmap_remove(vm_map_pmap(map), vm_map_min(map),
904		    vm_map_max(map));
905	}
906#endif
907
908	vm_map_unlock(map);
909}
910#endif		/* !defined(NO_SWAPPING) */
911
912/*
913 *	vm_pageout_scan does the dirty work for the pageout daemon.
914 *
915 *	pass 0 - Update active LRU/deactivate pages
916 *	pass 1 - Move inactive to cache or free
917 *	pass 2 - Launder dirty pages
918 */
919static void
920vm_pageout_scan(struct vm_domain *vmd, int pass)
921{
922	vm_page_t m, next;
923	struct vm_pagequeue *pq;
924	vm_object_t object;
925	int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
926	int vnodes_skipped = 0;
927	int maxlaunder;
928	int lockmode;
929	boolean_t queues_locked;
930
931	/*
932	 * If we need to reclaim memory ask kernel caches to return
933	 * some.  We rate limit to avoid thrashing.
934	 */
935	if (vmd == &vm_dom[0] && pass > 0 &&
936	    (time_uptime - lowmem_uptime) >= lowmem_period) {
937		/*
938		 * Decrease registered cache sizes.
939		 */
940		SDT_PROBE0(vm, , , vm__lowmem_scan);
941		EVENTHANDLER_INVOKE(vm_lowmem, 0);
942		/*
943		 * We do this explicitly after the caches have been
944		 * drained above.
945		 */
946		uma_reclaim();
947		lowmem_uptime = time_uptime;
948	}
949
950	/*
951	 * The addl_page_shortage is the number of temporarily
952	 * stuck pages in the inactive queue.  In other words, the
953	 * number of pages from the inactive count that should be
954	 * discounted in setting the target for the active queue scan.
955	 */
956	addl_page_shortage = 0;
957
958	/*
959	 * Calculate the number of pages we want to either free or move
960	 * to the cache.
961	 */
962	if (pass > 0) {
963		deficit = atomic_readandclear_int(&vm_pageout_deficit);
964		page_shortage = vm_paging_target() + deficit;
965	} else
966		page_shortage = deficit = 0;
967
968	/*
969	 * maxlaunder limits the number of dirty pages we flush per scan.
970	 * For most systems a smaller value (16 or 32) is more robust under
971	 * extreme memory and disk pressure because any unnecessary writes
972	 * to disk can result in extreme performance degredation.  However,
973	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
974	 * used) will die horribly with limited laundering.  If the pageout
975	 * daemon cannot clean enough pages in the first pass, we let it go
976	 * all out in succeeding passes.
977	 */
978	if ((maxlaunder = vm_max_launder) <= 1)
979		maxlaunder = 1;
980	if (pass > 1)
981		maxlaunder = 10000;
982
983	/*
984	 * Start scanning the inactive queue for pages we can move to the
985	 * cache or free.  The scan will stop when the target is reached or
986	 * we have scanned the entire inactive queue.  Note that m->act_count
987	 * is not used to form decisions for the inactive queue, only for the
988	 * active queue.
989	 */
990	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
991	maxscan = pq->pq_cnt;
992	vm_pagequeue_lock(pq);
993	queues_locked = TRUE;
994	for (m = TAILQ_FIRST(&pq->pq_pl);
995	     m != NULL && maxscan-- > 0 && page_shortage > 0;
996	     m = next) {
997		vm_pagequeue_assert_locked(pq);
998		KASSERT(queues_locked, ("unlocked queues"));
999		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
1000
1001		PCPU_INC(cnt.v_pdpages);
1002		next = TAILQ_NEXT(m, plinks.q);
1003
1004		/*
1005		 * skip marker pages
1006		 */
1007		if (m->flags & PG_MARKER)
1008			continue;
1009
1010		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1011		    ("Fictitious page %p cannot be in inactive queue", m));
1012		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1013		    ("Unmanaged page %p cannot be in inactive queue", m));
1014
1015		/*
1016		 * The page or object lock acquisitions fail if the
1017		 * page was removed from the queue or moved to a
1018		 * different position within the queue.  In either
1019		 * case, addl_page_shortage should not be incremented.
1020		 */
1021		if (!vm_pageout_page_lock(m, &next)) {
1022			vm_page_unlock(m);
1023			continue;
1024		}
1025		object = m->object;
1026		if (!VM_OBJECT_TRYWLOCK(object) &&
1027		    !vm_pageout_fallback_object_lock(m, &next)) {
1028			vm_page_unlock(m);
1029			VM_OBJECT_WUNLOCK(object);
1030			continue;
1031		}
1032
1033		/*
1034		 * Don't mess with busy pages, keep them at at the
1035		 * front of the queue, most likely they are being
1036		 * paged out.  Increment addl_page_shortage for busy
1037		 * pages, because they may leave the inactive queue
1038		 * shortly after page scan is finished.
1039		 */
1040		if (vm_page_busied(m)) {
1041			vm_page_unlock(m);
1042			VM_OBJECT_WUNLOCK(object);
1043			addl_page_shortage++;
1044			continue;
1045		}
1046
1047		/*
1048		 * We unlock the inactive page queue, invalidating the
1049		 * 'next' pointer.  Use our marker to remember our
1050		 * place.
1051		 */
1052		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1053		vm_pagequeue_unlock(pq);
1054		queues_locked = FALSE;
1055
1056		/*
1057		 * We bump the activation count if the page has been
1058		 * referenced while in the inactive queue.  This makes
1059		 * it less likely that the page will be added back to the
1060		 * inactive queue prematurely again.  Here we check the
1061		 * page tables (or emulated bits, if any), given the upper
1062		 * level VM system not knowing anything about existing
1063		 * references.
1064		 */
1065		act_delta = 0;
1066		if ((m->aflags & PGA_REFERENCED) != 0) {
1067			vm_page_aflag_clear(m, PGA_REFERENCED);
1068			act_delta = 1;
1069		}
1070		if (object->ref_count != 0) {
1071			act_delta += pmap_ts_referenced(m);
1072		} else {
1073			KASSERT(!pmap_page_is_mapped(m),
1074			    ("vm_pageout_scan: page %p is mapped", m));
1075		}
1076
1077		/*
1078		 * If the upper level VM system knows about any page
1079		 * references, we reactivate the page or requeue it.
1080		 */
1081		if (act_delta != 0) {
1082			if (object->ref_count) {
1083				vm_page_activate(m);
1084				m->act_count += act_delta + ACT_ADVANCE;
1085			} else {
1086				vm_pagequeue_lock(pq);
1087				queues_locked = TRUE;
1088				vm_page_requeue_locked(m);
1089			}
1090			VM_OBJECT_WUNLOCK(object);
1091			vm_page_unlock(m);
1092			goto relock_queues;
1093		}
1094
1095		if (m->hold_count != 0) {
1096			vm_page_unlock(m);
1097			VM_OBJECT_WUNLOCK(object);
1098
1099			/*
1100			 * Held pages are essentially stuck in the
1101			 * queue.  So, they ought to be discounted
1102			 * from the inactive count.  See the
1103			 * calculation of the page_shortage for the
1104			 * loop over the active queue below.
1105			 */
1106			addl_page_shortage++;
1107			goto relock_queues;
1108		}
1109
1110		/*
1111		 * If the page appears to be clean at the machine-independent
1112		 * layer, then remove all of its mappings from the pmap in
1113		 * anticipation of placing it onto the cache queue.  If,
1114		 * however, any of the page's mappings allow write access,
1115		 * then the page may still be modified until the last of those
1116		 * mappings are removed.
1117		 */
1118		vm_page_test_dirty(m);
1119		if (m->dirty == 0 && object->ref_count != 0)
1120			pmap_remove_all(m);
1121
1122		if (m->valid == 0) {
1123			/*
1124			 * Invalid pages can be easily freed
1125			 */
1126			vm_page_free(m);
1127			PCPU_INC(cnt.v_dfree);
1128			--page_shortage;
1129		} else if (m->dirty == 0) {
1130			/*
1131			 * Clean pages can be placed onto the cache queue.
1132			 * This effectively frees them.
1133			 */
1134			vm_page_cache(m);
1135			--page_shortage;
1136		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1137			/*
1138			 * Dirty pages need to be paged out, but flushing
1139			 * a page is extremely expensive verses freeing
1140			 * a clean page.  Rather then artificially limiting
1141			 * the number of pages we can flush, we instead give
1142			 * dirty pages extra priority on the inactive queue
1143			 * by forcing them to be cycled through the queue
1144			 * twice before being flushed, after which the
1145			 * (now clean) page will cycle through once more
1146			 * before being freed.  This significantly extends
1147			 * the thrash point for a heavily loaded machine.
1148			 */
1149			m->flags |= PG_WINATCFLS;
1150			vm_pagequeue_lock(pq);
1151			queues_locked = TRUE;
1152			vm_page_requeue_locked(m);
1153		} else if (maxlaunder > 0) {
1154			/*
1155			 * We always want to try to flush some dirty pages if
1156			 * we encounter them, to keep the system stable.
1157			 * Normally this number is small, but under extreme
1158			 * pressure where there are insufficient clean pages
1159			 * on the inactive queue, we may have to go all out.
1160			 */
1161			int swap_pageouts_ok;
1162			struct vnode *vp = NULL;
1163			struct mount *mp = NULL;
1164
1165			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1166				swap_pageouts_ok = 1;
1167			} else {
1168				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1169				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1170				vm_page_count_min());
1171
1172			}
1173
1174			/*
1175			 * We don't bother paging objects that are "dead".
1176			 * Those objects are in a "rundown" state.
1177			 */
1178			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1179				vm_pagequeue_lock(pq);
1180				vm_page_unlock(m);
1181				VM_OBJECT_WUNLOCK(object);
1182				queues_locked = TRUE;
1183				vm_page_requeue_locked(m);
1184				goto relock_queues;
1185			}
1186
1187			/*
1188			 * The object is already known NOT to be dead.   It
1189			 * is possible for the vget() to block the whole
1190			 * pageout daemon, but the new low-memory handling
1191			 * code should prevent it.
1192			 *
1193			 * The previous code skipped locked vnodes and, worse,
1194			 * reordered pages in the queue.  This results in
1195			 * completely non-deterministic operation and, on a
1196			 * busy system, can lead to extremely non-optimal
1197			 * pageouts.  For example, it can cause clean pages
1198			 * to be freed and dirty pages to be moved to the end
1199			 * of the queue.  Since dirty pages are also moved to
1200			 * the end of the queue once-cleaned, this gives
1201			 * way too large a weighting to defering the freeing
1202			 * of dirty pages.
1203			 *
1204			 * We can't wait forever for the vnode lock, we might
1205			 * deadlock due to a vn_read() getting stuck in
1206			 * vm_wait while holding this vnode.  We skip the
1207			 * vnode if we can't get it in a reasonable amount
1208			 * of time.
1209			 */
1210			if (object->type == OBJT_VNODE) {
1211				vm_page_unlock(m);
1212				vp = object->handle;
1213				if (vp->v_type == VREG &&
1214				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1215					mp = NULL;
1216					++pageout_lock_miss;
1217					if (object->flags & OBJ_MIGHTBEDIRTY)
1218						vnodes_skipped++;
1219					goto unlock_and_continue;
1220				}
1221				KASSERT(mp != NULL,
1222				    ("vp %p with NULL v_mount", vp));
1223				vm_object_reference_locked(object);
1224				VM_OBJECT_WUNLOCK(object);
1225				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1226				    LK_SHARED : LK_EXCLUSIVE;
1227				if (vget(vp, lockmode | LK_TIMELOCK,
1228				    curthread)) {
1229					VM_OBJECT_WLOCK(object);
1230					++pageout_lock_miss;
1231					if (object->flags & OBJ_MIGHTBEDIRTY)
1232						vnodes_skipped++;
1233					vp = NULL;
1234					goto unlock_and_continue;
1235				}
1236				VM_OBJECT_WLOCK(object);
1237				vm_page_lock(m);
1238				vm_pagequeue_lock(pq);
1239				queues_locked = TRUE;
1240				/*
1241				 * The page might have been moved to another
1242				 * queue during potential blocking in vget()
1243				 * above.  The page might have been freed and
1244				 * reused for another vnode.
1245				 */
1246				if (m->queue != PQ_INACTIVE ||
1247				    m->object != object ||
1248				    TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1249					vm_page_unlock(m);
1250					if (object->flags & OBJ_MIGHTBEDIRTY)
1251						vnodes_skipped++;
1252					goto unlock_and_continue;
1253				}
1254
1255				/*
1256				 * The page may have been busied during the
1257				 * blocking in vget().  We don't move the
1258				 * page back onto the end of the queue so that
1259				 * statistics are more correct if we don't.
1260				 */
1261				if (vm_page_busied(m)) {
1262					vm_page_unlock(m);
1263					addl_page_shortage++;
1264					goto unlock_and_continue;
1265				}
1266
1267				/*
1268				 * If the page has become held it might
1269				 * be undergoing I/O, so skip it
1270				 */
1271				if (m->hold_count != 0) {
1272					vm_page_unlock(m);
1273					addl_page_shortage++;
1274					if (object->flags & OBJ_MIGHTBEDIRTY)
1275						vnodes_skipped++;
1276					goto unlock_and_continue;
1277				}
1278				vm_pagequeue_unlock(pq);
1279				queues_locked = FALSE;
1280			}
1281
1282			/*
1283			 * If a page is dirty, then it is either being washed
1284			 * (but not yet cleaned) or it is still in the
1285			 * laundry.  If it is still in the laundry, then we
1286			 * start the cleaning operation.
1287			 *
1288			 * decrement page_shortage on success to account for
1289			 * the (future) cleaned page.  Otherwise we could wind
1290			 * up laundering or cleaning too many pages.
1291			 */
1292			if (vm_pageout_clean(m) != 0) {
1293				--page_shortage;
1294				--maxlaunder;
1295			}
1296unlock_and_continue:
1297			vm_page_lock_assert(m, MA_NOTOWNED);
1298			VM_OBJECT_WUNLOCK(object);
1299			if (mp != NULL) {
1300				if (queues_locked) {
1301					vm_pagequeue_unlock(pq);
1302					queues_locked = FALSE;
1303				}
1304				if (vp != NULL)
1305					vput(vp);
1306				vm_object_deallocate(object);
1307				vn_finished_write(mp);
1308			}
1309			vm_page_lock_assert(m, MA_NOTOWNED);
1310			goto relock_queues;
1311		}
1312		vm_page_unlock(m);
1313		VM_OBJECT_WUNLOCK(object);
1314relock_queues:
1315		if (!queues_locked) {
1316			vm_pagequeue_lock(pq);
1317			queues_locked = TRUE;
1318		}
1319		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1320		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1321	}
1322	vm_pagequeue_unlock(pq);
1323
1324#if !defined(NO_SWAPPING)
1325	/*
1326	 * Wakeup the swapout daemon if we didn't cache or free the targeted
1327	 * number of pages.
1328	 */
1329	if (vm_swap_enabled && page_shortage > 0)
1330		vm_req_vmdaemon(VM_SWAP_NORMAL);
1331#endif
1332
1333	/*
1334	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1335	 * and we didn't cache or free enough pages.
1336	 */
1337	if (vnodes_skipped > 0 && page_shortage > cnt.v_free_target -
1338	    cnt.v_free_min)
1339		(void)speedup_syncer();
1340
1341	/*
1342	 * Compute the number of pages we want to try to move from the
1343	 * active queue to the inactive queue.
1344	 */
1345	page_shortage = cnt.v_inactive_target - cnt.v_inactive_count +
1346	    vm_paging_target() + deficit + addl_page_shortage;
1347
1348	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1349	vm_pagequeue_lock(pq);
1350	maxscan = pq->pq_cnt;
1351
1352	/*
1353	 * If we're just idle polling attempt to visit every
1354	 * active page within 'update_period' seconds.
1355	 */
1356	if (pass == 0 && vm_pageout_update_period != 0) {
1357		maxscan /= vm_pageout_update_period;
1358		page_shortage = maxscan;
1359	}
1360
1361	/*
1362	 * Scan the active queue for things we can deactivate. We nominally
1363	 * track the per-page activity counter and use it to locate
1364	 * deactivation candidates.
1365	 */
1366	m = TAILQ_FIRST(&pq->pq_pl);
1367	while (m != NULL && maxscan-- > 0 && page_shortage > 0) {
1368
1369		KASSERT(m->queue == PQ_ACTIVE,
1370		    ("vm_pageout_scan: page %p isn't active", m));
1371
1372		next = TAILQ_NEXT(m, plinks.q);
1373		if ((m->flags & PG_MARKER) != 0) {
1374			m = next;
1375			continue;
1376		}
1377		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1378		    ("Fictitious page %p cannot be in active queue", m));
1379		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1380		    ("Unmanaged page %p cannot be in active queue", m));
1381		if (!vm_pageout_page_lock(m, &next)) {
1382			vm_page_unlock(m);
1383			m = next;
1384			continue;
1385		}
1386
1387		/*
1388		 * The count for pagedaemon pages is done after checking the
1389		 * page for eligibility...
1390		 */
1391		PCPU_INC(cnt.v_pdpages);
1392
1393		/*
1394		 * Check to see "how much" the page has been used.
1395		 */
1396		act_delta = 0;
1397		if (m->aflags & PGA_REFERENCED) {
1398			vm_page_aflag_clear(m, PGA_REFERENCED);
1399			act_delta += 1;
1400		}
1401		/*
1402		 * Unlocked object ref count check.  Two races are possible.
1403		 * 1) The ref was transitioning to zero and we saw non-zero,
1404		 *    the pmap bits will be checked unnecessarily.
1405		 * 2) The ref was transitioning to one and we saw zero.
1406		 *    The page lock prevents a new reference to this page so
1407		 *    we need not check the reference bits.
1408		 */
1409		if (m->object->ref_count != 0)
1410			act_delta += pmap_ts_referenced(m);
1411
1412		/*
1413		 * Advance or decay the act_count based on recent usage.
1414		 */
1415		if (act_delta) {
1416			m->act_count += ACT_ADVANCE + act_delta;
1417			if (m->act_count > ACT_MAX)
1418				m->act_count = ACT_MAX;
1419		} else {
1420			m->act_count -= min(m->act_count, ACT_DECLINE);
1421			act_delta = m->act_count;
1422		}
1423
1424		/*
1425		 * Move this page to the tail of the active or inactive
1426		 * queue depending on usage.
1427		 */
1428		if (act_delta == 0) {
1429			/* Dequeue to avoid later lock recursion. */
1430			vm_page_dequeue_locked(m);
1431			vm_page_deactivate(m);
1432			page_shortage--;
1433		} else
1434			vm_page_requeue_locked(m);
1435		vm_page_unlock(m);
1436		m = next;
1437	}
1438	vm_pagequeue_unlock(pq);
1439#if !defined(NO_SWAPPING)
1440	/*
1441	 * Idle process swapout -- run once per second.
1442	 */
1443	if (vm_swap_idle_enabled) {
1444		static long lsec;
1445		if (time_second != lsec) {
1446			vm_req_vmdaemon(VM_SWAP_IDLE);
1447			lsec = time_second;
1448		}
1449	}
1450#endif
1451
1452	/*
1453	 * If we are critically low on one of RAM or swap and low on
1454	 * the other, kill the largest process.  However, we avoid
1455	 * doing this on the first pass in order to give ourselves a
1456	 * chance to flush out dirty vnode-backed pages and to allow
1457	 * active pages to be moved to the inactive queue and reclaimed.
1458	 */
1459	vm_pageout_mightbe_oom(vmd, pass);
1460}
1461
1462static int vm_pageout_oom_vote;
1463
1464/*
1465 * The pagedaemon threads randlomly select one to perform the
1466 * OOM.  Trying to kill processes before all pagedaemons
1467 * failed to reach free target is premature.
1468 */
1469static void
1470vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1471{
1472	int old_vote;
1473
1474	if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1475	    (swap_pager_full && vm_paging_target() > 0))) {
1476		if (vmd->vmd_oom) {
1477			vmd->vmd_oom = FALSE;
1478			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1479		}
1480		return;
1481	}
1482
1483	if (vmd->vmd_oom)
1484		return;
1485
1486	vmd->vmd_oom = TRUE;
1487	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1488	if (old_vote != vm_ndomains - 1)
1489		return;
1490
1491	/*
1492	 * The current pagedaemon thread is the last in the quorum to
1493	 * start OOM.  Initiate the selection and signaling of the
1494	 * victim.
1495	 */
1496	vm_pageout_oom(VM_OOM_MEM);
1497
1498	/*
1499	 * After one round of OOM terror, recall our vote.  On the
1500	 * next pass, current pagedaemon would vote again if the low
1501	 * memory condition is still there, due to vmd_oom being
1502	 * false.
1503	 */
1504	vmd->vmd_oom = FALSE;
1505	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1506}
1507
1508void
1509vm_pageout_oom(int shortage)
1510{
1511	struct proc *p, *bigproc;
1512	vm_offset_t size, bigsize;
1513	struct thread *td;
1514	struct vmspace *vm;
1515
1516	/*
1517	 * We keep the process bigproc locked once we find it to keep anyone
1518	 * from messing with it; however, there is a possibility of
1519	 * deadlock if process B is bigproc and one of it's child processes
1520	 * attempts to propagate a signal to B while we are waiting for A's
1521	 * lock while walking this list.  To avoid this, we don't block on
1522	 * the process lock but just skip a process if it is already locked.
1523	 */
1524	bigproc = NULL;
1525	bigsize = 0;
1526	sx_slock(&allproc_lock);
1527	FOREACH_PROC_IN_SYSTEM(p) {
1528		int breakout;
1529
1530		PROC_LOCK(p);
1531
1532		/*
1533		 * If this is a system, protected or killed process, skip it.
1534		 */
1535		if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1536		    P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1537		    p->p_pid == 1 || P_KILLED(p) ||
1538		    (p->p_pid < 48 && swap_pager_avail != 0)) {
1539			PROC_UNLOCK(p);
1540			continue;
1541		}
1542		/*
1543		 * If the process is in a non-running type state,
1544		 * don't touch it.  Check all the threads individually.
1545		 */
1546		breakout = 0;
1547		FOREACH_THREAD_IN_PROC(p, td) {
1548			thread_lock(td);
1549			if (!TD_ON_RUNQ(td) &&
1550			    !TD_IS_RUNNING(td) &&
1551			    !TD_IS_SLEEPING(td) &&
1552			    !TD_IS_SUSPENDED(td)) {
1553				thread_unlock(td);
1554				breakout = 1;
1555				break;
1556			}
1557			thread_unlock(td);
1558		}
1559		if (breakout) {
1560			PROC_UNLOCK(p);
1561			continue;
1562		}
1563		/*
1564		 * get the process size
1565		 */
1566		vm = vmspace_acquire_ref(p);
1567		if (vm == NULL) {
1568			PROC_UNLOCK(p);
1569			continue;
1570		}
1571		_PHOLD(p);
1572		if (!vm_map_trylock_read(&vm->vm_map)) {
1573			_PRELE(p);
1574			PROC_UNLOCK(p);
1575			vmspace_free(vm);
1576			continue;
1577		}
1578		PROC_UNLOCK(p);
1579		size = vmspace_swap_count(vm);
1580		vm_map_unlock_read(&vm->vm_map);
1581		if (shortage == VM_OOM_MEM)
1582			size += vmspace_resident_count(vm);
1583		vmspace_free(vm);
1584		/*
1585		 * if the this process is bigger than the biggest one
1586		 * remember it.
1587		 */
1588		if (size > bigsize) {
1589			if (bigproc != NULL)
1590				PRELE(bigproc);
1591			bigproc = p;
1592			bigsize = size;
1593		} else {
1594			PRELE(p);
1595		}
1596	}
1597	sx_sunlock(&allproc_lock);
1598	if (bigproc != NULL) {
1599		PROC_LOCK(bigproc);
1600		killproc(bigproc, "out of swap space");
1601		sched_nice(bigproc, PRIO_MIN);
1602		_PRELE(bigproc);
1603		PROC_UNLOCK(bigproc);
1604		wakeup(&cnt.v_free_count);
1605	}
1606}
1607
1608static void
1609vm_pageout_worker(void *arg)
1610{
1611	struct vm_domain *domain;
1612	int domidx;
1613
1614	domidx = (uintptr_t)arg;
1615	domain = &vm_dom[domidx];
1616
1617	/*
1618	 * XXXKIB It could be useful to bind pageout daemon threads to
1619	 * the cores belonging to the domain, from which vm_page_array
1620	 * is allocated.
1621	 */
1622
1623	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1624	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1625
1626	/*
1627	 * The pageout daemon worker is never done, so loop forever.
1628	 */
1629	while (TRUE) {
1630		/*
1631		 * If we have enough free memory, wakeup waiters.  Do
1632		 * not clear vm_pages_needed until we reach our target,
1633		 * otherwise we may be woken up over and over again and
1634		 * waste a lot of cpu.
1635		 */
1636		mtx_lock(&vm_page_queue_free_mtx);
1637		if (vm_pages_needed && !vm_page_count_min()) {
1638			if (!vm_paging_needed())
1639				vm_pages_needed = 0;
1640			wakeup(&cnt.v_free_count);
1641		}
1642		if (vm_pages_needed) {
1643			/*
1644			 * Still not done, take a second pass without waiting
1645			 * (unlimited dirty cleaning), otherwise sleep a bit
1646			 * and try again.
1647			 */
1648			if (domain->vmd_pass > 1)
1649				msleep(&vm_pages_needed,
1650				    &vm_page_queue_free_mtx, PVM, "psleep",
1651				    hz / 2);
1652		} else {
1653			/*
1654			 * Good enough, sleep until required to refresh
1655			 * stats.
1656			 */
1657			domain->vmd_pass = 0;
1658			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1659			    PVM, "psleep", hz);
1660
1661		}
1662		if (vm_pages_needed) {
1663			cnt.v_pdwakeups++;
1664			domain->vmd_pass++;
1665		}
1666		mtx_unlock(&vm_page_queue_free_mtx);
1667		vm_pageout_scan(domain, domain->vmd_pass);
1668	}
1669}
1670
1671/*
1672 *	vm_pageout_init initialises basic pageout daemon settings.
1673 */
1674static void
1675vm_pageout_init(void)
1676{
1677	/*
1678	 * Initialize some paging parameters.
1679	 */
1680	cnt.v_interrupt_free_min = 2;
1681	if (cnt.v_page_count < 2000)
1682		vm_pageout_page_count = 8;
1683
1684	/*
1685	 * v_free_reserved needs to include enough for the largest
1686	 * swap pager structures plus enough for any pv_entry structs
1687	 * when paging.
1688	 */
1689	if (cnt.v_page_count > 1024)
1690		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1691	else
1692		cnt.v_free_min = 4;
1693	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1694	    cnt.v_interrupt_free_min;
1695	cnt.v_free_reserved = vm_pageout_page_count +
1696	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1697	cnt.v_free_severe = cnt.v_free_min / 2;
1698	cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1699	cnt.v_free_min += cnt.v_free_reserved;
1700	cnt.v_free_severe += cnt.v_free_reserved;
1701	cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1702	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1703		cnt.v_inactive_target = cnt.v_free_count / 3;
1704
1705	/*
1706	 * Set the default wakeup threshold to be 10% above the minimum
1707	 * page limit.  This keeps the steady state out of shortfall.
1708	 */
1709	vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
1710
1711	/*
1712	 * Set interval in seconds for active scan.  We want to visit each
1713	 * page at least once every ten minutes.  This is to prevent worst
1714	 * case paging behaviors with stale active LRU.
1715	 */
1716	if (vm_pageout_update_period == 0)
1717		vm_pageout_update_period = 600;
1718
1719	/* XXX does not really belong here */
1720	if (vm_page_max_wired == 0)
1721		vm_page_max_wired = cnt.v_free_count / 3;
1722}
1723
1724/*
1725 *     vm_pageout is the high level pageout daemon.
1726 */
1727static void
1728vm_pageout(void)
1729{
1730	int error;
1731#if MAXMEMDOM > 1
1732	int i;
1733#endif
1734
1735	swap_pager_swap_init();
1736#if MAXMEMDOM > 1
1737	for (i = 1; i < vm_ndomains; i++) {
1738		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1739		    curproc, NULL, 0, 0, "dom%d", i);
1740		if (error != 0) {
1741			panic("starting pageout for domain %d, error %d\n",
1742			    i, error);
1743		}
1744	}
1745#endif
1746	error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
1747	    0, 0, "uma");
1748	if (error != 0)
1749		panic("starting uma_reclaim helper, error %d\n", error);
1750	vm_pageout_worker((void *)(uintptr_t)0);
1751}
1752
1753/*
1754 * Unless the free page queue lock is held by the caller, this function
1755 * should be regarded as advisory.  Specifically, the caller should
1756 * not msleep() on &cnt.v_free_count following this function unless
1757 * the free page queue lock is held until the msleep() is performed.
1758 */
1759void
1760pagedaemon_wakeup(void)
1761{
1762
1763	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1764		vm_pages_needed = 1;
1765		wakeup(&vm_pages_needed);
1766	}
1767}
1768
1769#if !defined(NO_SWAPPING)
1770static void
1771vm_req_vmdaemon(int req)
1772{
1773	static int lastrun = 0;
1774
1775	mtx_lock(&vm_daemon_mtx);
1776	vm_pageout_req_swapout |= req;
1777	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1778		wakeup(&vm_daemon_needed);
1779		lastrun = ticks;
1780	}
1781	mtx_unlock(&vm_daemon_mtx);
1782}
1783
1784static void
1785vm_daemon(void)
1786{
1787	struct rlimit rsslim;
1788	struct proc *p;
1789	struct thread *td;
1790	struct vmspace *vm;
1791	int breakout, swapout_flags, tryagain, attempts;
1792#ifdef RACCT
1793	uint64_t rsize, ravailable;
1794#endif
1795
1796	while (TRUE) {
1797		mtx_lock(&vm_daemon_mtx);
1798		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
1799#ifdef RACCT
1800		    racct_enable ? hz : 0
1801#else
1802		    0
1803#endif
1804		);
1805		swapout_flags = vm_pageout_req_swapout;
1806		vm_pageout_req_swapout = 0;
1807		mtx_unlock(&vm_daemon_mtx);
1808		if (swapout_flags)
1809			swapout_procs(swapout_flags);
1810
1811		/*
1812		 * scan the processes for exceeding their rlimits or if
1813		 * process is swapped out -- deactivate pages
1814		 */
1815		tryagain = 0;
1816		attempts = 0;
1817again:
1818		attempts++;
1819		sx_slock(&allproc_lock);
1820		FOREACH_PROC_IN_SYSTEM(p) {
1821			vm_pindex_t limit, size;
1822
1823			/*
1824			 * if this is a system process or if we have already
1825			 * looked at this process, skip it.
1826			 */
1827			PROC_LOCK(p);
1828			if (p->p_state != PRS_NORMAL ||
1829			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1830				PROC_UNLOCK(p);
1831				continue;
1832			}
1833			/*
1834			 * if the process is in a non-running type state,
1835			 * don't touch it.
1836			 */
1837			breakout = 0;
1838			FOREACH_THREAD_IN_PROC(p, td) {
1839				thread_lock(td);
1840				if (!TD_ON_RUNQ(td) &&
1841				    !TD_IS_RUNNING(td) &&
1842				    !TD_IS_SLEEPING(td) &&
1843				    !TD_IS_SUSPENDED(td)) {
1844					thread_unlock(td);
1845					breakout = 1;
1846					break;
1847				}
1848				thread_unlock(td);
1849			}
1850			if (breakout) {
1851				PROC_UNLOCK(p);
1852				continue;
1853			}
1854			/*
1855			 * get a limit
1856			 */
1857			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1858			limit = OFF_TO_IDX(
1859			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1860
1861			/*
1862			 * let processes that are swapped out really be
1863			 * swapped out set the limit to nothing (will force a
1864			 * swap-out.)
1865			 */
1866			if ((p->p_flag & P_INMEM) == 0)
1867				limit = 0;	/* XXX */
1868			vm = vmspace_acquire_ref(p);
1869			PROC_UNLOCK(p);
1870			if (vm == NULL)
1871				continue;
1872
1873			size = vmspace_resident_count(vm);
1874			if (size >= limit) {
1875				vm_pageout_map_deactivate_pages(
1876				    &vm->vm_map, limit);
1877			}
1878#ifdef RACCT
1879			if (racct_enable) {
1880				rsize = IDX_TO_OFF(size);
1881				PROC_LOCK(p);
1882				racct_set(p, RACCT_RSS, rsize);
1883				ravailable = racct_get_available(p, RACCT_RSS);
1884				PROC_UNLOCK(p);
1885				if (rsize > ravailable) {
1886					/*
1887					 * Don't be overly aggressive; this
1888					 * might be an innocent process,
1889					 * and the limit could've been exceeded
1890					 * by some memory hog.  Don't try
1891					 * to deactivate more than 1/4th
1892					 * of process' resident set size.
1893					 */
1894					if (attempts <= 8) {
1895						if (ravailable < rsize -
1896						    (rsize / 4)) {
1897							ravailable = rsize -
1898							    (rsize / 4);
1899						}
1900					}
1901					vm_pageout_map_deactivate_pages(
1902					    &vm->vm_map,
1903					    OFF_TO_IDX(ravailable));
1904					/* Update RSS usage after paging out. */
1905					size = vmspace_resident_count(vm);
1906					rsize = IDX_TO_OFF(size);
1907					PROC_LOCK(p);
1908					racct_set(p, RACCT_RSS, rsize);
1909					PROC_UNLOCK(p);
1910					if (rsize > ravailable)
1911						tryagain = 1;
1912				}
1913			}
1914#endif
1915			vmspace_free(vm);
1916		}
1917		sx_sunlock(&allproc_lock);
1918		if (tryagain != 0 && attempts <= 10)
1919			goto again;
1920	}
1921}
1922#endif			/* !defined(NO_SWAPPING) */
1923