vm_pageout.c revision 272875
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: stable/10/sys/vm/vm_pageout.c 272875 2014-10-10 00:12:16Z smh $");
77
78#include "opt_vm.h"
79#include "opt_kdtrace.h"
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/eventhandler.h>
84#include <sys/lock.h>
85#include <sys/mutex.h>
86#include <sys/proc.h>
87#include <sys/kthread.h>
88#include <sys/ktr.h>
89#include <sys/mount.h>
90#include <sys/racct.h>
91#include <sys/resourcevar.h>
92#include <sys/sched.h>
93#include <sys/sdt.h>
94#include <sys/signalvar.h>
95#include <sys/smp.h>
96#include <sys/vnode.h>
97#include <sys/vmmeter.h>
98#include <sys/rwlock.h>
99#include <sys/sx.h>
100#include <sys/sysctl.h>
101
102#include <vm/vm.h>
103#include <vm/vm_param.h>
104#include <vm/vm_object.h>
105#include <vm/vm_page.h>
106#include <vm/vm_map.h>
107#include <vm/vm_pageout.h>
108#include <vm/vm_pager.h>
109#include <vm/vm_phys.h>
110#include <vm/swap_pager.h>
111#include <vm/vm_extern.h>
112#include <vm/uma.h>
113
114/*
115 * System initialization
116 */
117
118/* the kernel process "vm_pageout"*/
119static void vm_pageout(void);
120static void vm_pageout_init(void);
121static int vm_pageout_clean(vm_page_t);
122static void vm_pageout_scan(struct vm_domain *vmd, int pass);
123static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
124
125SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
126    NULL);
127
128struct proc *pageproc;
129
130static struct kproc_desc page_kp = {
131	"pagedaemon",
132	vm_pageout,
133	&pageproc
134};
135SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
136    &page_kp);
137
138SDT_PROVIDER_DEFINE(vm);
139SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
140SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
141
142#if !defined(NO_SWAPPING)
143/* the kernel process "vm_daemon"*/
144static void vm_daemon(void);
145static struct	proc *vmproc;
146
147static struct kproc_desc vm_kp = {
148	"vmdaemon",
149	vm_daemon,
150	&vmproc
151};
152SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
153#endif
154
155
156int vm_pages_needed;		/* Event on which pageout daemon sleeps */
157int vm_pageout_deficit;		/* Estimated number of pages deficit */
158int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
159int vm_pageout_wakeup_thresh;
160
161#if !defined(NO_SWAPPING)
162static int vm_pageout_req_swapout;	/* XXX */
163static int vm_daemon_needed;
164static struct mtx vm_daemon_mtx;
165/* Allow for use by vm_pageout before vm_daemon is initialized. */
166MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
167#endif
168static int vm_max_launder = 32;
169static int vm_pageout_update_period;
170static int defer_swap_pageouts;
171static int disable_swap_pageouts;
172static int lowmem_period = 10;
173static int lowmem_ticks;
174
175#if defined(NO_SWAPPING)
176static int vm_swap_enabled = 0;
177static int vm_swap_idle_enabled = 0;
178#else
179static int vm_swap_enabled = 1;
180static int vm_swap_idle_enabled = 0;
181#endif
182
183SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
184	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
185	"free page threshold for waking up the pageout daemon");
186
187SYSCTL_INT(_vm, OID_AUTO, max_launder,
188	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
189
190SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
191	CTLFLAG_RW, &vm_pageout_update_period, 0,
192	"Maximum active LRU update period");
193
194SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
195	"Low memory callback period");
196
197#if defined(NO_SWAPPING)
198SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
199	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
200SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
201	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
202#else
203SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
204	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
205SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
206	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
207#endif
208
209SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
210	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
211
212SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
213	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
214
215static int pageout_lock_miss;
216SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
217	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
218
219#define VM_PAGEOUT_PAGE_COUNT 16
220int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
221
222int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
223SYSCTL_INT(_vm, OID_AUTO, max_wired,
224	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
225
226static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
227static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
228    vm_paddr_t);
229#if !defined(NO_SWAPPING)
230static void vm_pageout_map_deactivate_pages(vm_map_t, long);
231static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
232static void vm_req_vmdaemon(int req);
233#endif
234static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
235
236/*
237 * Initialize a dummy page for marking the caller's place in the specified
238 * paging queue.  In principle, this function only needs to set the flag
239 * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
240 * to one as safety precautions.
241 */
242static void
243vm_pageout_init_marker(vm_page_t marker, u_short queue)
244{
245
246	bzero(marker, sizeof(*marker));
247	marker->flags = PG_MARKER;
248	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
249	marker->queue = queue;
250	marker->hold_count = 1;
251}
252
253/*
254 * vm_pageout_fallback_object_lock:
255 *
256 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
257 * known to have failed and page queue must be either PQ_ACTIVE or
258 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
259 * while locking the vm object.  Use marker page to detect page queue
260 * changes and maintain notion of next page on page queue.  Return
261 * TRUE if no changes were detected, FALSE otherwise.  vm object is
262 * locked on return.
263 *
264 * This function depends on both the lock portion of struct vm_object
265 * and normal struct vm_page being type stable.
266 */
267static boolean_t
268vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
269{
270	struct vm_page marker;
271	struct vm_pagequeue *pq;
272	boolean_t unchanged;
273	u_short queue;
274	vm_object_t object;
275
276	queue = m->queue;
277	vm_pageout_init_marker(&marker, queue);
278	pq = vm_page_pagequeue(m);
279	object = m->object;
280
281	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
282	vm_pagequeue_unlock(pq);
283	vm_page_unlock(m);
284	VM_OBJECT_WLOCK(object);
285	vm_page_lock(m);
286	vm_pagequeue_lock(pq);
287
288	/* Page queue might have changed. */
289	*next = TAILQ_NEXT(&marker, plinks.q);
290	unchanged = (m->queue == queue &&
291		     m->object == object &&
292		     &marker == TAILQ_NEXT(m, plinks.q));
293	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
294	return (unchanged);
295}
296
297/*
298 * Lock the page while holding the page queue lock.  Use marker page
299 * to detect page queue changes and maintain notion of next page on
300 * page queue.  Return TRUE if no changes were detected, FALSE
301 * otherwise.  The page is locked on return. The page queue lock might
302 * be dropped and reacquired.
303 *
304 * This function depends on normal struct vm_page being type stable.
305 */
306static boolean_t
307vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
308{
309	struct vm_page marker;
310	struct vm_pagequeue *pq;
311	boolean_t unchanged;
312	u_short queue;
313
314	vm_page_lock_assert(m, MA_NOTOWNED);
315	if (vm_page_trylock(m))
316		return (TRUE);
317
318	queue = m->queue;
319	vm_pageout_init_marker(&marker, queue);
320	pq = vm_page_pagequeue(m);
321
322	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
323	vm_pagequeue_unlock(pq);
324	vm_page_lock(m);
325	vm_pagequeue_lock(pq);
326
327	/* Page queue might have changed. */
328	*next = TAILQ_NEXT(&marker, plinks.q);
329	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
330	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
331	return (unchanged);
332}
333
334/*
335 * vm_pageout_clean:
336 *
337 * Clean the page and remove it from the laundry.
338 *
339 * We set the busy bit to cause potential page faults on this page to
340 * block.  Note the careful timing, however, the busy bit isn't set till
341 * late and we cannot do anything that will mess with the page.
342 */
343static int
344vm_pageout_clean(vm_page_t m)
345{
346	vm_object_t object;
347	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
348	int pageout_count;
349	int ib, is, page_base;
350	vm_pindex_t pindex = m->pindex;
351
352	vm_page_lock_assert(m, MA_OWNED);
353	object = m->object;
354	VM_OBJECT_ASSERT_WLOCKED(object);
355
356	/*
357	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
358	 * with the new swapper, but we could have serious problems paging
359	 * out other object types if there is insufficient memory.
360	 *
361	 * Unfortunately, checking free memory here is far too late, so the
362	 * check has been moved up a procedural level.
363	 */
364
365	/*
366	 * Can't clean the page if it's busy or held.
367	 */
368	vm_page_assert_unbusied(m);
369	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
370	vm_page_unlock(m);
371
372	mc[vm_pageout_page_count] = pb = ps = m;
373	pageout_count = 1;
374	page_base = vm_pageout_page_count;
375	ib = 1;
376	is = 1;
377
378	/*
379	 * Scan object for clusterable pages.
380	 *
381	 * We can cluster ONLY if: ->> the page is NOT
382	 * clean, wired, busy, held, or mapped into a
383	 * buffer, and one of the following:
384	 * 1) The page is inactive, or a seldom used
385	 *    active page.
386	 * -or-
387	 * 2) we force the issue.
388	 *
389	 * During heavy mmap/modification loads the pageout
390	 * daemon can really fragment the underlying file
391	 * due to flushing pages out of order and not trying
392	 * align the clusters (which leave sporatic out-of-order
393	 * holes).  To solve this problem we do the reverse scan
394	 * first and attempt to align our cluster, then do a
395	 * forward scan if room remains.
396	 */
397more:
398	while (ib && pageout_count < vm_pageout_page_count) {
399		vm_page_t p;
400
401		if (ib > pindex) {
402			ib = 0;
403			break;
404		}
405
406		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
407			ib = 0;
408			break;
409		}
410		vm_page_lock(p);
411		vm_page_test_dirty(p);
412		if (p->dirty == 0 ||
413		    p->queue != PQ_INACTIVE ||
414		    p->hold_count != 0) {	/* may be undergoing I/O */
415			vm_page_unlock(p);
416			ib = 0;
417			break;
418		}
419		vm_page_unlock(p);
420		mc[--page_base] = pb = p;
421		++pageout_count;
422		++ib;
423		/*
424		 * alignment boundry, stop here and switch directions.  Do
425		 * not clear ib.
426		 */
427		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
428			break;
429	}
430
431	while (pageout_count < vm_pageout_page_count &&
432	    pindex + is < object->size) {
433		vm_page_t p;
434
435		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
436			break;
437		vm_page_lock(p);
438		vm_page_test_dirty(p);
439		if (p->dirty == 0 ||
440		    p->queue != PQ_INACTIVE ||
441		    p->hold_count != 0) {	/* may be undergoing I/O */
442			vm_page_unlock(p);
443			break;
444		}
445		vm_page_unlock(p);
446		mc[page_base + pageout_count] = ps = p;
447		++pageout_count;
448		++is;
449	}
450
451	/*
452	 * If we exhausted our forward scan, continue with the reverse scan
453	 * when possible, even past a page boundry.  This catches boundry
454	 * conditions.
455	 */
456	if (ib && pageout_count < vm_pageout_page_count)
457		goto more;
458
459	/*
460	 * we allow reads during pageouts...
461	 */
462	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
463	    NULL));
464}
465
466/*
467 * vm_pageout_flush() - launder the given pages
468 *
469 *	The given pages are laundered.  Note that we setup for the start of
470 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
471 *	reference count all in here rather then in the parent.  If we want
472 *	the parent to do more sophisticated things we may have to change
473 *	the ordering.
474 *
475 *	Returned runlen is the count of pages between mreq and first
476 *	page after mreq with status VM_PAGER_AGAIN.
477 *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
478 *	for any page in runlen set.
479 */
480int
481vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
482    boolean_t *eio)
483{
484	vm_object_t object = mc[0]->object;
485	int pageout_status[count];
486	int numpagedout = 0;
487	int i, runlen;
488
489	VM_OBJECT_ASSERT_WLOCKED(object);
490
491	/*
492	 * Initiate I/O.  Bump the vm_page_t->busy counter and
493	 * mark the pages read-only.
494	 *
495	 * We do not have to fixup the clean/dirty bits here... we can
496	 * allow the pager to do it after the I/O completes.
497	 *
498	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
499	 * edge case with file fragments.
500	 */
501	for (i = 0; i < count; i++) {
502		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
503		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
504			mc[i], i, count));
505		vm_page_sbusy(mc[i]);
506		pmap_remove_write(mc[i]);
507	}
508	vm_object_pip_add(object, count);
509
510	vm_pager_put_pages(object, mc, count, flags, pageout_status);
511
512	runlen = count - mreq;
513	if (eio != NULL)
514		*eio = FALSE;
515	for (i = 0; i < count; i++) {
516		vm_page_t mt = mc[i];
517
518		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
519		    !pmap_page_is_write_mapped(mt),
520		    ("vm_pageout_flush: page %p is not write protected", mt));
521		switch (pageout_status[i]) {
522		case VM_PAGER_OK:
523		case VM_PAGER_PEND:
524			numpagedout++;
525			break;
526		case VM_PAGER_BAD:
527			/*
528			 * Page outside of range of object. Right now we
529			 * essentially lose the changes by pretending it
530			 * worked.
531			 */
532			vm_page_undirty(mt);
533			break;
534		case VM_PAGER_ERROR:
535		case VM_PAGER_FAIL:
536			/*
537			 * If page couldn't be paged out, then reactivate the
538			 * page so it doesn't clog the inactive list.  (We
539			 * will try paging out it again later).
540			 */
541			vm_page_lock(mt);
542			vm_page_activate(mt);
543			vm_page_unlock(mt);
544			if (eio != NULL && i >= mreq && i - mreq < runlen)
545				*eio = TRUE;
546			break;
547		case VM_PAGER_AGAIN:
548			if (i >= mreq && i - mreq < runlen)
549				runlen = i - mreq;
550			break;
551		}
552
553		/*
554		 * If the operation is still going, leave the page busy to
555		 * block all other accesses. Also, leave the paging in
556		 * progress indicator set so that we don't attempt an object
557		 * collapse.
558		 */
559		if (pageout_status[i] != VM_PAGER_PEND) {
560			vm_object_pip_wakeup(object);
561			vm_page_sunbusy(mt);
562			if (vm_page_count_severe()) {
563				vm_page_lock(mt);
564				vm_page_try_to_cache(mt);
565				vm_page_unlock(mt);
566			}
567		}
568	}
569	if (prunlen != NULL)
570		*prunlen = runlen;
571	return (numpagedout);
572}
573
574static boolean_t
575vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
576    vm_paddr_t high)
577{
578	struct mount *mp;
579	struct vnode *vp;
580	vm_object_t object;
581	vm_paddr_t pa;
582	vm_page_t m, m_tmp, next;
583	int lockmode;
584
585	vm_pagequeue_lock(pq);
586	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
587		if ((m->flags & PG_MARKER) != 0)
588			continue;
589		pa = VM_PAGE_TO_PHYS(m);
590		if (pa < low || pa + PAGE_SIZE > high)
591			continue;
592		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
593			vm_page_unlock(m);
594			continue;
595		}
596		object = m->object;
597		if ((!VM_OBJECT_TRYWLOCK(object) &&
598		    (!vm_pageout_fallback_object_lock(m, &next) ||
599		    m->hold_count != 0)) || vm_page_busied(m)) {
600			vm_page_unlock(m);
601			VM_OBJECT_WUNLOCK(object);
602			continue;
603		}
604		vm_page_test_dirty(m);
605		if (m->dirty == 0 && object->ref_count != 0)
606			pmap_remove_all(m);
607		if (m->dirty != 0) {
608			vm_page_unlock(m);
609			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
610				VM_OBJECT_WUNLOCK(object);
611				continue;
612			}
613			if (object->type == OBJT_VNODE) {
614				vm_pagequeue_unlock(pq);
615				vp = object->handle;
616				vm_object_reference_locked(object);
617				VM_OBJECT_WUNLOCK(object);
618				(void)vn_start_write(vp, &mp, V_WAIT);
619				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
620				    LK_SHARED : LK_EXCLUSIVE;
621				vn_lock(vp, lockmode | LK_RETRY);
622				VM_OBJECT_WLOCK(object);
623				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
624				VM_OBJECT_WUNLOCK(object);
625				VOP_UNLOCK(vp, 0);
626				vm_object_deallocate(object);
627				vn_finished_write(mp);
628				return (TRUE);
629			} else if (object->type == OBJT_SWAP ||
630			    object->type == OBJT_DEFAULT) {
631				vm_pagequeue_unlock(pq);
632				m_tmp = m;
633				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
634				    0, NULL, NULL);
635				VM_OBJECT_WUNLOCK(object);
636				return (TRUE);
637			}
638		} else {
639			/*
640			 * Dequeue here to prevent lock recursion in
641			 * vm_page_cache().
642			 */
643			vm_page_dequeue_locked(m);
644			vm_page_cache(m);
645			vm_page_unlock(m);
646		}
647		VM_OBJECT_WUNLOCK(object);
648	}
649	vm_pagequeue_unlock(pq);
650	return (FALSE);
651}
652
653/*
654 * Increase the number of cached pages.  The specified value, "tries",
655 * determines which categories of pages are cached:
656 *
657 *  0: All clean, inactive pages within the specified physical address range
658 *     are cached.  Will not sleep.
659 *  1: The vm_lowmem handlers are called.  All inactive pages within
660 *     the specified physical address range are cached.  May sleep.
661 *  2: The vm_lowmem handlers are called.  All inactive and active pages
662 *     within the specified physical address range are cached.  May sleep.
663 */
664void
665vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
666{
667	int actl, actmax, inactl, inactmax, dom, initial_dom;
668	static int start_dom = 0;
669
670	if (tries > 0) {
671		/*
672		 * Decrease registered cache sizes.  The vm_lowmem handlers
673		 * may acquire locks and/or sleep, so they can only be invoked
674		 * when "tries" is greater than zero.
675		 */
676		SDT_PROBE0(vm, , , vm__lowmem_cache);
677		EVENTHANDLER_INVOKE(vm_lowmem, 0);
678
679		/*
680		 * We do this explicitly after the caches have been drained
681		 * above.
682		 */
683		uma_reclaim();
684	}
685
686	/*
687	 * Make the next scan start on the next domain.
688	 */
689	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
690
691	inactl = 0;
692	inactmax = cnt.v_inactive_count;
693	actl = 0;
694	actmax = tries < 2 ? 0 : cnt.v_active_count;
695	dom = initial_dom;
696
697	/*
698	 * Scan domains in round-robin order, first inactive queues,
699	 * then active.  Since domain usually owns large physically
700	 * contiguous chunk of memory, it makes sense to completely
701	 * exhaust one domain before switching to next, while growing
702	 * the pool of contiguous physical pages.
703	 *
704	 * Do not even start launder a domain which cannot contain
705	 * the specified address range, as indicated by segments
706	 * constituting the domain.
707	 */
708again:
709	if (inactl < inactmax) {
710		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
711		    low, high) &&
712		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
713		    tries, low, high)) {
714			inactl++;
715			goto again;
716		}
717		if (++dom == vm_ndomains)
718			dom = 0;
719		if (dom != initial_dom)
720			goto again;
721	}
722	if (actl < actmax) {
723		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
724		    low, high) &&
725		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
726		      tries, low, high)) {
727			actl++;
728			goto again;
729		}
730		if (++dom == vm_ndomains)
731			dom = 0;
732		if (dom != initial_dom)
733			goto again;
734	}
735}
736
737#if !defined(NO_SWAPPING)
738/*
739 *	vm_pageout_object_deactivate_pages
740 *
741 *	Deactivate enough pages to satisfy the inactive target
742 *	requirements.
743 *
744 *	The object and map must be locked.
745 */
746static void
747vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
748    long desired)
749{
750	vm_object_t backing_object, object;
751	vm_page_t p;
752	int act_delta, remove_mode;
753
754	VM_OBJECT_ASSERT_LOCKED(first_object);
755	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
756		return;
757	for (object = first_object;; object = backing_object) {
758		if (pmap_resident_count(pmap) <= desired)
759			goto unlock_return;
760		VM_OBJECT_ASSERT_LOCKED(object);
761		if ((object->flags & OBJ_UNMANAGED) != 0 ||
762		    object->paging_in_progress != 0)
763			goto unlock_return;
764
765		remove_mode = 0;
766		if (object->shadow_count > 1)
767			remove_mode = 1;
768		/*
769		 * Scan the object's entire memory queue.
770		 */
771		TAILQ_FOREACH(p, &object->memq, listq) {
772			if (pmap_resident_count(pmap) <= desired)
773				goto unlock_return;
774			if (vm_page_busied(p))
775				continue;
776			PCPU_INC(cnt.v_pdpages);
777			vm_page_lock(p);
778			if (p->wire_count != 0 || p->hold_count != 0 ||
779			    !pmap_page_exists_quick(pmap, p)) {
780				vm_page_unlock(p);
781				continue;
782			}
783			act_delta = pmap_ts_referenced(p);
784			if ((p->aflags & PGA_REFERENCED) != 0) {
785				if (act_delta == 0)
786					act_delta = 1;
787				vm_page_aflag_clear(p, PGA_REFERENCED);
788			}
789			if (p->queue != PQ_ACTIVE && act_delta != 0) {
790				vm_page_activate(p);
791				p->act_count += act_delta;
792			} else if (p->queue == PQ_ACTIVE) {
793				if (act_delta == 0) {
794					p->act_count -= min(p->act_count,
795					    ACT_DECLINE);
796					if (!remove_mode && p->act_count == 0) {
797						pmap_remove_all(p);
798						vm_page_deactivate(p);
799					} else
800						vm_page_requeue(p);
801				} else {
802					vm_page_activate(p);
803					if (p->act_count < ACT_MAX -
804					    ACT_ADVANCE)
805						p->act_count += ACT_ADVANCE;
806					vm_page_requeue(p);
807				}
808			} else if (p->queue == PQ_INACTIVE)
809				pmap_remove_all(p);
810			vm_page_unlock(p);
811		}
812		if ((backing_object = object->backing_object) == NULL)
813			goto unlock_return;
814		VM_OBJECT_RLOCK(backing_object);
815		if (object != first_object)
816			VM_OBJECT_RUNLOCK(object);
817	}
818unlock_return:
819	if (object != first_object)
820		VM_OBJECT_RUNLOCK(object);
821}
822
823/*
824 * deactivate some number of pages in a map, try to do it fairly, but
825 * that is really hard to do.
826 */
827static void
828vm_pageout_map_deactivate_pages(map, desired)
829	vm_map_t map;
830	long desired;
831{
832	vm_map_entry_t tmpe;
833	vm_object_t obj, bigobj;
834	int nothingwired;
835
836	if (!vm_map_trylock(map))
837		return;
838
839	bigobj = NULL;
840	nothingwired = TRUE;
841
842	/*
843	 * first, search out the biggest object, and try to free pages from
844	 * that.
845	 */
846	tmpe = map->header.next;
847	while (tmpe != &map->header) {
848		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
849			obj = tmpe->object.vm_object;
850			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
851				if (obj->shadow_count <= 1 &&
852				    (bigobj == NULL ||
853				     bigobj->resident_page_count < obj->resident_page_count)) {
854					if (bigobj != NULL)
855						VM_OBJECT_RUNLOCK(bigobj);
856					bigobj = obj;
857				} else
858					VM_OBJECT_RUNLOCK(obj);
859			}
860		}
861		if (tmpe->wired_count > 0)
862			nothingwired = FALSE;
863		tmpe = tmpe->next;
864	}
865
866	if (bigobj != NULL) {
867		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
868		VM_OBJECT_RUNLOCK(bigobj);
869	}
870	/*
871	 * Next, hunt around for other pages to deactivate.  We actually
872	 * do this search sort of wrong -- .text first is not the best idea.
873	 */
874	tmpe = map->header.next;
875	while (tmpe != &map->header) {
876		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
877			break;
878		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
879			obj = tmpe->object.vm_object;
880			if (obj != NULL) {
881				VM_OBJECT_RLOCK(obj);
882				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
883				VM_OBJECT_RUNLOCK(obj);
884			}
885		}
886		tmpe = tmpe->next;
887	}
888
889#ifdef __ia64__
890	/*
891	 * Remove all non-wired, managed mappings if a process is swapped out.
892	 * This will free page table pages.
893	 */
894	if (desired == 0)
895		pmap_remove_pages(map->pmap);
896#else
897	/*
898	 * Remove all mappings if a process is swapped out, this will free page
899	 * table pages.
900	 */
901	if (desired == 0 && nothingwired) {
902		pmap_remove(vm_map_pmap(map), vm_map_min(map),
903		    vm_map_max(map));
904	}
905#endif
906
907	vm_map_unlock(map);
908}
909#endif		/* !defined(NO_SWAPPING) */
910
911/*
912 *	vm_pageout_scan does the dirty work for the pageout daemon.
913 *
914 *	pass 0 - Update active LRU/deactivate pages
915 *	pass 1 - Move inactive to cache or free
916 *	pass 2 - Launder dirty pages
917 */
918static void
919vm_pageout_scan(struct vm_domain *vmd, int pass)
920{
921	vm_page_t m, next;
922	struct vm_pagequeue *pq;
923	vm_object_t object;
924	int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
925	int vnodes_skipped = 0;
926	int maxlaunder;
927	int lockmode;
928	boolean_t queues_locked;
929
930	/*
931	 * If we need to reclaim memory ask kernel caches to return
932	 * some.  We rate limit to avoid thrashing.
933	 */
934	if (vmd == &vm_dom[0] && pass > 0 &&
935	    (ticks - lowmem_ticks) / hz >= lowmem_period) {
936		/*
937		 * Decrease registered cache sizes.
938		 */
939		SDT_PROBE0(vm, , , vm__lowmem_scan);
940		EVENTHANDLER_INVOKE(vm_lowmem, 0);
941		/*
942		 * We do this explicitly after the caches have been
943		 * drained above.
944		 */
945		uma_reclaim();
946		lowmem_ticks = ticks;
947	}
948
949	/*
950	 * The addl_page_shortage is the number of temporarily
951	 * stuck pages in the inactive queue.  In other words, the
952	 * number of pages from the inactive count that should be
953	 * discounted in setting the target for the active queue scan.
954	 */
955	addl_page_shortage = 0;
956
957	/*
958	 * Calculate the number of pages we want to either free or move
959	 * to the cache.
960	 */
961	if (pass > 0) {
962		deficit = atomic_readandclear_int(&vm_pageout_deficit);
963		page_shortage = vm_paging_target() + deficit;
964	} else
965		page_shortage = deficit = 0;
966
967	/*
968	 * maxlaunder limits the number of dirty pages we flush per scan.
969	 * For most systems a smaller value (16 or 32) is more robust under
970	 * extreme memory and disk pressure because any unnecessary writes
971	 * to disk can result in extreme performance degredation.  However,
972	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
973	 * used) will die horribly with limited laundering.  If the pageout
974	 * daemon cannot clean enough pages in the first pass, we let it go
975	 * all out in succeeding passes.
976	 */
977	if ((maxlaunder = vm_max_launder) <= 1)
978		maxlaunder = 1;
979	if (pass > 1)
980		maxlaunder = 10000;
981
982	/*
983	 * Start scanning the inactive queue for pages we can move to the
984	 * cache or free.  The scan will stop when the target is reached or
985	 * we have scanned the entire inactive queue.  Note that m->act_count
986	 * is not used to form decisions for the inactive queue, only for the
987	 * active queue.
988	 */
989	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
990	maxscan = pq->pq_cnt;
991	vm_pagequeue_lock(pq);
992	queues_locked = TRUE;
993	for (m = TAILQ_FIRST(&pq->pq_pl);
994	     m != NULL && maxscan-- > 0 && page_shortage > 0;
995	     m = next) {
996		vm_pagequeue_assert_locked(pq);
997		KASSERT(queues_locked, ("unlocked queues"));
998		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
999
1000		PCPU_INC(cnt.v_pdpages);
1001		next = TAILQ_NEXT(m, plinks.q);
1002
1003		/*
1004		 * skip marker pages
1005		 */
1006		if (m->flags & PG_MARKER)
1007			continue;
1008
1009		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1010		    ("Fictitious page %p cannot be in inactive queue", m));
1011		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1012		    ("Unmanaged page %p cannot be in inactive queue", m));
1013
1014		/*
1015		 * The page or object lock acquisitions fail if the
1016		 * page was removed from the queue or moved to a
1017		 * different position within the queue.  In either
1018		 * case, addl_page_shortage should not be incremented.
1019		 */
1020		if (!vm_pageout_page_lock(m, &next)) {
1021			vm_page_unlock(m);
1022			continue;
1023		}
1024		object = m->object;
1025		if (!VM_OBJECT_TRYWLOCK(object) &&
1026		    !vm_pageout_fallback_object_lock(m, &next)) {
1027			vm_page_unlock(m);
1028			VM_OBJECT_WUNLOCK(object);
1029			continue;
1030		}
1031
1032		/*
1033		 * Don't mess with busy pages, keep them at at the
1034		 * front of the queue, most likely they are being
1035		 * paged out.  Increment addl_page_shortage for busy
1036		 * pages, because they may leave the inactive queue
1037		 * shortly after page scan is finished.
1038		 */
1039		if (vm_page_busied(m)) {
1040			vm_page_unlock(m);
1041			VM_OBJECT_WUNLOCK(object);
1042			addl_page_shortage++;
1043			continue;
1044		}
1045
1046		/*
1047		 * We unlock the inactive page queue, invalidating the
1048		 * 'next' pointer.  Use our marker to remember our
1049		 * place.
1050		 */
1051		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1052		vm_pagequeue_unlock(pq);
1053		queues_locked = FALSE;
1054
1055		/*
1056		 * We bump the activation count if the page has been
1057		 * referenced while in the inactive queue.  This makes
1058		 * it less likely that the page will be added back to the
1059		 * inactive queue prematurely again.  Here we check the
1060		 * page tables (or emulated bits, if any), given the upper
1061		 * level VM system not knowing anything about existing
1062		 * references.
1063		 */
1064		act_delta = 0;
1065		if ((m->aflags & PGA_REFERENCED) != 0) {
1066			vm_page_aflag_clear(m, PGA_REFERENCED);
1067			act_delta = 1;
1068		}
1069		if (object->ref_count != 0) {
1070			act_delta += pmap_ts_referenced(m);
1071		} else {
1072			KASSERT(!pmap_page_is_mapped(m),
1073			    ("vm_pageout_scan: page %p is mapped", m));
1074		}
1075
1076		/*
1077		 * If the upper level VM system knows about any page
1078		 * references, we reactivate the page or requeue it.
1079		 */
1080		if (act_delta != 0) {
1081			if (object->ref_count) {
1082				vm_page_activate(m);
1083				m->act_count += act_delta + ACT_ADVANCE;
1084			} else {
1085				vm_pagequeue_lock(pq);
1086				queues_locked = TRUE;
1087				vm_page_requeue_locked(m);
1088			}
1089			VM_OBJECT_WUNLOCK(object);
1090			vm_page_unlock(m);
1091			goto relock_queues;
1092		}
1093
1094		if (m->hold_count != 0) {
1095			vm_page_unlock(m);
1096			VM_OBJECT_WUNLOCK(object);
1097
1098			/*
1099			 * Held pages are essentially stuck in the
1100			 * queue.  So, they ought to be discounted
1101			 * from the inactive count.  See the
1102			 * calculation of the page_shortage for the
1103			 * loop over the active queue below.
1104			 */
1105			addl_page_shortage++;
1106			goto relock_queues;
1107		}
1108
1109		/*
1110		 * If the page appears to be clean at the machine-independent
1111		 * layer, then remove all of its mappings from the pmap in
1112		 * anticipation of placing it onto the cache queue.  If,
1113		 * however, any of the page's mappings allow write access,
1114		 * then the page may still be modified until the last of those
1115		 * mappings are removed.
1116		 */
1117		vm_page_test_dirty(m);
1118		if (m->dirty == 0 && object->ref_count != 0)
1119			pmap_remove_all(m);
1120
1121		if (m->valid == 0) {
1122			/*
1123			 * Invalid pages can be easily freed
1124			 */
1125			vm_page_free(m);
1126			PCPU_INC(cnt.v_dfree);
1127			--page_shortage;
1128		} else if (m->dirty == 0) {
1129			/*
1130			 * Clean pages can be placed onto the cache queue.
1131			 * This effectively frees them.
1132			 */
1133			vm_page_cache(m);
1134			--page_shortage;
1135		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1136			/*
1137			 * Dirty pages need to be paged out, but flushing
1138			 * a page is extremely expensive verses freeing
1139			 * a clean page.  Rather then artificially limiting
1140			 * the number of pages we can flush, we instead give
1141			 * dirty pages extra priority on the inactive queue
1142			 * by forcing them to be cycled through the queue
1143			 * twice before being flushed, after which the
1144			 * (now clean) page will cycle through once more
1145			 * before being freed.  This significantly extends
1146			 * the thrash point for a heavily loaded machine.
1147			 */
1148			m->flags |= PG_WINATCFLS;
1149			vm_pagequeue_lock(pq);
1150			queues_locked = TRUE;
1151			vm_page_requeue_locked(m);
1152		} else if (maxlaunder > 0) {
1153			/*
1154			 * We always want to try to flush some dirty pages if
1155			 * we encounter them, to keep the system stable.
1156			 * Normally this number is small, but under extreme
1157			 * pressure where there are insufficient clean pages
1158			 * on the inactive queue, we may have to go all out.
1159			 */
1160			int swap_pageouts_ok;
1161			struct vnode *vp = NULL;
1162			struct mount *mp = NULL;
1163
1164			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1165				swap_pageouts_ok = 1;
1166			} else {
1167				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1168				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1169				vm_page_count_min());
1170
1171			}
1172
1173			/*
1174			 * We don't bother paging objects that are "dead".
1175			 * Those objects are in a "rundown" state.
1176			 */
1177			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1178				vm_pagequeue_lock(pq);
1179				vm_page_unlock(m);
1180				VM_OBJECT_WUNLOCK(object);
1181				queues_locked = TRUE;
1182				vm_page_requeue_locked(m);
1183				goto relock_queues;
1184			}
1185
1186			/*
1187			 * The object is already known NOT to be dead.   It
1188			 * is possible for the vget() to block the whole
1189			 * pageout daemon, but the new low-memory handling
1190			 * code should prevent it.
1191			 *
1192			 * The previous code skipped locked vnodes and, worse,
1193			 * reordered pages in the queue.  This results in
1194			 * completely non-deterministic operation and, on a
1195			 * busy system, can lead to extremely non-optimal
1196			 * pageouts.  For example, it can cause clean pages
1197			 * to be freed and dirty pages to be moved to the end
1198			 * of the queue.  Since dirty pages are also moved to
1199			 * the end of the queue once-cleaned, this gives
1200			 * way too large a weighting to defering the freeing
1201			 * of dirty pages.
1202			 *
1203			 * We can't wait forever for the vnode lock, we might
1204			 * deadlock due to a vn_read() getting stuck in
1205			 * vm_wait while holding this vnode.  We skip the
1206			 * vnode if we can't get it in a reasonable amount
1207			 * of time.
1208			 */
1209			if (object->type == OBJT_VNODE) {
1210				vm_page_unlock(m);
1211				vp = object->handle;
1212				if (vp->v_type == VREG &&
1213				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1214					mp = NULL;
1215					++pageout_lock_miss;
1216					if (object->flags & OBJ_MIGHTBEDIRTY)
1217						vnodes_skipped++;
1218					goto unlock_and_continue;
1219				}
1220				KASSERT(mp != NULL,
1221				    ("vp %p with NULL v_mount", vp));
1222				vm_object_reference_locked(object);
1223				VM_OBJECT_WUNLOCK(object);
1224				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1225				    LK_SHARED : LK_EXCLUSIVE;
1226				if (vget(vp, lockmode | LK_TIMELOCK,
1227				    curthread)) {
1228					VM_OBJECT_WLOCK(object);
1229					++pageout_lock_miss;
1230					if (object->flags & OBJ_MIGHTBEDIRTY)
1231						vnodes_skipped++;
1232					vp = NULL;
1233					goto unlock_and_continue;
1234				}
1235				VM_OBJECT_WLOCK(object);
1236				vm_page_lock(m);
1237				vm_pagequeue_lock(pq);
1238				queues_locked = TRUE;
1239				/*
1240				 * The page might have been moved to another
1241				 * queue during potential blocking in vget()
1242				 * above.  The page might have been freed and
1243				 * reused for another vnode.
1244				 */
1245				if (m->queue != PQ_INACTIVE ||
1246				    m->object != object ||
1247				    TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1248					vm_page_unlock(m);
1249					if (object->flags & OBJ_MIGHTBEDIRTY)
1250						vnodes_skipped++;
1251					goto unlock_and_continue;
1252				}
1253
1254				/*
1255				 * The page may have been busied during the
1256				 * blocking in vget().  We don't move the
1257				 * page back onto the end of the queue so that
1258				 * statistics are more correct if we don't.
1259				 */
1260				if (vm_page_busied(m)) {
1261					vm_page_unlock(m);
1262					addl_page_shortage++;
1263					goto unlock_and_continue;
1264				}
1265
1266				/*
1267				 * If the page has become held it might
1268				 * be undergoing I/O, so skip it
1269				 */
1270				if (m->hold_count != 0) {
1271					vm_page_unlock(m);
1272					addl_page_shortage++;
1273					if (object->flags & OBJ_MIGHTBEDIRTY)
1274						vnodes_skipped++;
1275					goto unlock_and_continue;
1276				}
1277				vm_pagequeue_unlock(pq);
1278				queues_locked = FALSE;
1279			}
1280
1281			/*
1282			 * If a page is dirty, then it is either being washed
1283			 * (but not yet cleaned) or it is still in the
1284			 * laundry.  If it is still in the laundry, then we
1285			 * start the cleaning operation.
1286			 *
1287			 * decrement page_shortage on success to account for
1288			 * the (future) cleaned page.  Otherwise we could wind
1289			 * up laundering or cleaning too many pages.
1290			 */
1291			if (vm_pageout_clean(m) != 0) {
1292				--page_shortage;
1293				--maxlaunder;
1294			}
1295unlock_and_continue:
1296			vm_page_lock_assert(m, MA_NOTOWNED);
1297			VM_OBJECT_WUNLOCK(object);
1298			if (mp != NULL) {
1299				if (queues_locked) {
1300					vm_pagequeue_unlock(pq);
1301					queues_locked = FALSE;
1302				}
1303				if (vp != NULL)
1304					vput(vp);
1305				vm_object_deallocate(object);
1306				vn_finished_write(mp);
1307			}
1308			vm_page_lock_assert(m, MA_NOTOWNED);
1309			goto relock_queues;
1310		}
1311		vm_page_unlock(m);
1312		VM_OBJECT_WUNLOCK(object);
1313relock_queues:
1314		if (!queues_locked) {
1315			vm_pagequeue_lock(pq);
1316			queues_locked = TRUE;
1317		}
1318		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1319		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1320	}
1321	vm_pagequeue_unlock(pq);
1322
1323#if !defined(NO_SWAPPING)
1324	/*
1325	 * Wakeup the swapout daemon if we didn't cache or free the targeted
1326	 * number of pages.
1327	 */
1328	if (vm_swap_enabled && page_shortage > 0)
1329		vm_req_vmdaemon(VM_SWAP_NORMAL);
1330#endif
1331
1332	/*
1333	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1334	 * and we didn't cache or free enough pages.
1335	 */
1336	if (vnodes_skipped > 0 && page_shortage > cnt.v_free_target -
1337	    cnt.v_free_min)
1338		(void)speedup_syncer();
1339
1340	/*
1341	 * Compute the number of pages we want to try to move from the
1342	 * active queue to the inactive queue.
1343	 */
1344	page_shortage = cnt.v_inactive_target - cnt.v_inactive_count +
1345	    vm_paging_target() + deficit + addl_page_shortage;
1346
1347	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1348	vm_pagequeue_lock(pq);
1349	maxscan = pq->pq_cnt;
1350
1351	/*
1352	 * If we're just idle polling attempt to visit every
1353	 * active page within 'update_period' seconds.
1354	 */
1355	if (pass == 0 && vm_pageout_update_period != 0) {
1356		maxscan /= vm_pageout_update_period;
1357		page_shortage = maxscan;
1358	}
1359
1360	/*
1361	 * Scan the active queue for things we can deactivate. We nominally
1362	 * track the per-page activity counter and use it to locate
1363	 * deactivation candidates.
1364	 */
1365	m = TAILQ_FIRST(&pq->pq_pl);
1366	while (m != NULL && maxscan-- > 0 && page_shortage > 0) {
1367
1368		KASSERT(m->queue == PQ_ACTIVE,
1369		    ("vm_pageout_scan: page %p isn't active", m));
1370
1371		next = TAILQ_NEXT(m, plinks.q);
1372		if ((m->flags & PG_MARKER) != 0) {
1373			m = next;
1374			continue;
1375		}
1376		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1377		    ("Fictitious page %p cannot be in active queue", m));
1378		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1379		    ("Unmanaged page %p cannot be in active queue", m));
1380		if (!vm_pageout_page_lock(m, &next)) {
1381			vm_page_unlock(m);
1382			m = next;
1383			continue;
1384		}
1385
1386		/*
1387		 * The count for pagedaemon pages is done after checking the
1388		 * page for eligibility...
1389		 */
1390		PCPU_INC(cnt.v_pdpages);
1391
1392		/*
1393		 * Check to see "how much" the page has been used.
1394		 */
1395		act_delta = 0;
1396		if (m->aflags & PGA_REFERENCED) {
1397			vm_page_aflag_clear(m, PGA_REFERENCED);
1398			act_delta += 1;
1399		}
1400		/*
1401		 * Unlocked object ref count check.  Two races are possible.
1402		 * 1) The ref was transitioning to zero and we saw non-zero,
1403		 *    the pmap bits will be checked unnecessarily.
1404		 * 2) The ref was transitioning to one and we saw zero.
1405		 *    The page lock prevents a new reference to this page so
1406		 *    we need not check the reference bits.
1407		 */
1408		if (m->object->ref_count != 0)
1409			act_delta += pmap_ts_referenced(m);
1410
1411		/*
1412		 * Advance or decay the act_count based on recent usage.
1413		 */
1414		if (act_delta) {
1415			m->act_count += ACT_ADVANCE + act_delta;
1416			if (m->act_count > ACT_MAX)
1417				m->act_count = ACT_MAX;
1418		} else {
1419			m->act_count -= min(m->act_count, ACT_DECLINE);
1420			act_delta = m->act_count;
1421		}
1422
1423		/*
1424		 * Move this page to the tail of the active or inactive
1425		 * queue depending on usage.
1426		 */
1427		if (act_delta == 0) {
1428			/* Dequeue to avoid later lock recursion. */
1429			vm_page_dequeue_locked(m);
1430			vm_page_deactivate(m);
1431			page_shortage--;
1432		} else
1433			vm_page_requeue_locked(m);
1434		vm_page_unlock(m);
1435		m = next;
1436	}
1437	vm_pagequeue_unlock(pq);
1438#if !defined(NO_SWAPPING)
1439	/*
1440	 * Idle process swapout -- run once per second.
1441	 */
1442	if (vm_swap_idle_enabled) {
1443		static long lsec;
1444		if (time_second != lsec) {
1445			vm_req_vmdaemon(VM_SWAP_IDLE);
1446			lsec = time_second;
1447		}
1448	}
1449#endif
1450
1451	/*
1452	 * If we are critically low on one of RAM or swap and low on
1453	 * the other, kill the largest process.  However, we avoid
1454	 * doing this on the first pass in order to give ourselves a
1455	 * chance to flush out dirty vnode-backed pages and to allow
1456	 * active pages to be moved to the inactive queue and reclaimed.
1457	 */
1458	vm_pageout_mightbe_oom(vmd, pass);
1459}
1460
1461static int vm_pageout_oom_vote;
1462
1463/*
1464 * The pagedaemon threads randlomly select one to perform the
1465 * OOM.  Trying to kill processes before all pagedaemons
1466 * failed to reach free target is premature.
1467 */
1468static void
1469vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1470{
1471	int old_vote;
1472
1473	if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1474	    (swap_pager_full && vm_paging_target() > 0))) {
1475		if (vmd->vmd_oom) {
1476			vmd->vmd_oom = FALSE;
1477			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1478		}
1479		return;
1480	}
1481
1482	if (vmd->vmd_oom)
1483		return;
1484
1485	vmd->vmd_oom = TRUE;
1486	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1487	if (old_vote != vm_ndomains - 1)
1488		return;
1489
1490	/*
1491	 * The current pagedaemon thread is the last in the quorum to
1492	 * start OOM.  Initiate the selection and signaling of the
1493	 * victim.
1494	 */
1495	vm_pageout_oom(VM_OOM_MEM);
1496
1497	/*
1498	 * After one round of OOM terror, recall our vote.  On the
1499	 * next pass, current pagedaemon would vote again if the low
1500	 * memory condition is still there, due to vmd_oom being
1501	 * false.
1502	 */
1503	vmd->vmd_oom = FALSE;
1504	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1505}
1506
1507void
1508vm_pageout_oom(int shortage)
1509{
1510	struct proc *p, *bigproc;
1511	vm_offset_t size, bigsize;
1512	struct thread *td;
1513	struct vmspace *vm;
1514
1515	/*
1516	 * We keep the process bigproc locked once we find it to keep anyone
1517	 * from messing with it; however, there is a possibility of
1518	 * deadlock if process B is bigproc and one of it's child processes
1519	 * attempts to propagate a signal to B while we are waiting for A's
1520	 * lock while walking this list.  To avoid this, we don't block on
1521	 * the process lock but just skip a process if it is already locked.
1522	 */
1523	bigproc = NULL;
1524	bigsize = 0;
1525	sx_slock(&allproc_lock);
1526	FOREACH_PROC_IN_SYSTEM(p) {
1527		int breakout;
1528
1529		if (PROC_TRYLOCK(p) == 0)
1530			continue;
1531		/*
1532		 * If this is a system, protected or killed process, skip it.
1533		 */
1534		if (p->p_state != PRS_NORMAL ||
1535		    (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1536		    (p->p_pid == 1) || P_KILLED(p) ||
1537		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1538			PROC_UNLOCK(p);
1539			continue;
1540		}
1541		/*
1542		 * If the process is in a non-running type state,
1543		 * don't touch it.  Check all the threads individually.
1544		 */
1545		breakout = 0;
1546		FOREACH_THREAD_IN_PROC(p, td) {
1547			thread_lock(td);
1548			if (!TD_ON_RUNQ(td) &&
1549			    !TD_IS_RUNNING(td) &&
1550			    !TD_IS_SLEEPING(td) &&
1551			    !TD_IS_SUSPENDED(td)) {
1552				thread_unlock(td);
1553				breakout = 1;
1554				break;
1555			}
1556			thread_unlock(td);
1557		}
1558		if (breakout) {
1559			PROC_UNLOCK(p);
1560			continue;
1561		}
1562		/*
1563		 * get the process size
1564		 */
1565		vm = vmspace_acquire_ref(p);
1566		if (vm == NULL) {
1567			PROC_UNLOCK(p);
1568			continue;
1569		}
1570		if (!vm_map_trylock_read(&vm->vm_map)) {
1571			vmspace_free(vm);
1572			PROC_UNLOCK(p);
1573			continue;
1574		}
1575		size = vmspace_swap_count(vm);
1576		vm_map_unlock_read(&vm->vm_map);
1577		if (shortage == VM_OOM_MEM)
1578			size += vmspace_resident_count(vm);
1579		vmspace_free(vm);
1580		/*
1581		 * if the this process is bigger than the biggest one
1582		 * remember it.
1583		 */
1584		if (size > bigsize) {
1585			if (bigproc != NULL)
1586				PROC_UNLOCK(bigproc);
1587			bigproc = p;
1588			bigsize = size;
1589		} else
1590			PROC_UNLOCK(p);
1591	}
1592	sx_sunlock(&allproc_lock);
1593	if (bigproc != NULL) {
1594		killproc(bigproc, "out of swap space");
1595		sched_nice(bigproc, PRIO_MIN);
1596		PROC_UNLOCK(bigproc);
1597		wakeup(&cnt.v_free_count);
1598	}
1599}
1600
1601static void
1602vm_pageout_worker(void *arg)
1603{
1604	struct vm_domain *domain;
1605	int domidx;
1606
1607	domidx = (uintptr_t)arg;
1608	domain = &vm_dom[domidx];
1609
1610	/*
1611	 * XXXKIB It could be useful to bind pageout daemon threads to
1612	 * the cores belonging to the domain, from which vm_page_array
1613	 * is allocated.
1614	 */
1615
1616	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1617	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1618
1619	/*
1620	 * The pageout daemon worker is never done, so loop forever.
1621	 */
1622	while (TRUE) {
1623		/*
1624		 * If we have enough free memory, wakeup waiters.  Do
1625		 * not clear vm_pages_needed until we reach our target,
1626		 * otherwise we may be woken up over and over again and
1627		 * waste a lot of cpu.
1628		 */
1629		mtx_lock(&vm_page_queue_free_mtx);
1630		if (vm_pages_needed && !vm_page_count_min()) {
1631			if (!vm_paging_needed())
1632				vm_pages_needed = 0;
1633			wakeup(&cnt.v_free_count);
1634		}
1635		if (vm_pages_needed) {
1636			/*
1637			 * Still not done, take a second pass without waiting
1638			 * (unlimited dirty cleaning), otherwise sleep a bit
1639			 * and try again.
1640			 */
1641			if (domain->vmd_pass > 1)
1642				msleep(&vm_pages_needed,
1643				    &vm_page_queue_free_mtx, PVM, "psleep",
1644				    hz / 2);
1645		} else {
1646			/*
1647			 * Good enough, sleep until required to refresh
1648			 * stats.
1649			 */
1650			domain->vmd_pass = 0;
1651			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1652			    PVM, "psleep", hz);
1653
1654		}
1655		if (vm_pages_needed) {
1656			cnt.v_pdwakeups++;
1657			domain->vmd_pass++;
1658		}
1659		mtx_unlock(&vm_page_queue_free_mtx);
1660		vm_pageout_scan(domain, domain->vmd_pass);
1661	}
1662}
1663
1664/*
1665 *	vm_pageout_init initialises basic pageout daemon settings.
1666 */
1667static void
1668vm_pageout_init(void)
1669{
1670	/*
1671	 * Initialize some paging parameters.
1672	 */
1673	cnt.v_interrupt_free_min = 2;
1674	if (cnt.v_page_count < 2000)
1675		vm_pageout_page_count = 8;
1676
1677	/*
1678	 * v_free_reserved needs to include enough for the largest
1679	 * swap pager structures plus enough for any pv_entry structs
1680	 * when paging.
1681	 */
1682	if (cnt.v_page_count > 1024)
1683		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1684	else
1685		cnt.v_free_min = 4;
1686	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1687	    cnt.v_interrupt_free_min;
1688	cnt.v_free_reserved = vm_pageout_page_count +
1689	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1690	cnt.v_free_severe = cnt.v_free_min / 2;
1691	cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1692	cnt.v_free_min += cnt.v_free_reserved;
1693	cnt.v_free_severe += cnt.v_free_reserved;
1694	cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1695	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1696		cnt.v_inactive_target = cnt.v_free_count / 3;
1697
1698	/*
1699	 * Set the default wakeup threshold to be 10% above the minimum
1700	 * page limit.  This keeps the steady state out of shortfall.
1701	 */
1702	vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
1703
1704	/*
1705	 * Set interval in seconds for active scan.  We want to visit each
1706	 * page at least once every ten minutes.  This is to prevent worst
1707	 * case paging behaviors with stale active LRU.
1708	 */
1709	if (vm_pageout_update_period == 0)
1710		vm_pageout_update_period = 600;
1711
1712	/* XXX does not really belong here */
1713	if (vm_page_max_wired == 0)
1714		vm_page_max_wired = cnt.v_free_count / 3;
1715}
1716
1717/*
1718 *     vm_pageout is the high level pageout daemon.
1719 */
1720static void
1721vm_pageout(void)
1722{
1723#if MAXMEMDOM > 1
1724	int error, i;
1725#endif
1726
1727	swap_pager_swap_init();
1728#if MAXMEMDOM > 1
1729	for (i = 1; i < vm_ndomains; i++) {
1730		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1731		    curproc, NULL, 0, 0, "dom%d", i);
1732		if (error != 0) {
1733			panic("starting pageout for domain %d, error %d\n",
1734			    i, error);
1735		}
1736	}
1737#endif
1738	vm_pageout_worker((void *)(uintptr_t)0);
1739}
1740
1741/*
1742 * Unless the free page queue lock is held by the caller, this function
1743 * should be regarded as advisory.  Specifically, the caller should
1744 * not msleep() on &cnt.v_free_count following this function unless
1745 * the free page queue lock is held until the msleep() is performed.
1746 */
1747void
1748pagedaemon_wakeup(void)
1749{
1750
1751	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1752		vm_pages_needed = 1;
1753		wakeup(&vm_pages_needed);
1754	}
1755}
1756
1757#if !defined(NO_SWAPPING)
1758static void
1759vm_req_vmdaemon(int req)
1760{
1761	static int lastrun = 0;
1762
1763	mtx_lock(&vm_daemon_mtx);
1764	vm_pageout_req_swapout |= req;
1765	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1766		wakeup(&vm_daemon_needed);
1767		lastrun = ticks;
1768	}
1769	mtx_unlock(&vm_daemon_mtx);
1770}
1771
1772static void
1773vm_daemon(void)
1774{
1775	struct rlimit rsslim;
1776	struct proc *p;
1777	struct thread *td;
1778	struct vmspace *vm;
1779	int breakout, swapout_flags, tryagain, attempts;
1780#ifdef RACCT
1781	uint64_t rsize, ravailable;
1782#endif
1783
1784	while (TRUE) {
1785		mtx_lock(&vm_daemon_mtx);
1786#ifdef RACCT
1787		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1788#else
1789		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1790#endif
1791		swapout_flags = vm_pageout_req_swapout;
1792		vm_pageout_req_swapout = 0;
1793		mtx_unlock(&vm_daemon_mtx);
1794		if (swapout_flags)
1795			swapout_procs(swapout_flags);
1796
1797		/*
1798		 * scan the processes for exceeding their rlimits or if
1799		 * process is swapped out -- deactivate pages
1800		 */
1801		tryagain = 0;
1802		attempts = 0;
1803again:
1804		attempts++;
1805		sx_slock(&allproc_lock);
1806		FOREACH_PROC_IN_SYSTEM(p) {
1807			vm_pindex_t limit, size;
1808
1809			/*
1810			 * if this is a system process or if we have already
1811			 * looked at this process, skip it.
1812			 */
1813			PROC_LOCK(p);
1814			if (p->p_state != PRS_NORMAL ||
1815			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1816				PROC_UNLOCK(p);
1817				continue;
1818			}
1819			/*
1820			 * if the process is in a non-running type state,
1821			 * don't touch it.
1822			 */
1823			breakout = 0;
1824			FOREACH_THREAD_IN_PROC(p, td) {
1825				thread_lock(td);
1826				if (!TD_ON_RUNQ(td) &&
1827				    !TD_IS_RUNNING(td) &&
1828				    !TD_IS_SLEEPING(td) &&
1829				    !TD_IS_SUSPENDED(td)) {
1830					thread_unlock(td);
1831					breakout = 1;
1832					break;
1833				}
1834				thread_unlock(td);
1835			}
1836			if (breakout) {
1837				PROC_UNLOCK(p);
1838				continue;
1839			}
1840			/*
1841			 * get a limit
1842			 */
1843			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1844			limit = OFF_TO_IDX(
1845			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1846
1847			/*
1848			 * let processes that are swapped out really be
1849			 * swapped out set the limit to nothing (will force a
1850			 * swap-out.)
1851			 */
1852			if ((p->p_flag & P_INMEM) == 0)
1853				limit = 0;	/* XXX */
1854			vm = vmspace_acquire_ref(p);
1855			PROC_UNLOCK(p);
1856			if (vm == NULL)
1857				continue;
1858
1859			size = vmspace_resident_count(vm);
1860			if (size >= limit) {
1861				vm_pageout_map_deactivate_pages(
1862				    &vm->vm_map, limit);
1863			}
1864#ifdef RACCT
1865			rsize = IDX_TO_OFF(size);
1866			PROC_LOCK(p);
1867			racct_set(p, RACCT_RSS, rsize);
1868			ravailable = racct_get_available(p, RACCT_RSS);
1869			PROC_UNLOCK(p);
1870			if (rsize > ravailable) {
1871				/*
1872				 * Don't be overly aggressive; this might be
1873				 * an innocent process, and the limit could've
1874				 * been exceeded by some memory hog.  Don't
1875				 * try to deactivate more than 1/4th of process'
1876				 * resident set size.
1877				 */
1878				if (attempts <= 8) {
1879					if (ravailable < rsize - (rsize / 4))
1880						ravailable = rsize - (rsize / 4);
1881				}
1882				vm_pageout_map_deactivate_pages(
1883				    &vm->vm_map, OFF_TO_IDX(ravailable));
1884				/* Update RSS usage after paging out. */
1885				size = vmspace_resident_count(vm);
1886				rsize = IDX_TO_OFF(size);
1887				PROC_LOCK(p);
1888				racct_set(p, RACCT_RSS, rsize);
1889				PROC_UNLOCK(p);
1890				if (rsize > ravailable)
1891					tryagain = 1;
1892			}
1893#endif
1894			vmspace_free(vm);
1895		}
1896		sx_sunlock(&allproc_lock);
1897		if (tryagain != 0 && attempts <= 10)
1898			goto again;
1899	}
1900}
1901#endif			/* !defined(NO_SWAPPING) */
1902