vm_pageout.c revision 272221
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: stable/10/sys/vm/vm_pageout.c 272221 2014-09-27 18:20:45Z smh $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/racct.h>
90#include <sys/resourcevar.h>
91#include <sys/sched.h>
92#include <sys/signalvar.h>
93#include <sys/smp.h>
94#include <sys/vnode.h>
95#include <sys/vmmeter.h>
96#include <sys/rwlock.h>
97#include <sys/sx.h>
98#include <sys/sysctl.h>
99
100#include <vm/vm.h>
101#include <vm/vm_param.h>
102#include <vm/vm_object.h>
103#include <vm/vm_page.h>
104#include <vm/vm_map.h>
105#include <vm/vm_pageout.h>
106#include <vm/vm_pager.h>
107#include <vm/vm_phys.h>
108#include <vm/swap_pager.h>
109#include <vm/vm_extern.h>
110#include <vm/uma.h>
111
112/*
113 * System initialization
114 */
115
116/* the kernel process "vm_pageout"*/
117static void vm_pageout(void);
118static int vm_pageout_clean(vm_page_t);
119static void vm_pageout_scan(struct vm_domain *vmd, int pass);
120static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
121
122struct proc *pageproc;
123
124static struct kproc_desc page_kp = {
125	"pagedaemon",
126	vm_pageout,
127	&pageproc
128};
129SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
130    &page_kp);
131
132#if !defined(NO_SWAPPING)
133/* the kernel process "vm_daemon"*/
134static void vm_daemon(void);
135static struct	proc *vmproc;
136
137static struct kproc_desc vm_kp = {
138	"vmdaemon",
139	vm_daemon,
140	&vmproc
141};
142SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
143#endif
144
145
146int vm_pages_needed;		/* Event on which pageout daemon sleeps */
147int vm_pageout_deficit;		/* Estimated number of pages deficit */
148int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
149int vm_pageout_wakeup_thresh;
150
151#if !defined(NO_SWAPPING)
152static int vm_pageout_req_swapout;	/* XXX */
153static int vm_daemon_needed;
154static struct mtx vm_daemon_mtx;
155/* Allow for use by vm_pageout before vm_daemon is initialized. */
156MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
157#endif
158static int vm_max_launder = 32;
159static int vm_pageout_update_period;
160static int defer_swap_pageouts;
161static int disable_swap_pageouts;
162static int lowmem_period = 10;
163static int lowmem_ticks;
164
165#if defined(NO_SWAPPING)
166static int vm_swap_enabled = 0;
167static int vm_swap_idle_enabled = 0;
168#else
169static int vm_swap_enabled = 1;
170static int vm_swap_idle_enabled = 0;
171#endif
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
174	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
175	"free page threshold for waking up the pageout daemon");
176
177SYSCTL_INT(_vm, OID_AUTO, max_launder,
178	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
179
180SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
181	CTLFLAG_RW, &vm_pageout_update_period, 0,
182	"Maximum active LRU update period");
183
184SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
185	"Low memory callback period");
186
187#if defined(NO_SWAPPING)
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#else
193SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
194	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
195SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
196	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
197#endif
198
199SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
200	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
201
202SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
203	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
204
205static int pageout_lock_miss;
206SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
207	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
208
209#define VM_PAGEOUT_PAGE_COUNT 16
210int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
211
212int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
213SYSCTL_INT(_vm, OID_AUTO, max_wired,
214	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
215
216static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
217static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
218    vm_paddr_t);
219#if !defined(NO_SWAPPING)
220static void vm_pageout_map_deactivate_pages(vm_map_t, long);
221static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
222static void vm_req_vmdaemon(int req);
223#endif
224static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
225
226/*
227 * Initialize a dummy page for marking the caller's place in the specified
228 * paging queue.  In principle, this function only needs to set the flag
229 * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
230 * to one as safety precautions.
231 */
232static void
233vm_pageout_init_marker(vm_page_t marker, u_short queue)
234{
235
236	bzero(marker, sizeof(*marker));
237	marker->flags = PG_MARKER;
238	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
239	marker->queue = queue;
240	marker->hold_count = 1;
241}
242
243/*
244 * vm_pageout_fallback_object_lock:
245 *
246 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
247 * known to have failed and page queue must be either PQ_ACTIVE or
248 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
249 * while locking the vm object.  Use marker page to detect page queue
250 * changes and maintain notion of next page on page queue.  Return
251 * TRUE if no changes were detected, FALSE otherwise.  vm object is
252 * locked on return.
253 *
254 * This function depends on both the lock portion of struct vm_object
255 * and normal struct vm_page being type stable.
256 */
257static boolean_t
258vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
259{
260	struct vm_page marker;
261	struct vm_pagequeue *pq;
262	boolean_t unchanged;
263	u_short queue;
264	vm_object_t object;
265
266	queue = m->queue;
267	vm_pageout_init_marker(&marker, queue);
268	pq = vm_page_pagequeue(m);
269	object = m->object;
270
271	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
272	vm_pagequeue_unlock(pq);
273	vm_page_unlock(m);
274	VM_OBJECT_WLOCK(object);
275	vm_page_lock(m);
276	vm_pagequeue_lock(pq);
277
278	/* Page queue might have changed. */
279	*next = TAILQ_NEXT(&marker, plinks.q);
280	unchanged = (m->queue == queue &&
281		     m->object == object &&
282		     &marker == TAILQ_NEXT(m, plinks.q));
283	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
284	return (unchanged);
285}
286
287/*
288 * Lock the page while holding the page queue lock.  Use marker page
289 * to detect page queue changes and maintain notion of next page on
290 * page queue.  Return TRUE if no changes were detected, FALSE
291 * otherwise.  The page is locked on return. The page queue lock might
292 * be dropped and reacquired.
293 *
294 * This function depends on normal struct vm_page being type stable.
295 */
296static boolean_t
297vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
298{
299	struct vm_page marker;
300	struct vm_pagequeue *pq;
301	boolean_t unchanged;
302	u_short queue;
303
304	vm_page_lock_assert(m, MA_NOTOWNED);
305	if (vm_page_trylock(m))
306		return (TRUE);
307
308	queue = m->queue;
309	vm_pageout_init_marker(&marker, queue);
310	pq = vm_page_pagequeue(m);
311
312	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
313	vm_pagequeue_unlock(pq);
314	vm_page_lock(m);
315	vm_pagequeue_lock(pq);
316
317	/* Page queue might have changed. */
318	*next = TAILQ_NEXT(&marker, plinks.q);
319	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
320	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
321	return (unchanged);
322}
323
324/*
325 * vm_pageout_clean:
326 *
327 * Clean the page and remove it from the laundry.
328 *
329 * We set the busy bit to cause potential page faults on this page to
330 * block.  Note the careful timing, however, the busy bit isn't set till
331 * late and we cannot do anything that will mess with the page.
332 */
333static int
334vm_pageout_clean(vm_page_t m)
335{
336	vm_object_t object;
337	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
338	int pageout_count;
339	int ib, is, page_base;
340	vm_pindex_t pindex = m->pindex;
341
342	vm_page_lock_assert(m, MA_OWNED);
343	object = m->object;
344	VM_OBJECT_ASSERT_WLOCKED(object);
345
346	/*
347	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
348	 * with the new swapper, but we could have serious problems paging
349	 * out other object types if there is insufficient memory.
350	 *
351	 * Unfortunately, checking free memory here is far too late, so the
352	 * check has been moved up a procedural level.
353	 */
354
355	/*
356	 * Can't clean the page if it's busy or held.
357	 */
358	vm_page_assert_unbusied(m);
359	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
360	vm_page_unlock(m);
361
362	mc[vm_pageout_page_count] = pb = ps = m;
363	pageout_count = 1;
364	page_base = vm_pageout_page_count;
365	ib = 1;
366	is = 1;
367
368	/*
369	 * Scan object for clusterable pages.
370	 *
371	 * We can cluster ONLY if: ->> the page is NOT
372	 * clean, wired, busy, held, or mapped into a
373	 * buffer, and one of the following:
374	 * 1) The page is inactive, or a seldom used
375	 *    active page.
376	 * -or-
377	 * 2) we force the issue.
378	 *
379	 * During heavy mmap/modification loads the pageout
380	 * daemon can really fragment the underlying file
381	 * due to flushing pages out of order and not trying
382	 * align the clusters (which leave sporatic out-of-order
383	 * holes).  To solve this problem we do the reverse scan
384	 * first and attempt to align our cluster, then do a
385	 * forward scan if room remains.
386	 */
387more:
388	while (ib && pageout_count < vm_pageout_page_count) {
389		vm_page_t p;
390
391		if (ib > pindex) {
392			ib = 0;
393			break;
394		}
395
396		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
397			ib = 0;
398			break;
399		}
400		vm_page_lock(p);
401		vm_page_test_dirty(p);
402		if (p->dirty == 0 ||
403		    p->queue != PQ_INACTIVE ||
404		    p->hold_count != 0) {	/* may be undergoing I/O */
405			vm_page_unlock(p);
406			ib = 0;
407			break;
408		}
409		vm_page_unlock(p);
410		mc[--page_base] = pb = p;
411		++pageout_count;
412		++ib;
413		/*
414		 * alignment boundry, stop here and switch directions.  Do
415		 * not clear ib.
416		 */
417		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
418			break;
419	}
420
421	while (pageout_count < vm_pageout_page_count &&
422	    pindex + is < object->size) {
423		vm_page_t p;
424
425		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
426			break;
427		vm_page_lock(p);
428		vm_page_test_dirty(p);
429		if (p->dirty == 0 ||
430		    p->queue != PQ_INACTIVE ||
431		    p->hold_count != 0) {	/* may be undergoing I/O */
432			vm_page_unlock(p);
433			break;
434		}
435		vm_page_unlock(p);
436		mc[page_base + pageout_count] = ps = p;
437		++pageout_count;
438		++is;
439	}
440
441	/*
442	 * If we exhausted our forward scan, continue with the reverse scan
443	 * when possible, even past a page boundry.  This catches boundry
444	 * conditions.
445	 */
446	if (ib && pageout_count < vm_pageout_page_count)
447		goto more;
448
449	/*
450	 * we allow reads during pageouts...
451	 */
452	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
453	    NULL));
454}
455
456/*
457 * vm_pageout_flush() - launder the given pages
458 *
459 *	The given pages are laundered.  Note that we setup for the start of
460 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
461 *	reference count all in here rather then in the parent.  If we want
462 *	the parent to do more sophisticated things we may have to change
463 *	the ordering.
464 *
465 *	Returned runlen is the count of pages between mreq and first
466 *	page after mreq with status VM_PAGER_AGAIN.
467 *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
468 *	for any page in runlen set.
469 */
470int
471vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
472    boolean_t *eio)
473{
474	vm_object_t object = mc[0]->object;
475	int pageout_status[count];
476	int numpagedout = 0;
477	int i, runlen;
478
479	VM_OBJECT_ASSERT_WLOCKED(object);
480
481	/*
482	 * Initiate I/O.  Bump the vm_page_t->busy counter and
483	 * mark the pages read-only.
484	 *
485	 * We do not have to fixup the clean/dirty bits here... we can
486	 * allow the pager to do it after the I/O completes.
487	 *
488	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
489	 * edge case with file fragments.
490	 */
491	for (i = 0; i < count; i++) {
492		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
493		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
494			mc[i], i, count));
495		vm_page_sbusy(mc[i]);
496		pmap_remove_write(mc[i]);
497	}
498	vm_object_pip_add(object, count);
499
500	vm_pager_put_pages(object, mc, count, flags, pageout_status);
501
502	runlen = count - mreq;
503	if (eio != NULL)
504		*eio = FALSE;
505	for (i = 0; i < count; i++) {
506		vm_page_t mt = mc[i];
507
508		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
509		    !pmap_page_is_write_mapped(mt),
510		    ("vm_pageout_flush: page %p is not write protected", mt));
511		switch (pageout_status[i]) {
512		case VM_PAGER_OK:
513		case VM_PAGER_PEND:
514			numpagedout++;
515			break;
516		case VM_PAGER_BAD:
517			/*
518			 * Page outside of range of object. Right now we
519			 * essentially lose the changes by pretending it
520			 * worked.
521			 */
522			vm_page_undirty(mt);
523			break;
524		case VM_PAGER_ERROR:
525		case VM_PAGER_FAIL:
526			/*
527			 * If page couldn't be paged out, then reactivate the
528			 * page so it doesn't clog the inactive list.  (We
529			 * will try paging out it again later).
530			 */
531			vm_page_lock(mt);
532			vm_page_activate(mt);
533			vm_page_unlock(mt);
534			if (eio != NULL && i >= mreq && i - mreq < runlen)
535				*eio = TRUE;
536			break;
537		case VM_PAGER_AGAIN:
538			if (i >= mreq && i - mreq < runlen)
539				runlen = i - mreq;
540			break;
541		}
542
543		/*
544		 * If the operation is still going, leave the page busy to
545		 * block all other accesses. Also, leave the paging in
546		 * progress indicator set so that we don't attempt an object
547		 * collapse.
548		 */
549		if (pageout_status[i] != VM_PAGER_PEND) {
550			vm_object_pip_wakeup(object);
551			vm_page_sunbusy(mt);
552			if (vm_page_count_severe()) {
553				vm_page_lock(mt);
554				vm_page_try_to_cache(mt);
555				vm_page_unlock(mt);
556			}
557		}
558	}
559	if (prunlen != NULL)
560		*prunlen = runlen;
561	return (numpagedout);
562}
563
564static boolean_t
565vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
566    vm_paddr_t high)
567{
568	struct mount *mp;
569	struct vnode *vp;
570	vm_object_t object;
571	vm_paddr_t pa;
572	vm_page_t m, m_tmp, next;
573	int lockmode;
574
575	vm_pagequeue_lock(pq);
576	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
577		if ((m->flags & PG_MARKER) != 0)
578			continue;
579		pa = VM_PAGE_TO_PHYS(m);
580		if (pa < low || pa + PAGE_SIZE > high)
581			continue;
582		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
583			vm_page_unlock(m);
584			continue;
585		}
586		object = m->object;
587		if ((!VM_OBJECT_TRYWLOCK(object) &&
588		    (!vm_pageout_fallback_object_lock(m, &next) ||
589		    m->hold_count != 0)) || vm_page_busied(m)) {
590			vm_page_unlock(m);
591			VM_OBJECT_WUNLOCK(object);
592			continue;
593		}
594		vm_page_test_dirty(m);
595		if (m->dirty == 0 && object->ref_count != 0)
596			pmap_remove_all(m);
597		if (m->dirty != 0) {
598			vm_page_unlock(m);
599			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
600				VM_OBJECT_WUNLOCK(object);
601				continue;
602			}
603			if (object->type == OBJT_VNODE) {
604				vm_pagequeue_unlock(pq);
605				vp = object->handle;
606				vm_object_reference_locked(object);
607				VM_OBJECT_WUNLOCK(object);
608				(void)vn_start_write(vp, &mp, V_WAIT);
609				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
610				    LK_SHARED : LK_EXCLUSIVE;
611				vn_lock(vp, lockmode | LK_RETRY);
612				VM_OBJECT_WLOCK(object);
613				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
614				VM_OBJECT_WUNLOCK(object);
615				VOP_UNLOCK(vp, 0);
616				vm_object_deallocate(object);
617				vn_finished_write(mp);
618				return (TRUE);
619			} else if (object->type == OBJT_SWAP ||
620			    object->type == OBJT_DEFAULT) {
621				vm_pagequeue_unlock(pq);
622				m_tmp = m;
623				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
624				    0, NULL, NULL);
625				VM_OBJECT_WUNLOCK(object);
626				return (TRUE);
627			}
628		} else {
629			/*
630			 * Dequeue here to prevent lock recursion in
631			 * vm_page_cache().
632			 */
633			vm_page_dequeue_locked(m);
634			vm_page_cache(m);
635			vm_page_unlock(m);
636		}
637		VM_OBJECT_WUNLOCK(object);
638	}
639	vm_pagequeue_unlock(pq);
640	return (FALSE);
641}
642
643/*
644 * Increase the number of cached pages.  The specified value, "tries",
645 * determines which categories of pages are cached:
646 *
647 *  0: All clean, inactive pages within the specified physical address range
648 *     are cached.  Will not sleep.
649 *  1: The vm_lowmem handlers are called.  All inactive pages within
650 *     the specified physical address range are cached.  May sleep.
651 *  2: The vm_lowmem handlers are called.  All inactive and active pages
652 *     within the specified physical address range are cached.  May sleep.
653 */
654void
655vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
656{
657	int actl, actmax, inactl, inactmax, dom, initial_dom;
658	static int start_dom = 0;
659
660	if (tries > 0) {
661		/*
662		 * Decrease registered cache sizes.  The vm_lowmem handlers
663		 * may acquire locks and/or sleep, so they can only be invoked
664		 * when "tries" is greater than zero.
665		 */
666		EVENTHANDLER_INVOKE(vm_lowmem, 0);
667
668		/*
669		 * We do this explicitly after the caches have been drained
670		 * above.
671		 */
672		uma_reclaim();
673	}
674
675	/*
676	 * Make the next scan start on the next domain.
677	 */
678	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
679
680	inactl = 0;
681	inactmax = cnt.v_inactive_count;
682	actl = 0;
683	actmax = tries < 2 ? 0 : cnt.v_active_count;
684	dom = initial_dom;
685
686	/*
687	 * Scan domains in round-robin order, first inactive queues,
688	 * then active.  Since domain usually owns large physically
689	 * contiguous chunk of memory, it makes sense to completely
690	 * exhaust one domain before switching to next, while growing
691	 * the pool of contiguous physical pages.
692	 *
693	 * Do not even start launder a domain which cannot contain
694	 * the specified address range, as indicated by segments
695	 * constituting the domain.
696	 */
697again:
698	if (inactl < inactmax) {
699		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
700		    low, high) &&
701		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
702		    tries, low, high)) {
703			inactl++;
704			goto again;
705		}
706		if (++dom == vm_ndomains)
707			dom = 0;
708		if (dom != initial_dom)
709			goto again;
710	}
711	if (actl < actmax) {
712		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
713		    low, high) &&
714		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
715		      tries, low, high)) {
716			actl++;
717			goto again;
718		}
719		if (++dom == vm_ndomains)
720			dom = 0;
721		if (dom != initial_dom)
722			goto again;
723	}
724}
725
726#if !defined(NO_SWAPPING)
727/*
728 *	vm_pageout_object_deactivate_pages
729 *
730 *	Deactivate enough pages to satisfy the inactive target
731 *	requirements.
732 *
733 *	The object and map must be locked.
734 */
735static void
736vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
737    long desired)
738{
739	vm_object_t backing_object, object;
740	vm_page_t p;
741	int act_delta, remove_mode;
742
743	VM_OBJECT_ASSERT_LOCKED(first_object);
744	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
745		return;
746	for (object = first_object;; object = backing_object) {
747		if (pmap_resident_count(pmap) <= desired)
748			goto unlock_return;
749		VM_OBJECT_ASSERT_LOCKED(object);
750		if ((object->flags & OBJ_UNMANAGED) != 0 ||
751		    object->paging_in_progress != 0)
752			goto unlock_return;
753
754		remove_mode = 0;
755		if (object->shadow_count > 1)
756			remove_mode = 1;
757		/*
758		 * Scan the object's entire memory queue.
759		 */
760		TAILQ_FOREACH(p, &object->memq, listq) {
761			if (pmap_resident_count(pmap) <= desired)
762				goto unlock_return;
763			if (vm_page_busied(p))
764				continue;
765			PCPU_INC(cnt.v_pdpages);
766			vm_page_lock(p);
767			if (p->wire_count != 0 || p->hold_count != 0 ||
768			    !pmap_page_exists_quick(pmap, p)) {
769				vm_page_unlock(p);
770				continue;
771			}
772			act_delta = pmap_ts_referenced(p);
773			if ((p->aflags & PGA_REFERENCED) != 0) {
774				if (act_delta == 0)
775					act_delta = 1;
776				vm_page_aflag_clear(p, PGA_REFERENCED);
777			}
778			if (p->queue != PQ_ACTIVE && act_delta != 0) {
779				vm_page_activate(p);
780				p->act_count += act_delta;
781			} else if (p->queue == PQ_ACTIVE) {
782				if (act_delta == 0) {
783					p->act_count -= min(p->act_count,
784					    ACT_DECLINE);
785					if (!remove_mode && p->act_count == 0) {
786						pmap_remove_all(p);
787						vm_page_deactivate(p);
788					} else
789						vm_page_requeue(p);
790				} else {
791					vm_page_activate(p);
792					if (p->act_count < ACT_MAX -
793					    ACT_ADVANCE)
794						p->act_count += ACT_ADVANCE;
795					vm_page_requeue(p);
796				}
797			} else if (p->queue == PQ_INACTIVE)
798				pmap_remove_all(p);
799			vm_page_unlock(p);
800		}
801		if ((backing_object = object->backing_object) == NULL)
802			goto unlock_return;
803		VM_OBJECT_RLOCK(backing_object);
804		if (object != first_object)
805			VM_OBJECT_RUNLOCK(object);
806	}
807unlock_return:
808	if (object != first_object)
809		VM_OBJECT_RUNLOCK(object);
810}
811
812/*
813 * deactivate some number of pages in a map, try to do it fairly, but
814 * that is really hard to do.
815 */
816static void
817vm_pageout_map_deactivate_pages(map, desired)
818	vm_map_t map;
819	long desired;
820{
821	vm_map_entry_t tmpe;
822	vm_object_t obj, bigobj;
823	int nothingwired;
824
825	if (!vm_map_trylock(map))
826		return;
827
828	bigobj = NULL;
829	nothingwired = TRUE;
830
831	/*
832	 * first, search out the biggest object, and try to free pages from
833	 * that.
834	 */
835	tmpe = map->header.next;
836	while (tmpe != &map->header) {
837		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
838			obj = tmpe->object.vm_object;
839			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
840				if (obj->shadow_count <= 1 &&
841				    (bigobj == NULL ||
842				     bigobj->resident_page_count < obj->resident_page_count)) {
843					if (bigobj != NULL)
844						VM_OBJECT_RUNLOCK(bigobj);
845					bigobj = obj;
846				} else
847					VM_OBJECT_RUNLOCK(obj);
848			}
849		}
850		if (tmpe->wired_count > 0)
851			nothingwired = FALSE;
852		tmpe = tmpe->next;
853	}
854
855	if (bigobj != NULL) {
856		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
857		VM_OBJECT_RUNLOCK(bigobj);
858	}
859	/*
860	 * Next, hunt around for other pages to deactivate.  We actually
861	 * do this search sort of wrong -- .text first is not the best idea.
862	 */
863	tmpe = map->header.next;
864	while (tmpe != &map->header) {
865		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
866			break;
867		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
868			obj = tmpe->object.vm_object;
869			if (obj != NULL) {
870				VM_OBJECT_RLOCK(obj);
871				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
872				VM_OBJECT_RUNLOCK(obj);
873			}
874		}
875		tmpe = tmpe->next;
876	}
877
878#ifdef __ia64__
879	/*
880	 * Remove all non-wired, managed mappings if a process is swapped out.
881	 * This will free page table pages.
882	 */
883	if (desired == 0)
884		pmap_remove_pages(map->pmap);
885#else
886	/*
887	 * Remove all mappings if a process is swapped out, this will free page
888	 * table pages.
889	 */
890	if (desired == 0 && nothingwired) {
891		pmap_remove(vm_map_pmap(map), vm_map_min(map),
892		    vm_map_max(map));
893	}
894#endif
895
896	vm_map_unlock(map);
897}
898#endif		/* !defined(NO_SWAPPING) */
899
900/*
901 *	vm_pageout_scan does the dirty work for the pageout daemon.
902 *
903 *	pass 0 - Update active LRU/deactivate pages
904 *	pass 1 - Move inactive to cache or free
905 *	pass 2 - Launder dirty pages
906 */
907static void
908vm_pageout_scan(struct vm_domain *vmd, int pass)
909{
910	vm_page_t m, next;
911	struct vm_pagequeue *pq;
912	vm_object_t object;
913	int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
914	int vnodes_skipped = 0;
915	int maxlaunder;
916	int lockmode;
917	boolean_t queues_locked;
918
919	/*
920	 * If we need to reclaim memory ask kernel caches to return
921	 * some.  We rate limit to avoid thrashing.
922	 */
923	if (vmd == &vm_dom[0] && pass > 0 &&
924	    (ticks - lowmem_ticks) / hz >= lowmem_period) {
925		/*
926		 * Decrease registered cache sizes.
927		 */
928		EVENTHANDLER_INVOKE(vm_lowmem, 0);
929		/*
930		 * We do this explicitly after the caches have been
931		 * drained above.
932		 */
933		uma_reclaim();
934		lowmem_ticks = ticks;
935	}
936
937	/*
938	 * The addl_page_shortage is the number of temporarily
939	 * stuck pages in the inactive queue.  In other words, the
940	 * number of pages from the inactive count that should be
941	 * discounted in setting the target for the active queue scan.
942	 */
943	addl_page_shortage = 0;
944
945	/*
946	 * Calculate the number of pages we want to either free or move
947	 * to the cache.
948	 */
949	if (pass > 0) {
950		deficit = atomic_readandclear_int(&vm_pageout_deficit);
951		page_shortage = vm_paging_target() + deficit;
952	} else
953		page_shortage = deficit = 0;
954
955	/*
956	 * maxlaunder limits the number of dirty pages we flush per scan.
957	 * For most systems a smaller value (16 or 32) is more robust under
958	 * extreme memory and disk pressure because any unnecessary writes
959	 * to disk can result in extreme performance degredation.  However,
960	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
961	 * used) will die horribly with limited laundering.  If the pageout
962	 * daemon cannot clean enough pages in the first pass, we let it go
963	 * all out in succeeding passes.
964	 */
965	if ((maxlaunder = vm_max_launder) <= 1)
966		maxlaunder = 1;
967	if (pass > 1)
968		maxlaunder = 10000;
969
970	/*
971	 * Start scanning the inactive queue for pages we can move to the
972	 * cache or free.  The scan will stop when the target is reached or
973	 * we have scanned the entire inactive queue.  Note that m->act_count
974	 * is not used to form decisions for the inactive queue, only for the
975	 * active queue.
976	 */
977	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
978	maxscan = pq->pq_cnt;
979	vm_pagequeue_lock(pq);
980	queues_locked = TRUE;
981	for (m = TAILQ_FIRST(&pq->pq_pl);
982	     m != NULL && maxscan-- > 0 && page_shortage > 0;
983	     m = next) {
984		vm_pagequeue_assert_locked(pq);
985		KASSERT(queues_locked, ("unlocked queues"));
986		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
987
988		PCPU_INC(cnt.v_pdpages);
989		next = TAILQ_NEXT(m, plinks.q);
990
991		/*
992		 * skip marker pages
993		 */
994		if (m->flags & PG_MARKER)
995			continue;
996
997		KASSERT((m->flags & PG_FICTITIOUS) == 0,
998		    ("Fictitious page %p cannot be in inactive queue", m));
999		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1000		    ("Unmanaged page %p cannot be in inactive queue", m));
1001
1002		/*
1003		 * The page or object lock acquisitions fail if the
1004		 * page was removed from the queue or moved to a
1005		 * different position within the queue.  In either
1006		 * case, addl_page_shortage should not be incremented.
1007		 */
1008		if (!vm_pageout_page_lock(m, &next)) {
1009			vm_page_unlock(m);
1010			continue;
1011		}
1012		object = m->object;
1013		if (!VM_OBJECT_TRYWLOCK(object) &&
1014		    !vm_pageout_fallback_object_lock(m, &next)) {
1015			vm_page_unlock(m);
1016			VM_OBJECT_WUNLOCK(object);
1017			continue;
1018		}
1019
1020		/*
1021		 * Don't mess with busy pages, keep them at at the
1022		 * front of the queue, most likely they are being
1023		 * paged out.  Increment addl_page_shortage for busy
1024		 * pages, because they may leave the inactive queue
1025		 * shortly after page scan is finished.
1026		 */
1027		if (vm_page_busied(m)) {
1028			vm_page_unlock(m);
1029			VM_OBJECT_WUNLOCK(object);
1030			addl_page_shortage++;
1031			continue;
1032		}
1033
1034		/*
1035		 * We unlock the inactive page queue, invalidating the
1036		 * 'next' pointer.  Use our marker to remember our
1037		 * place.
1038		 */
1039		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1040		vm_pagequeue_unlock(pq);
1041		queues_locked = FALSE;
1042
1043		/*
1044		 * We bump the activation count if the page has been
1045		 * referenced while in the inactive queue.  This makes
1046		 * it less likely that the page will be added back to the
1047		 * inactive queue prematurely again.  Here we check the
1048		 * page tables (or emulated bits, if any), given the upper
1049		 * level VM system not knowing anything about existing
1050		 * references.
1051		 */
1052		act_delta = 0;
1053		if ((m->aflags & PGA_REFERENCED) != 0) {
1054			vm_page_aflag_clear(m, PGA_REFERENCED);
1055			act_delta = 1;
1056		}
1057		if (object->ref_count != 0) {
1058			act_delta += pmap_ts_referenced(m);
1059		} else {
1060			KASSERT(!pmap_page_is_mapped(m),
1061			    ("vm_pageout_scan: page %p is mapped", m));
1062		}
1063
1064		/*
1065		 * If the upper level VM system knows about any page
1066		 * references, we reactivate the page or requeue it.
1067		 */
1068		if (act_delta != 0) {
1069			if (object->ref_count) {
1070				vm_page_activate(m);
1071				m->act_count += act_delta + ACT_ADVANCE;
1072			} else {
1073				vm_pagequeue_lock(pq);
1074				queues_locked = TRUE;
1075				vm_page_requeue_locked(m);
1076			}
1077			VM_OBJECT_WUNLOCK(object);
1078			vm_page_unlock(m);
1079			goto relock_queues;
1080		}
1081
1082		if (m->hold_count != 0) {
1083			vm_page_unlock(m);
1084			VM_OBJECT_WUNLOCK(object);
1085
1086			/*
1087			 * Held pages are essentially stuck in the
1088			 * queue.  So, they ought to be discounted
1089			 * from the inactive count.  See the
1090			 * calculation of the page_shortage for the
1091			 * loop over the active queue below.
1092			 */
1093			addl_page_shortage++;
1094			goto relock_queues;
1095		}
1096
1097		/*
1098		 * If the page appears to be clean at the machine-independent
1099		 * layer, then remove all of its mappings from the pmap in
1100		 * anticipation of placing it onto the cache queue.  If,
1101		 * however, any of the page's mappings allow write access,
1102		 * then the page may still be modified until the last of those
1103		 * mappings are removed.
1104		 */
1105		vm_page_test_dirty(m);
1106		if (m->dirty == 0 && object->ref_count != 0)
1107			pmap_remove_all(m);
1108
1109		if (m->valid == 0) {
1110			/*
1111			 * Invalid pages can be easily freed
1112			 */
1113			vm_page_free(m);
1114			PCPU_INC(cnt.v_dfree);
1115			--page_shortage;
1116		} else if (m->dirty == 0) {
1117			/*
1118			 * Clean pages can be placed onto the cache queue.
1119			 * This effectively frees them.
1120			 */
1121			vm_page_cache(m);
1122			--page_shortage;
1123		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1124			/*
1125			 * Dirty pages need to be paged out, but flushing
1126			 * a page is extremely expensive verses freeing
1127			 * a clean page.  Rather then artificially limiting
1128			 * the number of pages we can flush, we instead give
1129			 * dirty pages extra priority on the inactive queue
1130			 * by forcing them to be cycled through the queue
1131			 * twice before being flushed, after which the
1132			 * (now clean) page will cycle through once more
1133			 * before being freed.  This significantly extends
1134			 * the thrash point for a heavily loaded machine.
1135			 */
1136			m->flags |= PG_WINATCFLS;
1137			vm_pagequeue_lock(pq);
1138			queues_locked = TRUE;
1139			vm_page_requeue_locked(m);
1140		} else if (maxlaunder > 0) {
1141			/*
1142			 * We always want to try to flush some dirty pages if
1143			 * we encounter them, to keep the system stable.
1144			 * Normally this number is small, but under extreme
1145			 * pressure where there are insufficient clean pages
1146			 * on the inactive queue, we may have to go all out.
1147			 */
1148			int swap_pageouts_ok;
1149			struct vnode *vp = NULL;
1150			struct mount *mp = NULL;
1151
1152			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1153				swap_pageouts_ok = 1;
1154			} else {
1155				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1156				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1157				vm_page_count_min());
1158
1159			}
1160
1161			/*
1162			 * We don't bother paging objects that are "dead".
1163			 * Those objects are in a "rundown" state.
1164			 */
1165			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1166				vm_pagequeue_lock(pq);
1167				vm_page_unlock(m);
1168				VM_OBJECT_WUNLOCK(object);
1169				queues_locked = TRUE;
1170				vm_page_requeue_locked(m);
1171				goto relock_queues;
1172			}
1173
1174			/*
1175			 * The object is already known NOT to be dead.   It
1176			 * is possible for the vget() to block the whole
1177			 * pageout daemon, but the new low-memory handling
1178			 * code should prevent it.
1179			 *
1180			 * The previous code skipped locked vnodes and, worse,
1181			 * reordered pages in the queue.  This results in
1182			 * completely non-deterministic operation and, on a
1183			 * busy system, can lead to extremely non-optimal
1184			 * pageouts.  For example, it can cause clean pages
1185			 * to be freed and dirty pages to be moved to the end
1186			 * of the queue.  Since dirty pages are also moved to
1187			 * the end of the queue once-cleaned, this gives
1188			 * way too large a weighting to defering the freeing
1189			 * of dirty pages.
1190			 *
1191			 * We can't wait forever for the vnode lock, we might
1192			 * deadlock due to a vn_read() getting stuck in
1193			 * vm_wait while holding this vnode.  We skip the
1194			 * vnode if we can't get it in a reasonable amount
1195			 * of time.
1196			 */
1197			if (object->type == OBJT_VNODE) {
1198				vm_page_unlock(m);
1199				vp = object->handle;
1200				if (vp->v_type == VREG &&
1201				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1202					mp = NULL;
1203					++pageout_lock_miss;
1204					if (object->flags & OBJ_MIGHTBEDIRTY)
1205						vnodes_skipped++;
1206					goto unlock_and_continue;
1207				}
1208				KASSERT(mp != NULL,
1209				    ("vp %p with NULL v_mount", vp));
1210				vm_object_reference_locked(object);
1211				VM_OBJECT_WUNLOCK(object);
1212				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1213				    LK_SHARED : LK_EXCLUSIVE;
1214				if (vget(vp, lockmode | LK_TIMELOCK,
1215				    curthread)) {
1216					VM_OBJECT_WLOCK(object);
1217					++pageout_lock_miss;
1218					if (object->flags & OBJ_MIGHTBEDIRTY)
1219						vnodes_skipped++;
1220					vp = NULL;
1221					goto unlock_and_continue;
1222				}
1223				VM_OBJECT_WLOCK(object);
1224				vm_page_lock(m);
1225				vm_pagequeue_lock(pq);
1226				queues_locked = TRUE;
1227				/*
1228				 * The page might have been moved to another
1229				 * queue during potential blocking in vget()
1230				 * above.  The page might have been freed and
1231				 * reused for another vnode.
1232				 */
1233				if (m->queue != PQ_INACTIVE ||
1234				    m->object != object ||
1235				    TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1236					vm_page_unlock(m);
1237					if (object->flags & OBJ_MIGHTBEDIRTY)
1238						vnodes_skipped++;
1239					goto unlock_and_continue;
1240				}
1241
1242				/*
1243				 * The page may have been busied during the
1244				 * blocking in vget().  We don't move the
1245				 * page back onto the end of the queue so that
1246				 * statistics are more correct if we don't.
1247				 */
1248				if (vm_page_busied(m)) {
1249					vm_page_unlock(m);
1250					addl_page_shortage++;
1251					goto unlock_and_continue;
1252				}
1253
1254				/*
1255				 * If the page has become held it might
1256				 * be undergoing I/O, so skip it
1257				 */
1258				if (m->hold_count != 0) {
1259					vm_page_unlock(m);
1260					addl_page_shortage++;
1261					if (object->flags & OBJ_MIGHTBEDIRTY)
1262						vnodes_skipped++;
1263					goto unlock_and_continue;
1264				}
1265				vm_pagequeue_unlock(pq);
1266				queues_locked = FALSE;
1267			}
1268
1269			/*
1270			 * If a page is dirty, then it is either being washed
1271			 * (but not yet cleaned) or it is still in the
1272			 * laundry.  If it is still in the laundry, then we
1273			 * start the cleaning operation.
1274			 *
1275			 * decrement page_shortage on success to account for
1276			 * the (future) cleaned page.  Otherwise we could wind
1277			 * up laundering or cleaning too many pages.
1278			 */
1279			if (vm_pageout_clean(m) != 0) {
1280				--page_shortage;
1281				--maxlaunder;
1282			}
1283unlock_and_continue:
1284			vm_page_lock_assert(m, MA_NOTOWNED);
1285			VM_OBJECT_WUNLOCK(object);
1286			if (mp != NULL) {
1287				if (queues_locked) {
1288					vm_pagequeue_unlock(pq);
1289					queues_locked = FALSE;
1290				}
1291				if (vp != NULL)
1292					vput(vp);
1293				vm_object_deallocate(object);
1294				vn_finished_write(mp);
1295			}
1296			vm_page_lock_assert(m, MA_NOTOWNED);
1297			goto relock_queues;
1298		}
1299		vm_page_unlock(m);
1300		VM_OBJECT_WUNLOCK(object);
1301relock_queues:
1302		if (!queues_locked) {
1303			vm_pagequeue_lock(pq);
1304			queues_locked = TRUE;
1305		}
1306		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1307		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1308	}
1309	vm_pagequeue_unlock(pq);
1310
1311#if !defined(NO_SWAPPING)
1312	/*
1313	 * Wakeup the swapout daemon if we didn't cache or free the targeted
1314	 * number of pages.
1315	 */
1316	if (vm_swap_enabled && page_shortage > 0)
1317		vm_req_vmdaemon(VM_SWAP_NORMAL);
1318#endif
1319
1320	/*
1321	 * Wakeup the sync daemon if we skipped a vnode in a writeable object
1322	 * and we didn't cache or free enough pages.
1323	 */
1324	if (vnodes_skipped > 0 && page_shortage > cnt.v_free_target -
1325	    cnt.v_free_min)
1326		(void)speedup_syncer();
1327
1328	/*
1329	 * Compute the number of pages we want to try to move from the
1330	 * active queue to the inactive queue.
1331	 */
1332	page_shortage = cnt.v_inactive_target - cnt.v_inactive_count +
1333	    vm_paging_target() + deficit + addl_page_shortage;
1334
1335	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1336	vm_pagequeue_lock(pq);
1337	maxscan = pq->pq_cnt;
1338
1339	/*
1340	 * If we're just idle polling attempt to visit every
1341	 * active page within 'update_period' seconds.
1342	 */
1343	if (pass == 0 && vm_pageout_update_period != 0) {
1344		maxscan /= vm_pageout_update_period;
1345		page_shortage = maxscan;
1346	}
1347
1348	/*
1349	 * Scan the active queue for things we can deactivate. We nominally
1350	 * track the per-page activity counter and use it to locate
1351	 * deactivation candidates.
1352	 */
1353	m = TAILQ_FIRST(&pq->pq_pl);
1354	while (m != NULL && maxscan-- > 0 && page_shortage > 0) {
1355
1356		KASSERT(m->queue == PQ_ACTIVE,
1357		    ("vm_pageout_scan: page %p isn't active", m));
1358
1359		next = TAILQ_NEXT(m, plinks.q);
1360		if ((m->flags & PG_MARKER) != 0) {
1361			m = next;
1362			continue;
1363		}
1364		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1365		    ("Fictitious page %p cannot be in active queue", m));
1366		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1367		    ("Unmanaged page %p cannot be in active queue", m));
1368		if (!vm_pageout_page_lock(m, &next)) {
1369			vm_page_unlock(m);
1370			m = next;
1371			continue;
1372		}
1373
1374		/*
1375		 * The count for pagedaemon pages is done after checking the
1376		 * page for eligibility...
1377		 */
1378		PCPU_INC(cnt.v_pdpages);
1379
1380		/*
1381		 * Check to see "how much" the page has been used.
1382		 */
1383		act_delta = 0;
1384		if (m->aflags & PGA_REFERENCED) {
1385			vm_page_aflag_clear(m, PGA_REFERENCED);
1386			act_delta += 1;
1387		}
1388		/*
1389		 * Unlocked object ref count check.  Two races are possible.
1390		 * 1) The ref was transitioning to zero and we saw non-zero,
1391		 *    the pmap bits will be checked unnecessarily.
1392		 * 2) The ref was transitioning to one and we saw zero.
1393		 *    The page lock prevents a new reference to this page so
1394		 *    we need not check the reference bits.
1395		 */
1396		if (m->object->ref_count != 0)
1397			act_delta += pmap_ts_referenced(m);
1398
1399		/*
1400		 * Advance or decay the act_count based on recent usage.
1401		 */
1402		if (act_delta) {
1403			m->act_count += ACT_ADVANCE + act_delta;
1404			if (m->act_count > ACT_MAX)
1405				m->act_count = ACT_MAX;
1406		} else {
1407			m->act_count -= min(m->act_count, ACT_DECLINE);
1408			act_delta = m->act_count;
1409		}
1410
1411		/*
1412		 * Move this page to the tail of the active or inactive
1413		 * queue depending on usage.
1414		 */
1415		if (act_delta == 0) {
1416			/* Dequeue to avoid later lock recursion. */
1417			vm_page_dequeue_locked(m);
1418			vm_page_deactivate(m);
1419			page_shortage--;
1420		} else
1421			vm_page_requeue_locked(m);
1422		vm_page_unlock(m);
1423		m = next;
1424	}
1425	vm_pagequeue_unlock(pq);
1426#if !defined(NO_SWAPPING)
1427	/*
1428	 * Idle process swapout -- run once per second.
1429	 */
1430	if (vm_swap_idle_enabled) {
1431		static long lsec;
1432		if (time_second != lsec) {
1433			vm_req_vmdaemon(VM_SWAP_IDLE);
1434			lsec = time_second;
1435		}
1436	}
1437#endif
1438
1439	/*
1440	 * If we are critically low on one of RAM or swap and low on
1441	 * the other, kill the largest process.  However, we avoid
1442	 * doing this on the first pass in order to give ourselves a
1443	 * chance to flush out dirty vnode-backed pages and to allow
1444	 * active pages to be moved to the inactive queue and reclaimed.
1445	 */
1446	vm_pageout_mightbe_oom(vmd, pass);
1447}
1448
1449static int vm_pageout_oom_vote;
1450
1451/*
1452 * The pagedaemon threads randlomly select one to perform the
1453 * OOM.  Trying to kill processes before all pagedaemons
1454 * failed to reach free target is premature.
1455 */
1456static void
1457vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1458{
1459	int old_vote;
1460
1461	if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1462	    (swap_pager_full && vm_paging_target() > 0))) {
1463		if (vmd->vmd_oom) {
1464			vmd->vmd_oom = FALSE;
1465			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1466		}
1467		return;
1468	}
1469
1470	if (vmd->vmd_oom)
1471		return;
1472
1473	vmd->vmd_oom = TRUE;
1474	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1475	if (old_vote != vm_ndomains - 1)
1476		return;
1477
1478	/*
1479	 * The current pagedaemon thread is the last in the quorum to
1480	 * start OOM.  Initiate the selection and signaling of the
1481	 * victim.
1482	 */
1483	vm_pageout_oom(VM_OOM_MEM);
1484
1485	/*
1486	 * After one round of OOM terror, recall our vote.  On the
1487	 * next pass, current pagedaemon would vote again if the low
1488	 * memory condition is still there, due to vmd_oom being
1489	 * false.
1490	 */
1491	vmd->vmd_oom = FALSE;
1492	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1493}
1494
1495void
1496vm_pageout_oom(int shortage)
1497{
1498	struct proc *p, *bigproc;
1499	vm_offset_t size, bigsize;
1500	struct thread *td;
1501	struct vmspace *vm;
1502
1503	/*
1504	 * We keep the process bigproc locked once we find it to keep anyone
1505	 * from messing with it; however, there is a possibility of
1506	 * deadlock if process B is bigproc and one of it's child processes
1507	 * attempts to propagate a signal to B while we are waiting for A's
1508	 * lock while walking this list.  To avoid this, we don't block on
1509	 * the process lock but just skip a process if it is already locked.
1510	 */
1511	bigproc = NULL;
1512	bigsize = 0;
1513	sx_slock(&allproc_lock);
1514	FOREACH_PROC_IN_SYSTEM(p) {
1515		int breakout;
1516
1517		if (PROC_TRYLOCK(p) == 0)
1518			continue;
1519		/*
1520		 * If this is a system, protected or killed process, skip it.
1521		 */
1522		if (p->p_state != PRS_NORMAL ||
1523		    (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1524		    (p->p_pid == 1) || P_KILLED(p) ||
1525		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1526			PROC_UNLOCK(p);
1527			continue;
1528		}
1529		/*
1530		 * If the process is in a non-running type state,
1531		 * don't touch it.  Check all the threads individually.
1532		 */
1533		breakout = 0;
1534		FOREACH_THREAD_IN_PROC(p, td) {
1535			thread_lock(td);
1536			if (!TD_ON_RUNQ(td) &&
1537			    !TD_IS_RUNNING(td) &&
1538			    !TD_IS_SLEEPING(td) &&
1539			    !TD_IS_SUSPENDED(td)) {
1540				thread_unlock(td);
1541				breakout = 1;
1542				break;
1543			}
1544			thread_unlock(td);
1545		}
1546		if (breakout) {
1547			PROC_UNLOCK(p);
1548			continue;
1549		}
1550		/*
1551		 * get the process size
1552		 */
1553		vm = vmspace_acquire_ref(p);
1554		if (vm == NULL) {
1555			PROC_UNLOCK(p);
1556			continue;
1557		}
1558		if (!vm_map_trylock_read(&vm->vm_map)) {
1559			vmspace_free(vm);
1560			PROC_UNLOCK(p);
1561			continue;
1562		}
1563		size = vmspace_swap_count(vm);
1564		vm_map_unlock_read(&vm->vm_map);
1565		if (shortage == VM_OOM_MEM)
1566			size += vmspace_resident_count(vm);
1567		vmspace_free(vm);
1568		/*
1569		 * if the this process is bigger than the biggest one
1570		 * remember it.
1571		 */
1572		if (size > bigsize) {
1573			if (bigproc != NULL)
1574				PROC_UNLOCK(bigproc);
1575			bigproc = p;
1576			bigsize = size;
1577		} else
1578			PROC_UNLOCK(p);
1579	}
1580	sx_sunlock(&allproc_lock);
1581	if (bigproc != NULL) {
1582		killproc(bigproc, "out of swap space");
1583		sched_nice(bigproc, PRIO_MIN);
1584		PROC_UNLOCK(bigproc);
1585		wakeup(&cnt.v_free_count);
1586	}
1587}
1588
1589static void
1590vm_pageout_worker(void *arg)
1591{
1592	struct vm_domain *domain;
1593	int domidx;
1594
1595	domidx = (uintptr_t)arg;
1596	domain = &vm_dom[domidx];
1597
1598	/*
1599	 * XXXKIB It could be useful to bind pageout daemon threads to
1600	 * the cores belonging to the domain, from which vm_page_array
1601	 * is allocated.
1602	 */
1603
1604	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1605	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1606
1607	/*
1608	 * The pageout daemon worker is never done, so loop forever.
1609	 */
1610	while (TRUE) {
1611		/*
1612		 * If we have enough free memory, wakeup waiters.  Do
1613		 * not clear vm_pages_needed until we reach our target,
1614		 * otherwise we may be woken up over and over again and
1615		 * waste a lot of cpu.
1616		 */
1617		mtx_lock(&vm_page_queue_free_mtx);
1618		if (vm_pages_needed && !vm_page_count_min()) {
1619			if (!vm_paging_needed())
1620				vm_pages_needed = 0;
1621			wakeup(&cnt.v_free_count);
1622		}
1623		if (vm_pages_needed) {
1624			/*
1625			 * Still not done, take a second pass without waiting
1626			 * (unlimited dirty cleaning), otherwise sleep a bit
1627			 * and try again.
1628			 */
1629			if (domain->vmd_pass > 1)
1630				msleep(&vm_pages_needed,
1631				    &vm_page_queue_free_mtx, PVM, "psleep",
1632				    hz / 2);
1633		} else {
1634			/*
1635			 * Good enough, sleep until required to refresh
1636			 * stats.
1637			 */
1638			domain->vmd_pass = 0;
1639			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1640			    PVM, "psleep", hz);
1641
1642		}
1643		if (vm_pages_needed) {
1644			cnt.v_pdwakeups++;
1645			domain->vmd_pass++;
1646		}
1647		mtx_unlock(&vm_page_queue_free_mtx);
1648		vm_pageout_scan(domain, domain->vmd_pass);
1649	}
1650}
1651
1652/*
1653 *	vm_pageout is the high level pageout daemon.
1654 */
1655static void
1656vm_pageout(void)
1657{
1658#if MAXMEMDOM > 1
1659	int error, i;
1660#endif
1661
1662	/*
1663	 * Initialize some paging parameters.
1664	 */
1665	cnt.v_interrupt_free_min = 2;
1666	if (cnt.v_page_count < 2000)
1667		vm_pageout_page_count = 8;
1668
1669	/*
1670	 * v_free_reserved needs to include enough for the largest
1671	 * swap pager structures plus enough for any pv_entry structs
1672	 * when paging.
1673	 */
1674	if (cnt.v_page_count > 1024)
1675		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1676	else
1677		cnt.v_free_min = 4;
1678	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1679	    cnt.v_interrupt_free_min;
1680	cnt.v_free_reserved = vm_pageout_page_count +
1681	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1682	cnt.v_free_severe = cnt.v_free_min / 2;
1683	cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1684	cnt.v_free_min += cnt.v_free_reserved;
1685	cnt.v_free_severe += cnt.v_free_reserved;
1686	cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1687	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1688		cnt.v_inactive_target = cnt.v_free_count / 3;
1689
1690	/*
1691	 * Set the default wakeup threshold to be 10% above the minimum
1692	 * page limit.  This keeps the steady state out of shortfall.
1693	 */
1694	vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
1695
1696	/*
1697	 * Set interval in seconds for active scan.  We want to visit each
1698	 * page at least once every ten minutes.  This is to prevent worst
1699	 * case paging behaviors with stale active LRU.
1700	 */
1701	if (vm_pageout_update_period == 0)
1702		vm_pageout_update_period = 600;
1703
1704	/* XXX does not really belong here */
1705	if (vm_page_max_wired == 0)
1706		vm_page_max_wired = cnt.v_free_count / 3;
1707
1708	swap_pager_swap_init();
1709#if MAXMEMDOM > 1
1710	for (i = 1; i < vm_ndomains; i++) {
1711		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1712		    curproc, NULL, 0, 0, "dom%d", i);
1713		if (error != 0) {
1714			panic("starting pageout for domain %d, error %d\n",
1715			    i, error);
1716		}
1717	}
1718#endif
1719	vm_pageout_worker((void *)(uintptr_t)0);
1720}
1721
1722/*
1723 * Unless the free page queue lock is held by the caller, this function
1724 * should be regarded as advisory.  Specifically, the caller should
1725 * not msleep() on &cnt.v_free_count following this function unless
1726 * the free page queue lock is held until the msleep() is performed.
1727 */
1728void
1729pagedaemon_wakeup(void)
1730{
1731
1732	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1733		vm_pages_needed = 1;
1734		wakeup(&vm_pages_needed);
1735	}
1736}
1737
1738#if !defined(NO_SWAPPING)
1739static void
1740vm_req_vmdaemon(int req)
1741{
1742	static int lastrun = 0;
1743
1744	mtx_lock(&vm_daemon_mtx);
1745	vm_pageout_req_swapout |= req;
1746	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1747		wakeup(&vm_daemon_needed);
1748		lastrun = ticks;
1749	}
1750	mtx_unlock(&vm_daemon_mtx);
1751}
1752
1753static void
1754vm_daemon(void)
1755{
1756	struct rlimit rsslim;
1757	struct proc *p;
1758	struct thread *td;
1759	struct vmspace *vm;
1760	int breakout, swapout_flags, tryagain, attempts;
1761#ifdef RACCT
1762	uint64_t rsize, ravailable;
1763#endif
1764
1765	while (TRUE) {
1766		mtx_lock(&vm_daemon_mtx);
1767#ifdef RACCT
1768		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1769#else
1770		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1771#endif
1772		swapout_flags = vm_pageout_req_swapout;
1773		vm_pageout_req_swapout = 0;
1774		mtx_unlock(&vm_daemon_mtx);
1775		if (swapout_flags)
1776			swapout_procs(swapout_flags);
1777
1778		/*
1779		 * scan the processes for exceeding their rlimits or if
1780		 * process is swapped out -- deactivate pages
1781		 */
1782		tryagain = 0;
1783		attempts = 0;
1784again:
1785		attempts++;
1786		sx_slock(&allproc_lock);
1787		FOREACH_PROC_IN_SYSTEM(p) {
1788			vm_pindex_t limit, size;
1789
1790			/*
1791			 * if this is a system process or if we have already
1792			 * looked at this process, skip it.
1793			 */
1794			PROC_LOCK(p);
1795			if (p->p_state != PRS_NORMAL ||
1796			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1797				PROC_UNLOCK(p);
1798				continue;
1799			}
1800			/*
1801			 * if the process is in a non-running type state,
1802			 * don't touch it.
1803			 */
1804			breakout = 0;
1805			FOREACH_THREAD_IN_PROC(p, td) {
1806				thread_lock(td);
1807				if (!TD_ON_RUNQ(td) &&
1808				    !TD_IS_RUNNING(td) &&
1809				    !TD_IS_SLEEPING(td) &&
1810				    !TD_IS_SUSPENDED(td)) {
1811					thread_unlock(td);
1812					breakout = 1;
1813					break;
1814				}
1815				thread_unlock(td);
1816			}
1817			if (breakout) {
1818				PROC_UNLOCK(p);
1819				continue;
1820			}
1821			/*
1822			 * get a limit
1823			 */
1824			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1825			limit = OFF_TO_IDX(
1826			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1827
1828			/*
1829			 * let processes that are swapped out really be
1830			 * swapped out set the limit to nothing (will force a
1831			 * swap-out.)
1832			 */
1833			if ((p->p_flag & P_INMEM) == 0)
1834				limit = 0;	/* XXX */
1835			vm = vmspace_acquire_ref(p);
1836			PROC_UNLOCK(p);
1837			if (vm == NULL)
1838				continue;
1839
1840			size = vmspace_resident_count(vm);
1841			if (size >= limit) {
1842				vm_pageout_map_deactivate_pages(
1843				    &vm->vm_map, limit);
1844			}
1845#ifdef RACCT
1846			rsize = IDX_TO_OFF(size);
1847			PROC_LOCK(p);
1848			racct_set(p, RACCT_RSS, rsize);
1849			ravailable = racct_get_available(p, RACCT_RSS);
1850			PROC_UNLOCK(p);
1851			if (rsize > ravailable) {
1852				/*
1853				 * Don't be overly aggressive; this might be
1854				 * an innocent process, and the limit could've
1855				 * been exceeded by some memory hog.  Don't
1856				 * try to deactivate more than 1/4th of process'
1857				 * resident set size.
1858				 */
1859				if (attempts <= 8) {
1860					if (ravailable < rsize - (rsize / 4))
1861						ravailable = rsize - (rsize / 4);
1862				}
1863				vm_pageout_map_deactivate_pages(
1864				    &vm->vm_map, OFF_TO_IDX(ravailable));
1865				/* Update RSS usage after paging out. */
1866				size = vmspace_resident_count(vm);
1867				rsize = IDX_TO_OFF(size);
1868				PROC_LOCK(p);
1869				racct_set(p, RACCT_RSS, rsize);
1870				PROC_UNLOCK(p);
1871				if (rsize > ravailable)
1872					tryagain = 1;
1873			}
1874#endif
1875			vmspace_free(vm);
1876		}
1877		sx_sunlock(&allproc_lock);
1878		if (tryagain != 0 && attempts <= 10)
1879			goto again;
1880	}
1881}
1882#endif			/* !defined(NO_SWAPPING) */
1883