vm_pageout.c revision 265944
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Yahoo! Technologies Norway AS
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * The Mach Operating System project at Carnegie-Mellon University.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 *
50 * Permission to use, copy, modify and distribute this software and
51 * its documentation is hereby granted, provided that both the copyright
52 * notice and this permission notice appear in all copies of the
53 * software, derivative works or modified versions, and any portions
54 * thereof, and that both notices appear in supporting documentation.
55 *
56 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 *
60 * Carnegie Mellon requests users of this software to return to
61 *
62 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63 *  School of Computer Science
64 *  Carnegie Mellon University
65 *  Pittsburgh PA 15213-3890
66 *
67 * any improvements or extensions that they make and grant Carnegie the
68 * rights to redistribute these changes.
69 */
70
71/*
72 *	The proverbial page-out daemon.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: stable/10/sys/vm/vm_pageout.c 265944 2014-05-13 05:21:54Z alc $");
77
78#include "opt_vm.h"
79#include <sys/param.h>
80#include <sys/systm.h>
81#include <sys/kernel.h>
82#include <sys/eventhandler.h>
83#include <sys/lock.h>
84#include <sys/mutex.h>
85#include <sys/proc.h>
86#include <sys/kthread.h>
87#include <sys/ktr.h>
88#include <sys/mount.h>
89#include <sys/racct.h>
90#include <sys/resourcevar.h>
91#include <sys/sched.h>
92#include <sys/signalvar.h>
93#include <sys/smp.h>
94#include <sys/vnode.h>
95#include <sys/vmmeter.h>
96#include <sys/rwlock.h>
97#include <sys/sx.h>
98#include <sys/sysctl.h>
99
100#include <vm/vm.h>
101#include <vm/vm_param.h>
102#include <vm/vm_object.h>
103#include <vm/vm_page.h>
104#include <vm/vm_map.h>
105#include <vm/vm_pageout.h>
106#include <vm/vm_pager.h>
107#include <vm/vm_phys.h>
108#include <vm/swap_pager.h>
109#include <vm/vm_extern.h>
110#include <vm/uma.h>
111
112/*
113 * System initialization
114 */
115
116/* the kernel process "vm_pageout"*/
117static void vm_pageout(void);
118static int vm_pageout_clean(vm_page_t);
119static void vm_pageout_scan(struct vm_domain *vmd, int pass);
120static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
121
122struct proc *pageproc;
123
124static struct kproc_desc page_kp = {
125	"pagedaemon",
126	vm_pageout,
127	&pageproc
128};
129SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
130    &page_kp);
131
132#if !defined(NO_SWAPPING)
133/* the kernel process "vm_daemon"*/
134static void vm_daemon(void);
135static struct	proc *vmproc;
136
137static struct kproc_desc vm_kp = {
138	"vmdaemon",
139	vm_daemon,
140	&vmproc
141};
142SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
143#endif
144
145
146int vm_pages_needed;		/* Event on which pageout daemon sleeps */
147int vm_pageout_deficit;		/* Estimated number of pages deficit */
148int vm_pageout_pages_needed;	/* flag saying that the pageout daemon needs pages */
149int vm_pageout_wakeup_thresh;
150
151#if !defined(NO_SWAPPING)
152static int vm_pageout_req_swapout;	/* XXX */
153static int vm_daemon_needed;
154static struct mtx vm_daemon_mtx;
155/* Allow for use by vm_pageout before vm_daemon is initialized. */
156MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
157#endif
158static int vm_max_launder = 32;
159static int vm_pageout_update_period;
160static int defer_swap_pageouts;
161static int disable_swap_pageouts;
162static int lowmem_period = 10;
163static int lowmem_ticks;
164
165#if defined(NO_SWAPPING)
166static int vm_swap_enabled = 0;
167static int vm_swap_idle_enabled = 0;
168#else
169static int vm_swap_enabled = 1;
170static int vm_swap_idle_enabled = 0;
171#endif
172
173SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
174	CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
175	"free page threshold for waking up the pageout daemon");
176
177SYSCTL_INT(_vm, OID_AUTO, max_launder,
178	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
179
180SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
181	CTLFLAG_RW, &vm_pageout_update_period, 0,
182	"Maximum active LRU update period");
183
184SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
185	"Low memory callback period");
186
187#if defined(NO_SWAPPING)
188SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189	CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
190SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192#else
193SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
194	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
195SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
196	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
197#endif
198
199SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
200	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
201
202SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
203	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
204
205static int pageout_lock_miss;
206SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
207	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
208
209#define VM_PAGEOUT_PAGE_COUNT 16
210int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
211
212int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
213SYSCTL_INT(_vm, OID_AUTO, max_wired,
214	CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
215
216static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
217static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
218    vm_paddr_t);
219#if !defined(NO_SWAPPING)
220static void vm_pageout_map_deactivate_pages(vm_map_t, long);
221static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
222static void vm_req_vmdaemon(int req);
223#endif
224static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
225
226/*
227 * Initialize a dummy page for marking the caller's place in the specified
228 * paging queue.  In principle, this function only needs to set the flag
229 * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
230 * to one as safety precautions.
231 */
232static void
233vm_pageout_init_marker(vm_page_t marker, u_short queue)
234{
235
236	bzero(marker, sizeof(*marker));
237	marker->flags = PG_MARKER;
238	marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
239	marker->queue = queue;
240	marker->hold_count = 1;
241}
242
243/*
244 * vm_pageout_fallback_object_lock:
245 *
246 * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
247 * known to have failed and page queue must be either PQ_ACTIVE or
248 * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
249 * while locking the vm object.  Use marker page to detect page queue
250 * changes and maintain notion of next page on page queue.  Return
251 * TRUE if no changes were detected, FALSE otherwise.  vm object is
252 * locked on return.
253 *
254 * This function depends on both the lock portion of struct vm_object
255 * and normal struct vm_page being type stable.
256 */
257static boolean_t
258vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
259{
260	struct vm_page marker;
261	struct vm_pagequeue *pq;
262	boolean_t unchanged;
263	u_short queue;
264	vm_object_t object;
265
266	queue = m->queue;
267	vm_pageout_init_marker(&marker, queue);
268	pq = vm_page_pagequeue(m);
269	object = m->object;
270
271	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
272	vm_pagequeue_unlock(pq);
273	vm_page_unlock(m);
274	VM_OBJECT_WLOCK(object);
275	vm_page_lock(m);
276	vm_pagequeue_lock(pq);
277
278	/* Page queue might have changed. */
279	*next = TAILQ_NEXT(&marker, plinks.q);
280	unchanged = (m->queue == queue &&
281		     m->object == object &&
282		     &marker == TAILQ_NEXT(m, plinks.q));
283	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
284	return (unchanged);
285}
286
287/*
288 * Lock the page while holding the page queue lock.  Use marker page
289 * to detect page queue changes and maintain notion of next page on
290 * page queue.  Return TRUE if no changes were detected, FALSE
291 * otherwise.  The page is locked on return. The page queue lock might
292 * be dropped and reacquired.
293 *
294 * This function depends on normal struct vm_page being type stable.
295 */
296static boolean_t
297vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
298{
299	struct vm_page marker;
300	struct vm_pagequeue *pq;
301	boolean_t unchanged;
302	u_short queue;
303
304	vm_page_lock_assert(m, MA_NOTOWNED);
305	if (vm_page_trylock(m))
306		return (TRUE);
307
308	queue = m->queue;
309	vm_pageout_init_marker(&marker, queue);
310	pq = vm_page_pagequeue(m);
311
312	TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
313	vm_pagequeue_unlock(pq);
314	vm_page_lock(m);
315	vm_pagequeue_lock(pq);
316
317	/* Page queue might have changed. */
318	*next = TAILQ_NEXT(&marker, plinks.q);
319	unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
320	TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
321	return (unchanged);
322}
323
324/*
325 * vm_pageout_clean:
326 *
327 * Clean the page and remove it from the laundry.
328 *
329 * We set the busy bit to cause potential page faults on this page to
330 * block.  Note the careful timing, however, the busy bit isn't set till
331 * late and we cannot do anything that will mess with the page.
332 */
333static int
334vm_pageout_clean(vm_page_t m)
335{
336	vm_object_t object;
337	vm_page_t mc[2*vm_pageout_page_count], pb, ps;
338	int pageout_count;
339	int ib, is, page_base;
340	vm_pindex_t pindex = m->pindex;
341
342	vm_page_lock_assert(m, MA_OWNED);
343	object = m->object;
344	VM_OBJECT_ASSERT_WLOCKED(object);
345
346	/*
347	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
348	 * with the new swapper, but we could have serious problems paging
349	 * out other object types if there is insufficient memory.
350	 *
351	 * Unfortunately, checking free memory here is far too late, so the
352	 * check has been moved up a procedural level.
353	 */
354
355	/*
356	 * Can't clean the page if it's busy or held.
357	 */
358	vm_page_assert_unbusied(m);
359	KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
360	vm_page_unlock(m);
361
362	mc[vm_pageout_page_count] = pb = ps = m;
363	pageout_count = 1;
364	page_base = vm_pageout_page_count;
365	ib = 1;
366	is = 1;
367
368	/*
369	 * Scan object for clusterable pages.
370	 *
371	 * We can cluster ONLY if: ->> the page is NOT
372	 * clean, wired, busy, held, or mapped into a
373	 * buffer, and one of the following:
374	 * 1) The page is inactive, or a seldom used
375	 *    active page.
376	 * -or-
377	 * 2) we force the issue.
378	 *
379	 * During heavy mmap/modification loads the pageout
380	 * daemon can really fragment the underlying file
381	 * due to flushing pages out of order and not trying
382	 * align the clusters (which leave sporatic out-of-order
383	 * holes).  To solve this problem we do the reverse scan
384	 * first and attempt to align our cluster, then do a
385	 * forward scan if room remains.
386	 */
387more:
388	while (ib && pageout_count < vm_pageout_page_count) {
389		vm_page_t p;
390
391		if (ib > pindex) {
392			ib = 0;
393			break;
394		}
395
396		if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
397			ib = 0;
398			break;
399		}
400		vm_page_lock(p);
401		vm_page_test_dirty(p);
402		if (p->dirty == 0 ||
403		    p->queue != PQ_INACTIVE ||
404		    p->hold_count != 0) {	/* may be undergoing I/O */
405			vm_page_unlock(p);
406			ib = 0;
407			break;
408		}
409		vm_page_unlock(p);
410		mc[--page_base] = pb = p;
411		++pageout_count;
412		++ib;
413		/*
414		 * alignment boundry, stop here and switch directions.  Do
415		 * not clear ib.
416		 */
417		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
418			break;
419	}
420
421	while (pageout_count < vm_pageout_page_count &&
422	    pindex + is < object->size) {
423		vm_page_t p;
424
425		if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
426			break;
427		vm_page_lock(p);
428		vm_page_test_dirty(p);
429		if (p->dirty == 0 ||
430		    p->queue != PQ_INACTIVE ||
431		    p->hold_count != 0) {	/* may be undergoing I/O */
432			vm_page_unlock(p);
433			break;
434		}
435		vm_page_unlock(p);
436		mc[page_base + pageout_count] = ps = p;
437		++pageout_count;
438		++is;
439	}
440
441	/*
442	 * If we exhausted our forward scan, continue with the reverse scan
443	 * when possible, even past a page boundry.  This catches boundry
444	 * conditions.
445	 */
446	if (ib && pageout_count < vm_pageout_page_count)
447		goto more;
448
449	/*
450	 * we allow reads during pageouts...
451	 */
452	return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
453	    NULL));
454}
455
456/*
457 * vm_pageout_flush() - launder the given pages
458 *
459 *	The given pages are laundered.  Note that we setup for the start of
460 *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
461 *	reference count all in here rather then in the parent.  If we want
462 *	the parent to do more sophisticated things we may have to change
463 *	the ordering.
464 *
465 *	Returned runlen is the count of pages between mreq and first
466 *	page after mreq with status VM_PAGER_AGAIN.
467 *	*eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
468 *	for any page in runlen set.
469 */
470int
471vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
472    boolean_t *eio)
473{
474	vm_object_t object = mc[0]->object;
475	int pageout_status[count];
476	int numpagedout = 0;
477	int i, runlen;
478
479	VM_OBJECT_ASSERT_WLOCKED(object);
480
481	/*
482	 * Initiate I/O.  Bump the vm_page_t->busy counter and
483	 * mark the pages read-only.
484	 *
485	 * We do not have to fixup the clean/dirty bits here... we can
486	 * allow the pager to do it after the I/O completes.
487	 *
488	 * NOTE! mc[i]->dirty may be partial or fragmented due to an
489	 * edge case with file fragments.
490	 */
491	for (i = 0; i < count; i++) {
492		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
493		    ("vm_pageout_flush: partially invalid page %p index %d/%d",
494			mc[i], i, count));
495		vm_page_sbusy(mc[i]);
496		pmap_remove_write(mc[i]);
497	}
498	vm_object_pip_add(object, count);
499
500	vm_pager_put_pages(object, mc, count, flags, pageout_status);
501
502	runlen = count - mreq;
503	if (eio != NULL)
504		*eio = FALSE;
505	for (i = 0; i < count; i++) {
506		vm_page_t mt = mc[i];
507
508		KASSERT(pageout_status[i] == VM_PAGER_PEND ||
509		    !pmap_page_is_write_mapped(mt),
510		    ("vm_pageout_flush: page %p is not write protected", mt));
511		switch (pageout_status[i]) {
512		case VM_PAGER_OK:
513		case VM_PAGER_PEND:
514			numpagedout++;
515			break;
516		case VM_PAGER_BAD:
517			/*
518			 * Page outside of range of object. Right now we
519			 * essentially lose the changes by pretending it
520			 * worked.
521			 */
522			vm_page_undirty(mt);
523			break;
524		case VM_PAGER_ERROR:
525		case VM_PAGER_FAIL:
526			/*
527			 * If page couldn't be paged out, then reactivate the
528			 * page so it doesn't clog the inactive list.  (We
529			 * will try paging out it again later).
530			 */
531			vm_page_lock(mt);
532			vm_page_activate(mt);
533			vm_page_unlock(mt);
534			if (eio != NULL && i >= mreq && i - mreq < runlen)
535				*eio = TRUE;
536			break;
537		case VM_PAGER_AGAIN:
538			if (i >= mreq && i - mreq < runlen)
539				runlen = i - mreq;
540			break;
541		}
542
543		/*
544		 * If the operation is still going, leave the page busy to
545		 * block all other accesses. Also, leave the paging in
546		 * progress indicator set so that we don't attempt an object
547		 * collapse.
548		 */
549		if (pageout_status[i] != VM_PAGER_PEND) {
550			vm_object_pip_wakeup(object);
551			vm_page_sunbusy(mt);
552			if (vm_page_count_severe()) {
553				vm_page_lock(mt);
554				vm_page_try_to_cache(mt);
555				vm_page_unlock(mt);
556			}
557		}
558	}
559	if (prunlen != NULL)
560		*prunlen = runlen;
561	return (numpagedout);
562}
563
564static boolean_t
565vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
566    vm_paddr_t high)
567{
568	struct mount *mp;
569	struct vnode *vp;
570	vm_object_t object;
571	vm_paddr_t pa;
572	vm_page_t m, m_tmp, next;
573	int lockmode;
574
575	vm_pagequeue_lock(pq);
576	TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
577		if ((m->flags & PG_MARKER) != 0)
578			continue;
579		pa = VM_PAGE_TO_PHYS(m);
580		if (pa < low || pa + PAGE_SIZE > high)
581			continue;
582		if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
583			vm_page_unlock(m);
584			continue;
585		}
586		object = m->object;
587		if ((!VM_OBJECT_TRYWLOCK(object) &&
588		    (!vm_pageout_fallback_object_lock(m, &next) ||
589		    m->hold_count != 0)) || vm_page_busied(m)) {
590			vm_page_unlock(m);
591			VM_OBJECT_WUNLOCK(object);
592			continue;
593		}
594		vm_page_test_dirty(m);
595		if (m->dirty == 0 && object->ref_count != 0)
596			pmap_remove_all(m);
597		if (m->dirty != 0) {
598			vm_page_unlock(m);
599			if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
600				VM_OBJECT_WUNLOCK(object);
601				continue;
602			}
603			if (object->type == OBJT_VNODE) {
604				vm_pagequeue_unlock(pq);
605				vp = object->handle;
606				vm_object_reference_locked(object);
607				VM_OBJECT_WUNLOCK(object);
608				(void)vn_start_write(vp, &mp, V_WAIT);
609				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
610				    LK_SHARED : LK_EXCLUSIVE;
611				vn_lock(vp, lockmode | LK_RETRY);
612				VM_OBJECT_WLOCK(object);
613				vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
614				VM_OBJECT_WUNLOCK(object);
615				VOP_UNLOCK(vp, 0);
616				vm_object_deallocate(object);
617				vn_finished_write(mp);
618				return (TRUE);
619			} else if (object->type == OBJT_SWAP ||
620			    object->type == OBJT_DEFAULT) {
621				vm_pagequeue_unlock(pq);
622				m_tmp = m;
623				vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
624				    0, NULL, NULL);
625				VM_OBJECT_WUNLOCK(object);
626				return (TRUE);
627			}
628		} else {
629			/*
630			 * Dequeue here to prevent lock recursion in
631			 * vm_page_cache().
632			 */
633			vm_page_dequeue_locked(m);
634			vm_page_cache(m);
635			vm_page_unlock(m);
636		}
637		VM_OBJECT_WUNLOCK(object);
638	}
639	vm_pagequeue_unlock(pq);
640	return (FALSE);
641}
642
643/*
644 * Increase the number of cached pages.  The specified value, "tries",
645 * determines which categories of pages are cached:
646 *
647 *  0: All clean, inactive pages within the specified physical address range
648 *     are cached.  Will not sleep.
649 *  1: The vm_lowmem handlers are called.  All inactive pages within
650 *     the specified physical address range are cached.  May sleep.
651 *  2: The vm_lowmem handlers are called.  All inactive and active pages
652 *     within the specified physical address range are cached.  May sleep.
653 */
654void
655vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
656{
657	int actl, actmax, inactl, inactmax, dom, initial_dom;
658	static int start_dom = 0;
659
660	if (tries > 0) {
661		/*
662		 * Decrease registered cache sizes.  The vm_lowmem handlers
663		 * may acquire locks and/or sleep, so they can only be invoked
664		 * when "tries" is greater than zero.
665		 */
666		EVENTHANDLER_INVOKE(vm_lowmem, 0);
667
668		/*
669		 * We do this explicitly after the caches have been drained
670		 * above.
671		 */
672		uma_reclaim();
673	}
674
675	/*
676	 * Make the next scan start on the next domain.
677	 */
678	initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
679
680	inactl = 0;
681	inactmax = cnt.v_inactive_count;
682	actl = 0;
683	actmax = tries < 2 ? 0 : cnt.v_active_count;
684	dom = initial_dom;
685
686	/*
687	 * Scan domains in round-robin order, first inactive queues,
688	 * then active.  Since domain usually owns large physically
689	 * contiguous chunk of memory, it makes sense to completely
690	 * exhaust one domain before switching to next, while growing
691	 * the pool of contiguous physical pages.
692	 *
693	 * Do not even start launder a domain which cannot contain
694	 * the specified address range, as indicated by segments
695	 * constituting the domain.
696	 */
697again:
698	if (inactl < inactmax) {
699		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
700		    low, high) &&
701		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
702		    tries, low, high)) {
703			inactl++;
704			goto again;
705		}
706		if (++dom == vm_ndomains)
707			dom = 0;
708		if (dom != initial_dom)
709			goto again;
710	}
711	if (actl < actmax) {
712		if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
713		    low, high) &&
714		    vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
715		      tries, low, high)) {
716			actl++;
717			goto again;
718		}
719		if (++dom == vm_ndomains)
720			dom = 0;
721		if (dom != initial_dom)
722			goto again;
723	}
724}
725
726#if !defined(NO_SWAPPING)
727/*
728 *	vm_pageout_object_deactivate_pages
729 *
730 *	Deactivate enough pages to satisfy the inactive target
731 *	requirements.
732 *
733 *	The object and map must be locked.
734 */
735static void
736vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
737    long desired)
738{
739	vm_object_t backing_object, object;
740	vm_page_t p;
741	int act_delta, remove_mode;
742
743	VM_OBJECT_ASSERT_LOCKED(first_object);
744	if ((first_object->flags & OBJ_FICTITIOUS) != 0)
745		return;
746	for (object = first_object;; object = backing_object) {
747		if (pmap_resident_count(pmap) <= desired)
748			goto unlock_return;
749		VM_OBJECT_ASSERT_LOCKED(object);
750		if ((object->flags & OBJ_UNMANAGED) != 0 ||
751		    object->paging_in_progress != 0)
752			goto unlock_return;
753
754		remove_mode = 0;
755		if (object->shadow_count > 1)
756			remove_mode = 1;
757		/*
758		 * Scan the object's entire memory queue.
759		 */
760		TAILQ_FOREACH(p, &object->memq, listq) {
761			if (pmap_resident_count(pmap) <= desired)
762				goto unlock_return;
763			if (vm_page_busied(p))
764				continue;
765			PCPU_INC(cnt.v_pdpages);
766			vm_page_lock(p);
767			if (p->wire_count != 0 || p->hold_count != 0 ||
768			    !pmap_page_exists_quick(pmap, p)) {
769				vm_page_unlock(p);
770				continue;
771			}
772			act_delta = pmap_ts_referenced(p);
773			if ((p->aflags & PGA_REFERENCED) != 0) {
774				if (act_delta == 0)
775					act_delta = 1;
776				vm_page_aflag_clear(p, PGA_REFERENCED);
777			}
778			if (p->queue != PQ_ACTIVE && act_delta != 0) {
779				vm_page_activate(p);
780				p->act_count += act_delta;
781			} else if (p->queue == PQ_ACTIVE) {
782				if (act_delta == 0) {
783					p->act_count -= min(p->act_count,
784					    ACT_DECLINE);
785					if (!remove_mode && p->act_count == 0) {
786						pmap_remove_all(p);
787						vm_page_deactivate(p);
788					} else
789						vm_page_requeue(p);
790				} else {
791					vm_page_activate(p);
792					if (p->act_count < ACT_MAX -
793					    ACT_ADVANCE)
794						p->act_count += ACT_ADVANCE;
795					vm_page_requeue(p);
796				}
797			} else if (p->queue == PQ_INACTIVE)
798				pmap_remove_all(p);
799			vm_page_unlock(p);
800		}
801		if ((backing_object = object->backing_object) == NULL)
802			goto unlock_return;
803		VM_OBJECT_RLOCK(backing_object);
804		if (object != first_object)
805			VM_OBJECT_RUNLOCK(object);
806	}
807unlock_return:
808	if (object != first_object)
809		VM_OBJECT_RUNLOCK(object);
810}
811
812/*
813 * deactivate some number of pages in a map, try to do it fairly, but
814 * that is really hard to do.
815 */
816static void
817vm_pageout_map_deactivate_pages(map, desired)
818	vm_map_t map;
819	long desired;
820{
821	vm_map_entry_t tmpe;
822	vm_object_t obj, bigobj;
823	int nothingwired;
824
825	if (!vm_map_trylock(map))
826		return;
827
828	bigobj = NULL;
829	nothingwired = TRUE;
830
831	/*
832	 * first, search out the biggest object, and try to free pages from
833	 * that.
834	 */
835	tmpe = map->header.next;
836	while (tmpe != &map->header) {
837		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
838			obj = tmpe->object.vm_object;
839			if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
840				if (obj->shadow_count <= 1 &&
841				    (bigobj == NULL ||
842				     bigobj->resident_page_count < obj->resident_page_count)) {
843					if (bigobj != NULL)
844						VM_OBJECT_RUNLOCK(bigobj);
845					bigobj = obj;
846				} else
847					VM_OBJECT_RUNLOCK(obj);
848			}
849		}
850		if (tmpe->wired_count > 0)
851			nothingwired = FALSE;
852		tmpe = tmpe->next;
853	}
854
855	if (bigobj != NULL) {
856		vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
857		VM_OBJECT_RUNLOCK(bigobj);
858	}
859	/*
860	 * Next, hunt around for other pages to deactivate.  We actually
861	 * do this search sort of wrong -- .text first is not the best idea.
862	 */
863	tmpe = map->header.next;
864	while (tmpe != &map->header) {
865		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
866			break;
867		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
868			obj = tmpe->object.vm_object;
869			if (obj != NULL) {
870				VM_OBJECT_RLOCK(obj);
871				vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
872				VM_OBJECT_RUNLOCK(obj);
873			}
874		}
875		tmpe = tmpe->next;
876	}
877
878#ifdef __ia64__
879	/*
880	 * Remove all non-wired, managed mappings if a process is swapped out.
881	 * This will free page table pages.
882	 */
883	if (desired == 0)
884		pmap_remove_pages(map->pmap);
885#else
886	/*
887	 * Remove all mappings if a process is swapped out, this will free page
888	 * table pages.
889	 */
890	if (desired == 0 && nothingwired) {
891		pmap_remove(vm_map_pmap(map), vm_map_min(map),
892		    vm_map_max(map));
893	}
894#endif
895
896	vm_map_unlock(map);
897}
898#endif		/* !defined(NO_SWAPPING) */
899
900/*
901 *	vm_pageout_scan does the dirty work for the pageout daemon.
902 *
903 *	pass 0 - Update active LRU/deactivate pages
904 *	pass 1 - Move inactive to cache or free
905 *	pass 2 - Launder dirty pages
906 */
907static void
908vm_pageout_scan(struct vm_domain *vmd, int pass)
909{
910	vm_page_t m, next;
911	struct vm_pagequeue *pq;
912	vm_object_t object;
913	int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
914	int vnodes_skipped = 0;
915	int maxlaunder;
916	int lockmode;
917	boolean_t queues_locked;
918
919	/*
920	 * If we need to reclaim memory ask kernel caches to return
921	 * some.  We rate limit to avoid thrashing.
922	 */
923	if (vmd == &vm_dom[0] && pass > 0 &&
924	    lowmem_ticks + (lowmem_period * hz) < ticks) {
925		/*
926		 * Decrease registered cache sizes.
927		 */
928		EVENTHANDLER_INVOKE(vm_lowmem, 0);
929		/*
930		 * We do this explicitly after the caches have been
931		 * drained above.
932		 */
933		uma_reclaim();
934		lowmem_ticks = ticks;
935	}
936
937	/*
938	 * The addl_page_shortage is the number of temporarily
939	 * stuck pages in the inactive queue.  In other words, the
940	 * number of pages from the inactive count that should be
941	 * discounted in setting the target for the active queue scan.
942	 */
943	addl_page_shortage = 0;
944
945	deficit = atomic_readandclear_int(&vm_pageout_deficit);
946
947	/*
948	 * Calculate the number of pages we want to either free or move
949	 * to the cache.
950	 */
951	page_shortage = vm_paging_target() + deficit;
952
953	/*
954	 * maxlaunder limits the number of dirty pages we flush per scan.
955	 * For most systems a smaller value (16 or 32) is more robust under
956	 * extreme memory and disk pressure because any unnecessary writes
957	 * to disk can result in extreme performance degredation.  However,
958	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
959	 * used) will die horribly with limited laundering.  If the pageout
960	 * daemon cannot clean enough pages in the first pass, we let it go
961	 * all out in succeeding passes.
962	 */
963	if ((maxlaunder = vm_max_launder) <= 1)
964		maxlaunder = 1;
965	if (pass > 1)
966		maxlaunder = 10000;
967
968	/*
969	 * Start scanning the inactive queue for pages we can move to the
970	 * cache or free.  The scan will stop when the target is reached or
971	 * we have scanned the entire inactive queue.  Note that m->act_count
972	 * is not used to form decisions for the inactive queue, only for the
973	 * active queue.
974	 */
975	pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
976	maxscan = pq->pq_cnt;
977	vm_pagequeue_lock(pq);
978	queues_locked = TRUE;
979	for (m = TAILQ_FIRST(&pq->pq_pl);
980	     m != NULL && maxscan-- > 0 && page_shortage > 0;
981	     m = next) {
982		vm_pagequeue_assert_locked(pq);
983		KASSERT(queues_locked, ("unlocked queues"));
984		KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
985
986		PCPU_INC(cnt.v_pdpages);
987		next = TAILQ_NEXT(m, plinks.q);
988
989		/*
990		 * skip marker pages
991		 */
992		if (m->flags & PG_MARKER)
993			continue;
994
995		KASSERT((m->flags & PG_FICTITIOUS) == 0,
996		    ("Fictitious page %p cannot be in inactive queue", m));
997		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
998		    ("Unmanaged page %p cannot be in inactive queue", m));
999
1000		/*
1001		 * The page or object lock acquisitions fail if the
1002		 * page was removed from the queue or moved to a
1003		 * different position within the queue.  In either
1004		 * case, addl_page_shortage should not be incremented.
1005		 */
1006		if (!vm_pageout_page_lock(m, &next)) {
1007			vm_page_unlock(m);
1008			continue;
1009		}
1010		object = m->object;
1011		if (!VM_OBJECT_TRYWLOCK(object) &&
1012		    !vm_pageout_fallback_object_lock(m, &next)) {
1013			vm_page_unlock(m);
1014			VM_OBJECT_WUNLOCK(object);
1015			continue;
1016		}
1017
1018		/*
1019		 * Don't mess with busy pages, keep them at at the
1020		 * front of the queue, most likely they are being
1021		 * paged out.  Increment addl_page_shortage for busy
1022		 * pages, because they may leave the inactive queue
1023		 * shortly after page scan is finished.
1024		 */
1025		if (vm_page_busied(m)) {
1026			vm_page_unlock(m);
1027			VM_OBJECT_WUNLOCK(object);
1028			addl_page_shortage++;
1029			continue;
1030		}
1031
1032		/*
1033		 * We unlock the inactive page queue, invalidating the
1034		 * 'next' pointer.  Use our marker to remember our
1035		 * place.
1036		 */
1037		TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1038		vm_pagequeue_unlock(pq);
1039		queues_locked = FALSE;
1040
1041		/*
1042		 * We bump the activation count if the page has been
1043		 * referenced while in the inactive queue.  This makes
1044		 * it less likely that the page will be added back to the
1045		 * inactive queue prematurely again.  Here we check the
1046		 * page tables (or emulated bits, if any), given the upper
1047		 * level VM system not knowing anything about existing
1048		 * references.
1049		 */
1050		act_delta = 0;
1051		if ((m->aflags & PGA_REFERENCED) != 0) {
1052			vm_page_aflag_clear(m, PGA_REFERENCED);
1053			act_delta = 1;
1054		}
1055		if (object->ref_count != 0) {
1056			act_delta += pmap_ts_referenced(m);
1057		} else {
1058			KASSERT(!pmap_page_is_mapped(m),
1059			    ("vm_pageout_scan: page %p is mapped", m));
1060		}
1061
1062		/*
1063		 * If the upper level VM system knows about any page
1064		 * references, we reactivate the page or requeue it.
1065		 */
1066		if (act_delta != 0) {
1067			if (object->ref_count) {
1068				vm_page_activate(m);
1069				m->act_count += act_delta + ACT_ADVANCE;
1070			} else {
1071				vm_pagequeue_lock(pq);
1072				queues_locked = TRUE;
1073				vm_page_requeue_locked(m);
1074			}
1075			VM_OBJECT_WUNLOCK(object);
1076			vm_page_unlock(m);
1077			goto relock_queues;
1078		}
1079
1080		if (m->hold_count != 0) {
1081			vm_page_unlock(m);
1082			VM_OBJECT_WUNLOCK(object);
1083
1084			/*
1085			 * Held pages are essentially stuck in the
1086			 * queue.  So, they ought to be discounted
1087			 * from the inactive count.  See the
1088			 * calculation of the page_shortage for the
1089			 * loop over the active queue below.
1090			 */
1091			addl_page_shortage++;
1092			goto relock_queues;
1093		}
1094
1095		/*
1096		 * If the page appears to be clean at the machine-independent
1097		 * layer, then remove all of its mappings from the pmap in
1098		 * anticipation of placing it onto the cache queue.  If,
1099		 * however, any of the page's mappings allow write access,
1100		 * then the page may still be modified until the last of those
1101		 * mappings are removed.
1102		 */
1103		vm_page_test_dirty(m);
1104		if (m->dirty == 0 && object->ref_count != 0)
1105			pmap_remove_all(m);
1106
1107		if (m->valid == 0) {
1108			/*
1109			 * Invalid pages can be easily freed
1110			 */
1111			vm_page_free(m);
1112			PCPU_INC(cnt.v_dfree);
1113			--page_shortage;
1114		} else if (m->dirty == 0) {
1115			/*
1116			 * Clean pages can be placed onto the cache queue.
1117			 * This effectively frees them.
1118			 */
1119			vm_page_cache(m);
1120			--page_shortage;
1121		} else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1122			/*
1123			 * Dirty pages need to be paged out, but flushing
1124			 * a page is extremely expensive verses freeing
1125			 * a clean page.  Rather then artificially limiting
1126			 * the number of pages we can flush, we instead give
1127			 * dirty pages extra priority on the inactive queue
1128			 * by forcing them to be cycled through the queue
1129			 * twice before being flushed, after which the
1130			 * (now clean) page will cycle through once more
1131			 * before being freed.  This significantly extends
1132			 * the thrash point for a heavily loaded machine.
1133			 */
1134			m->flags |= PG_WINATCFLS;
1135			vm_pagequeue_lock(pq);
1136			queues_locked = TRUE;
1137			vm_page_requeue_locked(m);
1138		} else if (maxlaunder > 0) {
1139			/*
1140			 * We always want to try to flush some dirty pages if
1141			 * we encounter them, to keep the system stable.
1142			 * Normally this number is small, but under extreme
1143			 * pressure where there are insufficient clean pages
1144			 * on the inactive queue, we may have to go all out.
1145			 */
1146			int swap_pageouts_ok;
1147			struct vnode *vp = NULL;
1148			struct mount *mp = NULL;
1149
1150			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1151				swap_pageouts_ok = 1;
1152			} else {
1153				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1154				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1155				vm_page_count_min());
1156
1157			}
1158
1159			/*
1160			 * We don't bother paging objects that are "dead".
1161			 * Those objects are in a "rundown" state.
1162			 */
1163			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1164				vm_pagequeue_lock(pq);
1165				vm_page_unlock(m);
1166				VM_OBJECT_WUNLOCK(object);
1167				queues_locked = TRUE;
1168				vm_page_requeue_locked(m);
1169				goto relock_queues;
1170			}
1171
1172			/*
1173			 * The object is already known NOT to be dead.   It
1174			 * is possible for the vget() to block the whole
1175			 * pageout daemon, but the new low-memory handling
1176			 * code should prevent it.
1177			 *
1178			 * The previous code skipped locked vnodes and, worse,
1179			 * reordered pages in the queue.  This results in
1180			 * completely non-deterministic operation and, on a
1181			 * busy system, can lead to extremely non-optimal
1182			 * pageouts.  For example, it can cause clean pages
1183			 * to be freed and dirty pages to be moved to the end
1184			 * of the queue.  Since dirty pages are also moved to
1185			 * the end of the queue once-cleaned, this gives
1186			 * way too large a weighting to defering the freeing
1187			 * of dirty pages.
1188			 *
1189			 * We can't wait forever for the vnode lock, we might
1190			 * deadlock due to a vn_read() getting stuck in
1191			 * vm_wait while holding this vnode.  We skip the
1192			 * vnode if we can't get it in a reasonable amount
1193			 * of time.
1194			 */
1195			if (object->type == OBJT_VNODE) {
1196				vm_page_unlock(m);
1197				vp = object->handle;
1198				if (vp->v_type == VREG &&
1199				    vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1200					mp = NULL;
1201					++pageout_lock_miss;
1202					if (object->flags & OBJ_MIGHTBEDIRTY)
1203						vnodes_skipped++;
1204					goto unlock_and_continue;
1205				}
1206				KASSERT(mp != NULL,
1207				    ("vp %p with NULL v_mount", vp));
1208				vm_object_reference_locked(object);
1209				VM_OBJECT_WUNLOCK(object);
1210				lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1211				    LK_SHARED : LK_EXCLUSIVE;
1212				if (vget(vp, lockmode | LK_TIMELOCK,
1213				    curthread)) {
1214					VM_OBJECT_WLOCK(object);
1215					++pageout_lock_miss;
1216					if (object->flags & OBJ_MIGHTBEDIRTY)
1217						vnodes_skipped++;
1218					vp = NULL;
1219					goto unlock_and_continue;
1220				}
1221				VM_OBJECT_WLOCK(object);
1222				vm_page_lock(m);
1223				vm_pagequeue_lock(pq);
1224				queues_locked = TRUE;
1225				/*
1226				 * The page might have been moved to another
1227				 * queue during potential blocking in vget()
1228				 * above.  The page might have been freed and
1229				 * reused for another vnode.
1230				 */
1231				if (m->queue != PQ_INACTIVE ||
1232				    m->object != object ||
1233				    TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1234					vm_page_unlock(m);
1235					if (object->flags & OBJ_MIGHTBEDIRTY)
1236						vnodes_skipped++;
1237					goto unlock_and_continue;
1238				}
1239
1240				/*
1241				 * The page may have been busied during the
1242				 * blocking in vget().  We don't move the
1243				 * page back onto the end of the queue so that
1244				 * statistics are more correct if we don't.
1245				 */
1246				if (vm_page_busied(m)) {
1247					vm_page_unlock(m);
1248					addl_page_shortage++;
1249					goto unlock_and_continue;
1250				}
1251
1252				/*
1253				 * If the page has become held it might
1254				 * be undergoing I/O, so skip it
1255				 */
1256				if (m->hold_count != 0) {
1257					vm_page_unlock(m);
1258					addl_page_shortage++;
1259					if (object->flags & OBJ_MIGHTBEDIRTY)
1260						vnodes_skipped++;
1261					goto unlock_and_continue;
1262				}
1263				vm_pagequeue_unlock(pq);
1264				queues_locked = FALSE;
1265			}
1266
1267			/*
1268			 * If a page is dirty, then it is either being washed
1269			 * (but not yet cleaned) or it is still in the
1270			 * laundry.  If it is still in the laundry, then we
1271			 * start the cleaning operation.
1272			 *
1273			 * decrement page_shortage on success to account for
1274			 * the (future) cleaned page.  Otherwise we could wind
1275			 * up laundering or cleaning too many pages.
1276			 */
1277			if (vm_pageout_clean(m) != 0) {
1278				--page_shortage;
1279				--maxlaunder;
1280			}
1281unlock_and_continue:
1282			vm_page_lock_assert(m, MA_NOTOWNED);
1283			VM_OBJECT_WUNLOCK(object);
1284			if (mp != NULL) {
1285				if (queues_locked) {
1286					vm_pagequeue_unlock(pq);
1287					queues_locked = FALSE;
1288				}
1289				if (vp != NULL)
1290					vput(vp);
1291				vm_object_deallocate(object);
1292				vn_finished_write(mp);
1293			}
1294			vm_page_lock_assert(m, MA_NOTOWNED);
1295			goto relock_queues;
1296		}
1297		vm_page_unlock(m);
1298		VM_OBJECT_WUNLOCK(object);
1299relock_queues:
1300		if (!queues_locked) {
1301			vm_pagequeue_lock(pq);
1302			queues_locked = TRUE;
1303		}
1304		next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1305		TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1306	}
1307	vm_pagequeue_unlock(pq);
1308
1309	/*
1310	 * Compute the number of pages we want to try to move from the
1311	 * active queue to the inactive queue.
1312	 */
1313	page_shortage = cnt.v_inactive_target - cnt.v_inactive_count +
1314	    vm_paging_target() + deficit + addl_page_shortage;
1315
1316	pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1317	vm_pagequeue_lock(pq);
1318	maxscan = pq->pq_cnt;
1319
1320	/*
1321	 * If we're just idle polling attempt to visit every
1322	 * active page within 'update_period' seconds.
1323	 */
1324	if (pass == 0 && vm_pageout_update_period != 0) {
1325		maxscan /= vm_pageout_update_period;
1326		page_shortage = maxscan;
1327	}
1328
1329	/*
1330	 * Scan the active queue for things we can deactivate. We nominally
1331	 * track the per-page activity counter and use it to locate
1332	 * deactivation candidates.
1333	 */
1334	m = TAILQ_FIRST(&pq->pq_pl);
1335	while (m != NULL && maxscan-- > 0 && page_shortage > 0) {
1336
1337		KASSERT(m->queue == PQ_ACTIVE,
1338		    ("vm_pageout_scan: page %p isn't active", m));
1339
1340		next = TAILQ_NEXT(m, plinks.q);
1341		if ((m->flags & PG_MARKER) != 0) {
1342			m = next;
1343			continue;
1344		}
1345		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1346		    ("Fictitious page %p cannot be in active queue", m));
1347		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1348		    ("Unmanaged page %p cannot be in active queue", m));
1349		if (!vm_pageout_page_lock(m, &next)) {
1350			vm_page_unlock(m);
1351			m = next;
1352			continue;
1353		}
1354
1355		/*
1356		 * The count for pagedaemon pages is done after checking the
1357		 * page for eligibility...
1358		 */
1359		PCPU_INC(cnt.v_pdpages);
1360
1361		/*
1362		 * Check to see "how much" the page has been used.
1363		 */
1364		act_delta = 0;
1365		if (m->aflags & PGA_REFERENCED) {
1366			vm_page_aflag_clear(m, PGA_REFERENCED);
1367			act_delta += 1;
1368		}
1369		/*
1370		 * Unlocked object ref count check.  Two races are possible.
1371		 * 1) The ref was transitioning to zero and we saw non-zero,
1372		 *    the pmap bits will be checked unnecessarily.
1373		 * 2) The ref was transitioning to one and we saw zero.
1374		 *    The page lock prevents a new reference to this page so
1375		 *    we need not check the reference bits.
1376		 */
1377		if (m->object->ref_count != 0)
1378			act_delta += pmap_ts_referenced(m);
1379
1380		/*
1381		 * Advance or decay the act_count based on recent usage.
1382		 */
1383		if (act_delta) {
1384			m->act_count += ACT_ADVANCE + act_delta;
1385			if (m->act_count > ACT_MAX)
1386				m->act_count = ACT_MAX;
1387		} else {
1388			m->act_count -= min(m->act_count, ACT_DECLINE);
1389			act_delta = m->act_count;
1390		}
1391
1392		/*
1393		 * Move this page to the tail of the active or inactive
1394		 * queue depending on usage.
1395		 */
1396		if (act_delta == 0) {
1397			/* Dequeue to avoid later lock recursion. */
1398			vm_page_dequeue_locked(m);
1399			vm_page_deactivate(m);
1400			page_shortage--;
1401		} else
1402			vm_page_requeue_locked(m);
1403		vm_page_unlock(m);
1404		m = next;
1405	}
1406	vm_pagequeue_unlock(pq);
1407#if !defined(NO_SWAPPING)
1408	/*
1409	 * Idle process swapout -- run once per second.
1410	 */
1411	if (vm_swap_idle_enabled) {
1412		static long lsec;
1413		if (time_second != lsec) {
1414			vm_req_vmdaemon(VM_SWAP_IDLE);
1415			lsec = time_second;
1416		}
1417	}
1418#endif
1419
1420	/*
1421	 * If we didn't get enough free pages, and we have skipped a vnode
1422	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1423	 * if we did not get enough free pages.
1424	 */
1425	if (vm_paging_target() > 0) {
1426		if (vnodes_skipped && vm_page_count_min())
1427			(void) speedup_syncer();
1428#if !defined(NO_SWAPPING)
1429		if (vm_swap_enabled && vm_page_count_target())
1430			vm_req_vmdaemon(VM_SWAP_NORMAL);
1431#endif
1432	}
1433
1434	/*
1435	 * If we are critically low on one of RAM or swap and low on
1436	 * the other, kill the largest process.  However, we avoid
1437	 * doing this on the first pass in order to give ourselves a
1438	 * chance to flush out dirty vnode-backed pages and to allow
1439	 * active pages to be moved to the inactive queue and reclaimed.
1440	 */
1441	vm_pageout_mightbe_oom(vmd, pass);
1442}
1443
1444static int vm_pageout_oom_vote;
1445
1446/*
1447 * The pagedaemon threads randlomly select one to perform the
1448 * OOM.  Trying to kill processes before all pagedaemons
1449 * failed to reach free target is premature.
1450 */
1451static void
1452vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1453{
1454	int old_vote;
1455
1456	if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1457	    (swap_pager_full && vm_paging_target() > 0))) {
1458		if (vmd->vmd_oom) {
1459			vmd->vmd_oom = FALSE;
1460			atomic_subtract_int(&vm_pageout_oom_vote, 1);
1461		}
1462		return;
1463	}
1464
1465	if (vmd->vmd_oom)
1466		return;
1467
1468	vmd->vmd_oom = TRUE;
1469	old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1470	if (old_vote != vm_ndomains - 1)
1471		return;
1472
1473	/*
1474	 * The current pagedaemon thread is the last in the quorum to
1475	 * start OOM.  Initiate the selection and signaling of the
1476	 * victim.
1477	 */
1478	vm_pageout_oom(VM_OOM_MEM);
1479
1480	/*
1481	 * After one round of OOM terror, recall our vote.  On the
1482	 * next pass, current pagedaemon would vote again if the low
1483	 * memory condition is still there, due to vmd_oom being
1484	 * false.
1485	 */
1486	vmd->vmd_oom = FALSE;
1487	atomic_subtract_int(&vm_pageout_oom_vote, 1);
1488}
1489
1490void
1491vm_pageout_oom(int shortage)
1492{
1493	struct proc *p, *bigproc;
1494	vm_offset_t size, bigsize;
1495	struct thread *td;
1496	struct vmspace *vm;
1497
1498	/*
1499	 * We keep the process bigproc locked once we find it to keep anyone
1500	 * from messing with it; however, there is a possibility of
1501	 * deadlock if process B is bigproc and one of it's child processes
1502	 * attempts to propagate a signal to B while we are waiting for A's
1503	 * lock while walking this list.  To avoid this, we don't block on
1504	 * the process lock but just skip a process if it is already locked.
1505	 */
1506	bigproc = NULL;
1507	bigsize = 0;
1508	sx_slock(&allproc_lock);
1509	FOREACH_PROC_IN_SYSTEM(p) {
1510		int breakout;
1511
1512		if (PROC_TRYLOCK(p) == 0)
1513			continue;
1514		/*
1515		 * If this is a system, protected or killed process, skip it.
1516		 */
1517		if (p->p_state != PRS_NORMAL ||
1518		    (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1519		    (p->p_pid == 1) || P_KILLED(p) ||
1520		    ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1521			PROC_UNLOCK(p);
1522			continue;
1523		}
1524		/*
1525		 * If the process is in a non-running type state,
1526		 * don't touch it.  Check all the threads individually.
1527		 */
1528		breakout = 0;
1529		FOREACH_THREAD_IN_PROC(p, td) {
1530			thread_lock(td);
1531			if (!TD_ON_RUNQ(td) &&
1532			    !TD_IS_RUNNING(td) &&
1533			    !TD_IS_SLEEPING(td) &&
1534			    !TD_IS_SUSPENDED(td)) {
1535				thread_unlock(td);
1536				breakout = 1;
1537				break;
1538			}
1539			thread_unlock(td);
1540		}
1541		if (breakout) {
1542			PROC_UNLOCK(p);
1543			continue;
1544		}
1545		/*
1546		 * get the process size
1547		 */
1548		vm = vmspace_acquire_ref(p);
1549		if (vm == NULL) {
1550			PROC_UNLOCK(p);
1551			continue;
1552		}
1553		if (!vm_map_trylock_read(&vm->vm_map)) {
1554			vmspace_free(vm);
1555			PROC_UNLOCK(p);
1556			continue;
1557		}
1558		size = vmspace_swap_count(vm);
1559		vm_map_unlock_read(&vm->vm_map);
1560		if (shortage == VM_OOM_MEM)
1561			size += vmspace_resident_count(vm);
1562		vmspace_free(vm);
1563		/*
1564		 * if the this process is bigger than the biggest one
1565		 * remember it.
1566		 */
1567		if (size > bigsize) {
1568			if (bigproc != NULL)
1569				PROC_UNLOCK(bigproc);
1570			bigproc = p;
1571			bigsize = size;
1572		} else
1573			PROC_UNLOCK(p);
1574	}
1575	sx_sunlock(&allproc_lock);
1576	if (bigproc != NULL) {
1577		killproc(bigproc, "out of swap space");
1578		sched_nice(bigproc, PRIO_MIN);
1579		PROC_UNLOCK(bigproc);
1580		wakeup(&cnt.v_free_count);
1581	}
1582}
1583
1584static void
1585vm_pageout_worker(void *arg)
1586{
1587	struct vm_domain *domain;
1588	int domidx;
1589
1590	domidx = (uintptr_t)arg;
1591	domain = &vm_dom[domidx];
1592
1593	/*
1594	 * XXXKIB It could be useful to bind pageout daemon threads to
1595	 * the cores belonging to the domain, from which vm_page_array
1596	 * is allocated.
1597	 */
1598
1599	KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1600	vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1601
1602	/*
1603	 * The pageout daemon worker is never done, so loop forever.
1604	 */
1605	while (TRUE) {
1606		/*
1607		 * If we have enough free memory, wakeup waiters.  Do
1608		 * not clear vm_pages_needed until we reach our target,
1609		 * otherwise we may be woken up over and over again and
1610		 * waste a lot of cpu.
1611		 */
1612		mtx_lock(&vm_page_queue_free_mtx);
1613		if (vm_pages_needed && !vm_page_count_min()) {
1614			if (!vm_paging_needed())
1615				vm_pages_needed = 0;
1616			wakeup(&cnt.v_free_count);
1617		}
1618		if (vm_pages_needed) {
1619			/*
1620			 * Still not done, take a second pass without waiting
1621			 * (unlimited dirty cleaning), otherwise sleep a bit
1622			 * and try again.
1623			 */
1624			if (domain->vmd_pass > 1)
1625				msleep(&vm_pages_needed,
1626				    &vm_page_queue_free_mtx, PVM, "psleep",
1627				    hz / 2);
1628		} else {
1629			/*
1630			 * Good enough, sleep until required to refresh
1631			 * stats.
1632			 */
1633			domain->vmd_pass = 0;
1634			msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1635			    PVM, "psleep", hz);
1636
1637		}
1638		if (vm_pages_needed) {
1639			cnt.v_pdwakeups++;
1640			domain->vmd_pass++;
1641		}
1642		mtx_unlock(&vm_page_queue_free_mtx);
1643		vm_pageout_scan(domain, domain->vmd_pass);
1644	}
1645}
1646
1647/*
1648 *	vm_pageout is the high level pageout daemon.
1649 */
1650static void
1651vm_pageout(void)
1652{
1653#if MAXMEMDOM > 1
1654	int error, i;
1655#endif
1656
1657	/*
1658	 * Initialize some paging parameters.
1659	 */
1660	cnt.v_interrupt_free_min = 2;
1661	if (cnt.v_page_count < 2000)
1662		vm_pageout_page_count = 8;
1663
1664	/*
1665	 * v_free_reserved needs to include enough for the largest
1666	 * swap pager structures plus enough for any pv_entry structs
1667	 * when paging.
1668	 */
1669	if (cnt.v_page_count > 1024)
1670		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1671	else
1672		cnt.v_free_min = 4;
1673	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1674	    cnt.v_interrupt_free_min;
1675	cnt.v_free_reserved = vm_pageout_page_count +
1676	    cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1677	cnt.v_free_severe = cnt.v_free_min / 2;
1678	cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1679	cnt.v_free_min += cnt.v_free_reserved;
1680	cnt.v_free_severe += cnt.v_free_reserved;
1681	cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1682	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1683		cnt.v_inactive_target = cnt.v_free_count / 3;
1684
1685	/*
1686	 * Set the default wakeup threshold to be 10% above the minimum
1687	 * page limit.  This keeps the steady state out of shortfall.
1688	 */
1689	vm_pageout_wakeup_thresh = (cnt.v_free_min / 10) * 11;
1690
1691	/*
1692	 * Set interval in seconds for active scan.  We want to visit each
1693	 * page at least once every ten minutes.  This is to prevent worst
1694	 * case paging behaviors with stale active LRU.
1695	 */
1696	if (vm_pageout_update_period == 0)
1697		vm_pageout_update_period = 600;
1698
1699	/* XXX does not really belong here */
1700	if (vm_page_max_wired == 0)
1701		vm_page_max_wired = cnt.v_free_count / 3;
1702
1703	swap_pager_swap_init();
1704#if MAXMEMDOM > 1
1705	for (i = 1; i < vm_ndomains; i++) {
1706		error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1707		    curproc, NULL, 0, 0, "dom%d", i);
1708		if (error != 0) {
1709			panic("starting pageout for domain %d, error %d\n",
1710			    i, error);
1711		}
1712	}
1713#endif
1714	vm_pageout_worker((void *)(uintptr_t)0);
1715}
1716
1717/*
1718 * Unless the free page queue lock is held by the caller, this function
1719 * should be regarded as advisory.  Specifically, the caller should
1720 * not msleep() on &cnt.v_free_count following this function unless
1721 * the free page queue lock is held until the msleep() is performed.
1722 */
1723void
1724pagedaemon_wakeup(void)
1725{
1726
1727	if (!vm_pages_needed && curthread->td_proc != pageproc) {
1728		vm_pages_needed = 1;
1729		wakeup(&vm_pages_needed);
1730	}
1731}
1732
1733#if !defined(NO_SWAPPING)
1734static void
1735vm_req_vmdaemon(int req)
1736{
1737	static int lastrun = 0;
1738
1739	mtx_lock(&vm_daemon_mtx);
1740	vm_pageout_req_swapout |= req;
1741	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1742		wakeup(&vm_daemon_needed);
1743		lastrun = ticks;
1744	}
1745	mtx_unlock(&vm_daemon_mtx);
1746}
1747
1748static void
1749vm_daemon(void)
1750{
1751	struct rlimit rsslim;
1752	struct proc *p;
1753	struct thread *td;
1754	struct vmspace *vm;
1755	int breakout, swapout_flags, tryagain, attempts;
1756#ifdef RACCT
1757	uint64_t rsize, ravailable;
1758#endif
1759
1760	while (TRUE) {
1761		mtx_lock(&vm_daemon_mtx);
1762#ifdef RACCT
1763		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1764#else
1765		msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1766#endif
1767		swapout_flags = vm_pageout_req_swapout;
1768		vm_pageout_req_swapout = 0;
1769		mtx_unlock(&vm_daemon_mtx);
1770		if (swapout_flags)
1771			swapout_procs(swapout_flags);
1772
1773		/*
1774		 * scan the processes for exceeding their rlimits or if
1775		 * process is swapped out -- deactivate pages
1776		 */
1777		tryagain = 0;
1778		attempts = 0;
1779again:
1780		attempts++;
1781		sx_slock(&allproc_lock);
1782		FOREACH_PROC_IN_SYSTEM(p) {
1783			vm_pindex_t limit, size;
1784
1785			/*
1786			 * if this is a system process or if we have already
1787			 * looked at this process, skip it.
1788			 */
1789			PROC_LOCK(p);
1790			if (p->p_state != PRS_NORMAL ||
1791			    p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1792				PROC_UNLOCK(p);
1793				continue;
1794			}
1795			/*
1796			 * if the process is in a non-running type state,
1797			 * don't touch it.
1798			 */
1799			breakout = 0;
1800			FOREACH_THREAD_IN_PROC(p, td) {
1801				thread_lock(td);
1802				if (!TD_ON_RUNQ(td) &&
1803				    !TD_IS_RUNNING(td) &&
1804				    !TD_IS_SLEEPING(td) &&
1805				    !TD_IS_SUSPENDED(td)) {
1806					thread_unlock(td);
1807					breakout = 1;
1808					break;
1809				}
1810				thread_unlock(td);
1811			}
1812			if (breakout) {
1813				PROC_UNLOCK(p);
1814				continue;
1815			}
1816			/*
1817			 * get a limit
1818			 */
1819			lim_rlimit(p, RLIMIT_RSS, &rsslim);
1820			limit = OFF_TO_IDX(
1821			    qmin(rsslim.rlim_cur, rsslim.rlim_max));
1822
1823			/*
1824			 * let processes that are swapped out really be
1825			 * swapped out set the limit to nothing (will force a
1826			 * swap-out.)
1827			 */
1828			if ((p->p_flag & P_INMEM) == 0)
1829				limit = 0;	/* XXX */
1830			vm = vmspace_acquire_ref(p);
1831			PROC_UNLOCK(p);
1832			if (vm == NULL)
1833				continue;
1834
1835			size = vmspace_resident_count(vm);
1836			if (size >= limit) {
1837				vm_pageout_map_deactivate_pages(
1838				    &vm->vm_map, limit);
1839			}
1840#ifdef RACCT
1841			rsize = IDX_TO_OFF(size);
1842			PROC_LOCK(p);
1843			racct_set(p, RACCT_RSS, rsize);
1844			ravailable = racct_get_available(p, RACCT_RSS);
1845			PROC_UNLOCK(p);
1846			if (rsize > ravailable) {
1847				/*
1848				 * Don't be overly aggressive; this might be
1849				 * an innocent process, and the limit could've
1850				 * been exceeded by some memory hog.  Don't
1851				 * try to deactivate more than 1/4th of process'
1852				 * resident set size.
1853				 */
1854				if (attempts <= 8) {
1855					if (ravailable < rsize - (rsize / 4))
1856						ravailable = rsize - (rsize / 4);
1857				}
1858				vm_pageout_map_deactivate_pages(
1859				    &vm->vm_map, OFF_TO_IDX(ravailable));
1860				/* Update RSS usage after paging out. */
1861				size = vmspace_resident_count(vm);
1862				rsize = IDX_TO_OFF(size);
1863				PROC_LOCK(p);
1864				racct_set(p, RACCT_RSS, rsize);
1865				PROC_UNLOCK(p);
1866				if (rsize > ravailable)
1867					tryagain = 1;
1868			}
1869#endif
1870			vmspace_free(vm);
1871		}
1872		sx_sunlock(&allproc_lock);
1873		if (tryagain != 0 && attempts <= 10)
1874			goto again;
1875	}
1876}
1877#endif			/* !defined(NO_SWAPPING) */
1878