vm_object.c revision 301183
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_object.c 301183 2016-06-02 02:36:06Z kib $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/user.h>
83#include <sys/vnode.h>
84#include <sys/vmmeter.h>
85#include <sys/sx.h>
86
87#include <vm/vm.h>
88#include <vm/vm_param.h>
89#include <vm/pmap.h>
90#include <vm/vm_map.h>
91#include <vm/vm_object.h>
92#include <vm/vm_page.h>
93#include <vm/vm_pageout.h>
94#include <vm/vm_pager.h>
95#include <vm/swap_pager.h>
96#include <vm/vm_kern.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_radix.h>
99#include <vm/vm_reserv.h>
100#include <vm/uma.h>
101
102static int old_msync;
103SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104    "Use old (insecure) msync behavior");
105
106static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107		    int pagerflags, int flags, boolean_t *clearobjflags,
108		    boolean_t *eio);
109static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110		    boolean_t *clearobjflags);
111static void	vm_object_qcollapse(vm_object_t object);
112static void	vm_object_vndeallocate(vm_object_t object);
113
114/*
115 *	Virtual memory objects maintain the actual data
116 *	associated with allocated virtual memory.  A given
117 *	page of memory exists within exactly one object.
118 *
119 *	An object is only deallocated when all "references"
120 *	are given up.  Only one "reference" to a given
121 *	region of an object should be writeable.
122 *
123 *	Associated with each object is a list of all resident
124 *	memory pages belonging to that object; this list is
125 *	maintained by the "vm_page" module, and locked by the object's
126 *	lock.
127 *
128 *	Each object also records a "pager" routine which is
129 *	used to retrieve (and store) pages to the proper backing
130 *	storage.  In addition, objects may be backed by other
131 *	objects from which they were virtual-copied.
132 *
133 *	The only items within the object structure which are
134 *	modified after time of creation are:
135 *		reference count		locked by object's lock
136 *		pager routine		locked by object's lock
137 *
138 */
139
140struct object_q vm_object_list;
141struct mtx vm_object_list_mtx;	/* lock for object list and count */
142
143struct vm_object kernel_object_store;
144struct vm_object kmem_object_store;
145
146static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147    "VM object stats");
148
149static long object_collapses;
150SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151    &object_collapses, 0, "VM object collapses");
152
153static long object_bypasses;
154SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155    &object_bypasses, 0, "VM object bypasses");
156
157static uma_zone_t obj_zone;
158
159static int vm_object_zinit(void *mem, int size, int flags);
160
161#ifdef INVARIANTS
162static void vm_object_zdtor(void *mem, int size, void *arg);
163
164static void
165vm_object_zdtor(void *mem, int size, void *arg)
166{
167	vm_object_t object;
168
169	object = (vm_object_t)mem;
170	KASSERT(object->ref_count == 0,
171	    ("object %p ref_count = %d", object, object->ref_count));
172	KASSERT(TAILQ_EMPTY(&object->memq),
173	    ("object %p has resident pages in its memq", object));
174	KASSERT(vm_radix_is_empty(&object->rtree),
175	    ("object %p has resident pages in its trie", object));
176#if VM_NRESERVLEVEL > 0
177	KASSERT(LIST_EMPTY(&object->rvq),
178	    ("object %p has reservations",
179	    object));
180#endif
181	KASSERT(vm_object_cache_is_empty(object),
182	    ("object %p has cached pages",
183	    object));
184	KASSERT(object->paging_in_progress == 0,
185	    ("object %p paging_in_progress = %d",
186	    object, object->paging_in_progress));
187	KASSERT(object->resident_page_count == 0,
188	    ("object %p resident_page_count = %d",
189	    object, object->resident_page_count));
190	KASSERT(object->shadow_count == 0,
191	    ("object %p shadow_count = %d",
192	    object, object->shadow_count));
193	KASSERT(object->type == OBJT_DEAD,
194	    ("object %p has non-dead type %d",
195	    object, object->type));
196}
197#endif
198
199static int
200vm_object_zinit(void *mem, int size, int flags)
201{
202	vm_object_t object;
203
204	object = (vm_object_t)mem;
205	bzero(&object->lock, sizeof(object->lock));
206	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
207
208	/* These are true for any object that has been freed */
209	object->type = OBJT_DEAD;
210	object->ref_count = 0;
211	object->rtree.rt_root = 0;
212	object->rtree.rt_flags = 0;
213	object->paging_in_progress = 0;
214	object->resident_page_count = 0;
215	object->shadow_count = 0;
216	object->cache.rt_root = 0;
217	object->cache.rt_flags = 0;
218
219	mtx_lock(&vm_object_list_mtx);
220	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
221	mtx_unlock(&vm_object_list_mtx);
222	return (0);
223}
224
225static void
226_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
227{
228
229	TAILQ_INIT(&object->memq);
230	LIST_INIT(&object->shadow_head);
231
232	object->type = type;
233	switch (type) {
234	case OBJT_DEAD:
235		panic("_vm_object_allocate: can't create OBJT_DEAD");
236	case OBJT_DEFAULT:
237	case OBJT_SWAP:
238		object->flags = OBJ_ONEMAPPING;
239		break;
240	case OBJT_DEVICE:
241	case OBJT_SG:
242		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
243		break;
244	case OBJT_MGTDEVICE:
245		object->flags = OBJ_FICTITIOUS;
246		break;
247	case OBJT_PHYS:
248		object->flags = OBJ_UNMANAGED;
249		break;
250	case OBJT_VNODE:
251		object->flags = 0;
252		break;
253	default:
254		panic("_vm_object_allocate: type %d is undefined", type);
255	}
256	object->size = size;
257	object->generation = 1;
258	object->ref_count = 1;
259	object->memattr = VM_MEMATTR_DEFAULT;
260	object->cred = NULL;
261	object->charge = 0;
262	object->handle = NULL;
263	object->backing_object = NULL;
264	object->backing_object_offset = (vm_ooffset_t) 0;
265#if VM_NRESERVLEVEL > 0
266	LIST_INIT(&object->rvq);
267#endif
268}
269
270/*
271 *	vm_object_init:
272 *
273 *	Initialize the VM objects module.
274 */
275void
276vm_object_init(void)
277{
278	TAILQ_INIT(&vm_object_list);
279	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
280
281	rw_init(&kernel_object->lock, "kernel vm object");
282	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283	    kernel_object);
284#if VM_NRESERVLEVEL > 0
285	kernel_object->flags |= OBJ_COLORED;
286	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287#endif
288
289	rw_init(&kmem_object->lock, "kmem vm object");
290	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
291	    kmem_object);
292#if VM_NRESERVLEVEL > 0
293	kmem_object->flags |= OBJ_COLORED;
294	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295#endif
296
297	/*
298	 * The lock portion of struct vm_object must be type stable due
299	 * to vm_pageout_fallback_object_lock locking a vm object
300	 * without holding any references to it.
301	 */
302	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
303#ifdef INVARIANTS
304	    vm_object_zdtor,
305#else
306	    NULL,
307#endif
308	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309
310	vm_radix_init();
311}
312
313void
314vm_object_clear_flag(vm_object_t object, u_short bits)
315{
316
317	VM_OBJECT_ASSERT_WLOCKED(object);
318	object->flags &= ~bits;
319}
320
321/*
322 *	Sets the default memory attribute for the specified object.  Pages
323 *	that are allocated to this object are by default assigned this memory
324 *	attribute.
325 *
326 *	Presently, this function must be called before any pages are allocated
327 *	to the object.  In the future, this requirement may be relaxed for
328 *	"default" and "swap" objects.
329 */
330int
331vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
332{
333
334	VM_OBJECT_ASSERT_WLOCKED(object);
335	switch (object->type) {
336	case OBJT_DEFAULT:
337	case OBJT_DEVICE:
338	case OBJT_MGTDEVICE:
339	case OBJT_PHYS:
340	case OBJT_SG:
341	case OBJT_SWAP:
342	case OBJT_VNODE:
343		if (!TAILQ_EMPTY(&object->memq))
344			return (KERN_FAILURE);
345		break;
346	case OBJT_DEAD:
347		return (KERN_INVALID_ARGUMENT);
348	default:
349		panic("vm_object_set_memattr: object %p is of undefined type",
350		    object);
351	}
352	object->memattr = memattr;
353	return (KERN_SUCCESS);
354}
355
356void
357vm_object_pip_add(vm_object_t object, short i)
358{
359
360	VM_OBJECT_ASSERT_WLOCKED(object);
361	object->paging_in_progress += i;
362}
363
364void
365vm_object_pip_subtract(vm_object_t object, short i)
366{
367
368	VM_OBJECT_ASSERT_WLOCKED(object);
369	object->paging_in_progress -= i;
370}
371
372void
373vm_object_pip_wakeup(vm_object_t object)
374{
375
376	VM_OBJECT_ASSERT_WLOCKED(object);
377	object->paging_in_progress--;
378	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
379		vm_object_clear_flag(object, OBJ_PIPWNT);
380		wakeup(object);
381	}
382}
383
384void
385vm_object_pip_wakeupn(vm_object_t object, short i)
386{
387
388	VM_OBJECT_ASSERT_WLOCKED(object);
389	if (i)
390		object->paging_in_progress -= i;
391	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392		vm_object_clear_flag(object, OBJ_PIPWNT);
393		wakeup(object);
394	}
395}
396
397void
398vm_object_pip_wait(vm_object_t object, char *waitid)
399{
400
401	VM_OBJECT_ASSERT_WLOCKED(object);
402	while (object->paging_in_progress) {
403		object->flags |= OBJ_PIPWNT;
404		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
405	}
406}
407
408/*
409 *	vm_object_allocate:
410 *
411 *	Returns a new object with the given size.
412 */
413vm_object_t
414vm_object_allocate(objtype_t type, vm_pindex_t size)
415{
416	vm_object_t object;
417
418	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
419	_vm_object_allocate(type, size, object);
420	return (object);
421}
422
423
424/*
425 *	vm_object_reference:
426 *
427 *	Gets another reference to the given object.  Note: OBJ_DEAD
428 *	objects can be referenced during final cleaning.
429 */
430void
431vm_object_reference(vm_object_t object)
432{
433	if (object == NULL)
434		return;
435	VM_OBJECT_WLOCK(object);
436	vm_object_reference_locked(object);
437	VM_OBJECT_WUNLOCK(object);
438}
439
440/*
441 *	vm_object_reference_locked:
442 *
443 *	Gets another reference to the given object.
444 *
445 *	The object must be locked.
446 */
447void
448vm_object_reference_locked(vm_object_t object)
449{
450	struct vnode *vp;
451
452	VM_OBJECT_ASSERT_WLOCKED(object);
453	object->ref_count++;
454	if (object->type == OBJT_VNODE) {
455		vp = object->handle;
456		vref(vp);
457	}
458}
459
460/*
461 * Handle deallocating an object of type OBJT_VNODE.
462 */
463static void
464vm_object_vndeallocate(vm_object_t object)
465{
466	struct vnode *vp = (struct vnode *) object->handle;
467
468	VM_OBJECT_ASSERT_WLOCKED(object);
469	KASSERT(object->type == OBJT_VNODE,
470	    ("vm_object_vndeallocate: not a vnode object"));
471	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
472#ifdef INVARIANTS
473	if (object->ref_count == 0) {
474		vprint("vm_object_vndeallocate", vp);
475		panic("vm_object_vndeallocate: bad object reference count");
476	}
477#endif
478
479	/*
480	 * The test for text of vp vnode does not need a bypass to
481	 * reach right VV_TEXT there, since it is obtained from
482	 * object->handle.
483	 */
484	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
485		object->ref_count--;
486		VM_OBJECT_WUNLOCK(object);
487		/* vrele may need the vnode lock. */
488		vrele(vp);
489	} else {
490		vhold(vp);
491		VM_OBJECT_WUNLOCK(object);
492		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
493		vdrop(vp);
494		VM_OBJECT_WLOCK(object);
495		object->ref_count--;
496		if (object->type == OBJT_DEAD) {
497			VM_OBJECT_WUNLOCK(object);
498			VOP_UNLOCK(vp, 0);
499		} else {
500			if (object->ref_count == 0)
501				VOP_UNSET_TEXT(vp);
502			VM_OBJECT_WUNLOCK(object);
503			vput(vp);
504		}
505	}
506}
507
508/*
509 *	vm_object_deallocate:
510 *
511 *	Release a reference to the specified object,
512 *	gained either through a vm_object_allocate
513 *	or a vm_object_reference call.  When all references
514 *	are gone, storage associated with this object
515 *	may be relinquished.
516 *
517 *	No object may be locked.
518 */
519void
520vm_object_deallocate(vm_object_t object)
521{
522	vm_object_t temp;
523	struct vnode *vp;
524
525	while (object != NULL) {
526		VM_OBJECT_WLOCK(object);
527		if (object->type == OBJT_VNODE) {
528			vm_object_vndeallocate(object);
529			return;
530		}
531
532		KASSERT(object->ref_count != 0,
533			("vm_object_deallocate: object deallocated too many times: %d", object->type));
534
535		/*
536		 * If the reference count goes to 0 we start calling
537		 * vm_object_terminate() on the object chain.
538		 * A ref count of 1 may be a special case depending on the
539		 * shadow count being 0 or 1.
540		 */
541		object->ref_count--;
542		if (object->ref_count > 1) {
543			VM_OBJECT_WUNLOCK(object);
544			return;
545		} else if (object->ref_count == 1) {
546			if (object->type == OBJT_SWAP &&
547			    (object->flags & OBJ_TMPFS) != 0) {
548				vp = object->un_pager.swp.swp_tmpfs;
549				vhold(vp);
550				VM_OBJECT_WUNLOCK(object);
551				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
552				VM_OBJECT_WLOCK(object);
553				if (object->type == OBJT_DEAD ||
554				    object->ref_count != 1) {
555					VM_OBJECT_WUNLOCK(object);
556					VOP_UNLOCK(vp, 0);
557					vdrop(vp);
558					return;
559				}
560				if ((object->flags & OBJ_TMPFS) != 0)
561					VOP_UNSET_TEXT(vp);
562				VOP_UNLOCK(vp, 0);
563				vdrop(vp);
564			}
565			if (object->shadow_count == 0 &&
566			    object->handle == NULL &&
567			    (object->type == OBJT_DEFAULT ||
568			    (object->type == OBJT_SWAP &&
569			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
570				vm_object_set_flag(object, OBJ_ONEMAPPING);
571			} else if ((object->shadow_count == 1) &&
572			    (object->handle == NULL) &&
573			    (object->type == OBJT_DEFAULT ||
574			     object->type == OBJT_SWAP)) {
575				vm_object_t robject;
576
577				robject = LIST_FIRST(&object->shadow_head);
578				KASSERT(robject != NULL,
579				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
580					 object->ref_count,
581					 object->shadow_count));
582				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
583				    ("shadowed tmpfs v_object %p", object));
584				if (!VM_OBJECT_TRYWLOCK(robject)) {
585					/*
586					 * Avoid a potential deadlock.
587					 */
588					object->ref_count++;
589					VM_OBJECT_WUNLOCK(object);
590					/*
591					 * More likely than not the thread
592					 * holding robject's lock has lower
593					 * priority than the current thread.
594					 * Let the lower priority thread run.
595					 */
596					pause("vmo_de", 1);
597					continue;
598				}
599				/*
600				 * Collapse object into its shadow unless its
601				 * shadow is dead.  In that case, object will
602				 * be deallocated by the thread that is
603				 * deallocating its shadow.
604				 */
605				if ((robject->flags & OBJ_DEAD) == 0 &&
606				    (robject->handle == NULL) &&
607				    (robject->type == OBJT_DEFAULT ||
608				     robject->type == OBJT_SWAP)) {
609
610					robject->ref_count++;
611retry:
612					if (robject->paging_in_progress) {
613						VM_OBJECT_WUNLOCK(object);
614						vm_object_pip_wait(robject,
615						    "objde1");
616						temp = robject->backing_object;
617						if (object == temp) {
618							VM_OBJECT_WLOCK(object);
619							goto retry;
620						}
621					} else if (object->paging_in_progress) {
622						VM_OBJECT_WUNLOCK(robject);
623						object->flags |= OBJ_PIPWNT;
624						VM_OBJECT_SLEEP(object, object,
625						    PDROP | PVM, "objde2", 0);
626						VM_OBJECT_WLOCK(robject);
627						temp = robject->backing_object;
628						if (object == temp) {
629							VM_OBJECT_WLOCK(object);
630							goto retry;
631						}
632					} else
633						VM_OBJECT_WUNLOCK(object);
634
635					if (robject->ref_count == 1) {
636						robject->ref_count--;
637						object = robject;
638						goto doterm;
639					}
640					object = robject;
641					vm_object_collapse(object);
642					VM_OBJECT_WUNLOCK(object);
643					continue;
644				}
645				VM_OBJECT_WUNLOCK(robject);
646			}
647			VM_OBJECT_WUNLOCK(object);
648			return;
649		}
650doterm:
651		temp = object->backing_object;
652		if (temp != NULL) {
653			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
654			    ("shadowed tmpfs v_object 2 %p", object));
655			VM_OBJECT_WLOCK(temp);
656			LIST_REMOVE(object, shadow_list);
657			temp->shadow_count--;
658			VM_OBJECT_WUNLOCK(temp);
659			object->backing_object = NULL;
660		}
661		/*
662		 * Don't double-terminate, we could be in a termination
663		 * recursion due to the terminate having to sync data
664		 * to disk.
665		 */
666		if ((object->flags & OBJ_DEAD) == 0)
667			vm_object_terminate(object);
668		else
669			VM_OBJECT_WUNLOCK(object);
670		object = temp;
671	}
672}
673
674/*
675 *	vm_object_destroy removes the object from the global object list
676 *      and frees the space for the object.
677 */
678void
679vm_object_destroy(vm_object_t object)
680{
681
682	/*
683	 * Release the allocation charge.
684	 */
685	if (object->cred != NULL) {
686		swap_release_by_cred(object->charge, object->cred);
687		object->charge = 0;
688		crfree(object->cred);
689		object->cred = NULL;
690	}
691
692	/*
693	 * Free the space for the object.
694	 */
695	uma_zfree(obj_zone, object);
696}
697
698/*
699 *	vm_object_terminate actually destroys the specified object, freeing
700 *	up all previously used resources.
701 *
702 *	The object must be locked.
703 *	This routine may block.
704 */
705void
706vm_object_terminate(vm_object_t object)
707{
708	vm_page_t p, p_next;
709
710	VM_OBJECT_ASSERT_WLOCKED(object);
711
712	/*
713	 * Make sure no one uses us.
714	 */
715	vm_object_set_flag(object, OBJ_DEAD);
716
717	/*
718	 * wait for the pageout daemon to be done with the object
719	 */
720	vm_object_pip_wait(object, "objtrm");
721
722	KASSERT(!object->paging_in_progress,
723		("vm_object_terminate: pageout in progress"));
724
725	/*
726	 * Clean and free the pages, as appropriate. All references to the
727	 * object are gone, so we don't need to lock it.
728	 */
729	if (object->type == OBJT_VNODE) {
730		struct vnode *vp = (struct vnode *)object->handle;
731
732		/*
733		 * Clean pages and flush buffers.
734		 */
735		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
736		VM_OBJECT_WUNLOCK(object);
737
738		vinvalbuf(vp, V_SAVE, 0, 0);
739
740		VM_OBJECT_WLOCK(object);
741	}
742
743	KASSERT(object->ref_count == 0,
744		("vm_object_terminate: object with references, ref_count=%d",
745		object->ref_count));
746
747	/*
748	 * Free any remaining pageable pages.  This also removes them from the
749	 * paging queues.  However, don't free wired pages, just remove them
750	 * from the object.  Rather than incrementally removing each page from
751	 * the object, the page and object are reset to any empty state.
752	 */
753	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
754		vm_page_assert_unbusied(p);
755		vm_page_lock(p);
756		/*
757		 * Optimize the page's removal from the object by resetting
758		 * its "object" field.  Specifically, if the page is not
759		 * wired, then the effect of this assignment is that
760		 * vm_page_free()'s call to vm_page_remove() will return
761		 * immediately without modifying the page or the object.
762		 */
763		p->object = NULL;
764		if (p->wire_count == 0) {
765			vm_page_free(p);
766			PCPU_INC(cnt.v_pfree);
767		}
768		vm_page_unlock(p);
769	}
770	/*
771	 * If the object contained any pages, then reset it to an empty state.
772	 * None of the object's fields, including "resident_page_count", were
773	 * modified by the preceding loop.
774	 */
775	if (object->resident_page_count != 0) {
776		vm_radix_reclaim_allnodes(&object->rtree);
777		TAILQ_INIT(&object->memq);
778		object->resident_page_count = 0;
779		if (object->type == OBJT_VNODE)
780			vdrop(object->handle);
781	}
782
783#if VM_NRESERVLEVEL > 0
784	if (__predict_false(!LIST_EMPTY(&object->rvq)))
785		vm_reserv_break_all(object);
786#endif
787	if (__predict_false(!vm_object_cache_is_empty(object)))
788		vm_page_cache_free(object, 0, 0);
789
790	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
791	    object->type == OBJT_SWAP,
792	    ("%s: non-swap obj %p has cred", __func__, object));
793
794	/*
795	 * Let the pager know object is dead.
796	 */
797	vm_pager_deallocate(object);
798	VM_OBJECT_WUNLOCK(object);
799
800	vm_object_destroy(object);
801}
802
803/*
804 * Make the page read-only so that we can clear the object flags.  However, if
805 * this is a nosync mmap then the object is likely to stay dirty so do not
806 * mess with the page and do not clear the object flags.  Returns TRUE if the
807 * page should be flushed, and FALSE otherwise.
808 */
809static boolean_t
810vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
811{
812
813	/*
814	 * If we have been asked to skip nosync pages and this is a
815	 * nosync page, skip it.  Note that the object flags were not
816	 * cleared in this case so we do not have to set them.
817	 */
818	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
819		*clearobjflags = FALSE;
820		return (FALSE);
821	} else {
822		pmap_remove_write(p);
823		return (p->dirty != 0);
824	}
825}
826
827/*
828 *	vm_object_page_clean
829 *
830 *	Clean all dirty pages in the specified range of object.  Leaves page
831 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
832 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
833 *	leaving the object dirty.
834 *
835 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
836 *	synchronous clustering mode implementation.
837 *
838 *	Odd semantics: if start == end, we clean everything.
839 *
840 *	The object must be locked.
841 *
842 *	Returns FALSE if some page from the range was not written, as
843 *	reported by the pager, and TRUE otherwise.
844 */
845boolean_t
846vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
847    int flags)
848{
849	vm_page_t np, p;
850	vm_pindex_t pi, tend, tstart;
851	int curgeneration, n, pagerflags;
852	boolean_t clearobjflags, eio, res;
853
854	VM_OBJECT_ASSERT_WLOCKED(object);
855
856	/*
857	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
858	 * objects.  The check below prevents the function from
859	 * operating on non-vnode objects.
860	 */
861	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
862	    object->resident_page_count == 0)
863		return (TRUE);
864
865	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
866	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
867	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
868
869	tstart = OFF_TO_IDX(start);
870	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
871	clearobjflags = tstart == 0 && tend >= object->size;
872	res = TRUE;
873
874rescan:
875	curgeneration = object->generation;
876
877	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
878		pi = p->pindex;
879		if (pi >= tend)
880			break;
881		np = TAILQ_NEXT(p, listq);
882		if (p->valid == 0)
883			continue;
884		if (vm_page_sleep_if_busy(p, "vpcwai")) {
885			if (object->generation != curgeneration) {
886				if ((flags & OBJPC_SYNC) != 0)
887					goto rescan;
888				else
889					clearobjflags = FALSE;
890			}
891			np = vm_page_find_least(object, pi);
892			continue;
893		}
894		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
895			continue;
896
897		n = vm_object_page_collect_flush(object, p, pagerflags,
898		    flags, &clearobjflags, &eio);
899		if (eio) {
900			res = FALSE;
901			clearobjflags = FALSE;
902		}
903		if (object->generation != curgeneration) {
904			if ((flags & OBJPC_SYNC) != 0)
905				goto rescan;
906			else
907				clearobjflags = FALSE;
908		}
909
910		/*
911		 * If the VOP_PUTPAGES() did a truncated write, so
912		 * that even the first page of the run is not fully
913		 * written, vm_pageout_flush() returns 0 as the run
914		 * length.  Since the condition that caused truncated
915		 * write may be permanent, e.g. exhausted free space,
916		 * accepting n == 0 would cause an infinite loop.
917		 *
918		 * Forwarding the iterator leaves the unwritten page
919		 * behind, but there is not much we can do there if
920		 * filesystem refuses to write it.
921		 */
922		if (n == 0) {
923			n = 1;
924			clearobjflags = FALSE;
925		}
926		np = vm_page_find_least(object, pi + n);
927	}
928#if 0
929	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
930#endif
931
932	if (clearobjflags)
933		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
934	return (res);
935}
936
937static int
938vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
939    int flags, boolean_t *clearobjflags, boolean_t *eio)
940{
941	vm_page_t ma[vm_pageout_page_count], p_first, tp;
942	int count, i, mreq, runlen;
943
944	vm_page_lock_assert(p, MA_NOTOWNED);
945	VM_OBJECT_ASSERT_WLOCKED(object);
946
947	count = 1;
948	mreq = 0;
949
950	for (tp = p; count < vm_pageout_page_count; count++) {
951		tp = vm_page_next(tp);
952		if (tp == NULL || vm_page_busied(tp))
953			break;
954		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
955			break;
956	}
957
958	for (p_first = p; count < vm_pageout_page_count; count++) {
959		tp = vm_page_prev(p_first);
960		if (tp == NULL || vm_page_busied(tp))
961			break;
962		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
963			break;
964		p_first = tp;
965		mreq++;
966	}
967
968	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
969		ma[i] = tp;
970
971	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
972	return (runlen);
973}
974
975/*
976 * Note that there is absolutely no sense in writing out
977 * anonymous objects, so we track down the vnode object
978 * to write out.
979 * We invalidate (remove) all pages from the address space
980 * for semantic correctness.
981 *
982 * If the backing object is a device object with unmanaged pages, then any
983 * mappings to the specified range of pages must be removed before this
984 * function is called.
985 *
986 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
987 * may start out with a NULL object.
988 */
989boolean_t
990vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
991    boolean_t syncio, boolean_t invalidate)
992{
993	vm_object_t backing_object;
994	struct vnode *vp;
995	struct mount *mp;
996	int error, flags, fsync_after;
997	boolean_t res;
998
999	if (object == NULL)
1000		return (TRUE);
1001	res = TRUE;
1002	error = 0;
1003	VM_OBJECT_WLOCK(object);
1004	while ((backing_object = object->backing_object) != NULL) {
1005		VM_OBJECT_WLOCK(backing_object);
1006		offset += object->backing_object_offset;
1007		VM_OBJECT_WUNLOCK(object);
1008		object = backing_object;
1009		if (object->size < OFF_TO_IDX(offset + size))
1010			size = IDX_TO_OFF(object->size) - offset;
1011	}
1012	/*
1013	 * Flush pages if writing is allowed, invalidate them
1014	 * if invalidation requested.  Pages undergoing I/O
1015	 * will be ignored by vm_object_page_remove().
1016	 *
1017	 * We cannot lock the vnode and then wait for paging
1018	 * to complete without deadlocking against vm_fault.
1019	 * Instead we simply call vm_object_page_remove() and
1020	 * allow it to block internally on a page-by-page
1021	 * basis when it encounters pages undergoing async
1022	 * I/O.
1023	 */
1024	if (object->type == OBJT_VNODE &&
1025	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1026		vp = object->handle;
1027		VM_OBJECT_WUNLOCK(object);
1028		(void) vn_start_write(vp, &mp, V_WAIT);
1029		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1030		if (syncio && !invalidate && offset == 0 &&
1031		    OFF_TO_IDX(size) == object->size) {
1032			/*
1033			 * If syncing the whole mapping of the file,
1034			 * it is faster to schedule all the writes in
1035			 * async mode, also allowing the clustering,
1036			 * and then wait for i/o to complete.
1037			 */
1038			flags = 0;
1039			fsync_after = TRUE;
1040		} else {
1041			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1042			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1043			fsync_after = FALSE;
1044		}
1045		VM_OBJECT_WLOCK(object);
1046		res = vm_object_page_clean(object, offset, offset + size,
1047		    flags);
1048		VM_OBJECT_WUNLOCK(object);
1049		if (fsync_after)
1050			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1051		VOP_UNLOCK(vp, 0);
1052		vn_finished_write(mp);
1053		if (error != 0)
1054			res = FALSE;
1055		VM_OBJECT_WLOCK(object);
1056	}
1057	if ((object->type == OBJT_VNODE ||
1058	     object->type == OBJT_DEVICE) && invalidate) {
1059		if (object->type == OBJT_DEVICE)
1060			/*
1061			 * The option OBJPR_NOTMAPPED must be passed here
1062			 * because vm_object_page_remove() cannot remove
1063			 * unmanaged mappings.
1064			 */
1065			flags = OBJPR_NOTMAPPED;
1066		else if (old_msync)
1067			flags = 0;
1068		else
1069			flags = OBJPR_CLEANONLY;
1070		vm_object_page_remove(object, OFF_TO_IDX(offset),
1071		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1072	}
1073	VM_OBJECT_WUNLOCK(object);
1074	return (res);
1075}
1076
1077/*
1078 *	vm_object_madvise:
1079 *
1080 *	Implements the madvise function at the object/page level.
1081 *
1082 *	MADV_WILLNEED	(any object)
1083 *
1084 *	    Activate the specified pages if they are resident.
1085 *
1086 *	MADV_DONTNEED	(any object)
1087 *
1088 *	    Deactivate the specified pages if they are resident.
1089 *
1090 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1091 *			 OBJ_ONEMAPPING only)
1092 *
1093 *	    Deactivate and clean the specified pages if they are
1094 *	    resident.  This permits the process to reuse the pages
1095 *	    without faulting or the kernel to reclaim the pages
1096 *	    without I/O.
1097 */
1098void
1099vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1100    int advise)
1101{
1102	vm_pindex_t tpindex;
1103	vm_object_t backing_object, tobject;
1104	vm_page_t m;
1105
1106	if (object == NULL)
1107		return;
1108	VM_OBJECT_WLOCK(object);
1109	/*
1110	 * Locate and adjust resident pages
1111	 */
1112	for (; pindex < end; pindex += 1) {
1113relookup:
1114		tobject = object;
1115		tpindex = pindex;
1116shadowlookup:
1117		/*
1118		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1119		 * and those pages must be OBJ_ONEMAPPING.
1120		 */
1121		if (advise == MADV_FREE) {
1122			if ((tobject->type != OBJT_DEFAULT &&
1123			     tobject->type != OBJT_SWAP) ||
1124			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1125				goto unlock_tobject;
1126			}
1127		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1128			goto unlock_tobject;
1129		m = vm_page_lookup(tobject, tpindex);
1130		if (m == NULL && advise == MADV_WILLNEED) {
1131			/*
1132			 * If the page is cached, reactivate it.
1133			 */
1134			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1135			    VM_ALLOC_NOBUSY);
1136		}
1137		if (m == NULL) {
1138			/*
1139			 * There may be swap even if there is no backing page
1140			 */
1141			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1142				swap_pager_freespace(tobject, tpindex, 1);
1143			/*
1144			 * next object
1145			 */
1146			backing_object = tobject->backing_object;
1147			if (backing_object == NULL)
1148				goto unlock_tobject;
1149			VM_OBJECT_WLOCK(backing_object);
1150			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1151			if (tobject != object)
1152				VM_OBJECT_WUNLOCK(tobject);
1153			tobject = backing_object;
1154			goto shadowlookup;
1155		} else if (m->valid != VM_PAGE_BITS_ALL)
1156			goto unlock_tobject;
1157		/*
1158		 * If the page is not in a normal state, skip it.
1159		 */
1160		vm_page_lock(m);
1161		if (m->hold_count != 0 || m->wire_count != 0) {
1162			vm_page_unlock(m);
1163			goto unlock_tobject;
1164		}
1165		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1166		    ("vm_object_madvise: page %p is fictitious", m));
1167		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1168		    ("vm_object_madvise: page %p is not managed", m));
1169		if (vm_page_busied(m)) {
1170			if (advise == MADV_WILLNEED) {
1171				/*
1172				 * Reference the page before unlocking and
1173				 * sleeping so that the page daemon is less
1174				 * likely to reclaim it.
1175				 */
1176				vm_page_aflag_set(m, PGA_REFERENCED);
1177			}
1178			if (object != tobject)
1179				VM_OBJECT_WUNLOCK(object);
1180			VM_OBJECT_WUNLOCK(tobject);
1181			vm_page_busy_sleep(m, "madvpo");
1182			VM_OBJECT_WLOCK(object);
1183  			goto relookup;
1184		}
1185		if (advise == MADV_WILLNEED) {
1186			vm_page_activate(m);
1187		} else {
1188			vm_page_advise(m, advise);
1189		}
1190		vm_page_unlock(m);
1191		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1192			swap_pager_freespace(tobject, tpindex, 1);
1193unlock_tobject:
1194		if (tobject != object)
1195			VM_OBJECT_WUNLOCK(tobject);
1196	}
1197	VM_OBJECT_WUNLOCK(object);
1198}
1199
1200/*
1201 *	vm_object_shadow:
1202 *
1203 *	Create a new object which is backed by the
1204 *	specified existing object range.  The source
1205 *	object reference is deallocated.
1206 *
1207 *	The new object and offset into that object
1208 *	are returned in the source parameters.
1209 */
1210void
1211vm_object_shadow(
1212	vm_object_t *object,	/* IN/OUT */
1213	vm_ooffset_t *offset,	/* IN/OUT */
1214	vm_size_t length)
1215{
1216	vm_object_t source;
1217	vm_object_t result;
1218
1219	source = *object;
1220
1221	/*
1222	 * Don't create the new object if the old object isn't shared.
1223	 */
1224	if (source != NULL) {
1225		VM_OBJECT_WLOCK(source);
1226		if (source->ref_count == 1 &&
1227		    source->handle == NULL &&
1228		    (source->type == OBJT_DEFAULT ||
1229		     source->type == OBJT_SWAP)) {
1230			VM_OBJECT_WUNLOCK(source);
1231			return;
1232		}
1233		VM_OBJECT_WUNLOCK(source);
1234	}
1235
1236	/*
1237	 * Allocate a new object with the given length.
1238	 */
1239	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1240
1241	/*
1242	 * The new object shadows the source object, adding a reference to it.
1243	 * Our caller changes his reference to point to the new object,
1244	 * removing a reference to the source object.  Net result: no change
1245	 * of reference count.
1246	 *
1247	 * Try to optimize the result object's page color when shadowing
1248	 * in order to maintain page coloring consistency in the combined
1249	 * shadowed object.
1250	 */
1251	result->backing_object = source;
1252	/*
1253	 * Store the offset into the source object, and fix up the offset into
1254	 * the new object.
1255	 */
1256	result->backing_object_offset = *offset;
1257	if (source != NULL) {
1258		VM_OBJECT_WLOCK(source);
1259		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1260		source->shadow_count++;
1261#if VM_NRESERVLEVEL > 0
1262		result->flags |= source->flags & OBJ_COLORED;
1263		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1264		    ((1 << (VM_NFREEORDER - 1)) - 1);
1265#endif
1266		VM_OBJECT_WUNLOCK(source);
1267	}
1268
1269
1270	/*
1271	 * Return the new things
1272	 */
1273	*offset = 0;
1274	*object = result;
1275}
1276
1277/*
1278 *	vm_object_split:
1279 *
1280 * Split the pages in a map entry into a new object.  This affords
1281 * easier removal of unused pages, and keeps object inheritance from
1282 * being a negative impact on memory usage.
1283 */
1284void
1285vm_object_split(vm_map_entry_t entry)
1286{
1287	vm_page_t m, m_next;
1288	vm_object_t orig_object, new_object, source;
1289	vm_pindex_t idx, offidxstart;
1290	vm_size_t size;
1291
1292	orig_object = entry->object.vm_object;
1293	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1294		return;
1295	if (orig_object->ref_count <= 1)
1296		return;
1297	VM_OBJECT_WUNLOCK(orig_object);
1298
1299	offidxstart = OFF_TO_IDX(entry->offset);
1300	size = atop(entry->end - entry->start);
1301
1302	/*
1303	 * If swap_pager_copy() is later called, it will convert new_object
1304	 * into a swap object.
1305	 */
1306	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1307
1308	/*
1309	 * At this point, the new object is still private, so the order in
1310	 * which the original and new objects are locked does not matter.
1311	 */
1312	VM_OBJECT_WLOCK(new_object);
1313	VM_OBJECT_WLOCK(orig_object);
1314	source = orig_object->backing_object;
1315	if (source != NULL) {
1316		VM_OBJECT_WLOCK(source);
1317		if ((source->flags & OBJ_DEAD) != 0) {
1318			VM_OBJECT_WUNLOCK(source);
1319			VM_OBJECT_WUNLOCK(orig_object);
1320			VM_OBJECT_WUNLOCK(new_object);
1321			vm_object_deallocate(new_object);
1322			VM_OBJECT_WLOCK(orig_object);
1323			return;
1324		}
1325		LIST_INSERT_HEAD(&source->shadow_head,
1326				  new_object, shadow_list);
1327		source->shadow_count++;
1328		vm_object_reference_locked(source);	/* for new_object */
1329		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1330		VM_OBJECT_WUNLOCK(source);
1331		new_object->backing_object_offset =
1332			orig_object->backing_object_offset + entry->offset;
1333		new_object->backing_object = source;
1334	}
1335	if (orig_object->cred != NULL) {
1336		new_object->cred = orig_object->cred;
1337		crhold(orig_object->cred);
1338		new_object->charge = ptoa(size);
1339		KASSERT(orig_object->charge >= ptoa(size),
1340		    ("orig_object->charge < 0"));
1341		orig_object->charge -= ptoa(size);
1342	}
1343retry:
1344	m = vm_page_find_least(orig_object, offidxstart);
1345	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1346	    m = m_next) {
1347		m_next = TAILQ_NEXT(m, listq);
1348
1349		/*
1350		 * We must wait for pending I/O to complete before we can
1351		 * rename the page.
1352		 *
1353		 * We do not have to VM_PROT_NONE the page as mappings should
1354		 * not be changed by this operation.
1355		 */
1356		if (vm_page_busied(m)) {
1357			VM_OBJECT_WUNLOCK(new_object);
1358			vm_page_lock(m);
1359			VM_OBJECT_WUNLOCK(orig_object);
1360			vm_page_busy_sleep(m, "spltwt");
1361			VM_OBJECT_WLOCK(orig_object);
1362			VM_OBJECT_WLOCK(new_object);
1363			goto retry;
1364		}
1365
1366		/* vm_page_rename() will handle dirty and cache. */
1367		if (vm_page_rename(m, new_object, idx)) {
1368			VM_OBJECT_WUNLOCK(new_object);
1369			VM_OBJECT_WUNLOCK(orig_object);
1370			VM_WAIT;
1371			VM_OBJECT_WLOCK(orig_object);
1372			VM_OBJECT_WLOCK(new_object);
1373			goto retry;
1374		}
1375#if VM_NRESERVLEVEL > 0
1376		/*
1377		 * If some of the reservation's allocated pages remain with
1378		 * the original object, then transferring the reservation to
1379		 * the new object is neither particularly beneficial nor
1380		 * particularly harmful as compared to leaving the reservation
1381		 * with the original object.  If, however, all of the
1382		 * reservation's allocated pages are transferred to the new
1383		 * object, then transferring the reservation is typically
1384		 * beneficial.  Determining which of these two cases applies
1385		 * would be more costly than unconditionally renaming the
1386		 * reservation.
1387		 */
1388		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1389#endif
1390		if (orig_object->type == OBJT_SWAP)
1391			vm_page_xbusy(m);
1392	}
1393	if (orig_object->type == OBJT_SWAP) {
1394		/*
1395		 * swap_pager_copy() can sleep, in which case the orig_object's
1396		 * and new_object's locks are released and reacquired.
1397		 */
1398		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1399		TAILQ_FOREACH(m, &new_object->memq, listq)
1400			vm_page_xunbusy(m);
1401
1402		/*
1403		 * Transfer any cached pages from orig_object to new_object.
1404		 * If swap_pager_copy() found swapped out pages within the
1405		 * specified range of orig_object, then it changed
1406		 * new_object's type to OBJT_SWAP when it transferred those
1407		 * pages to new_object.  Otherwise, new_object's type
1408		 * should still be OBJT_DEFAULT and orig_object should not
1409		 * contain any cached pages within the specified range.
1410		 */
1411		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1412			vm_page_cache_transfer(orig_object, offidxstart,
1413			    new_object);
1414	}
1415	VM_OBJECT_WUNLOCK(orig_object);
1416	VM_OBJECT_WUNLOCK(new_object);
1417	entry->object.vm_object = new_object;
1418	entry->offset = 0LL;
1419	vm_object_deallocate(orig_object);
1420	VM_OBJECT_WLOCK(new_object);
1421}
1422
1423#define	OBSC_TEST_ALL_SHADOWED	0x0001
1424#define	OBSC_COLLAPSE_NOWAIT	0x0002
1425#define	OBSC_COLLAPSE_WAIT	0x0004
1426
1427static vm_page_t
1428vm_object_backing_scan_wait(vm_object_t object, vm_page_t p, vm_page_t next,
1429    int op)
1430{
1431	vm_object_t backing_object;
1432
1433	VM_OBJECT_ASSERT_WLOCKED(object);
1434	backing_object = object->backing_object;
1435	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1436
1437	KASSERT(p == NULL || vm_page_busied(p), ("unbusy page %p", p));
1438	KASSERT(p == NULL || p->object == object || p->object == backing_object,
1439	    ("invalid ownership %p %p %p", p, object, backing_object));
1440	if ((op & OBSC_COLLAPSE_NOWAIT) != 0)
1441		return (next);
1442	if (p != NULL)
1443		vm_page_lock(p);
1444	VM_OBJECT_WUNLOCK(object);
1445	VM_OBJECT_WUNLOCK(backing_object);
1446	if (p == NULL)
1447		VM_WAIT;
1448	else
1449		vm_page_busy_sleep(p, "vmocol");
1450	VM_OBJECT_WLOCK(object);
1451	VM_OBJECT_WLOCK(backing_object);
1452	return (TAILQ_FIRST(&backing_object->memq));
1453}
1454
1455static bool
1456vm_object_backing_scan(vm_object_t object, int op)
1457{
1458	vm_object_t backing_object;
1459	vm_page_t next, p, pp;
1460	vm_pindex_t backing_offset_index, new_pindex;
1461
1462	VM_OBJECT_ASSERT_WLOCKED(object);
1463	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1464
1465	backing_object = object->backing_object;
1466	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1467
1468	/*
1469	 * Initial conditions
1470	 */
1471	if (op & OBSC_TEST_ALL_SHADOWED) {
1472		/*
1473		 * We do not want to have to test for the existence of cache
1474		 * or swap pages in the backing object.  XXX but with the
1475		 * new swapper this would be pretty easy to do.
1476		 *
1477		 * XXX what about anonymous MAP_SHARED memory that hasn't
1478		 * been ZFOD faulted yet?  If we do not test for this, the
1479		 * shadow test may succeed! XXX
1480		 */
1481		if (backing_object->type != OBJT_DEFAULT) {
1482			return (false);
1483		}
1484	}
1485	if (op & OBSC_COLLAPSE_WAIT) {
1486		vm_object_set_flag(backing_object, OBJ_DEAD);
1487	}
1488
1489	/*
1490	 * Our scan
1491	 */
1492	p = TAILQ_FIRST(&backing_object->memq);
1493	while (p) {
1494		next = TAILQ_NEXT(p, listq);
1495		new_pindex = p->pindex - backing_offset_index;
1496		if (op & OBSC_TEST_ALL_SHADOWED) {
1497			/*
1498			 * Ignore pages outside the parent object's range
1499			 * and outside the parent object's mapping of the
1500			 * backing object.
1501			 *
1502			 * Note that we do not busy the backing object's
1503			 * page.
1504			 */
1505			if (p->pindex < backing_offset_index ||
1506			    new_pindex >= object->size) {
1507				p = next;
1508				continue;
1509			}
1510
1511			/*
1512			 * See if the parent has the page or if the parent's
1513			 * object pager has the page.  If the parent has the
1514			 * page but the page is not valid, the parent's
1515			 * object pager must have the page.
1516			 *
1517			 * If this fails, the parent does not completely shadow
1518			 * the object and we might as well give up now.
1519			 */
1520
1521			pp = vm_page_lookup(object, new_pindex);
1522			if ((pp == NULL || pp->valid == 0) &&
1523			    !vm_pager_has_page(object, new_pindex, NULL, NULL))
1524				return (false);
1525		}
1526
1527		/*
1528		 * Check for busy page
1529		 */
1530		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1531			if (vm_page_busied(p)) {
1532				p = vm_object_backing_scan_wait(object, p,
1533				    next, op);
1534				continue;
1535			}
1536
1537			KASSERT(p->object == backing_object,
1538			    ("vm_object_backing_scan: object mismatch"));
1539
1540			if (p->pindex < backing_offset_index ||
1541			    new_pindex >= object->size) {
1542				if (backing_object->type == OBJT_SWAP)
1543					swap_pager_freespace(backing_object,
1544					    p->pindex, 1);
1545
1546				/*
1547				 * Page is out of the parent object's range, we
1548				 * can simply destroy it.
1549				 */
1550				vm_page_lock(p);
1551				KASSERT(!pmap_page_is_mapped(p),
1552				    ("freeing mapped page %p", p));
1553				if (p->wire_count == 0)
1554					vm_page_free(p);
1555				else
1556					vm_page_remove(p);
1557				vm_page_unlock(p);
1558				p = next;
1559				continue;
1560			}
1561
1562			pp = vm_page_lookup(object, new_pindex);
1563			if (pp != NULL && vm_page_busied(pp)) {
1564				/*
1565				 * The page in the parent is busy and
1566				 * possibly not (yet) valid.  Until
1567				 * its state is finalized by the busy
1568				 * bit owner, we can't tell whether it
1569				 * shadows the original page.
1570				 * Therefore, we must either skip it
1571				 * and the original (backing_object)
1572				 * page or wait for its state to be
1573				 * finalized.
1574				 *
1575				 * This is due to a race with vm_fault()
1576				 * where we must unbusy the original
1577				 * (backing_obj) page before we can
1578				 * (re)lock the parent.  Hence we can
1579				 * get here.
1580				 */
1581				p = vm_object_backing_scan_wait(object, pp,
1582				    next, op);
1583				continue;
1584			}
1585
1586			KASSERT(pp == NULL || pp->valid != 0,
1587			    ("unbusy invalid page %p", pp));
1588
1589			if (pp != NULL || vm_pager_has_page(object,
1590			    new_pindex, NULL, NULL)) {
1591				/*
1592				 * The page already exists in the
1593				 * parent OR swap exists for this
1594				 * location in the parent.  Leave the
1595				 * parent's page alone.  Destroy the
1596				 * original page from the backing
1597				 * object.
1598				 */
1599				if (backing_object->type == OBJT_SWAP)
1600					swap_pager_freespace(backing_object,
1601					    p->pindex, 1);
1602				vm_page_lock(p);
1603				KASSERT(!pmap_page_is_mapped(p),
1604				    ("freeing mapped page %p", p));
1605				if (p->wire_count == 0)
1606					vm_page_free(p);
1607				else
1608					vm_page_remove(p);
1609				vm_page_unlock(p);
1610				p = next;
1611				continue;
1612			}
1613
1614			/*
1615			 * Page does not exist in parent, rename the
1616			 * page from the backing object to the main object.
1617			 *
1618			 * If the page was mapped to a process, it can remain
1619			 * mapped through the rename.
1620			 * vm_page_rename() will handle dirty and cache.
1621			 */
1622			if (vm_page_rename(p, object, new_pindex)) {
1623				p = vm_object_backing_scan_wait(object, NULL,
1624				    next, op);
1625				continue;
1626			}
1627
1628			/* Use the old pindex to free the right page. */
1629			if (backing_object->type == OBJT_SWAP)
1630				swap_pager_freespace(backing_object,
1631				    new_pindex + backing_offset_index, 1);
1632
1633#if VM_NRESERVLEVEL > 0
1634			/*
1635			 * Rename the reservation.
1636			 */
1637			vm_reserv_rename(p, object, backing_object,
1638			    backing_offset_index);
1639#endif
1640		}
1641		p = next;
1642	}
1643	return (true);
1644}
1645
1646
1647/*
1648 * this version of collapse allows the operation to occur earlier and
1649 * when paging_in_progress is true for an object...  This is not a complete
1650 * operation, but should plug 99.9% of the rest of the leaks.
1651 */
1652static void
1653vm_object_qcollapse(vm_object_t object)
1654{
1655	vm_object_t backing_object = object->backing_object;
1656
1657	VM_OBJECT_ASSERT_WLOCKED(object);
1658	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1659
1660	if (backing_object->ref_count != 1)
1661		return;
1662
1663	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1664}
1665
1666/*
1667 *	vm_object_collapse:
1668 *
1669 *	Collapse an object with the object backing it.
1670 *	Pages in the backing object are moved into the
1671 *	parent, and the backing object is deallocated.
1672 */
1673void
1674vm_object_collapse(vm_object_t object)
1675{
1676	vm_object_t backing_object, new_backing_object;
1677
1678	VM_OBJECT_ASSERT_WLOCKED(object);
1679
1680	while (TRUE) {
1681		/*
1682		 * Verify that the conditions are right for collapse:
1683		 *
1684		 * The object exists and the backing object exists.
1685		 */
1686		if ((backing_object = object->backing_object) == NULL)
1687			break;
1688
1689		/*
1690		 * we check the backing object first, because it is most likely
1691		 * not collapsable.
1692		 */
1693		VM_OBJECT_WLOCK(backing_object);
1694		if (backing_object->handle != NULL ||
1695		    (backing_object->type != OBJT_DEFAULT &&
1696		     backing_object->type != OBJT_SWAP) ||
1697		    (backing_object->flags & OBJ_DEAD) ||
1698		    object->handle != NULL ||
1699		    (object->type != OBJT_DEFAULT &&
1700		     object->type != OBJT_SWAP) ||
1701		    (object->flags & OBJ_DEAD)) {
1702			VM_OBJECT_WUNLOCK(backing_object);
1703			break;
1704		}
1705
1706		if (object->paging_in_progress != 0 ||
1707		    backing_object->paging_in_progress != 0) {
1708			vm_object_qcollapse(object);
1709			VM_OBJECT_WUNLOCK(backing_object);
1710			break;
1711		}
1712
1713		/*
1714		 * We know that we can either collapse the backing object (if
1715		 * the parent is the only reference to it) or (perhaps) have
1716		 * the parent bypass the object if the parent happens to shadow
1717		 * all the resident pages in the entire backing object.
1718		 *
1719		 * This is ignoring pager-backed pages such as swap pages.
1720		 * vm_object_backing_scan fails the shadowing test in this
1721		 * case.
1722		 */
1723		if (backing_object->ref_count == 1) {
1724			/*
1725			 * If there is exactly one reference to the backing
1726			 * object, we can collapse it into the parent.
1727			 */
1728			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1729
1730#if VM_NRESERVLEVEL > 0
1731			/*
1732			 * Break any reservations from backing_object.
1733			 */
1734			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1735				vm_reserv_break_all(backing_object);
1736#endif
1737
1738			/*
1739			 * Move the pager from backing_object to object.
1740			 */
1741			if (backing_object->type == OBJT_SWAP) {
1742				/*
1743				 * swap_pager_copy() can sleep, in which case
1744				 * the backing_object's and object's locks are
1745				 * released and reacquired.
1746				 * Since swap_pager_copy() is being asked to
1747				 * destroy the source, it will change the
1748				 * backing_object's type to OBJT_DEFAULT.
1749				 */
1750				swap_pager_copy(
1751				    backing_object,
1752				    object,
1753				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1754
1755				/*
1756				 * Free any cached pages from backing_object.
1757				 */
1758				if (__predict_false(
1759				    !vm_object_cache_is_empty(backing_object)))
1760					vm_page_cache_free(backing_object, 0, 0);
1761			}
1762			/*
1763			 * Object now shadows whatever backing_object did.
1764			 * Note that the reference to
1765			 * backing_object->backing_object moves from within
1766			 * backing_object to within object.
1767			 */
1768			LIST_REMOVE(object, shadow_list);
1769			backing_object->shadow_count--;
1770			if (backing_object->backing_object) {
1771				VM_OBJECT_WLOCK(backing_object->backing_object);
1772				LIST_REMOVE(backing_object, shadow_list);
1773				LIST_INSERT_HEAD(
1774				    &backing_object->backing_object->shadow_head,
1775				    object, shadow_list);
1776				/*
1777				 * The shadow_count has not changed.
1778				 */
1779				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1780			}
1781			object->backing_object = backing_object->backing_object;
1782			object->backing_object_offset +=
1783			    backing_object->backing_object_offset;
1784
1785			/*
1786			 * Discard backing_object.
1787			 *
1788			 * Since the backing object has no pages, no pager left,
1789			 * and no object references within it, all that is
1790			 * necessary is to dispose of it.
1791			 */
1792			KASSERT(backing_object->ref_count == 1, (
1793"backing_object %p was somehow re-referenced during collapse!",
1794			    backing_object));
1795			backing_object->type = OBJT_DEAD;
1796			backing_object->ref_count = 0;
1797			VM_OBJECT_WUNLOCK(backing_object);
1798			vm_object_destroy(backing_object);
1799
1800			object_collapses++;
1801		} else {
1802			/*
1803			 * If we do not entirely shadow the backing object,
1804			 * there is nothing we can do so we give up.
1805			 */
1806			if (object->resident_page_count != object->size &&
1807			    !vm_object_backing_scan(object,
1808			    OBSC_TEST_ALL_SHADOWED)) {
1809				VM_OBJECT_WUNLOCK(backing_object);
1810				break;
1811			}
1812
1813			/*
1814			 * Make the parent shadow the next object in the
1815			 * chain.  Deallocating backing_object will not remove
1816			 * it, since its reference count is at least 2.
1817			 */
1818			LIST_REMOVE(object, shadow_list);
1819			backing_object->shadow_count--;
1820
1821			new_backing_object = backing_object->backing_object;
1822			if ((object->backing_object = new_backing_object) != NULL) {
1823				VM_OBJECT_WLOCK(new_backing_object);
1824				LIST_INSERT_HEAD(
1825				    &new_backing_object->shadow_head,
1826				    object,
1827				    shadow_list
1828				);
1829				new_backing_object->shadow_count++;
1830				vm_object_reference_locked(new_backing_object);
1831				VM_OBJECT_WUNLOCK(new_backing_object);
1832				object->backing_object_offset +=
1833					backing_object->backing_object_offset;
1834			}
1835
1836			/*
1837			 * Drop the reference count on backing_object. Since
1838			 * its ref_count was at least 2, it will not vanish.
1839			 */
1840			backing_object->ref_count--;
1841			VM_OBJECT_WUNLOCK(backing_object);
1842			object_bypasses++;
1843		}
1844
1845		/*
1846		 * Try again with this object's new backing object.
1847		 */
1848	}
1849}
1850
1851/*
1852 *	vm_object_page_remove:
1853 *
1854 *	For the given object, either frees or invalidates each of the
1855 *	specified pages.  In general, a page is freed.  However, if a page is
1856 *	wired for any reason other than the existence of a managed, wired
1857 *	mapping, then it may be invalidated but not removed from the object.
1858 *	Pages are specified by the given range ["start", "end") and the option
1859 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1860 *	extends from "start" to the end of the object.  If the option
1861 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1862 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1863 *	specified, then the pages within the specified range must have no
1864 *	mappings.  Otherwise, if this option is not specified, any mappings to
1865 *	the specified pages are removed before the pages are freed or
1866 *	invalidated.
1867 *
1868 *	In general, this operation should only be performed on objects that
1869 *	contain managed pages.  There are, however, two exceptions.  First, it
1870 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1871 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1872 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1873 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1874 *
1875 *	The object must be locked.
1876 */
1877void
1878vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1879    int options)
1880{
1881	vm_page_t p, next;
1882
1883	VM_OBJECT_ASSERT_WLOCKED(object);
1884	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1885	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1886	    ("vm_object_page_remove: illegal options for object %p", object));
1887	if (object->resident_page_count == 0)
1888		goto skipmemq;
1889	vm_object_pip_add(object, 1);
1890again:
1891	p = vm_page_find_least(object, start);
1892
1893	/*
1894	 * Here, the variable "p" is either (1) the page with the least pindex
1895	 * greater than or equal to the parameter "start" or (2) NULL.
1896	 */
1897	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1898		next = TAILQ_NEXT(p, listq);
1899
1900		/*
1901		 * If the page is wired for any reason besides the existence
1902		 * of managed, wired mappings, then it cannot be freed.  For
1903		 * example, fictitious pages, which represent device memory,
1904		 * are inherently wired and cannot be freed.  They can,
1905		 * however, be invalidated if the option OBJPR_CLEANONLY is
1906		 * not specified.
1907		 */
1908		vm_page_lock(p);
1909		if (vm_page_xbusied(p)) {
1910			VM_OBJECT_WUNLOCK(object);
1911			vm_page_busy_sleep(p, "vmopax");
1912			VM_OBJECT_WLOCK(object);
1913			goto again;
1914		}
1915		if (p->wire_count != 0) {
1916			if ((options & OBJPR_NOTMAPPED) == 0)
1917				pmap_remove_all(p);
1918			if ((options & OBJPR_CLEANONLY) == 0) {
1919				p->valid = 0;
1920				vm_page_undirty(p);
1921			}
1922			goto next;
1923		}
1924		if (vm_page_busied(p)) {
1925			VM_OBJECT_WUNLOCK(object);
1926			vm_page_busy_sleep(p, "vmopar");
1927			VM_OBJECT_WLOCK(object);
1928			goto again;
1929		}
1930		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1931		    ("vm_object_page_remove: page %p is fictitious", p));
1932		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1933			if ((options & OBJPR_NOTMAPPED) == 0)
1934				pmap_remove_write(p);
1935			if (p->dirty)
1936				goto next;
1937		}
1938		if ((options & OBJPR_NOTMAPPED) == 0)
1939			pmap_remove_all(p);
1940		vm_page_free(p);
1941next:
1942		vm_page_unlock(p);
1943	}
1944	vm_object_pip_wakeup(object);
1945skipmemq:
1946	if (__predict_false(!vm_object_cache_is_empty(object)))
1947		vm_page_cache_free(object, start, end);
1948}
1949
1950/*
1951 *	vm_object_page_cache:
1952 *
1953 *	For the given object, attempt to move the specified clean
1954 *	pages to the cache queue.  If a page is wired for any reason,
1955 *	then it will not be changed.  Pages are specified by the given
1956 *	range ["start", "end").  As a special case, if "end" is zero,
1957 *	then the range extends from "start" to the end of the object.
1958 *	Any mappings to the specified pages are removed before the
1959 *	pages are moved to the cache queue.
1960 *
1961 *	This operation should only be performed on objects that
1962 *	contain non-fictitious, managed pages.
1963 *
1964 *	The object must be locked.
1965 */
1966void
1967vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1968{
1969	struct mtx *mtx, *new_mtx;
1970	vm_page_t p, next;
1971
1972	VM_OBJECT_ASSERT_WLOCKED(object);
1973	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1974	    ("vm_object_page_cache: illegal object %p", object));
1975	if (object->resident_page_count == 0)
1976		return;
1977	p = vm_page_find_least(object, start);
1978
1979	/*
1980	 * Here, the variable "p" is either (1) the page with the least pindex
1981	 * greater than or equal to the parameter "start" or (2) NULL.
1982	 */
1983	mtx = NULL;
1984	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1985		next = TAILQ_NEXT(p, listq);
1986
1987		/*
1988		 * Avoid releasing and reacquiring the same page lock.
1989		 */
1990		new_mtx = vm_page_lockptr(p);
1991		if (mtx != new_mtx) {
1992			if (mtx != NULL)
1993				mtx_unlock(mtx);
1994			mtx = new_mtx;
1995			mtx_lock(mtx);
1996		}
1997		vm_page_try_to_cache(p);
1998	}
1999	if (mtx != NULL)
2000		mtx_unlock(mtx);
2001}
2002
2003/*
2004 *	Populate the specified range of the object with valid pages.  Returns
2005 *	TRUE if the range is successfully populated and FALSE otherwise.
2006 *
2007 *	Note: This function should be optimized to pass a larger array of
2008 *	pages to vm_pager_get_pages() before it is applied to a non-
2009 *	OBJT_DEVICE object.
2010 *
2011 *	The object must be locked.
2012 */
2013boolean_t
2014vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2015{
2016	vm_page_t m, ma[1];
2017	vm_pindex_t pindex;
2018	int rv;
2019
2020	VM_OBJECT_ASSERT_WLOCKED(object);
2021	for (pindex = start; pindex < end; pindex++) {
2022		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2023		if (m->valid != VM_PAGE_BITS_ALL) {
2024			ma[0] = m;
2025			rv = vm_pager_get_pages(object, ma, 1, 0);
2026			m = vm_page_lookup(object, pindex);
2027			if (m == NULL)
2028				break;
2029			if (rv != VM_PAGER_OK) {
2030				vm_page_lock(m);
2031				vm_page_free(m);
2032				vm_page_unlock(m);
2033				break;
2034			}
2035		}
2036		/*
2037		 * Keep "m" busy because a subsequent iteration may unlock
2038		 * the object.
2039		 */
2040	}
2041	if (pindex > start) {
2042		m = vm_page_lookup(object, start);
2043		while (m != NULL && m->pindex < pindex) {
2044			vm_page_xunbusy(m);
2045			m = TAILQ_NEXT(m, listq);
2046		}
2047	}
2048	return (pindex == end);
2049}
2050
2051/*
2052 *	Routine:	vm_object_coalesce
2053 *	Function:	Coalesces two objects backing up adjoining
2054 *			regions of memory into a single object.
2055 *
2056 *	returns TRUE if objects were combined.
2057 *
2058 *	NOTE:	Only works at the moment if the second object is NULL -
2059 *		if it's not, which object do we lock first?
2060 *
2061 *	Parameters:
2062 *		prev_object	First object to coalesce
2063 *		prev_offset	Offset into prev_object
2064 *		prev_size	Size of reference to prev_object
2065 *		next_size	Size of reference to the second object
2066 *		reserved	Indicator that extension region has
2067 *				swap accounted for
2068 *
2069 *	Conditions:
2070 *	The object must *not* be locked.
2071 */
2072boolean_t
2073vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2074    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2075{
2076	vm_pindex_t next_pindex;
2077
2078	if (prev_object == NULL)
2079		return (TRUE);
2080	VM_OBJECT_WLOCK(prev_object);
2081	if ((prev_object->type != OBJT_DEFAULT &&
2082	    prev_object->type != OBJT_SWAP) ||
2083	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2084		VM_OBJECT_WUNLOCK(prev_object);
2085		return (FALSE);
2086	}
2087
2088	/*
2089	 * Try to collapse the object first
2090	 */
2091	vm_object_collapse(prev_object);
2092
2093	/*
2094	 * Can't coalesce if: . more than one reference . paged out . shadows
2095	 * another object . has a copy elsewhere (any of which mean that the
2096	 * pages not mapped to prev_entry may be in use anyway)
2097	 */
2098	if (prev_object->backing_object != NULL) {
2099		VM_OBJECT_WUNLOCK(prev_object);
2100		return (FALSE);
2101	}
2102
2103	prev_size >>= PAGE_SHIFT;
2104	next_size >>= PAGE_SHIFT;
2105	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2106
2107	if ((prev_object->ref_count > 1) &&
2108	    (prev_object->size != next_pindex)) {
2109		VM_OBJECT_WUNLOCK(prev_object);
2110		return (FALSE);
2111	}
2112
2113	/*
2114	 * Account for the charge.
2115	 */
2116	if (prev_object->cred != NULL) {
2117
2118		/*
2119		 * If prev_object was charged, then this mapping,
2120		 * althought not charged now, may become writable
2121		 * later. Non-NULL cred in the object would prevent
2122		 * swap reservation during enabling of the write
2123		 * access, so reserve swap now. Failed reservation
2124		 * cause allocation of the separate object for the map
2125		 * entry, and swap reservation for this entry is
2126		 * managed in appropriate time.
2127		 */
2128		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2129		    prev_object->cred)) {
2130			return (FALSE);
2131		}
2132		prev_object->charge += ptoa(next_size);
2133	}
2134
2135	/*
2136	 * Remove any pages that may still be in the object from a previous
2137	 * deallocation.
2138	 */
2139	if (next_pindex < prev_object->size) {
2140		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2141		    next_size, 0);
2142		if (prev_object->type == OBJT_SWAP)
2143			swap_pager_freespace(prev_object,
2144					     next_pindex, next_size);
2145#if 0
2146		if (prev_object->cred != NULL) {
2147			KASSERT(prev_object->charge >=
2148			    ptoa(prev_object->size - next_pindex),
2149			    ("object %p overcharged 1 %jx %jx", prev_object,
2150				(uintmax_t)next_pindex, (uintmax_t)next_size));
2151			prev_object->charge -= ptoa(prev_object->size -
2152			    next_pindex);
2153		}
2154#endif
2155	}
2156
2157	/*
2158	 * Extend the object if necessary.
2159	 */
2160	if (next_pindex + next_size > prev_object->size)
2161		prev_object->size = next_pindex + next_size;
2162
2163	VM_OBJECT_WUNLOCK(prev_object);
2164	return (TRUE);
2165}
2166
2167void
2168vm_object_set_writeable_dirty(vm_object_t object)
2169{
2170
2171	VM_OBJECT_ASSERT_WLOCKED(object);
2172	if (object->type != OBJT_VNODE) {
2173		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2174			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2175			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2176		}
2177		return;
2178	}
2179	object->generation++;
2180	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2181		return;
2182	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2183}
2184
2185/*
2186 *	vm_object_unwire:
2187 *
2188 *	For each page offset within the specified range of the given object,
2189 *	find the highest-level page in the shadow chain and unwire it.  A page
2190 *	must exist at every page offset, and the highest-level page must be
2191 *	wired.
2192 */
2193void
2194vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2195    uint8_t queue)
2196{
2197	vm_object_t tobject;
2198	vm_page_t m, tm;
2199	vm_pindex_t end_pindex, pindex, tpindex;
2200	int depth, locked_depth;
2201
2202	KASSERT((offset & PAGE_MASK) == 0,
2203	    ("vm_object_unwire: offset is not page aligned"));
2204	KASSERT((length & PAGE_MASK) == 0,
2205	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2206	/* The wired count of a fictitious page never changes. */
2207	if ((object->flags & OBJ_FICTITIOUS) != 0)
2208		return;
2209	pindex = OFF_TO_IDX(offset);
2210	end_pindex = pindex + atop(length);
2211	locked_depth = 1;
2212	VM_OBJECT_RLOCK(object);
2213	m = vm_page_find_least(object, pindex);
2214	while (pindex < end_pindex) {
2215		if (m == NULL || pindex < m->pindex) {
2216			/*
2217			 * The first object in the shadow chain doesn't
2218			 * contain a page at the current index.  Therefore,
2219			 * the page must exist in a backing object.
2220			 */
2221			tobject = object;
2222			tpindex = pindex;
2223			depth = 0;
2224			do {
2225				tpindex +=
2226				    OFF_TO_IDX(tobject->backing_object_offset);
2227				tobject = tobject->backing_object;
2228				KASSERT(tobject != NULL,
2229				    ("vm_object_unwire: missing page"));
2230				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2231					goto next_page;
2232				depth++;
2233				if (depth == locked_depth) {
2234					locked_depth++;
2235					VM_OBJECT_RLOCK(tobject);
2236				}
2237			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2238			    NULL);
2239		} else {
2240			tm = m;
2241			m = TAILQ_NEXT(m, listq);
2242		}
2243		vm_page_lock(tm);
2244		vm_page_unwire(tm, queue);
2245		vm_page_unlock(tm);
2246next_page:
2247		pindex++;
2248	}
2249	/* Release the accumulated object locks. */
2250	for (depth = 0; depth < locked_depth; depth++) {
2251		tobject = object->backing_object;
2252		VM_OBJECT_RUNLOCK(object);
2253		object = tobject;
2254	}
2255}
2256
2257struct vnode *
2258vm_object_vnode(vm_object_t object)
2259{
2260
2261	VM_OBJECT_ASSERT_LOCKED(object);
2262	if (object->type == OBJT_VNODE)
2263		return (object->handle);
2264	if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2265		return (object->un_pager.swp.swp_tmpfs);
2266	return (NULL);
2267}
2268
2269static int
2270sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2271{
2272	struct kinfo_vmobject kvo;
2273	char *fullpath, *freepath;
2274	struct vnode *vp;
2275	struct vattr va;
2276	vm_object_t obj;
2277	vm_page_t m;
2278	int count, error;
2279
2280	if (req->oldptr == NULL) {
2281		/*
2282		 * If an old buffer has not been provided, generate an
2283		 * estimate of the space needed for a subsequent call.
2284		 */
2285		mtx_lock(&vm_object_list_mtx);
2286		count = 0;
2287		TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2288			if (obj->type == OBJT_DEAD)
2289				continue;
2290			count++;
2291		}
2292		mtx_unlock(&vm_object_list_mtx);
2293		return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2294		    count * 11 / 10));
2295	}
2296
2297	error = 0;
2298
2299	/*
2300	 * VM objects are type stable and are never removed from the
2301	 * list once added.  This allows us to safely read obj->object_list
2302	 * after reacquiring the VM object lock.
2303	 */
2304	mtx_lock(&vm_object_list_mtx);
2305	TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2306		if (obj->type == OBJT_DEAD)
2307			continue;
2308		VM_OBJECT_RLOCK(obj);
2309		if (obj->type == OBJT_DEAD) {
2310			VM_OBJECT_RUNLOCK(obj);
2311			continue;
2312		}
2313		mtx_unlock(&vm_object_list_mtx);
2314		kvo.kvo_size = ptoa(obj->size);
2315		kvo.kvo_resident = obj->resident_page_count;
2316		kvo.kvo_ref_count = obj->ref_count;
2317		kvo.kvo_shadow_count = obj->shadow_count;
2318		kvo.kvo_memattr = obj->memattr;
2319		kvo.kvo_active = 0;
2320		kvo.kvo_inactive = 0;
2321		TAILQ_FOREACH(m, &obj->memq, listq) {
2322			/*
2323			 * A page may belong to the object but be
2324			 * dequeued and set to PQ_NONE while the
2325			 * object lock is not held.  This makes the
2326			 * reads of m->queue below racy, and we do not
2327			 * count pages set to PQ_NONE.  However, this
2328			 * sysctl is only meant to give an
2329			 * approximation of the system anyway.
2330			 */
2331			if (m->queue == PQ_ACTIVE)
2332				kvo.kvo_active++;
2333			else if (m->queue == PQ_INACTIVE)
2334				kvo.kvo_inactive++;
2335		}
2336
2337		kvo.kvo_vn_fileid = 0;
2338		kvo.kvo_vn_fsid = 0;
2339		freepath = NULL;
2340		fullpath = "";
2341		vp = NULL;
2342		switch (obj->type) {
2343		case OBJT_DEFAULT:
2344			kvo.kvo_type = KVME_TYPE_DEFAULT;
2345			break;
2346		case OBJT_VNODE:
2347			kvo.kvo_type = KVME_TYPE_VNODE;
2348			vp = obj->handle;
2349			vref(vp);
2350			break;
2351		case OBJT_SWAP:
2352			kvo.kvo_type = KVME_TYPE_SWAP;
2353			break;
2354		case OBJT_DEVICE:
2355			kvo.kvo_type = KVME_TYPE_DEVICE;
2356			break;
2357		case OBJT_PHYS:
2358			kvo.kvo_type = KVME_TYPE_PHYS;
2359			break;
2360		case OBJT_DEAD:
2361			kvo.kvo_type = KVME_TYPE_DEAD;
2362			break;
2363		case OBJT_SG:
2364			kvo.kvo_type = KVME_TYPE_SG;
2365			break;
2366		case OBJT_MGTDEVICE:
2367			kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2368			break;
2369		default:
2370			kvo.kvo_type = KVME_TYPE_UNKNOWN;
2371			break;
2372		}
2373		VM_OBJECT_RUNLOCK(obj);
2374		if (vp != NULL) {
2375			vn_fullpath(curthread, vp, &fullpath, &freepath);
2376			vn_lock(vp, LK_SHARED | LK_RETRY);
2377			if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2378				kvo.kvo_vn_fileid = va.va_fileid;
2379				kvo.kvo_vn_fsid = va.va_fsid;
2380			}
2381			vput(vp);
2382		}
2383
2384		strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2385		if (freepath != NULL)
2386			free(freepath, M_TEMP);
2387
2388		/* Pack record size down */
2389		kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2390		    strlen(kvo.kvo_path) + 1;
2391		kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2392		    sizeof(uint64_t));
2393		error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2394		mtx_lock(&vm_object_list_mtx);
2395		if (error)
2396			break;
2397	}
2398	mtx_unlock(&vm_object_list_mtx);
2399	return (error);
2400}
2401SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2402    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2403    "List of VM objects");
2404
2405#include "opt_ddb.h"
2406#ifdef DDB
2407#include <sys/kernel.h>
2408
2409#include <sys/cons.h>
2410
2411#include <ddb/ddb.h>
2412
2413static int
2414_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2415{
2416	vm_map_t tmpm;
2417	vm_map_entry_t tmpe;
2418	vm_object_t obj;
2419	int entcount;
2420
2421	if (map == 0)
2422		return 0;
2423
2424	if (entry == 0) {
2425		tmpe = map->header.next;
2426		entcount = map->nentries;
2427		while (entcount-- && (tmpe != &map->header)) {
2428			if (_vm_object_in_map(map, object, tmpe)) {
2429				return 1;
2430			}
2431			tmpe = tmpe->next;
2432		}
2433	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2434		tmpm = entry->object.sub_map;
2435		tmpe = tmpm->header.next;
2436		entcount = tmpm->nentries;
2437		while (entcount-- && tmpe != &tmpm->header) {
2438			if (_vm_object_in_map(tmpm, object, tmpe)) {
2439				return 1;
2440			}
2441			tmpe = tmpe->next;
2442		}
2443	} else if ((obj = entry->object.vm_object) != NULL) {
2444		for (; obj; obj = obj->backing_object)
2445			if (obj == object) {
2446				return 1;
2447			}
2448	}
2449	return 0;
2450}
2451
2452static int
2453vm_object_in_map(vm_object_t object)
2454{
2455	struct proc *p;
2456
2457	/* sx_slock(&allproc_lock); */
2458	FOREACH_PROC_IN_SYSTEM(p) {
2459		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2460			continue;
2461		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2462			/* sx_sunlock(&allproc_lock); */
2463			return 1;
2464		}
2465	}
2466	/* sx_sunlock(&allproc_lock); */
2467	if (_vm_object_in_map(kernel_map, object, 0))
2468		return 1;
2469	return 0;
2470}
2471
2472DB_SHOW_COMMAND(vmochk, vm_object_check)
2473{
2474	vm_object_t object;
2475
2476	/*
2477	 * make sure that internal objs are in a map somewhere
2478	 * and none have zero ref counts.
2479	 */
2480	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2481		if (object->handle == NULL &&
2482		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2483			if (object->ref_count == 0) {
2484				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2485					(long)object->size);
2486			}
2487			if (!vm_object_in_map(object)) {
2488				db_printf(
2489			"vmochk: internal obj is not in a map: "
2490			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2491				    object->ref_count, (u_long)object->size,
2492				    (u_long)object->size,
2493				    (void *)object->backing_object);
2494			}
2495		}
2496	}
2497}
2498
2499/*
2500 *	vm_object_print:	[ debug ]
2501 */
2502DB_SHOW_COMMAND(object, vm_object_print_static)
2503{
2504	/* XXX convert args. */
2505	vm_object_t object = (vm_object_t)addr;
2506	boolean_t full = have_addr;
2507
2508	vm_page_t p;
2509
2510	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2511#define	count	was_count
2512
2513	int count;
2514
2515	if (object == NULL)
2516		return;
2517
2518	db_iprintf(
2519	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2520	    object, (int)object->type, (uintmax_t)object->size,
2521	    object->resident_page_count, object->ref_count, object->flags,
2522	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2523	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2524	    object->shadow_count,
2525	    object->backing_object ? object->backing_object->ref_count : 0,
2526	    object->backing_object, (uintmax_t)object->backing_object_offset);
2527
2528	if (!full)
2529		return;
2530
2531	db_indent += 2;
2532	count = 0;
2533	TAILQ_FOREACH(p, &object->memq, listq) {
2534		if (count == 0)
2535			db_iprintf("memory:=");
2536		else if (count == 6) {
2537			db_printf("\n");
2538			db_iprintf(" ...");
2539			count = 0;
2540		} else
2541			db_printf(",");
2542		count++;
2543
2544		db_printf("(off=0x%jx,page=0x%jx)",
2545		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2546	}
2547	if (count != 0)
2548		db_printf("\n");
2549	db_indent -= 2;
2550}
2551
2552/* XXX. */
2553#undef count
2554
2555/* XXX need this non-static entry for calling from vm_map_print. */
2556void
2557vm_object_print(
2558        /* db_expr_t */ long addr,
2559	boolean_t have_addr,
2560	/* db_expr_t */ long count,
2561	char *modif)
2562{
2563	vm_object_print_static(addr, have_addr, count, modif);
2564}
2565
2566DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2567{
2568	vm_object_t object;
2569	vm_pindex_t fidx;
2570	vm_paddr_t pa;
2571	vm_page_t m, prev_m;
2572	int rcount, nl, c;
2573
2574	nl = 0;
2575	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2576		db_printf("new object: %p\n", (void *)object);
2577		if (nl > 18) {
2578			c = cngetc();
2579			if (c != ' ')
2580				return;
2581			nl = 0;
2582		}
2583		nl++;
2584		rcount = 0;
2585		fidx = 0;
2586		pa = -1;
2587		TAILQ_FOREACH(m, &object->memq, listq) {
2588			if (m->pindex > 128)
2589				break;
2590			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2591			    prev_m->pindex + 1 != m->pindex) {
2592				if (rcount) {
2593					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2594						(long)fidx, rcount, (long)pa);
2595					if (nl > 18) {
2596						c = cngetc();
2597						if (c != ' ')
2598							return;
2599						nl = 0;
2600					}
2601					nl++;
2602					rcount = 0;
2603				}
2604			}
2605			if (rcount &&
2606				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2607				++rcount;
2608				continue;
2609			}
2610			if (rcount) {
2611				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2612					(long)fidx, rcount, (long)pa);
2613				if (nl > 18) {
2614					c = cngetc();
2615					if (c != ' ')
2616						return;
2617					nl = 0;
2618				}
2619				nl++;
2620			}
2621			fidx = m->pindex;
2622			pa = VM_PAGE_TO_PHYS(m);
2623			rcount = 1;
2624		}
2625		if (rcount) {
2626			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2627				(long)fidx, rcount, (long)pa);
2628			if (nl > 18) {
2629				c = cngetc();
2630				if (c != ' ')
2631					return;
2632				nl = 0;
2633			}
2634			nl++;
2635		}
2636	}
2637}
2638#endif /* DDB */
2639