vm_object.c revision 284100
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_object.c 284100 2015-06-06 20:37:40Z jhb $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/vnode.h>
83#include <sys/vmmeter.h>
84#include <sys/sx.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_radix.h>
98#include <vm/vm_reserv.h>
99#include <vm/uma.h>
100
101static int old_msync;
102SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103    "Use old (insecure) msync behavior");
104
105static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106		    int pagerflags, int flags, boolean_t *clearobjflags,
107		    boolean_t *eio);
108static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109		    boolean_t *clearobjflags);
110static void	vm_object_qcollapse(vm_object_t object);
111static void	vm_object_vndeallocate(vm_object_t object);
112
113/*
114 *	Virtual memory objects maintain the actual data
115 *	associated with allocated virtual memory.  A given
116 *	page of memory exists within exactly one object.
117 *
118 *	An object is only deallocated when all "references"
119 *	are given up.  Only one "reference" to a given
120 *	region of an object should be writeable.
121 *
122 *	Associated with each object is a list of all resident
123 *	memory pages belonging to that object; this list is
124 *	maintained by the "vm_page" module, and locked by the object's
125 *	lock.
126 *
127 *	Each object also records a "pager" routine which is
128 *	used to retrieve (and store) pages to the proper backing
129 *	storage.  In addition, objects may be backed by other
130 *	objects from which they were virtual-copied.
131 *
132 *	The only items within the object structure which are
133 *	modified after time of creation are:
134 *		reference count		locked by object's lock
135 *		pager routine		locked by object's lock
136 *
137 */
138
139struct object_q vm_object_list;
140struct mtx vm_object_list_mtx;	/* lock for object list and count */
141
142struct vm_object kernel_object_store;
143struct vm_object kmem_object_store;
144
145static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146    "VM object stats");
147
148static long object_collapses;
149SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150    &object_collapses, 0, "VM object collapses");
151
152static long object_bypasses;
153SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154    &object_bypasses, 0, "VM object bypasses");
155
156static uma_zone_t obj_zone;
157
158static int vm_object_zinit(void *mem, int size, int flags);
159
160#ifdef INVARIANTS
161static void vm_object_zdtor(void *mem, int size, void *arg);
162
163static void
164vm_object_zdtor(void *mem, int size, void *arg)
165{
166	vm_object_t object;
167
168	object = (vm_object_t)mem;
169	KASSERT(object->ref_count == 0,
170	    ("object %p ref_count = %d", object, object->ref_count));
171	KASSERT(TAILQ_EMPTY(&object->memq),
172	    ("object %p has resident pages in its memq", object));
173	KASSERT(vm_radix_is_empty(&object->rtree),
174	    ("object %p has resident pages in its trie", object));
175#if VM_NRESERVLEVEL > 0
176	KASSERT(LIST_EMPTY(&object->rvq),
177	    ("object %p has reservations",
178	    object));
179#endif
180	KASSERT(vm_object_cache_is_empty(object),
181	    ("object %p has cached pages",
182	    object));
183	KASSERT(object->paging_in_progress == 0,
184	    ("object %p paging_in_progress = %d",
185	    object, object->paging_in_progress));
186	KASSERT(object->resident_page_count == 0,
187	    ("object %p resident_page_count = %d",
188	    object, object->resident_page_count));
189	KASSERT(object->shadow_count == 0,
190	    ("object %p shadow_count = %d",
191	    object, object->shadow_count));
192	KASSERT(object->type == OBJT_DEAD,
193	    ("object %p has non-dead type %d",
194	    object, object->type));
195}
196#endif
197
198static int
199vm_object_zinit(void *mem, int size, int flags)
200{
201	vm_object_t object;
202
203	object = (vm_object_t)mem;
204	bzero(&object->lock, sizeof(object->lock));
205	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
206
207	/* These are true for any object that has been freed */
208	object->type = OBJT_DEAD;
209	object->ref_count = 0;
210	object->rtree.rt_root = 0;
211	object->rtree.rt_flags = 0;
212	object->paging_in_progress = 0;
213	object->resident_page_count = 0;
214	object->shadow_count = 0;
215	object->cache.rt_root = 0;
216	object->cache.rt_flags = 0;
217
218	mtx_lock(&vm_object_list_mtx);
219	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
220	mtx_unlock(&vm_object_list_mtx);
221	return (0);
222}
223
224static void
225_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
226{
227
228	TAILQ_INIT(&object->memq);
229	LIST_INIT(&object->shadow_head);
230
231	object->type = type;
232	switch (type) {
233	case OBJT_DEAD:
234		panic("_vm_object_allocate: can't create OBJT_DEAD");
235	case OBJT_DEFAULT:
236	case OBJT_SWAP:
237		object->flags = OBJ_ONEMAPPING;
238		break;
239	case OBJT_DEVICE:
240	case OBJT_SG:
241		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
242		break;
243	case OBJT_MGTDEVICE:
244		object->flags = OBJ_FICTITIOUS;
245		break;
246	case OBJT_PHYS:
247		object->flags = OBJ_UNMANAGED;
248		break;
249	case OBJT_VNODE:
250		object->flags = 0;
251		break;
252	default:
253		panic("_vm_object_allocate: type %d is undefined", type);
254	}
255	object->size = size;
256	object->generation = 1;
257	object->ref_count = 1;
258	object->memattr = VM_MEMATTR_DEFAULT;
259	object->cred = NULL;
260	object->charge = 0;
261	object->handle = NULL;
262	object->backing_object = NULL;
263	object->backing_object_offset = (vm_ooffset_t) 0;
264#if VM_NRESERVLEVEL > 0
265	LIST_INIT(&object->rvq);
266#endif
267}
268
269/*
270 *	vm_object_init:
271 *
272 *	Initialize the VM objects module.
273 */
274void
275vm_object_init(void)
276{
277	TAILQ_INIT(&vm_object_list);
278	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
279
280	rw_init(&kernel_object->lock, "kernel vm object");
281	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
282	    kernel_object);
283#if VM_NRESERVLEVEL > 0
284	kernel_object->flags |= OBJ_COLORED;
285	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
286#endif
287
288	rw_init(&kmem_object->lock, "kmem vm object");
289	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
290	    kmem_object);
291#if VM_NRESERVLEVEL > 0
292	kmem_object->flags |= OBJ_COLORED;
293	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
294#endif
295
296	/*
297	 * The lock portion of struct vm_object must be type stable due
298	 * to vm_pageout_fallback_object_lock locking a vm object
299	 * without holding any references to it.
300	 */
301	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
302#ifdef INVARIANTS
303	    vm_object_zdtor,
304#else
305	    NULL,
306#endif
307	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
308
309	vm_radix_init();
310}
311
312void
313vm_object_clear_flag(vm_object_t object, u_short bits)
314{
315
316	VM_OBJECT_ASSERT_WLOCKED(object);
317	object->flags &= ~bits;
318}
319
320/*
321 *	Sets the default memory attribute for the specified object.  Pages
322 *	that are allocated to this object are by default assigned this memory
323 *	attribute.
324 *
325 *	Presently, this function must be called before any pages are allocated
326 *	to the object.  In the future, this requirement may be relaxed for
327 *	"default" and "swap" objects.
328 */
329int
330vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
331{
332
333	VM_OBJECT_ASSERT_WLOCKED(object);
334	switch (object->type) {
335	case OBJT_DEFAULT:
336	case OBJT_DEVICE:
337	case OBJT_MGTDEVICE:
338	case OBJT_PHYS:
339	case OBJT_SG:
340	case OBJT_SWAP:
341	case OBJT_VNODE:
342		if (!TAILQ_EMPTY(&object->memq))
343			return (KERN_FAILURE);
344		break;
345	case OBJT_DEAD:
346		return (KERN_INVALID_ARGUMENT);
347	default:
348		panic("vm_object_set_memattr: object %p is of undefined type",
349		    object);
350	}
351	object->memattr = memattr;
352	return (KERN_SUCCESS);
353}
354
355void
356vm_object_pip_add(vm_object_t object, short i)
357{
358
359	VM_OBJECT_ASSERT_WLOCKED(object);
360	object->paging_in_progress += i;
361}
362
363void
364vm_object_pip_subtract(vm_object_t object, short i)
365{
366
367	VM_OBJECT_ASSERT_WLOCKED(object);
368	object->paging_in_progress -= i;
369}
370
371void
372vm_object_pip_wakeup(vm_object_t object)
373{
374
375	VM_OBJECT_ASSERT_WLOCKED(object);
376	object->paging_in_progress--;
377	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
378		vm_object_clear_flag(object, OBJ_PIPWNT);
379		wakeup(object);
380	}
381}
382
383void
384vm_object_pip_wakeupn(vm_object_t object, short i)
385{
386
387	VM_OBJECT_ASSERT_WLOCKED(object);
388	if (i)
389		object->paging_in_progress -= i;
390	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
391		vm_object_clear_flag(object, OBJ_PIPWNT);
392		wakeup(object);
393	}
394}
395
396void
397vm_object_pip_wait(vm_object_t object, char *waitid)
398{
399
400	VM_OBJECT_ASSERT_WLOCKED(object);
401	while (object->paging_in_progress) {
402		object->flags |= OBJ_PIPWNT;
403		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
404	}
405}
406
407/*
408 *	vm_object_allocate:
409 *
410 *	Returns a new object with the given size.
411 */
412vm_object_t
413vm_object_allocate(objtype_t type, vm_pindex_t size)
414{
415	vm_object_t object;
416
417	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
418	_vm_object_allocate(type, size, object);
419	return (object);
420}
421
422
423/*
424 *	vm_object_reference:
425 *
426 *	Gets another reference to the given object.  Note: OBJ_DEAD
427 *	objects can be referenced during final cleaning.
428 */
429void
430vm_object_reference(vm_object_t object)
431{
432	if (object == NULL)
433		return;
434	VM_OBJECT_WLOCK(object);
435	vm_object_reference_locked(object);
436	VM_OBJECT_WUNLOCK(object);
437}
438
439/*
440 *	vm_object_reference_locked:
441 *
442 *	Gets another reference to the given object.
443 *
444 *	The object must be locked.
445 */
446void
447vm_object_reference_locked(vm_object_t object)
448{
449	struct vnode *vp;
450
451	VM_OBJECT_ASSERT_WLOCKED(object);
452	object->ref_count++;
453	if (object->type == OBJT_VNODE) {
454		vp = object->handle;
455		vref(vp);
456	}
457}
458
459/*
460 * Handle deallocating an object of type OBJT_VNODE.
461 */
462static void
463vm_object_vndeallocate(vm_object_t object)
464{
465	struct vnode *vp = (struct vnode *) object->handle;
466
467	VM_OBJECT_ASSERT_WLOCKED(object);
468	KASSERT(object->type == OBJT_VNODE,
469	    ("vm_object_vndeallocate: not a vnode object"));
470	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
471#ifdef INVARIANTS
472	if (object->ref_count == 0) {
473		vprint("vm_object_vndeallocate", vp);
474		panic("vm_object_vndeallocate: bad object reference count");
475	}
476#endif
477
478	/*
479	 * The test for text of vp vnode does not need a bypass to
480	 * reach right VV_TEXT there, since it is obtained from
481	 * object->handle.
482	 */
483	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
484		object->ref_count--;
485		VM_OBJECT_WUNLOCK(object);
486		/* vrele may need the vnode lock. */
487		vrele(vp);
488	} else {
489		vhold(vp);
490		VM_OBJECT_WUNLOCK(object);
491		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
492		vdrop(vp);
493		VM_OBJECT_WLOCK(object);
494		object->ref_count--;
495		if (object->type == OBJT_DEAD) {
496			VM_OBJECT_WUNLOCK(object);
497			VOP_UNLOCK(vp, 0);
498		} else {
499			if (object->ref_count == 0)
500				VOP_UNSET_TEXT(vp);
501			VM_OBJECT_WUNLOCK(object);
502			vput(vp);
503		}
504	}
505}
506
507/*
508 *	vm_object_deallocate:
509 *
510 *	Release a reference to the specified object,
511 *	gained either through a vm_object_allocate
512 *	or a vm_object_reference call.  When all references
513 *	are gone, storage associated with this object
514 *	may be relinquished.
515 *
516 *	No object may be locked.
517 */
518void
519vm_object_deallocate(vm_object_t object)
520{
521	vm_object_t temp;
522	struct vnode *vp;
523
524	while (object != NULL) {
525		VM_OBJECT_WLOCK(object);
526		if (object->type == OBJT_VNODE) {
527			vm_object_vndeallocate(object);
528			return;
529		}
530
531		KASSERT(object->ref_count != 0,
532			("vm_object_deallocate: object deallocated too many times: %d", object->type));
533
534		/*
535		 * If the reference count goes to 0 we start calling
536		 * vm_object_terminate() on the object chain.
537		 * A ref count of 1 may be a special case depending on the
538		 * shadow count being 0 or 1.
539		 */
540		object->ref_count--;
541		if (object->ref_count > 1) {
542			VM_OBJECT_WUNLOCK(object);
543			return;
544		} else if (object->ref_count == 1) {
545			if (object->type == OBJT_SWAP &&
546			    (object->flags & OBJ_TMPFS) != 0) {
547				vp = object->un_pager.swp.swp_tmpfs;
548				vhold(vp);
549				VM_OBJECT_WUNLOCK(object);
550				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
551				VM_OBJECT_WLOCK(object);
552				if (object->type == OBJT_DEAD ||
553				    object->ref_count != 1) {
554					VM_OBJECT_WUNLOCK(object);
555					VOP_UNLOCK(vp, 0);
556					vdrop(vp);
557					return;
558				}
559				if ((object->flags & OBJ_TMPFS) != 0)
560					VOP_UNSET_TEXT(vp);
561				VOP_UNLOCK(vp, 0);
562				vdrop(vp);
563			}
564			if (object->shadow_count == 0 &&
565			    object->handle == NULL &&
566			    (object->type == OBJT_DEFAULT ||
567			    (object->type == OBJT_SWAP &&
568			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
569				vm_object_set_flag(object, OBJ_ONEMAPPING);
570			} else if ((object->shadow_count == 1) &&
571			    (object->handle == NULL) &&
572			    (object->type == OBJT_DEFAULT ||
573			     object->type == OBJT_SWAP)) {
574				vm_object_t robject;
575
576				robject = LIST_FIRST(&object->shadow_head);
577				KASSERT(robject != NULL,
578				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
579					 object->ref_count,
580					 object->shadow_count));
581				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
582				    ("shadowed tmpfs v_object %p", object));
583				if (!VM_OBJECT_TRYWLOCK(robject)) {
584					/*
585					 * Avoid a potential deadlock.
586					 */
587					object->ref_count++;
588					VM_OBJECT_WUNLOCK(object);
589					/*
590					 * More likely than not the thread
591					 * holding robject's lock has lower
592					 * priority than the current thread.
593					 * Let the lower priority thread run.
594					 */
595					pause("vmo_de", 1);
596					continue;
597				}
598				/*
599				 * Collapse object into its shadow unless its
600				 * shadow is dead.  In that case, object will
601				 * be deallocated by the thread that is
602				 * deallocating its shadow.
603				 */
604				if ((robject->flags & OBJ_DEAD) == 0 &&
605				    (robject->handle == NULL) &&
606				    (robject->type == OBJT_DEFAULT ||
607				     robject->type == OBJT_SWAP)) {
608
609					robject->ref_count++;
610retry:
611					if (robject->paging_in_progress) {
612						VM_OBJECT_WUNLOCK(object);
613						vm_object_pip_wait(robject,
614						    "objde1");
615						temp = robject->backing_object;
616						if (object == temp) {
617							VM_OBJECT_WLOCK(object);
618							goto retry;
619						}
620					} else if (object->paging_in_progress) {
621						VM_OBJECT_WUNLOCK(robject);
622						object->flags |= OBJ_PIPWNT;
623						VM_OBJECT_SLEEP(object, object,
624						    PDROP | PVM, "objde2", 0);
625						VM_OBJECT_WLOCK(robject);
626						temp = robject->backing_object;
627						if (object == temp) {
628							VM_OBJECT_WLOCK(object);
629							goto retry;
630						}
631					} else
632						VM_OBJECT_WUNLOCK(object);
633
634					if (robject->ref_count == 1) {
635						robject->ref_count--;
636						object = robject;
637						goto doterm;
638					}
639					object = robject;
640					vm_object_collapse(object);
641					VM_OBJECT_WUNLOCK(object);
642					continue;
643				}
644				VM_OBJECT_WUNLOCK(robject);
645			}
646			VM_OBJECT_WUNLOCK(object);
647			return;
648		}
649doterm:
650		temp = object->backing_object;
651		if (temp != NULL) {
652			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
653			    ("shadowed tmpfs v_object 2 %p", object));
654			VM_OBJECT_WLOCK(temp);
655			LIST_REMOVE(object, shadow_list);
656			temp->shadow_count--;
657			VM_OBJECT_WUNLOCK(temp);
658			object->backing_object = NULL;
659		}
660		/*
661		 * Don't double-terminate, we could be in a termination
662		 * recursion due to the terminate having to sync data
663		 * to disk.
664		 */
665		if ((object->flags & OBJ_DEAD) == 0)
666			vm_object_terminate(object);
667		else
668			VM_OBJECT_WUNLOCK(object);
669		object = temp;
670	}
671}
672
673/*
674 *	vm_object_destroy removes the object from the global object list
675 *      and frees the space for the object.
676 */
677void
678vm_object_destroy(vm_object_t object)
679{
680
681	/*
682	 * Release the allocation charge.
683	 */
684	if (object->cred != NULL) {
685		swap_release_by_cred(object->charge, object->cred);
686		object->charge = 0;
687		crfree(object->cred);
688		object->cred = NULL;
689	}
690
691	/*
692	 * Free the space for the object.
693	 */
694	uma_zfree(obj_zone, object);
695}
696
697/*
698 *	vm_object_terminate actually destroys the specified object, freeing
699 *	up all previously used resources.
700 *
701 *	The object must be locked.
702 *	This routine may block.
703 */
704void
705vm_object_terminate(vm_object_t object)
706{
707	vm_page_t p, p_next;
708
709	VM_OBJECT_ASSERT_WLOCKED(object);
710
711	/*
712	 * Make sure no one uses us.
713	 */
714	vm_object_set_flag(object, OBJ_DEAD);
715
716	/*
717	 * wait for the pageout daemon to be done with the object
718	 */
719	vm_object_pip_wait(object, "objtrm");
720
721	KASSERT(!object->paging_in_progress,
722		("vm_object_terminate: pageout in progress"));
723
724	/*
725	 * Clean and free the pages, as appropriate. All references to the
726	 * object are gone, so we don't need to lock it.
727	 */
728	if (object->type == OBJT_VNODE) {
729		struct vnode *vp = (struct vnode *)object->handle;
730
731		/*
732		 * Clean pages and flush buffers.
733		 */
734		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
735		VM_OBJECT_WUNLOCK(object);
736
737		vinvalbuf(vp, V_SAVE, 0, 0);
738
739		VM_OBJECT_WLOCK(object);
740	}
741
742	KASSERT(object->ref_count == 0,
743		("vm_object_terminate: object with references, ref_count=%d",
744		object->ref_count));
745
746	/*
747	 * Free any remaining pageable pages.  This also removes them from the
748	 * paging queues.  However, don't free wired pages, just remove them
749	 * from the object.  Rather than incrementally removing each page from
750	 * the object, the page and object are reset to any empty state.
751	 */
752	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
753		vm_page_assert_unbusied(p);
754		vm_page_lock(p);
755		/*
756		 * Optimize the page's removal from the object by resetting
757		 * its "object" field.  Specifically, if the page is not
758		 * wired, then the effect of this assignment is that
759		 * vm_page_free()'s call to vm_page_remove() will return
760		 * immediately without modifying the page or the object.
761		 */
762		p->object = NULL;
763		if (p->wire_count == 0) {
764			vm_page_free(p);
765			PCPU_INC(cnt.v_pfree);
766		}
767		vm_page_unlock(p);
768	}
769	/*
770	 * If the object contained any pages, then reset it to an empty state.
771	 * None of the object's fields, including "resident_page_count", were
772	 * modified by the preceding loop.
773	 */
774	if (object->resident_page_count != 0) {
775		vm_radix_reclaim_allnodes(&object->rtree);
776		TAILQ_INIT(&object->memq);
777		object->resident_page_count = 0;
778		if (object->type == OBJT_VNODE)
779			vdrop(object->handle);
780	}
781
782#if VM_NRESERVLEVEL > 0
783	if (__predict_false(!LIST_EMPTY(&object->rvq)))
784		vm_reserv_break_all(object);
785#endif
786	if (__predict_false(!vm_object_cache_is_empty(object)))
787		vm_page_cache_free(object, 0, 0);
788
789	KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
790	    object->type == OBJT_SWAP,
791	    ("%s: non-swap obj %p has cred", __func__, object));
792
793	/*
794	 * Let the pager know object is dead.
795	 */
796	vm_pager_deallocate(object);
797	VM_OBJECT_WUNLOCK(object);
798
799	vm_object_destroy(object);
800}
801
802/*
803 * Make the page read-only so that we can clear the object flags.  However, if
804 * this is a nosync mmap then the object is likely to stay dirty so do not
805 * mess with the page and do not clear the object flags.  Returns TRUE if the
806 * page should be flushed, and FALSE otherwise.
807 */
808static boolean_t
809vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
810{
811
812	/*
813	 * If we have been asked to skip nosync pages and this is a
814	 * nosync page, skip it.  Note that the object flags were not
815	 * cleared in this case so we do not have to set them.
816	 */
817	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
818		*clearobjflags = FALSE;
819		return (FALSE);
820	} else {
821		pmap_remove_write(p);
822		return (p->dirty != 0);
823	}
824}
825
826/*
827 *	vm_object_page_clean
828 *
829 *	Clean all dirty pages in the specified range of object.  Leaves page
830 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
831 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
832 *	leaving the object dirty.
833 *
834 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
835 *	synchronous clustering mode implementation.
836 *
837 *	Odd semantics: if start == end, we clean everything.
838 *
839 *	The object must be locked.
840 *
841 *	Returns FALSE if some page from the range was not written, as
842 *	reported by the pager, and TRUE otherwise.
843 */
844boolean_t
845vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
846    int flags)
847{
848	vm_page_t np, p;
849	vm_pindex_t pi, tend, tstart;
850	int curgeneration, n, pagerflags;
851	boolean_t clearobjflags, eio, res;
852
853	VM_OBJECT_ASSERT_WLOCKED(object);
854
855	/*
856	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
857	 * objects.  The check below prevents the function from
858	 * operating on non-vnode objects.
859	 */
860	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
861	    object->resident_page_count == 0)
862		return (TRUE);
863
864	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
865	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
866	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
867
868	tstart = OFF_TO_IDX(start);
869	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
870	clearobjflags = tstart == 0 && tend >= object->size;
871	res = TRUE;
872
873rescan:
874	curgeneration = object->generation;
875
876	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
877		pi = p->pindex;
878		if (pi >= tend)
879			break;
880		np = TAILQ_NEXT(p, listq);
881		if (p->valid == 0)
882			continue;
883		if (vm_page_sleep_if_busy(p, "vpcwai")) {
884			if (object->generation != curgeneration) {
885				if ((flags & OBJPC_SYNC) != 0)
886					goto rescan;
887				else
888					clearobjflags = FALSE;
889			}
890			np = vm_page_find_least(object, pi);
891			continue;
892		}
893		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
894			continue;
895
896		n = vm_object_page_collect_flush(object, p, pagerflags,
897		    flags, &clearobjflags, &eio);
898		if (eio) {
899			res = FALSE;
900			clearobjflags = FALSE;
901		}
902		if (object->generation != curgeneration) {
903			if ((flags & OBJPC_SYNC) != 0)
904				goto rescan;
905			else
906				clearobjflags = FALSE;
907		}
908
909		/*
910		 * If the VOP_PUTPAGES() did a truncated write, so
911		 * that even the first page of the run is not fully
912		 * written, vm_pageout_flush() returns 0 as the run
913		 * length.  Since the condition that caused truncated
914		 * write may be permanent, e.g. exhausted free space,
915		 * accepting n == 0 would cause an infinite loop.
916		 *
917		 * Forwarding the iterator leaves the unwritten page
918		 * behind, but there is not much we can do there if
919		 * filesystem refuses to write it.
920		 */
921		if (n == 0) {
922			n = 1;
923			clearobjflags = FALSE;
924		}
925		np = vm_page_find_least(object, pi + n);
926	}
927#if 0
928	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
929#endif
930
931	if (clearobjflags)
932		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
933	return (res);
934}
935
936static int
937vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
938    int flags, boolean_t *clearobjflags, boolean_t *eio)
939{
940	vm_page_t ma[vm_pageout_page_count], p_first, tp;
941	int count, i, mreq, runlen;
942
943	vm_page_lock_assert(p, MA_NOTOWNED);
944	VM_OBJECT_ASSERT_WLOCKED(object);
945
946	count = 1;
947	mreq = 0;
948
949	for (tp = p; count < vm_pageout_page_count; count++) {
950		tp = vm_page_next(tp);
951		if (tp == NULL || vm_page_busied(tp))
952			break;
953		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
954			break;
955	}
956
957	for (p_first = p; count < vm_pageout_page_count; count++) {
958		tp = vm_page_prev(p_first);
959		if (tp == NULL || vm_page_busied(tp))
960			break;
961		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
962			break;
963		p_first = tp;
964		mreq++;
965	}
966
967	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
968		ma[i] = tp;
969
970	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
971	return (runlen);
972}
973
974/*
975 * Note that there is absolutely no sense in writing out
976 * anonymous objects, so we track down the vnode object
977 * to write out.
978 * We invalidate (remove) all pages from the address space
979 * for semantic correctness.
980 *
981 * If the backing object is a device object with unmanaged pages, then any
982 * mappings to the specified range of pages must be removed before this
983 * function is called.
984 *
985 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
986 * may start out with a NULL object.
987 */
988boolean_t
989vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
990    boolean_t syncio, boolean_t invalidate)
991{
992	vm_object_t backing_object;
993	struct vnode *vp;
994	struct mount *mp;
995	int error, flags, fsync_after;
996	boolean_t res;
997
998	if (object == NULL)
999		return (TRUE);
1000	res = TRUE;
1001	error = 0;
1002	VM_OBJECT_WLOCK(object);
1003	while ((backing_object = object->backing_object) != NULL) {
1004		VM_OBJECT_WLOCK(backing_object);
1005		offset += object->backing_object_offset;
1006		VM_OBJECT_WUNLOCK(object);
1007		object = backing_object;
1008		if (object->size < OFF_TO_IDX(offset + size))
1009			size = IDX_TO_OFF(object->size) - offset;
1010	}
1011	/*
1012	 * Flush pages if writing is allowed, invalidate them
1013	 * if invalidation requested.  Pages undergoing I/O
1014	 * will be ignored by vm_object_page_remove().
1015	 *
1016	 * We cannot lock the vnode and then wait for paging
1017	 * to complete without deadlocking against vm_fault.
1018	 * Instead we simply call vm_object_page_remove() and
1019	 * allow it to block internally on a page-by-page
1020	 * basis when it encounters pages undergoing async
1021	 * I/O.
1022	 */
1023	if (object->type == OBJT_VNODE &&
1024	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1025		vp = object->handle;
1026		VM_OBJECT_WUNLOCK(object);
1027		(void) vn_start_write(vp, &mp, V_WAIT);
1028		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1029		if (syncio && !invalidate && offset == 0 &&
1030		    OFF_TO_IDX(size) == object->size) {
1031			/*
1032			 * If syncing the whole mapping of the file,
1033			 * it is faster to schedule all the writes in
1034			 * async mode, also allowing the clustering,
1035			 * and then wait for i/o to complete.
1036			 */
1037			flags = 0;
1038			fsync_after = TRUE;
1039		} else {
1040			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1041			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1042			fsync_after = FALSE;
1043		}
1044		VM_OBJECT_WLOCK(object);
1045		res = vm_object_page_clean(object, offset, offset + size,
1046		    flags);
1047		VM_OBJECT_WUNLOCK(object);
1048		if (fsync_after)
1049			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1050		VOP_UNLOCK(vp, 0);
1051		vn_finished_write(mp);
1052		if (error != 0)
1053			res = FALSE;
1054		VM_OBJECT_WLOCK(object);
1055	}
1056	if ((object->type == OBJT_VNODE ||
1057	     object->type == OBJT_DEVICE) && invalidate) {
1058		if (object->type == OBJT_DEVICE)
1059			/*
1060			 * The option OBJPR_NOTMAPPED must be passed here
1061			 * because vm_object_page_remove() cannot remove
1062			 * unmanaged mappings.
1063			 */
1064			flags = OBJPR_NOTMAPPED;
1065		else if (old_msync)
1066			flags = OBJPR_NOTWIRED;
1067		else
1068			flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1069		vm_object_page_remove(object, OFF_TO_IDX(offset),
1070		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1071	}
1072	VM_OBJECT_WUNLOCK(object);
1073	return (res);
1074}
1075
1076/*
1077 *	vm_object_madvise:
1078 *
1079 *	Implements the madvise function at the object/page level.
1080 *
1081 *	MADV_WILLNEED	(any object)
1082 *
1083 *	    Activate the specified pages if they are resident.
1084 *
1085 *	MADV_DONTNEED	(any object)
1086 *
1087 *	    Deactivate the specified pages if they are resident.
1088 *
1089 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1090 *			 OBJ_ONEMAPPING only)
1091 *
1092 *	    Deactivate and clean the specified pages if they are
1093 *	    resident.  This permits the process to reuse the pages
1094 *	    without faulting or the kernel to reclaim the pages
1095 *	    without I/O.
1096 */
1097void
1098vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1099    int advise)
1100{
1101	vm_pindex_t tpindex;
1102	vm_object_t backing_object, tobject;
1103	vm_page_t m;
1104
1105	if (object == NULL)
1106		return;
1107	VM_OBJECT_WLOCK(object);
1108	/*
1109	 * Locate and adjust resident pages
1110	 */
1111	for (; pindex < end; pindex += 1) {
1112relookup:
1113		tobject = object;
1114		tpindex = pindex;
1115shadowlookup:
1116		/*
1117		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1118		 * and those pages must be OBJ_ONEMAPPING.
1119		 */
1120		if (advise == MADV_FREE) {
1121			if ((tobject->type != OBJT_DEFAULT &&
1122			     tobject->type != OBJT_SWAP) ||
1123			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1124				goto unlock_tobject;
1125			}
1126		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1127			goto unlock_tobject;
1128		m = vm_page_lookup(tobject, tpindex);
1129		if (m == NULL && advise == MADV_WILLNEED) {
1130			/*
1131			 * If the page is cached, reactivate it.
1132			 */
1133			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1134			    VM_ALLOC_NOBUSY);
1135		}
1136		if (m == NULL) {
1137			/*
1138			 * There may be swap even if there is no backing page
1139			 */
1140			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1141				swap_pager_freespace(tobject, tpindex, 1);
1142			/*
1143			 * next object
1144			 */
1145			backing_object = tobject->backing_object;
1146			if (backing_object == NULL)
1147				goto unlock_tobject;
1148			VM_OBJECT_WLOCK(backing_object);
1149			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1150			if (tobject != object)
1151				VM_OBJECT_WUNLOCK(tobject);
1152			tobject = backing_object;
1153			goto shadowlookup;
1154		} else if (m->valid != VM_PAGE_BITS_ALL)
1155			goto unlock_tobject;
1156		/*
1157		 * If the page is not in a normal state, skip it.
1158		 */
1159		vm_page_lock(m);
1160		if (m->hold_count != 0 || m->wire_count != 0) {
1161			vm_page_unlock(m);
1162			goto unlock_tobject;
1163		}
1164		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1165		    ("vm_object_madvise: page %p is fictitious", m));
1166		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1167		    ("vm_object_madvise: page %p is not managed", m));
1168		if (vm_page_busied(m)) {
1169			if (advise == MADV_WILLNEED) {
1170				/*
1171				 * Reference the page before unlocking and
1172				 * sleeping so that the page daemon is less
1173				 * likely to reclaim it.
1174				 */
1175				vm_page_aflag_set(m, PGA_REFERENCED);
1176			}
1177			if (object != tobject)
1178				VM_OBJECT_WUNLOCK(object);
1179			VM_OBJECT_WUNLOCK(tobject);
1180			vm_page_busy_sleep(m, "madvpo");
1181			VM_OBJECT_WLOCK(object);
1182  			goto relookup;
1183		}
1184		if (advise == MADV_WILLNEED) {
1185			vm_page_activate(m);
1186		} else {
1187			vm_page_advise(m, advise);
1188		}
1189		vm_page_unlock(m);
1190		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1191			swap_pager_freespace(tobject, tpindex, 1);
1192unlock_tobject:
1193		if (tobject != object)
1194			VM_OBJECT_WUNLOCK(tobject);
1195	}
1196	VM_OBJECT_WUNLOCK(object);
1197}
1198
1199/*
1200 *	vm_object_shadow:
1201 *
1202 *	Create a new object which is backed by the
1203 *	specified existing object range.  The source
1204 *	object reference is deallocated.
1205 *
1206 *	The new object and offset into that object
1207 *	are returned in the source parameters.
1208 */
1209void
1210vm_object_shadow(
1211	vm_object_t *object,	/* IN/OUT */
1212	vm_ooffset_t *offset,	/* IN/OUT */
1213	vm_size_t length)
1214{
1215	vm_object_t source;
1216	vm_object_t result;
1217
1218	source = *object;
1219
1220	/*
1221	 * Don't create the new object if the old object isn't shared.
1222	 */
1223	if (source != NULL) {
1224		VM_OBJECT_WLOCK(source);
1225		if (source->ref_count == 1 &&
1226		    source->handle == NULL &&
1227		    (source->type == OBJT_DEFAULT ||
1228		     source->type == OBJT_SWAP)) {
1229			VM_OBJECT_WUNLOCK(source);
1230			return;
1231		}
1232		VM_OBJECT_WUNLOCK(source);
1233	}
1234
1235	/*
1236	 * Allocate a new object with the given length.
1237	 */
1238	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1239
1240	/*
1241	 * The new object shadows the source object, adding a reference to it.
1242	 * Our caller changes his reference to point to the new object,
1243	 * removing a reference to the source object.  Net result: no change
1244	 * of reference count.
1245	 *
1246	 * Try to optimize the result object's page color when shadowing
1247	 * in order to maintain page coloring consistency in the combined
1248	 * shadowed object.
1249	 */
1250	result->backing_object = source;
1251	/*
1252	 * Store the offset into the source object, and fix up the offset into
1253	 * the new object.
1254	 */
1255	result->backing_object_offset = *offset;
1256	if (source != NULL) {
1257		VM_OBJECT_WLOCK(source);
1258		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1259		source->shadow_count++;
1260#if VM_NRESERVLEVEL > 0
1261		result->flags |= source->flags & OBJ_COLORED;
1262		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1263		    ((1 << (VM_NFREEORDER - 1)) - 1);
1264#endif
1265		VM_OBJECT_WUNLOCK(source);
1266	}
1267
1268
1269	/*
1270	 * Return the new things
1271	 */
1272	*offset = 0;
1273	*object = result;
1274}
1275
1276/*
1277 *	vm_object_split:
1278 *
1279 * Split the pages in a map entry into a new object.  This affords
1280 * easier removal of unused pages, and keeps object inheritance from
1281 * being a negative impact on memory usage.
1282 */
1283void
1284vm_object_split(vm_map_entry_t entry)
1285{
1286	vm_page_t m, m_next;
1287	vm_object_t orig_object, new_object, source;
1288	vm_pindex_t idx, offidxstart;
1289	vm_size_t size;
1290
1291	orig_object = entry->object.vm_object;
1292	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1293		return;
1294	if (orig_object->ref_count <= 1)
1295		return;
1296	VM_OBJECT_WUNLOCK(orig_object);
1297
1298	offidxstart = OFF_TO_IDX(entry->offset);
1299	size = atop(entry->end - entry->start);
1300
1301	/*
1302	 * If swap_pager_copy() is later called, it will convert new_object
1303	 * into a swap object.
1304	 */
1305	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1306
1307	/*
1308	 * At this point, the new object is still private, so the order in
1309	 * which the original and new objects are locked does not matter.
1310	 */
1311	VM_OBJECT_WLOCK(new_object);
1312	VM_OBJECT_WLOCK(orig_object);
1313	source = orig_object->backing_object;
1314	if (source != NULL) {
1315		VM_OBJECT_WLOCK(source);
1316		if ((source->flags & OBJ_DEAD) != 0) {
1317			VM_OBJECT_WUNLOCK(source);
1318			VM_OBJECT_WUNLOCK(orig_object);
1319			VM_OBJECT_WUNLOCK(new_object);
1320			vm_object_deallocate(new_object);
1321			VM_OBJECT_WLOCK(orig_object);
1322			return;
1323		}
1324		LIST_INSERT_HEAD(&source->shadow_head,
1325				  new_object, shadow_list);
1326		source->shadow_count++;
1327		vm_object_reference_locked(source);	/* for new_object */
1328		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1329		VM_OBJECT_WUNLOCK(source);
1330		new_object->backing_object_offset =
1331			orig_object->backing_object_offset + entry->offset;
1332		new_object->backing_object = source;
1333	}
1334	if (orig_object->cred != NULL) {
1335		new_object->cred = orig_object->cred;
1336		crhold(orig_object->cred);
1337		new_object->charge = ptoa(size);
1338		KASSERT(orig_object->charge >= ptoa(size),
1339		    ("orig_object->charge < 0"));
1340		orig_object->charge -= ptoa(size);
1341	}
1342retry:
1343	m = vm_page_find_least(orig_object, offidxstart);
1344	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1345	    m = m_next) {
1346		m_next = TAILQ_NEXT(m, listq);
1347
1348		/*
1349		 * We must wait for pending I/O to complete before we can
1350		 * rename the page.
1351		 *
1352		 * We do not have to VM_PROT_NONE the page as mappings should
1353		 * not be changed by this operation.
1354		 */
1355		if (vm_page_busied(m)) {
1356			VM_OBJECT_WUNLOCK(new_object);
1357			vm_page_lock(m);
1358			VM_OBJECT_WUNLOCK(orig_object);
1359			vm_page_busy_sleep(m, "spltwt");
1360			VM_OBJECT_WLOCK(orig_object);
1361			VM_OBJECT_WLOCK(new_object);
1362			goto retry;
1363		}
1364
1365		/* vm_page_rename() will handle dirty and cache. */
1366		if (vm_page_rename(m, new_object, idx)) {
1367			VM_OBJECT_WUNLOCK(new_object);
1368			VM_OBJECT_WUNLOCK(orig_object);
1369			VM_WAIT;
1370			VM_OBJECT_WLOCK(orig_object);
1371			VM_OBJECT_WLOCK(new_object);
1372			goto retry;
1373		}
1374#if VM_NRESERVLEVEL > 0
1375		/*
1376		 * If some of the reservation's allocated pages remain with
1377		 * the original object, then transferring the reservation to
1378		 * the new object is neither particularly beneficial nor
1379		 * particularly harmful as compared to leaving the reservation
1380		 * with the original object.  If, however, all of the
1381		 * reservation's allocated pages are transferred to the new
1382		 * object, then transferring the reservation is typically
1383		 * beneficial.  Determining which of these two cases applies
1384		 * would be more costly than unconditionally renaming the
1385		 * reservation.
1386		 */
1387		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1388#endif
1389		if (orig_object->type == OBJT_SWAP)
1390			vm_page_xbusy(m);
1391	}
1392	if (orig_object->type == OBJT_SWAP) {
1393		/*
1394		 * swap_pager_copy() can sleep, in which case the orig_object's
1395		 * and new_object's locks are released and reacquired.
1396		 */
1397		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1398		TAILQ_FOREACH(m, &new_object->memq, listq)
1399			vm_page_xunbusy(m);
1400
1401		/*
1402		 * Transfer any cached pages from orig_object to new_object.
1403		 * If swap_pager_copy() found swapped out pages within the
1404		 * specified range of orig_object, then it changed
1405		 * new_object's type to OBJT_SWAP when it transferred those
1406		 * pages to new_object.  Otherwise, new_object's type
1407		 * should still be OBJT_DEFAULT and orig_object should not
1408		 * contain any cached pages within the specified range.
1409		 */
1410		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1411			vm_page_cache_transfer(orig_object, offidxstart,
1412			    new_object);
1413	}
1414	VM_OBJECT_WUNLOCK(orig_object);
1415	VM_OBJECT_WUNLOCK(new_object);
1416	entry->object.vm_object = new_object;
1417	entry->offset = 0LL;
1418	vm_object_deallocate(orig_object);
1419	VM_OBJECT_WLOCK(new_object);
1420}
1421
1422#define	OBSC_TEST_ALL_SHADOWED	0x0001
1423#define	OBSC_COLLAPSE_NOWAIT	0x0002
1424#define	OBSC_COLLAPSE_WAIT	0x0004
1425
1426static int
1427vm_object_backing_scan(vm_object_t object, int op)
1428{
1429	int r = 1;
1430	vm_page_t p;
1431	vm_object_t backing_object;
1432	vm_pindex_t backing_offset_index;
1433
1434	VM_OBJECT_ASSERT_WLOCKED(object);
1435	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1436
1437	backing_object = object->backing_object;
1438	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1439
1440	/*
1441	 * Initial conditions
1442	 */
1443	if (op & OBSC_TEST_ALL_SHADOWED) {
1444		/*
1445		 * We do not want to have to test for the existence of cache
1446		 * or swap pages in the backing object.  XXX but with the
1447		 * new swapper this would be pretty easy to do.
1448		 *
1449		 * XXX what about anonymous MAP_SHARED memory that hasn't
1450		 * been ZFOD faulted yet?  If we do not test for this, the
1451		 * shadow test may succeed! XXX
1452		 */
1453		if (backing_object->type != OBJT_DEFAULT) {
1454			return (0);
1455		}
1456	}
1457	if (op & OBSC_COLLAPSE_WAIT) {
1458		vm_object_set_flag(backing_object, OBJ_DEAD);
1459	}
1460
1461	/*
1462	 * Our scan
1463	 */
1464	p = TAILQ_FIRST(&backing_object->memq);
1465	while (p) {
1466		vm_page_t next = TAILQ_NEXT(p, listq);
1467		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1468
1469		if (op & OBSC_TEST_ALL_SHADOWED) {
1470			vm_page_t pp;
1471
1472			/*
1473			 * Ignore pages outside the parent object's range
1474			 * and outside the parent object's mapping of the
1475			 * backing object.
1476			 *
1477			 * note that we do not busy the backing object's
1478			 * page.
1479			 */
1480			if (
1481			    p->pindex < backing_offset_index ||
1482			    new_pindex >= object->size
1483			) {
1484				p = next;
1485				continue;
1486			}
1487
1488			/*
1489			 * See if the parent has the page or if the parent's
1490			 * object pager has the page.  If the parent has the
1491			 * page but the page is not valid, the parent's
1492			 * object pager must have the page.
1493			 *
1494			 * If this fails, the parent does not completely shadow
1495			 * the object and we might as well give up now.
1496			 */
1497
1498			pp = vm_page_lookup(object, new_pindex);
1499			if (
1500			    (pp == NULL || pp->valid == 0) &&
1501			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1502			) {
1503				r = 0;
1504				break;
1505			}
1506		}
1507
1508		/*
1509		 * Check for busy page
1510		 */
1511		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1512			vm_page_t pp;
1513
1514			if (op & OBSC_COLLAPSE_NOWAIT) {
1515				if (!p->valid || vm_page_busied(p)) {
1516					p = next;
1517					continue;
1518				}
1519			} else if (op & OBSC_COLLAPSE_WAIT) {
1520				if (vm_page_busied(p)) {
1521					VM_OBJECT_WUNLOCK(object);
1522					vm_page_lock(p);
1523					VM_OBJECT_WUNLOCK(backing_object);
1524					vm_page_busy_sleep(p, "vmocol");
1525					VM_OBJECT_WLOCK(object);
1526					VM_OBJECT_WLOCK(backing_object);
1527					/*
1528					 * If we slept, anything could have
1529					 * happened.  Since the object is
1530					 * marked dead, the backing offset
1531					 * should not have changed so we
1532					 * just restart our scan.
1533					 */
1534					p = TAILQ_FIRST(&backing_object->memq);
1535					continue;
1536				}
1537			}
1538
1539			KASSERT(
1540			    p->object == backing_object,
1541			    ("vm_object_backing_scan: object mismatch")
1542			);
1543
1544			if (
1545			    p->pindex < backing_offset_index ||
1546			    new_pindex >= object->size
1547			) {
1548				if (backing_object->type == OBJT_SWAP)
1549					swap_pager_freespace(backing_object,
1550					    p->pindex, 1);
1551
1552				/*
1553				 * Page is out of the parent object's range, we
1554				 * can simply destroy it.
1555				 */
1556				vm_page_lock(p);
1557				KASSERT(!pmap_page_is_mapped(p),
1558				    ("freeing mapped page %p", p));
1559				if (p->wire_count == 0)
1560					vm_page_free(p);
1561				else
1562					vm_page_remove(p);
1563				vm_page_unlock(p);
1564				p = next;
1565				continue;
1566			}
1567
1568			pp = vm_page_lookup(object, new_pindex);
1569			if (
1570			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1571			    (pp != NULL && pp->valid == 0)
1572			) {
1573				if (backing_object->type == OBJT_SWAP)
1574					swap_pager_freespace(backing_object,
1575					    p->pindex, 1);
1576
1577				/*
1578				 * The page in the parent is not (yet) valid.
1579				 * We don't know anything about the state of
1580				 * the original page.  It might be mapped,
1581				 * so we must avoid the next if here.
1582				 *
1583				 * This is due to a race in vm_fault() where
1584				 * we must unbusy the original (backing_obj)
1585				 * page before we can (re)lock the parent.
1586				 * Hence we can get here.
1587				 */
1588				p = next;
1589				continue;
1590			}
1591			if (
1592			    pp != NULL ||
1593			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1594			) {
1595				if (backing_object->type == OBJT_SWAP)
1596					swap_pager_freespace(backing_object,
1597					    p->pindex, 1);
1598
1599				/*
1600				 * page already exists in parent OR swap exists
1601				 * for this location in the parent.  Destroy
1602				 * the original page from the backing object.
1603				 *
1604				 * Leave the parent's page alone
1605				 */
1606				vm_page_lock(p);
1607				KASSERT(!pmap_page_is_mapped(p),
1608				    ("freeing mapped page %p", p));
1609				if (p->wire_count == 0)
1610					vm_page_free(p);
1611				else
1612					vm_page_remove(p);
1613				vm_page_unlock(p);
1614				p = next;
1615				continue;
1616			}
1617
1618			/*
1619			 * Page does not exist in parent, rename the
1620			 * page from the backing object to the main object.
1621			 *
1622			 * If the page was mapped to a process, it can remain
1623			 * mapped through the rename.
1624			 * vm_page_rename() will handle dirty and cache.
1625			 */
1626			if (vm_page_rename(p, object, new_pindex)) {
1627				if (op & OBSC_COLLAPSE_NOWAIT) {
1628					p = next;
1629					continue;
1630				}
1631				VM_OBJECT_WUNLOCK(backing_object);
1632				VM_OBJECT_WUNLOCK(object);
1633				VM_WAIT;
1634				VM_OBJECT_WLOCK(object);
1635				VM_OBJECT_WLOCK(backing_object);
1636				p = TAILQ_FIRST(&backing_object->memq);
1637				continue;
1638			}
1639
1640			/* Use the old pindex to free the right page. */
1641			if (backing_object->type == OBJT_SWAP)
1642				swap_pager_freespace(backing_object,
1643				    new_pindex + backing_offset_index, 1);
1644
1645#if VM_NRESERVLEVEL > 0
1646			/*
1647			 * Rename the reservation.
1648			 */
1649			vm_reserv_rename(p, object, backing_object,
1650			    backing_offset_index);
1651#endif
1652		}
1653		p = next;
1654	}
1655	return (r);
1656}
1657
1658
1659/*
1660 * this version of collapse allows the operation to occur earlier and
1661 * when paging_in_progress is true for an object...  This is not a complete
1662 * operation, but should plug 99.9% of the rest of the leaks.
1663 */
1664static void
1665vm_object_qcollapse(vm_object_t object)
1666{
1667	vm_object_t backing_object = object->backing_object;
1668
1669	VM_OBJECT_ASSERT_WLOCKED(object);
1670	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1671
1672	if (backing_object->ref_count != 1)
1673		return;
1674
1675	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1676}
1677
1678/*
1679 *	vm_object_collapse:
1680 *
1681 *	Collapse an object with the object backing it.
1682 *	Pages in the backing object are moved into the
1683 *	parent, and the backing object is deallocated.
1684 */
1685void
1686vm_object_collapse(vm_object_t object)
1687{
1688	VM_OBJECT_ASSERT_WLOCKED(object);
1689
1690	while (TRUE) {
1691		vm_object_t backing_object;
1692
1693		/*
1694		 * Verify that the conditions are right for collapse:
1695		 *
1696		 * The object exists and the backing object exists.
1697		 */
1698		if ((backing_object = object->backing_object) == NULL)
1699			break;
1700
1701		/*
1702		 * we check the backing object first, because it is most likely
1703		 * not collapsable.
1704		 */
1705		VM_OBJECT_WLOCK(backing_object);
1706		if (backing_object->handle != NULL ||
1707		    (backing_object->type != OBJT_DEFAULT &&
1708		     backing_object->type != OBJT_SWAP) ||
1709		    (backing_object->flags & OBJ_DEAD) ||
1710		    object->handle != NULL ||
1711		    (object->type != OBJT_DEFAULT &&
1712		     object->type != OBJT_SWAP) ||
1713		    (object->flags & OBJ_DEAD)) {
1714			VM_OBJECT_WUNLOCK(backing_object);
1715			break;
1716		}
1717
1718		if (
1719		    object->paging_in_progress != 0 ||
1720		    backing_object->paging_in_progress != 0
1721		) {
1722			vm_object_qcollapse(object);
1723			VM_OBJECT_WUNLOCK(backing_object);
1724			break;
1725		}
1726		/*
1727		 * We know that we can either collapse the backing object (if
1728		 * the parent is the only reference to it) or (perhaps) have
1729		 * the parent bypass the object if the parent happens to shadow
1730		 * all the resident pages in the entire backing object.
1731		 *
1732		 * This is ignoring pager-backed pages such as swap pages.
1733		 * vm_object_backing_scan fails the shadowing test in this
1734		 * case.
1735		 */
1736		if (backing_object->ref_count == 1) {
1737			/*
1738			 * If there is exactly one reference to the backing
1739			 * object, we can collapse it into the parent.
1740			 */
1741			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1742
1743#if VM_NRESERVLEVEL > 0
1744			/*
1745			 * Break any reservations from backing_object.
1746			 */
1747			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1748				vm_reserv_break_all(backing_object);
1749#endif
1750
1751			/*
1752			 * Move the pager from backing_object to object.
1753			 */
1754			if (backing_object->type == OBJT_SWAP) {
1755				/*
1756				 * swap_pager_copy() can sleep, in which case
1757				 * the backing_object's and object's locks are
1758				 * released and reacquired.
1759				 * Since swap_pager_copy() is being asked to
1760				 * destroy the source, it will change the
1761				 * backing_object's type to OBJT_DEFAULT.
1762				 */
1763				swap_pager_copy(
1764				    backing_object,
1765				    object,
1766				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1767
1768				/*
1769				 * Free any cached pages from backing_object.
1770				 */
1771				if (__predict_false(
1772				    !vm_object_cache_is_empty(backing_object)))
1773					vm_page_cache_free(backing_object, 0, 0);
1774			}
1775			/*
1776			 * Object now shadows whatever backing_object did.
1777			 * Note that the reference to
1778			 * backing_object->backing_object moves from within
1779			 * backing_object to within object.
1780			 */
1781			LIST_REMOVE(object, shadow_list);
1782			backing_object->shadow_count--;
1783			if (backing_object->backing_object) {
1784				VM_OBJECT_WLOCK(backing_object->backing_object);
1785				LIST_REMOVE(backing_object, shadow_list);
1786				LIST_INSERT_HEAD(
1787				    &backing_object->backing_object->shadow_head,
1788				    object, shadow_list);
1789				/*
1790				 * The shadow_count has not changed.
1791				 */
1792				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1793			}
1794			object->backing_object = backing_object->backing_object;
1795			object->backing_object_offset +=
1796			    backing_object->backing_object_offset;
1797
1798			/*
1799			 * Discard backing_object.
1800			 *
1801			 * Since the backing object has no pages, no pager left,
1802			 * and no object references within it, all that is
1803			 * necessary is to dispose of it.
1804			 */
1805			KASSERT(backing_object->ref_count == 1, (
1806"backing_object %p was somehow re-referenced during collapse!",
1807			    backing_object));
1808			backing_object->type = OBJT_DEAD;
1809			backing_object->ref_count = 0;
1810			VM_OBJECT_WUNLOCK(backing_object);
1811			vm_object_destroy(backing_object);
1812
1813			object_collapses++;
1814		} else {
1815			vm_object_t new_backing_object;
1816
1817			/*
1818			 * If we do not entirely shadow the backing object,
1819			 * there is nothing we can do so we give up.
1820			 */
1821			if (object->resident_page_count != object->size &&
1822			    vm_object_backing_scan(object,
1823			    OBSC_TEST_ALL_SHADOWED) == 0) {
1824				VM_OBJECT_WUNLOCK(backing_object);
1825				break;
1826			}
1827
1828			/*
1829			 * Make the parent shadow the next object in the
1830			 * chain.  Deallocating backing_object will not remove
1831			 * it, since its reference count is at least 2.
1832			 */
1833			LIST_REMOVE(object, shadow_list);
1834			backing_object->shadow_count--;
1835
1836			new_backing_object = backing_object->backing_object;
1837			if ((object->backing_object = new_backing_object) != NULL) {
1838				VM_OBJECT_WLOCK(new_backing_object);
1839				LIST_INSERT_HEAD(
1840				    &new_backing_object->shadow_head,
1841				    object,
1842				    shadow_list
1843				);
1844				new_backing_object->shadow_count++;
1845				vm_object_reference_locked(new_backing_object);
1846				VM_OBJECT_WUNLOCK(new_backing_object);
1847				object->backing_object_offset +=
1848					backing_object->backing_object_offset;
1849			}
1850
1851			/*
1852			 * Drop the reference count on backing_object. Since
1853			 * its ref_count was at least 2, it will not vanish.
1854			 */
1855			backing_object->ref_count--;
1856			VM_OBJECT_WUNLOCK(backing_object);
1857			object_bypasses++;
1858		}
1859
1860		/*
1861		 * Try again with this object's new backing object.
1862		 */
1863	}
1864}
1865
1866/*
1867 *	vm_object_page_remove:
1868 *
1869 *	For the given object, either frees or invalidates each of the
1870 *	specified pages.  In general, a page is freed.  However, if a page is
1871 *	wired for any reason other than the existence of a managed, wired
1872 *	mapping, then it may be invalidated but not removed from the object.
1873 *	Pages are specified by the given range ["start", "end") and the option
1874 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1875 *	extends from "start" to the end of the object.  If the option
1876 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1877 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1878 *	specified, then the pages within the specified range must have no
1879 *	mappings.  Otherwise, if this option is not specified, any mappings to
1880 *	the specified pages are removed before the pages are freed or
1881 *	invalidated.
1882 *
1883 *	In general, this operation should only be performed on objects that
1884 *	contain managed pages.  There are, however, two exceptions.  First, it
1885 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1886 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1887 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1888 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1889 *
1890 *	The object must be locked.
1891 */
1892void
1893vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1894    int options)
1895{
1896	vm_page_t p, next;
1897	int wirings;
1898
1899	VM_OBJECT_ASSERT_WLOCKED(object);
1900	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1901	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1902	    ("vm_object_page_remove: illegal options for object %p", object));
1903	if (object->resident_page_count == 0)
1904		goto skipmemq;
1905	vm_object_pip_add(object, 1);
1906again:
1907	p = vm_page_find_least(object, start);
1908
1909	/*
1910	 * Here, the variable "p" is either (1) the page with the least pindex
1911	 * greater than or equal to the parameter "start" or (2) NULL.
1912	 */
1913	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1914		next = TAILQ_NEXT(p, listq);
1915
1916		/*
1917		 * If the page is wired for any reason besides the existence
1918		 * of managed, wired mappings, then it cannot be freed.  For
1919		 * example, fictitious pages, which represent device memory,
1920		 * are inherently wired and cannot be freed.  They can,
1921		 * however, be invalidated if the option OBJPR_CLEANONLY is
1922		 * not specified.
1923		 */
1924		vm_page_lock(p);
1925		if (vm_page_xbusied(p)) {
1926			VM_OBJECT_WUNLOCK(object);
1927			vm_page_busy_sleep(p, "vmopax");
1928			VM_OBJECT_WLOCK(object);
1929			goto again;
1930		}
1931		if ((wirings = p->wire_count) != 0 &&
1932		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1933			if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1934			    0) {
1935				pmap_remove_all(p);
1936				/* Account for removal of wired mappings. */
1937				if (wirings != 0)
1938					p->wire_count -= wirings;
1939			}
1940			if ((options & OBJPR_CLEANONLY) == 0) {
1941				p->valid = 0;
1942				vm_page_undirty(p);
1943			}
1944			goto next;
1945		}
1946		if (vm_page_busied(p)) {
1947			VM_OBJECT_WUNLOCK(object);
1948			vm_page_busy_sleep(p, "vmopar");
1949			VM_OBJECT_WLOCK(object);
1950			goto again;
1951		}
1952		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1953		    ("vm_object_page_remove: page %p is fictitious", p));
1954		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1955			if ((options & OBJPR_NOTMAPPED) == 0)
1956				pmap_remove_write(p);
1957			if (p->dirty)
1958				goto next;
1959		}
1960		if ((options & OBJPR_NOTMAPPED) == 0) {
1961			if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1962				goto next;
1963			pmap_remove_all(p);
1964			/* Account for removal of wired mappings. */
1965			if (wirings != 0) {
1966				KASSERT(p->wire_count == wirings,
1967				    ("inconsistent wire count %d %d %p",
1968				    p->wire_count, wirings, p));
1969				p->wire_count = 0;
1970				atomic_subtract_int(&cnt.v_wire_count, 1);
1971			}
1972		}
1973		vm_page_free(p);
1974next:
1975		vm_page_unlock(p);
1976	}
1977	vm_object_pip_wakeup(object);
1978skipmemq:
1979	if (__predict_false(!vm_object_cache_is_empty(object)))
1980		vm_page_cache_free(object, start, end);
1981}
1982
1983/*
1984 *	vm_object_page_cache:
1985 *
1986 *	For the given object, attempt to move the specified clean
1987 *	pages to the cache queue.  If a page is wired for any reason,
1988 *	then it will not be changed.  Pages are specified by the given
1989 *	range ["start", "end").  As a special case, if "end" is zero,
1990 *	then the range extends from "start" to the end of the object.
1991 *	Any mappings to the specified pages are removed before the
1992 *	pages are moved to the cache queue.
1993 *
1994 *	This operation should only be performed on objects that
1995 *	contain non-fictitious, managed pages.
1996 *
1997 *	The object must be locked.
1998 */
1999void
2000vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2001{
2002	struct mtx *mtx, *new_mtx;
2003	vm_page_t p, next;
2004
2005	VM_OBJECT_ASSERT_WLOCKED(object);
2006	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2007	    ("vm_object_page_cache: illegal object %p", object));
2008	if (object->resident_page_count == 0)
2009		return;
2010	p = vm_page_find_least(object, start);
2011
2012	/*
2013	 * Here, the variable "p" is either (1) the page with the least pindex
2014	 * greater than or equal to the parameter "start" or (2) NULL.
2015	 */
2016	mtx = NULL;
2017	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2018		next = TAILQ_NEXT(p, listq);
2019
2020		/*
2021		 * Avoid releasing and reacquiring the same page lock.
2022		 */
2023		new_mtx = vm_page_lockptr(p);
2024		if (mtx != new_mtx) {
2025			if (mtx != NULL)
2026				mtx_unlock(mtx);
2027			mtx = new_mtx;
2028			mtx_lock(mtx);
2029		}
2030		vm_page_try_to_cache(p);
2031	}
2032	if (mtx != NULL)
2033		mtx_unlock(mtx);
2034}
2035
2036/*
2037 *	Populate the specified range of the object with valid pages.  Returns
2038 *	TRUE if the range is successfully populated and FALSE otherwise.
2039 *
2040 *	Note: This function should be optimized to pass a larger array of
2041 *	pages to vm_pager_get_pages() before it is applied to a non-
2042 *	OBJT_DEVICE object.
2043 *
2044 *	The object must be locked.
2045 */
2046boolean_t
2047vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2048{
2049	vm_page_t m, ma[1];
2050	vm_pindex_t pindex;
2051	int rv;
2052
2053	VM_OBJECT_ASSERT_WLOCKED(object);
2054	for (pindex = start; pindex < end; pindex++) {
2055		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2056		if (m->valid != VM_PAGE_BITS_ALL) {
2057			ma[0] = m;
2058			rv = vm_pager_get_pages(object, ma, 1, 0);
2059			m = vm_page_lookup(object, pindex);
2060			if (m == NULL)
2061				break;
2062			if (rv != VM_PAGER_OK) {
2063				vm_page_lock(m);
2064				vm_page_free(m);
2065				vm_page_unlock(m);
2066				break;
2067			}
2068		}
2069		/*
2070		 * Keep "m" busy because a subsequent iteration may unlock
2071		 * the object.
2072		 */
2073	}
2074	if (pindex > start) {
2075		m = vm_page_lookup(object, start);
2076		while (m != NULL && m->pindex < pindex) {
2077			vm_page_xunbusy(m);
2078			m = TAILQ_NEXT(m, listq);
2079		}
2080	}
2081	return (pindex == end);
2082}
2083
2084/*
2085 *	Routine:	vm_object_coalesce
2086 *	Function:	Coalesces two objects backing up adjoining
2087 *			regions of memory into a single object.
2088 *
2089 *	returns TRUE if objects were combined.
2090 *
2091 *	NOTE:	Only works at the moment if the second object is NULL -
2092 *		if it's not, which object do we lock first?
2093 *
2094 *	Parameters:
2095 *		prev_object	First object to coalesce
2096 *		prev_offset	Offset into prev_object
2097 *		prev_size	Size of reference to prev_object
2098 *		next_size	Size of reference to the second object
2099 *		reserved	Indicator that extension region has
2100 *				swap accounted for
2101 *
2102 *	Conditions:
2103 *	The object must *not* be locked.
2104 */
2105boolean_t
2106vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2107    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2108{
2109	vm_pindex_t next_pindex;
2110
2111	if (prev_object == NULL)
2112		return (TRUE);
2113	VM_OBJECT_WLOCK(prev_object);
2114	if ((prev_object->type != OBJT_DEFAULT &&
2115	    prev_object->type != OBJT_SWAP) ||
2116	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2117		VM_OBJECT_WUNLOCK(prev_object);
2118		return (FALSE);
2119	}
2120
2121	/*
2122	 * Try to collapse the object first
2123	 */
2124	vm_object_collapse(prev_object);
2125
2126	/*
2127	 * Can't coalesce if: . more than one reference . paged out . shadows
2128	 * another object . has a copy elsewhere (any of which mean that the
2129	 * pages not mapped to prev_entry may be in use anyway)
2130	 */
2131	if (prev_object->backing_object != NULL) {
2132		VM_OBJECT_WUNLOCK(prev_object);
2133		return (FALSE);
2134	}
2135
2136	prev_size >>= PAGE_SHIFT;
2137	next_size >>= PAGE_SHIFT;
2138	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2139
2140	if ((prev_object->ref_count > 1) &&
2141	    (prev_object->size != next_pindex)) {
2142		VM_OBJECT_WUNLOCK(prev_object);
2143		return (FALSE);
2144	}
2145
2146	/*
2147	 * Account for the charge.
2148	 */
2149	if (prev_object->cred != NULL) {
2150
2151		/*
2152		 * If prev_object was charged, then this mapping,
2153		 * althought not charged now, may become writable
2154		 * later. Non-NULL cred in the object would prevent
2155		 * swap reservation during enabling of the write
2156		 * access, so reserve swap now. Failed reservation
2157		 * cause allocation of the separate object for the map
2158		 * entry, and swap reservation for this entry is
2159		 * managed in appropriate time.
2160		 */
2161		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2162		    prev_object->cred)) {
2163			return (FALSE);
2164		}
2165		prev_object->charge += ptoa(next_size);
2166	}
2167
2168	/*
2169	 * Remove any pages that may still be in the object from a previous
2170	 * deallocation.
2171	 */
2172	if (next_pindex < prev_object->size) {
2173		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2174		    next_size, 0);
2175		if (prev_object->type == OBJT_SWAP)
2176			swap_pager_freespace(prev_object,
2177					     next_pindex, next_size);
2178#if 0
2179		if (prev_object->cred != NULL) {
2180			KASSERT(prev_object->charge >=
2181			    ptoa(prev_object->size - next_pindex),
2182			    ("object %p overcharged 1 %jx %jx", prev_object,
2183				(uintmax_t)next_pindex, (uintmax_t)next_size));
2184			prev_object->charge -= ptoa(prev_object->size -
2185			    next_pindex);
2186		}
2187#endif
2188	}
2189
2190	/*
2191	 * Extend the object if necessary.
2192	 */
2193	if (next_pindex + next_size > prev_object->size)
2194		prev_object->size = next_pindex + next_size;
2195
2196	VM_OBJECT_WUNLOCK(prev_object);
2197	return (TRUE);
2198}
2199
2200void
2201vm_object_set_writeable_dirty(vm_object_t object)
2202{
2203
2204	VM_OBJECT_ASSERT_WLOCKED(object);
2205	if (object->type != OBJT_VNODE) {
2206		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2207			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2208			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2209		}
2210		return;
2211	}
2212	object->generation++;
2213	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2214		return;
2215	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2216}
2217
2218/*
2219 *	vm_object_unwire:
2220 *
2221 *	For each page offset within the specified range of the given object,
2222 *	find the highest-level page in the shadow chain and unwire it.  A page
2223 *	must exist at every page offset, and the highest-level page must be
2224 *	wired.
2225 */
2226void
2227vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2228    uint8_t queue)
2229{
2230	vm_object_t tobject;
2231	vm_page_t m, tm;
2232	vm_pindex_t end_pindex, pindex, tpindex;
2233	int depth, locked_depth;
2234
2235	KASSERT((offset & PAGE_MASK) == 0,
2236	    ("vm_object_unwire: offset is not page aligned"));
2237	KASSERT((length & PAGE_MASK) == 0,
2238	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2239	/* The wired count of a fictitious page never changes. */
2240	if ((object->flags & OBJ_FICTITIOUS) != 0)
2241		return;
2242	pindex = OFF_TO_IDX(offset);
2243	end_pindex = pindex + atop(length);
2244	locked_depth = 1;
2245	VM_OBJECT_RLOCK(object);
2246	m = vm_page_find_least(object, pindex);
2247	while (pindex < end_pindex) {
2248		if (m == NULL || pindex < m->pindex) {
2249			/*
2250			 * The first object in the shadow chain doesn't
2251			 * contain a page at the current index.  Therefore,
2252			 * the page must exist in a backing object.
2253			 */
2254			tobject = object;
2255			tpindex = pindex;
2256			depth = 0;
2257			do {
2258				tpindex +=
2259				    OFF_TO_IDX(tobject->backing_object_offset);
2260				tobject = tobject->backing_object;
2261				KASSERT(tobject != NULL,
2262				    ("vm_object_unwire: missing page"));
2263				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2264					goto next_page;
2265				depth++;
2266				if (depth == locked_depth) {
2267					locked_depth++;
2268					VM_OBJECT_RLOCK(tobject);
2269				}
2270			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2271			    NULL);
2272		} else {
2273			tm = m;
2274			m = TAILQ_NEXT(m, listq);
2275		}
2276		vm_page_lock(tm);
2277		vm_page_unwire(tm, queue);
2278		vm_page_unlock(tm);
2279next_page:
2280		pindex++;
2281	}
2282	/* Release the accumulated object locks. */
2283	for (depth = 0; depth < locked_depth; depth++) {
2284		tobject = object->backing_object;
2285		VM_OBJECT_RUNLOCK(object);
2286		object = tobject;
2287	}
2288}
2289
2290#include "opt_ddb.h"
2291#ifdef DDB
2292#include <sys/kernel.h>
2293
2294#include <sys/cons.h>
2295
2296#include <ddb/ddb.h>
2297
2298static int
2299_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2300{
2301	vm_map_t tmpm;
2302	vm_map_entry_t tmpe;
2303	vm_object_t obj;
2304	int entcount;
2305
2306	if (map == 0)
2307		return 0;
2308
2309	if (entry == 0) {
2310		tmpe = map->header.next;
2311		entcount = map->nentries;
2312		while (entcount-- && (tmpe != &map->header)) {
2313			if (_vm_object_in_map(map, object, tmpe)) {
2314				return 1;
2315			}
2316			tmpe = tmpe->next;
2317		}
2318	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2319		tmpm = entry->object.sub_map;
2320		tmpe = tmpm->header.next;
2321		entcount = tmpm->nentries;
2322		while (entcount-- && tmpe != &tmpm->header) {
2323			if (_vm_object_in_map(tmpm, object, tmpe)) {
2324				return 1;
2325			}
2326			tmpe = tmpe->next;
2327		}
2328	} else if ((obj = entry->object.vm_object) != NULL) {
2329		for (; obj; obj = obj->backing_object)
2330			if (obj == object) {
2331				return 1;
2332			}
2333	}
2334	return 0;
2335}
2336
2337static int
2338vm_object_in_map(vm_object_t object)
2339{
2340	struct proc *p;
2341
2342	/* sx_slock(&allproc_lock); */
2343	FOREACH_PROC_IN_SYSTEM(p) {
2344		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2345			continue;
2346		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2347			/* sx_sunlock(&allproc_lock); */
2348			return 1;
2349		}
2350	}
2351	/* sx_sunlock(&allproc_lock); */
2352	if (_vm_object_in_map(kernel_map, object, 0))
2353		return 1;
2354	return 0;
2355}
2356
2357DB_SHOW_COMMAND(vmochk, vm_object_check)
2358{
2359	vm_object_t object;
2360
2361	/*
2362	 * make sure that internal objs are in a map somewhere
2363	 * and none have zero ref counts.
2364	 */
2365	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2366		if (object->handle == NULL &&
2367		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2368			if (object->ref_count == 0) {
2369				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2370					(long)object->size);
2371			}
2372			if (!vm_object_in_map(object)) {
2373				db_printf(
2374			"vmochk: internal obj is not in a map: "
2375			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2376				    object->ref_count, (u_long)object->size,
2377				    (u_long)object->size,
2378				    (void *)object->backing_object);
2379			}
2380		}
2381	}
2382}
2383
2384/*
2385 *	vm_object_print:	[ debug ]
2386 */
2387DB_SHOW_COMMAND(object, vm_object_print_static)
2388{
2389	/* XXX convert args. */
2390	vm_object_t object = (vm_object_t)addr;
2391	boolean_t full = have_addr;
2392
2393	vm_page_t p;
2394
2395	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2396#define	count	was_count
2397
2398	int count;
2399
2400	if (object == NULL)
2401		return;
2402
2403	db_iprintf(
2404	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2405	    object, (int)object->type, (uintmax_t)object->size,
2406	    object->resident_page_count, object->ref_count, object->flags,
2407	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2408	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2409	    object->shadow_count,
2410	    object->backing_object ? object->backing_object->ref_count : 0,
2411	    object->backing_object, (uintmax_t)object->backing_object_offset);
2412
2413	if (!full)
2414		return;
2415
2416	db_indent += 2;
2417	count = 0;
2418	TAILQ_FOREACH(p, &object->memq, listq) {
2419		if (count == 0)
2420			db_iprintf("memory:=");
2421		else if (count == 6) {
2422			db_printf("\n");
2423			db_iprintf(" ...");
2424			count = 0;
2425		} else
2426			db_printf(",");
2427		count++;
2428
2429		db_printf("(off=0x%jx,page=0x%jx)",
2430		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2431	}
2432	if (count != 0)
2433		db_printf("\n");
2434	db_indent -= 2;
2435}
2436
2437/* XXX. */
2438#undef count
2439
2440/* XXX need this non-static entry for calling from vm_map_print. */
2441void
2442vm_object_print(
2443        /* db_expr_t */ long addr,
2444	boolean_t have_addr,
2445	/* db_expr_t */ long count,
2446	char *modif)
2447{
2448	vm_object_print_static(addr, have_addr, count, modif);
2449}
2450
2451DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2452{
2453	vm_object_t object;
2454	vm_pindex_t fidx;
2455	vm_paddr_t pa;
2456	vm_page_t m, prev_m;
2457	int rcount, nl, c;
2458
2459	nl = 0;
2460	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2461		db_printf("new object: %p\n", (void *)object);
2462		if (nl > 18) {
2463			c = cngetc();
2464			if (c != ' ')
2465				return;
2466			nl = 0;
2467		}
2468		nl++;
2469		rcount = 0;
2470		fidx = 0;
2471		pa = -1;
2472		TAILQ_FOREACH(m, &object->memq, listq) {
2473			if (m->pindex > 128)
2474				break;
2475			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2476			    prev_m->pindex + 1 != m->pindex) {
2477				if (rcount) {
2478					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2479						(long)fidx, rcount, (long)pa);
2480					if (nl > 18) {
2481						c = cngetc();
2482						if (c != ' ')
2483							return;
2484						nl = 0;
2485					}
2486					nl++;
2487					rcount = 0;
2488				}
2489			}
2490			if (rcount &&
2491				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2492				++rcount;
2493				continue;
2494			}
2495			if (rcount) {
2496				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2497					(long)fidx, rcount, (long)pa);
2498				if (nl > 18) {
2499					c = cngetc();
2500					if (c != ' ')
2501						return;
2502					nl = 0;
2503				}
2504				nl++;
2505			}
2506			fidx = m->pindex;
2507			pa = VM_PAGE_TO_PHYS(m);
2508			rcount = 1;
2509		}
2510		if (rcount) {
2511			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2512				(long)fidx, rcount, (long)pa);
2513			if (nl > 18) {
2514				c = cngetc();
2515				if (c != ' ')
2516					return;
2517				nl = 0;
2518			}
2519			nl++;
2520		}
2521	}
2522}
2523#endif /* DDB */
2524