vm_object.c revision 278571
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_object.c 278571 2015-02-11 09:02:21Z kib $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/vnode.h>
83#include <sys/vmmeter.h>
84#include <sys/sx.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_radix.h>
98#include <vm/vm_reserv.h>
99#include <vm/uma.h>
100
101static int old_msync;
102SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103    "Use old (insecure) msync behavior");
104
105static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106		    int pagerflags, int flags, boolean_t *clearobjflags,
107		    boolean_t *eio);
108static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109		    boolean_t *clearobjflags);
110static void	vm_object_qcollapse(vm_object_t object);
111static void	vm_object_vndeallocate(vm_object_t object);
112
113/*
114 *	Virtual memory objects maintain the actual data
115 *	associated with allocated virtual memory.  A given
116 *	page of memory exists within exactly one object.
117 *
118 *	An object is only deallocated when all "references"
119 *	are given up.  Only one "reference" to a given
120 *	region of an object should be writeable.
121 *
122 *	Associated with each object is a list of all resident
123 *	memory pages belonging to that object; this list is
124 *	maintained by the "vm_page" module, and locked by the object's
125 *	lock.
126 *
127 *	Each object also records a "pager" routine which is
128 *	used to retrieve (and store) pages to the proper backing
129 *	storage.  In addition, objects may be backed by other
130 *	objects from which they were virtual-copied.
131 *
132 *	The only items within the object structure which are
133 *	modified after time of creation are:
134 *		reference count		locked by object's lock
135 *		pager routine		locked by object's lock
136 *
137 */
138
139struct object_q vm_object_list;
140struct mtx vm_object_list_mtx;	/* lock for object list and count */
141
142struct vm_object kernel_object_store;
143struct vm_object kmem_object_store;
144
145static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146    "VM object stats");
147
148static long object_collapses;
149SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150    &object_collapses, 0, "VM object collapses");
151
152static long object_bypasses;
153SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154    &object_bypasses, 0, "VM object bypasses");
155
156static uma_zone_t obj_zone;
157
158static int vm_object_zinit(void *mem, int size, int flags);
159
160#ifdef INVARIANTS
161static void vm_object_zdtor(void *mem, int size, void *arg);
162
163static void
164vm_object_zdtor(void *mem, int size, void *arg)
165{
166	vm_object_t object;
167
168	object = (vm_object_t)mem;
169	KASSERT(TAILQ_EMPTY(&object->memq),
170	    ("object %p has resident pages in its memq", object));
171	KASSERT(vm_radix_is_empty(&object->rtree),
172	    ("object %p has resident pages in its trie", object));
173#if VM_NRESERVLEVEL > 0
174	KASSERT(LIST_EMPTY(&object->rvq),
175	    ("object %p has reservations",
176	    object));
177#endif
178	KASSERT(vm_object_cache_is_empty(object),
179	    ("object %p has cached pages",
180	    object));
181	KASSERT(object->paging_in_progress == 0,
182	    ("object %p paging_in_progress = %d",
183	    object, object->paging_in_progress));
184	KASSERT(object->resident_page_count == 0,
185	    ("object %p resident_page_count = %d",
186	    object, object->resident_page_count));
187	KASSERT(object->shadow_count == 0,
188	    ("object %p shadow_count = %d",
189	    object, object->shadow_count));
190}
191#endif
192
193static int
194vm_object_zinit(void *mem, int size, int flags)
195{
196	vm_object_t object;
197
198	object = (vm_object_t)mem;
199	bzero(&object->lock, sizeof(object->lock));
200	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201
202	/* These are true for any object that has been freed */
203	object->rtree.rt_root = 0;
204	object->rtree.rt_flags = 0;
205	object->paging_in_progress = 0;
206	object->resident_page_count = 0;
207	object->shadow_count = 0;
208	object->cache.rt_root = 0;
209	object->cache.rt_flags = 0;
210	return (0);
211}
212
213static void
214_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215{
216
217	TAILQ_INIT(&object->memq);
218	LIST_INIT(&object->shadow_head);
219
220	object->type = type;
221	switch (type) {
222	case OBJT_DEAD:
223		panic("_vm_object_allocate: can't create OBJT_DEAD");
224	case OBJT_DEFAULT:
225	case OBJT_SWAP:
226		object->flags = OBJ_ONEMAPPING;
227		break;
228	case OBJT_DEVICE:
229	case OBJT_SG:
230		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
231		break;
232	case OBJT_MGTDEVICE:
233		object->flags = OBJ_FICTITIOUS;
234		break;
235	case OBJT_PHYS:
236		object->flags = OBJ_UNMANAGED;
237		break;
238	case OBJT_VNODE:
239		object->flags = 0;
240		break;
241	default:
242		panic("_vm_object_allocate: type %d is undefined", type);
243	}
244	object->size = size;
245	object->generation = 1;
246	object->ref_count = 1;
247	object->memattr = VM_MEMATTR_DEFAULT;
248	object->cred = NULL;
249	object->charge = 0;
250	object->handle = NULL;
251	object->backing_object = NULL;
252	object->backing_object_offset = (vm_ooffset_t) 0;
253#if VM_NRESERVLEVEL > 0
254	LIST_INIT(&object->rvq);
255#endif
256
257	mtx_lock(&vm_object_list_mtx);
258	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
259	mtx_unlock(&vm_object_list_mtx);
260}
261
262/*
263 *	vm_object_init:
264 *
265 *	Initialize the VM objects module.
266 */
267void
268vm_object_init(void)
269{
270	TAILQ_INIT(&vm_object_list);
271	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
272
273	rw_init(&kernel_object->lock, "kernel vm object");
274	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
275	    kernel_object);
276#if VM_NRESERVLEVEL > 0
277	kernel_object->flags |= OBJ_COLORED;
278	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
279#endif
280
281	rw_init(&kmem_object->lock, "kmem vm object");
282	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283	    kmem_object);
284#if VM_NRESERVLEVEL > 0
285	kmem_object->flags |= OBJ_COLORED;
286	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287#endif
288
289	/*
290	 * The lock portion of struct vm_object must be type stable due
291	 * to vm_pageout_fallback_object_lock locking a vm object
292	 * without holding any references to it.
293	 */
294	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
295#ifdef INVARIANTS
296	    vm_object_zdtor,
297#else
298	    NULL,
299#endif
300	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
301
302	vm_radix_init();
303}
304
305void
306vm_object_clear_flag(vm_object_t object, u_short bits)
307{
308
309	VM_OBJECT_ASSERT_WLOCKED(object);
310	object->flags &= ~bits;
311}
312
313/*
314 *	Sets the default memory attribute for the specified object.  Pages
315 *	that are allocated to this object are by default assigned this memory
316 *	attribute.
317 *
318 *	Presently, this function must be called before any pages are allocated
319 *	to the object.  In the future, this requirement may be relaxed for
320 *	"default" and "swap" objects.
321 */
322int
323vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
324{
325
326	VM_OBJECT_ASSERT_WLOCKED(object);
327	switch (object->type) {
328	case OBJT_DEFAULT:
329	case OBJT_DEVICE:
330	case OBJT_MGTDEVICE:
331	case OBJT_PHYS:
332	case OBJT_SG:
333	case OBJT_SWAP:
334	case OBJT_VNODE:
335		if (!TAILQ_EMPTY(&object->memq))
336			return (KERN_FAILURE);
337		break;
338	case OBJT_DEAD:
339		return (KERN_INVALID_ARGUMENT);
340	default:
341		panic("vm_object_set_memattr: object %p is of undefined type",
342		    object);
343	}
344	object->memattr = memattr;
345	return (KERN_SUCCESS);
346}
347
348void
349vm_object_pip_add(vm_object_t object, short i)
350{
351
352	VM_OBJECT_ASSERT_WLOCKED(object);
353	object->paging_in_progress += i;
354}
355
356void
357vm_object_pip_subtract(vm_object_t object, short i)
358{
359
360	VM_OBJECT_ASSERT_WLOCKED(object);
361	object->paging_in_progress -= i;
362}
363
364void
365vm_object_pip_wakeup(vm_object_t object)
366{
367
368	VM_OBJECT_ASSERT_WLOCKED(object);
369	object->paging_in_progress--;
370	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
371		vm_object_clear_flag(object, OBJ_PIPWNT);
372		wakeup(object);
373	}
374}
375
376void
377vm_object_pip_wakeupn(vm_object_t object, short i)
378{
379
380	VM_OBJECT_ASSERT_WLOCKED(object);
381	if (i)
382		object->paging_in_progress -= i;
383	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
384		vm_object_clear_flag(object, OBJ_PIPWNT);
385		wakeup(object);
386	}
387}
388
389void
390vm_object_pip_wait(vm_object_t object, char *waitid)
391{
392
393	VM_OBJECT_ASSERT_WLOCKED(object);
394	while (object->paging_in_progress) {
395		object->flags |= OBJ_PIPWNT;
396		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
397	}
398}
399
400/*
401 *	vm_object_allocate:
402 *
403 *	Returns a new object with the given size.
404 */
405vm_object_t
406vm_object_allocate(objtype_t type, vm_pindex_t size)
407{
408	vm_object_t object;
409
410	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
411	_vm_object_allocate(type, size, object);
412	return (object);
413}
414
415
416/*
417 *	vm_object_reference:
418 *
419 *	Gets another reference to the given object.  Note: OBJ_DEAD
420 *	objects can be referenced during final cleaning.
421 */
422void
423vm_object_reference(vm_object_t object)
424{
425	if (object == NULL)
426		return;
427	VM_OBJECT_WLOCK(object);
428	vm_object_reference_locked(object);
429	VM_OBJECT_WUNLOCK(object);
430}
431
432/*
433 *	vm_object_reference_locked:
434 *
435 *	Gets another reference to the given object.
436 *
437 *	The object must be locked.
438 */
439void
440vm_object_reference_locked(vm_object_t object)
441{
442	struct vnode *vp;
443
444	VM_OBJECT_ASSERT_WLOCKED(object);
445	object->ref_count++;
446	if (object->type == OBJT_VNODE) {
447		vp = object->handle;
448		vref(vp);
449	}
450}
451
452/*
453 * Handle deallocating an object of type OBJT_VNODE.
454 */
455static void
456vm_object_vndeallocate(vm_object_t object)
457{
458	struct vnode *vp = (struct vnode *) object->handle;
459
460	VM_OBJECT_ASSERT_WLOCKED(object);
461	KASSERT(object->type == OBJT_VNODE,
462	    ("vm_object_vndeallocate: not a vnode object"));
463	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
464#ifdef INVARIANTS
465	if (object->ref_count == 0) {
466		vprint("vm_object_vndeallocate", vp);
467		panic("vm_object_vndeallocate: bad object reference count");
468	}
469#endif
470
471	/*
472	 * The test for text of vp vnode does not need a bypass to
473	 * reach right VV_TEXT there, since it is obtained from
474	 * object->handle.
475	 */
476	if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
477		object->ref_count--;
478		VM_OBJECT_WUNLOCK(object);
479		/* vrele may need the vnode lock. */
480		vrele(vp);
481	} else {
482		vhold(vp);
483		VM_OBJECT_WUNLOCK(object);
484		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
485		vdrop(vp);
486		VM_OBJECT_WLOCK(object);
487		object->ref_count--;
488		if (object->type == OBJT_DEAD) {
489			VM_OBJECT_WUNLOCK(object);
490			VOP_UNLOCK(vp, 0);
491		} else {
492			if (object->ref_count == 0)
493				VOP_UNSET_TEXT(vp);
494			VM_OBJECT_WUNLOCK(object);
495			vput(vp);
496		}
497	}
498}
499
500/*
501 *	vm_object_deallocate:
502 *
503 *	Release a reference to the specified object,
504 *	gained either through a vm_object_allocate
505 *	or a vm_object_reference call.  When all references
506 *	are gone, storage associated with this object
507 *	may be relinquished.
508 *
509 *	No object may be locked.
510 */
511void
512vm_object_deallocate(vm_object_t object)
513{
514	vm_object_t temp;
515	struct vnode *vp;
516
517	while (object != NULL) {
518		VM_OBJECT_WLOCK(object);
519		if (object->type == OBJT_VNODE) {
520			vm_object_vndeallocate(object);
521			return;
522		}
523
524		KASSERT(object->ref_count != 0,
525			("vm_object_deallocate: object deallocated too many times: %d", object->type));
526
527		/*
528		 * If the reference count goes to 0 we start calling
529		 * vm_object_terminate() on the object chain.
530		 * A ref count of 1 may be a special case depending on the
531		 * shadow count being 0 or 1.
532		 */
533		object->ref_count--;
534		if (object->ref_count > 1) {
535			VM_OBJECT_WUNLOCK(object);
536			return;
537		} else if (object->ref_count == 1) {
538			if (object->type == OBJT_SWAP &&
539			    (object->flags & OBJ_TMPFS) != 0) {
540				vp = object->un_pager.swp.swp_tmpfs;
541				vhold(vp);
542				VM_OBJECT_WUNLOCK(object);
543				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
544				VM_OBJECT_WLOCK(object);
545				if (object->type == OBJT_DEAD ||
546				    object->ref_count != 1) {
547					VM_OBJECT_WUNLOCK(object);
548					VOP_UNLOCK(vp, 0);
549					vdrop(vp);
550					return;
551				}
552				if ((object->flags & OBJ_TMPFS) != 0)
553					VOP_UNSET_TEXT(vp);
554				VOP_UNLOCK(vp, 0);
555				vdrop(vp);
556			}
557			if (object->shadow_count == 0 &&
558			    object->handle == NULL &&
559			    (object->type == OBJT_DEFAULT ||
560			    (object->type == OBJT_SWAP &&
561			    (object->flags & OBJ_TMPFS_NODE) == 0))) {
562				vm_object_set_flag(object, OBJ_ONEMAPPING);
563			} else if ((object->shadow_count == 1) &&
564			    (object->handle == NULL) &&
565			    (object->type == OBJT_DEFAULT ||
566			     object->type == OBJT_SWAP)) {
567				vm_object_t robject;
568
569				robject = LIST_FIRST(&object->shadow_head);
570				KASSERT(robject != NULL,
571				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
572					 object->ref_count,
573					 object->shadow_count));
574				KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
575				    ("shadowed tmpfs v_object %p", object));
576				if (!VM_OBJECT_TRYWLOCK(robject)) {
577					/*
578					 * Avoid a potential deadlock.
579					 */
580					object->ref_count++;
581					VM_OBJECT_WUNLOCK(object);
582					/*
583					 * More likely than not the thread
584					 * holding robject's lock has lower
585					 * priority than the current thread.
586					 * Let the lower priority thread run.
587					 */
588					pause("vmo_de", 1);
589					continue;
590				}
591				/*
592				 * Collapse object into its shadow unless its
593				 * shadow is dead.  In that case, object will
594				 * be deallocated by the thread that is
595				 * deallocating its shadow.
596				 */
597				if ((robject->flags & OBJ_DEAD) == 0 &&
598				    (robject->handle == NULL) &&
599				    (robject->type == OBJT_DEFAULT ||
600				     robject->type == OBJT_SWAP)) {
601
602					robject->ref_count++;
603retry:
604					if (robject->paging_in_progress) {
605						VM_OBJECT_WUNLOCK(object);
606						vm_object_pip_wait(robject,
607						    "objde1");
608						temp = robject->backing_object;
609						if (object == temp) {
610							VM_OBJECT_WLOCK(object);
611							goto retry;
612						}
613					} else if (object->paging_in_progress) {
614						VM_OBJECT_WUNLOCK(robject);
615						object->flags |= OBJ_PIPWNT;
616						VM_OBJECT_SLEEP(object, object,
617						    PDROP | PVM, "objde2", 0);
618						VM_OBJECT_WLOCK(robject);
619						temp = robject->backing_object;
620						if (object == temp) {
621							VM_OBJECT_WLOCK(object);
622							goto retry;
623						}
624					} else
625						VM_OBJECT_WUNLOCK(object);
626
627					if (robject->ref_count == 1) {
628						robject->ref_count--;
629						object = robject;
630						goto doterm;
631					}
632					object = robject;
633					vm_object_collapse(object);
634					VM_OBJECT_WUNLOCK(object);
635					continue;
636				}
637				VM_OBJECT_WUNLOCK(robject);
638			}
639			VM_OBJECT_WUNLOCK(object);
640			return;
641		}
642doterm:
643		temp = object->backing_object;
644		if (temp != NULL) {
645			KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
646			    ("shadowed tmpfs v_object 2 %p", object));
647			VM_OBJECT_WLOCK(temp);
648			LIST_REMOVE(object, shadow_list);
649			temp->shadow_count--;
650			VM_OBJECT_WUNLOCK(temp);
651			object->backing_object = NULL;
652		}
653		/*
654		 * Don't double-terminate, we could be in a termination
655		 * recursion due to the terminate having to sync data
656		 * to disk.
657		 */
658		if ((object->flags & OBJ_DEAD) == 0)
659			vm_object_terminate(object);
660		else
661			VM_OBJECT_WUNLOCK(object);
662		object = temp;
663	}
664}
665
666/*
667 *	vm_object_destroy removes the object from the global object list
668 *      and frees the space for the object.
669 */
670void
671vm_object_destroy(vm_object_t object)
672{
673
674	/*
675	 * Remove the object from the global object list.
676	 */
677	mtx_lock(&vm_object_list_mtx);
678	TAILQ_REMOVE(&vm_object_list, object, object_list);
679	mtx_unlock(&vm_object_list_mtx);
680
681	/*
682	 * Release the allocation charge.
683	 */
684	if (object->cred != NULL) {
685		KASSERT(object->type == OBJT_DEFAULT ||
686		    object->type == OBJT_SWAP,
687		    ("vm_object_terminate: non-swap obj %p has cred",
688		     object));
689		swap_release_by_cred(object->charge, object->cred);
690		object->charge = 0;
691		crfree(object->cred);
692		object->cred = NULL;
693	}
694
695	/*
696	 * Free the space for the object.
697	 */
698	uma_zfree(obj_zone, object);
699}
700
701/*
702 *	vm_object_terminate actually destroys the specified object, freeing
703 *	up all previously used resources.
704 *
705 *	The object must be locked.
706 *	This routine may block.
707 */
708void
709vm_object_terminate(vm_object_t object)
710{
711	vm_page_t p, p_next;
712
713	VM_OBJECT_ASSERT_WLOCKED(object);
714
715	/*
716	 * Make sure no one uses us.
717	 */
718	vm_object_set_flag(object, OBJ_DEAD);
719
720	/*
721	 * wait for the pageout daemon to be done with the object
722	 */
723	vm_object_pip_wait(object, "objtrm");
724
725	KASSERT(!object->paging_in_progress,
726		("vm_object_terminate: pageout in progress"));
727
728	/*
729	 * Clean and free the pages, as appropriate. All references to the
730	 * object are gone, so we don't need to lock it.
731	 */
732	if (object->type == OBJT_VNODE) {
733		struct vnode *vp = (struct vnode *)object->handle;
734
735		/*
736		 * Clean pages and flush buffers.
737		 */
738		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
739		VM_OBJECT_WUNLOCK(object);
740
741		vinvalbuf(vp, V_SAVE, 0, 0);
742
743		VM_OBJECT_WLOCK(object);
744	}
745
746	KASSERT(object->ref_count == 0,
747		("vm_object_terminate: object with references, ref_count=%d",
748		object->ref_count));
749
750	/*
751	 * Free any remaining pageable pages.  This also removes them from the
752	 * paging queues.  However, don't free wired pages, just remove them
753	 * from the object.  Rather than incrementally removing each page from
754	 * the object, the page and object are reset to any empty state.
755	 */
756	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
757		vm_page_assert_unbusied(p);
758		vm_page_lock(p);
759		/*
760		 * Optimize the page's removal from the object by resetting
761		 * its "object" field.  Specifically, if the page is not
762		 * wired, then the effect of this assignment is that
763		 * vm_page_free()'s call to vm_page_remove() will return
764		 * immediately without modifying the page or the object.
765		 */
766		p->object = NULL;
767		if (p->wire_count == 0) {
768			vm_page_free(p);
769			PCPU_INC(cnt.v_pfree);
770		}
771		vm_page_unlock(p);
772	}
773	/*
774	 * If the object contained any pages, then reset it to an empty state.
775	 * None of the object's fields, including "resident_page_count", were
776	 * modified by the preceding loop.
777	 */
778	if (object->resident_page_count != 0) {
779		vm_radix_reclaim_allnodes(&object->rtree);
780		TAILQ_INIT(&object->memq);
781		object->resident_page_count = 0;
782		if (object->type == OBJT_VNODE)
783			vdrop(object->handle);
784	}
785
786#if VM_NRESERVLEVEL > 0
787	if (__predict_false(!LIST_EMPTY(&object->rvq)))
788		vm_reserv_break_all(object);
789#endif
790	if (__predict_false(!vm_object_cache_is_empty(object)))
791		vm_page_cache_free(object, 0, 0);
792
793	/*
794	 * Let the pager know object is dead.
795	 */
796	vm_pager_deallocate(object);
797	VM_OBJECT_WUNLOCK(object);
798
799	vm_object_destroy(object);
800}
801
802/*
803 * Make the page read-only so that we can clear the object flags.  However, if
804 * this is a nosync mmap then the object is likely to stay dirty so do not
805 * mess with the page and do not clear the object flags.  Returns TRUE if the
806 * page should be flushed, and FALSE otherwise.
807 */
808static boolean_t
809vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
810{
811
812	/*
813	 * If we have been asked to skip nosync pages and this is a
814	 * nosync page, skip it.  Note that the object flags were not
815	 * cleared in this case so we do not have to set them.
816	 */
817	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
818		*clearobjflags = FALSE;
819		return (FALSE);
820	} else {
821		pmap_remove_write(p);
822		return (p->dirty != 0);
823	}
824}
825
826/*
827 *	vm_object_page_clean
828 *
829 *	Clean all dirty pages in the specified range of object.  Leaves page
830 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
831 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
832 *	leaving the object dirty.
833 *
834 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
835 *	synchronous clustering mode implementation.
836 *
837 *	Odd semantics: if start == end, we clean everything.
838 *
839 *	The object must be locked.
840 *
841 *	Returns FALSE if some page from the range was not written, as
842 *	reported by the pager, and TRUE otherwise.
843 */
844boolean_t
845vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
846    int flags)
847{
848	vm_page_t np, p;
849	vm_pindex_t pi, tend, tstart;
850	int curgeneration, n, pagerflags;
851	boolean_t clearobjflags, eio, res;
852
853	VM_OBJECT_ASSERT_WLOCKED(object);
854
855	/*
856	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
857	 * objects.  The check below prevents the function from
858	 * operating on non-vnode objects.
859	 */
860	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
861	    object->resident_page_count == 0)
862		return (TRUE);
863
864	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
865	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
866	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
867
868	tstart = OFF_TO_IDX(start);
869	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
870	clearobjflags = tstart == 0 && tend >= object->size;
871	res = TRUE;
872
873rescan:
874	curgeneration = object->generation;
875
876	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
877		pi = p->pindex;
878		if (pi >= tend)
879			break;
880		np = TAILQ_NEXT(p, listq);
881		if (p->valid == 0)
882			continue;
883		if (vm_page_sleep_if_busy(p, "vpcwai")) {
884			if (object->generation != curgeneration) {
885				if ((flags & OBJPC_SYNC) != 0)
886					goto rescan;
887				else
888					clearobjflags = FALSE;
889			}
890			np = vm_page_find_least(object, pi);
891			continue;
892		}
893		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
894			continue;
895
896		n = vm_object_page_collect_flush(object, p, pagerflags,
897		    flags, &clearobjflags, &eio);
898		if (eio) {
899			res = FALSE;
900			clearobjflags = FALSE;
901		}
902		if (object->generation != curgeneration) {
903			if ((flags & OBJPC_SYNC) != 0)
904				goto rescan;
905			else
906				clearobjflags = FALSE;
907		}
908
909		/*
910		 * If the VOP_PUTPAGES() did a truncated write, so
911		 * that even the first page of the run is not fully
912		 * written, vm_pageout_flush() returns 0 as the run
913		 * length.  Since the condition that caused truncated
914		 * write may be permanent, e.g. exhausted free space,
915		 * accepting n == 0 would cause an infinite loop.
916		 *
917		 * Forwarding the iterator leaves the unwritten page
918		 * behind, but there is not much we can do there if
919		 * filesystem refuses to write it.
920		 */
921		if (n == 0) {
922			n = 1;
923			clearobjflags = FALSE;
924		}
925		np = vm_page_find_least(object, pi + n);
926	}
927#if 0
928	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
929#endif
930
931	if (clearobjflags)
932		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
933	return (res);
934}
935
936static int
937vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
938    int flags, boolean_t *clearobjflags, boolean_t *eio)
939{
940	vm_page_t ma[vm_pageout_page_count], p_first, tp;
941	int count, i, mreq, runlen;
942
943	vm_page_lock_assert(p, MA_NOTOWNED);
944	VM_OBJECT_ASSERT_WLOCKED(object);
945
946	count = 1;
947	mreq = 0;
948
949	for (tp = p; count < vm_pageout_page_count; count++) {
950		tp = vm_page_next(tp);
951		if (tp == NULL || vm_page_busied(tp))
952			break;
953		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
954			break;
955	}
956
957	for (p_first = p; count < vm_pageout_page_count; count++) {
958		tp = vm_page_prev(p_first);
959		if (tp == NULL || vm_page_busied(tp))
960			break;
961		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
962			break;
963		p_first = tp;
964		mreq++;
965	}
966
967	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
968		ma[i] = tp;
969
970	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
971	return (runlen);
972}
973
974/*
975 * Note that there is absolutely no sense in writing out
976 * anonymous objects, so we track down the vnode object
977 * to write out.
978 * We invalidate (remove) all pages from the address space
979 * for semantic correctness.
980 *
981 * If the backing object is a device object with unmanaged pages, then any
982 * mappings to the specified range of pages must be removed before this
983 * function is called.
984 *
985 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
986 * may start out with a NULL object.
987 */
988boolean_t
989vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
990    boolean_t syncio, boolean_t invalidate)
991{
992	vm_object_t backing_object;
993	struct vnode *vp;
994	struct mount *mp;
995	int error, flags, fsync_after;
996	boolean_t res;
997
998	if (object == NULL)
999		return (TRUE);
1000	res = TRUE;
1001	error = 0;
1002	VM_OBJECT_WLOCK(object);
1003	while ((backing_object = object->backing_object) != NULL) {
1004		VM_OBJECT_WLOCK(backing_object);
1005		offset += object->backing_object_offset;
1006		VM_OBJECT_WUNLOCK(object);
1007		object = backing_object;
1008		if (object->size < OFF_TO_IDX(offset + size))
1009			size = IDX_TO_OFF(object->size) - offset;
1010	}
1011	/*
1012	 * Flush pages if writing is allowed, invalidate them
1013	 * if invalidation requested.  Pages undergoing I/O
1014	 * will be ignored by vm_object_page_remove().
1015	 *
1016	 * We cannot lock the vnode and then wait for paging
1017	 * to complete without deadlocking against vm_fault.
1018	 * Instead we simply call vm_object_page_remove() and
1019	 * allow it to block internally on a page-by-page
1020	 * basis when it encounters pages undergoing async
1021	 * I/O.
1022	 */
1023	if (object->type == OBJT_VNODE &&
1024	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1025		vp = object->handle;
1026		VM_OBJECT_WUNLOCK(object);
1027		(void) vn_start_write(vp, &mp, V_WAIT);
1028		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1029		if (syncio && !invalidate && offset == 0 &&
1030		    OFF_TO_IDX(size) == object->size) {
1031			/*
1032			 * If syncing the whole mapping of the file,
1033			 * it is faster to schedule all the writes in
1034			 * async mode, also allowing the clustering,
1035			 * and then wait for i/o to complete.
1036			 */
1037			flags = 0;
1038			fsync_after = TRUE;
1039		} else {
1040			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1041			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1042			fsync_after = FALSE;
1043		}
1044		VM_OBJECT_WLOCK(object);
1045		res = vm_object_page_clean(object, offset, offset + size,
1046		    flags);
1047		VM_OBJECT_WUNLOCK(object);
1048		if (fsync_after)
1049			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1050		VOP_UNLOCK(vp, 0);
1051		vn_finished_write(mp);
1052		if (error != 0)
1053			res = FALSE;
1054		VM_OBJECT_WLOCK(object);
1055	}
1056	if ((object->type == OBJT_VNODE ||
1057	     object->type == OBJT_DEVICE) && invalidate) {
1058		if (object->type == OBJT_DEVICE)
1059			/*
1060			 * The option OBJPR_NOTMAPPED must be passed here
1061			 * because vm_object_page_remove() cannot remove
1062			 * unmanaged mappings.
1063			 */
1064			flags = OBJPR_NOTMAPPED;
1065		else if (old_msync)
1066			flags = OBJPR_NOTWIRED;
1067		else
1068			flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1069		vm_object_page_remove(object, OFF_TO_IDX(offset),
1070		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1071	}
1072	VM_OBJECT_WUNLOCK(object);
1073	return (res);
1074}
1075
1076/*
1077 *	vm_object_madvise:
1078 *
1079 *	Implements the madvise function at the object/page level.
1080 *
1081 *	MADV_WILLNEED	(any object)
1082 *
1083 *	    Activate the specified pages if they are resident.
1084 *
1085 *	MADV_DONTNEED	(any object)
1086 *
1087 *	    Deactivate the specified pages if they are resident.
1088 *
1089 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1090 *			 OBJ_ONEMAPPING only)
1091 *
1092 *	    Deactivate and clean the specified pages if they are
1093 *	    resident.  This permits the process to reuse the pages
1094 *	    without faulting or the kernel to reclaim the pages
1095 *	    without I/O.
1096 */
1097void
1098vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1099    int advise)
1100{
1101	vm_pindex_t tpindex;
1102	vm_object_t backing_object, tobject;
1103	vm_page_t m;
1104
1105	if (object == NULL)
1106		return;
1107	VM_OBJECT_WLOCK(object);
1108	/*
1109	 * Locate and adjust resident pages
1110	 */
1111	for (; pindex < end; pindex += 1) {
1112relookup:
1113		tobject = object;
1114		tpindex = pindex;
1115shadowlookup:
1116		/*
1117		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1118		 * and those pages must be OBJ_ONEMAPPING.
1119		 */
1120		if (advise == MADV_FREE) {
1121			if ((tobject->type != OBJT_DEFAULT &&
1122			     tobject->type != OBJT_SWAP) ||
1123			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1124				goto unlock_tobject;
1125			}
1126		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1127			goto unlock_tobject;
1128		m = vm_page_lookup(tobject, tpindex);
1129		if (m == NULL && advise == MADV_WILLNEED) {
1130			/*
1131			 * If the page is cached, reactivate it.
1132			 */
1133			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1134			    VM_ALLOC_NOBUSY);
1135		}
1136		if (m == NULL) {
1137			/*
1138			 * There may be swap even if there is no backing page
1139			 */
1140			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1141				swap_pager_freespace(tobject, tpindex, 1);
1142			/*
1143			 * next object
1144			 */
1145			backing_object = tobject->backing_object;
1146			if (backing_object == NULL)
1147				goto unlock_tobject;
1148			VM_OBJECT_WLOCK(backing_object);
1149			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1150			if (tobject != object)
1151				VM_OBJECT_WUNLOCK(tobject);
1152			tobject = backing_object;
1153			goto shadowlookup;
1154		} else if (m->valid != VM_PAGE_BITS_ALL)
1155			goto unlock_tobject;
1156		/*
1157		 * If the page is not in a normal state, skip it.
1158		 */
1159		vm_page_lock(m);
1160		if (m->hold_count != 0 || m->wire_count != 0) {
1161			vm_page_unlock(m);
1162			goto unlock_tobject;
1163		}
1164		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1165		    ("vm_object_madvise: page %p is fictitious", m));
1166		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1167		    ("vm_object_madvise: page %p is not managed", m));
1168		if (vm_page_busied(m)) {
1169			if (advise == MADV_WILLNEED) {
1170				/*
1171				 * Reference the page before unlocking and
1172				 * sleeping so that the page daemon is less
1173				 * likely to reclaim it.
1174				 */
1175				vm_page_aflag_set(m, PGA_REFERENCED);
1176			}
1177			if (object != tobject)
1178				VM_OBJECT_WUNLOCK(object);
1179			VM_OBJECT_WUNLOCK(tobject);
1180			vm_page_busy_sleep(m, "madvpo");
1181			VM_OBJECT_WLOCK(object);
1182  			goto relookup;
1183		}
1184		if (advise == MADV_WILLNEED) {
1185			vm_page_activate(m);
1186		} else {
1187			vm_page_advise(m, advise);
1188		}
1189		vm_page_unlock(m);
1190		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1191			swap_pager_freespace(tobject, tpindex, 1);
1192unlock_tobject:
1193		if (tobject != object)
1194			VM_OBJECT_WUNLOCK(tobject);
1195	}
1196	VM_OBJECT_WUNLOCK(object);
1197}
1198
1199/*
1200 *	vm_object_shadow:
1201 *
1202 *	Create a new object which is backed by the
1203 *	specified existing object range.  The source
1204 *	object reference is deallocated.
1205 *
1206 *	The new object and offset into that object
1207 *	are returned in the source parameters.
1208 */
1209void
1210vm_object_shadow(
1211	vm_object_t *object,	/* IN/OUT */
1212	vm_ooffset_t *offset,	/* IN/OUT */
1213	vm_size_t length)
1214{
1215	vm_object_t source;
1216	vm_object_t result;
1217
1218	source = *object;
1219
1220	/*
1221	 * Don't create the new object if the old object isn't shared.
1222	 */
1223	if (source != NULL) {
1224		VM_OBJECT_WLOCK(source);
1225		if (source->ref_count == 1 &&
1226		    source->handle == NULL &&
1227		    (source->type == OBJT_DEFAULT ||
1228		     source->type == OBJT_SWAP)) {
1229			VM_OBJECT_WUNLOCK(source);
1230			return;
1231		}
1232		VM_OBJECT_WUNLOCK(source);
1233	}
1234
1235	/*
1236	 * Allocate a new object with the given length.
1237	 */
1238	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1239
1240	/*
1241	 * The new object shadows the source object, adding a reference to it.
1242	 * Our caller changes his reference to point to the new object,
1243	 * removing a reference to the source object.  Net result: no change
1244	 * of reference count.
1245	 *
1246	 * Try to optimize the result object's page color when shadowing
1247	 * in order to maintain page coloring consistency in the combined
1248	 * shadowed object.
1249	 */
1250	result->backing_object = source;
1251	/*
1252	 * Store the offset into the source object, and fix up the offset into
1253	 * the new object.
1254	 */
1255	result->backing_object_offset = *offset;
1256	if (source != NULL) {
1257		VM_OBJECT_WLOCK(source);
1258		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1259		source->shadow_count++;
1260#if VM_NRESERVLEVEL > 0
1261		result->flags |= source->flags & OBJ_COLORED;
1262		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1263		    ((1 << (VM_NFREEORDER - 1)) - 1);
1264#endif
1265		VM_OBJECT_WUNLOCK(source);
1266	}
1267
1268
1269	/*
1270	 * Return the new things
1271	 */
1272	*offset = 0;
1273	*object = result;
1274}
1275
1276/*
1277 *	vm_object_split:
1278 *
1279 * Split the pages in a map entry into a new object.  This affords
1280 * easier removal of unused pages, and keeps object inheritance from
1281 * being a negative impact on memory usage.
1282 */
1283void
1284vm_object_split(vm_map_entry_t entry)
1285{
1286	vm_page_t m, m_next;
1287	vm_object_t orig_object, new_object, source;
1288	vm_pindex_t idx, offidxstart;
1289	vm_size_t size;
1290
1291	orig_object = entry->object.vm_object;
1292	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1293		return;
1294	if (orig_object->ref_count <= 1)
1295		return;
1296	VM_OBJECT_WUNLOCK(orig_object);
1297
1298	offidxstart = OFF_TO_IDX(entry->offset);
1299	size = atop(entry->end - entry->start);
1300
1301	/*
1302	 * If swap_pager_copy() is later called, it will convert new_object
1303	 * into a swap object.
1304	 */
1305	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1306
1307	/*
1308	 * At this point, the new object is still private, so the order in
1309	 * which the original and new objects are locked does not matter.
1310	 */
1311	VM_OBJECT_WLOCK(new_object);
1312	VM_OBJECT_WLOCK(orig_object);
1313	source = orig_object->backing_object;
1314	if (source != NULL) {
1315		VM_OBJECT_WLOCK(source);
1316		if ((source->flags & OBJ_DEAD) != 0) {
1317			VM_OBJECT_WUNLOCK(source);
1318			VM_OBJECT_WUNLOCK(orig_object);
1319			VM_OBJECT_WUNLOCK(new_object);
1320			vm_object_deallocate(new_object);
1321			VM_OBJECT_WLOCK(orig_object);
1322			return;
1323		}
1324		LIST_INSERT_HEAD(&source->shadow_head,
1325				  new_object, shadow_list);
1326		source->shadow_count++;
1327		vm_object_reference_locked(source);	/* for new_object */
1328		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1329		VM_OBJECT_WUNLOCK(source);
1330		new_object->backing_object_offset =
1331			orig_object->backing_object_offset + entry->offset;
1332		new_object->backing_object = source;
1333	}
1334	if (orig_object->cred != NULL) {
1335		new_object->cred = orig_object->cred;
1336		crhold(orig_object->cred);
1337		new_object->charge = ptoa(size);
1338		KASSERT(orig_object->charge >= ptoa(size),
1339		    ("orig_object->charge < 0"));
1340		orig_object->charge -= ptoa(size);
1341	}
1342retry:
1343	m = vm_page_find_least(orig_object, offidxstart);
1344	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1345	    m = m_next) {
1346		m_next = TAILQ_NEXT(m, listq);
1347
1348		/*
1349		 * We must wait for pending I/O to complete before we can
1350		 * rename the page.
1351		 *
1352		 * We do not have to VM_PROT_NONE the page as mappings should
1353		 * not be changed by this operation.
1354		 */
1355		if (vm_page_busied(m)) {
1356			VM_OBJECT_WUNLOCK(new_object);
1357			vm_page_lock(m);
1358			VM_OBJECT_WUNLOCK(orig_object);
1359			vm_page_busy_sleep(m, "spltwt");
1360			VM_OBJECT_WLOCK(orig_object);
1361			VM_OBJECT_WLOCK(new_object);
1362			goto retry;
1363		}
1364
1365		/* vm_page_rename() will handle dirty and cache. */
1366		if (vm_page_rename(m, new_object, idx)) {
1367			VM_OBJECT_WUNLOCK(new_object);
1368			VM_OBJECT_WUNLOCK(orig_object);
1369			VM_WAIT;
1370			VM_OBJECT_WLOCK(orig_object);
1371			VM_OBJECT_WLOCK(new_object);
1372			goto retry;
1373		}
1374#if VM_NRESERVLEVEL > 0
1375		/*
1376		 * If some of the reservation's allocated pages remain with
1377		 * the original object, then transferring the reservation to
1378		 * the new object is neither particularly beneficial nor
1379		 * particularly harmful as compared to leaving the reservation
1380		 * with the original object.  If, however, all of the
1381		 * reservation's allocated pages are transferred to the new
1382		 * object, then transferring the reservation is typically
1383		 * beneficial.  Determining which of these two cases applies
1384		 * would be more costly than unconditionally renaming the
1385		 * reservation.
1386		 */
1387		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1388#endif
1389		if (orig_object->type == OBJT_SWAP)
1390			vm_page_xbusy(m);
1391	}
1392	if (orig_object->type == OBJT_SWAP) {
1393		/*
1394		 * swap_pager_copy() can sleep, in which case the orig_object's
1395		 * and new_object's locks are released and reacquired.
1396		 */
1397		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1398		TAILQ_FOREACH(m, &new_object->memq, listq)
1399			vm_page_xunbusy(m);
1400
1401		/*
1402		 * Transfer any cached pages from orig_object to new_object.
1403		 * If swap_pager_copy() found swapped out pages within the
1404		 * specified range of orig_object, then it changed
1405		 * new_object's type to OBJT_SWAP when it transferred those
1406		 * pages to new_object.  Otherwise, new_object's type
1407		 * should still be OBJT_DEFAULT and orig_object should not
1408		 * contain any cached pages within the specified range.
1409		 */
1410		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1411			vm_page_cache_transfer(orig_object, offidxstart,
1412			    new_object);
1413	}
1414	VM_OBJECT_WUNLOCK(orig_object);
1415	VM_OBJECT_WUNLOCK(new_object);
1416	entry->object.vm_object = new_object;
1417	entry->offset = 0LL;
1418	vm_object_deallocate(orig_object);
1419	VM_OBJECT_WLOCK(new_object);
1420}
1421
1422#define	OBSC_TEST_ALL_SHADOWED	0x0001
1423#define	OBSC_COLLAPSE_NOWAIT	0x0002
1424#define	OBSC_COLLAPSE_WAIT	0x0004
1425
1426static int
1427vm_object_backing_scan(vm_object_t object, int op)
1428{
1429	int r = 1;
1430	vm_page_t p;
1431	vm_object_t backing_object;
1432	vm_pindex_t backing_offset_index;
1433
1434	VM_OBJECT_ASSERT_WLOCKED(object);
1435	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1436
1437	backing_object = object->backing_object;
1438	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1439
1440	/*
1441	 * Initial conditions
1442	 */
1443	if (op & OBSC_TEST_ALL_SHADOWED) {
1444		/*
1445		 * We do not want to have to test for the existence of cache
1446		 * or swap pages in the backing object.  XXX but with the
1447		 * new swapper this would be pretty easy to do.
1448		 *
1449		 * XXX what about anonymous MAP_SHARED memory that hasn't
1450		 * been ZFOD faulted yet?  If we do not test for this, the
1451		 * shadow test may succeed! XXX
1452		 */
1453		if (backing_object->type != OBJT_DEFAULT) {
1454			return (0);
1455		}
1456	}
1457	if (op & OBSC_COLLAPSE_WAIT) {
1458		vm_object_set_flag(backing_object, OBJ_DEAD);
1459	}
1460
1461	/*
1462	 * Our scan
1463	 */
1464	p = TAILQ_FIRST(&backing_object->memq);
1465	while (p) {
1466		vm_page_t next = TAILQ_NEXT(p, listq);
1467		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1468
1469		if (op & OBSC_TEST_ALL_SHADOWED) {
1470			vm_page_t pp;
1471
1472			/*
1473			 * Ignore pages outside the parent object's range
1474			 * and outside the parent object's mapping of the
1475			 * backing object.
1476			 *
1477			 * note that we do not busy the backing object's
1478			 * page.
1479			 */
1480			if (
1481			    p->pindex < backing_offset_index ||
1482			    new_pindex >= object->size
1483			) {
1484				p = next;
1485				continue;
1486			}
1487
1488			/*
1489			 * See if the parent has the page or if the parent's
1490			 * object pager has the page.  If the parent has the
1491			 * page but the page is not valid, the parent's
1492			 * object pager must have the page.
1493			 *
1494			 * If this fails, the parent does not completely shadow
1495			 * the object and we might as well give up now.
1496			 */
1497
1498			pp = vm_page_lookup(object, new_pindex);
1499			if (
1500			    (pp == NULL || pp->valid == 0) &&
1501			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1502			) {
1503				r = 0;
1504				break;
1505			}
1506		}
1507
1508		/*
1509		 * Check for busy page
1510		 */
1511		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1512			vm_page_t pp;
1513
1514			if (op & OBSC_COLLAPSE_NOWAIT) {
1515				if (!p->valid || vm_page_busied(p)) {
1516					p = next;
1517					continue;
1518				}
1519			} else if (op & OBSC_COLLAPSE_WAIT) {
1520				if (vm_page_busied(p)) {
1521					VM_OBJECT_WUNLOCK(object);
1522					vm_page_lock(p);
1523					VM_OBJECT_WUNLOCK(backing_object);
1524					vm_page_busy_sleep(p, "vmocol");
1525					VM_OBJECT_WLOCK(object);
1526					VM_OBJECT_WLOCK(backing_object);
1527					/*
1528					 * If we slept, anything could have
1529					 * happened.  Since the object is
1530					 * marked dead, the backing offset
1531					 * should not have changed so we
1532					 * just restart our scan.
1533					 */
1534					p = TAILQ_FIRST(&backing_object->memq);
1535					continue;
1536				}
1537			}
1538
1539			KASSERT(
1540			    p->object == backing_object,
1541			    ("vm_object_backing_scan: object mismatch")
1542			);
1543
1544			if (
1545			    p->pindex < backing_offset_index ||
1546			    new_pindex >= object->size
1547			) {
1548				if (backing_object->type == OBJT_SWAP)
1549					swap_pager_freespace(backing_object,
1550					    p->pindex, 1);
1551
1552				/*
1553				 * Page is out of the parent object's range, we
1554				 * can simply destroy it.
1555				 */
1556				vm_page_lock(p);
1557				KASSERT(!pmap_page_is_mapped(p),
1558				    ("freeing mapped page %p", p));
1559				if (p->wire_count == 0)
1560					vm_page_free(p);
1561				else
1562					vm_page_remove(p);
1563				vm_page_unlock(p);
1564				p = next;
1565				continue;
1566			}
1567
1568			pp = vm_page_lookup(object, new_pindex);
1569			if (
1570			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1571			    (pp != NULL && pp->valid == 0)
1572			) {
1573				if (backing_object->type == OBJT_SWAP)
1574					swap_pager_freespace(backing_object,
1575					    p->pindex, 1);
1576
1577				/*
1578				 * The page in the parent is not (yet) valid.
1579				 * We don't know anything about the state of
1580				 * the original page.  It might be mapped,
1581				 * so we must avoid the next if here.
1582				 *
1583				 * This is due to a race in vm_fault() where
1584				 * we must unbusy the original (backing_obj)
1585				 * page before we can (re)lock the parent.
1586				 * Hence we can get here.
1587				 */
1588				p = next;
1589				continue;
1590			}
1591			if (
1592			    pp != NULL ||
1593			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1594			) {
1595				if (backing_object->type == OBJT_SWAP)
1596					swap_pager_freespace(backing_object,
1597					    p->pindex, 1);
1598
1599				/*
1600				 * page already exists in parent OR swap exists
1601				 * for this location in the parent.  Destroy
1602				 * the original page from the backing object.
1603				 *
1604				 * Leave the parent's page alone
1605				 */
1606				vm_page_lock(p);
1607				KASSERT(!pmap_page_is_mapped(p),
1608				    ("freeing mapped page %p", p));
1609				if (p->wire_count == 0)
1610					vm_page_free(p);
1611				else
1612					vm_page_remove(p);
1613				vm_page_unlock(p);
1614				p = next;
1615				continue;
1616			}
1617
1618			/*
1619			 * Page does not exist in parent, rename the
1620			 * page from the backing object to the main object.
1621			 *
1622			 * If the page was mapped to a process, it can remain
1623			 * mapped through the rename.
1624			 * vm_page_rename() will handle dirty and cache.
1625			 */
1626			if (vm_page_rename(p, object, new_pindex)) {
1627				if (op & OBSC_COLLAPSE_NOWAIT) {
1628					p = next;
1629					continue;
1630				}
1631				VM_OBJECT_WLOCK(backing_object);
1632				VM_OBJECT_WUNLOCK(object);
1633				VM_WAIT;
1634				VM_OBJECT_WLOCK(object);
1635				VM_OBJECT_WLOCK(backing_object);
1636				p = TAILQ_FIRST(&backing_object->memq);
1637				continue;
1638			}
1639
1640			/* Use the old pindex to free the right page. */
1641			if (backing_object->type == OBJT_SWAP)
1642				swap_pager_freespace(backing_object,
1643				    new_pindex + backing_offset_index, 1);
1644
1645#if VM_NRESERVLEVEL > 0
1646			/*
1647			 * Rename the reservation.
1648			 */
1649			vm_reserv_rename(p, object, backing_object,
1650			    backing_offset_index);
1651#endif
1652		}
1653		p = next;
1654	}
1655	return (r);
1656}
1657
1658
1659/*
1660 * this version of collapse allows the operation to occur earlier and
1661 * when paging_in_progress is true for an object...  This is not a complete
1662 * operation, but should plug 99.9% of the rest of the leaks.
1663 */
1664static void
1665vm_object_qcollapse(vm_object_t object)
1666{
1667	vm_object_t backing_object = object->backing_object;
1668
1669	VM_OBJECT_ASSERT_WLOCKED(object);
1670	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1671
1672	if (backing_object->ref_count != 1)
1673		return;
1674
1675	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1676}
1677
1678/*
1679 *	vm_object_collapse:
1680 *
1681 *	Collapse an object with the object backing it.
1682 *	Pages in the backing object are moved into the
1683 *	parent, and the backing object is deallocated.
1684 */
1685void
1686vm_object_collapse(vm_object_t object)
1687{
1688	VM_OBJECT_ASSERT_WLOCKED(object);
1689
1690	while (TRUE) {
1691		vm_object_t backing_object;
1692
1693		/*
1694		 * Verify that the conditions are right for collapse:
1695		 *
1696		 * The object exists and the backing object exists.
1697		 */
1698		if ((backing_object = object->backing_object) == NULL)
1699			break;
1700
1701		/*
1702		 * we check the backing object first, because it is most likely
1703		 * not collapsable.
1704		 */
1705		VM_OBJECT_WLOCK(backing_object);
1706		if (backing_object->handle != NULL ||
1707		    (backing_object->type != OBJT_DEFAULT &&
1708		     backing_object->type != OBJT_SWAP) ||
1709		    (backing_object->flags & OBJ_DEAD) ||
1710		    object->handle != NULL ||
1711		    (object->type != OBJT_DEFAULT &&
1712		     object->type != OBJT_SWAP) ||
1713		    (object->flags & OBJ_DEAD)) {
1714			VM_OBJECT_WUNLOCK(backing_object);
1715			break;
1716		}
1717
1718		if (
1719		    object->paging_in_progress != 0 ||
1720		    backing_object->paging_in_progress != 0
1721		) {
1722			vm_object_qcollapse(object);
1723			VM_OBJECT_WUNLOCK(backing_object);
1724			break;
1725		}
1726		/*
1727		 * We know that we can either collapse the backing object (if
1728		 * the parent is the only reference to it) or (perhaps) have
1729		 * the parent bypass the object if the parent happens to shadow
1730		 * all the resident pages in the entire backing object.
1731		 *
1732		 * This is ignoring pager-backed pages such as swap pages.
1733		 * vm_object_backing_scan fails the shadowing test in this
1734		 * case.
1735		 */
1736		if (backing_object->ref_count == 1) {
1737			/*
1738			 * If there is exactly one reference to the backing
1739			 * object, we can collapse it into the parent.
1740			 */
1741			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1742
1743#if VM_NRESERVLEVEL > 0
1744			/*
1745			 * Break any reservations from backing_object.
1746			 */
1747			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1748				vm_reserv_break_all(backing_object);
1749#endif
1750
1751			/*
1752			 * Move the pager from backing_object to object.
1753			 */
1754			if (backing_object->type == OBJT_SWAP) {
1755				/*
1756				 * swap_pager_copy() can sleep, in which case
1757				 * the backing_object's and object's locks are
1758				 * released and reacquired.
1759				 * Since swap_pager_copy() is being asked to
1760				 * destroy the source, it will change the
1761				 * backing_object's type to OBJT_DEFAULT.
1762				 */
1763				swap_pager_copy(
1764				    backing_object,
1765				    object,
1766				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1767
1768				/*
1769				 * Free any cached pages from backing_object.
1770				 */
1771				if (__predict_false(
1772				    !vm_object_cache_is_empty(backing_object)))
1773					vm_page_cache_free(backing_object, 0, 0);
1774			}
1775			/*
1776			 * Object now shadows whatever backing_object did.
1777			 * Note that the reference to
1778			 * backing_object->backing_object moves from within
1779			 * backing_object to within object.
1780			 */
1781			LIST_REMOVE(object, shadow_list);
1782			backing_object->shadow_count--;
1783			if (backing_object->backing_object) {
1784				VM_OBJECT_WLOCK(backing_object->backing_object);
1785				LIST_REMOVE(backing_object, shadow_list);
1786				LIST_INSERT_HEAD(
1787				    &backing_object->backing_object->shadow_head,
1788				    object, shadow_list);
1789				/*
1790				 * The shadow_count has not changed.
1791				 */
1792				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1793			}
1794			object->backing_object = backing_object->backing_object;
1795			object->backing_object_offset +=
1796			    backing_object->backing_object_offset;
1797
1798			/*
1799			 * Discard backing_object.
1800			 *
1801			 * Since the backing object has no pages, no pager left,
1802			 * and no object references within it, all that is
1803			 * necessary is to dispose of it.
1804			 */
1805			KASSERT(backing_object->ref_count == 1, (
1806"backing_object %p was somehow re-referenced during collapse!",
1807			    backing_object));
1808			VM_OBJECT_WUNLOCK(backing_object);
1809			vm_object_destroy(backing_object);
1810
1811			object_collapses++;
1812		} else {
1813			vm_object_t new_backing_object;
1814
1815			/*
1816			 * If we do not entirely shadow the backing object,
1817			 * there is nothing we can do so we give up.
1818			 */
1819			if (object->resident_page_count != object->size &&
1820			    vm_object_backing_scan(object,
1821			    OBSC_TEST_ALL_SHADOWED) == 0) {
1822				VM_OBJECT_WUNLOCK(backing_object);
1823				break;
1824			}
1825
1826			/*
1827			 * Make the parent shadow the next object in the
1828			 * chain.  Deallocating backing_object will not remove
1829			 * it, since its reference count is at least 2.
1830			 */
1831			LIST_REMOVE(object, shadow_list);
1832			backing_object->shadow_count--;
1833
1834			new_backing_object = backing_object->backing_object;
1835			if ((object->backing_object = new_backing_object) != NULL) {
1836				VM_OBJECT_WLOCK(new_backing_object);
1837				LIST_INSERT_HEAD(
1838				    &new_backing_object->shadow_head,
1839				    object,
1840				    shadow_list
1841				);
1842				new_backing_object->shadow_count++;
1843				vm_object_reference_locked(new_backing_object);
1844				VM_OBJECT_WUNLOCK(new_backing_object);
1845				object->backing_object_offset +=
1846					backing_object->backing_object_offset;
1847			}
1848
1849			/*
1850			 * Drop the reference count on backing_object. Since
1851			 * its ref_count was at least 2, it will not vanish.
1852			 */
1853			backing_object->ref_count--;
1854			VM_OBJECT_WUNLOCK(backing_object);
1855			object_bypasses++;
1856		}
1857
1858		/*
1859		 * Try again with this object's new backing object.
1860		 */
1861	}
1862}
1863
1864/*
1865 *	vm_object_page_remove:
1866 *
1867 *	For the given object, either frees or invalidates each of the
1868 *	specified pages.  In general, a page is freed.  However, if a page is
1869 *	wired for any reason other than the existence of a managed, wired
1870 *	mapping, then it may be invalidated but not removed from the object.
1871 *	Pages are specified by the given range ["start", "end") and the option
1872 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1873 *	extends from "start" to the end of the object.  If the option
1874 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1875 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1876 *	specified, then the pages within the specified range must have no
1877 *	mappings.  Otherwise, if this option is not specified, any mappings to
1878 *	the specified pages are removed before the pages are freed or
1879 *	invalidated.
1880 *
1881 *	In general, this operation should only be performed on objects that
1882 *	contain managed pages.  There are, however, two exceptions.  First, it
1883 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1884 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1885 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1886 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1887 *
1888 *	The object must be locked.
1889 */
1890void
1891vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1892    int options)
1893{
1894	vm_page_t p, next;
1895	int wirings;
1896
1897	VM_OBJECT_ASSERT_WLOCKED(object);
1898	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1899	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1900	    ("vm_object_page_remove: illegal options for object %p", object));
1901	if (object->resident_page_count == 0)
1902		goto skipmemq;
1903	vm_object_pip_add(object, 1);
1904again:
1905	p = vm_page_find_least(object, start);
1906
1907	/*
1908	 * Here, the variable "p" is either (1) the page with the least pindex
1909	 * greater than or equal to the parameter "start" or (2) NULL.
1910	 */
1911	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1912		next = TAILQ_NEXT(p, listq);
1913
1914		/*
1915		 * If the page is wired for any reason besides the existence
1916		 * of managed, wired mappings, then it cannot be freed.  For
1917		 * example, fictitious pages, which represent device memory,
1918		 * are inherently wired and cannot be freed.  They can,
1919		 * however, be invalidated if the option OBJPR_CLEANONLY is
1920		 * not specified.
1921		 */
1922		vm_page_lock(p);
1923		if (vm_page_xbusied(p)) {
1924			VM_OBJECT_WUNLOCK(object);
1925			vm_page_busy_sleep(p, "vmopax");
1926			VM_OBJECT_WLOCK(object);
1927			goto again;
1928		}
1929		if ((wirings = p->wire_count) != 0 &&
1930		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1931			if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1932			    0) {
1933				pmap_remove_all(p);
1934				/* Account for removal of wired mappings. */
1935				if (wirings != 0)
1936					p->wire_count -= wirings;
1937			}
1938			if ((options & OBJPR_CLEANONLY) == 0) {
1939				p->valid = 0;
1940				vm_page_undirty(p);
1941			}
1942			goto next;
1943		}
1944		if (vm_page_busied(p)) {
1945			VM_OBJECT_WUNLOCK(object);
1946			vm_page_busy_sleep(p, "vmopar");
1947			VM_OBJECT_WLOCK(object);
1948			goto again;
1949		}
1950		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1951		    ("vm_object_page_remove: page %p is fictitious", p));
1952		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1953			if ((options & OBJPR_NOTMAPPED) == 0)
1954				pmap_remove_write(p);
1955			if (p->dirty)
1956				goto next;
1957		}
1958		if ((options & OBJPR_NOTMAPPED) == 0) {
1959			if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1960				goto next;
1961			pmap_remove_all(p);
1962			/* Account for removal of wired mappings. */
1963			if (wirings != 0) {
1964				KASSERT(p->wire_count == wirings,
1965				    ("inconsistent wire count %d %d %p",
1966				    p->wire_count, wirings, p));
1967				p->wire_count = 0;
1968				atomic_subtract_int(&cnt.v_wire_count, 1);
1969			}
1970		}
1971		vm_page_free(p);
1972next:
1973		vm_page_unlock(p);
1974	}
1975	vm_object_pip_wakeup(object);
1976skipmemq:
1977	if (__predict_false(!vm_object_cache_is_empty(object)))
1978		vm_page_cache_free(object, start, end);
1979}
1980
1981/*
1982 *	vm_object_page_cache:
1983 *
1984 *	For the given object, attempt to move the specified clean
1985 *	pages to the cache queue.  If a page is wired for any reason,
1986 *	then it will not be changed.  Pages are specified by the given
1987 *	range ["start", "end").  As a special case, if "end" is zero,
1988 *	then the range extends from "start" to the end of the object.
1989 *	Any mappings to the specified pages are removed before the
1990 *	pages are moved to the cache queue.
1991 *
1992 *	This operation should only be performed on objects that
1993 *	contain non-fictitious, managed pages.
1994 *
1995 *	The object must be locked.
1996 */
1997void
1998vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1999{
2000	struct mtx *mtx, *new_mtx;
2001	vm_page_t p, next;
2002
2003	VM_OBJECT_ASSERT_WLOCKED(object);
2004	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
2005	    ("vm_object_page_cache: illegal object %p", object));
2006	if (object->resident_page_count == 0)
2007		return;
2008	p = vm_page_find_least(object, start);
2009
2010	/*
2011	 * Here, the variable "p" is either (1) the page with the least pindex
2012	 * greater than or equal to the parameter "start" or (2) NULL.
2013	 */
2014	mtx = NULL;
2015	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2016		next = TAILQ_NEXT(p, listq);
2017
2018		/*
2019		 * Avoid releasing and reacquiring the same page lock.
2020		 */
2021		new_mtx = vm_page_lockptr(p);
2022		if (mtx != new_mtx) {
2023			if (mtx != NULL)
2024				mtx_unlock(mtx);
2025			mtx = new_mtx;
2026			mtx_lock(mtx);
2027		}
2028		vm_page_try_to_cache(p);
2029	}
2030	if (mtx != NULL)
2031		mtx_unlock(mtx);
2032}
2033
2034/*
2035 *	Populate the specified range of the object with valid pages.  Returns
2036 *	TRUE if the range is successfully populated and FALSE otherwise.
2037 *
2038 *	Note: This function should be optimized to pass a larger array of
2039 *	pages to vm_pager_get_pages() before it is applied to a non-
2040 *	OBJT_DEVICE object.
2041 *
2042 *	The object must be locked.
2043 */
2044boolean_t
2045vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2046{
2047	vm_page_t m, ma[1];
2048	vm_pindex_t pindex;
2049	int rv;
2050
2051	VM_OBJECT_ASSERT_WLOCKED(object);
2052	for (pindex = start; pindex < end; pindex++) {
2053		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2054		if (m->valid != VM_PAGE_BITS_ALL) {
2055			ma[0] = m;
2056			rv = vm_pager_get_pages(object, ma, 1, 0);
2057			m = vm_page_lookup(object, pindex);
2058			if (m == NULL)
2059				break;
2060			if (rv != VM_PAGER_OK) {
2061				vm_page_lock(m);
2062				vm_page_free(m);
2063				vm_page_unlock(m);
2064				break;
2065			}
2066		}
2067		/*
2068		 * Keep "m" busy because a subsequent iteration may unlock
2069		 * the object.
2070		 */
2071	}
2072	if (pindex > start) {
2073		m = vm_page_lookup(object, start);
2074		while (m != NULL && m->pindex < pindex) {
2075			vm_page_xunbusy(m);
2076			m = TAILQ_NEXT(m, listq);
2077		}
2078	}
2079	return (pindex == end);
2080}
2081
2082/*
2083 *	Routine:	vm_object_coalesce
2084 *	Function:	Coalesces two objects backing up adjoining
2085 *			regions of memory into a single object.
2086 *
2087 *	returns TRUE if objects were combined.
2088 *
2089 *	NOTE:	Only works at the moment if the second object is NULL -
2090 *		if it's not, which object do we lock first?
2091 *
2092 *	Parameters:
2093 *		prev_object	First object to coalesce
2094 *		prev_offset	Offset into prev_object
2095 *		prev_size	Size of reference to prev_object
2096 *		next_size	Size of reference to the second object
2097 *		reserved	Indicator that extension region has
2098 *				swap accounted for
2099 *
2100 *	Conditions:
2101 *	The object must *not* be locked.
2102 */
2103boolean_t
2104vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2105    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2106{
2107	vm_pindex_t next_pindex;
2108
2109	if (prev_object == NULL)
2110		return (TRUE);
2111	VM_OBJECT_WLOCK(prev_object);
2112	if ((prev_object->type != OBJT_DEFAULT &&
2113	    prev_object->type != OBJT_SWAP) ||
2114	    (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2115		VM_OBJECT_WUNLOCK(prev_object);
2116		return (FALSE);
2117	}
2118
2119	/*
2120	 * Try to collapse the object first
2121	 */
2122	vm_object_collapse(prev_object);
2123
2124	/*
2125	 * Can't coalesce if: . more than one reference . paged out . shadows
2126	 * another object . has a copy elsewhere (any of which mean that the
2127	 * pages not mapped to prev_entry may be in use anyway)
2128	 */
2129	if (prev_object->backing_object != NULL) {
2130		VM_OBJECT_WUNLOCK(prev_object);
2131		return (FALSE);
2132	}
2133
2134	prev_size >>= PAGE_SHIFT;
2135	next_size >>= PAGE_SHIFT;
2136	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2137
2138	if ((prev_object->ref_count > 1) &&
2139	    (prev_object->size != next_pindex)) {
2140		VM_OBJECT_WUNLOCK(prev_object);
2141		return (FALSE);
2142	}
2143
2144	/*
2145	 * Account for the charge.
2146	 */
2147	if (prev_object->cred != NULL) {
2148
2149		/*
2150		 * If prev_object was charged, then this mapping,
2151		 * althought not charged now, may become writable
2152		 * later. Non-NULL cred in the object would prevent
2153		 * swap reservation during enabling of the write
2154		 * access, so reserve swap now. Failed reservation
2155		 * cause allocation of the separate object for the map
2156		 * entry, and swap reservation for this entry is
2157		 * managed in appropriate time.
2158		 */
2159		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2160		    prev_object->cred)) {
2161			return (FALSE);
2162		}
2163		prev_object->charge += ptoa(next_size);
2164	}
2165
2166	/*
2167	 * Remove any pages that may still be in the object from a previous
2168	 * deallocation.
2169	 */
2170	if (next_pindex < prev_object->size) {
2171		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2172		    next_size, 0);
2173		if (prev_object->type == OBJT_SWAP)
2174			swap_pager_freespace(prev_object,
2175					     next_pindex, next_size);
2176#if 0
2177		if (prev_object->cred != NULL) {
2178			KASSERT(prev_object->charge >=
2179			    ptoa(prev_object->size - next_pindex),
2180			    ("object %p overcharged 1 %jx %jx", prev_object,
2181				(uintmax_t)next_pindex, (uintmax_t)next_size));
2182			prev_object->charge -= ptoa(prev_object->size -
2183			    next_pindex);
2184		}
2185#endif
2186	}
2187
2188	/*
2189	 * Extend the object if necessary.
2190	 */
2191	if (next_pindex + next_size > prev_object->size)
2192		prev_object->size = next_pindex + next_size;
2193
2194	VM_OBJECT_WUNLOCK(prev_object);
2195	return (TRUE);
2196}
2197
2198void
2199vm_object_set_writeable_dirty(vm_object_t object)
2200{
2201
2202	VM_OBJECT_ASSERT_WLOCKED(object);
2203	if (object->type != OBJT_VNODE) {
2204		if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2205			KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2206			vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2207		}
2208		return;
2209	}
2210	object->generation++;
2211	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2212		return;
2213	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2214}
2215
2216/*
2217 *	vm_object_unwire:
2218 *
2219 *	For each page offset within the specified range of the given object,
2220 *	find the highest-level page in the shadow chain and unwire it.  A page
2221 *	must exist at every page offset, and the highest-level page must be
2222 *	wired.
2223 */
2224void
2225vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2226    uint8_t queue)
2227{
2228	vm_object_t tobject;
2229	vm_page_t m, tm;
2230	vm_pindex_t end_pindex, pindex, tpindex;
2231	int depth, locked_depth;
2232
2233	KASSERT((offset & PAGE_MASK) == 0,
2234	    ("vm_object_unwire: offset is not page aligned"));
2235	KASSERT((length & PAGE_MASK) == 0,
2236	    ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2237	/* The wired count of a fictitious page never changes. */
2238	if ((object->flags & OBJ_FICTITIOUS) != 0)
2239		return;
2240	pindex = OFF_TO_IDX(offset);
2241	end_pindex = pindex + atop(length);
2242	locked_depth = 1;
2243	VM_OBJECT_RLOCK(object);
2244	m = vm_page_find_least(object, pindex);
2245	while (pindex < end_pindex) {
2246		if (m == NULL || pindex < m->pindex) {
2247			/*
2248			 * The first object in the shadow chain doesn't
2249			 * contain a page at the current index.  Therefore,
2250			 * the page must exist in a backing object.
2251			 */
2252			tobject = object;
2253			tpindex = pindex;
2254			depth = 0;
2255			do {
2256				tpindex +=
2257				    OFF_TO_IDX(tobject->backing_object_offset);
2258				tobject = tobject->backing_object;
2259				KASSERT(tobject != NULL,
2260				    ("vm_object_unwire: missing page"));
2261				if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2262					goto next_page;
2263				depth++;
2264				if (depth == locked_depth) {
2265					locked_depth++;
2266					VM_OBJECT_RLOCK(tobject);
2267				}
2268			} while ((tm = vm_page_lookup(tobject, tpindex)) ==
2269			    NULL);
2270		} else {
2271			tm = m;
2272			m = TAILQ_NEXT(m, listq);
2273		}
2274		vm_page_lock(tm);
2275		vm_page_unwire(tm, queue);
2276		vm_page_unlock(tm);
2277next_page:
2278		pindex++;
2279	}
2280	/* Release the accumulated object locks. */
2281	for (depth = 0; depth < locked_depth; depth++) {
2282		tobject = object->backing_object;
2283		VM_OBJECT_RUNLOCK(object);
2284		object = tobject;
2285	}
2286}
2287
2288#include "opt_ddb.h"
2289#ifdef DDB
2290#include <sys/kernel.h>
2291
2292#include <sys/cons.h>
2293
2294#include <ddb/ddb.h>
2295
2296static int
2297_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2298{
2299	vm_map_t tmpm;
2300	vm_map_entry_t tmpe;
2301	vm_object_t obj;
2302	int entcount;
2303
2304	if (map == 0)
2305		return 0;
2306
2307	if (entry == 0) {
2308		tmpe = map->header.next;
2309		entcount = map->nentries;
2310		while (entcount-- && (tmpe != &map->header)) {
2311			if (_vm_object_in_map(map, object, tmpe)) {
2312				return 1;
2313			}
2314			tmpe = tmpe->next;
2315		}
2316	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2317		tmpm = entry->object.sub_map;
2318		tmpe = tmpm->header.next;
2319		entcount = tmpm->nentries;
2320		while (entcount-- && tmpe != &tmpm->header) {
2321			if (_vm_object_in_map(tmpm, object, tmpe)) {
2322				return 1;
2323			}
2324			tmpe = tmpe->next;
2325		}
2326	} else if ((obj = entry->object.vm_object) != NULL) {
2327		for (; obj; obj = obj->backing_object)
2328			if (obj == object) {
2329				return 1;
2330			}
2331	}
2332	return 0;
2333}
2334
2335static int
2336vm_object_in_map(vm_object_t object)
2337{
2338	struct proc *p;
2339
2340	/* sx_slock(&allproc_lock); */
2341	FOREACH_PROC_IN_SYSTEM(p) {
2342		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2343			continue;
2344		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2345			/* sx_sunlock(&allproc_lock); */
2346			return 1;
2347		}
2348	}
2349	/* sx_sunlock(&allproc_lock); */
2350	if (_vm_object_in_map(kernel_map, object, 0))
2351		return 1;
2352	return 0;
2353}
2354
2355DB_SHOW_COMMAND(vmochk, vm_object_check)
2356{
2357	vm_object_t object;
2358
2359	/*
2360	 * make sure that internal objs are in a map somewhere
2361	 * and none have zero ref counts.
2362	 */
2363	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2364		if (object->handle == NULL &&
2365		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2366			if (object->ref_count == 0) {
2367				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2368					(long)object->size);
2369			}
2370			if (!vm_object_in_map(object)) {
2371				db_printf(
2372			"vmochk: internal obj is not in a map: "
2373			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2374				    object->ref_count, (u_long)object->size,
2375				    (u_long)object->size,
2376				    (void *)object->backing_object);
2377			}
2378		}
2379	}
2380}
2381
2382/*
2383 *	vm_object_print:	[ debug ]
2384 */
2385DB_SHOW_COMMAND(object, vm_object_print_static)
2386{
2387	/* XXX convert args. */
2388	vm_object_t object = (vm_object_t)addr;
2389	boolean_t full = have_addr;
2390
2391	vm_page_t p;
2392
2393	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2394#define	count	was_count
2395
2396	int count;
2397
2398	if (object == NULL)
2399		return;
2400
2401	db_iprintf(
2402	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2403	    object, (int)object->type, (uintmax_t)object->size,
2404	    object->resident_page_count, object->ref_count, object->flags,
2405	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2406	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2407	    object->shadow_count,
2408	    object->backing_object ? object->backing_object->ref_count : 0,
2409	    object->backing_object, (uintmax_t)object->backing_object_offset);
2410
2411	if (!full)
2412		return;
2413
2414	db_indent += 2;
2415	count = 0;
2416	TAILQ_FOREACH(p, &object->memq, listq) {
2417		if (count == 0)
2418			db_iprintf("memory:=");
2419		else if (count == 6) {
2420			db_printf("\n");
2421			db_iprintf(" ...");
2422			count = 0;
2423		} else
2424			db_printf(",");
2425		count++;
2426
2427		db_printf("(off=0x%jx,page=0x%jx)",
2428		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2429	}
2430	if (count != 0)
2431		db_printf("\n");
2432	db_indent -= 2;
2433}
2434
2435/* XXX. */
2436#undef count
2437
2438/* XXX need this non-static entry for calling from vm_map_print. */
2439void
2440vm_object_print(
2441        /* db_expr_t */ long addr,
2442	boolean_t have_addr,
2443	/* db_expr_t */ long count,
2444	char *modif)
2445{
2446	vm_object_print_static(addr, have_addr, count, modif);
2447}
2448
2449DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2450{
2451	vm_object_t object;
2452	vm_pindex_t fidx;
2453	vm_paddr_t pa;
2454	vm_page_t m, prev_m;
2455	int rcount, nl, c;
2456
2457	nl = 0;
2458	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2459		db_printf("new object: %p\n", (void *)object);
2460		if (nl > 18) {
2461			c = cngetc();
2462			if (c != ' ')
2463				return;
2464			nl = 0;
2465		}
2466		nl++;
2467		rcount = 0;
2468		fidx = 0;
2469		pa = -1;
2470		TAILQ_FOREACH(m, &object->memq, listq) {
2471			if (m->pindex > 128)
2472				break;
2473			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2474			    prev_m->pindex + 1 != m->pindex) {
2475				if (rcount) {
2476					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2477						(long)fidx, rcount, (long)pa);
2478					if (nl > 18) {
2479						c = cngetc();
2480						if (c != ' ')
2481							return;
2482						nl = 0;
2483					}
2484					nl++;
2485					rcount = 0;
2486				}
2487			}
2488			if (rcount &&
2489				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2490				++rcount;
2491				continue;
2492			}
2493			if (rcount) {
2494				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2495					(long)fidx, rcount, (long)pa);
2496				if (nl > 18) {
2497					c = cngetc();
2498					if (c != ' ')
2499						return;
2500					nl = 0;
2501				}
2502				nl++;
2503			}
2504			fidx = m->pindex;
2505			pa = VM_PAGE_TO_PHYS(m);
2506			rcount = 1;
2507		}
2508		if (rcount) {
2509			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2510				(long)fidx, rcount, (long)pa);
2511			if (nl > 18) {
2512				c = cngetc();
2513				if (c != ' ')
2514					return;
2515				nl = 0;
2516			}
2517			nl++;
2518		}
2519	}
2520}
2521#endif /* DDB */
2522