vm_object.c revision 263359
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_object.c 263359 2014-03-19 13:04:16Z kib $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/vnode.h>
83#include <sys/vmmeter.h>
84#include <sys/sx.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_radix.h>
98#include <vm/vm_reserv.h>
99#include <vm/uma.h>
100
101static int old_msync;
102SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103    "Use old (insecure) msync behavior");
104
105static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106		    int pagerflags, int flags, boolean_t *clearobjflags,
107		    boolean_t *eio);
108static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109		    boolean_t *clearobjflags);
110static void	vm_object_qcollapse(vm_object_t object);
111static void	vm_object_vndeallocate(vm_object_t object);
112
113/*
114 *	Virtual memory objects maintain the actual data
115 *	associated with allocated virtual memory.  A given
116 *	page of memory exists within exactly one object.
117 *
118 *	An object is only deallocated when all "references"
119 *	are given up.  Only one "reference" to a given
120 *	region of an object should be writeable.
121 *
122 *	Associated with each object is a list of all resident
123 *	memory pages belonging to that object; this list is
124 *	maintained by the "vm_page" module, and locked by the object's
125 *	lock.
126 *
127 *	Each object also records a "pager" routine which is
128 *	used to retrieve (and store) pages to the proper backing
129 *	storage.  In addition, objects may be backed by other
130 *	objects from which they were virtual-copied.
131 *
132 *	The only items within the object structure which are
133 *	modified after time of creation are:
134 *		reference count		locked by object's lock
135 *		pager routine		locked by object's lock
136 *
137 */
138
139struct object_q vm_object_list;
140struct mtx vm_object_list_mtx;	/* lock for object list and count */
141
142struct vm_object kernel_object_store;
143struct vm_object kmem_object_store;
144
145static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146    "VM object stats");
147
148static long object_collapses;
149SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150    &object_collapses, 0, "VM object collapses");
151
152static long object_bypasses;
153SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154    &object_bypasses, 0, "VM object bypasses");
155
156static uma_zone_t obj_zone;
157
158static int vm_object_zinit(void *mem, int size, int flags);
159
160#ifdef INVARIANTS
161static void vm_object_zdtor(void *mem, int size, void *arg);
162
163static void
164vm_object_zdtor(void *mem, int size, void *arg)
165{
166	vm_object_t object;
167
168	object = (vm_object_t)mem;
169	KASSERT(TAILQ_EMPTY(&object->memq),
170	    ("object %p has resident pages in its memq", object));
171	KASSERT(vm_radix_is_empty(&object->rtree),
172	    ("object %p has resident pages in its trie", object));
173#if VM_NRESERVLEVEL > 0
174	KASSERT(LIST_EMPTY(&object->rvq),
175	    ("object %p has reservations",
176	    object));
177#endif
178	KASSERT(vm_object_cache_is_empty(object),
179	    ("object %p has cached pages",
180	    object));
181	KASSERT(object->paging_in_progress == 0,
182	    ("object %p paging_in_progress = %d",
183	    object, object->paging_in_progress));
184	KASSERT(object->resident_page_count == 0,
185	    ("object %p resident_page_count = %d",
186	    object, object->resident_page_count));
187	KASSERT(object->shadow_count == 0,
188	    ("object %p shadow_count = %d",
189	    object, object->shadow_count));
190}
191#endif
192
193static int
194vm_object_zinit(void *mem, int size, int flags)
195{
196	vm_object_t object;
197
198	object = (vm_object_t)mem;
199	bzero(&object->lock, sizeof(object->lock));
200	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201
202	/* These are true for any object that has been freed */
203	object->rtree.rt_root = 0;
204	object->rtree.rt_flags = 0;
205	object->paging_in_progress = 0;
206	object->resident_page_count = 0;
207	object->shadow_count = 0;
208	object->cache.rt_root = 0;
209	object->cache.rt_flags = 0;
210	return (0);
211}
212
213static void
214_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215{
216
217	TAILQ_INIT(&object->memq);
218	LIST_INIT(&object->shadow_head);
219
220	object->type = type;
221	switch (type) {
222	case OBJT_DEAD:
223		panic("_vm_object_allocate: can't create OBJT_DEAD");
224	case OBJT_DEFAULT:
225	case OBJT_SWAP:
226		object->flags = OBJ_ONEMAPPING;
227		break;
228	case OBJT_DEVICE:
229	case OBJT_SG:
230		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
231		break;
232	case OBJT_MGTDEVICE:
233		object->flags = OBJ_FICTITIOUS;
234		break;
235	case OBJT_PHYS:
236		object->flags = OBJ_UNMANAGED;
237		break;
238	case OBJT_VNODE:
239		object->flags = 0;
240		break;
241	default:
242		panic("_vm_object_allocate: type %d is undefined", type);
243	}
244	object->size = size;
245	object->generation = 1;
246	object->ref_count = 1;
247	object->memattr = VM_MEMATTR_DEFAULT;
248	object->cred = NULL;
249	object->charge = 0;
250	object->handle = NULL;
251	object->backing_object = NULL;
252	object->backing_object_offset = (vm_ooffset_t) 0;
253#if VM_NRESERVLEVEL > 0
254	LIST_INIT(&object->rvq);
255#endif
256
257	mtx_lock(&vm_object_list_mtx);
258	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
259	mtx_unlock(&vm_object_list_mtx);
260}
261
262/*
263 *	vm_object_init:
264 *
265 *	Initialize the VM objects module.
266 */
267void
268vm_object_init(void)
269{
270	TAILQ_INIT(&vm_object_list);
271	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
272
273	rw_init(&kernel_object->lock, "kernel vm object");
274	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
275	    kernel_object);
276#if VM_NRESERVLEVEL > 0
277	kernel_object->flags |= OBJ_COLORED;
278	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
279#endif
280
281	rw_init(&kmem_object->lock, "kmem vm object");
282	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283	    kmem_object);
284#if VM_NRESERVLEVEL > 0
285	kmem_object->flags |= OBJ_COLORED;
286	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287#endif
288
289	/*
290	 * The lock portion of struct vm_object must be type stable due
291	 * to vm_pageout_fallback_object_lock locking a vm object
292	 * without holding any references to it.
293	 */
294	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
295#ifdef INVARIANTS
296	    vm_object_zdtor,
297#else
298	    NULL,
299#endif
300	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
301
302	vm_radix_init();
303}
304
305void
306vm_object_clear_flag(vm_object_t object, u_short bits)
307{
308
309	VM_OBJECT_ASSERT_WLOCKED(object);
310	object->flags &= ~bits;
311}
312
313/*
314 *	Sets the default memory attribute for the specified object.  Pages
315 *	that are allocated to this object are by default assigned this memory
316 *	attribute.
317 *
318 *	Presently, this function must be called before any pages are allocated
319 *	to the object.  In the future, this requirement may be relaxed for
320 *	"default" and "swap" objects.
321 */
322int
323vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
324{
325
326	VM_OBJECT_ASSERT_WLOCKED(object);
327	switch (object->type) {
328	case OBJT_DEFAULT:
329	case OBJT_DEVICE:
330	case OBJT_MGTDEVICE:
331	case OBJT_PHYS:
332	case OBJT_SG:
333	case OBJT_SWAP:
334	case OBJT_VNODE:
335		if (!TAILQ_EMPTY(&object->memq))
336			return (KERN_FAILURE);
337		break;
338	case OBJT_DEAD:
339		return (KERN_INVALID_ARGUMENT);
340	default:
341		panic("vm_object_set_memattr: object %p is of undefined type",
342		    object);
343	}
344	object->memattr = memattr;
345	return (KERN_SUCCESS);
346}
347
348void
349vm_object_pip_add(vm_object_t object, short i)
350{
351
352	VM_OBJECT_ASSERT_WLOCKED(object);
353	object->paging_in_progress += i;
354}
355
356void
357vm_object_pip_subtract(vm_object_t object, short i)
358{
359
360	VM_OBJECT_ASSERT_WLOCKED(object);
361	object->paging_in_progress -= i;
362}
363
364void
365vm_object_pip_wakeup(vm_object_t object)
366{
367
368	VM_OBJECT_ASSERT_WLOCKED(object);
369	object->paging_in_progress--;
370	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
371		vm_object_clear_flag(object, OBJ_PIPWNT);
372		wakeup(object);
373	}
374}
375
376void
377vm_object_pip_wakeupn(vm_object_t object, short i)
378{
379
380	VM_OBJECT_ASSERT_WLOCKED(object);
381	if (i)
382		object->paging_in_progress -= i;
383	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
384		vm_object_clear_flag(object, OBJ_PIPWNT);
385		wakeup(object);
386	}
387}
388
389void
390vm_object_pip_wait(vm_object_t object, char *waitid)
391{
392
393	VM_OBJECT_ASSERT_WLOCKED(object);
394	while (object->paging_in_progress) {
395		object->flags |= OBJ_PIPWNT;
396		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
397	}
398}
399
400/*
401 *	vm_object_allocate:
402 *
403 *	Returns a new object with the given size.
404 */
405vm_object_t
406vm_object_allocate(objtype_t type, vm_pindex_t size)
407{
408	vm_object_t object;
409
410	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
411	_vm_object_allocate(type, size, object);
412	return (object);
413}
414
415
416/*
417 *	vm_object_reference:
418 *
419 *	Gets another reference to the given object.  Note: OBJ_DEAD
420 *	objects can be referenced during final cleaning.
421 */
422void
423vm_object_reference(vm_object_t object)
424{
425	if (object == NULL)
426		return;
427	VM_OBJECT_WLOCK(object);
428	vm_object_reference_locked(object);
429	VM_OBJECT_WUNLOCK(object);
430}
431
432/*
433 *	vm_object_reference_locked:
434 *
435 *	Gets another reference to the given object.
436 *
437 *	The object must be locked.
438 */
439void
440vm_object_reference_locked(vm_object_t object)
441{
442	struct vnode *vp;
443
444	VM_OBJECT_ASSERT_WLOCKED(object);
445	object->ref_count++;
446	if (object->type == OBJT_VNODE) {
447		vp = object->handle;
448		vref(vp);
449	}
450}
451
452/*
453 * Handle deallocating an object of type OBJT_VNODE.
454 */
455static void
456vm_object_vndeallocate(vm_object_t object)
457{
458	struct vnode *vp = (struct vnode *) object->handle;
459
460	VM_OBJECT_ASSERT_WLOCKED(object);
461	KASSERT(object->type == OBJT_VNODE,
462	    ("vm_object_vndeallocate: not a vnode object"));
463	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
464#ifdef INVARIANTS
465	if (object->ref_count == 0) {
466		vprint("vm_object_vndeallocate", vp);
467		panic("vm_object_vndeallocate: bad object reference count");
468	}
469#endif
470
471	if (object->ref_count > 1) {
472		object->ref_count--;
473		VM_OBJECT_WUNLOCK(object);
474		/* vrele may need the vnode lock. */
475		vrele(vp);
476	} else {
477		vhold(vp);
478		VM_OBJECT_WUNLOCK(object);
479		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
480		vdrop(vp);
481		VM_OBJECT_WLOCK(object);
482		object->ref_count--;
483		if (object->type == OBJT_DEAD) {
484			VM_OBJECT_WUNLOCK(object);
485			VOP_UNLOCK(vp, 0);
486		} else {
487			if (object->ref_count == 0)
488				VOP_UNSET_TEXT(vp);
489			VM_OBJECT_WUNLOCK(object);
490			vput(vp);
491		}
492	}
493}
494
495/*
496 *	vm_object_deallocate:
497 *
498 *	Release a reference to the specified object,
499 *	gained either through a vm_object_allocate
500 *	or a vm_object_reference call.  When all references
501 *	are gone, storage associated with this object
502 *	may be relinquished.
503 *
504 *	No object may be locked.
505 */
506void
507vm_object_deallocate(vm_object_t object)
508{
509	vm_object_t temp;
510	struct vnode *vp;
511
512	while (object != NULL) {
513		VM_OBJECT_WLOCK(object);
514		if (object->type == OBJT_VNODE) {
515			vm_object_vndeallocate(object);
516			return;
517		}
518
519		KASSERT(object->ref_count != 0,
520			("vm_object_deallocate: object deallocated too many times: %d", object->type));
521
522		/*
523		 * If the reference count goes to 0 we start calling
524		 * vm_object_terminate() on the object chain.
525		 * A ref count of 1 may be a special case depending on the
526		 * shadow count being 0 or 1.
527		 */
528		object->ref_count--;
529		if (object->ref_count > 1) {
530			VM_OBJECT_WUNLOCK(object);
531			return;
532		} else if (object->ref_count == 1) {
533			if (object->type == OBJT_SWAP &&
534			    (object->flags & OBJ_TMPFS) != 0) {
535				vp = object->un_pager.swp.swp_tmpfs;
536				vhold(vp);
537				VM_OBJECT_WUNLOCK(object);
538				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
539				VM_OBJECT_WLOCK(object);
540				if (object->type == OBJT_DEAD ||
541				    object->ref_count != 1) {
542					VM_OBJECT_WUNLOCK(object);
543					VOP_UNLOCK(vp, 0);
544					vdrop(vp);
545					return;
546				}
547				if ((object->flags & OBJ_TMPFS) != 0)
548					VOP_UNSET_TEXT(vp);
549				VOP_UNLOCK(vp, 0);
550				vdrop(vp);
551			}
552			if (object->shadow_count == 0 &&
553			    object->handle == NULL &&
554			    (object->type == OBJT_DEFAULT ||
555			    (object->type == OBJT_SWAP &&
556			    (object->flags & OBJ_TMPFS) == 0))) {
557				vm_object_set_flag(object, OBJ_ONEMAPPING);
558			} else if ((object->shadow_count == 1) &&
559			    (object->handle == NULL) &&
560			    (object->type == OBJT_DEFAULT ||
561			     object->type == OBJT_SWAP)) {
562				KASSERT((object->flags & OBJ_TMPFS) == 0,
563				    ("shadowed tmpfs v_object %p", object));
564				vm_object_t robject;
565
566				robject = LIST_FIRST(&object->shadow_head);
567				KASSERT(robject != NULL,
568				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
569					 object->ref_count,
570					 object->shadow_count));
571				if (!VM_OBJECT_TRYWLOCK(robject)) {
572					/*
573					 * Avoid a potential deadlock.
574					 */
575					object->ref_count++;
576					VM_OBJECT_WUNLOCK(object);
577					/*
578					 * More likely than not the thread
579					 * holding robject's lock has lower
580					 * priority than the current thread.
581					 * Let the lower priority thread run.
582					 */
583					pause("vmo_de", 1);
584					continue;
585				}
586				/*
587				 * Collapse object into its shadow unless its
588				 * shadow is dead.  In that case, object will
589				 * be deallocated by the thread that is
590				 * deallocating its shadow.
591				 */
592				if ((robject->flags & OBJ_DEAD) == 0 &&
593				    (robject->handle == NULL) &&
594				    (robject->type == OBJT_DEFAULT ||
595				     robject->type == OBJT_SWAP)) {
596
597					robject->ref_count++;
598retry:
599					if (robject->paging_in_progress) {
600						VM_OBJECT_WUNLOCK(object);
601						vm_object_pip_wait(robject,
602						    "objde1");
603						temp = robject->backing_object;
604						if (object == temp) {
605							VM_OBJECT_WLOCK(object);
606							goto retry;
607						}
608					} else if (object->paging_in_progress) {
609						VM_OBJECT_WUNLOCK(robject);
610						object->flags |= OBJ_PIPWNT;
611						VM_OBJECT_SLEEP(object, object,
612						    PDROP | PVM, "objde2", 0);
613						VM_OBJECT_WLOCK(robject);
614						temp = robject->backing_object;
615						if (object == temp) {
616							VM_OBJECT_WLOCK(object);
617							goto retry;
618						}
619					} else
620						VM_OBJECT_WUNLOCK(object);
621
622					if (robject->ref_count == 1) {
623						robject->ref_count--;
624						object = robject;
625						goto doterm;
626					}
627					object = robject;
628					vm_object_collapse(object);
629					VM_OBJECT_WUNLOCK(object);
630					continue;
631				}
632				VM_OBJECT_WUNLOCK(robject);
633			}
634			VM_OBJECT_WUNLOCK(object);
635			return;
636		}
637doterm:
638		temp = object->backing_object;
639		if (temp != NULL) {
640			VM_OBJECT_WLOCK(temp);
641			LIST_REMOVE(object, shadow_list);
642			temp->shadow_count--;
643			VM_OBJECT_WUNLOCK(temp);
644			object->backing_object = NULL;
645		}
646		/*
647		 * Don't double-terminate, we could be in a termination
648		 * recursion due to the terminate having to sync data
649		 * to disk.
650		 */
651		if ((object->flags & OBJ_DEAD) == 0)
652			vm_object_terminate(object);
653		else
654			VM_OBJECT_WUNLOCK(object);
655		object = temp;
656	}
657}
658
659/*
660 *	vm_object_destroy removes the object from the global object list
661 *      and frees the space for the object.
662 */
663void
664vm_object_destroy(vm_object_t object)
665{
666
667	/*
668	 * Remove the object from the global object list.
669	 */
670	mtx_lock(&vm_object_list_mtx);
671	TAILQ_REMOVE(&vm_object_list, object, object_list);
672	mtx_unlock(&vm_object_list_mtx);
673
674	/*
675	 * Release the allocation charge.
676	 */
677	if (object->cred != NULL) {
678		KASSERT(object->type == OBJT_DEFAULT ||
679		    object->type == OBJT_SWAP,
680		    ("vm_object_terminate: non-swap obj %p has cred",
681		     object));
682		swap_release_by_cred(object->charge, object->cred);
683		object->charge = 0;
684		crfree(object->cred);
685		object->cred = NULL;
686	}
687
688	/*
689	 * Free the space for the object.
690	 */
691	uma_zfree(obj_zone, object);
692}
693
694/*
695 *	vm_object_terminate actually destroys the specified object, freeing
696 *	up all previously used resources.
697 *
698 *	The object must be locked.
699 *	This routine may block.
700 */
701void
702vm_object_terminate(vm_object_t object)
703{
704	vm_page_t p, p_next;
705
706	VM_OBJECT_ASSERT_WLOCKED(object);
707
708	/*
709	 * Make sure no one uses us.
710	 */
711	vm_object_set_flag(object, OBJ_DEAD);
712
713	/*
714	 * wait for the pageout daemon to be done with the object
715	 */
716	vm_object_pip_wait(object, "objtrm");
717
718	KASSERT(!object->paging_in_progress,
719		("vm_object_terminate: pageout in progress"));
720
721	/*
722	 * Clean and free the pages, as appropriate. All references to the
723	 * object are gone, so we don't need to lock it.
724	 */
725	if (object->type == OBJT_VNODE) {
726		struct vnode *vp = (struct vnode *)object->handle;
727
728		/*
729		 * Clean pages and flush buffers.
730		 */
731		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
732		VM_OBJECT_WUNLOCK(object);
733
734		vinvalbuf(vp, V_SAVE, 0, 0);
735
736		VM_OBJECT_WLOCK(object);
737	}
738
739	KASSERT(object->ref_count == 0,
740		("vm_object_terminate: object with references, ref_count=%d",
741		object->ref_count));
742
743	/*
744	 * Free any remaining pageable pages.  This also removes them from the
745	 * paging queues.  However, don't free wired pages, just remove them
746	 * from the object.  Rather than incrementally removing each page from
747	 * the object, the page and object are reset to any empty state.
748	 */
749	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
750		vm_page_assert_unbusied(p);
751		vm_page_lock(p);
752		/*
753		 * Optimize the page's removal from the object by resetting
754		 * its "object" field.  Specifically, if the page is not
755		 * wired, then the effect of this assignment is that
756		 * vm_page_free()'s call to vm_page_remove() will return
757		 * immediately without modifying the page or the object.
758		 */
759		p->object = NULL;
760		if (p->wire_count == 0) {
761			vm_page_free(p);
762			PCPU_INC(cnt.v_pfree);
763		}
764		vm_page_unlock(p);
765	}
766	/*
767	 * If the object contained any pages, then reset it to an empty state.
768	 * None of the object's fields, including "resident_page_count", were
769	 * modified by the preceding loop.
770	 */
771	if (object->resident_page_count != 0) {
772		vm_radix_reclaim_allnodes(&object->rtree);
773		TAILQ_INIT(&object->memq);
774		object->resident_page_count = 0;
775		if (object->type == OBJT_VNODE)
776			vdrop(object->handle);
777	}
778
779#if VM_NRESERVLEVEL > 0
780	if (__predict_false(!LIST_EMPTY(&object->rvq)))
781		vm_reserv_break_all(object);
782#endif
783	if (__predict_false(!vm_object_cache_is_empty(object)))
784		vm_page_cache_free(object, 0, 0);
785
786	/*
787	 * Let the pager know object is dead.
788	 */
789	vm_pager_deallocate(object);
790	VM_OBJECT_WUNLOCK(object);
791
792	vm_object_destroy(object);
793}
794
795/*
796 * Make the page read-only so that we can clear the object flags.  However, if
797 * this is a nosync mmap then the object is likely to stay dirty so do not
798 * mess with the page and do not clear the object flags.  Returns TRUE if the
799 * page should be flushed, and FALSE otherwise.
800 */
801static boolean_t
802vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
803{
804
805	/*
806	 * If we have been asked to skip nosync pages and this is a
807	 * nosync page, skip it.  Note that the object flags were not
808	 * cleared in this case so we do not have to set them.
809	 */
810	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
811		*clearobjflags = FALSE;
812		return (FALSE);
813	} else {
814		pmap_remove_write(p);
815		return (p->dirty != 0);
816	}
817}
818
819/*
820 *	vm_object_page_clean
821 *
822 *	Clean all dirty pages in the specified range of object.  Leaves page
823 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
824 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
825 *	leaving the object dirty.
826 *
827 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
828 *	synchronous clustering mode implementation.
829 *
830 *	Odd semantics: if start == end, we clean everything.
831 *
832 *	The object must be locked.
833 *
834 *	Returns FALSE if some page from the range was not written, as
835 *	reported by the pager, and TRUE otherwise.
836 */
837boolean_t
838vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
839    int flags)
840{
841	vm_page_t np, p;
842	vm_pindex_t pi, tend, tstart;
843	int curgeneration, n, pagerflags;
844	boolean_t clearobjflags, eio, res;
845
846	VM_OBJECT_ASSERT_WLOCKED(object);
847
848	/*
849	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
850	 * objects.  The check below prevents the function from
851	 * operating on non-vnode objects.
852	 */
853	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
854	    object->resident_page_count == 0)
855		return (TRUE);
856
857	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
858	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
859	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
860
861	tstart = OFF_TO_IDX(start);
862	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
863	clearobjflags = tstart == 0 && tend >= object->size;
864	res = TRUE;
865
866rescan:
867	curgeneration = object->generation;
868
869	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
870		pi = p->pindex;
871		if (pi >= tend)
872			break;
873		np = TAILQ_NEXT(p, listq);
874		if (p->valid == 0)
875			continue;
876		if (vm_page_sleep_if_busy(p, "vpcwai")) {
877			if (object->generation != curgeneration) {
878				if ((flags & OBJPC_SYNC) != 0)
879					goto rescan;
880				else
881					clearobjflags = FALSE;
882			}
883			np = vm_page_find_least(object, pi);
884			continue;
885		}
886		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
887			continue;
888
889		n = vm_object_page_collect_flush(object, p, pagerflags,
890		    flags, &clearobjflags, &eio);
891		if (eio) {
892			res = FALSE;
893			clearobjflags = FALSE;
894		}
895		if (object->generation != curgeneration) {
896			if ((flags & OBJPC_SYNC) != 0)
897				goto rescan;
898			else
899				clearobjflags = FALSE;
900		}
901
902		/*
903		 * If the VOP_PUTPAGES() did a truncated write, so
904		 * that even the first page of the run is not fully
905		 * written, vm_pageout_flush() returns 0 as the run
906		 * length.  Since the condition that caused truncated
907		 * write may be permanent, e.g. exhausted free space,
908		 * accepting n == 0 would cause an infinite loop.
909		 *
910		 * Forwarding the iterator leaves the unwritten page
911		 * behind, but there is not much we can do there if
912		 * filesystem refuses to write it.
913		 */
914		if (n == 0) {
915			n = 1;
916			clearobjflags = FALSE;
917		}
918		np = vm_page_find_least(object, pi + n);
919	}
920#if 0
921	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
922#endif
923
924	if (clearobjflags)
925		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
926	return (res);
927}
928
929static int
930vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
931    int flags, boolean_t *clearobjflags, boolean_t *eio)
932{
933	vm_page_t ma[vm_pageout_page_count], p_first, tp;
934	int count, i, mreq, runlen;
935
936	vm_page_lock_assert(p, MA_NOTOWNED);
937	VM_OBJECT_ASSERT_WLOCKED(object);
938
939	count = 1;
940	mreq = 0;
941
942	for (tp = p; count < vm_pageout_page_count; count++) {
943		tp = vm_page_next(tp);
944		if (tp == NULL || vm_page_busied(tp))
945			break;
946		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
947			break;
948	}
949
950	for (p_first = p; count < vm_pageout_page_count; count++) {
951		tp = vm_page_prev(p_first);
952		if (tp == NULL || vm_page_busied(tp))
953			break;
954		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
955			break;
956		p_first = tp;
957		mreq++;
958	}
959
960	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
961		ma[i] = tp;
962
963	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
964	return (runlen);
965}
966
967/*
968 * Note that there is absolutely no sense in writing out
969 * anonymous objects, so we track down the vnode object
970 * to write out.
971 * We invalidate (remove) all pages from the address space
972 * for semantic correctness.
973 *
974 * If the backing object is a device object with unmanaged pages, then any
975 * mappings to the specified range of pages must be removed before this
976 * function is called.
977 *
978 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
979 * may start out with a NULL object.
980 */
981boolean_t
982vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
983    boolean_t syncio, boolean_t invalidate)
984{
985	vm_object_t backing_object;
986	struct vnode *vp;
987	struct mount *mp;
988	int error, flags, fsync_after;
989	boolean_t res;
990
991	if (object == NULL)
992		return (TRUE);
993	res = TRUE;
994	error = 0;
995	VM_OBJECT_WLOCK(object);
996	while ((backing_object = object->backing_object) != NULL) {
997		VM_OBJECT_WLOCK(backing_object);
998		offset += object->backing_object_offset;
999		VM_OBJECT_WUNLOCK(object);
1000		object = backing_object;
1001		if (object->size < OFF_TO_IDX(offset + size))
1002			size = IDX_TO_OFF(object->size) - offset;
1003	}
1004	/*
1005	 * Flush pages if writing is allowed, invalidate them
1006	 * if invalidation requested.  Pages undergoing I/O
1007	 * will be ignored by vm_object_page_remove().
1008	 *
1009	 * We cannot lock the vnode and then wait for paging
1010	 * to complete without deadlocking against vm_fault.
1011	 * Instead we simply call vm_object_page_remove() and
1012	 * allow it to block internally on a page-by-page
1013	 * basis when it encounters pages undergoing async
1014	 * I/O.
1015	 */
1016	if (object->type == OBJT_VNODE &&
1017	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1018		vp = object->handle;
1019		VM_OBJECT_WUNLOCK(object);
1020		(void) vn_start_write(vp, &mp, V_WAIT);
1021		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1022		if (syncio && !invalidate && offset == 0 &&
1023		    OFF_TO_IDX(size) == object->size) {
1024			/*
1025			 * If syncing the whole mapping of the file,
1026			 * it is faster to schedule all the writes in
1027			 * async mode, also allowing the clustering,
1028			 * and then wait for i/o to complete.
1029			 */
1030			flags = 0;
1031			fsync_after = TRUE;
1032		} else {
1033			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1034			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1035			fsync_after = FALSE;
1036		}
1037		VM_OBJECT_WLOCK(object);
1038		res = vm_object_page_clean(object, offset, offset + size,
1039		    flags);
1040		VM_OBJECT_WUNLOCK(object);
1041		if (fsync_after)
1042			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1043		VOP_UNLOCK(vp, 0);
1044		vn_finished_write(mp);
1045		if (error != 0)
1046			res = FALSE;
1047		VM_OBJECT_WLOCK(object);
1048	}
1049	if ((object->type == OBJT_VNODE ||
1050	     object->type == OBJT_DEVICE) && invalidate) {
1051		if (object->type == OBJT_DEVICE)
1052			/*
1053			 * The option OBJPR_NOTMAPPED must be passed here
1054			 * because vm_object_page_remove() cannot remove
1055			 * unmanaged mappings.
1056			 */
1057			flags = OBJPR_NOTMAPPED;
1058		else if (old_msync)
1059			flags = OBJPR_NOTWIRED;
1060		else
1061			flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1062		vm_object_page_remove(object, OFF_TO_IDX(offset),
1063		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1064	}
1065	VM_OBJECT_WUNLOCK(object);
1066	return (res);
1067}
1068
1069/*
1070 *	vm_object_madvise:
1071 *
1072 *	Implements the madvise function at the object/page level.
1073 *
1074 *	MADV_WILLNEED	(any object)
1075 *
1076 *	    Activate the specified pages if they are resident.
1077 *
1078 *	MADV_DONTNEED	(any object)
1079 *
1080 *	    Deactivate the specified pages if they are resident.
1081 *
1082 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1083 *			 OBJ_ONEMAPPING only)
1084 *
1085 *	    Deactivate and clean the specified pages if they are
1086 *	    resident.  This permits the process to reuse the pages
1087 *	    without faulting or the kernel to reclaim the pages
1088 *	    without I/O.
1089 */
1090void
1091vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1092    int advise)
1093{
1094	vm_pindex_t tpindex;
1095	vm_object_t backing_object, tobject;
1096	vm_page_t m;
1097
1098	if (object == NULL)
1099		return;
1100	VM_OBJECT_WLOCK(object);
1101	/*
1102	 * Locate and adjust resident pages
1103	 */
1104	for (; pindex < end; pindex += 1) {
1105relookup:
1106		tobject = object;
1107		tpindex = pindex;
1108shadowlookup:
1109		/*
1110		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1111		 * and those pages must be OBJ_ONEMAPPING.
1112		 */
1113		if (advise == MADV_FREE) {
1114			if ((tobject->type != OBJT_DEFAULT &&
1115			     tobject->type != OBJT_SWAP) ||
1116			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1117				goto unlock_tobject;
1118			}
1119		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1120			goto unlock_tobject;
1121		m = vm_page_lookup(tobject, tpindex);
1122		if (m == NULL && advise == MADV_WILLNEED) {
1123			/*
1124			 * If the page is cached, reactivate it.
1125			 */
1126			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1127			    VM_ALLOC_NOBUSY);
1128		}
1129		if (m == NULL) {
1130			/*
1131			 * There may be swap even if there is no backing page
1132			 */
1133			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1134				swap_pager_freespace(tobject, tpindex, 1);
1135			/*
1136			 * next object
1137			 */
1138			backing_object = tobject->backing_object;
1139			if (backing_object == NULL)
1140				goto unlock_tobject;
1141			VM_OBJECT_WLOCK(backing_object);
1142			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1143			if (tobject != object)
1144				VM_OBJECT_WUNLOCK(tobject);
1145			tobject = backing_object;
1146			goto shadowlookup;
1147		} else if (m->valid != VM_PAGE_BITS_ALL)
1148			goto unlock_tobject;
1149		/*
1150		 * If the page is not in a normal state, skip it.
1151		 */
1152		vm_page_lock(m);
1153		if (m->hold_count != 0 || m->wire_count != 0) {
1154			vm_page_unlock(m);
1155			goto unlock_tobject;
1156		}
1157		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1158		    ("vm_object_madvise: page %p is fictitious", m));
1159		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1160		    ("vm_object_madvise: page %p is not managed", m));
1161		if (vm_page_busied(m)) {
1162			if (advise == MADV_WILLNEED) {
1163				/*
1164				 * Reference the page before unlocking and
1165				 * sleeping so that the page daemon is less
1166				 * likely to reclaim it.
1167				 */
1168				vm_page_aflag_set(m, PGA_REFERENCED);
1169			}
1170			if (object != tobject)
1171				VM_OBJECT_WUNLOCK(object);
1172			VM_OBJECT_WUNLOCK(tobject);
1173			vm_page_busy_sleep(m, "madvpo");
1174			VM_OBJECT_WLOCK(object);
1175  			goto relookup;
1176		}
1177		if (advise == MADV_WILLNEED) {
1178			vm_page_activate(m);
1179		} else {
1180			vm_page_advise(m, advise);
1181		}
1182		vm_page_unlock(m);
1183		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1184			swap_pager_freespace(tobject, tpindex, 1);
1185unlock_tobject:
1186		if (tobject != object)
1187			VM_OBJECT_WUNLOCK(tobject);
1188	}
1189	VM_OBJECT_WUNLOCK(object);
1190}
1191
1192/*
1193 *	vm_object_shadow:
1194 *
1195 *	Create a new object which is backed by the
1196 *	specified existing object range.  The source
1197 *	object reference is deallocated.
1198 *
1199 *	The new object and offset into that object
1200 *	are returned in the source parameters.
1201 */
1202void
1203vm_object_shadow(
1204	vm_object_t *object,	/* IN/OUT */
1205	vm_ooffset_t *offset,	/* IN/OUT */
1206	vm_size_t length)
1207{
1208	vm_object_t source;
1209	vm_object_t result;
1210
1211	source = *object;
1212
1213	/*
1214	 * Don't create the new object if the old object isn't shared.
1215	 */
1216	if (source != NULL) {
1217		VM_OBJECT_WLOCK(source);
1218		if (source->ref_count == 1 &&
1219		    source->handle == NULL &&
1220		    (source->type == OBJT_DEFAULT ||
1221		     source->type == OBJT_SWAP)) {
1222			VM_OBJECT_WUNLOCK(source);
1223			return;
1224		}
1225		VM_OBJECT_WUNLOCK(source);
1226	}
1227
1228	/*
1229	 * Allocate a new object with the given length.
1230	 */
1231	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1232
1233	/*
1234	 * The new object shadows the source object, adding a reference to it.
1235	 * Our caller changes his reference to point to the new object,
1236	 * removing a reference to the source object.  Net result: no change
1237	 * of reference count.
1238	 *
1239	 * Try to optimize the result object's page color when shadowing
1240	 * in order to maintain page coloring consistency in the combined
1241	 * shadowed object.
1242	 */
1243	result->backing_object = source;
1244	/*
1245	 * Store the offset into the source object, and fix up the offset into
1246	 * the new object.
1247	 */
1248	result->backing_object_offset = *offset;
1249	if (source != NULL) {
1250		VM_OBJECT_WLOCK(source);
1251		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1252		source->shadow_count++;
1253#if VM_NRESERVLEVEL > 0
1254		result->flags |= source->flags & OBJ_COLORED;
1255		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1256		    ((1 << (VM_NFREEORDER - 1)) - 1);
1257#endif
1258		VM_OBJECT_WUNLOCK(source);
1259	}
1260
1261
1262	/*
1263	 * Return the new things
1264	 */
1265	*offset = 0;
1266	*object = result;
1267}
1268
1269/*
1270 *	vm_object_split:
1271 *
1272 * Split the pages in a map entry into a new object.  This affords
1273 * easier removal of unused pages, and keeps object inheritance from
1274 * being a negative impact on memory usage.
1275 */
1276void
1277vm_object_split(vm_map_entry_t entry)
1278{
1279	vm_page_t m, m_next;
1280	vm_object_t orig_object, new_object, source;
1281	vm_pindex_t idx, offidxstart;
1282	vm_size_t size;
1283
1284	orig_object = entry->object.vm_object;
1285	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1286		return;
1287	if (orig_object->ref_count <= 1)
1288		return;
1289	VM_OBJECT_WUNLOCK(orig_object);
1290
1291	offidxstart = OFF_TO_IDX(entry->offset);
1292	size = atop(entry->end - entry->start);
1293
1294	/*
1295	 * If swap_pager_copy() is later called, it will convert new_object
1296	 * into a swap object.
1297	 */
1298	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1299
1300	/*
1301	 * At this point, the new object is still private, so the order in
1302	 * which the original and new objects are locked does not matter.
1303	 */
1304	VM_OBJECT_WLOCK(new_object);
1305	VM_OBJECT_WLOCK(orig_object);
1306	source = orig_object->backing_object;
1307	if (source != NULL) {
1308		VM_OBJECT_WLOCK(source);
1309		if ((source->flags & OBJ_DEAD) != 0) {
1310			VM_OBJECT_WUNLOCK(source);
1311			VM_OBJECT_WUNLOCK(orig_object);
1312			VM_OBJECT_WUNLOCK(new_object);
1313			vm_object_deallocate(new_object);
1314			VM_OBJECT_WLOCK(orig_object);
1315			return;
1316		}
1317		LIST_INSERT_HEAD(&source->shadow_head,
1318				  new_object, shadow_list);
1319		source->shadow_count++;
1320		vm_object_reference_locked(source);	/* for new_object */
1321		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1322		VM_OBJECT_WUNLOCK(source);
1323		new_object->backing_object_offset =
1324			orig_object->backing_object_offset + entry->offset;
1325		new_object->backing_object = source;
1326	}
1327	if (orig_object->cred != NULL) {
1328		new_object->cred = orig_object->cred;
1329		crhold(orig_object->cred);
1330		new_object->charge = ptoa(size);
1331		KASSERT(orig_object->charge >= ptoa(size),
1332		    ("orig_object->charge < 0"));
1333		orig_object->charge -= ptoa(size);
1334	}
1335retry:
1336	m = vm_page_find_least(orig_object, offidxstart);
1337	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1338	    m = m_next) {
1339		m_next = TAILQ_NEXT(m, listq);
1340
1341		/*
1342		 * We must wait for pending I/O to complete before we can
1343		 * rename the page.
1344		 *
1345		 * We do not have to VM_PROT_NONE the page as mappings should
1346		 * not be changed by this operation.
1347		 */
1348		if (vm_page_busied(m)) {
1349			VM_OBJECT_WUNLOCK(new_object);
1350			vm_page_lock(m);
1351			VM_OBJECT_WUNLOCK(orig_object);
1352			vm_page_busy_sleep(m, "spltwt");
1353			VM_OBJECT_WLOCK(orig_object);
1354			VM_OBJECT_WLOCK(new_object);
1355			goto retry;
1356		}
1357
1358		/* vm_page_rename() will handle dirty and cache. */
1359		if (vm_page_rename(m, new_object, idx)) {
1360			VM_OBJECT_WUNLOCK(new_object);
1361			VM_OBJECT_WUNLOCK(orig_object);
1362			VM_WAIT;
1363			VM_OBJECT_WLOCK(orig_object);
1364			VM_OBJECT_WLOCK(new_object);
1365			goto retry;
1366		}
1367#if VM_NRESERVLEVEL > 0
1368		/*
1369		 * If some of the reservation's allocated pages remain with
1370		 * the original object, then transferring the reservation to
1371		 * the new object is neither particularly beneficial nor
1372		 * particularly harmful as compared to leaving the reservation
1373		 * with the original object.  If, however, all of the
1374		 * reservation's allocated pages are transferred to the new
1375		 * object, then transferring the reservation is typically
1376		 * beneficial.  Determining which of these two cases applies
1377		 * would be more costly than unconditionally renaming the
1378		 * reservation.
1379		 */
1380		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1381#endif
1382		if (orig_object->type == OBJT_SWAP)
1383			vm_page_xbusy(m);
1384	}
1385	if (orig_object->type == OBJT_SWAP) {
1386		/*
1387		 * swap_pager_copy() can sleep, in which case the orig_object's
1388		 * and new_object's locks are released and reacquired.
1389		 */
1390		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1391		TAILQ_FOREACH(m, &new_object->memq, listq)
1392			vm_page_xunbusy(m);
1393
1394		/*
1395		 * Transfer any cached pages from orig_object to new_object.
1396		 * If swap_pager_copy() found swapped out pages within the
1397		 * specified range of orig_object, then it changed
1398		 * new_object's type to OBJT_SWAP when it transferred those
1399		 * pages to new_object.  Otherwise, new_object's type
1400		 * should still be OBJT_DEFAULT and orig_object should not
1401		 * contain any cached pages within the specified range.
1402		 */
1403		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1404			vm_page_cache_transfer(orig_object, offidxstart,
1405			    new_object);
1406	}
1407	VM_OBJECT_WUNLOCK(orig_object);
1408	VM_OBJECT_WUNLOCK(new_object);
1409	entry->object.vm_object = new_object;
1410	entry->offset = 0LL;
1411	vm_object_deallocate(orig_object);
1412	VM_OBJECT_WLOCK(new_object);
1413}
1414
1415#define	OBSC_TEST_ALL_SHADOWED	0x0001
1416#define	OBSC_COLLAPSE_NOWAIT	0x0002
1417#define	OBSC_COLLAPSE_WAIT	0x0004
1418
1419static int
1420vm_object_backing_scan(vm_object_t object, int op)
1421{
1422	int r = 1;
1423	vm_page_t p;
1424	vm_object_t backing_object;
1425	vm_pindex_t backing_offset_index;
1426
1427	VM_OBJECT_ASSERT_WLOCKED(object);
1428	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1429
1430	backing_object = object->backing_object;
1431	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1432
1433	/*
1434	 * Initial conditions
1435	 */
1436	if (op & OBSC_TEST_ALL_SHADOWED) {
1437		/*
1438		 * We do not want to have to test for the existence of cache
1439		 * or swap pages in the backing object.  XXX but with the
1440		 * new swapper this would be pretty easy to do.
1441		 *
1442		 * XXX what about anonymous MAP_SHARED memory that hasn't
1443		 * been ZFOD faulted yet?  If we do not test for this, the
1444		 * shadow test may succeed! XXX
1445		 */
1446		if (backing_object->type != OBJT_DEFAULT) {
1447			return (0);
1448		}
1449	}
1450	if (op & OBSC_COLLAPSE_WAIT) {
1451		vm_object_set_flag(backing_object, OBJ_DEAD);
1452	}
1453
1454	/*
1455	 * Our scan
1456	 */
1457	p = TAILQ_FIRST(&backing_object->memq);
1458	while (p) {
1459		vm_page_t next = TAILQ_NEXT(p, listq);
1460		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1461
1462		if (op & OBSC_TEST_ALL_SHADOWED) {
1463			vm_page_t pp;
1464
1465			/*
1466			 * Ignore pages outside the parent object's range
1467			 * and outside the parent object's mapping of the
1468			 * backing object.
1469			 *
1470			 * note that we do not busy the backing object's
1471			 * page.
1472			 */
1473			if (
1474			    p->pindex < backing_offset_index ||
1475			    new_pindex >= object->size
1476			) {
1477				p = next;
1478				continue;
1479			}
1480
1481			/*
1482			 * See if the parent has the page or if the parent's
1483			 * object pager has the page.  If the parent has the
1484			 * page but the page is not valid, the parent's
1485			 * object pager must have the page.
1486			 *
1487			 * If this fails, the parent does not completely shadow
1488			 * the object and we might as well give up now.
1489			 */
1490
1491			pp = vm_page_lookup(object, new_pindex);
1492			if (
1493			    (pp == NULL || pp->valid == 0) &&
1494			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1495			) {
1496				r = 0;
1497				break;
1498			}
1499		}
1500
1501		/*
1502		 * Check for busy page
1503		 */
1504		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1505			vm_page_t pp;
1506
1507			if (op & OBSC_COLLAPSE_NOWAIT) {
1508				if (!p->valid || vm_page_busied(p)) {
1509					p = next;
1510					continue;
1511				}
1512			} else if (op & OBSC_COLLAPSE_WAIT) {
1513				if (vm_page_busied(p)) {
1514					VM_OBJECT_WUNLOCK(object);
1515					vm_page_lock(p);
1516					VM_OBJECT_WUNLOCK(backing_object);
1517					vm_page_busy_sleep(p, "vmocol");
1518					VM_OBJECT_WLOCK(object);
1519					VM_OBJECT_WLOCK(backing_object);
1520					/*
1521					 * If we slept, anything could have
1522					 * happened.  Since the object is
1523					 * marked dead, the backing offset
1524					 * should not have changed so we
1525					 * just restart our scan.
1526					 */
1527					p = TAILQ_FIRST(&backing_object->memq);
1528					continue;
1529				}
1530			}
1531
1532			KASSERT(
1533			    p->object == backing_object,
1534			    ("vm_object_backing_scan: object mismatch")
1535			);
1536
1537			if (
1538			    p->pindex < backing_offset_index ||
1539			    new_pindex >= object->size
1540			) {
1541				if (backing_object->type == OBJT_SWAP)
1542					swap_pager_freespace(backing_object,
1543					    p->pindex, 1);
1544
1545				/*
1546				 * Page is out of the parent object's range, we
1547				 * can simply destroy it.
1548				 */
1549				vm_page_lock(p);
1550				KASSERT(!pmap_page_is_mapped(p),
1551				    ("freeing mapped page %p", p));
1552				if (p->wire_count == 0)
1553					vm_page_free(p);
1554				else
1555					vm_page_remove(p);
1556				vm_page_unlock(p);
1557				p = next;
1558				continue;
1559			}
1560
1561			pp = vm_page_lookup(object, new_pindex);
1562			if (
1563			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1564			    (pp != NULL && pp->valid == 0)
1565			) {
1566				if (backing_object->type == OBJT_SWAP)
1567					swap_pager_freespace(backing_object,
1568					    p->pindex, 1);
1569
1570				/*
1571				 * The page in the parent is not (yet) valid.
1572				 * We don't know anything about the state of
1573				 * the original page.  It might be mapped,
1574				 * so we must avoid the next if here.
1575				 *
1576				 * This is due to a race in vm_fault() where
1577				 * we must unbusy the original (backing_obj)
1578				 * page before we can (re)lock the parent.
1579				 * Hence we can get here.
1580				 */
1581				p = next;
1582				continue;
1583			}
1584			if (
1585			    pp != NULL ||
1586			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1587			) {
1588				if (backing_object->type == OBJT_SWAP)
1589					swap_pager_freespace(backing_object,
1590					    p->pindex, 1);
1591
1592				/*
1593				 * page already exists in parent OR swap exists
1594				 * for this location in the parent.  Destroy
1595				 * the original page from the backing object.
1596				 *
1597				 * Leave the parent's page alone
1598				 */
1599				vm_page_lock(p);
1600				KASSERT(!pmap_page_is_mapped(p),
1601				    ("freeing mapped page %p", p));
1602				if (p->wire_count == 0)
1603					vm_page_free(p);
1604				else
1605					vm_page_remove(p);
1606				vm_page_unlock(p);
1607				p = next;
1608				continue;
1609			}
1610
1611			/*
1612			 * Page does not exist in parent, rename the
1613			 * page from the backing object to the main object.
1614			 *
1615			 * If the page was mapped to a process, it can remain
1616			 * mapped through the rename.
1617			 * vm_page_rename() will handle dirty and cache.
1618			 */
1619			if (vm_page_rename(p, object, new_pindex)) {
1620				if (op & OBSC_COLLAPSE_NOWAIT) {
1621					p = next;
1622					continue;
1623				}
1624				VM_OBJECT_WLOCK(backing_object);
1625				VM_OBJECT_WUNLOCK(object);
1626				VM_WAIT;
1627				VM_OBJECT_WLOCK(object);
1628				VM_OBJECT_WLOCK(backing_object);
1629				p = TAILQ_FIRST(&backing_object->memq);
1630				continue;
1631			}
1632
1633			/* Use the old pindex to free the right page. */
1634			if (backing_object->type == OBJT_SWAP)
1635				swap_pager_freespace(backing_object,
1636				    new_pindex + backing_offset_index, 1);
1637
1638#if VM_NRESERVLEVEL > 0
1639			/*
1640			 * Rename the reservation.
1641			 */
1642			vm_reserv_rename(p, object, backing_object,
1643			    backing_offset_index);
1644#endif
1645		}
1646		p = next;
1647	}
1648	return (r);
1649}
1650
1651
1652/*
1653 * this version of collapse allows the operation to occur earlier and
1654 * when paging_in_progress is true for an object...  This is not a complete
1655 * operation, but should plug 99.9% of the rest of the leaks.
1656 */
1657static void
1658vm_object_qcollapse(vm_object_t object)
1659{
1660	vm_object_t backing_object = object->backing_object;
1661
1662	VM_OBJECT_ASSERT_WLOCKED(object);
1663	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1664
1665	if (backing_object->ref_count != 1)
1666		return;
1667
1668	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1669}
1670
1671/*
1672 *	vm_object_collapse:
1673 *
1674 *	Collapse an object with the object backing it.
1675 *	Pages in the backing object are moved into the
1676 *	parent, and the backing object is deallocated.
1677 */
1678void
1679vm_object_collapse(vm_object_t object)
1680{
1681	VM_OBJECT_ASSERT_WLOCKED(object);
1682
1683	while (TRUE) {
1684		vm_object_t backing_object;
1685
1686		/*
1687		 * Verify that the conditions are right for collapse:
1688		 *
1689		 * The object exists and the backing object exists.
1690		 */
1691		if ((backing_object = object->backing_object) == NULL)
1692			break;
1693
1694		/*
1695		 * we check the backing object first, because it is most likely
1696		 * not collapsable.
1697		 */
1698		VM_OBJECT_WLOCK(backing_object);
1699		if (backing_object->handle != NULL ||
1700		    (backing_object->type != OBJT_DEFAULT &&
1701		     backing_object->type != OBJT_SWAP) ||
1702		    (backing_object->flags & OBJ_DEAD) ||
1703		    object->handle != NULL ||
1704		    (object->type != OBJT_DEFAULT &&
1705		     object->type != OBJT_SWAP) ||
1706		    (object->flags & OBJ_DEAD)) {
1707			VM_OBJECT_WUNLOCK(backing_object);
1708			break;
1709		}
1710
1711		if (
1712		    object->paging_in_progress != 0 ||
1713		    backing_object->paging_in_progress != 0
1714		) {
1715			vm_object_qcollapse(object);
1716			VM_OBJECT_WUNLOCK(backing_object);
1717			break;
1718		}
1719		/*
1720		 * We know that we can either collapse the backing object (if
1721		 * the parent is the only reference to it) or (perhaps) have
1722		 * the parent bypass the object if the parent happens to shadow
1723		 * all the resident pages in the entire backing object.
1724		 *
1725		 * This is ignoring pager-backed pages such as swap pages.
1726		 * vm_object_backing_scan fails the shadowing test in this
1727		 * case.
1728		 */
1729		if (backing_object->ref_count == 1) {
1730			/*
1731			 * If there is exactly one reference to the backing
1732			 * object, we can collapse it into the parent.
1733			 */
1734			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1735
1736#if VM_NRESERVLEVEL > 0
1737			/*
1738			 * Break any reservations from backing_object.
1739			 */
1740			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1741				vm_reserv_break_all(backing_object);
1742#endif
1743
1744			/*
1745			 * Move the pager from backing_object to object.
1746			 */
1747			if (backing_object->type == OBJT_SWAP) {
1748				/*
1749				 * swap_pager_copy() can sleep, in which case
1750				 * the backing_object's and object's locks are
1751				 * released and reacquired.
1752				 * Since swap_pager_copy() is being asked to
1753				 * destroy the source, it will change the
1754				 * backing_object's type to OBJT_DEFAULT.
1755				 */
1756				swap_pager_copy(
1757				    backing_object,
1758				    object,
1759				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1760
1761				/*
1762				 * Free any cached pages from backing_object.
1763				 */
1764				if (__predict_false(
1765				    !vm_object_cache_is_empty(backing_object)))
1766					vm_page_cache_free(backing_object, 0, 0);
1767			}
1768			/*
1769			 * Object now shadows whatever backing_object did.
1770			 * Note that the reference to
1771			 * backing_object->backing_object moves from within
1772			 * backing_object to within object.
1773			 */
1774			LIST_REMOVE(object, shadow_list);
1775			backing_object->shadow_count--;
1776			if (backing_object->backing_object) {
1777				VM_OBJECT_WLOCK(backing_object->backing_object);
1778				LIST_REMOVE(backing_object, shadow_list);
1779				LIST_INSERT_HEAD(
1780				    &backing_object->backing_object->shadow_head,
1781				    object, shadow_list);
1782				/*
1783				 * The shadow_count has not changed.
1784				 */
1785				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1786			}
1787			object->backing_object = backing_object->backing_object;
1788			object->backing_object_offset +=
1789			    backing_object->backing_object_offset;
1790
1791			/*
1792			 * Discard backing_object.
1793			 *
1794			 * Since the backing object has no pages, no pager left,
1795			 * and no object references within it, all that is
1796			 * necessary is to dispose of it.
1797			 */
1798			KASSERT(backing_object->ref_count == 1, (
1799"backing_object %p was somehow re-referenced during collapse!",
1800			    backing_object));
1801			VM_OBJECT_WUNLOCK(backing_object);
1802			vm_object_destroy(backing_object);
1803
1804			object_collapses++;
1805		} else {
1806			vm_object_t new_backing_object;
1807
1808			/*
1809			 * If we do not entirely shadow the backing object,
1810			 * there is nothing we can do so we give up.
1811			 */
1812			if (object->resident_page_count != object->size &&
1813			    vm_object_backing_scan(object,
1814			    OBSC_TEST_ALL_SHADOWED) == 0) {
1815				VM_OBJECT_WUNLOCK(backing_object);
1816				break;
1817			}
1818
1819			/*
1820			 * Make the parent shadow the next object in the
1821			 * chain.  Deallocating backing_object will not remove
1822			 * it, since its reference count is at least 2.
1823			 */
1824			LIST_REMOVE(object, shadow_list);
1825			backing_object->shadow_count--;
1826
1827			new_backing_object = backing_object->backing_object;
1828			if ((object->backing_object = new_backing_object) != NULL) {
1829				VM_OBJECT_WLOCK(new_backing_object);
1830				LIST_INSERT_HEAD(
1831				    &new_backing_object->shadow_head,
1832				    object,
1833				    shadow_list
1834				);
1835				new_backing_object->shadow_count++;
1836				vm_object_reference_locked(new_backing_object);
1837				VM_OBJECT_WUNLOCK(new_backing_object);
1838				object->backing_object_offset +=
1839					backing_object->backing_object_offset;
1840			}
1841
1842			/*
1843			 * Drop the reference count on backing_object. Since
1844			 * its ref_count was at least 2, it will not vanish.
1845			 */
1846			backing_object->ref_count--;
1847			VM_OBJECT_WUNLOCK(backing_object);
1848			object_bypasses++;
1849		}
1850
1851		/*
1852		 * Try again with this object's new backing object.
1853		 */
1854	}
1855}
1856
1857/*
1858 *	vm_object_page_remove:
1859 *
1860 *	For the given object, either frees or invalidates each of the
1861 *	specified pages.  In general, a page is freed.  However, if a page is
1862 *	wired for any reason other than the existence of a managed, wired
1863 *	mapping, then it may be invalidated but not removed from the object.
1864 *	Pages are specified by the given range ["start", "end") and the option
1865 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1866 *	extends from "start" to the end of the object.  If the option
1867 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1868 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1869 *	specified, then the pages within the specified range must have no
1870 *	mappings.  Otherwise, if this option is not specified, any mappings to
1871 *	the specified pages are removed before the pages are freed or
1872 *	invalidated.
1873 *
1874 *	In general, this operation should only be performed on objects that
1875 *	contain managed pages.  There are, however, two exceptions.  First, it
1876 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1877 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1878 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1879 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1880 *
1881 *	The object must be locked.
1882 */
1883void
1884vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1885    int options)
1886{
1887	vm_page_t p, next;
1888	int wirings;
1889
1890	VM_OBJECT_ASSERT_WLOCKED(object);
1891	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1892	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1893	    ("vm_object_page_remove: illegal options for object %p", object));
1894	if (object->resident_page_count == 0)
1895		goto skipmemq;
1896	vm_object_pip_add(object, 1);
1897again:
1898	p = vm_page_find_least(object, start);
1899
1900	/*
1901	 * Here, the variable "p" is either (1) the page with the least pindex
1902	 * greater than or equal to the parameter "start" or (2) NULL.
1903	 */
1904	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1905		next = TAILQ_NEXT(p, listq);
1906
1907		/*
1908		 * If the page is wired for any reason besides the existence
1909		 * of managed, wired mappings, then it cannot be freed.  For
1910		 * example, fictitious pages, which represent device memory,
1911		 * are inherently wired and cannot be freed.  They can,
1912		 * however, be invalidated if the option OBJPR_CLEANONLY is
1913		 * not specified.
1914		 */
1915		vm_page_lock(p);
1916		if (vm_page_xbusied(p)) {
1917			VM_OBJECT_WUNLOCK(object);
1918			vm_page_busy_sleep(p, "vmopax");
1919			VM_OBJECT_WLOCK(object);
1920			goto again;
1921		}
1922		if ((wirings = p->wire_count) != 0 &&
1923		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1924			if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1925			    0) {
1926				pmap_remove_all(p);
1927				/* Account for removal of wired mappings. */
1928				if (wirings != 0)
1929					p->wire_count -= wirings;
1930			}
1931			if ((options & OBJPR_CLEANONLY) == 0) {
1932				p->valid = 0;
1933				vm_page_undirty(p);
1934			}
1935			goto next;
1936		}
1937		if (vm_page_busied(p)) {
1938			VM_OBJECT_WUNLOCK(object);
1939			vm_page_busy_sleep(p, "vmopar");
1940			VM_OBJECT_WLOCK(object);
1941			goto again;
1942		}
1943		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1944		    ("vm_object_page_remove: page %p is fictitious", p));
1945		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1946			if ((options & OBJPR_NOTMAPPED) == 0)
1947				pmap_remove_write(p);
1948			if (p->dirty)
1949				goto next;
1950		}
1951		if ((options & OBJPR_NOTMAPPED) == 0) {
1952			if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1953				goto next;
1954			pmap_remove_all(p);
1955			/* Account for removal of wired mappings. */
1956			if (wirings != 0) {
1957				KASSERT(p->wire_count == wirings,
1958				    ("inconsistent wire count %d %d %p",
1959				    p->wire_count, wirings, p));
1960				p->wire_count = 0;
1961				atomic_subtract_int(&cnt.v_wire_count, 1);
1962			}
1963		}
1964		vm_page_free(p);
1965next:
1966		vm_page_unlock(p);
1967	}
1968	vm_object_pip_wakeup(object);
1969skipmemq:
1970	if (__predict_false(!vm_object_cache_is_empty(object)))
1971		vm_page_cache_free(object, start, end);
1972}
1973
1974/*
1975 *	vm_object_page_cache:
1976 *
1977 *	For the given object, attempt to move the specified clean
1978 *	pages to the cache queue.  If a page is wired for any reason,
1979 *	then it will not be changed.  Pages are specified by the given
1980 *	range ["start", "end").  As a special case, if "end" is zero,
1981 *	then the range extends from "start" to the end of the object.
1982 *	Any mappings to the specified pages are removed before the
1983 *	pages are moved to the cache queue.
1984 *
1985 *	This operation should only be performed on objects that
1986 *	contain non-fictitious, managed pages.
1987 *
1988 *	The object must be locked.
1989 */
1990void
1991vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1992{
1993	struct mtx *mtx, *new_mtx;
1994	vm_page_t p, next;
1995
1996	VM_OBJECT_ASSERT_WLOCKED(object);
1997	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1998	    ("vm_object_page_cache: illegal object %p", object));
1999	if (object->resident_page_count == 0)
2000		return;
2001	p = vm_page_find_least(object, start);
2002
2003	/*
2004	 * Here, the variable "p" is either (1) the page with the least pindex
2005	 * greater than or equal to the parameter "start" or (2) NULL.
2006	 */
2007	mtx = NULL;
2008	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2009		next = TAILQ_NEXT(p, listq);
2010
2011		/*
2012		 * Avoid releasing and reacquiring the same page lock.
2013		 */
2014		new_mtx = vm_page_lockptr(p);
2015		if (mtx != new_mtx) {
2016			if (mtx != NULL)
2017				mtx_unlock(mtx);
2018			mtx = new_mtx;
2019			mtx_lock(mtx);
2020		}
2021		vm_page_try_to_cache(p);
2022	}
2023	if (mtx != NULL)
2024		mtx_unlock(mtx);
2025}
2026
2027/*
2028 *	Populate the specified range of the object with valid pages.  Returns
2029 *	TRUE if the range is successfully populated and FALSE otherwise.
2030 *
2031 *	Note: This function should be optimized to pass a larger array of
2032 *	pages to vm_pager_get_pages() before it is applied to a non-
2033 *	OBJT_DEVICE object.
2034 *
2035 *	The object must be locked.
2036 */
2037boolean_t
2038vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2039{
2040	vm_page_t m, ma[1];
2041	vm_pindex_t pindex;
2042	int rv;
2043
2044	VM_OBJECT_ASSERT_WLOCKED(object);
2045	for (pindex = start; pindex < end; pindex++) {
2046		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2047		if (m->valid != VM_PAGE_BITS_ALL) {
2048			ma[0] = m;
2049			rv = vm_pager_get_pages(object, ma, 1, 0);
2050			m = vm_page_lookup(object, pindex);
2051			if (m == NULL)
2052				break;
2053			if (rv != VM_PAGER_OK) {
2054				vm_page_lock(m);
2055				vm_page_free(m);
2056				vm_page_unlock(m);
2057				break;
2058			}
2059		}
2060		/*
2061		 * Keep "m" busy because a subsequent iteration may unlock
2062		 * the object.
2063		 */
2064	}
2065	if (pindex > start) {
2066		m = vm_page_lookup(object, start);
2067		while (m != NULL && m->pindex < pindex) {
2068			vm_page_xunbusy(m);
2069			m = TAILQ_NEXT(m, listq);
2070		}
2071	}
2072	return (pindex == end);
2073}
2074
2075/*
2076 *	Routine:	vm_object_coalesce
2077 *	Function:	Coalesces two objects backing up adjoining
2078 *			regions of memory into a single object.
2079 *
2080 *	returns TRUE if objects were combined.
2081 *
2082 *	NOTE:	Only works at the moment if the second object is NULL -
2083 *		if it's not, which object do we lock first?
2084 *
2085 *	Parameters:
2086 *		prev_object	First object to coalesce
2087 *		prev_offset	Offset into prev_object
2088 *		prev_size	Size of reference to prev_object
2089 *		next_size	Size of reference to the second object
2090 *		reserved	Indicator that extension region has
2091 *				swap accounted for
2092 *
2093 *	Conditions:
2094 *	The object must *not* be locked.
2095 */
2096boolean_t
2097vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2098    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2099{
2100	vm_pindex_t next_pindex;
2101
2102	if (prev_object == NULL)
2103		return (TRUE);
2104	VM_OBJECT_WLOCK(prev_object);
2105	if ((prev_object->type != OBJT_DEFAULT &&
2106	    prev_object->type != OBJT_SWAP) ||
2107	    (prev_object->flags & OBJ_TMPFS) != 0) {
2108		VM_OBJECT_WUNLOCK(prev_object);
2109		return (FALSE);
2110	}
2111
2112	/*
2113	 * Try to collapse the object first
2114	 */
2115	vm_object_collapse(prev_object);
2116
2117	/*
2118	 * Can't coalesce if: . more than one reference . paged out . shadows
2119	 * another object . has a copy elsewhere (any of which mean that the
2120	 * pages not mapped to prev_entry may be in use anyway)
2121	 */
2122	if (prev_object->backing_object != NULL) {
2123		VM_OBJECT_WUNLOCK(prev_object);
2124		return (FALSE);
2125	}
2126
2127	prev_size >>= PAGE_SHIFT;
2128	next_size >>= PAGE_SHIFT;
2129	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2130
2131	if ((prev_object->ref_count > 1) &&
2132	    (prev_object->size != next_pindex)) {
2133		VM_OBJECT_WUNLOCK(prev_object);
2134		return (FALSE);
2135	}
2136
2137	/*
2138	 * Account for the charge.
2139	 */
2140	if (prev_object->cred != NULL) {
2141
2142		/*
2143		 * If prev_object was charged, then this mapping,
2144		 * althought not charged now, may become writable
2145		 * later. Non-NULL cred in the object would prevent
2146		 * swap reservation during enabling of the write
2147		 * access, so reserve swap now. Failed reservation
2148		 * cause allocation of the separate object for the map
2149		 * entry, and swap reservation for this entry is
2150		 * managed in appropriate time.
2151		 */
2152		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2153		    prev_object->cred)) {
2154			return (FALSE);
2155		}
2156		prev_object->charge += ptoa(next_size);
2157	}
2158
2159	/*
2160	 * Remove any pages that may still be in the object from a previous
2161	 * deallocation.
2162	 */
2163	if (next_pindex < prev_object->size) {
2164		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2165		    next_size, 0);
2166		if (prev_object->type == OBJT_SWAP)
2167			swap_pager_freespace(prev_object,
2168					     next_pindex, next_size);
2169#if 0
2170		if (prev_object->cred != NULL) {
2171			KASSERT(prev_object->charge >=
2172			    ptoa(prev_object->size - next_pindex),
2173			    ("object %p overcharged 1 %jx %jx", prev_object,
2174				(uintmax_t)next_pindex, (uintmax_t)next_size));
2175			prev_object->charge -= ptoa(prev_object->size -
2176			    next_pindex);
2177		}
2178#endif
2179	}
2180
2181	/*
2182	 * Extend the object if necessary.
2183	 */
2184	if (next_pindex + next_size > prev_object->size)
2185		prev_object->size = next_pindex + next_size;
2186
2187	VM_OBJECT_WUNLOCK(prev_object);
2188	return (TRUE);
2189}
2190
2191void
2192vm_object_set_writeable_dirty(vm_object_t object)
2193{
2194
2195	VM_OBJECT_ASSERT_WLOCKED(object);
2196	if (object->type != OBJT_VNODE)
2197		return;
2198	object->generation++;
2199	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2200		return;
2201	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2202}
2203
2204#include "opt_ddb.h"
2205#ifdef DDB
2206#include <sys/kernel.h>
2207
2208#include <sys/cons.h>
2209
2210#include <ddb/ddb.h>
2211
2212static int
2213_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2214{
2215	vm_map_t tmpm;
2216	vm_map_entry_t tmpe;
2217	vm_object_t obj;
2218	int entcount;
2219
2220	if (map == 0)
2221		return 0;
2222
2223	if (entry == 0) {
2224		tmpe = map->header.next;
2225		entcount = map->nentries;
2226		while (entcount-- && (tmpe != &map->header)) {
2227			if (_vm_object_in_map(map, object, tmpe)) {
2228				return 1;
2229			}
2230			tmpe = tmpe->next;
2231		}
2232	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2233		tmpm = entry->object.sub_map;
2234		tmpe = tmpm->header.next;
2235		entcount = tmpm->nentries;
2236		while (entcount-- && tmpe != &tmpm->header) {
2237			if (_vm_object_in_map(tmpm, object, tmpe)) {
2238				return 1;
2239			}
2240			tmpe = tmpe->next;
2241		}
2242	} else if ((obj = entry->object.vm_object) != NULL) {
2243		for (; obj; obj = obj->backing_object)
2244			if (obj == object) {
2245				return 1;
2246			}
2247	}
2248	return 0;
2249}
2250
2251static int
2252vm_object_in_map(vm_object_t object)
2253{
2254	struct proc *p;
2255
2256	/* sx_slock(&allproc_lock); */
2257	FOREACH_PROC_IN_SYSTEM(p) {
2258		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2259			continue;
2260		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2261			/* sx_sunlock(&allproc_lock); */
2262			return 1;
2263		}
2264	}
2265	/* sx_sunlock(&allproc_lock); */
2266	if (_vm_object_in_map(kernel_map, object, 0))
2267		return 1;
2268	return 0;
2269}
2270
2271DB_SHOW_COMMAND(vmochk, vm_object_check)
2272{
2273	vm_object_t object;
2274
2275	/*
2276	 * make sure that internal objs are in a map somewhere
2277	 * and none have zero ref counts.
2278	 */
2279	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2280		if (object->handle == NULL &&
2281		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2282			if (object->ref_count == 0) {
2283				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2284					(long)object->size);
2285			}
2286			if (!vm_object_in_map(object)) {
2287				db_printf(
2288			"vmochk: internal obj is not in a map: "
2289			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2290				    object->ref_count, (u_long)object->size,
2291				    (u_long)object->size,
2292				    (void *)object->backing_object);
2293			}
2294		}
2295	}
2296}
2297
2298/*
2299 *	vm_object_print:	[ debug ]
2300 */
2301DB_SHOW_COMMAND(object, vm_object_print_static)
2302{
2303	/* XXX convert args. */
2304	vm_object_t object = (vm_object_t)addr;
2305	boolean_t full = have_addr;
2306
2307	vm_page_t p;
2308
2309	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2310#define	count	was_count
2311
2312	int count;
2313
2314	if (object == NULL)
2315		return;
2316
2317	db_iprintf(
2318	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2319	    object, (int)object->type, (uintmax_t)object->size,
2320	    object->resident_page_count, object->ref_count, object->flags,
2321	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2322	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2323	    object->shadow_count,
2324	    object->backing_object ? object->backing_object->ref_count : 0,
2325	    object->backing_object, (uintmax_t)object->backing_object_offset);
2326
2327	if (!full)
2328		return;
2329
2330	db_indent += 2;
2331	count = 0;
2332	TAILQ_FOREACH(p, &object->memq, listq) {
2333		if (count == 0)
2334			db_iprintf("memory:=");
2335		else if (count == 6) {
2336			db_printf("\n");
2337			db_iprintf(" ...");
2338			count = 0;
2339		} else
2340			db_printf(",");
2341		count++;
2342
2343		db_printf("(off=0x%jx,page=0x%jx)",
2344		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2345	}
2346	if (count != 0)
2347		db_printf("\n");
2348	db_indent -= 2;
2349}
2350
2351/* XXX. */
2352#undef count
2353
2354/* XXX need this non-static entry for calling from vm_map_print. */
2355void
2356vm_object_print(
2357        /* db_expr_t */ long addr,
2358	boolean_t have_addr,
2359	/* db_expr_t */ long count,
2360	char *modif)
2361{
2362	vm_object_print_static(addr, have_addr, count, modif);
2363}
2364
2365DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2366{
2367	vm_object_t object;
2368	vm_pindex_t fidx;
2369	vm_paddr_t pa;
2370	vm_page_t m, prev_m;
2371	int rcount, nl, c;
2372
2373	nl = 0;
2374	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2375		db_printf("new object: %p\n", (void *)object);
2376		if (nl > 18) {
2377			c = cngetc();
2378			if (c != ' ')
2379				return;
2380			nl = 0;
2381		}
2382		nl++;
2383		rcount = 0;
2384		fidx = 0;
2385		pa = -1;
2386		TAILQ_FOREACH(m, &object->memq, listq) {
2387			if (m->pindex > 128)
2388				break;
2389			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2390			    prev_m->pindex + 1 != m->pindex) {
2391				if (rcount) {
2392					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2393						(long)fidx, rcount, (long)pa);
2394					if (nl > 18) {
2395						c = cngetc();
2396						if (c != ' ')
2397							return;
2398						nl = 0;
2399					}
2400					nl++;
2401					rcount = 0;
2402				}
2403			}
2404			if (rcount &&
2405				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2406				++rcount;
2407				continue;
2408			}
2409			if (rcount) {
2410				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2411					(long)fidx, rcount, (long)pa);
2412				if (nl > 18) {
2413					c = cngetc();
2414					if (c != ' ')
2415						return;
2416					nl = 0;
2417				}
2418				nl++;
2419			}
2420			fidx = m->pindex;
2421			pa = VM_PAGE_TO_PHYS(m);
2422			rcount = 1;
2423		}
2424		if (rcount) {
2425			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2426				(long)fidx, rcount, (long)pa);
2427			if (nl > 18) {
2428				c = cngetc();
2429				if (c != ' ')
2430					return;
2431				nl = 0;
2432			}
2433			nl++;
2434		}
2435	}
2436}
2437#endif /* DDB */
2438