vm_object.c revision 262291
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory object module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_object.c 262291 2014-02-21 09:43:34Z attilio $");
67
68#include "opt_vm.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/lock.h>
73#include <sys/mman.h>
74#include <sys/mount.h>
75#include <sys/kernel.h>
76#include <sys/sysctl.h>
77#include <sys/mutex.h>
78#include <sys/proc.h>		/* for curproc, pageproc */
79#include <sys/socket.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/vnode.h>
83#include <sys/vmmeter.h>
84#include <sys/sx.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_page.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95#include <vm/vm_kern.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_radix.h>
98#include <vm/vm_reserv.h>
99#include <vm/uma.h>
100
101static int old_msync;
102SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
103    "Use old (insecure) msync behavior");
104
105static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
106		    int pagerflags, int flags, boolean_t *clearobjflags,
107		    boolean_t *eio);
108static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
109		    boolean_t *clearobjflags);
110static void	vm_object_qcollapse(vm_object_t object);
111static void	vm_object_vndeallocate(vm_object_t object);
112
113/*
114 *	Virtual memory objects maintain the actual data
115 *	associated with allocated virtual memory.  A given
116 *	page of memory exists within exactly one object.
117 *
118 *	An object is only deallocated when all "references"
119 *	are given up.  Only one "reference" to a given
120 *	region of an object should be writeable.
121 *
122 *	Associated with each object is a list of all resident
123 *	memory pages belonging to that object; this list is
124 *	maintained by the "vm_page" module, and locked by the object's
125 *	lock.
126 *
127 *	Each object also records a "pager" routine which is
128 *	used to retrieve (and store) pages to the proper backing
129 *	storage.  In addition, objects may be backed by other
130 *	objects from which they were virtual-copied.
131 *
132 *	The only items within the object structure which are
133 *	modified after time of creation are:
134 *		reference count		locked by object's lock
135 *		pager routine		locked by object's lock
136 *
137 */
138
139struct object_q vm_object_list;
140struct mtx vm_object_list_mtx;	/* lock for object list and count */
141
142struct vm_object kernel_object_store;
143struct vm_object kmem_object_store;
144
145static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
146    "VM object stats");
147
148static long object_collapses;
149SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150    &object_collapses, 0, "VM object collapses");
151
152static long object_bypasses;
153SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154    &object_bypasses, 0, "VM object bypasses");
155
156static uma_zone_t obj_zone;
157
158static int vm_object_zinit(void *mem, int size, int flags);
159
160#ifdef INVARIANTS
161static void vm_object_zdtor(void *mem, int size, void *arg);
162
163static void
164vm_object_zdtor(void *mem, int size, void *arg)
165{
166	vm_object_t object;
167
168	object = (vm_object_t)mem;
169	KASSERT(TAILQ_EMPTY(&object->memq),
170	    ("object %p has resident pages in its memq", object));
171	KASSERT(vm_radix_is_empty(&object->rtree),
172	    ("object %p has resident pages in its trie", object));
173#if VM_NRESERVLEVEL > 0
174	KASSERT(LIST_EMPTY(&object->rvq),
175	    ("object %p has reservations",
176	    object));
177#endif
178	KASSERT(vm_object_cache_is_empty(object),
179	    ("object %p has cached pages",
180	    object));
181	KASSERT(object->paging_in_progress == 0,
182	    ("object %p paging_in_progress = %d",
183	    object, object->paging_in_progress));
184	KASSERT(object->resident_page_count == 0,
185	    ("object %p resident_page_count = %d",
186	    object, object->resident_page_count));
187	KASSERT(object->shadow_count == 0,
188	    ("object %p shadow_count = %d",
189	    object, object->shadow_count));
190}
191#endif
192
193static int
194vm_object_zinit(void *mem, int size, int flags)
195{
196	vm_object_t object;
197
198	object = (vm_object_t)mem;
199	bzero(&object->lock, sizeof(object->lock));
200	rw_init_flags(&object->lock, "vm object", RW_DUPOK);
201
202	/* These are true for any object that has been freed */
203	object->rtree.rt_root = 0;
204	object->rtree.rt_flags = 0;
205	object->paging_in_progress = 0;
206	object->resident_page_count = 0;
207	object->shadow_count = 0;
208	object->cache.rt_root = 0;
209	object->cache.rt_flags = 0;
210	return (0);
211}
212
213static void
214_vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215{
216
217	TAILQ_INIT(&object->memq);
218	LIST_INIT(&object->shadow_head);
219
220	object->type = type;
221	switch (type) {
222	case OBJT_DEAD:
223		panic("_vm_object_allocate: can't create OBJT_DEAD");
224	case OBJT_DEFAULT:
225	case OBJT_SWAP:
226		object->flags = OBJ_ONEMAPPING;
227		break;
228	case OBJT_DEVICE:
229	case OBJT_SG:
230		object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
231		break;
232	case OBJT_MGTDEVICE:
233		object->flags = OBJ_FICTITIOUS;
234		break;
235	case OBJT_PHYS:
236		object->flags = OBJ_UNMANAGED;
237		break;
238	case OBJT_VNODE:
239		object->flags = 0;
240		break;
241	default:
242		panic("_vm_object_allocate: type %d is undefined", type);
243	}
244	object->size = size;
245	object->generation = 1;
246	object->ref_count = 1;
247	object->memattr = VM_MEMATTR_DEFAULT;
248	object->cred = NULL;
249	object->charge = 0;
250	object->handle = NULL;
251	object->backing_object = NULL;
252	object->backing_object_offset = (vm_ooffset_t) 0;
253#if VM_NRESERVLEVEL > 0
254	LIST_INIT(&object->rvq);
255#endif
256
257	mtx_lock(&vm_object_list_mtx);
258	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
259	mtx_unlock(&vm_object_list_mtx);
260}
261
262/*
263 *	vm_object_init:
264 *
265 *	Initialize the VM objects module.
266 */
267void
268vm_object_init(void)
269{
270	TAILQ_INIT(&vm_object_list);
271	mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
272
273	rw_init(&kernel_object->lock, "kernel vm object");
274	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
275	    kernel_object);
276#if VM_NRESERVLEVEL > 0
277	kernel_object->flags |= OBJ_COLORED;
278	kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
279#endif
280
281	rw_init(&kmem_object->lock, "kmem vm object");
282	_vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283	    kmem_object);
284#if VM_NRESERVLEVEL > 0
285	kmem_object->flags |= OBJ_COLORED;
286	kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287#endif
288
289	/*
290	 * The lock portion of struct vm_object must be type stable due
291	 * to vm_pageout_fallback_object_lock locking a vm object
292	 * without holding any references to it.
293	 */
294	obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
295#ifdef INVARIANTS
296	    vm_object_zdtor,
297#else
298	    NULL,
299#endif
300	    vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
301
302	vm_radix_init();
303}
304
305void
306vm_object_clear_flag(vm_object_t object, u_short bits)
307{
308
309	VM_OBJECT_ASSERT_WLOCKED(object);
310	object->flags &= ~bits;
311}
312
313/*
314 *	Sets the default memory attribute for the specified object.  Pages
315 *	that are allocated to this object are by default assigned this memory
316 *	attribute.
317 *
318 *	Presently, this function must be called before any pages are allocated
319 *	to the object.  In the future, this requirement may be relaxed for
320 *	"default" and "swap" objects.
321 */
322int
323vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
324{
325
326	VM_OBJECT_ASSERT_WLOCKED(object);
327	switch (object->type) {
328	case OBJT_DEFAULT:
329	case OBJT_DEVICE:
330	case OBJT_MGTDEVICE:
331	case OBJT_PHYS:
332	case OBJT_SG:
333	case OBJT_SWAP:
334	case OBJT_VNODE:
335		if (!TAILQ_EMPTY(&object->memq))
336			return (KERN_FAILURE);
337		break;
338	case OBJT_DEAD:
339		return (KERN_INVALID_ARGUMENT);
340	default:
341		panic("vm_object_set_memattr: object %p is of undefined type",
342		    object);
343	}
344	object->memattr = memattr;
345	return (KERN_SUCCESS);
346}
347
348void
349vm_object_pip_add(vm_object_t object, short i)
350{
351
352	VM_OBJECT_ASSERT_WLOCKED(object);
353	object->paging_in_progress += i;
354}
355
356void
357vm_object_pip_subtract(vm_object_t object, short i)
358{
359
360	VM_OBJECT_ASSERT_WLOCKED(object);
361	object->paging_in_progress -= i;
362}
363
364void
365vm_object_pip_wakeup(vm_object_t object)
366{
367
368	VM_OBJECT_ASSERT_WLOCKED(object);
369	object->paging_in_progress--;
370	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
371		vm_object_clear_flag(object, OBJ_PIPWNT);
372		wakeup(object);
373	}
374}
375
376void
377vm_object_pip_wakeupn(vm_object_t object, short i)
378{
379
380	VM_OBJECT_ASSERT_WLOCKED(object);
381	if (i)
382		object->paging_in_progress -= i;
383	if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
384		vm_object_clear_flag(object, OBJ_PIPWNT);
385		wakeup(object);
386	}
387}
388
389void
390vm_object_pip_wait(vm_object_t object, char *waitid)
391{
392
393	VM_OBJECT_ASSERT_WLOCKED(object);
394	while (object->paging_in_progress) {
395		object->flags |= OBJ_PIPWNT;
396		VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
397	}
398}
399
400/*
401 *	vm_object_allocate:
402 *
403 *	Returns a new object with the given size.
404 */
405vm_object_t
406vm_object_allocate(objtype_t type, vm_pindex_t size)
407{
408	vm_object_t object;
409
410	object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
411	_vm_object_allocate(type, size, object);
412	return (object);
413}
414
415
416/*
417 *	vm_object_reference:
418 *
419 *	Gets another reference to the given object.  Note: OBJ_DEAD
420 *	objects can be referenced during final cleaning.
421 */
422void
423vm_object_reference(vm_object_t object)
424{
425	if (object == NULL)
426		return;
427	VM_OBJECT_WLOCK(object);
428	vm_object_reference_locked(object);
429	VM_OBJECT_WUNLOCK(object);
430}
431
432/*
433 *	vm_object_reference_locked:
434 *
435 *	Gets another reference to the given object.
436 *
437 *	The object must be locked.
438 */
439void
440vm_object_reference_locked(vm_object_t object)
441{
442	struct vnode *vp;
443
444	VM_OBJECT_ASSERT_WLOCKED(object);
445	object->ref_count++;
446	if (object->type == OBJT_VNODE) {
447		vp = object->handle;
448		vref(vp);
449	}
450}
451
452/*
453 * Handle deallocating an object of type OBJT_VNODE.
454 */
455static void
456vm_object_vndeallocate(vm_object_t object)
457{
458	struct vnode *vp = (struct vnode *) object->handle;
459
460	VM_OBJECT_ASSERT_WLOCKED(object);
461	KASSERT(object->type == OBJT_VNODE,
462	    ("vm_object_vndeallocate: not a vnode object"));
463	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
464#ifdef INVARIANTS
465	if (object->ref_count == 0) {
466		vprint("vm_object_vndeallocate", vp);
467		panic("vm_object_vndeallocate: bad object reference count");
468	}
469#endif
470
471	if (object->ref_count > 1) {
472		object->ref_count--;
473		VM_OBJECT_WUNLOCK(object);
474		/* vrele may need the vnode lock. */
475		vrele(vp);
476	} else {
477		vhold(vp);
478		VM_OBJECT_WUNLOCK(object);
479		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
480		vdrop(vp);
481		VM_OBJECT_WLOCK(object);
482		object->ref_count--;
483		if (object->type == OBJT_DEAD) {
484			VM_OBJECT_WUNLOCK(object);
485			VOP_UNLOCK(vp, 0);
486		} else {
487			if (object->ref_count == 0)
488				VOP_UNSET_TEXT(vp);
489			VM_OBJECT_WUNLOCK(object);
490			vput(vp);
491		}
492	}
493}
494
495/*
496 *	vm_object_deallocate:
497 *
498 *	Release a reference to the specified object,
499 *	gained either through a vm_object_allocate
500 *	or a vm_object_reference call.  When all references
501 *	are gone, storage associated with this object
502 *	may be relinquished.
503 *
504 *	No object may be locked.
505 */
506void
507vm_object_deallocate(vm_object_t object)
508{
509	vm_object_t temp;
510	struct vnode *vp;
511
512	while (object != NULL) {
513		VM_OBJECT_WLOCK(object);
514		if (object->type == OBJT_VNODE) {
515			vm_object_vndeallocate(object);
516			return;
517		}
518
519		KASSERT(object->ref_count != 0,
520			("vm_object_deallocate: object deallocated too many times: %d", object->type));
521
522		/*
523		 * If the reference count goes to 0 we start calling
524		 * vm_object_terminate() on the object chain.
525		 * A ref count of 1 may be a special case depending on the
526		 * shadow count being 0 or 1.
527		 */
528		object->ref_count--;
529		if (object->ref_count > 1) {
530			VM_OBJECT_WUNLOCK(object);
531			return;
532		} else if (object->ref_count == 1) {
533			if (object->type == OBJT_SWAP &&
534			    (object->flags & OBJ_TMPFS) != 0) {
535				vp = object->un_pager.swp.swp_tmpfs;
536				vhold(vp);
537				VM_OBJECT_WUNLOCK(object);
538				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
539				vdrop(vp);
540				VM_OBJECT_WLOCK(object);
541				if (object->type == OBJT_DEAD ||
542				    object->ref_count != 1) {
543					VM_OBJECT_WUNLOCK(object);
544					VOP_UNLOCK(vp, 0);
545					return;
546				}
547				if ((object->flags & OBJ_TMPFS) != 0)
548					VOP_UNSET_TEXT(vp);
549				VOP_UNLOCK(vp, 0);
550			}
551			if (object->shadow_count == 0 &&
552			    object->handle == NULL &&
553			    (object->type == OBJT_DEFAULT ||
554			    (object->type == OBJT_SWAP &&
555			    (object->flags & OBJ_TMPFS) == 0))) {
556				vm_object_set_flag(object, OBJ_ONEMAPPING);
557			} else if ((object->shadow_count == 1) &&
558			    (object->handle == NULL) &&
559			    (object->type == OBJT_DEFAULT ||
560			     object->type == OBJT_SWAP)) {
561				KASSERT((object->flags & OBJ_TMPFS) == 0,
562				    ("shadowed tmpfs v_object %p", object));
563				vm_object_t robject;
564
565				robject = LIST_FIRST(&object->shadow_head);
566				KASSERT(robject != NULL,
567				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
568					 object->ref_count,
569					 object->shadow_count));
570				if (!VM_OBJECT_TRYWLOCK(robject)) {
571					/*
572					 * Avoid a potential deadlock.
573					 */
574					object->ref_count++;
575					VM_OBJECT_WUNLOCK(object);
576					/*
577					 * More likely than not the thread
578					 * holding robject's lock has lower
579					 * priority than the current thread.
580					 * Let the lower priority thread run.
581					 */
582					pause("vmo_de", 1);
583					continue;
584				}
585				/*
586				 * Collapse object into its shadow unless its
587				 * shadow is dead.  In that case, object will
588				 * be deallocated by the thread that is
589				 * deallocating its shadow.
590				 */
591				if ((robject->flags & OBJ_DEAD) == 0 &&
592				    (robject->handle == NULL) &&
593				    (robject->type == OBJT_DEFAULT ||
594				     robject->type == OBJT_SWAP)) {
595
596					robject->ref_count++;
597retry:
598					if (robject->paging_in_progress) {
599						VM_OBJECT_WUNLOCK(object);
600						vm_object_pip_wait(robject,
601						    "objde1");
602						temp = robject->backing_object;
603						if (object == temp) {
604							VM_OBJECT_WLOCK(object);
605							goto retry;
606						}
607					} else if (object->paging_in_progress) {
608						VM_OBJECT_WUNLOCK(robject);
609						object->flags |= OBJ_PIPWNT;
610						VM_OBJECT_SLEEP(object, object,
611						    PDROP | PVM, "objde2", 0);
612						VM_OBJECT_WLOCK(robject);
613						temp = robject->backing_object;
614						if (object == temp) {
615							VM_OBJECT_WLOCK(object);
616							goto retry;
617						}
618					} else
619						VM_OBJECT_WUNLOCK(object);
620
621					if (robject->ref_count == 1) {
622						robject->ref_count--;
623						object = robject;
624						goto doterm;
625					}
626					object = robject;
627					vm_object_collapse(object);
628					VM_OBJECT_WUNLOCK(object);
629					continue;
630				}
631				VM_OBJECT_WUNLOCK(robject);
632			}
633			VM_OBJECT_WUNLOCK(object);
634			return;
635		}
636doterm:
637		temp = object->backing_object;
638		if (temp != NULL) {
639			VM_OBJECT_WLOCK(temp);
640			LIST_REMOVE(object, shadow_list);
641			temp->shadow_count--;
642			VM_OBJECT_WUNLOCK(temp);
643			object->backing_object = NULL;
644		}
645		/*
646		 * Don't double-terminate, we could be in a termination
647		 * recursion due to the terminate having to sync data
648		 * to disk.
649		 */
650		if ((object->flags & OBJ_DEAD) == 0)
651			vm_object_terminate(object);
652		else
653			VM_OBJECT_WUNLOCK(object);
654		object = temp;
655	}
656}
657
658/*
659 *	vm_object_destroy removes the object from the global object list
660 *      and frees the space for the object.
661 */
662void
663vm_object_destroy(vm_object_t object)
664{
665
666	/*
667	 * Remove the object from the global object list.
668	 */
669	mtx_lock(&vm_object_list_mtx);
670	TAILQ_REMOVE(&vm_object_list, object, object_list);
671	mtx_unlock(&vm_object_list_mtx);
672
673	/*
674	 * Release the allocation charge.
675	 */
676	if (object->cred != NULL) {
677		KASSERT(object->type == OBJT_DEFAULT ||
678		    object->type == OBJT_SWAP,
679		    ("vm_object_terminate: non-swap obj %p has cred",
680		     object));
681		swap_release_by_cred(object->charge, object->cred);
682		object->charge = 0;
683		crfree(object->cred);
684		object->cred = NULL;
685	}
686
687	/*
688	 * Free the space for the object.
689	 */
690	uma_zfree(obj_zone, object);
691}
692
693/*
694 *	vm_object_terminate actually destroys the specified object, freeing
695 *	up all previously used resources.
696 *
697 *	The object must be locked.
698 *	This routine may block.
699 */
700void
701vm_object_terminate(vm_object_t object)
702{
703	vm_page_t p, p_next;
704
705	VM_OBJECT_ASSERT_WLOCKED(object);
706
707	/*
708	 * Make sure no one uses us.
709	 */
710	vm_object_set_flag(object, OBJ_DEAD);
711
712	/*
713	 * wait for the pageout daemon to be done with the object
714	 */
715	vm_object_pip_wait(object, "objtrm");
716
717	KASSERT(!object->paging_in_progress,
718		("vm_object_terminate: pageout in progress"));
719
720	/*
721	 * Clean and free the pages, as appropriate. All references to the
722	 * object are gone, so we don't need to lock it.
723	 */
724	if (object->type == OBJT_VNODE) {
725		struct vnode *vp = (struct vnode *)object->handle;
726
727		/*
728		 * Clean pages and flush buffers.
729		 */
730		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
731		VM_OBJECT_WUNLOCK(object);
732
733		vinvalbuf(vp, V_SAVE, 0, 0);
734
735		VM_OBJECT_WLOCK(object);
736	}
737
738	KASSERT(object->ref_count == 0,
739		("vm_object_terminate: object with references, ref_count=%d",
740		object->ref_count));
741
742	/*
743	 * Free any remaining pageable pages.  This also removes them from the
744	 * paging queues.  However, don't free wired pages, just remove them
745	 * from the object.  Rather than incrementally removing each page from
746	 * the object, the page and object are reset to any empty state.
747	 */
748	TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
749		vm_page_assert_unbusied(p);
750		vm_page_lock(p);
751		/*
752		 * Optimize the page's removal from the object by resetting
753		 * its "object" field.  Specifically, if the page is not
754		 * wired, then the effect of this assignment is that
755		 * vm_page_free()'s call to vm_page_remove() will return
756		 * immediately without modifying the page or the object.
757		 */
758		p->object = NULL;
759		if (p->wire_count == 0) {
760			vm_page_free(p);
761			PCPU_INC(cnt.v_pfree);
762		}
763		vm_page_unlock(p);
764	}
765	/*
766	 * If the object contained any pages, then reset it to an empty state.
767	 * None of the object's fields, including "resident_page_count", were
768	 * modified by the preceding loop.
769	 */
770	if (object->resident_page_count != 0) {
771		vm_radix_reclaim_allnodes(&object->rtree);
772		TAILQ_INIT(&object->memq);
773		object->resident_page_count = 0;
774		if (object->type == OBJT_VNODE)
775			vdrop(object->handle);
776	}
777
778#if VM_NRESERVLEVEL > 0
779	if (__predict_false(!LIST_EMPTY(&object->rvq)))
780		vm_reserv_break_all(object);
781#endif
782	if (__predict_false(!vm_object_cache_is_empty(object)))
783		vm_page_cache_free(object, 0, 0);
784
785	/*
786	 * Let the pager know object is dead.
787	 */
788	vm_pager_deallocate(object);
789	VM_OBJECT_WUNLOCK(object);
790
791	vm_object_destroy(object);
792}
793
794/*
795 * Make the page read-only so that we can clear the object flags.  However, if
796 * this is a nosync mmap then the object is likely to stay dirty so do not
797 * mess with the page and do not clear the object flags.  Returns TRUE if the
798 * page should be flushed, and FALSE otherwise.
799 */
800static boolean_t
801vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
802{
803
804	/*
805	 * If we have been asked to skip nosync pages and this is a
806	 * nosync page, skip it.  Note that the object flags were not
807	 * cleared in this case so we do not have to set them.
808	 */
809	if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
810		*clearobjflags = FALSE;
811		return (FALSE);
812	} else {
813		pmap_remove_write(p);
814		return (p->dirty != 0);
815	}
816}
817
818/*
819 *	vm_object_page_clean
820 *
821 *	Clean all dirty pages in the specified range of object.  Leaves page
822 * 	on whatever queue it is currently on.   If NOSYNC is set then do not
823 *	write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
824 *	leaving the object dirty.
825 *
826 *	When stuffing pages asynchronously, allow clustering.  XXX we need a
827 *	synchronous clustering mode implementation.
828 *
829 *	Odd semantics: if start == end, we clean everything.
830 *
831 *	The object must be locked.
832 *
833 *	Returns FALSE if some page from the range was not written, as
834 *	reported by the pager, and TRUE otherwise.
835 */
836boolean_t
837vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
838    int flags)
839{
840	vm_page_t np, p;
841	vm_pindex_t pi, tend, tstart;
842	int curgeneration, n, pagerflags;
843	boolean_t clearobjflags, eio, res;
844
845	VM_OBJECT_ASSERT_WLOCKED(object);
846
847	/*
848	 * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
849	 * objects.  The check below prevents the function from
850	 * operating on non-vnode objects.
851	 */
852	if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
853	    object->resident_page_count == 0)
854		return (TRUE);
855
856	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
857	    VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
858	pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
859
860	tstart = OFF_TO_IDX(start);
861	tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
862	clearobjflags = tstart == 0 && tend >= object->size;
863	res = TRUE;
864
865rescan:
866	curgeneration = object->generation;
867
868	for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
869		pi = p->pindex;
870		if (pi >= tend)
871			break;
872		np = TAILQ_NEXT(p, listq);
873		if (p->valid == 0)
874			continue;
875		if (vm_page_sleep_if_busy(p, "vpcwai")) {
876			if (object->generation != curgeneration) {
877				if ((flags & OBJPC_SYNC) != 0)
878					goto rescan;
879				else
880					clearobjflags = FALSE;
881			}
882			np = vm_page_find_least(object, pi);
883			continue;
884		}
885		if (!vm_object_page_remove_write(p, flags, &clearobjflags))
886			continue;
887
888		n = vm_object_page_collect_flush(object, p, pagerflags,
889		    flags, &clearobjflags, &eio);
890		if (eio) {
891			res = FALSE;
892			clearobjflags = FALSE;
893		}
894		if (object->generation != curgeneration) {
895			if ((flags & OBJPC_SYNC) != 0)
896				goto rescan;
897			else
898				clearobjflags = FALSE;
899		}
900
901		/*
902		 * If the VOP_PUTPAGES() did a truncated write, so
903		 * that even the first page of the run is not fully
904		 * written, vm_pageout_flush() returns 0 as the run
905		 * length.  Since the condition that caused truncated
906		 * write may be permanent, e.g. exhausted free space,
907		 * accepting n == 0 would cause an infinite loop.
908		 *
909		 * Forwarding the iterator leaves the unwritten page
910		 * behind, but there is not much we can do there if
911		 * filesystem refuses to write it.
912		 */
913		if (n == 0) {
914			n = 1;
915			clearobjflags = FALSE;
916		}
917		np = vm_page_find_least(object, pi + n);
918	}
919#if 0
920	VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
921#endif
922
923	if (clearobjflags)
924		vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
925	return (res);
926}
927
928static int
929vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
930    int flags, boolean_t *clearobjflags, boolean_t *eio)
931{
932	vm_page_t ma[vm_pageout_page_count], p_first, tp;
933	int count, i, mreq, runlen;
934
935	vm_page_lock_assert(p, MA_NOTOWNED);
936	VM_OBJECT_ASSERT_WLOCKED(object);
937
938	count = 1;
939	mreq = 0;
940
941	for (tp = p; count < vm_pageout_page_count; count++) {
942		tp = vm_page_next(tp);
943		if (tp == NULL || vm_page_busied(tp))
944			break;
945		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
946			break;
947	}
948
949	for (p_first = p; count < vm_pageout_page_count; count++) {
950		tp = vm_page_prev(p_first);
951		if (tp == NULL || vm_page_busied(tp))
952			break;
953		if (!vm_object_page_remove_write(tp, flags, clearobjflags))
954			break;
955		p_first = tp;
956		mreq++;
957	}
958
959	for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
960		ma[i] = tp;
961
962	vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
963	return (runlen);
964}
965
966/*
967 * Note that there is absolutely no sense in writing out
968 * anonymous objects, so we track down the vnode object
969 * to write out.
970 * We invalidate (remove) all pages from the address space
971 * for semantic correctness.
972 *
973 * If the backing object is a device object with unmanaged pages, then any
974 * mappings to the specified range of pages must be removed before this
975 * function is called.
976 *
977 * Note: certain anonymous maps, such as MAP_NOSYNC maps,
978 * may start out with a NULL object.
979 */
980boolean_t
981vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
982    boolean_t syncio, boolean_t invalidate)
983{
984	vm_object_t backing_object;
985	struct vnode *vp;
986	struct mount *mp;
987	int error, flags, fsync_after;
988	boolean_t res;
989
990	if (object == NULL)
991		return (TRUE);
992	res = TRUE;
993	error = 0;
994	VM_OBJECT_WLOCK(object);
995	while ((backing_object = object->backing_object) != NULL) {
996		VM_OBJECT_WLOCK(backing_object);
997		offset += object->backing_object_offset;
998		VM_OBJECT_WUNLOCK(object);
999		object = backing_object;
1000		if (object->size < OFF_TO_IDX(offset + size))
1001			size = IDX_TO_OFF(object->size) - offset;
1002	}
1003	/*
1004	 * Flush pages if writing is allowed, invalidate them
1005	 * if invalidation requested.  Pages undergoing I/O
1006	 * will be ignored by vm_object_page_remove().
1007	 *
1008	 * We cannot lock the vnode and then wait for paging
1009	 * to complete without deadlocking against vm_fault.
1010	 * Instead we simply call vm_object_page_remove() and
1011	 * allow it to block internally on a page-by-page
1012	 * basis when it encounters pages undergoing async
1013	 * I/O.
1014	 */
1015	if (object->type == OBJT_VNODE &&
1016	    (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1017		vp = object->handle;
1018		VM_OBJECT_WUNLOCK(object);
1019		(void) vn_start_write(vp, &mp, V_WAIT);
1020		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1021		if (syncio && !invalidate && offset == 0 &&
1022		    OFF_TO_IDX(size) == object->size) {
1023			/*
1024			 * If syncing the whole mapping of the file,
1025			 * it is faster to schedule all the writes in
1026			 * async mode, also allowing the clustering,
1027			 * and then wait for i/o to complete.
1028			 */
1029			flags = 0;
1030			fsync_after = TRUE;
1031		} else {
1032			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1033			flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1034			fsync_after = FALSE;
1035		}
1036		VM_OBJECT_WLOCK(object);
1037		res = vm_object_page_clean(object, offset, offset + size,
1038		    flags);
1039		VM_OBJECT_WUNLOCK(object);
1040		if (fsync_after)
1041			error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1042		VOP_UNLOCK(vp, 0);
1043		vn_finished_write(mp);
1044		if (error != 0)
1045			res = FALSE;
1046		VM_OBJECT_WLOCK(object);
1047	}
1048	if ((object->type == OBJT_VNODE ||
1049	     object->type == OBJT_DEVICE) && invalidate) {
1050		if (object->type == OBJT_DEVICE)
1051			/*
1052			 * The option OBJPR_NOTMAPPED must be passed here
1053			 * because vm_object_page_remove() cannot remove
1054			 * unmanaged mappings.
1055			 */
1056			flags = OBJPR_NOTMAPPED;
1057		else if (old_msync)
1058			flags = OBJPR_NOTWIRED;
1059		else
1060			flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1061		vm_object_page_remove(object, OFF_TO_IDX(offset),
1062		    OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1063	}
1064	VM_OBJECT_WUNLOCK(object);
1065	return (res);
1066}
1067
1068/*
1069 *	vm_object_madvise:
1070 *
1071 *	Implements the madvise function at the object/page level.
1072 *
1073 *	MADV_WILLNEED	(any object)
1074 *
1075 *	    Activate the specified pages if they are resident.
1076 *
1077 *	MADV_DONTNEED	(any object)
1078 *
1079 *	    Deactivate the specified pages if they are resident.
1080 *
1081 *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
1082 *			 OBJ_ONEMAPPING only)
1083 *
1084 *	    Deactivate and clean the specified pages if they are
1085 *	    resident.  This permits the process to reuse the pages
1086 *	    without faulting or the kernel to reclaim the pages
1087 *	    without I/O.
1088 */
1089void
1090vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1091    int advise)
1092{
1093	vm_pindex_t tpindex;
1094	vm_object_t backing_object, tobject;
1095	vm_page_t m;
1096
1097	if (object == NULL)
1098		return;
1099	VM_OBJECT_WLOCK(object);
1100	/*
1101	 * Locate and adjust resident pages
1102	 */
1103	for (; pindex < end; pindex += 1) {
1104relookup:
1105		tobject = object;
1106		tpindex = pindex;
1107shadowlookup:
1108		/*
1109		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1110		 * and those pages must be OBJ_ONEMAPPING.
1111		 */
1112		if (advise == MADV_FREE) {
1113			if ((tobject->type != OBJT_DEFAULT &&
1114			     tobject->type != OBJT_SWAP) ||
1115			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1116				goto unlock_tobject;
1117			}
1118		} else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1119			goto unlock_tobject;
1120		m = vm_page_lookup(tobject, tpindex);
1121		if (m == NULL && advise == MADV_WILLNEED) {
1122			/*
1123			 * If the page is cached, reactivate it.
1124			 */
1125			m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1126			    VM_ALLOC_NOBUSY);
1127		}
1128		if (m == NULL) {
1129			/*
1130			 * There may be swap even if there is no backing page
1131			 */
1132			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1133				swap_pager_freespace(tobject, tpindex, 1);
1134			/*
1135			 * next object
1136			 */
1137			backing_object = tobject->backing_object;
1138			if (backing_object == NULL)
1139				goto unlock_tobject;
1140			VM_OBJECT_WLOCK(backing_object);
1141			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1142			if (tobject != object)
1143				VM_OBJECT_WUNLOCK(tobject);
1144			tobject = backing_object;
1145			goto shadowlookup;
1146		} else if (m->valid != VM_PAGE_BITS_ALL)
1147			goto unlock_tobject;
1148		/*
1149		 * If the page is not in a normal state, skip it.
1150		 */
1151		vm_page_lock(m);
1152		if (m->hold_count != 0 || m->wire_count != 0) {
1153			vm_page_unlock(m);
1154			goto unlock_tobject;
1155		}
1156		KASSERT((m->flags & PG_FICTITIOUS) == 0,
1157		    ("vm_object_madvise: page %p is fictitious", m));
1158		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1159		    ("vm_object_madvise: page %p is not managed", m));
1160		if (vm_page_busied(m)) {
1161			if (advise == MADV_WILLNEED) {
1162				/*
1163				 * Reference the page before unlocking and
1164				 * sleeping so that the page daemon is less
1165				 * likely to reclaim it.
1166				 */
1167				vm_page_aflag_set(m, PGA_REFERENCED);
1168			}
1169			if (object != tobject)
1170				VM_OBJECT_WUNLOCK(object);
1171			VM_OBJECT_WUNLOCK(tobject);
1172			vm_page_busy_sleep(m, "madvpo");
1173			VM_OBJECT_WLOCK(object);
1174  			goto relookup;
1175		}
1176		if (advise == MADV_WILLNEED) {
1177			vm_page_activate(m);
1178		} else {
1179			vm_page_advise(m, advise);
1180		}
1181		vm_page_unlock(m);
1182		if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1183			swap_pager_freespace(tobject, tpindex, 1);
1184unlock_tobject:
1185		if (tobject != object)
1186			VM_OBJECT_WUNLOCK(tobject);
1187	}
1188	VM_OBJECT_WUNLOCK(object);
1189}
1190
1191/*
1192 *	vm_object_shadow:
1193 *
1194 *	Create a new object which is backed by the
1195 *	specified existing object range.  The source
1196 *	object reference is deallocated.
1197 *
1198 *	The new object and offset into that object
1199 *	are returned in the source parameters.
1200 */
1201void
1202vm_object_shadow(
1203	vm_object_t *object,	/* IN/OUT */
1204	vm_ooffset_t *offset,	/* IN/OUT */
1205	vm_size_t length)
1206{
1207	vm_object_t source;
1208	vm_object_t result;
1209
1210	source = *object;
1211
1212	/*
1213	 * Don't create the new object if the old object isn't shared.
1214	 */
1215	if (source != NULL) {
1216		VM_OBJECT_WLOCK(source);
1217		if (source->ref_count == 1 &&
1218		    source->handle == NULL &&
1219		    (source->type == OBJT_DEFAULT ||
1220		     source->type == OBJT_SWAP)) {
1221			VM_OBJECT_WUNLOCK(source);
1222			return;
1223		}
1224		VM_OBJECT_WUNLOCK(source);
1225	}
1226
1227	/*
1228	 * Allocate a new object with the given length.
1229	 */
1230	result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1231
1232	/*
1233	 * The new object shadows the source object, adding a reference to it.
1234	 * Our caller changes his reference to point to the new object,
1235	 * removing a reference to the source object.  Net result: no change
1236	 * of reference count.
1237	 *
1238	 * Try to optimize the result object's page color when shadowing
1239	 * in order to maintain page coloring consistency in the combined
1240	 * shadowed object.
1241	 */
1242	result->backing_object = source;
1243	/*
1244	 * Store the offset into the source object, and fix up the offset into
1245	 * the new object.
1246	 */
1247	result->backing_object_offset = *offset;
1248	if (source != NULL) {
1249		VM_OBJECT_WLOCK(source);
1250		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1251		source->shadow_count++;
1252#if VM_NRESERVLEVEL > 0
1253		result->flags |= source->flags & OBJ_COLORED;
1254		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1255		    ((1 << (VM_NFREEORDER - 1)) - 1);
1256#endif
1257		VM_OBJECT_WUNLOCK(source);
1258	}
1259
1260
1261	/*
1262	 * Return the new things
1263	 */
1264	*offset = 0;
1265	*object = result;
1266}
1267
1268/*
1269 *	vm_object_split:
1270 *
1271 * Split the pages in a map entry into a new object.  This affords
1272 * easier removal of unused pages, and keeps object inheritance from
1273 * being a negative impact on memory usage.
1274 */
1275void
1276vm_object_split(vm_map_entry_t entry)
1277{
1278	vm_page_t m, m_next;
1279	vm_object_t orig_object, new_object, source;
1280	vm_pindex_t idx, offidxstart;
1281	vm_size_t size;
1282
1283	orig_object = entry->object.vm_object;
1284	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1285		return;
1286	if (orig_object->ref_count <= 1)
1287		return;
1288	VM_OBJECT_WUNLOCK(orig_object);
1289
1290	offidxstart = OFF_TO_IDX(entry->offset);
1291	size = atop(entry->end - entry->start);
1292
1293	/*
1294	 * If swap_pager_copy() is later called, it will convert new_object
1295	 * into a swap object.
1296	 */
1297	new_object = vm_object_allocate(OBJT_DEFAULT, size);
1298
1299	/*
1300	 * At this point, the new object is still private, so the order in
1301	 * which the original and new objects are locked does not matter.
1302	 */
1303	VM_OBJECT_WLOCK(new_object);
1304	VM_OBJECT_WLOCK(orig_object);
1305	source = orig_object->backing_object;
1306	if (source != NULL) {
1307		VM_OBJECT_WLOCK(source);
1308		if ((source->flags & OBJ_DEAD) != 0) {
1309			VM_OBJECT_WUNLOCK(source);
1310			VM_OBJECT_WUNLOCK(orig_object);
1311			VM_OBJECT_WUNLOCK(new_object);
1312			vm_object_deallocate(new_object);
1313			VM_OBJECT_WLOCK(orig_object);
1314			return;
1315		}
1316		LIST_INSERT_HEAD(&source->shadow_head,
1317				  new_object, shadow_list);
1318		source->shadow_count++;
1319		vm_object_reference_locked(source);	/* for new_object */
1320		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1321		VM_OBJECT_WUNLOCK(source);
1322		new_object->backing_object_offset =
1323			orig_object->backing_object_offset + entry->offset;
1324		new_object->backing_object = source;
1325	}
1326	if (orig_object->cred != NULL) {
1327		new_object->cred = orig_object->cred;
1328		crhold(orig_object->cred);
1329		new_object->charge = ptoa(size);
1330		KASSERT(orig_object->charge >= ptoa(size),
1331		    ("orig_object->charge < 0"));
1332		orig_object->charge -= ptoa(size);
1333	}
1334retry:
1335	m = vm_page_find_least(orig_object, offidxstart);
1336	for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1337	    m = m_next) {
1338		m_next = TAILQ_NEXT(m, listq);
1339
1340		/*
1341		 * We must wait for pending I/O to complete before we can
1342		 * rename the page.
1343		 *
1344		 * We do not have to VM_PROT_NONE the page as mappings should
1345		 * not be changed by this operation.
1346		 */
1347		if (vm_page_busied(m)) {
1348			VM_OBJECT_WUNLOCK(new_object);
1349			vm_page_lock(m);
1350			VM_OBJECT_WUNLOCK(orig_object);
1351			vm_page_busy_sleep(m, "spltwt");
1352			VM_OBJECT_WLOCK(orig_object);
1353			VM_OBJECT_WLOCK(new_object);
1354			goto retry;
1355		}
1356
1357		/* vm_page_rename() will handle dirty and cache. */
1358		if (vm_page_rename(m, new_object, idx)) {
1359			VM_OBJECT_WUNLOCK(new_object);
1360			VM_OBJECT_WUNLOCK(orig_object);
1361			VM_WAIT;
1362			VM_OBJECT_WLOCK(orig_object);
1363			VM_OBJECT_WLOCK(new_object);
1364			goto retry;
1365		}
1366#if VM_NRESERVLEVEL > 0
1367		/*
1368		 * If some of the reservation's allocated pages remain with
1369		 * the original object, then transferring the reservation to
1370		 * the new object is neither particularly beneficial nor
1371		 * particularly harmful as compared to leaving the reservation
1372		 * with the original object.  If, however, all of the
1373		 * reservation's allocated pages are transferred to the new
1374		 * object, then transferring the reservation is typically
1375		 * beneficial.  Determining which of these two cases applies
1376		 * would be more costly than unconditionally renaming the
1377		 * reservation.
1378		 */
1379		vm_reserv_rename(m, new_object, orig_object, offidxstart);
1380#endif
1381		if (orig_object->type == OBJT_SWAP)
1382			vm_page_xbusy(m);
1383	}
1384	if (orig_object->type == OBJT_SWAP) {
1385		/*
1386		 * swap_pager_copy() can sleep, in which case the orig_object's
1387		 * and new_object's locks are released and reacquired.
1388		 */
1389		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1390		TAILQ_FOREACH(m, &new_object->memq, listq)
1391			vm_page_xunbusy(m);
1392
1393		/*
1394		 * Transfer any cached pages from orig_object to new_object.
1395		 * If swap_pager_copy() found swapped out pages within the
1396		 * specified range of orig_object, then it changed
1397		 * new_object's type to OBJT_SWAP when it transferred those
1398		 * pages to new_object.  Otherwise, new_object's type
1399		 * should still be OBJT_DEFAULT and orig_object should not
1400		 * contain any cached pages within the specified range.
1401		 */
1402		if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1403			vm_page_cache_transfer(orig_object, offidxstart,
1404			    new_object);
1405	}
1406	VM_OBJECT_WUNLOCK(orig_object);
1407	VM_OBJECT_WUNLOCK(new_object);
1408	entry->object.vm_object = new_object;
1409	entry->offset = 0LL;
1410	vm_object_deallocate(orig_object);
1411	VM_OBJECT_WLOCK(new_object);
1412}
1413
1414#define	OBSC_TEST_ALL_SHADOWED	0x0001
1415#define	OBSC_COLLAPSE_NOWAIT	0x0002
1416#define	OBSC_COLLAPSE_WAIT	0x0004
1417
1418static int
1419vm_object_backing_scan(vm_object_t object, int op)
1420{
1421	int r = 1;
1422	vm_page_t p;
1423	vm_object_t backing_object;
1424	vm_pindex_t backing_offset_index;
1425
1426	VM_OBJECT_ASSERT_WLOCKED(object);
1427	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1428
1429	backing_object = object->backing_object;
1430	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1431
1432	/*
1433	 * Initial conditions
1434	 */
1435	if (op & OBSC_TEST_ALL_SHADOWED) {
1436		/*
1437		 * We do not want to have to test for the existence of cache
1438		 * or swap pages in the backing object.  XXX but with the
1439		 * new swapper this would be pretty easy to do.
1440		 *
1441		 * XXX what about anonymous MAP_SHARED memory that hasn't
1442		 * been ZFOD faulted yet?  If we do not test for this, the
1443		 * shadow test may succeed! XXX
1444		 */
1445		if (backing_object->type != OBJT_DEFAULT) {
1446			return (0);
1447		}
1448	}
1449	if (op & OBSC_COLLAPSE_WAIT) {
1450		vm_object_set_flag(backing_object, OBJ_DEAD);
1451	}
1452
1453	/*
1454	 * Our scan
1455	 */
1456	p = TAILQ_FIRST(&backing_object->memq);
1457	while (p) {
1458		vm_page_t next = TAILQ_NEXT(p, listq);
1459		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1460
1461		if (op & OBSC_TEST_ALL_SHADOWED) {
1462			vm_page_t pp;
1463
1464			/*
1465			 * Ignore pages outside the parent object's range
1466			 * and outside the parent object's mapping of the
1467			 * backing object.
1468			 *
1469			 * note that we do not busy the backing object's
1470			 * page.
1471			 */
1472			if (
1473			    p->pindex < backing_offset_index ||
1474			    new_pindex >= object->size
1475			) {
1476				p = next;
1477				continue;
1478			}
1479
1480			/*
1481			 * See if the parent has the page or if the parent's
1482			 * object pager has the page.  If the parent has the
1483			 * page but the page is not valid, the parent's
1484			 * object pager must have the page.
1485			 *
1486			 * If this fails, the parent does not completely shadow
1487			 * the object and we might as well give up now.
1488			 */
1489
1490			pp = vm_page_lookup(object, new_pindex);
1491			if (
1492			    (pp == NULL || pp->valid == 0) &&
1493			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1494			) {
1495				r = 0;
1496				break;
1497			}
1498		}
1499
1500		/*
1501		 * Check for busy page
1502		 */
1503		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1504			vm_page_t pp;
1505
1506			if (op & OBSC_COLLAPSE_NOWAIT) {
1507				if (!p->valid || vm_page_busied(p)) {
1508					p = next;
1509					continue;
1510				}
1511			} else if (op & OBSC_COLLAPSE_WAIT) {
1512				if (vm_page_busied(p)) {
1513					VM_OBJECT_WUNLOCK(object);
1514					vm_page_lock(p);
1515					VM_OBJECT_WUNLOCK(backing_object);
1516					vm_page_busy_sleep(p, "vmocol");
1517					VM_OBJECT_WLOCK(object);
1518					VM_OBJECT_WLOCK(backing_object);
1519					/*
1520					 * If we slept, anything could have
1521					 * happened.  Since the object is
1522					 * marked dead, the backing offset
1523					 * should not have changed so we
1524					 * just restart our scan.
1525					 */
1526					p = TAILQ_FIRST(&backing_object->memq);
1527					continue;
1528				}
1529			}
1530
1531			KASSERT(
1532			    p->object == backing_object,
1533			    ("vm_object_backing_scan: object mismatch")
1534			);
1535
1536			if (
1537			    p->pindex < backing_offset_index ||
1538			    new_pindex >= object->size
1539			) {
1540				if (backing_object->type == OBJT_SWAP)
1541					swap_pager_freespace(backing_object,
1542					    p->pindex, 1);
1543
1544				/*
1545				 * Page is out of the parent object's range, we
1546				 * can simply destroy it.
1547				 */
1548				vm_page_lock(p);
1549				KASSERT(!pmap_page_is_mapped(p),
1550				    ("freeing mapped page %p", p));
1551				if (p->wire_count == 0)
1552					vm_page_free(p);
1553				else
1554					vm_page_remove(p);
1555				vm_page_unlock(p);
1556				p = next;
1557				continue;
1558			}
1559
1560			pp = vm_page_lookup(object, new_pindex);
1561			if (
1562			    (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1563			    (pp != NULL && pp->valid == 0)
1564			) {
1565				if (backing_object->type == OBJT_SWAP)
1566					swap_pager_freespace(backing_object,
1567					    p->pindex, 1);
1568
1569				/*
1570				 * The page in the parent is not (yet) valid.
1571				 * We don't know anything about the state of
1572				 * the original page.  It might be mapped,
1573				 * so we must avoid the next if here.
1574				 *
1575				 * This is due to a race in vm_fault() where
1576				 * we must unbusy the original (backing_obj)
1577				 * page before we can (re)lock the parent.
1578				 * Hence we can get here.
1579				 */
1580				p = next;
1581				continue;
1582			}
1583			if (
1584			    pp != NULL ||
1585			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1586			) {
1587				if (backing_object->type == OBJT_SWAP)
1588					swap_pager_freespace(backing_object,
1589					    p->pindex, 1);
1590
1591				/*
1592				 * page already exists in parent OR swap exists
1593				 * for this location in the parent.  Destroy
1594				 * the original page from the backing object.
1595				 *
1596				 * Leave the parent's page alone
1597				 */
1598				vm_page_lock(p);
1599				KASSERT(!pmap_page_is_mapped(p),
1600				    ("freeing mapped page %p", p));
1601				if (p->wire_count == 0)
1602					vm_page_free(p);
1603				else
1604					vm_page_remove(p);
1605				vm_page_unlock(p);
1606				p = next;
1607				continue;
1608			}
1609
1610			/*
1611			 * Page does not exist in parent, rename the
1612			 * page from the backing object to the main object.
1613			 *
1614			 * If the page was mapped to a process, it can remain
1615			 * mapped through the rename.
1616			 * vm_page_rename() will handle dirty and cache.
1617			 */
1618			if (vm_page_rename(p, object, new_pindex)) {
1619				if (op & OBSC_COLLAPSE_NOWAIT) {
1620					p = next;
1621					continue;
1622				}
1623				VM_OBJECT_WLOCK(backing_object);
1624				VM_OBJECT_WUNLOCK(object);
1625				VM_WAIT;
1626				VM_OBJECT_WLOCK(object);
1627				VM_OBJECT_WLOCK(backing_object);
1628				p = TAILQ_FIRST(&backing_object->memq);
1629				continue;
1630			}
1631
1632			/* Use the old pindex to free the right page. */
1633			if (backing_object->type == OBJT_SWAP)
1634				swap_pager_freespace(backing_object,
1635				    new_pindex + backing_offset_index, 1);
1636
1637#if VM_NRESERVLEVEL > 0
1638			/*
1639			 * Rename the reservation.
1640			 */
1641			vm_reserv_rename(p, object, backing_object,
1642			    backing_offset_index);
1643#endif
1644		}
1645		p = next;
1646	}
1647	return (r);
1648}
1649
1650
1651/*
1652 * this version of collapse allows the operation to occur earlier and
1653 * when paging_in_progress is true for an object...  This is not a complete
1654 * operation, but should plug 99.9% of the rest of the leaks.
1655 */
1656static void
1657vm_object_qcollapse(vm_object_t object)
1658{
1659	vm_object_t backing_object = object->backing_object;
1660
1661	VM_OBJECT_ASSERT_WLOCKED(object);
1662	VM_OBJECT_ASSERT_WLOCKED(backing_object);
1663
1664	if (backing_object->ref_count != 1)
1665		return;
1666
1667	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1668}
1669
1670/*
1671 *	vm_object_collapse:
1672 *
1673 *	Collapse an object with the object backing it.
1674 *	Pages in the backing object are moved into the
1675 *	parent, and the backing object is deallocated.
1676 */
1677void
1678vm_object_collapse(vm_object_t object)
1679{
1680	VM_OBJECT_ASSERT_WLOCKED(object);
1681
1682	while (TRUE) {
1683		vm_object_t backing_object;
1684
1685		/*
1686		 * Verify that the conditions are right for collapse:
1687		 *
1688		 * The object exists and the backing object exists.
1689		 */
1690		if ((backing_object = object->backing_object) == NULL)
1691			break;
1692
1693		/*
1694		 * we check the backing object first, because it is most likely
1695		 * not collapsable.
1696		 */
1697		VM_OBJECT_WLOCK(backing_object);
1698		if (backing_object->handle != NULL ||
1699		    (backing_object->type != OBJT_DEFAULT &&
1700		     backing_object->type != OBJT_SWAP) ||
1701		    (backing_object->flags & OBJ_DEAD) ||
1702		    object->handle != NULL ||
1703		    (object->type != OBJT_DEFAULT &&
1704		     object->type != OBJT_SWAP) ||
1705		    (object->flags & OBJ_DEAD)) {
1706			VM_OBJECT_WUNLOCK(backing_object);
1707			break;
1708		}
1709
1710		if (
1711		    object->paging_in_progress != 0 ||
1712		    backing_object->paging_in_progress != 0
1713		) {
1714			vm_object_qcollapse(object);
1715			VM_OBJECT_WUNLOCK(backing_object);
1716			break;
1717		}
1718		/*
1719		 * We know that we can either collapse the backing object (if
1720		 * the parent is the only reference to it) or (perhaps) have
1721		 * the parent bypass the object if the parent happens to shadow
1722		 * all the resident pages in the entire backing object.
1723		 *
1724		 * This is ignoring pager-backed pages such as swap pages.
1725		 * vm_object_backing_scan fails the shadowing test in this
1726		 * case.
1727		 */
1728		if (backing_object->ref_count == 1) {
1729			/*
1730			 * If there is exactly one reference to the backing
1731			 * object, we can collapse it into the parent.
1732			 */
1733			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1734
1735#if VM_NRESERVLEVEL > 0
1736			/*
1737			 * Break any reservations from backing_object.
1738			 */
1739			if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1740				vm_reserv_break_all(backing_object);
1741#endif
1742
1743			/*
1744			 * Move the pager from backing_object to object.
1745			 */
1746			if (backing_object->type == OBJT_SWAP) {
1747				/*
1748				 * swap_pager_copy() can sleep, in which case
1749				 * the backing_object's and object's locks are
1750				 * released and reacquired.
1751				 * Since swap_pager_copy() is being asked to
1752				 * destroy the source, it will change the
1753				 * backing_object's type to OBJT_DEFAULT.
1754				 */
1755				swap_pager_copy(
1756				    backing_object,
1757				    object,
1758				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1759
1760				/*
1761				 * Free any cached pages from backing_object.
1762				 */
1763				if (__predict_false(
1764				    !vm_object_cache_is_empty(backing_object)))
1765					vm_page_cache_free(backing_object, 0, 0);
1766			}
1767			/*
1768			 * Object now shadows whatever backing_object did.
1769			 * Note that the reference to
1770			 * backing_object->backing_object moves from within
1771			 * backing_object to within object.
1772			 */
1773			LIST_REMOVE(object, shadow_list);
1774			backing_object->shadow_count--;
1775			if (backing_object->backing_object) {
1776				VM_OBJECT_WLOCK(backing_object->backing_object);
1777				LIST_REMOVE(backing_object, shadow_list);
1778				LIST_INSERT_HEAD(
1779				    &backing_object->backing_object->shadow_head,
1780				    object, shadow_list);
1781				/*
1782				 * The shadow_count has not changed.
1783				 */
1784				VM_OBJECT_WUNLOCK(backing_object->backing_object);
1785			}
1786			object->backing_object = backing_object->backing_object;
1787			object->backing_object_offset +=
1788			    backing_object->backing_object_offset;
1789
1790			/*
1791			 * Discard backing_object.
1792			 *
1793			 * Since the backing object has no pages, no pager left,
1794			 * and no object references within it, all that is
1795			 * necessary is to dispose of it.
1796			 */
1797			KASSERT(backing_object->ref_count == 1, (
1798"backing_object %p was somehow re-referenced during collapse!",
1799			    backing_object));
1800			VM_OBJECT_WUNLOCK(backing_object);
1801			vm_object_destroy(backing_object);
1802
1803			object_collapses++;
1804		} else {
1805			vm_object_t new_backing_object;
1806
1807			/*
1808			 * If we do not entirely shadow the backing object,
1809			 * there is nothing we can do so we give up.
1810			 */
1811			if (object->resident_page_count != object->size &&
1812			    vm_object_backing_scan(object,
1813			    OBSC_TEST_ALL_SHADOWED) == 0) {
1814				VM_OBJECT_WUNLOCK(backing_object);
1815				break;
1816			}
1817
1818			/*
1819			 * Make the parent shadow the next object in the
1820			 * chain.  Deallocating backing_object will not remove
1821			 * it, since its reference count is at least 2.
1822			 */
1823			LIST_REMOVE(object, shadow_list);
1824			backing_object->shadow_count--;
1825
1826			new_backing_object = backing_object->backing_object;
1827			if ((object->backing_object = new_backing_object) != NULL) {
1828				VM_OBJECT_WLOCK(new_backing_object);
1829				LIST_INSERT_HEAD(
1830				    &new_backing_object->shadow_head,
1831				    object,
1832				    shadow_list
1833				);
1834				new_backing_object->shadow_count++;
1835				vm_object_reference_locked(new_backing_object);
1836				VM_OBJECT_WUNLOCK(new_backing_object);
1837				object->backing_object_offset +=
1838					backing_object->backing_object_offset;
1839			}
1840
1841			/*
1842			 * Drop the reference count on backing_object. Since
1843			 * its ref_count was at least 2, it will not vanish.
1844			 */
1845			backing_object->ref_count--;
1846			VM_OBJECT_WUNLOCK(backing_object);
1847			object_bypasses++;
1848		}
1849
1850		/*
1851		 * Try again with this object's new backing object.
1852		 */
1853	}
1854}
1855
1856/*
1857 *	vm_object_page_remove:
1858 *
1859 *	For the given object, either frees or invalidates each of the
1860 *	specified pages.  In general, a page is freed.  However, if a page is
1861 *	wired for any reason other than the existence of a managed, wired
1862 *	mapping, then it may be invalidated but not removed from the object.
1863 *	Pages are specified by the given range ["start", "end") and the option
1864 *	OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1865 *	extends from "start" to the end of the object.  If the option
1866 *	OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1867 *	specified range are affected.  If the option OBJPR_NOTMAPPED is
1868 *	specified, then the pages within the specified range must have no
1869 *	mappings.  Otherwise, if this option is not specified, any mappings to
1870 *	the specified pages are removed before the pages are freed or
1871 *	invalidated.
1872 *
1873 *	In general, this operation should only be performed on objects that
1874 *	contain managed pages.  There are, however, two exceptions.  First, it
1875 *	is performed on the kernel and kmem objects by vm_map_entry_delete().
1876 *	Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1877 *	backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1878 *	not be specified and the option OBJPR_NOTMAPPED must be specified.
1879 *
1880 *	The object must be locked.
1881 */
1882void
1883vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1884    int options)
1885{
1886	vm_page_t p, next;
1887	int wirings;
1888
1889	VM_OBJECT_ASSERT_WLOCKED(object);
1890	KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1891	    (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1892	    ("vm_object_page_remove: illegal options for object %p", object));
1893	if (object->resident_page_count == 0)
1894		goto skipmemq;
1895	vm_object_pip_add(object, 1);
1896again:
1897	p = vm_page_find_least(object, start);
1898
1899	/*
1900	 * Here, the variable "p" is either (1) the page with the least pindex
1901	 * greater than or equal to the parameter "start" or (2) NULL.
1902	 */
1903	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1904		next = TAILQ_NEXT(p, listq);
1905
1906		/*
1907		 * If the page is wired for any reason besides the existence
1908		 * of managed, wired mappings, then it cannot be freed.  For
1909		 * example, fictitious pages, which represent device memory,
1910		 * are inherently wired and cannot be freed.  They can,
1911		 * however, be invalidated if the option OBJPR_CLEANONLY is
1912		 * not specified.
1913		 */
1914		vm_page_lock(p);
1915		if (vm_page_xbusied(p)) {
1916			VM_OBJECT_WUNLOCK(object);
1917			vm_page_busy_sleep(p, "vmopax");
1918			VM_OBJECT_WLOCK(object);
1919			goto again;
1920		}
1921		if ((wirings = p->wire_count) != 0 &&
1922		    (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1923			if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1924			    0) {
1925				pmap_remove_all(p);
1926				/* Account for removal of wired mappings. */
1927				if (wirings != 0)
1928					p->wire_count -= wirings;
1929			}
1930			if ((options & OBJPR_CLEANONLY) == 0) {
1931				p->valid = 0;
1932				vm_page_undirty(p);
1933			}
1934			goto next;
1935		}
1936		if (vm_page_busied(p)) {
1937			VM_OBJECT_WUNLOCK(object);
1938			vm_page_busy_sleep(p, "vmopar");
1939			VM_OBJECT_WLOCK(object);
1940			goto again;
1941		}
1942		KASSERT((p->flags & PG_FICTITIOUS) == 0,
1943		    ("vm_object_page_remove: page %p is fictitious", p));
1944		if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1945			if ((options & OBJPR_NOTMAPPED) == 0)
1946				pmap_remove_write(p);
1947			if (p->dirty)
1948				goto next;
1949		}
1950		if ((options & OBJPR_NOTMAPPED) == 0) {
1951			if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1952				goto next;
1953			pmap_remove_all(p);
1954			/* Account for removal of wired mappings. */
1955			if (wirings != 0) {
1956				KASSERT(p->wire_count == wirings,
1957				    ("inconsistent wire count %d %d %p",
1958				    p->wire_count, wirings, p));
1959				p->wire_count = 0;
1960				atomic_subtract_int(&cnt.v_wire_count, 1);
1961			}
1962		}
1963		vm_page_free(p);
1964next:
1965		vm_page_unlock(p);
1966	}
1967	vm_object_pip_wakeup(object);
1968skipmemq:
1969	if (__predict_false(!vm_object_cache_is_empty(object)))
1970		vm_page_cache_free(object, start, end);
1971}
1972
1973/*
1974 *	vm_object_page_cache:
1975 *
1976 *	For the given object, attempt to move the specified clean
1977 *	pages to the cache queue.  If a page is wired for any reason,
1978 *	then it will not be changed.  Pages are specified by the given
1979 *	range ["start", "end").  As a special case, if "end" is zero,
1980 *	then the range extends from "start" to the end of the object.
1981 *	Any mappings to the specified pages are removed before the
1982 *	pages are moved to the cache queue.
1983 *
1984 *	This operation should only be performed on objects that
1985 *	contain non-fictitious, managed pages.
1986 *
1987 *	The object must be locked.
1988 */
1989void
1990vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1991{
1992	struct mtx *mtx, *new_mtx;
1993	vm_page_t p, next;
1994
1995	VM_OBJECT_ASSERT_WLOCKED(object);
1996	KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1997	    ("vm_object_page_cache: illegal object %p", object));
1998	if (object->resident_page_count == 0)
1999		return;
2000	p = vm_page_find_least(object, start);
2001
2002	/*
2003	 * Here, the variable "p" is either (1) the page with the least pindex
2004	 * greater than or equal to the parameter "start" or (2) NULL.
2005	 */
2006	mtx = NULL;
2007	for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2008		next = TAILQ_NEXT(p, listq);
2009
2010		/*
2011		 * Avoid releasing and reacquiring the same page lock.
2012		 */
2013		new_mtx = vm_page_lockptr(p);
2014		if (mtx != new_mtx) {
2015			if (mtx != NULL)
2016				mtx_unlock(mtx);
2017			mtx = new_mtx;
2018			mtx_lock(mtx);
2019		}
2020		vm_page_try_to_cache(p);
2021	}
2022	if (mtx != NULL)
2023		mtx_unlock(mtx);
2024}
2025
2026/*
2027 *	Populate the specified range of the object with valid pages.  Returns
2028 *	TRUE if the range is successfully populated and FALSE otherwise.
2029 *
2030 *	Note: This function should be optimized to pass a larger array of
2031 *	pages to vm_pager_get_pages() before it is applied to a non-
2032 *	OBJT_DEVICE object.
2033 *
2034 *	The object must be locked.
2035 */
2036boolean_t
2037vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2038{
2039	vm_page_t m, ma[1];
2040	vm_pindex_t pindex;
2041	int rv;
2042
2043	VM_OBJECT_ASSERT_WLOCKED(object);
2044	for (pindex = start; pindex < end; pindex++) {
2045		m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2046		if (m->valid != VM_PAGE_BITS_ALL) {
2047			ma[0] = m;
2048			rv = vm_pager_get_pages(object, ma, 1, 0);
2049			m = vm_page_lookup(object, pindex);
2050			if (m == NULL)
2051				break;
2052			if (rv != VM_PAGER_OK) {
2053				vm_page_lock(m);
2054				vm_page_free(m);
2055				vm_page_unlock(m);
2056				break;
2057			}
2058		}
2059		/*
2060		 * Keep "m" busy because a subsequent iteration may unlock
2061		 * the object.
2062		 */
2063	}
2064	if (pindex > start) {
2065		m = vm_page_lookup(object, start);
2066		while (m != NULL && m->pindex < pindex) {
2067			vm_page_xunbusy(m);
2068			m = TAILQ_NEXT(m, listq);
2069		}
2070	}
2071	return (pindex == end);
2072}
2073
2074/*
2075 *	Routine:	vm_object_coalesce
2076 *	Function:	Coalesces two objects backing up adjoining
2077 *			regions of memory into a single object.
2078 *
2079 *	returns TRUE if objects were combined.
2080 *
2081 *	NOTE:	Only works at the moment if the second object is NULL -
2082 *		if it's not, which object do we lock first?
2083 *
2084 *	Parameters:
2085 *		prev_object	First object to coalesce
2086 *		prev_offset	Offset into prev_object
2087 *		prev_size	Size of reference to prev_object
2088 *		next_size	Size of reference to the second object
2089 *		reserved	Indicator that extension region has
2090 *				swap accounted for
2091 *
2092 *	Conditions:
2093 *	The object must *not* be locked.
2094 */
2095boolean_t
2096vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2097    vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2098{
2099	vm_pindex_t next_pindex;
2100
2101	if (prev_object == NULL)
2102		return (TRUE);
2103	VM_OBJECT_WLOCK(prev_object);
2104	if ((prev_object->type != OBJT_DEFAULT &&
2105	    prev_object->type != OBJT_SWAP) ||
2106	    (prev_object->flags & OBJ_TMPFS) != 0) {
2107		VM_OBJECT_WUNLOCK(prev_object);
2108		return (FALSE);
2109	}
2110
2111	/*
2112	 * Try to collapse the object first
2113	 */
2114	vm_object_collapse(prev_object);
2115
2116	/*
2117	 * Can't coalesce if: . more than one reference . paged out . shadows
2118	 * another object . has a copy elsewhere (any of which mean that the
2119	 * pages not mapped to prev_entry may be in use anyway)
2120	 */
2121	if (prev_object->backing_object != NULL) {
2122		VM_OBJECT_WUNLOCK(prev_object);
2123		return (FALSE);
2124	}
2125
2126	prev_size >>= PAGE_SHIFT;
2127	next_size >>= PAGE_SHIFT;
2128	next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2129
2130	if ((prev_object->ref_count > 1) &&
2131	    (prev_object->size != next_pindex)) {
2132		VM_OBJECT_WUNLOCK(prev_object);
2133		return (FALSE);
2134	}
2135
2136	/*
2137	 * Account for the charge.
2138	 */
2139	if (prev_object->cred != NULL) {
2140
2141		/*
2142		 * If prev_object was charged, then this mapping,
2143		 * althought not charged now, may become writable
2144		 * later. Non-NULL cred in the object would prevent
2145		 * swap reservation during enabling of the write
2146		 * access, so reserve swap now. Failed reservation
2147		 * cause allocation of the separate object for the map
2148		 * entry, and swap reservation for this entry is
2149		 * managed in appropriate time.
2150		 */
2151		if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2152		    prev_object->cred)) {
2153			return (FALSE);
2154		}
2155		prev_object->charge += ptoa(next_size);
2156	}
2157
2158	/*
2159	 * Remove any pages that may still be in the object from a previous
2160	 * deallocation.
2161	 */
2162	if (next_pindex < prev_object->size) {
2163		vm_object_page_remove(prev_object, next_pindex, next_pindex +
2164		    next_size, 0);
2165		if (prev_object->type == OBJT_SWAP)
2166			swap_pager_freespace(prev_object,
2167					     next_pindex, next_size);
2168#if 0
2169		if (prev_object->cred != NULL) {
2170			KASSERT(prev_object->charge >=
2171			    ptoa(prev_object->size - next_pindex),
2172			    ("object %p overcharged 1 %jx %jx", prev_object,
2173				(uintmax_t)next_pindex, (uintmax_t)next_size));
2174			prev_object->charge -= ptoa(prev_object->size -
2175			    next_pindex);
2176		}
2177#endif
2178	}
2179
2180	/*
2181	 * Extend the object if necessary.
2182	 */
2183	if (next_pindex + next_size > prev_object->size)
2184		prev_object->size = next_pindex + next_size;
2185
2186	VM_OBJECT_WUNLOCK(prev_object);
2187	return (TRUE);
2188}
2189
2190void
2191vm_object_set_writeable_dirty(vm_object_t object)
2192{
2193
2194	VM_OBJECT_ASSERT_WLOCKED(object);
2195	if (object->type != OBJT_VNODE)
2196		return;
2197	object->generation++;
2198	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2199		return;
2200	vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2201}
2202
2203#include "opt_ddb.h"
2204#ifdef DDB
2205#include <sys/kernel.h>
2206
2207#include <sys/cons.h>
2208
2209#include <ddb/ddb.h>
2210
2211static int
2212_vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2213{
2214	vm_map_t tmpm;
2215	vm_map_entry_t tmpe;
2216	vm_object_t obj;
2217	int entcount;
2218
2219	if (map == 0)
2220		return 0;
2221
2222	if (entry == 0) {
2223		tmpe = map->header.next;
2224		entcount = map->nentries;
2225		while (entcount-- && (tmpe != &map->header)) {
2226			if (_vm_object_in_map(map, object, tmpe)) {
2227				return 1;
2228			}
2229			tmpe = tmpe->next;
2230		}
2231	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2232		tmpm = entry->object.sub_map;
2233		tmpe = tmpm->header.next;
2234		entcount = tmpm->nentries;
2235		while (entcount-- && tmpe != &tmpm->header) {
2236			if (_vm_object_in_map(tmpm, object, tmpe)) {
2237				return 1;
2238			}
2239			tmpe = tmpe->next;
2240		}
2241	} else if ((obj = entry->object.vm_object) != NULL) {
2242		for (; obj; obj = obj->backing_object)
2243			if (obj == object) {
2244				return 1;
2245			}
2246	}
2247	return 0;
2248}
2249
2250static int
2251vm_object_in_map(vm_object_t object)
2252{
2253	struct proc *p;
2254
2255	/* sx_slock(&allproc_lock); */
2256	FOREACH_PROC_IN_SYSTEM(p) {
2257		if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2258			continue;
2259		if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2260			/* sx_sunlock(&allproc_lock); */
2261			return 1;
2262		}
2263	}
2264	/* sx_sunlock(&allproc_lock); */
2265	if (_vm_object_in_map(kernel_map, object, 0))
2266		return 1;
2267	return 0;
2268}
2269
2270DB_SHOW_COMMAND(vmochk, vm_object_check)
2271{
2272	vm_object_t object;
2273
2274	/*
2275	 * make sure that internal objs are in a map somewhere
2276	 * and none have zero ref counts.
2277	 */
2278	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2279		if (object->handle == NULL &&
2280		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2281			if (object->ref_count == 0) {
2282				db_printf("vmochk: internal obj has zero ref count: %ld\n",
2283					(long)object->size);
2284			}
2285			if (!vm_object_in_map(object)) {
2286				db_printf(
2287			"vmochk: internal obj is not in a map: "
2288			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2289				    object->ref_count, (u_long)object->size,
2290				    (u_long)object->size,
2291				    (void *)object->backing_object);
2292			}
2293		}
2294	}
2295}
2296
2297/*
2298 *	vm_object_print:	[ debug ]
2299 */
2300DB_SHOW_COMMAND(object, vm_object_print_static)
2301{
2302	/* XXX convert args. */
2303	vm_object_t object = (vm_object_t)addr;
2304	boolean_t full = have_addr;
2305
2306	vm_page_t p;
2307
2308	/* XXX count is an (unused) arg.  Avoid shadowing it. */
2309#define	count	was_count
2310
2311	int count;
2312
2313	if (object == NULL)
2314		return;
2315
2316	db_iprintf(
2317	    "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2318	    object, (int)object->type, (uintmax_t)object->size,
2319	    object->resident_page_count, object->ref_count, object->flags,
2320	    object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2321	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2322	    object->shadow_count,
2323	    object->backing_object ? object->backing_object->ref_count : 0,
2324	    object->backing_object, (uintmax_t)object->backing_object_offset);
2325
2326	if (!full)
2327		return;
2328
2329	db_indent += 2;
2330	count = 0;
2331	TAILQ_FOREACH(p, &object->memq, listq) {
2332		if (count == 0)
2333			db_iprintf("memory:=");
2334		else if (count == 6) {
2335			db_printf("\n");
2336			db_iprintf(" ...");
2337			count = 0;
2338		} else
2339			db_printf(",");
2340		count++;
2341
2342		db_printf("(off=0x%jx,page=0x%jx)",
2343		    (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2344	}
2345	if (count != 0)
2346		db_printf("\n");
2347	db_indent -= 2;
2348}
2349
2350/* XXX. */
2351#undef count
2352
2353/* XXX need this non-static entry for calling from vm_map_print. */
2354void
2355vm_object_print(
2356        /* db_expr_t */ long addr,
2357	boolean_t have_addr,
2358	/* db_expr_t */ long count,
2359	char *modif)
2360{
2361	vm_object_print_static(addr, have_addr, count, modif);
2362}
2363
2364DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2365{
2366	vm_object_t object;
2367	vm_pindex_t fidx;
2368	vm_paddr_t pa;
2369	vm_page_t m, prev_m;
2370	int rcount, nl, c;
2371
2372	nl = 0;
2373	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2374		db_printf("new object: %p\n", (void *)object);
2375		if (nl > 18) {
2376			c = cngetc();
2377			if (c != ' ')
2378				return;
2379			nl = 0;
2380		}
2381		nl++;
2382		rcount = 0;
2383		fidx = 0;
2384		pa = -1;
2385		TAILQ_FOREACH(m, &object->memq, listq) {
2386			if (m->pindex > 128)
2387				break;
2388			if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2389			    prev_m->pindex + 1 != m->pindex) {
2390				if (rcount) {
2391					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2392						(long)fidx, rcount, (long)pa);
2393					if (nl > 18) {
2394						c = cngetc();
2395						if (c != ' ')
2396							return;
2397						nl = 0;
2398					}
2399					nl++;
2400					rcount = 0;
2401				}
2402			}
2403			if (rcount &&
2404				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2405				++rcount;
2406				continue;
2407			}
2408			if (rcount) {
2409				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2410					(long)fidx, rcount, (long)pa);
2411				if (nl > 18) {
2412					c = cngetc();
2413					if (c != ' ')
2414						return;
2415					nl = 0;
2416				}
2417				nl++;
2418			}
2419			fidx = m->pindex;
2420			pa = VM_PAGE_TO_PHYS(m);
2421			rcount = 1;
2422		}
2423		if (rcount) {
2424			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2425				(long)fidx, rcount, (long)pa);
2426			if (nl > 18) {
2427				c = cngetc();
2428				if (c != ' ')
2429					return;
2430				nl = 0;
2431			}
2432			nl++;
2433		}
2434	}
2435}
2436#endif /* DDB */
2437