vm_map.c revision 326189
1336809Sdim/*-
2336809Sdim * Copyright (c) 1991, 1993
3353358Sdim *	The Regents of the University of California.  All rights reserved.
4353358Sdim *
5353358Sdim * This code is derived from software contributed to Berkeley by
6336809Sdim * The Mach Operating System project at Carnegie-Mellon University.
7336809Sdim *
8336809Sdim * Redistribution and use in source and binary forms, with or without
9336809Sdim * modification, are permitted provided that the following conditions
10336809Sdim * are met:
11336809Sdim * 1. Redistributions of source code must retain the above copyright
12360784Sdim *    notice, this list of conditions and the following disclaimer.
13336809Sdim * 2. Redistributions in binary form must reproduce the above copyright
14336809Sdim *    notice, this list of conditions and the following disclaimer in the
15336809Sdim *    documentation and/or other materials provided with the distribution.
16336809Sdim * 4. Neither the name of the University nor the names of its contributors
17336809Sdim *    may be used to endorse or promote products derived from this software
18336809Sdim *    without specific prior written permission.
19336809Sdim *
20336809Sdim * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21336809Sdim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22336809Sdim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23336809Sdim * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24336809Sdim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25336809Sdim * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26336809Sdim * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27336809Sdim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28336809Sdim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29336809Sdim * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30336809Sdim * SUCH DAMAGE.
31336809Sdim *
32336809Sdim *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33336809Sdim *
34336809Sdim *
35336809Sdim * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36336809Sdim * All rights reserved.
37336809Sdim *
38336809Sdim * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39336809Sdim *
40336809Sdim * Permission to use, copy, modify and distribute this software and
41336809Sdim * its documentation is hereby granted, provided that both the copyright
42336809Sdim * notice and this permission notice appear in all copies of the
43336809Sdim * software, derivative works or modified versions, and any portions
44336809Sdim * thereof, and that both notices appear in supporting documentation.
45336809Sdim *
46336809Sdim * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47336809Sdim * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48336809Sdim * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49336809Sdim *
50336809Sdim * Carnegie Mellon requests users of this software to return to
51336809Sdim *
52336809Sdim *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53336809Sdim *  School of Computer Science
54336809Sdim *  Carnegie Mellon University
55336809Sdim *  Pittsburgh PA 15213-3890
56336809Sdim *
57336809Sdim * any improvements or extensions that they make and grant Carnegie the
58336809Sdim * rights to redistribute these changes.
59336809Sdim */
60336809Sdim
61336809Sdim/*
62336809Sdim *	Virtual memory mapping module.
63336809Sdim */
64336809Sdim
65336809Sdim#include <sys/cdefs.h>
66336809Sdim__FBSDID("$FreeBSD: stable/10/sys/vm/vm_map.c 326189 2017-11-25 14:51:40Z kib $");
67336809Sdim
68336809Sdim#include <sys/param.h>
69336809Sdim#include <sys/systm.h>
70336809Sdim#include <sys/kernel.h>
71336809Sdim#include <sys/ktr.h>
72336809Sdim#include <sys/lock.h>
73336809Sdim#include <sys/mutex.h>
74336809Sdim#include <sys/proc.h>
75336809Sdim#include <sys/vmmeter.h>
76336809Sdim#include <sys/mman.h>
77336809Sdim#include <sys/vnode.h>
78336809Sdim#include <sys/racct.h>
79336809Sdim#include <sys/resourcevar.h>
80336809Sdim#include <sys/rwlock.h>
81336809Sdim#include <sys/file.h>
82336809Sdim#include <sys/sysctl.h>
83336809Sdim#include <sys/sysent.h>
84336809Sdim#include <sys/shm.h>
85336809Sdim
86336809Sdim#include <vm/vm.h>
87336809Sdim#include <vm/vm_param.h>
88336809Sdim#include <vm/pmap.h>
89336809Sdim#include <vm/vm_map.h>
90336809Sdim#include <vm/vm_page.h>
91336809Sdim#include <vm/vm_object.h>
92336809Sdim#include <vm/vm_pager.h>
93336809Sdim#include <vm/vm_kern.h>
94336809Sdim#include <vm/vm_extern.h>
95336809Sdim#include <vm/vnode_pager.h>
96336809Sdim#include <vm/swap_pager.h>
97336809Sdim#include <vm/uma.h>
98336809Sdim
99336809Sdim/*
100336809Sdim *	Virtual memory maps provide for the mapping, protection,
101336809Sdim *	and sharing of virtual memory objects.  In addition,
102336809Sdim *	this module provides for an efficient virtual copy of
103336809Sdim *	memory from one map to another.
104336809Sdim *
105336809Sdim *	Synchronization is required prior to most operations.
106336809Sdim *
107336809Sdim *	Maps consist of an ordered doubly-linked list of simple
108336809Sdim *	entries; a self-adjusting binary search tree of these
109336809Sdim *	entries is used to speed up lookups.
110336809Sdim *
111336809Sdim *	Since portions of maps are specified by start/end addresses,
112336809Sdim *	which may not align with existing map entries, all
113336809Sdim *	routines merely "clip" entries to these start/end values.
114336809Sdim *	[That is, an entry is split into two, bordering at a
115336809Sdim *	start or end value.]  Note that these clippings may not
116336809Sdim *	always be necessary (as the two resulting entries are then
117336809Sdim *	not changed); however, the clipping is done for convenience.
118336809Sdim *
119336809Sdim *	As mentioned above, virtual copy operations are performed
120336809Sdim *	by copying VM object references from one map to
121336809Sdim *	another, and then marking both regions as copy-on-write.
122336809Sdim */
123336809Sdim
124336809Sdimstatic struct mtx map_sleep_mtx;
125336809Sdimstatic uma_zone_t mapentzone;
126336809Sdimstatic uma_zone_t kmapentzone;
127336809Sdimstatic uma_zone_t mapzone;
128336809Sdimstatic uma_zone_t vmspace_zone;
129336809Sdimstatic int vmspace_zinit(void *mem, int size, int flags);
130336809Sdimstatic int vm_map_zinit(void *mem, int ize, int flags);
131336809Sdimstatic void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132336809Sdim    vm_offset_t max);
133336809Sdimstatic void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134336809Sdimstatic void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135336809Sdimstatic void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136336809Sdimstatic int vm_map_growstack(vm_map_t map, vm_offset_t addr,
137336809Sdim    vm_map_entry_t gap_entry);
138336809Sdim#ifdef INVARIANTS
139336809Sdimstatic void vm_map_zdtor(void *mem, int size, void *arg);
140336809Sdimstatic void vmspace_zdtor(void *mem, int size, void *arg);
141336809Sdim#endif
142336809Sdimstatic int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143336809Sdim    vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144336809Sdim    int cow);
145336809Sdimstatic void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146336809Sdim    vm_offset_t failed_addr);
147336809Sdim
148336809Sdim#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149336809Sdim    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150336809Sdim     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151336809Sdim
152336809Sdim/*
153336809Sdim * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154336809Sdim * stable.
155336809Sdim */
156336809Sdim#define PROC_VMSPACE_LOCK(p) do { } while (0)
157336809Sdim#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158336809Sdim
159336809Sdim/*
160336809Sdim *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161336809Sdim *
162336809Sdim *	Asserts that the starting and ending region
163336809Sdim *	addresses fall within the valid range of the map.
164336809Sdim */
165336809Sdim#define	VM_MAP_RANGE_CHECK(map, start, end)		\
166336809Sdim		{					\
167336809Sdim		if (start < vm_map_min(map))		\
168336809Sdim			start = vm_map_min(map);	\
169336809Sdim		if (end > vm_map_max(map))		\
170336809Sdim			end = vm_map_max(map);		\
171336809Sdim		if (start > end)			\
172336809Sdim			start = end;			\
173336809Sdim		}
174336809Sdim
175336809Sdim/*
176336809Sdim *	vm_map_startup:
177336809Sdim *
178336809Sdim *	Initialize the vm_map module.  Must be called before
179336809Sdim *	any other vm_map routines.
180336809Sdim *
181336809Sdim *	Map and entry structures are allocated from the general
182336809Sdim *	purpose memory pool with some exceptions:
183336809Sdim *
184336809Sdim *	- The kernel map and kmem submap are allocated statically.
185336809Sdim *	- Kernel map entries are allocated out of a static pool.
186336809Sdim *
187336809Sdim *	These restrictions are necessary since malloc() uses the
188336809Sdim *	maps and requires map entries.
189336809Sdim */
190336809Sdim
191336809Sdimvoid
192336809Sdimvm_map_startup(void)
193336809Sdim{
194336809Sdim	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195336809Sdim	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196336809Sdim#ifdef INVARIANTS
197336809Sdim	    vm_map_zdtor,
198336809Sdim#else
199336809Sdim	    NULL,
200336809Sdim#endif
201336809Sdim	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202336809Sdim	uma_prealloc(mapzone, MAX_KMAP);
203336809Sdim	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204336809Sdim	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205336809Sdim	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206336809Sdim	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207336809Sdim	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208336809Sdim	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209336809Sdim#ifdef INVARIANTS
210336809Sdim	    vmspace_zdtor,
211336809Sdim#else
212336809Sdim	    NULL,
213336809Sdim#endif
214336809Sdim	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215336809Sdim}
216336809Sdim
217336809Sdimstatic int
218336809Sdimvmspace_zinit(void *mem, int size, int flags)
219336809Sdim{
220336809Sdim	struct vmspace *vm;
221336809Sdim
222336809Sdim	vm = (struct vmspace *)mem;
223336809Sdim
224336809Sdim	vm->vm_map.pmap = NULL;
225336809Sdim	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226336809Sdim	PMAP_LOCK_INIT(vmspace_pmap(vm));
227336809Sdim	return (0);
228336809Sdim}
229336809Sdim
230336809Sdimstatic int
231336809Sdimvm_map_zinit(void *mem, int size, int flags)
232336809Sdim{
233336809Sdim	vm_map_t map;
234336809Sdim
235336809Sdim	map = (vm_map_t)mem;
236336809Sdim	memset(map, 0, sizeof(*map));
237336809Sdim	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238336809Sdim	sx_init(&map->lock, "vm map (user)");
239336809Sdim	return (0);
240336809Sdim}
241336809Sdim
242336809Sdim#ifdef INVARIANTS
243336809Sdimstatic void
244336809Sdimvmspace_zdtor(void *mem, int size, void *arg)
245336809Sdim{
246336809Sdim	struct vmspace *vm;
247336809Sdim
248336809Sdim	vm = (struct vmspace *)mem;
249336809Sdim
250336809Sdim	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251336809Sdim}
252336809Sdimstatic void
253336809Sdimvm_map_zdtor(void *mem, int size, void *arg)
254336809Sdim{
255336809Sdim	vm_map_t map;
256336809Sdim
257336809Sdim	map = (vm_map_t)mem;
258336809Sdim	KASSERT(map->nentries == 0,
259336809Sdim	    ("map %p nentries == %d on free.",
260336809Sdim	    map, map->nentries));
261336809Sdim	KASSERT(map->size == 0,
262336809Sdim	    ("map %p size == %lu on free.",
263336809Sdim	    map, (unsigned long)map->size));
264336809Sdim}
265336809Sdim#endif	/* INVARIANTS */
266336809Sdim
267336809Sdim/*
268336809Sdim * Allocate a vmspace structure, including a vm_map and pmap,
269336809Sdim * and initialize those structures.  The refcnt is set to 1.
270336809Sdim *
271336809Sdim * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272336809Sdim */
273336809Sdimstruct vmspace *
274336809Sdimvmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275336809Sdim{
276336809Sdim	struct vmspace *vm;
277336809Sdim
278336809Sdim	vm = uma_zalloc(vmspace_zone, M_WAITOK);
279336809Sdim
280336809Sdim	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281336809Sdim
282336809Sdim	if (pinit == NULL)
283336809Sdim		pinit = &pmap_pinit;
284336809Sdim
285336809Sdim	if (!pinit(vmspace_pmap(vm))) {
286336809Sdim		uma_zfree(vmspace_zone, vm);
287336809Sdim		return (NULL);
288336809Sdim	}
289336809Sdim	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290336809Sdim	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291336809Sdim	vm->vm_refcnt = 1;
292336809Sdim	vm->vm_shm = NULL;
293336809Sdim	vm->vm_swrss = 0;
294336809Sdim	vm->vm_tsize = 0;
295336809Sdim	vm->vm_dsize = 0;
296336809Sdim	vm->vm_ssize = 0;
297336809Sdim	vm->vm_taddr = 0;
298336809Sdim	vm->vm_daddr = 0;
299336809Sdim	vm->vm_maxsaddr = 0;
300336809Sdim	return (vm);
301336809Sdim}
302336809Sdim
303336809Sdim#ifdef RACCT
304336809Sdimstatic void
305336809Sdimvmspace_container_reset(struct proc *p)
306336809Sdim{
307336809Sdim
308336809Sdim	PROC_LOCK(p);
309336809Sdim	racct_set(p, RACCT_DATA, 0);
310336809Sdim	racct_set(p, RACCT_STACK, 0);
311336809Sdim	racct_set(p, RACCT_RSS, 0);
312336809Sdim	racct_set(p, RACCT_MEMLOCK, 0);
313336809Sdim	racct_set(p, RACCT_VMEM, 0);
314336809Sdim	PROC_UNLOCK(p);
315336809Sdim}
316336809Sdim#endif
317336809Sdim
318336809Sdimstatic inline void
319336809Sdimvmspace_dofree(struct vmspace *vm)
320336809Sdim{
321336809Sdim
322336809Sdim	CTR1(KTR_VM, "vmspace_free: %p", vm);
323336809Sdim
324336809Sdim	/*
325336809Sdim	 * Make sure any SysV shm is freed, it might not have been in
326336809Sdim	 * exit1().
327336809Sdim	 */
328336809Sdim	shmexit(vm);
329336809Sdim
330336809Sdim	/*
331336809Sdim	 * Lock the map, to wait out all other references to it.
332336809Sdim	 * Delete all of the mappings and pages they hold, then call
333336809Sdim	 * the pmap module to reclaim anything left.
334336809Sdim	 */
335336809Sdim	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336336809Sdim	    vm->vm_map.max_offset);
337336809Sdim
338336809Sdim	pmap_release(vmspace_pmap(vm));
339336809Sdim	vm->vm_map.pmap = NULL;
340353358Sdim	uma_zfree(vmspace_zone, vm);
341353358Sdim}
342353358Sdim
343353358Sdimvoid
344336809Sdimvmspace_free(struct vmspace *vm)
345336809Sdim{
346336809Sdim
347336809Sdim	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348336809Sdim	    "vmspace_free() called with non-sleepable lock held");
349336809Sdim
350336809Sdim	if (vm->vm_refcnt == 0)
351336809Sdim		panic("vmspace_free: attempt to free already freed vmspace");
352336809Sdim
353336809Sdim	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354336809Sdim		vmspace_dofree(vm);
355336809Sdim}
356336809Sdim
357336809Sdimvoid
358336809Sdimvmspace_exitfree(struct proc *p)
359336809Sdim{
360336809Sdim	struct vmspace *vm;
361336809Sdim
362336809Sdim	PROC_VMSPACE_LOCK(p);
363336809Sdim	vm = p->p_vmspace;
364336809Sdim	p->p_vmspace = NULL;
365336809Sdim	PROC_VMSPACE_UNLOCK(p);
366336809Sdim	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367336809Sdim	vmspace_free(vm);
368336809Sdim}
369336809Sdim
370336809Sdimvoid
371336809Sdimvmspace_exit(struct thread *td)
372336809Sdim{
373336809Sdim	int refcnt;
374336809Sdim	struct vmspace *vm;
375336809Sdim	struct proc *p;
376336809Sdim
377336809Sdim	/*
378336809Sdim	 * Release user portion of address space.
379336809Sdim	 * This releases references to vnodes,
380336809Sdim	 * which could cause I/O if the file has been unlinked.
381336809Sdim	 * Need to do this early enough that we can still sleep.
382336809Sdim	 *
383336809Sdim	 * The last exiting process to reach this point releases as
384336809Sdim	 * much of the environment as it can. vmspace_dofree() is the
385336809Sdim	 * slower fallback in case another process had a temporary
386336809Sdim	 * reference to the vmspace.
387336809Sdim	 */
388336809Sdim
389336809Sdim	p = td->td_proc;
390336809Sdim	vm = p->p_vmspace;
391336809Sdim	atomic_add_int(&vmspace0.vm_refcnt, 1);
392336809Sdim	do {
393336809Sdim		refcnt = vm->vm_refcnt;
394336809Sdim		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395336809Sdim			/* Switch now since other proc might free vmspace */
396336809Sdim			PROC_VMSPACE_LOCK(p);
397336809Sdim			p->p_vmspace = &vmspace0;
398336809Sdim			PROC_VMSPACE_UNLOCK(p);
399336809Sdim			pmap_activate(td);
400336809Sdim		}
401336809Sdim	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
402336809Sdim	if (refcnt == 1) {
403336809Sdim		if (p->p_vmspace != vm) {
404336809Sdim			/* vmspace not yet freed, switch back */
405336809Sdim			PROC_VMSPACE_LOCK(p);
406336809Sdim			p->p_vmspace = vm;
407336809Sdim			PROC_VMSPACE_UNLOCK(p);
408336809Sdim			pmap_activate(td);
409336809Sdim		}
410336809Sdim		pmap_remove_pages(vmspace_pmap(vm));
411336809Sdim		/* Switch now since this proc will free vmspace */
412336809Sdim		PROC_VMSPACE_LOCK(p);
413336809Sdim		p->p_vmspace = &vmspace0;
414336809Sdim		PROC_VMSPACE_UNLOCK(p);
415336809Sdim		pmap_activate(td);
416336809Sdim		vmspace_dofree(vm);
417336809Sdim	}
418336809Sdim#ifdef RACCT
419336809Sdim	if (racct_enable)
420336809Sdim		vmspace_container_reset(p);
421336809Sdim#endif
422336809Sdim}
423336809Sdim
424336809Sdim/* Acquire reference to vmspace owned by another process. */
425336809Sdim
426336809Sdimstruct vmspace *
427336809Sdimvmspace_acquire_ref(struct proc *p)
428336809Sdim{
429336809Sdim	struct vmspace *vm;
430336809Sdim	int refcnt;
431336809Sdim
432336809Sdim	PROC_VMSPACE_LOCK(p);
433336809Sdim	vm = p->p_vmspace;
434336809Sdim	if (vm == NULL) {
435336809Sdim		PROC_VMSPACE_UNLOCK(p);
436336809Sdim		return (NULL);
437336809Sdim	}
438336809Sdim	do {
439336809Sdim		refcnt = vm->vm_refcnt;
440336809Sdim		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
441336809Sdim			PROC_VMSPACE_UNLOCK(p);
442336809Sdim			return (NULL);
443336809Sdim		}
444336809Sdim	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
445336809Sdim	if (vm != p->p_vmspace) {
446336809Sdim		PROC_VMSPACE_UNLOCK(p);
447336809Sdim		vmspace_free(vm);
448336809Sdim		return (NULL);
449336809Sdim	}
450336809Sdim	PROC_VMSPACE_UNLOCK(p);
451336809Sdim	return (vm);
452336809Sdim}
453336809Sdim
454336809Sdimvoid
455336809Sdim_vm_map_lock(vm_map_t map, const char *file, int line)
456336809Sdim{
457336809Sdim
458336809Sdim	if (map->system_map)
459336809Sdim		mtx_lock_flags_(&map->system_mtx, 0, file, line);
460336809Sdim	else
461336809Sdim		sx_xlock_(&map->lock, file, line);
462336809Sdim	map->timestamp++;
463336809Sdim}
464336809Sdim
465336809Sdimstatic void
466336809Sdimvm_map_process_deferred(void)
467336809Sdim{
468336809Sdim	struct thread *td;
469336809Sdim	vm_map_entry_t entry, next;
470336809Sdim	vm_object_t object;
471336809Sdim
472336809Sdim	td = curthread;
473	entry = td->td_map_def_user;
474	td->td_map_def_user = NULL;
475	while (entry != NULL) {
476		next = entry->next;
477		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
478			/*
479			 * Decrement the object's writemappings and
480			 * possibly the vnode's v_writecount.
481			 */
482			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
483			    ("Submap with writecount"));
484			object = entry->object.vm_object;
485			KASSERT(object != NULL, ("No object for writecount"));
486			vnode_pager_release_writecount(object, entry->start,
487			    entry->end);
488		}
489		vm_map_entry_deallocate(entry, FALSE);
490		entry = next;
491	}
492}
493
494void
495_vm_map_unlock(vm_map_t map, const char *file, int line)
496{
497
498	if (map->system_map)
499		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
500	else {
501		sx_xunlock_(&map->lock, file, line);
502		vm_map_process_deferred();
503	}
504}
505
506void
507_vm_map_lock_read(vm_map_t map, const char *file, int line)
508{
509
510	if (map->system_map)
511		mtx_lock_flags_(&map->system_mtx, 0, file, line);
512	else
513		sx_slock_(&map->lock, file, line);
514}
515
516void
517_vm_map_unlock_read(vm_map_t map, const char *file, int line)
518{
519
520	if (map->system_map)
521		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
522	else {
523		sx_sunlock_(&map->lock, file, line);
524		vm_map_process_deferred();
525	}
526}
527
528int
529_vm_map_trylock(vm_map_t map, const char *file, int line)
530{
531	int error;
532
533	error = map->system_map ?
534	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
535	    !sx_try_xlock_(&map->lock, file, line);
536	if (error == 0)
537		map->timestamp++;
538	return (error == 0);
539}
540
541int
542_vm_map_trylock_read(vm_map_t map, const char *file, int line)
543{
544	int error;
545
546	error = map->system_map ?
547	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
548	    !sx_try_slock_(&map->lock, file, line);
549	return (error == 0);
550}
551
552/*
553 *	_vm_map_lock_upgrade:	[ internal use only ]
554 *
555 *	Tries to upgrade a read (shared) lock on the specified map to a write
556 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
557 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
558 *	returned without a read or write lock held.
559 *
560 *	Requires that the map be read locked.
561 */
562int
563_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
564{
565	unsigned int last_timestamp;
566
567	if (map->system_map) {
568		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
569	} else {
570		if (!sx_try_upgrade_(&map->lock, file, line)) {
571			last_timestamp = map->timestamp;
572			sx_sunlock_(&map->lock, file, line);
573			vm_map_process_deferred();
574			/*
575			 * If the map's timestamp does not change while the
576			 * map is unlocked, then the upgrade succeeds.
577			 */
578			sx_xlock_(&map->lock, file, line);
579			if (last_timestamp != map->timestamp) {
580				sx_xunlock_(&map->lock, file, line);
581				return (1);
582			}
583		}
584	}
585	map->timestamp++;
586	return (0);
587}
588
589void
590_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
591{
592
593	if (map->system_map) {
594		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
595	} else
596		sx_downgrade_(&map->lock, file, line);
597}
598
599/*
600 *	vm_map_locked:
601 *
602 *	Returns a non-zero value if the caller holds a write (exclusive) lock
603 *	on the specified map and the value "0" otherwise.
604 */
605int
606vm_map_locked(vm_map_t map)
607{
608
609	if (map->system_map)
610		return (mtx_owned(&map->system_mtx));
611	else
612		return (sx_xlocked(&map->lock));
613}
614
615#ifdef INVARIANTS
616static void
617_vm_map_assert_locked(vm_map_t map, const char *file, int line)
618{
619
620	if (map->system_map)
621		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
622	else
623		sx_assert_(&map->lock, SA_XLOCKED, file, line);
624}
625
626#define	VM_MAP_ASSERT_LOCKED(map) \
627    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
628#else
629#define	VM_MAP_ASSERT_LOCKED(map)
630#endif
631
632/*
633 *	_vm_map_unlock_and_wait:
634 *
635 *	Atomically releases the lock on the specified map and puts the calling
636 *	thread to sleep.  The calling thread will remain asleep until either
637 *	vm_map_wakeup() is performed on the map or the specified timeout is
638 *	exceeded.
639 *
640 *	WARNING!  This function does not perform deferred deallocations of
641 *	objects and map	entries.  Therefore, the calling thread is expected to
642 *	reacquire the map lock after reawakening and later perform an ordinary
643 *	unlock operation, such as vm_map_unlock(), before completing its
644 *	operation on the map.
645 */
646int
647_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
648{
649
650	mtx_lock(&map_sleep_mtx);
651	if (map->system_map)
652		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
653	else
654		sx_xunlock_(&map->lock, file, line);
655	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
656	    timo));
657}
658
659/*
660 *	vm_map_wakeup:
661 *
662 *	Awaken any threads that have slept on the map using
663 *	vm_map_unlock_and_wait().
664 */
665void
666vm_map_wakeup(vm_map_t map)
667{
668
669	/*
670	 * Acquire and release map_sleep_mtx to prevent a wakeup()
671	 * from being performed (and lost) between the map unlock
672	 * and the msleep() in _vm_map_unlock_and_wait().
673	 */
674	mtx_lock(&map_sleep_mtx);
675	mtx_unlock(&map_sleep_mtx);
676	wakeup(&map->root);
677}
678
679void
680vm_map_busy(vm_map_t map)
681{
682
683	VM_MAP_ASSERT_LOCKED(map);
684	map->busy++;
685}
686
687void
688vm_map_unbusy(vm_map_t map)
689{
690
691	VM_MAP_ASSERT_LOCKED(map);
692	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
693	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
694		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
695		wakeup(&map->busy);
696	}
697}
698
699void
700vm_map_wait_busy(vm_map_t map)
701{
702
703	VM_MAP_ASSERT_LOCKED(map);
704	while (map->busy) {
705		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
706		if (map->system_map)
707			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
708		else
709			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
710	}
711	map->timestamp++;
712}
713
714long
715vmspace_resident_count(struct vmspace *vmspace)
716{
717	return pmap_resident_count(vmspace_pmap(vmspace));
718}
719
720/*
721 *	vm_map_create:
722 *
723 *	Creates and returns a new empty VM map with
724 *	the given physical map structure, and having
725 *	the given lower and upper address bounds.
726 */
727vm_map_t
728vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
729{
730	vm_map_t result;
731
732	result = uma_zalloc(mapzone, M_WAITOK);
733	CTR1(KTR_VM, "vm_map_create: %p", result);
734	_vm_map_init(result, pmap, min, max);
735	return (result);
736}
737
738/*
739 * Initialize an existing vm_map structure
740 * such as that in the vmspace structure.
741 */
742static void
743_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
744{
745
746	map->header.next = map->header.prev = &map->header;
747	map->needs_wakeup = FALSE;
748	map->system_map = 0;
749	map->pmap = pmap;
750	map->min_offset = min;
751	map->max_offset = max;
752	map->flags = 0;
753	map->root = NULL;
754	map->timestamp = 0;
755	map->busy = 0;
756}
757
758void
759vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
760{
761
762	_vm_map_init(map, pmap, min, max);
763	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
764	sx_init(&map->lock, "user map");
765}
766
767/*
768 *	vm_map_entry_dispose:	[ internal use only ]
769 *
770 *	Inverse of vm_map_entry_create.
771 */
772static void
773vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
774{
775	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
776}
777
778/*
779 *	vm_map_entry_create:	[ internal use only ]
780 *
781 *	Allocates a VM map entry for insertion.
782 *	No entry fields are filled in.
783 */
784static vm_map_entry_t
785vm_map_entry_create(vm_map_t map)
786{
787	vm_map_entry_t new_entry;
788
789	if (map->system_map)
790		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
791	else
792		new_entry = uma_zalloc(mapentzone, M_WAITOK);
793	if (new_entry == NULL)
794		panic("vm_map_entry_create: kernel resources exhausted");
795	return (new_entry);
796}
797
798/*
799 *	vm_map_entry_set_behavior:
800 *
801 *	Set the expected access behavior, either normal, random, or
802 *	sequential.
803 */
804static inline void
805vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
806{
807	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
808	    (behavior & MAP_ENTRY_BEHAV_MASK);
809}
810
811/*
812 *	vm_map_entry_set_max_free:
813 *
814 *	Set the max_free field in a vm_map_entry.
815 */
816static inline void
817vm_map_entry_set_max_free(vm_map_entry_t entry)
818{
819
820	entry->max_free = entry->adj_free;
821	if (entry->left != NULL && entry->left->max_free > entry->max_free)
822		entry->max_free = entry->left->max_free;
823	if (entry->right != NULL && entry->right->max_free > entry->max_free)
824		entry->max_free = entry->right->max_free;
825}
826
827/*
828 *	vm_map_entry_splay:
829 *
830 *	The Sleator and Tarjan top-down splay algorithm with the
831 *	following variation.  Max_free must be computed bottom-up, so
832 *	on the downward pass, maintain the left and right spines in
833 *	reverse order.  Then, make a second pass up each side to fix
834 *	the pointers and compute max_free.  The time bound is O(log n)
835 *	amortized.
836 *
837 *	The new root is the vm_map_entry containing "addr", or else an
838 *	adjacent entry (lower or higher) if addr is not in the tree.
839 *
840 *	The map must be locked, and leaves it so.
841 *
842 *	Returns: the new root.
843 */
844static vm_map_entry_t
845vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
846{
847	vm_map_entry_t llist, rlist;
848	vm_map_entry_t ltree, rtree;
849	vm_map_entry_t y;
850
851	/* Special case of empty tree. */
852	if (root == NULL)
853		return (root);
854
855	/*
856	 * Pass One: Splay down the tree until we find addr or a NULL
857	 * pointer where addr would go.  llist and rlist are the two
858	 * sides in reverse order (bottom-up), with llist linked by
859	 * the right pointer and rlist linked by the left pointer in
860	 * the vm_map_entry.  Wait until Pass Two to set max_free on
861	 * the two spines.
862	 */
863	llist = NULL;
864	rlist = NULL;
865	for (;;) {
866		/* root is never NULL in here. */
867		if (addr < root->start) {
868			y = root->left;
869			if (y == NULL)
870				break;
871			if (addr < y->start && y->left != NULL) {
872				/* Rotate right and put y on rlist. */
873				root->left = y->right;
874				y->right = root;
875				vm_map_entry_set_max_free(root);
876				root = y->left;
877				y->left = rlist;
878				rlist = y;
879			} else {
880				/* Put root on rlist. */
881				root->left = rlist;
882				rlist = root;
883				root = y;
884			}
885		} else if (addr >= root->end) {
886			y = root->right;
887			if (y == NULL)
888				break;
889			if (addr >= y->end && y->right != NULL) {
890				/* Rotate left and put y on llist. */
891				root->right = y->left;
892				y->left = root;
893				vm_map_entry_set_max_free(root);
894				root = y->right;
895				y->right = llist;
896				llist = y;
897			} else {
898				/* Put root on llist. */
899				root->right = llist;
900				llist = root;
901				root = y;
902			}
903		} else
904			break;
905	}
906
907	/*
908	 * Pass Two: Walk back up the two spines, flip the pointers
909	 * and set max_free.  The subtrees of the root go at the
910	 * bottom of llist and rlist.
911	 */
912	ltree = root->left;
913	while (llist != NULL) {
914		y = llist->right;
915		llist->right = ltree;
916		vm_map_entry_set_max_free(llist);
917		ltree = llist;
918		llist = y;
919	}
920	rtree = root->right;
921	while (rlist != NULL) {
922		y = rlist->left;
923		rlist->left = rtree;
924		vm_map_entry_set_max_free(rlist);
925		rtree = rlist;
926		rlist = y;
927	}
928
929	/*
930	 * Final assembly: add ltree and rtree as subtrees of root.
931	 */
932	root->left = ltree;
933	root->right = rtree;
934	vm_map_entry_set_max_free(root);
935
936	return (root);
937}
938
939/*
940 *	vm_map_entry_{un,}link:
941 *
942 *	Insert/remove entries from maps.
943 */
944static void
945vm_map_entry_link(vm_map_t map,
946		  vm_map_entry_t after_where,
947		  vm_map_entry_t entry)
948{
949
950	CTR4(KTR_VM,
951	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
952	    map->nentries, entry, after_where);
953	VM_MAP_ASSERT_LOCKED(map);
954	KASSERT(after_where == &map->header ||
955	    after_where->end <= entry->start,
956	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
957	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
958	KASSERT(after_where->next == &map->header ||
959	    entry->end <= after_where->next->start,
960	    ("vm_map_entry_link: new end %jx next start %jx overlap",
961	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
962
963	map->nentries++;
964	entry->prev = after_where;
965	entry->next = after_where->next;
966	entry->next->prev = entry;
967	after_where->next = entry;
968
969	if (after_where != &map->header) {
970		if (after_where != map->root)
971			vm_map_entry_splay(after_where->start, map->root);
972		entry->right = after_where->right;
973		entry->left = after_where;
974		after_where->right = NULL;
975		after_where->adj_free = entry->start - after_where->end;
976		vm_map_entry_set_max_free(after_where);
977	} else {
978		entry->right = map->root;
979		entry->left = NULL;
980	}
981	entry->adj_free = (entry->next == &map->header ? map->max_offset :
982	    entry->next->start) - entry->end;
983	vm_map_entry_set_max_free(entry);
984	map->root = entry;
985}
986
987static void
988vm_map_entry_unlink(vm_map_t map,
989		    vm_map_entry_t entry)
990{
991	vm_map_entry_t next, prev, root;
992
993	VM_MAP_ASSERT_LOCKED(map);
994	if (entry != map->root)
995		vm_map_entry_splay(entry->start, map->root);
996	if (entry->left == NULL)
997		root = entry->right;
998	else {
999		root = vm_map_entry_splay(entry->start, entry->left);
1000		root->right = entry->right;
1001		root->adj_free = (entry->next == &map->header ? map->max_offset :
1002		    entry->next->start) - root->end;
1003		vm_map_entry_set_max_free(root);
1004	}
1005	map->root = root;
1006
1007	prev = entry->prev;
1008	next = entry->next;
1009	next->prev = prev;
1010	prev->next = next;
1011	map->nentries--;
1012	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1013	    map->nentries, entry);
1014}
1015
1016/*
1017 *	vm_map_entry_resize_free:
1018 *
1019 *	Recompute the amount of free space following a vm_map_entry
1020 *	and propagate that value up the tree.  Call this function after
1021 *	resizing a map entry in-place, that is, without a call to
1022 *	vm_map_entry_link() or _unlink().
1023 *
1024 *	The map must be locked, and leaves it so.
1025 */
1026static void
1027vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1028{
1029
1030	/*
1031	 * Using splay trees without parent pointers, propagating
1032	 * max_free up the tree is done by moving the entry to the
1033	 * root and making the change there.
1034	 */
1035	if (entry != map->root)
1036		map->root = vm_map_entry_splay(entry->start, map->root);
1037
1038	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1039	    entry->next->start) - entry->end;
1040	vm_map_entry_set_max_free(entry);
1041}
1042
1043/*
1044 *	vm_map_lookup_entry:	[ internal use only ]
1045 *
1046 *	Finds the map entry containing (or
1047 *	immediately preceding) the specified address
1048 *	in the given map; the entry is returned
1049 *	in the "entry" parameter.  The boolean
1050 *	result indicates whether the address is
1051 *	actually contained in the map.
1052 */
1053boolean_t
1054vm_map_lookup_entry(
1055	vm_map_t map,
1056	vm_offset_t address,
1057	vm_map_entry_t *entry)	/* OUT */
1058{
1059	vm_map_entry_t cur;
1060	boolean_t locked;
1061
1062	/*
1063	 * If the map is empty, then the map entry immediately preceding
1064	 * "address" is the map's header.
1065	 */
1066	cur = map->root;
1067	if (cur == NULL)
1068		*entry = &map->header;
1069	else if (address >= cur->start && cur->end > address) {
1070		*entry = cur;
1071		return (TRUE);
1072	} else if ((locked = vm_map_locked(map)) ||
1073	    sx_try_upgrade(&map->lock)) {
1074		/*
1075		 * Splay requires a write lock on the map.  However, it only
1076		 * restructures the binary search tree; it does not otherwise
1077		 * change the map.  Thus, the map's timestamp need not change
1078		 * on a temporary upgrade.
1079		 */
1080		map->root = cur = vm_map_entry_splay(address, cur);
1081		if (!locked)
1082			sx_downgrade(&map->lock);
1083
1084		/*
1085		 * If "address" is contained within a map entry, the new root
1086		 * is that map entry.  Otherwise, the new root is a map entry
1087		 * immediately before or after "address".
1088		 */
1089		if (address >= cur->start) {
1090			*entry = cur;
1091			if (cur->end > address)
1092				return (TRUE);
1093		} else
1094			*entry = cur->prev;
1095	} else
1096		/*
1097		 * Since the map is only locked for read access, perform a
1098		 * standard binary search tree lookup for "address".
1099		 */
1100		for (;;) {
1101			if (address < cur->start) {
1102				if (cur->left == NULL) {
1103					*entry = cur->prev;
1104					break;
1105				}
1106				cur = cur->left;
1107			} else if (cur->end > address) {
1108				*entry = cur;
1109				return (TRUE);
1110			} else {
1111				if (cur->right == NULL) {
1112					*entry = cur;
1113					break;
1114				}
1115				cur = cur->right;
1116			}
1117		}
1118	return (FALSE);
1119}
1120
1121/*
1122 *	vm_map_insert:
1123 *
1124 *	Inserts the given whole VM object into the target
1125 *	map at the specified address range.  The object's
1126 *	size should match that of the address range.
1127 *
1128 *	Requires that the map be locked, and leaves it so.
1129 *
1130 *	If object is non-NULL, ref count must be bumped by caller
1131 *	prior to making call to account for the new entry.
1132 */
1133int
1134vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1135    vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1136{
1137	vm_map_entry_t new_entry, prev_entry, temp_entry;
1138	struct ucred *cred;
1139	vm_eflags_t protoeflags;
1140	vm_inherit_t inheritance;
1141
1142	VM_MAP_ASSERT_LOCKED(map);
1143	KASSERT((object != kmem_object && object != kernel_object) ||
1144	    (cow & MAP_COPY_ON_WRITE) == 0,
1145	    ("vm_map_insert: kmem or kernel object and COW"));
1146	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1147	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1148	KASSERT((prot & ~max) == 0,
1149	    ("prot %#x is not subset of max_prot %#x", prot, max));
1150
1151	/*
1152	 * Check that the start and end points are not bogus.
1153	 */
1154	if (start < map->min_offset || end > map->max_offset || start >= end)
1155		return (KERN_INVALID_ADDRESS);
1156
1157	/*
1158	 * Find the entry prior to the proposed starting address; if it's part
1159	 * of an existing entry, this range is bogus.
1160	 */
1161	if (vm_map_lookup_entry(map, start, &temp_entry))
1162		return (KERN_NO_SPACE);
1163
1164	prev_entry = temp_entry;
1165
1166	/*
1167	 * Assert that the next entry doesn't overlap the end point.
1168	 */
1169	if (prev_entry->next != &map->header && prev_entry->next->start < end)
1170		return (KERN_NO_SPACE);
1171
1172	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1173	    max != VM_PROT_NONE))
1174		return (KERN_INVALID_ARGUMENT);
1175
1176	protoeflags = 0;
1177	if (cow & MAP_COPY_ON_WRITE)
1178		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1179	if (cow & MAP_NOFAULT)
1180		protoeflags |= MAP_ENTRY_NOFAULT;
1181	if (cow & MAP_DISABLE_SYNCER)
1182		protoeflags |= MAP_ENTRY_NOSYNC;
1183	if (cow & MAP_DISABLE_COREDUMP)
1184		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1185	if (cow & MAP_STACK_GROWS_DOWN)
1186		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1187	if (cow & MAP_STACK_GROWS_UP)
1188		protoeflags |= MAP_ENTRY_GROWS_UP;
1189	if (cow & MAP_VN_WRITECOUNT)
1190		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1191	if ((cow & MAP_CREATE_GUARD) != 0)
1192		protoeflags |= MAP_ENTRY_GUARD;
1193	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1194		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1195	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1196		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1197	if (cow & MAP_INHERIT_SHARE)
1198		inheritance = VM_INHERIT_SHARE;
1199	else
1200		inheritance = VM_INHERIT_DEFAULT;
1201
1202	cred = NULL;
1203	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1204		goto charged;
1205	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1206	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1207		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1208			return (KERN_RESOURCE_SHORTAGE);
1209		KASSERT(object == NULL ||
1210		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1211		    object->cred == NULL,
1212		    ("overcommit: vm_map_insert o %p", object));
1213		cred = curthread->td_ucred;
1214	}
1215
1216charged:
1217	/* Expand the kernel pmap, if necessary. */
1218	if (map == kernel_map && end > kernel_vm_end)
1219		pmap_growkernel(end);
1220	if (object != NULL) {
1221		/*
1222		 * OBJ_ONEMAPPING must be cleared unless this mapping
1223		 * is trivially proven to be the only mapping for any
1224		 * of the object's pages.  (Object granularity
1225		 * reference counting is insufficient to recognize
1226		 * aliases with precision.)
1227		 */
1228		VM_OBJECT_WLOCK(object);
1229		if (object->ref_count > 1 || object->shadow_count != 0)
1230			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1231		VM_OBJECT_WUNLOCK(object);
1232	} else if (prev_entry != &map->header &&
1233	    prev_entry->eflags == protoeflags &&
1234	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1235	    prev_entry->end == start && prev_entry->wired_count == 0 &&
1236	    (prev_entry->cred == cred ||
1237	    (prev_entry->object.vm_object != NULL &&
1238	    prev_entry->object.vm_object->cred == cred)) &&
1239	    vm_object_coalesce(prev_entry->object.vm_object,
1240	    prev_entry->offset,
1241	    (vm_size_t)(prev_entry->end - prev_entry->start),
1242	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1243	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1244		/*
1245		 * We were able to extend the object.  Determine if we
1246		 * can extend the previous map entry to include the
1247		 * new range as well.
1248		 */
1249		if (prev_entry->inheritance == inheritance &&
1250		    prev_entry->protection == prot &&
1251		    prev_entry->max_protection == max) {
1252			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1253				map->size += end - prev_entry->end;
1254			prev_entry->end = end;
1255			vm_map_entry_resize_free(map, prev_entry);
1256			vm_map_simplify_entry(map, prev_entry);
1257			return (KERN_SUCCESS);
1258		}
1259
1260		/*
1261		 * If we can extend the object but cannot extend the
1262		 * map entry, we have to create a new map entry.  We
1263		 * must bump the ref count on the extended object to
1264		 * account for it.  object may be NULL.
1265		 */
1266		object = prev_entry->object.vm_object;
1267		offset = prev_entry->offset +
1268		    (prev_entry->end - prev_entry->start);
1269		vm_object_reference(object);
1270		if (cred != NULL && object != NULL && object->cred != NULL &&
1271		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1272			/* Object already accounts for this uid. */
1273			cred = NULL;
1274		}
1275	}
1276	if (cred != NULL)
1277		crhold(cred);
1278
1279	/*
1280	 * Create a new entry
1281	 */
1282	new_entry = vm_map_entry_create(map);
1283	new_entry->start = start;
1284	new_entry->end = end;
1285	new_entry->cred = NULL;
1286
1287	new_entry->eflags = protoeflags;
1288	new_entry->object.vm_object = object;
1289	new_entry->offset = offset;
1290
1291	new_entry->inheritance = inheritance;
1292	new_entry->protection = prot;
1293	new_entry->max_protection = max;
1294	new_entry->wired_count = 0;
1295	new_entry->wiring_thread = NULL;
1296	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1297	new_entry->next_read = OFF_TO_IDX(offset);
1298
1299	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1300	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1301	new_entry->cred = cred;
1302
1303	/*
1304	 * Insert the new entry into the list
1305	 */
1306	vm_map_entry_link(map, prev_entry, new_entry);
1307	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1308		map->size += new_entry->end - new_entry->start;
1309
1310	/*
1311	 * Try to coalesce the new entry with both the previous and next
1312	 * entries in the list.  Previously, we only attempted to coalesce
1313	 * with the previous entry when object is NULL.  Here, we handle the
1314	 * other cases, which are less common.
1315	 */
1316	vm_map_simplify_entry(map, new_entry);
1317
1318	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1319		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1320		    end - start, cow & MAP_PREFAULT_PARTIAL);
1321	}
1322
1323	return (KERN_SUCCESS);
1324}
1325
1326/*
1327 *	vm_map_findspace:
1328 *
1329 *	Find the first fit (lowest VM address) for "length" free bytes
1330 *	beginning at address >= start in the given map.
1331 *
1332 *	In a vm_map_entry, "adj_free" is the amount of free space
1333 *	adjacent (higher address) to this entry, and "max_free" is the
1334 *	maximum amount of contiguous free space in its subtree.  This
1335 *	allows finding a free region in one path down the tree, so
1336 *	O(log n) amortized with splay trees.
1337 *
1338 *	The map must be locked, and leaves it so.
1339 *
1340 *	Returns: 0 on success, and starting address in *addr,
1341 *		 1 if insufficient space.
1342 */
1343int
1344vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1345    vm_offset_t *addr)	/* OUT */
1346{
1347	vm_map_entry_t entry;
1348	vm_offset_t st;
1349
1350	/*
1351	 * Request must fit within min/max VM address and must avoid
1352	 * address wrap.
1353	 */
1354	if (start < map->min_offset)
1355		start = map->min_offset;
1356	if (start + length > map->max_offset || start + length < start)
1357		return (1);
1358
1359	/* Empty tree means wide open address space. */
1360	if (map->root == NULL) {
1361		*addr = start;
1362		return (0);
1363	}
1364
1365	/*
1366	 * After splay, if start comes before root node, then there
1367	 * must be a gap from start to the root.
1368	 */
1369	map->root = vm_map_entry_splay(start, map->root);
1370	if (start + length <= map->root->start) {
1371		*addr = start;
1372		return (0);
1373	}
1374
1375	/*
1376	 * Root is the last node that might begin its gap before
1377	 * start, and this is the last comparison where address
1378	 * wrap might be a problem.
1379	 */
1380	st = (start > map->root->end) ? start : map->root->end;
1381	if (length <= map->root->end + map->root->adj_free - st) {
1382		*addr = st;
1383		return (0);
1384	}
1385
1386	/* With max_free, can immediately tell if no solution. */
1387	entry = map->root->right;
1388	if (entry == NULL || length > entry->max_free)
1389		return (1);
1390
1391	/*
1392	 * Search the right subtree in the order: left subtree, root,
1393	 * right subtree (first fit).  The previous splay implies that
1394	 * all regions in the right subtree have addresses > start.
1395	 */
1396	while (entry != NULL) {
1397		if (entry->left != NULL && entry->left->max_free >= length)
1398			entry = entry->left;
1399		else if (entry->adj_free >= length) {
1400			*addr = entry->end;
1401			return (0);
1402		} else
1403			entry = entry->right;
1404	}
1405
1406	/* Can't get here, so panic if we do. */
1407	panic("vm_map_findspace: max_free corrupt");
1408}
1409
1410int
1411vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1412    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1413    vm_prot_t max, int cow)
1414{
1415	vm_offset_t end;
1416	int result;
1417
1418	end = start + length;
1419	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1420	    object == NULL,
1421	    ("vm_map_fixed: non-NULL backing object for stack"));
1422	vm_map_lock(map);
1423	VM_MAP_RANGE_CHECK(map, start, end);
1424	if ((cow & MAP_CHECK_EXCL) == 0)
1425		vm_map_delete(map, start, end);
1426	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1427		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1428		    prot, max, cow);
1429	} else {
1430		result = vm_map_insert(map, object, offset, start, end,
1431		    prot, max, cow);
1432	}
1433	vm_map_unlock(map);
1434	return (result);
1435}
1436
1437/*
1438 *	vm_map_find finds an unallocated region in the target address
1439 *	map with the given length.  The search is defined to be
1440 *	first-fit from the specified address; the region found is
1441 *	returned in the same parameter.
1442 *
1443 *	If object is non-NULL, ref count must be bumped by caller
1444 *	prior to making call to account for the new entry.
1445 */
1446int
1447vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1448	    vm_offset_t *addr,	/* IN/OUT */
1449	    vm_size_t length, vm_offset_t max_addr, int find_space,
1450	    vm_prot_t prot, vm_prot_t max, int cow)
1451{
1452	vm_offset_t alignment, initial_addr, start;
1453	int result;
1454
1455	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1456	    object == NULL,
1457	    ("vm_map_find: non-NULL backing object for stack"));
1458	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1459	    (object->flags & OBJ_COLORED) == 0))
1460		find_space = VMFS_ANY_SPACE;
1461	if (find_space >> 8 != 0) {
1462		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1463		alignment = (vm_offset_t)1 << (find_space >> 8);
1464	} else
1465		alignment = 0;
1466	initial_addr = *addr;
1467again:
1468	start = initial_addr;
1469	vm_map_lock(map);
1470	do {
1471		if (find_space != VMFS_NO_SPACE) {
1472			if (vm_map_findspace(map, start, length, addr) ||
1473			    (max_addr != 0 && *addr + length > max_addr)) {
1474				vm_map_unlock(map);
1475				if (find_space == VMFS_OPTIMAL_SPACE) {
1476					find_space = VMFS_ANY_SPACE;
1477					goto again;
1478				}
1479				return (KERN_NO_SPACE);
1480			}
1481			switch (find_space) {
1482			case VMFS_SUPER_SPACE:
1483			case VMFS_OPTIMAL_SPACE:
1484				pmap_align_superpage(object, offset, addr,
1485				    length);
1486				break;
1487			case VMFS_ANY_SPACE:
1488				break;
1489			default:
1490				if ((*addr & (alignment - 1)) != 0) {
1491					*addr &= ~(alignment - 1);
1492					*addr += alignment;
1493				}
1494				break;
1495			}
1496
1497			start = *addr;
1498		}
1499		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1500			result = vm_map_stack_locked(map, start, length,
1501			    sgrowsiz, prot, max, cow);
1502		} else {
1503			result = vm_map_insert(map, object, offset, start,
1504			    start + length, prot, max, cow);
1505		}
1506	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1507	    find_space != VMFS_ANY_SPACE);
1508	vm_map_unlock(map);
1509	return (result);
1510}
1511
1512int
1513vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1514    vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1515    vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1516    int cow)
1517{
1518	vm_offset_t hint;
1519	int rv;
1520
1521	hint = *addr;
1522	for (;;) {
1523		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1524		    find_space, prot, max, cow);
1525		if (rv == KERN_SUCCESS || min_addr >= hint)
1526			return (rv);
1527		*addr = hint = min_addr;
1528	}
1529}
1530
1531/*
1532 *	vm_map_simplify_entry:
1533 *
1534 *	Simplify the given map entry by merging with either neighbor.  This
1535 *	routine also has the ability to merge with both neighbors.
1536 *
1537 *	The map must be locked.
1538 *
1539 *	This routine guarentees that the passed entry remains valid (though
1540 *	possibly extended).  When merging, this routine may delete one or
1541 *	both neighbors.
1542 */
1543void
1544vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1545{
1546	vm_map_entry_t next, prev;
1547	vm_size_t prevsize, esize;
1548
1549	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1550	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1551		return;
1552
1553	prev = entry->prev;
1554	if (prev != &map->header) {
1555		prevsize = prev->end - prev->start;
1556		if ( (prev->end == entry->start) &&
1557		     (prev->object.vm_object == entry->object.vm_object) &&
1558		     (!prev->object.vm_object ||
1559			(prev->offset + prevsize == entry->offset)) &&
1560		     (prev->eflags == entry->eflags) &&
1561		     (prev->protection == entry->protection) &&
1562		     (prev->max_protection == entry->max_protection) &&
1563		     (prev->inheritance == entry->inheritance) &&
1564		     (prev->wired_count == entry->wired_count) &&
1565		     (prev->cred == entry->cred)) {
1566			vm_map_entry_unlink(map, prev);
1567			entry->start = prev->start;
1568			entry->offset = prev->offset;
1569			if (entry->prev != &map->header)
1570				vm_map_entry_resize_free(map, entry->prev);
1571
1572			/*
1573			 * If the backing object is a vnode object,
1574			 * vm_object_deallocate() calls vrele().
1575			 * However, vrele() does not lock the vnode
1576			 * because the vnode has additional
1577			 * references.  Thus, the map lock can be kept
1578			 * without causing a lock-order reversal with
1579			 * the vnode lock.
1580			 *
1581			 * Since we count the number of virtual page
1582			 * mappings in object->un_pager.vnp.writemappings,
1583			 * the writemappings value should not be adjusted
1584			 * when the entry is disposed of.
1585			 */
1586			if (prev->object.vm_object)
1587				vm_object_deallocate(prev->object.vm_object);
1588			if (prev->cred != NULL)
1589				crfree(prev->cred);
1590			vm_map_entry_dispose(map, prev);
1591		}
1592	}
1593
1594	next = entry->next;
1595	if (next != &map->header) {
1596		esize = entry->end - entry->start;
1597		if ((entry->end == next->start) &&
1598		    (next->object.vm_object == entry->object.vm_object) &&
1599		     (!entry->object.vm_object ||
1600			(entry->offset + esize == next->offset)) &&
1601		    (next->eflags == entry->eflags) &&
1602		    (next->protection == entry->protection) &&
1603		    (next->max_protection == entry->max_protection) &&
1604		    (next->inheritance == entry->inheritance) &&
1605		    (next->wired_count == entry->wired_count) &&
1606		    (next->cred == entry->cred)) {
1607			vm_map_entry_unlink(map, next);
1608			entry->end = next->end;
1609			vm_map_entry_resize_free(map, entry);
1610
1611			/*
1612			 * See comment above.
1613			 */
1614			if (next->object.vm_object)
1615				vm_object_deallocate(next->object.vm_object);
1616			if (next->cred != NULL)
1617				crfree(next->cred);
1618			vm_map_entry_dispose(map, next);
1619		}
1620	}
1621}
1622/*
1623 *	vm_map_clip_start:	[ internal use only ]
1624 *
1625 *	Asserts that the given entry begins at or after
1626 *	the specified address; if necessary,
1627 *	it splits the entry into two.
1628 */
1629#define vm_map_clip_start(map, entry, startaddr) \
1630{ \
1631	if (startaddr > entry->start) \
1632		_vm_map_clip_start(map, entry, startaddr); \
1633}
1634
1635/*
1636 *	This routine is called only when it is known that
1637 *	the entry must be split.
1638 */
1639static void
1640_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1641{
1642	vm_map_entry_t new_entry;
1643
1644	VM_MAP_ASSERT_LOCKED(map);
1645
1646	/*
1647	 * Split off the front portion -- note that we must insert the new
1648	 * entry BEFORE this one, so that this entry has the specified
1649	 * starting address.
1650	 */
1651	vm_map_simplify_entry(map, entry);
1652
1653	/*
1654	 * If there is no object backing this entry, we might as well create
1655	 * one now.  If we defer it, an object can get created after the map
1656	 * is clipped, and individual objects will be created for the split-up
1657	 * map.  This is a bit of a hack, but is also about the best place to
1658	 * put this improvement.
1659	 */
1660	if (entry->object.vm_object == NULL && !map->system_map &&
1661	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1662		vm_object_t object;
1663		object = vm_object_allocate(OBJT_DEFAULT,
1664				atop(entry->end - entry->start));
1665		entry->object.vm_object = object;
1666		entry->offset = 0;
1667		if (entry->cred != NULL) {
1668			object->cred = entry->cred;
1669			object->charge = entry->end - entry->start;
1670			entry->cred = NULL;
1671		}
1672	} else if (entry->object.vm_object != NULL &&
1673		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1674		   entry->cred != NULL) {
1675		VM_OBJECT_WLOCK(entry->object.vm_object);
1676		KASSERT(entry->object.vm_object->cred == NULL,
1677		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1678		entry->object.vm_object->cred = entry->cred;
1679		entry->object.vm_object->charge = entry->end - entry->start;
1680		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1681		entry->cred = NULL;
1682	}
1683
1684	new_entry = vm_map_entry_create(map);
1685	*new_entry = *entry;
1686
1687	new_entry->end = start;
1688	entry->offset += (start - entry->start);
1689	entry->start = start;
1690	if (new_entry->cred != NULL)
1691		crhold(entry->cred);
1692
1693	vm_map_entry_link(map, entry->prev, new_entry);
1694
1695	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1696		vm_object_reference(new_entry->object.vm_object);
1697		/*
1698		 * The object->un_pager.vnp.writemappings for the
1699		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1700		 * kept as is here.  The virtual pages are
1701		 * re-distributed among the clipped entries, so the sum is
1702		 * left the same.
1703		 */
1704	}
1705}
1706
1707/*
1708 *	vm_map_clip_end:	[ internal use only ]
1709 *
1710 *	Asserts that the given entry ends at or before
1711 *	the specified address; if necessary,
1712 *	it splits the entry into two.
1713 */
1714#define vm_map_clip_end(map, entry, endaddr) \
1715{ \
1716	if ((endaddr) < (entry->end)) \
1717		_vm_map_clip_end((map), (entry), (endaddr)); \
1718}
1719
1720/*
1721 *	This routine is called only when it is known that
1722 *	the entry must be split.
1723 */
1724static void
1725_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1726{
1727	vm_map_entry_t new_entry;
1728
1729	VM_MAP_ASSERT_LOCKED(map);
1730
1731	/*
1732	 * If there is no object backing this entry, we might as well create
1733	 * one now.  If we defer it, an object can get created after the map
1734	 * is clipped, and individual objects will be created for the split-up
1735	 * map.  This is a bit of a hack, but is also about the best place to
1736	 * put this improvement.
1737	 */
1738	if (entry->object.vm_object == NULL && !map->system_map &&
1739	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1740		vm_object_t object;
1741		object = vm_object_allocate(OBJT_DEFAULT,
1742				atop(entry->end - entry->start));
1743		entry->object.vm_object = object;
1744		entry->offset = 0;
1745		if (entry->cred != NULL) {
1746			object->cred = entry->cred;
1747			object->charge = entry->end - entry->start;
1748			entry->cred = NULL;
1749		}
1750	} else if (entry->object.vm_object != NULL &&
1751		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1752		   entry->cred != NULL) {
1753		VM_OBJECT_WLOCK(entry->object.vm_object);
1754		KASSERT(entry->object.vm_object->cred == NULL,
1755		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1756		entry->object.vm_object->cred = entry->cred;
1757		entry->object.vm_object->charge = entry->end - entry->start;
1758		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1759		entry->cred = NULL;
1760	}
1761
1762	/*
1763	 * Create a new entry and insert it AFTER the specified entry
1764	 */
1765	new_entry = vm_map_entry_create(map);
1766	*new_entry = *entry;
1767
1768	new_entry->start = entry->end = end;
1769	new_entry->offset += (end - entry->start);
1770	if (new_entry->cred != NULL)
1771		crhold(entry->cred);
1772
1773	vm_map_entry_link(map, entry, new_entry);
1774
1775	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1776		vm_object_reference(new_entry->object.vm_object);
1777	}
1778}
1779
1780/*
1781 *	vm_map_submap:		[ kernel use only ]
1782 *
1783 *	Mark the given range as handled by a subordinate map.
1784 *
1785 *	This range must have been created with vm_map_find,
1786 *	and no other operations may have been performed on this
1787 *	range prior to calling vm_map_submap.
1788 *
1789 *	Only a limited number of operations can be performed
1790 *	within this rage after calling vm_map_submap:
1791 *		vm_fault
1792 *	[Don't try vm_map_copy!]
1793 *
1794 *	To remove a submapping, one must first remove the
1795 *	range from the superior map, and then destroy the
1796 *	submap (if desired).  [Better yet, don't try it.]
1797 */
1798int
1799vm_map_submap(
1800	vm_map_t map,
1801	vm_offset_t start,
1802	vm_offset_t end,
1803	vm_map_t submap)
1804{
1805	vm_map_entry_t entry;
1806	int result = KERN_INVALID_ARGUMENT;
1807
1808	vm_map_lock(map);
1809
1810	VM_MAP_RANGE_CHECK(map, start, end);
1811
1812	if (vm_map_lookup_entry(map, start, &entry)) {
1813		vm_map_clip_start(map, entry, start);
1814	} else
1815		entry = entry->next;
1816
1817	vm_map_clip_end(map, entry, end);
1818
1819	if ((entry->start == start) && (entry->end == end) &&
1820	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1821	    (entry->object.vm_object == NULL)) {
1822		entry->object.sub_map = submap;
1823		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1824		result = KERN_SUCCESS;
1825	}
1826	vm_map_unlock(map);
1827
1828	return (result);
1829}
1830
1831/*
1832 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1833 */
1834#define	MAX_INIT_PT	96
1835
1836/*
1837 *	vm_map_pmap_enter:
1838 *
1839 *	Preload the specified map's pmap with mappings to the specified
1840 *	object's memory-resident pages.  No further physical pages are
1841 *	allocated, and no further virtual pages are retrieved from secondary
1842 *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1843 *	limited number of page mappings are created at the low-end of the
1844 *	specified address range.  (For this purpose, a superpage mapping
1845 *	counts as one page mapping.)  Otherwise, all resident pages within
1846 *	the specified address range are mapped.  Because these mappings are
1847 *	being created speculatively, cached pages are not reactivated and
1848 *	mapped.
1849 */
1850void
1851vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1852    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1853{
1854	vm_offset_t start;
1855	vm_page_t p, p_start;
1856	vm_pindex_t mask, psize, threshold, tmpidx;
1857
1858	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1859		return;
1860	VM_OBJECT_RLOCK(object);
1861	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1862		VM_OBJECT_RUNLOCK(object);
1863		VM_OBJECT_WLOCK(object);
1864		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1865			pmap_object_init_pt(map->pmap, addr, object, pindex,
1866			    size);
1867			VM_OBJECT_WUNLOCK(object);
1868			return;
1869		}
1870		VM_OBJECT_LOCK_DOWNGRADE(object);
1871	}
1872
1873	psize = atop(size);
1874	if (psize + pindex > object->size) {
1875		if (object->size < pindex) {
1876			VM_OBJECT_RUNLOCK(object);
1877			return;
1878		}
1879		psize = object->size - pindex;
1880	}
1881
1882	start = 0;
1883	p_start = NULL;
1884	threshold = MAX_INIT_PT;
1885
1886	p = vm_page_find_least(object, pindex);
1887	/*
1888	 * Assert: the variable p is either (1) the page with the
1889	 * least pindex greater than or equal to the parameter pindex
1890	 * or (2) NULL.
1891	 */
1892	for (;
1893	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1894	     p = TAILQ_NEXT(p, listq)) {
1895		/*
1896		 * don't allow an madvise to blow away our really
1897		 * free pages allocating pv entries.
1898		 */
1899		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1900		    cnt.v_free_count < cnt.v_free_reserved) ||
1901		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1902		    tmpidx >= threshold)) {
1903			psize = tmpidx;
1904			break;
1905		}
1906		if (p->valid == VM_PAGE_BITS_ALL) {
1907			if (p_start == NULL) {
1908				start = addr + ptoa(tmpidx);
1909				p_start = p;
1910			}
1911			/* Jump ahead if a superpage mapping is possible. */
1912			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1913			    (pagesizes[p->psind] - 1)) == 0) {
1914				mask = atop(pagesizes[p->psind]) - 1;
1915				if (tmpidx + mask < psize &&
1916				    vm_page_ps_is_valid(p)) {
1917					p += mask;
1918					threshold += mask;
1919				}
1920			}
1921		} else if (p_start != NULL) {
1922			pmap_enter_object(map->pmap, start, addr +
1923			    ptoa(tmpidx), p_start, prot);
1924			p_start = NULL;
1925		}
1926	}
1927	if (p_start != NULL)
1928		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1929		    p_start, prot);
1930	VM_OBJECT_RUNLOCK(object);
1931}
1932
1933/*
1934 *	vm_map_protect:
1935 *
1936 *	Sets the protection of the specified address
1937 *	region in the target map.  If "set_max" is
1938 *	specified, the maximum protection is to be set;
1939 *	otherwise, only the current protection is affected.
1940 */
1941int
1942vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1943	       vm_prot_t new_prot, boolean_t set_max)
1944{
1945	vm_map_entry_t current, entry;
1946	vm_object_t obj;
1947	struct ucred *cred;
1948	vm_prot_t old_prot;
1949
1950	if (start == end)
1951		return (KERN_SUCCESS);
1952
1953	vm_map_lock(map);
1954
1955	VM_MAP_RANGE_CHECK(map, start, end);
1956
1957	if (vm_map_lookup_entry(map, start, &entry)) {
1958		vm_map_clip_start(map, entry, start);
1959	} else {
1960		entry = entry->next;
1961	}
1962
1963	/*
1964	 * Make a first pass to check for protection violations.
1965	 */
1966	for (current = entry; current != &map->header && current->start < end;
1967	    current = current->next) {
1968		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
1969			continue;
1970		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1971			vm_map_unlock(map);
1972			return (KERN_INVALID_ARGUMENT);
1973		}
1974		if ((new_prot & current->max_protection) != new_prot) {
1975			vm_map_unlock(map);
1976			return (KERN_PROTECTION_FAILURE);
1977		}
1978	}
1979
1980	/*
1981	 * Do an accounting pass for private read-only mappings that
1982	 * now will do cow due to allowed write (e.g. debugger sets
1983	 * breakpoint on text segment)
1984	 */
1985	for (current = entry; current != &map->header && current->start < end;
1986	    current = current->next) {
1987
1988		vm_map_clip_end(map, current, end);
1989
1990		if (set_max ||
1991		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1992		    ENTRY_CHARGED(current) ||
1993		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
1994			continue;
1995		}
1996
1997		cred = curthread->td_ucred;
1998		obj = current->object.vm_object;
1999
2000		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2001			if (!swap_reserve(current->end - current->start)) {
2002				vm_map_unlock(map);
2003				return (KERN_RESOURCE_SHORTAGE);
2004			}
2005			crhold(cred);
2006			current->cred = cred;
2007			continue;
2008		}
2009
2010		VM_OBJECT_WLOCK(obj);
2011		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2012			VM_OBJECT_WUNLOCK(obj);
2013			continue;
2014		}
2015
2016		/*
2017		 * Charge for the whole object allocation now, since
2018		 * we cannot distinguish between non-charged and
2019		 * charged clipped mapping of the same object later.
2020		 */
2021		KASSERT(obj->charge == 0,
2022		    ("vm_map_protect: object %p overcharged (entry %p)",
2023		    obj, current));
2024		if (!swap_reserve(ptoa(obj->size))) {
2025			VM_OBJECT_WUNLOCK(obj);
2026			vm_map_unlock(map);
2027			return (KERN_RESOURCE_SHORTAGE);
2028		}
2029
2030		crhold(cred);
2031		obj->cred = cred;
2032		obj->charge = ptoa(obj->size);
2033		VM_OBJECT_WUNLOCK(obj);
2034	}
2035
2036	/*
2037	 * Go back and fix up protections. [Note that clipping is not
2038	 * necessary the second time.]
2039	 */
2040	for (current = entry; current != &map->header && current->start < end;
2041	    current = current->next) {
2042		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2043			continue;
2044
2045		old_prot = current->protection;
2046
2047		if (set_max)
2048			current->protection =
2049			    (current->max_protection = new_prot) &
2050			    old_prot;
2051		else
2052			current->protection = new_prot;
2053
2054		/*
2055		 * For user wired map entries, the normal lazy evaluation of
2056		 * write access upgrades through soft page faults is
2057		 * undesirable.  Instead, immediately copy any pages that are
2058		 * copy-on-write and enable write access in the physical map.
2059		 */
2060		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2061		    (current->protection & VM_PROT_WRITE) != 0 &&
2062		    (old_prot & VM_PROT_WRITE) == 0)
2063			vm_fault_copy_entry(map, map, current, current, NULL);
2064
2065		/*
2066		 * When restricting access, update the physical map.  Worry
2067		 * about copy-on-write here.
2068		 */
2069		if ((old_prot & ~current->protection) != 0) {
2070#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2071							VM_PROT_ALL)
2072			pmap_protect(map->pmap, current->start,
2073			    current->end,
2074			    current->protection & MASK(current));
2075#undef	MASK
2076		}
2077		vm_map_simplify_entry(map, current);
2078	}
2079	vm_map_unlock(map);
2080	return (KERN_SUCCESS);
2081}
2082
2083/*
2084 *	vm_map_madvise:
2085 *
2086 *	This routine traverses a processes map handling the madvise
2087 *	system call.  Advisories are classified as either those effecting
2088 *	the vm_map_entry structure, or those effecting the underlying
2089 *	objects.
2090 */
2091int
2092vm_map_madvise(
2093	vm_map_t map,
2094	vm_offset_t start,
2095	vm_offset_t end,
2096	int behav)
2097{
2098	vm_map_entry_t current, entry;
2099	int modify_map = 0;
2100
2101	/*
2102	 * Some madvise calls directly modify the vm_map_entry, in which case
2103	 * we need to use an exclusive lock on the map and we need to perform
2104	 * various clipping operations.  Otherwise we only need a read-lock
2105	 * on the map.
2106	 */
2107	switch(behav) {
2108	case MADV_NORMAL:
2109	case MADV_SEQUENTIAL:
2110	case MADV_RANDOM:
2111	case MADV_NOSYNC:
2112	case MADV_AUTOSYNC:
2113	case MADV_NOCORE:
2114	case MADV_CORE:
2115		if (start == end)
2116			return (KERN_SUCCESS);
2117		modify_map = 1;
2118		vm_map_lock(map);
2119		break;
2120	case MADV_WILLNEED:
2121	case MADV_DONTNEED:
2122	case MADV_FREE:
2123		if (start == end)
2124			return (KERN_SUCCESS);
2125		vm_map_lock_read(map);
2126		break;
2127	default:
2128		return (KERN_INVALID_ARGUMENT);
2129	}
2130
2131	/*
2132	 * Locate starting entry and clip if necessary.
2133	 */
2134	VM_MAP_RANGE_CHECK(map, start, end);
2135
2136	if (vm_map_lookup_entry(map, start, &entry)) {
2137		if (modify_map)
2138			vm_map_clip_start(map, entry, start);
2139	} else {
2140		entry = entry->next;
2141	}
2142
2143	if (modify_map) {
2144		/*
2145		 * madvise behaviors that are implemented in the vm_map_entry.
2146		 *
2147		 * We clip the vm_map_entry so that behavioral changes are
2148		 * limited to the specified address range.
2149		 */
2150		for (current = entry;
2151		     (current != &map->header) && (current->start < end);
2152		     current = current->next
2153		) {
2154			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2155				continue;
2156
2157			vm_map_clip_end(map, current, end);
2158
2159			switch (behav) {
2160			case MADV_NORMAL:
2161				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2162				break;
2163			case MADV_SEQUENTIAL:
2164				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2165				break;
2166			case MADV_RANDOM:
2167				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2168				break;
2169			case MADV_NOSYNC:
2170				current->eflags |= MAP_ENTRY_NOSYNC;
2171				break;
2172			case MADV_AUTOSYNC:
2173				current->eflags &= ~MAP_ENTRY_NOSYNC;
2174				break;
2175			case MADV_NOCORE:
2176				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2177				break;
2178			case MADV_CORE:
2179				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2180				break;
2181			default:
2182				break;
2183			}
2184			vm_map_simplify_entry(map, current);
2185		}
2186		vm_map_unlock(map);
2187	} else {
2188		vm_pindex_t pstart, pend;
2189
2190		/*
2191		 * madvise behaviors that are implemented in the underlying
2192		 * vm_object.
2193		 *
2194		 * Since we don't clip the vm_map_entry, we have to clip
2195		 * the vm_object pindex and count.
2196		 */
2197		for (current = entry;
2198		     (current != &map->header) && (current->start < end);
2199		     current = current->next
2200		) {
2201			vm_offset_t useEnd, useStart;
2202
2203			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2204				continue;
2205
2206			pstart = OFF_TO_IDX(current->offset);
2207			pend = pstart + atop(current->end - current->start);
2208			useStart = current->start;
2209			useEnd = current->end;
2210
2211			if (current->start < start) {
2212				pstart += atop(start - current->start);
2213				useStart = start;
2214			}
2215			if (current->end > end) {
2216				pend -= atop(current->end - end);
2217				useEnd = end;
2218			}
2219
2220			if (pstart >= pend)
2221				continue;
2222
2223			/*
2224			 * Perform the pmap_advise() before clearing
2225			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2226			 * concurrent pmap operation, such as pmap_remove(),
2227			 * could clear a reference in the pmap and set
2228			 * PGA_REFERENCED on the page before the pmap_advise()
2229			 * had completed.  Consequently, the page would appear
2230			 * referenced based upon an old reference that
2231			 * occurred before this pmap_advise() ran.
2232			 */
2233			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2234				pmap_advise(map->pmap, useStart, useEnd,
2235				    behav);
2236
2237			vm_object_madvise(current->object.vm_object, pstart,
2238			    pend, behav);
2239
2240			/*
2241			 * Pre-populate paging structures in the
2242			 * WILLNEED case.  For wired entries, the
2243			 * paging structures are already populated.
2244			 */
2245			if (behav == MADV_WILLNEED &&
2246			    current->wired_count == 0) {
2247				vm_map_pmap_enter(map,
2248				    useStart,
2249				    current->protection,
2250				    current->object.vm_object,
2251				    pstart,
2252				    ptoa(pend - pstart),
2253				    MAP_PREFAULT_MADVISE
2254				);
2255			}
2256		}
2257		vm_map_unlock_read(map);
2258	}
2259	return (0);
2260}
2261
2262
2263/*
2264 *	vm_map_inherit:
2265 *
2266 *	Sets the inheritance of the specified address
2267 *	range in the target map.  Inheritance
2268 *	affects how the map will be shared with
2269 *	child maps at the time of vmspace_fork.
2270 */
2271int
2272vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2273	       vm_inherit_t new_inheritance)
2274{
2275	vm_map_entry_t entry;
2276	vm_map_entry_t temp_entry;
2277
2278	switch (new_inheritance) {
2279	case VM_INHERIT_NONE:
2280	case VM_INHERIT_COPY:
2281	case VM_INHERIT_SHARE:
2282	case VM_INHERIT_ZERO:
2283		break;
2284	default:
2285		return (KERN_INVALID_ARGUMENT);
2286	}
2287	if (start == end)
2288		return (KERN_SUCCESS);
2289	vm_map_lock(map);
2290	VM_MAP_RANGE_CHECK(map, start, end);
2291	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2292		entry = temp_entry;
2293		vm_map_clip_start(map, entry, start);
2294	} else
2295		entry = temp_entry->next;
2296	while ((entry != &map->header) && (entry->start < end)) {
2297		vm_map_clip_end(map, entry, end);
2298		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2299		    new_inheritance != VM_INHERIT_ZERO)
2300			entry->inheritance = new_inheritance;
2301		vm_map_simplify_entry(map, entry);
2302		entry = entry->next;
2303	}
2304	vm_map_unlock(map);
2305	return (KERN_SUCCESS);
2306}
2307
2308/*
2309 *	vm_map_unwire:
2310 *
2311 *	Implements both kernel and user unwiring.
2312 */
2313int
2314vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2315    int flags)
2316{
2317	vm_map_entry_t entry, first_entry, tmp_entry;
2318	vm_offset_t saved_start;
2319	unsigned int last_timestamp;
2320	int rv;
2321	boolean_t need_wakeup, result, user_unwire;
2322
2323	if (start == end)
2324		return (KERN_SUCCESS);
2325	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2326	vm_map_lock(map);
2327	VM_MAP_RANGE_CHECK(map, start, end);
2328	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2329		if (flags & VM_MAP_WIRE_HOLESOK)
2330			first_entry = first_entry->next;
2331		else {
2332			vm_map_unlock(map);
2333			return (KERN_INVALID_ADDRESS);
2334		}
2335	}
2336	last_timestamp = map->timestamp;
2337	entry = first_entry;
2338	while (entry != &map->header && entry->start < end) {
2339		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2340			/*
2341			 * We have not yet clipped the entry.
2342			 */
2343			saved_start = (start >= entry->start) ? start :
2344			    entry->start;
2345			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2346			if (vm_map_unlock_and_wait(map, 0)) {
2347				/*
2348				 * Allow interruption of user unwiring?
2349				 */
2350			}
2351			vm_map_lock(map);
2352			if (last_timestamp+1 != map->timestamp) {
2353				/*
2354				 * Look again for the entry because the map was
2355				 * modified while it was unlocked.
2356				 * Specifically, the entry may have been
2357				 * clipped, merged, or deleted.
2358				 */
2359				if (!vm_map_lookup_entry(map, saved_start,
2360				    &tmp_entry)) {
2361					if (flags & VM_MAP_WIRE_HOLESOK)
2362						tmp_entry = tmp_entry->next;
2363					else {
2364						if (saved_start == start) {
2365							/*
2366							 * First_entry has been deleted.
2367							 */
2368							vm_map_unlock(map);
2369							return (KERN_INVALID_ADDRESS);
2370						}
2371						end = saved_start;
2372						rv = KERN_INVALID_ADDRESS;
2373						goto done;
2374					}
2375				}
2376				if (entry == first_entry)
2377					first_entry = tmp_entry;
2378				else
2379					first_entry = NULL;
2380				entry = tmp_entry;
2381			}
2382			last_timestamp = map->timestamp;
2383			continue;
2384		}
2385		vm_map_clip_start(map, entry, start);
2386		vm_map_clip_end(map, entry, end);
2387		/*
2388		 * Mark the entry in case the map lock is released.  (See
2389		 * above.)
2390		 */
2391		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2392		    entry->wiring_thread == NULL,
2393		    ("owned map entry %p", entry));
2394		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2395		entry->wiring_thread = curthread;
2396		/*
2397		 * Check the map for holes in the specified region.
2398		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2399		 */
2400		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2401		    (entry->end < end && (entry->next == &map->header ||
2402		    entry->next->start > entry->end))) {
2403			end = entry->end;
2404			rv = KERN_INVALID_ADDRESS;
2405			goto done;
2406		}
2407		/*
2408		 * If system unwiring, require that the entry is system wired.
2409		 */
2410		if (!user_unwire &&
2411		    vm_map_entry_system_wired_count(entry) == 0) {
2412			end = entry->end;
2413			rv = KERN_INVALID_ARGUMENT;
2414			goto done;
2415		}
2416		entry = entry->next;
2417	}
2418	rv = KERN_SUCCESS;
2419done:
2420	need_wakeup = FALSE;
2421	if (first_entry == NULL) {
2422		result = vm_map_lookup_entry(map, start, &first_entry);
2423		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2424			first_entry = first_entry->next;
2425		else
2426			KASSERT(result, ("vm_map_unwire: lookup failed"));
2427	}
2428	for (entry = first_entry; entry != &map->header && entry->start < end;
2429	    entry = entry->next) {
2430		/*
2431		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2432		 * space in the unwired region could have been mapped
2433		 * while the map lock was dropped for draining
2434		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2435		 * could be simultaneously wiring this new mapping
2436		 * entry.  Detect these cases and skip any entries
2437		 * marked as in transition by us.
2438		 */
2439		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2440		    entry->wiring_thread != curthread) {
2441			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2442			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2443			continue;
2444		}
2445
2446		if (rv == KERN_SUCCESS && (!user_unwire ||
2447		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2448			if (user_unwire)
2449				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2450			if (entry->wired_count == 1)
2451				vm_map_entry_unwire(map, entry);
2452			else
2453				entry->wired_count--;
2454		}
2455		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2456		    ("vm_map_unwire: in-transition flag missing %p", entry));
2457		KASSERT(entry->wiring_thread == curthread,
2458		    ("vm_map_unwire: alien wire %p", entry));
2459		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2460		entry->wiring_thread = NULL;
2461		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2462			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2463			need_wakeup = TRUE;
2464		}
2465		vm_map_simplify_entry(map, entry);
2466	}
2467	vm_map_unlock(map);
2468	if (need_wakeup)
2469		vm_map_wakeup(map);
2470	return (rv);
2471}
2472
2473/*
2474 *	vm_map_wire_entry_failure:
2475 *
2476 *	Handle a wiring failure on the given entry.
2477 *
2478 *	The map should be locked.
2479 */
2480static void
2481vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2482    vm_offset_t failed_addr)
2483{
2484
2485	VM_MAP_ASSERT_LOCKED(map);
2486	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2487	    entry->wired_count == 1,
2488	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2489	KASSERT(failed_addr < entry->end,
2490	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2491
2492	/*
2493	 * If any pages at the start of this entry were successfully wired,
2494	 * then unwire them.
2495	 */
2496	if (failed_addr > entry->start) {
2497		pmap_unwire(map->pmap, entry->start, failed_addr);
2498		vm_object_unwire(entry->object.vm_object, entry->offset,
2499		    failed_addr - entry->start, PQ_ACTIVE);
2500	}
2501
2502	/*
2503	 * Assign an out-of-range value to represent the failure to wire this
2504	 * entry.
2505	 */
2506	entry->wired_count = -1;
2507}
2508
2509/*
2510 *	vm_map_wire:
2511 *
2512 *	Implements both kernel and user wiring.
2513 */
2514int
2515vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2516    int flags)
2517{
2518	vm_map_entry_t entry, first_entry, tmp_entry;
2519	vm_offset_t faddr, saved_end, saved_start;
2520	unsigned int last_timestamp;
2521	int rv;
2522	boolean_t need_wakeup, result, user_wire;
2523	vm_prot_t prot;
2524
2525	if (start == end)
2526		return (KERN_SUCCESS);
2527	prot = 0;
2528	if (flags & VM_MAP_WIRE_WRITE)
2529		prot |= VM_PROT_WRITE;
2530	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2531	vm_map_lock(map);
2532	VM_MAP_RANGE_CHECK(map, start, end);
2533	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2534		if (flags & VM_MAP_WIRE_HOLESOK)
2535			first_entry = first_entry->next;
2536		else {
2537			vm_map_unlock(map);
2538			return (KERN_INVALID_ADDRESS);
2539		}
2540	}
2541	last_timestamp = map->timestamp;
2542	entry = first_entry;
2543	while (entry != &map->header && entry->start < end) {
2544		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2545			/*
2546			 * We have not yet clipped the entry.
2547			 */
2548			saved_start = (start >= entry->start) ? start :
2549			    entry->start;
2550			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2551			if (vm_map_unlock_and_wait(map, 0)) {
2552				/*
2553				 * Allow interruption of user wiring?
2554				 */
2555			}
2556			vm_map_lock(map);
2557			if (last_timestamp + 1 != map->timestamp) {
2558				/*
2559				 * Look again for the entry because the map was
2560				 * modified while it was unlocked.
2561				 * Specifically, the entry may have been
2562				 * clipped, merged, or deleted.
2563				 */
2564				if (!vm_map_lookup_entry(map, saved_start,
2565				    &tmp_entry)) {
2566					if (flags & VM_MAP_WIRE_HOLESOK)
2567						tmp_entry = tmp_entry->next;
2568					else {
2569						if (saved_start == start) {
2570							/*
2571							 * first_entry has been deleted.
2572							 */
2573							vm_map_unlock(map);
2574							return (KERN_INVALID_ADDRESS);
2575						}
2576						end = saved_start;
2577						rv = KERN_INVALID_ADDRESS;
2578						goto done;
2579					}
2580				}
2581				if (entry == first_entry)
2582					first_entry = tmp_entry;
2583				else
2584					first_entry = NULL;
2585				entry = tmp_entry;
2586			}
2587			last_timestamp = map->timestamp;
2588			continue;
2589		}
2590		vm_map_clip_start(map, entry, start);
2591		vm_map_clip_end(map, entry, end);
2592		/*
2593		 * Mark the entry in case the map lock is released.  (See
2594		 * above.)
2595		 */
2596		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2597		    entry->wiring_thread == NULL,
2598		    ("owned map entry %p", entry));
2599		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2600		entry->wiring_thread = curthread;
2601		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2602		    || (entry->protection & prot) != prot) {
2603			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2604			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2605				end = entry->end;
2606				rv = KERN_INVALID_ADDRESS;
2607				goto done;
2608			}
2609			goto next_entry;
2610		}
2611		if (entry->wired_count == 0) {
2612			entry->wired_count++;
2613			saved_start = entry->start;
2614			saved_end = entry->end;
2615
2616			/*
2617			 * Release the map lock, relying on the in-transition
2618			 * mark.  Mark the map busy for fork.
2619			 */
2620			vm_map_busy(map);
2621			vm_map_unlock(map);
2622
2623			faddr = saved_start;
2624			do {
2625				/*
2626				 * Simulate a fault to get the page and enter
2627				 * it into the physical map.
2628				 */
2629				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2630				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2631					break;
2632			} while ((faddr += PAGE_SIZE) < saved_end);
2633			vm_map_lock(map);
2634			vm_map_unbusy(map);
2635			if (last_timestamp + 1 != map->timestamp) {
2636				/*
2637				 * Look again for the entry because the map was
2638				 * modified while it was unlocked.  The entry
2639				 * may have been clipped, but NOT merged or
2640				 * deleted.
2641				 */
2642				result = vm_map_lookup_entry(map, saved_start,
2643				    &tmp_entry);
2644				KASSERT(result, ("vm_map_wire: lookup failed"));
2645				if (entry == first_entry)
2646					first_entry = tmp_entry;
2647				else
2648					first_entry = NULL;
2649				entry = tmp_entry;
2650				while (entry->end < saved_end) {
2651					/*
2652					 * In case of failure, handle entries
2653					 * that were not fully wired here;
2654					 * fully wired entries are handled
2655					 * later.
2656					 */
2657					if (rv != KERN_SUCCESS &&
2658					    faddr < entry->end)
2659						vm_map_wire_entry_failure(map,
2660						    entry, faddr);
2661					entry = entry->next;
2662				}
2663			}
2664			last_timestamp = map->timestamp;
2665			if (rv != KERN_SUCCESS) {
2666				vm_map_wire_entry_failure(map, entry, faddr);
2667				end = entry->end;
2668				goto done;
2669			}
2670		} else if (!user_wire ||
2671			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2672			entry->wired_count++;
2673		}
2674		/*
2675		 * Check the map for holes in the specified region.
2676		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2677		 */
2678	next_entry:
2679		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2680		    entry->end < end && (entry->next == &map->header ||
2681		    entry->next->start > entry->end)) {
2682			end = entry->end;
2683			rv = KERN_INVALID_ADDRESS;
2684			goto done;
2685		}
2686		entry = entry->next;
2687	}
2688	rv = KERN_SUCCESS;
2689done:
2690	need_wakeup = FALSE;
2691	if (first_entry == NULL) {
2692		result = vm_map_lookup_entry(map, start, &first_entry);
2693		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2694			first_entry = first_entry->next;
2695		else
2696			KASSERT(result, ("vm_map_wire: lookup failed"));
2697	}
2698	for (entry = first_entry; entry != &map->header && entry->start < end;
2699	    entry = entry->next) {
2700		/*
2701		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2702		 * space in the unwired region could have been mapped
2703		 * while the map lock was dropped for faulting in the
2704		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2705		 * Moreover, another thread could be simultaneously
2706		 * wiring this new mapping entry.  Detect these cases
2707		 * and skip any entries marked as in transition not by us.
2708		 */
2709		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2710		    entry->wiring_thread != curthread) {
2711			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2712			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2713			continue;
2714		}
2715
2716		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2717			goto next_entry_done;
2718
2719		if (rv == KERN_SUCCESS) {
2720			if (user_wire)
2721				entry->eflags |= MAP_ENTRY_USER_WIRED;
2722		} else if (entry->wired_count == -1) {
2723			/*
2724			 * Wiring failed on this entry.  Thus, unwiring is
2725			 * unnecessary.
2726			 */
2727			entry->wired_count = 0;
2728		} else if (!user_wire ||
2729		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2730			/*
2731			 * Undo the wiring.  Wiring succeeded on this entry
2732			 * but failed on a later entry.
2733			 */
2734			if (entry->wired_count == 1)
2735				vm_map_entry_unwire(map, entry);
2736			else
2737				entry->wired_count--;
2738		}
2739	next_entry_done:
2740		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2741		    ("vm_map_wire: in-transition flag missing %p", entry));
2742		KASSERT(entry->wiring_thread == curthread,
2743		    ("vm_map_wire: alien wire %p", entry));
2744		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2745		    MAP_ENTRY_WIRE_SKIPPED);
2746		entry->wiring_thread = NULL;
2747		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2748			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2749			need_wakeup = TRUE;
2750		}
2751		vm_map_simplify_entry(map, entry);
2752	}
2753	vm_map_unlock(map);
2754	if (need_wakeup)
2755		vm_map_wakeup(map);
2756	return (rv);
2757}
2758
2759/*
2760 * vm_map_sync
2761 *
2762 * Push any dirty cached pages in the address range to their pager.
2763 * If syncio is TRUE, dirty pages are written synchronously.
2764 * If invalidate is TRUE, any cached pages are freed as well.
2765 *
2766 * If the size of the region from start to end is zero, we are
2767 * supposed to flush all modified pages within the region containing
2768 * start.  Unfortunately, a region can be split or coalesced with
2769 * neighboring regions, making it difficult to determine what the
2770 * original region was.  Therefore, we approximate this requirement by
2771 * flushing the current region containing start.
2772 *
2773 * Returns an error if any part of the specified range is not mapped.
2774 */
2775int
2776vm_map_sync(
2777	vm_map_t map,
2778	vm_offset_t start,
2779	vm_offset_t end,
2780	boolean_t syncio,
2781	boolean_t invalidate)
2782{
2783	vm_map_entry_t current;
2784	vm_map_entry_t entry;
2785	vm_size_t size;
2786	vm_object_t object;
2787	vm_ooffset_t offset;
2788	unsigned int last_timestamp;
2789	boolean_t failed;
2790
2791	vm_map_lock_read(map);
2792	VM_MAP_RANGE_CHECK(map, start, end);
2793	if (!vm_map_lookup_entry(map, start, &entry)) {
2794		vm_map_unlock_read(map);
2795		return (KERN_INVALID_ADDRESS);
2796	} else if (start == end) {
2797		start = entry->start;
2798		end = entry->end;
2799	}
2800	/*
2801	 * Make a first pass to check for user-wired memory and holes.
2802	 */
2803	for (current = entry; current != &map->header && current->start < end;
2804	    current = current->next) {
2805		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2806			vm_map_unlock_read(map);
2807			return (KERN_INVALID_ARGUMENT);
2808		}
2809		if (end > current->end &&
2810		    (current->next == &map->header ||
2811			current->end != current->next->start)) {
2812			vm_map_unlock_read(map);
2813			return (KERN_INVALID_ADDRESS);
2814		}
2815	}
2816
2817	if (invalidate)
2818		pmap_remove(map->pmap, start, end);
2819	failed = FALSE;
2820
2821	/*
2822	 * Make a second pass, cleaning/uncaching pages from the indicated
2823	 * objects as we go.
2824	 */
2825	for (current = entry; current != &map->header && current->start < end;) {
2826		offset = current->offset + (start - current->start);
2827		size = (end <= current->end ? end : current->end) - start;
2828		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2829			vm_map_t smap;
2830			vm_map_entry_t tentry;
2831			vm_size_t tsize;
2832
2833			smap = current->object.sub_map;
2834			vm_map_lock_read(smap);
2835			(void) vm_map_lookup_entry(smap, offset, &tentry);
2836			tsize = tentry->end - offset;
2837			if (tsize < size)
2838				size = tsize;
2839			object = tentry->object.vm_object;
2840			offset = tentry->offset + (offset - tentry->start);
2841			vm_map_unlock_read(smap);
2842		} else {
2843			object = current->object.vm_object;
2844		}
2845		vm_object_reference(object);
2846		last_timestamp = map->timestamp;
2847		vm_map_unlock_read(map);
2848		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2849			failed = TRUE;
2850		start += size;
2851		vm_object_deallocate(object);
2852		vm_map_lock_read(map);
2853		if (last_timestamp == map->timestamp ||
2854		    !vm_map_lookup_entry(map, start, &current))
2855			current = current->next;
2856	}
2857
2858	vm_map_unlock_read(map);
2859	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2860}
2861
2862/*
2863 *	vm_map_entry_unwire:	[ internal use only ]
2864 *
2865 *	Make the region specified by this entry pageable.
2866 *
2867 *	The map in question should be locked.
2868 *	[This is the reason for this routine's existence.]
2869 */
2870static void
2871vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2872{
2873
2874	VM_MAP_ASSERT_LOCKED(map);
2875	KASSERT(entry->wired_count > 0,
2876	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2877	pmap_unwire(map->pmap, entry->start, entry->end);
2878	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2879	    entry->start, PQ_ACTIVE);
2880	entry->wired_count = 0;
2881}
2882
2883static void
2884vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2885{
2886
2887	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2888		vm_object_deallocate(entry->object.vm_object);
2889	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2890}
2891
2892/*
2893 *	vm_map_entry_delete:	[ internal use only ]
2894 *
2895 *	Deallocate the given entry from the target map.
2896 */
2897static void
2898vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2899{
2900	vm_object_t object;
2901	vm_pindex_t offidxstart, offidxend, count, size1;
2902	vm_ooffset_t size;
2903
2904	vm_map_entry_unlink(map, entry);
2905	object = entry->object.vm_object;
2906
2907	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2908		MPASS(entry->cred == NULL);
2909		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
2910		MPASS(object == NULL);
2911		vm_map_entry_deallocate(entry, map->system_map);
2912		return;
2913	}
2914
2915	size = entry->end - entry->start;
2916	map->size -= size;
2917
2918	if (entry->cred != NULL) {
2919		swap_release_by_cred(size, entry->cred);
2920		crfree(entry->cred);
2921	}
2922
2923	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2924	    (object != NULL)) {
2925		KASSERT(entry->cred == NULL || object->cred == NULL ||
2926		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2927		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2928		count = OFF_TO_IDX(size);
2929		offidxstart = OFF_TO_IDX(entry->offset);
2930		offidxend = offidxstart + count;
2931		VM_OBJECT_WLOCK(object);
2932		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2933		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2934		    object == kernel_object || object == kmem_object)) {
2935			vm_object_collapse(object);
2936
2937			/*
2938			 * The option OBJPR_NOTMAPPED can be passed here
2939			 * because vm_map_delete() already performed
2940			 * pmap_remove() on the only mapping to this range
2941			 * of pages.
2942			 */
2943			vm_object_page_remove(object, offidxstart, offidxend,
2944			    OBJPR_NOTMAPPED);
2945			if (object->type == OBJT_SWAP)
2946				swap_pager_freespace(object, offidxstart,
2947				    count);
2948			if (offidxend >= object->size &&
2949			    offidxstart < object->size) {
2950				size1 = object->size;
2951				object->size = offidxstart;
2952				if (object->cred != NULL) {
2953					size1 -= object->size;
2954					KASSERT(object->charge >= ptoa(size1),
2955					    ("object %p charge < 0", object));
2956					swap_release_by_cred(ptoa(size1),
2957					    object->cred);
2958					object->charge -= ptoa(size1);
2959				}
2960			}
2961		}
2962		VM_OBJECT_WUNLOCK(object);
2963	} else
2964		entry->object.vm_object = NULL;
2965	if (map->system_map)
2966		vm_map_entry_deallocate(entry, TRUE);
2967	else {
2968		entry->next = curthread->td_map_def_user;
2969		curthread->td_map_def_user = entry;
2970	}
2971}
2972
2973/*
2974 *	vm_map_delete:	[ internal use only ]
2975 *
2976 *	Deallocates the given address range from the target
2977 *	map.
2978 */
2979int
2980vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2981{
2982	vm_map_entry_t entry;
2983	vm_map_entry_t first_entry;
2984
2985	VM_MAP_ASSERT_LOCKED(map);
2986	if (start == end)
2987		return (KERN_SUCCESS);
2988
2989	/*
2990	 * Find the start of the region, and clip it
2991	 */
2992	if (!vm_map_lookup_entry(map, start, &first_entry))
2993		entry = first_entry->next;
2994	else {
2995		entry = first_entry;
2996		vm_map_clip_start(map, entry, start);
2997	}
2998
2999	/*
3000	 * Step through all entries in this region
3001	 */
3002	while ((entry != &map->header) && (entry->start < end)) {
3003		vm_map_entry_t next;
3004
3005		/*
3006		 * Wait for wiring or unwiring of an entry to complete.
3007		 * Also wait for any system wirings to disappear on
3008		 * user maps.
3009		 */
3010		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3011		    (vm_map_pmap(map) != kernel_pmap &&
3012		    vm_map_entry_system_wired_count(entry) != 0)) {
3013			unsigned int last_timestamp;
3014			vm_offset_t saved_start;
3015			vm_map_entry_t tmp_entry;
3016
3017			saved_start = entry->start;
3018			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3019			last_timestamp = map->timestamp;
3020			(void) vm_map_unlock_and_wait(map, 0);
3021			vm_map_lock(map);
3022			if (last_timestamp + 1 != map->timestamp) {
3023				/*
3024				 * Look again for the entry because the map was
3025				 * modified while it was unlocked.
3026				 * Specifically, the entry may have been
3027				 * clipped, merged, or deleted.
3028				 */
3029				if (!vm_map_lookup_entry(map, saved_start,
3030							 &tmp_entry))
3031					entry = tmp_entry->next;
3032				else {
3033					entry = tmp_entry;
3034					vm_map_clip_start(map, entry,
3035							  saved_start);
3036				}
3037			}
3038			continue;
3039		}
3040		vm_map_clip_end(map, entry, end);
3041
3042		next = entry->next;
3043
3044		/*
3045		 * Unwire before removing addresses from the pmap; otherwise,
3046		 * unwiring will put the entries back in the pmap.
3047		 */
3048		if (entry->wired_count != 0) {
3049			vm_map_entry_unwire(map, entry);
3050		}
3051
3052		pmap_remove(map->pmap, entry->start, entry->end);
3053
3054		/*
3055		 * Delete the entry only after removing all pmap
3056		 * entries pointing to its pages.  (Otherwise, its
3057		 * page frames may be reallocated, and any modify bits
3058		 * will be set in the wrong object!)
3059		 */
3060		vm_map_entry_delete(map, entry);
3061		entry = next;
3062	}
3063	return (KERN_SUCCESS);
3064}
3065
3066/*
3067 *	vm_map_remove:
3068 *
3069 *	Remove the given address range from the target map.
3070 *	This is the exported form of vm_map_delete.
3071 */
3072int
3073vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3074{
3075	int result;
3076
3077	vm_map_lock(map);
3078	VM_MAP_RANGE_CHECK(map, start, end);
3079	result = vm_map_delete(map, start, end);
3080	vm_map_unlock(map);
3081	return (result);
3082}
3083
3084/*
3085 *	vm_map_check_protection:
3086 *
3087 *	Assert that the target map allows the specified privilege on the
3088 *	entire address region given.  The entire region must be allocated.
3089 *
3090 *	WARNING!  This code does not and should not check whether the
3091 *	contents of the region is accessible.  For example a smaller file
3092 *	might be mapped into a larger address space.
3093 *
3094 *	NOTE!  This code is also called by munmap().
3095 *
3096 *	The map must be locked.  A read lock is sufficient.
3097 */
3098boolean_t
3099vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3100			vm_prot_t protection)
3101{
3102	vm_map_entry_t entry;
3103	vm_map_entry_t tmp_entry;
3104
3105	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3106		return (FALSE);
3107	entry = tmp_entry;
3108
3109	while (start < end) {
3110		if (entry == &map->header)
3111			return (FALSE);
3112		/*
3113		 * No holes allowed!
3114		 */
3115		if (start < entry->start)
3116			return (FALSE);
3117		/*
3118		 * Check protection associated with entry.
3119		 */
3120		if ((entry->protection & protection) != protection)
3121			return (FALSE);
3122		/* go to next entry */
3123		start = entry->end;
3124		entry = entry->next;
3125	}
3126	return (TRUE);
3127}
3128
3129/*
3130 *	vm_map_copy_entry:
3131 *
3132 *	Copies the contents of the source entry to the destination
3133 *	entry.  The entries *must* be aligned properly.
3134 */
3135static void
3136vm_map_copy_entry(
3137	vm_map_t src_map,
3138	vm_map_t dst_map,
3139	vm_map_entry_t src_entry,
3140	vm_map_entry_t dst_entry,
3141	vm_ooffset_t *fork_charge)
3142{
3143	vm_object_t src_object;
3144	vm_map_entry_t fake_entry;
3145	vm_offset_t size;
3146	struct ucred *cred;
3147	int charged;
3148
3149	VM_MAP_ASSERT_LOCKED(dst_map);
3150
3151	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3152		return;
3153
3154	if (src_entry->wired_count == 0 ||
3155	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3156		/*
3157		 * If the source entry is marked needs_copy, it is already
3158		 * write-protected.
3159		 */
3160		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3161		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3162			pmap_protect(src_map->pmap,
3163			    src_entry->start,
3164			    src_entry->end,
3165			    src_entry->protection & ~VM_PROT_WRITE);
3166		}
3167
3168		/*
3169		 * Make a copy of the object.
3170		 */
3171		size = src_entry->end - src_entry->start;
3172		if ((src_object = src_entry->object.vm_object) != NULL) {
3173			VM_OBJECT_WLOCK(src_object);
3174			charged = ENTRY_CHARGED(src_entry);
3175			if (src_object->handle == NULL &&
3176			    (src_object->type == OBJT_DEFAULT ||
3177			    src_object->type == OBJT_SWAP)) {
3178				vm_object_collapse(src_object);
3179				if ((src_object->flags & (OBJ_NOSPLIT |
3180				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3181					vm_object_split(src_entry);
3182					src_object =
3183					    src_entry->object.vm_object;
3184				}
3185			}
3186			vm_object_reference_locked(src_object);
3187			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3188			if (src_entry->cred != NULL &&
3189			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3190				KASSERT(src_object->cred == NULL,
3191				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3192				     src_object));
3193				src_object->cred = src_entry->cred;
3194				src_object->charge = size;
3195			}
3196			VM_OBJECT_WUNLOCK(src_object);
3197			dst_entry->object.vm_object = src_object;
3198			if (charged) {
3199				cred = curthread->td_ucred;
3200				crhold(cred);
3201				dst_entry->cred = cred;
3202				*fork_charge += size;
3203				if (!(src_entry->eflags &
3204				      MAP_ENTRY_NEEDS_COPY)) {
3205					crhold(cred);
3206					src_entry->cred = cred;
3207					*fork_charge += size;
3208				}
3209			}
3210			src_entry->eflags |= MAP_ENTRY_COW |
3211			    MAP_ENTRY_NEEDS_COPY;
3212			dst_entry->eflags |= MAP_ENTRY_COW |
3213			    MAP_ENTRY_NEEDS_COPY;
3214			dst_entry->offset = src_entry->offset;
3215			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3216				/*
3217				 * MAP_ENTRY_VN_WRITECNT cannot
3218				 * indicate write reference from
3219				 * src_entry, since the entry is
3220				 * marked as needs copy.  Allocate a
3221				 * fake entry that is used to
3222				 * decrement object->un_pager.vnp.writecount
3223				 * at the appropriate time.  Attach
3224				 * fake_entry to the deferred list.
3225				 */
3226				fake_entry = vm_map_entry_create(dst_map);
3227				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3228				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3229				vm_object_reference(src_object);
3230				fake_entry->object.vm_object = src_object;
3231				fake_entry->start = src_entry->start;
3232				fake_entry->end = src_entry->end;
3233				fake_entry->next = curthread->td_map_def_user;
3234				curthread->td_map_def_user = fake_entry;
3235			}
3236
3237			pmap_copy(dst_map->pmap, src_map->pmap,
3238			    dst_entry->start, dst_entry->end - dst_entry->start,
3239			    src_entry->start);
3240		} else {
3241			dst_entry->object.vm_object = NULL;
3242			dst_entry->offset = 0;
3243			if (src_entry->cred != NULL) {
3244				dst_entry->cred = curthread->td_ucred;
3245				crhold(dst_entry->cred);
3246				*fork_charge += size;
3247			}
3248		}
3249	} else {
3250		/*
3251		 * We don't want to make writeable wired pages copy-on-write.
3252		 * Immediately copy these pages into the new map by simulating
3253		 * page faults.  The new pages are pageable.
3254		 */
3255		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3256		    fork_charge);
3257	}
3258}
3259
3260/*
3261 * vmspace_map_entry_forked:
3262 * Update the newly-forked vmspace each time a map entry is inherited
3263 * or copied.  The values for vm_dsize and vm_tsize are approximate
3264 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3265 */
3266static void
3267vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3268    vm_map_entry_t entry)
3269{
3270	vm_size_t entrysize;
3271	vm_offset_t newend;
3272
3273	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3274		return;
3275	entrysize = entry->end - entry->start;
3276	vm2->vm_map.size += entrysize;
3277	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3278		vm2->vm_ssize += btoc(entrysize);
3279	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3280	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3281		newend = MIN(entry->end,
3282		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3283		vm2->vm_dsize += btoc(newend - entry->start);
3284	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3285	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3286		newend = MIN(entry->end,
3287		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3288		vm2->vm_tsize += btoc(newend - entry->start);
3289	}
3290}
3291
3292/*
3293 * vmspace_fork:
3294 * Create a new process vmspace structure and vm_map
3295 * based on those of an existing process.  The new map
3296 * is based on the old map, according to the inheritance
3297 * values on the regions in that map.
3298 *
3299 * XXX It might be worth coalescing the entries added to the new vmspace.
3300 *
3301 * The source map must not be locked.
3302 */
3303struct vmspace *
3304vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3305{
3306	struct vmspace *vm2;
3307	vm_map_t new_map, old_map;
3308	vm_map_entry_t new_entry, old_entry;
3309	vm_object_t object;
3310	int locked;
3311	vm_inherit_t inh;
3312
3313	old_map = &vm1->vm_map;
3314	/* Copy immutable fields of vm1 to vm2. */
3315	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3316	if (vm2 == NULL)
3317		return (NULL);
3318	vm2->vm_taddr = vm1->vm_taddr;
3319	vm2->vm_daddr = vm1->vm_daddr;
3320	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3321	vm_map_lock(old_map);
3322	if (old_map->busy)
3323		vm_map_wait_busy(old_map);
3324	new_map = &vm2->vm_map;
3325	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3326	KASSERT(locked, ("vmspace_fork: lock failed"));
3327
3328	old_entry = old_map->header.next;
3329
3330	while (old_entry != &old_map->header) {
3331		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3332			panic("vm_map_fork: encountered a submap");
3333
3334		inh = old_entry->inheritance;
3335		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3336		    inh != VM_INHERIT_NONE)
3337			inh = VM_INHERIT_COPY;
3338
3339		switch (inh) {
3340		case VM_INHERIT_NONE:
3341			break;
3342
3343		case VM_INHERIT_SHARE:
3344			/*
3345			 * Clone the entry, creating the shared object if necessary.
3346			 */
3347			object = old_entry->object.vm_object;
3348			if (object == NULL) {
3349				object = vm_object_allocate(OBJT_DEFAULT,
3350					atop(old_entry->end - old_entry->start));
3351				old_entry->object.vm_object = object;
3352				old_entry->offset = 0;
3353				if (old_entry->cred != NULL) {
3354					object->cred = old_entry->cred;
3355					object->charge = old_entry->end -
3356					    old_entry->start;
3357					old_entry->cred = NULL;
3358				}
3359			}
3360
3361			/*
3362			 * Add the reference before calling vm_object_shadow
3363			 * to insure that a shadow object is created.
3364			 */
3365			vm_object_reference(object);
3366			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3367				vm_object_shadow(&old_entry->object.vm_object,
3368				    &old_entry->offset,
3369				    old_entry->end - old_entry->start);
3370				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3371				/* Transfer the second reference too. */
3372				vm_object_reference(
3373				    old_entry->object.vm_object);
3374
3375				/*
3376				 * As in vm_map_simplify_entry(), the
3377				 * vnode lock will not be acquired in
3378				 * this call to vm_object_deallocate().
3379				 */
3380				vm_object_deallocate(object);
3381				object = old_entry->object.vm_object;
3382			}
3383			VM_OBJECT_WLOCK(object);
3384			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3385			if (old_entry->cred != NULL) {
3386				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3387				object->cred = old_entry->cred;
3388				object->charge = old_entry->end - old_entry->start;
3389				old_entry->cred = NULL;
3390			}
3391
3392			/*
3393			 * Assert the correct state of the vnode
3394			 * v_writecount while the object is locked, to
3395			 * not relock it later for the assertion
3396			 * correctness.
3397			 */
3398			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3399			    object->type == OBJT_VNODE) {
3400				KASSERT(((struct vnode *)object->handle)->
3401				    v_writecount > 0,
3402				    ("vmspace_fork: v_writecount %p", object));
3403				KASSERT(object->un_pager.vnp.writemappings > 0,
3404				    ("vmspace_fork: vnp.writecount %p",
3405				    object));
3406			}
3407			VM_OBJECT_WUNLOCK(object);
3408
3409			/*
3410			 * Clone the entry, referencing the shared object.
3411			 */
3412			new_entry = vm_map_entry_create(new_map);
3413			*new_entry = *old_entry;
3414			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3415			    MAP_ENTRY_IN_TRANSITION);
3416			new_entry->wiring_thread = NULL;
3417			new_entry->wired_count = 0;
3418			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3419				vnode_pager_update_writecount(object,
3420				    new_entry->start, new_entry->end);
3421			}
3422
3423			/*
3424			 * Insert the entry into the new map -- we know we're
3425			 * inserting at the end of the new map.
3426			 */
3427			vm_map_entry_link(new_map, new_map->header.prev,
3428			    new_entry);
3429			vmspace_map_entry_forked(vm1, vm2, new_entry);
3430
3431			/*
3432			 * Update the physical map
3433			 */
3434			pmap_copy(new_map->pmap, old_map->pmap,
3435			    new_entry->start,
3436			    (old_entry->end - old_entry->start),
3437			    old_entry->start);
3438			break;
3439
3440		case VM_INHERIT_COPY:
3441			/*
3442			 * Clone the entry and link into the map.
3443			 */
3444			new_entry = vm_map_entry_create(new_map);
3445			*new_entry = *old_entry;
3446			/*
3447			 * Copied entry is COW over the old object.
3448			 */
3449			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3450			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3451			new_entry->wiring_thread = NULL;
3452			new_entry->wired_count = 0;
3453			new_entry->object.vm_object = NULL;
3454			new_entry->cred = NULL;
3455			vm_map_entry_link(new_map, new_map->header.prev,
3456			    new_entry);
3457			vmspace_map_entry_forked(vm1, vm2, new_entry);
3458			vm_map_copy_entry(old_map, new_map, old_entry,
3459			    new_entry, fork_charge);
3460			break;
3461
3462		case VM_INHERIT_ZERO:
3463			/*
3464			 * Create a new anonymous mapping entry modelled from
3465			 * the old one.
3466			 */
3467			new_entry = vm_map_entry_create(new_map);
3468			memset(new_entry, 0, sizeof(*new_entry));
3469
3470			new_entry->start = old_entry->start;
3471			new_entry->end = old_entry->end;
3472			new_entry->eflags = old_entry->eflags &
3473			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3474			    MAP_ENTRY_VN_WRITECNT);
3475			new_entry->protection = old_entry->protection;
3476			new_entry->max_protection = old_entry->max_protection;
3477			new_entry->inheritance = VM_INHERIT_ZERO;
3478
3479			vm_map_entry_link(new_map, new_map->header.prev,
3480			    new_entry);
3481			vmspace_map_entry_forked(vm1, vm2, new_entry);
3482
3483			new_entry->cred = curthread->td_ucred;
3484			crhold(new_entry->cred);
3485			*fork_charge += (new_entry->end - new_entry->start);
3486
3487			break;
3488		}
3489		old_entry = old_entry->next;
3490	}
3491	/*
3492	 * Use inlined vm_map_unlock() to postpone handling the deferred
3493	 * map entries, which cannot be done until both old_map and
3494	 * new_map locks are released.
3495	 */
3496	sx_xunlock(&old_map->lock);
3497	sx_xunlock(&new_map->lock);
3498	vm_map_process_deferred();
3499
3500	return (vm2);
3501}
3502
3503/*
3504 * Create a process's stack for exec_new_vmspace().  This function is never
3505 * asked to wire the newly created stack.
3506 */
3507int
3508vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3509    vm_prot_t prot, vm_prot_t max, int cow)
3510{
3511	vm_size_t growsize, init_ssize;
3512	rlim_t vmemlim;
3513	int rv;
3514
3515	MPASS((map->flags & MAP_WIREFUTURE) == 0);
3516	growsize = sgrowsiz;
3517	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3518	vm_map_lock(map);
3519	PROC_LOCK(curproc);
3520	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3521	PROC_UNLOCK(curproc);
3522	/* If we would blow our VMEM resource limit, no go */
3523	if (map->size + init_ssize > vmemlim) {
3524		rv = KERN_NO_SPACE;
3525		goto out;
3526	}
3527	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3528	    max, cow);
3529out:
3530	vm_map_unlock(map);
3531	return (rv);
3532}
3533
3534static int stack_guard_page = 1;
3535SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3536    &stack_guard_page, 0,
3537    "Specifies the number of guard pages for a stack that grows");
3538
3539static int
3540vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3541    vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3542{
3543	vm_map_entry_t new_entry, prev_entry;
3544	vm_offset_t bot, gap_bot, gap_top, top;
3545	vm_size_t init_ssize, sgp;
3546	int orient, rv;
3547
3548	/*
3549	 * The stack orientation is piggybacked with the cow argument.
3550	 * Extract it into orient and mask the cow argument so that we
3551	 * don't pass it around further.
3552	 */
3553	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3554	KASSERT(orient != 0, ("No stack grow direction"));
3555	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3556	    ("bi-dir stack"));
3557
3558	if (addrbos < vm_map_min(map) ||
3559	    addrbos + max_ssize > vm_map_max(map) ||
3560	    addrbos + max_ssize <= addrbos)
3561		return (KERN_INVALID_ADDRESS);
3562	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3563	if (sgp >= max_ssize)
3564		return (KERN_INVALID_ARGUMENT);
3565
3566	init_ssize = growsize;
3567	if (max_ssize < init_ssize + sgp)
3568		init_ssize = max_ssize - sgp;
3569
3570	/* If addr is already mapped, no go */
3571	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3572		return (KERN_NO_SPACE);
3573
3574	/*
3575	 * If we can't accomodate max_ssize in the current mapping, no go.
3576	 */
3577	if ((prev_entry->next != &map->header) &&
3578	    (prev_entry->next->start < addrbos + max_ssize))
3579		return (KERN_NO_SPACE);
3580
3581	/*
3582	 * We initially map a stack of only init_ssize.  We will grow as
3583	 * needed later.  Depending on the orientation of the stack (i.e.
3584	 * the grow direction) we either map at the top of the range, the
3585	 * bottom of the range or in the middle.
3586	 *
3587	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3588	 * and cow to be 0.  Possibly we should eliminate these as input
3589	 * parameters, and just pass these values here in the insert call.
3590	 */
3591	if (orient == MAP_STACK_GROWS_DOWN) {
3592		bot = addrbos + max_ssize - init_ssize;
3593		top = bot + init_ssize;
3594		gap_bot = addrbos;
3595		gap_top = bot;
3596	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
3597		bot = addrbos;
3598		top = bot + init_ssize;
3599		gap_bot = top;
3600		gap_top = addrbos + max_ssize;
3601	}
3602	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3603	if (rv != KERN_SUCCESS)
3604		return (rv);
3605	new_entry = prev_entry->next;
3606	KASSERT(new_entry->end == top || new_entry->start == bot,
3607	    ("Bad entry start/end for new stack entry"));
3608	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3609	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3610	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3611	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3612	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3613	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3614	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3615	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3616	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3617	if (rv != KERN_SUCCESS)
3618		(void)vm_map_delete(map, bot, top);
3619	return (rv);
3620}
3621
3622/*
3623 * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3624 * successfully grow the stack.
3625 */
3626static int
3627vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3628{
3629	vm_map_entry_t stack_entry;
3630	struct proc *p;
3631	struct vmspace *vm;
3632	struct ucred *cred;
3633	vm_offset_t gap_end, gap_start, grow_start;
3634	size_t grow_amount, guard, max_grow;
3635	rlim_t lmemlim, stacklim, vmemlim;
3636	int rv, rv1;
3637	bool gap_deleted, grow_down, is_procstack;
3638#ifdef notyet
3639	uint64_t limit;
3640#endif
3641#ifdef RACCT
3642	int error;
3643#endif
3644
3645	p = curproc;
3646	vm = p->p_vmspace;
3647
3648	/*
3649	 * Disallow stack growth when the access is performed by a
3650	 * debugger or AIO daemon.  The reason is that the wrong
3651	 * resource limits are applied.
3652	 */
3653	if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3654		return (KERN_FAILURE);
3655
3656	MPASS(!map->system_map);
3657
3658	guard = stack_guard_page * PAGE_SIZE;
3659	PROC_LOCK(p);
3660	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3661	stacklim = lim_cur(p, RLIMIT_STACK);
3662	vmemlim = lim_cur(p, RLIMIT_VMEM);
3663	PROC_UNLOCK(p);
3664retry:
3665	/* If addr is not in a hole for a stack grow area, no need to grow. */
3666	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3667		return (KERN_FAILURE);
3668	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3669		return (KERN_SUCCESS);
3670	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3671		stack_entry = gap_entry->next;
3672		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3673		    stack_entry->start != gap_entry->end)
3674			return (KERN_FAILURE);
3675		grow_amount = round_page(stack_entry->start - addr);
3676		grow_down = true;
3677	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3678		stack_entry = gap_entry->prev;
3679		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3680		    stack_entry->end != gap_entry->start)
3681			return (KERN_FAILURE);
3682		grow_amount = round_page(addr + 1 - stack_entry->end);
3683		grow_down = false;
3684	} else {
3685		return (KERN_FAILURE);
3686	}
3687	max_grow = gap_entry->end - gap_entry->start;
3688	if (guard > max_grow)
3689		return (KERN_NO_SPACE);
3690	max_grow -= guard;
3691	if (grow_amount > max_grow)
3692		return (KERN_NO_SPACE);
3693
3694	/*
3695	 * If this is the main process stack, see if we're over the stack
3696	 * limit.
3697	 */
3698	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3699	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3700	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3701		return (KERN_NO_SPACE);
3702
3703#ifdef RACCT
3704	if (racct_enable) {
3705		PROC_LOCK(p);
3706		if (is_procstack && racct_set(p, RACCT_STACK,
3707		    ctob(vm->vm_ssize) + grow_amount)) {
3708			PROC_UNLOCK(p);
3709			return (KERN_NO_SPACE);
3710		}
3711		PROC_UNLOCK(p);
3712	}
3713#endif
3714
3715	grow_amount = roundup(grow_amount, sgrowsiz);
3716	if (grow_amount > max_grow)
3717		grow_amount = max_grow;
3718	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3719		grow_amount = trunc_page((vm_size_t)stacklim) -
3720		    ctob(vm->vm_ssize);
3721	}
3722
3723#ifdef notyet
3724	PROC_LOCK(p);
3725	limit = racct_get_available(p, RACCT_STACK);
3726	PROC_UNLOCK(p);
3727	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3728		grow_amount = limit - ctob(vm->vm_ssize);
3729#endif
3730
3731	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3732		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3733			rv = KERN_NO_SPACE;
3734			goto out;
3735		}
3736#ifdef RACCT
3737		if (racct_enable) {
3738			PROC_LOCK(p);
3739			if (racct_set(p, RACCT_MEMLOCK,
3740			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3741				PROC_UNLOCK(p);
3742				rv = KERN_NO_SPACE;
3743				goto out;
3744			}
3745			PROC_UNLOCK(p);
3746		}
3747#endif
3748	}
3749
3750	/* If we would blow our VMEM resource limit, no go */
3751	if (map->size + grow_amount > vmemlim) {
3752		rv = KERN_NO_SPACE;
3753		goto out;
3754	}
3755#ifdef RACCT
3756	if (racct_enable) {
3757		PROC_LOCK(p);
3758		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3759			PROC_UNLOCK(p);
3760			rv = KERN_NO_SPACE;
3761			goto out;
3762		}
3763		PROC_UNLOCK(p);
3764	}
3765#endif
3766
3767	if (vm_map_lock_upgrade(map)) {
3768		gap_entry = NULL;
3769		vm_map_lock_read(map);
3770		goto retry;
3771	}
3772
3773	if (grow_down) {
3774		grow_start = gap_entry->end - grow_amount;
3775		if (gap_entry->start + grow_amount == gap_entry->end) {
3776			gap_start = gap_entry->start;
3777			gap_end = gap_entry->end;
3778			vm_map_entry_delete(map, gap_entry);
3779			gap_deleted = true;
3780		} else {
3781			MPASS(gap_entry->start < gap_entry->end - grow_amount);
3782			gap_entry->end -= grow_amount;
3783			vm_map_entry_resize_free(map, gap_entry);
3784			gap_deleted = false;
3785		}
3786		rv = vm_map_insert(map, NULL, 0, grow_start,
3787		    grow_start + grow_amount,
3788		    stack_entry->protection, stack_entry->max_protection,
3789		    MAP_STACK_GROWS_DOWN);
3790		if (rv != KERN_SUCCESS) {
3791			if (gap_deleted) {
3792				rv1 = vm_map_insert(map, NULL, 0, gap_start,
3793				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
3794				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3795				MPASS(rv1 == KERN_SUCCESS);
3796			} else {
3797				gap_entry->end += grow_amount;
3798				vm_map_entry_resize_free(map, gap_entry);
3799			}
3800		}
3801	} else {
3802		grow_start = stack_entry->end;
3803		cred = stack_entry->cred;
3804		if (cred == NULL && stack_entry->object.vm_object != NULL)
3805			cred = stack_entry->object.vm_object->cred;
3806		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3807			rv = KERN_NO_SPACE;
3808		/* Grow the underlying object if applicable. */
3809		else if (stack_entry->object.vm_object == NULL ||
3810		    vm_object_coalesce(stack_entry->object.vm_object,
3811		    stack_entry->offset,
3812		    (vm_size_t)(stack_entry->end - stack_entry->start),
3813		    (vm_size_t)grow_amount, cred != NULL)) {
3814			if (gap_entry->start + grow_amount == gap_entry->end)
3815				vm_map_entry_delete(map, gap_entry);
3816			else
3817				gap_entry->start += grow_amount;
3818			stack_entry->end += grow_amount;
3819			map->size += grow_amount;
3820			vm_map_entry_resize_free(map, stack_entry);
3821			rv = KERN_SUCCESS;
3822		} else
3823			rv = KERN_FAILURE;
3824	}
3825	if (rv == KERN_SUCCESS && is_procstack)
3826		vm->vm_ssize += btoc(grow_amount);
3827
3828	/*
3829	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3830	 */
3831	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3832		vm_map_unlock(map);
3833		vm_map_wire(map, grow_start, grow_start + grow_amount,
3834		    (p->p_flag & P_SYSTEM)
3835		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3836		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3837		vm_map_lock_read(map);
3838	} else
3839		vm_map_lock_downgrade(map);
3840
3841out:
3842#ifdef RACCT
3843	if (racct_enable && rv != KERN_SUCCESS) {
3844		PROC_LOCK(p);
3845		error = racct_set(p, RACCT_VMEM, map->size);
3846		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3847		if (!old_mlock) {
3848			error = racct_set(p, RACCT_MEMLOCK,
3849			    ptoa(pmap_wired_count(map->pmap)));
3850			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3851		}
3852	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3853		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3854		PROC_UNLOCK(p);
3855	}
3856#endif
3857
3858	return (rv);
3859}
3860
3861/*
3862 * Unshare the specified VM space for exec.  If other processes are
3863 * mapped to it, then create a new one.  The new vmspace is null.
3864 */
3865int
3866vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3867{
3868	struct vmspace *oldvmspace = p->p_vmspace;
3869	struct vmspace *newvmspace;
3870
3871	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3872	    ("vmspace_exec recursed"));
3873	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3874	if (newvmspace == NULL)
3875		return (ENOMEM);
3876	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3877	/*
3878	 * This code is written like this for prototype purposes.  The
3879	 * goal is to avoid running down the vmspace here, but let the
3880	 * other process's that are still using the vmspace to finally
3881	 * run it down.  Even though there is little or no chance of blocking
3882	 * here, it is a good idea to keep this form for future mods.
3883	 */
3884	PROC_VMSPACE_LOCK(p);
3885	p->p_vmspace = newvmspace;
3886	PROC_VMSPACE_UNLOCK(p);
3887	if (p == curthread->td_proc)
3888		pmap_activate(curthread);
3889	curthread->td_pflags |= TDP_EXECVMSPC;
3890	return (0);
3891}
3892
3893/*
3894 * Unshare the specified VM space for forcing COW.  This
3895 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3896 */
3897int
3898vmspace_unshare(struct proc *p)
3899{
3900	struct vmspace *oldvmspace = p->p_vmspace;
3901	struct vmspace *newvmspace;
3902	vm_ooffset_t fork_charge;
3903
3904	if (oldvmspace->vm_refcnt == 1)
3905		return (0);
3906	fork_charge = 0;
3907	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3908	if (newvmspace == NULL)
3909		return (ENOMEM);
3910	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3911		vmspace_free(newvmspace);
3912		return (ENOMEM);
3913	}
3914	PROC_VMSPACE_LOCK(p);
3915	p->p_vmspace = newvmspace;
3916	PROC_VMSPACE_UNLOCK(p);
3917	if (p == curthread->td_proc)
3918		pmap_activate(curthread);
3919	vmspace_free(oldvmspace);
3920	return (0);
3921}
3922
3923/*
3924 *	vm_map_lookup:
3925 *
3926 *	Finds the VM object, offset, and
3927 *	protection for a given virtual address in the
3928 *	specified map, assuming a page fault of the
3929 *	type specified.
3930 *
3931 *	Leaves the map in question locked for read; return
3932 *	values are guaranteed until a vm_map_lookup_done
3933 *	call is performed.  Note that the map argument
3934 *	is in/out; the returned map must be used in
3935 *	the call to vm_map_lookup_done.
3936 *
3937 *	A handle (out_entry) is returned for use in
3938 *	vm_map_lookup_done, to make that fast.
3939 *
3940 *	If a lookup is requested with "write protection"
3941 *	specified, the map may be changed to perform virtual
3942 *	copying operations, although the data referenced will
3943 *	remain the same.
3944 */
3945int
3946vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3947	      vm_offset_t vaddr,
3948	      vm_prot_t fault_typea,
3949	      vm_map_entry_t *out_entry,	/* OUT */
3950	      vm_object_t *object,		/* OUT */
3951	      vm_pindex_t *pindex,		/* OUT */
3952	      vm_prot_t *out_prot,		/* OUT */
3953	      boolean_t *wired)			/* OUT */
3954{
3955	vm_map_entry_t entry;
3956	vm_map_t map = *var_map;
3957	vm_prot_t prot;
3958	vm_prot_t fault_type = fault_typea;
3959	vm_object_t eobject;
3960	vm_size_t size;
3961	struct ucred *cred;
3962
3963RetryLookup:
3964
3965	vm_map_lock_read(map);
3966
3967RetryLookupLocked:
3968	/*
3969	 * Lookup the faulting address.
3970	 */
3971	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3972		vm_map_unlock_read(map);
3973		return (KERN_INVALID_ADDRESS);
3974	}
3975
3976	entry = *out_entry;
3977
3978	/*
3979	 * Handle submaps.
3980	 */
3981	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3982		vm_map_t old_map = map;
3983
3984		*var_map = map = entry->object.sub_map;
3985		vm_map_unlock_read(old_map);
3986		goto RetryLookup;
3987	}
3988
3989	/*
3990	 * Check whether this task is allowed to have this page.
3991	 */
3992	prot = entry->protection;
3993	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
3994		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
3995		if (prot == VM_PROT_NONE && map != kernel_map &&
3996		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3997		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
3998		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
3999		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4000			goto RetryLookupLocked;
4001	}
4002	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4003	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4004		vm_map_unlock_read(map);
4005		return (KERN_PROTECTION_FAILURE);
4006	}
4007	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4008	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4009	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4010	    ("entry %p flags %x", entry, entry->eflags));
4011	if ((fault_typea & VM_PROT_COPY) != 0 &&
4012	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4013	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4014		vm_map_unlock_read(map);
4015		return (KERN_PROTECTION_FAILURE);
4016	}
4017
4018	/*
4019	 * If this page is not pageable, we have to get it for all possible
4020	 * accesses.
4021	 */
4022	*wired = (entry->wired_count != 0);
4023	if (*wired)
4024		fault_type = entry->protection;
4025	size = entry->end - entry->start;
4026	/*
4027	 * If the entry was copy-on-write, we either ...
4028	 */
4029	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4030		/*
4031		 * If we want to write the page, we may as well handle that
4032		 * now since we've got the map locked.
4033		 *
4034		 * If we don't need to write the page, we just demote the
4035		 * permissions allowed.
4036		 */
4037		if ((fault_type & VM_PROT_WRITE) != 0 ||
4038		    (fault_typea & VM_PROT_COPY) != 0) {
4039			/*
4040			 * Make a new object, and place it in the object
4041			 * chain.  Note that no new references have appeared
4042			 * -- one just moved from the map to the new
4043			 * object.
4044			 */
4045			if (vm_map_lock_upgrade(map))
4046				goto RetryLookup;
4047
4048			if (entry->cred == NULL) {
4049				/*
4050				 * The debugger owner is charged for
4051				 * the memory.
4052				 */
4053				cred = curthread->td_ucred;
4054				crhold(cred);
4055				if (!swap_reserve_by_cred(size, cred)) {
4056					crfree(cred);
4057					vm_map_unlock(map);
4058					return (KERN_RESOURCE_SHORTAGE);
4059				}
4060				entry->cred = cred;
4061			}
4062			vm_object_shadow(&entry->object.vm_object,
4063			    &entry->offset, size);
4064			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4065			eobject = entry->object.vm_object;
4066			if (eobject->cred != NULL) {
4067				/*
4068				 * The object was not shadowed.
4069				 */
4070				swap_release_by_cred(size, entry->cred);
4071				crfree(entry->cred);
4072				entry->cred = NULL;
4073			} else if (entry->cred != NULL) {
4074				VM_OBJECT_WLOCK(eobject);
4075				eobject->cred = entry->cred;
4076				eobject->charge = size;
4077				VM_OBJECT_WUNLOCK(eobject);
4078				entry->cred = NULL;
4079			}
4080
4081			vm_map_lock_downgrade(map);
4082		} else {
4083			/*
4084			 * We're attempting to read a copy-on-write page --
4085			 * don't allow writes.
4086			 */
4087			prot &= ~VM_PROT_WRITE;
4088		}
4089	}
4090
4091	/*
4092	 * Create an object if necessary.
4093	 */
4094	if (entry->object.vm_object == NULL &&
4095	    !map->system_map) {
4096		if (vm_map_lock_upgrade(map))
4097			goto RetryLookup;
4098		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4099		    atop(size));
4100		entry->offset = 0;
4101		if (entry->cred != NULL) {
4102			VM_OBJECT_WLOCK(entry->object.vm_object);
4103			entry->object.vm_object->cred = entry->cred;
4104			entry->object.vm_object->charge = size;
4105			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4106			entry->cred = NULL;
4107		}
4108		vm_map_lock_downgrade(map);
4109	}
4110
4111	/*
4112	 * Return the object/offset from this entry.  If the entry was
4113	 * copy-on-write or empty, it has been fixed up.
4114	 */
4115	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4116	*object = entry->object.vm_object;
4117
4118	*out_prot = prot;
4119	return (KERN_SUCCESS);
4120}
4121
4122/*
4123 *	vm_map_lookup_locked:
4124 *
4125 *	Lookup the faulting address.  A version of vm_map_lookup that returns
4126 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4127 */
4128int
4129vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4130		     vm_offset_t vaddr,
4131		     vm_prot_t fault_typea,
4132		     vm_map_entry_t *out_entry,	/* OUT */
4133		     vm_object_t *object,	/* OUT */
4134		     vm_pindex_t *pindex,	/* OUT */
4135		     vm_prot_t *out_prot,	/* OUT */
4136		     boolean_t *wired)		/* OUT */
4137{
4138	vm_map_entry_t entry;
4139	vm_map_t map = *var_map;
4140	vm_prot_t prot;
4141	vm_prot_t fault_type = fault_typea;
4142
4143	/*
4144	 * Lookup the faulting address.
4145	 */
4146	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4147		return (KERN_INVALID_ADDRESS);
4148
4149	entry = *out_entry;
4150
4151	/*
4152	 * Fail if the entry refers to a submap.
4153	 */
4154	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4155		return (KERN_FAILURE);
4156
4157	/*
4158	 * Check whether this task is allowed to have this page.
4159	 */
4160	prot = entry->protection;
4161	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4162	if ((fault_type & prot) != fault_type)
4163		return (KERN_PROTECTION_FAILURE);
4164
4165	/*
4166	 * If this page is not pageable, we have to get it for all possible
4167	 * accesses.
4168	 */
4169	*wired = (entry->wired_count != 0);
4170	if (*wired)
4171		fault_type = entry->protection;
4172
4173	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4174		/*
4175		 * Fail if the entry was copy-on-write for a write fault.
4176		 */
4177		if (fault_type & VM_PROT_WRITE)
4178			return (KERN_FAILURE);
4179		/*
4180		 * We're attempting to read a copy-on-write page --
4181		 * don't allow writes.
4182		 */
4183		prot &= ~VM_PROT_WRITE;
4184	}
4185
4186	/*
4187	 * Fail if an object should be created.
4188	 */
4189	if (entry->object.vm_object == NULL && !map->system_map)
4190		return (KERN_FAILURE);
4191
4192	/*
4193	 * Return the object/offset from this entry.  If the entry was
4194	 * copy-on-write or empty, it has been fixed up.
4195	 */
4196	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4197	*object = entry->object.vm_object;
4198
4199	*out_prot = prot;
4200	return (KERN_SUCCESS);
4201}
4202
4203/*
4204 *	vm_map_lookup_done:
4205 *
4206 *	Releases locks acquired by a vm_map_lookup
4207 *	(according to the handle returned by that lookup).
4208 */
4209void
4210vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4211{
4212	/*
4213	 * Unlock the main-level map
4214	 */
4215	vm_map_unlock_read(map);
4216}
4217
4218#include "opt_ddb.h"
4219#ifdef DDB
4220#include <sys/kernel.h>
4221
4222#include <ddb/ddb.h>
4223
4224static void
4225vm_map_print(vm_map_t map)
4226{
4227	vm_map_entry_t entry;
4228
4229	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4230	    (void *)map,
4231	    (void *)map->pmap, map->nentries, map->timestamp);
4232
4233	db_indent += 2;
4234	for (entry = map->header.next; entry != &map->header;
4235	    entry = entry->next) {
4236		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4237		    (void *)entry, (void *)entry->start, (void *)entry->end,
4238		    entry->eflags);
4239		{
4240			static char *inheritance_name[4] =
4241			{"share", "copy", "none", "donate_copy"};
4242
4243			db_iprintf(" prot=%x/%x/%s",
4244			    entry->protection,
4245			    entry->max_protection,
4246			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4247			if (entry->wired_count != 0)
4248				db_printf(", wired");
4249		}
4250		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4251			db_printf(", share=%p, offset=0x%jx\n",
4252			    (void *)entry->object.sub_map,
4253			    (uintmax_t)entry->offset);
4254			if ((entry->prev == &map->header) ||
4255			    (entry->prev->object.sub_map !=
4256				entry->object.sub_map)) {
4257				db_indent += 2;
4258				vm_map_print((vm_map_t)entry->object.sub_map);
4259				db_indent -= 2;
4260			}
4261		} else {
4262			if (entry->cred != NULL)
4263				db_printf(", ruid %d", entry->cred->cr_ruid);
4264			db_printf(", object=%p, offset=0x%jx",
4265			    (void *)entry->object.vm_object,
4266			    (uintmax_t)entry->offset);
4267			if (entry->object.vm_object && entry->object.vm_object->cred)
4268				db_printf(", obj ruid %d charge %jx",
4269				    entry->object.vm_object->cred->cr_ruid,
4270				    (uintmax_t)entry->object.vm_object->charge);
4271			if (entry->eflags & MAP_ENTRY_COW)
4272				db_printf(", copy (%s)",
4273				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4274			db_printf("\n");
4275
4276			if ((entry->prev == &map->header) ||
4277			    (entry->prev->object.vm_object !=
4278				entry->object.vm_object)) {
4279				db_indent += 2;
4280				vm_object_print((db_expr_t)(intptr_t)
4281						entry->object.vm_object,
4282						0, 0, (char *)0);
4283				db_indent -= 2;
4284			}
4285		}
4286	}
4287	db_indent -= 2;
4288}
4289
4290DB_SHOW_COMMAND(map, map)
4291{
4292
4293	if (!have_addr) {
4294		db_printf("usage: show map <addr>\n");
4295		return;
4296	}
4297	vm_map_print((vm_map_t)addr);
4298}
4299
4300DB_SHOW_COMMAND(procvm, procvm)
4301{
4302	struct proc *p;
4303
4304	if (have_addr) {
4305		p = db_lookup_proc(addr);
4306	} else {
4307		p = curproc;
4308	}
4309
4310	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4311	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4312	    (void *)vmspace_pmap(p->p_vmspace));
4313
4314	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4315}
4316
4317#endif /* DDB */
4318