vm_map.c revision 320435
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_map.c 320435 2017-06-28 04:53:06Z kib $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136#ifdef INVARIANTS
137static void vm_map_zdtor(void *mem, int size, void *arg);
138static void vmspace_zdtor(void *mem, int size, void *arg);
139#endif
140static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141    vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142    int cow);
143static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144    vm_offset_t failed_addr);
145
146#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
147    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
148     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
149
150/*
151 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
152 * stable.
153 */
154#define PROC_VMSPACE_LOCK(p) do { } while (0)
155#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
156
157/*
158 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
159 *
160 *	Asserts that the starting and ending region
161 *	addresses fall within the valid range of the map.
162 */
163#define	VM_MAP_RANGE_CHECK(map, start, end)		\
164		{					\
165		if (start < vm_map_min(map))		\
166			start = vm_map_min(map);	\
167		if (end > vm_map_max(map))		\
168			end = vm_map_max(map);		\
169		if (start > end)			\
170			start = end;			\
171		}
172
173/*
174 *	vm_map_startup:
175 *
176 *	Initialize the vm_map module.  Must be called before
177 *	any other vm_map routines.
178 *
179 *	Map and entry structures are allocated from the general
180 *	purpose memory pool with some exceptions:
181 *
182 *	- The kernel map and kmem submap are allocated statically.
183 *	- Kernel map entries are allocated out of a static pool.
184 *
185 *	These restrictions are necessary since malloc() uses the
186 *	maps and requires map entries.
187 */
188
189void
190vm_map_startup(void)
191{
192	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
193	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
194#ifdef INVARIANTS
195	    vm_map_zdtor,
196#else
197	    NULL,
198#endif
199	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200	uma_prealloc(mapzone, MAX_KMAP);
201	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
202	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
203	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
204	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
205	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
206	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
207#ifdef INVARIANTS
208	    vmspace_zdtor,
209#else
210	    NULL,
211#endif
212	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
213}
214
215static int
216vmspace_zinit(void *mem, int size, int flags)
217{
218	struct vmspace *vm;
219
220	vm = (struct vmspace *)mem;
221
222	vm->vm_map.pmap = NULL;
223	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
224	PMAP_LOCK_INIT(vmspace_pmap(vm));
225	return (0);
226}
227
228static int
229vm_map_zinit(void *mem, int size, int flags)
230{
231	vm_map_t map;
232
233	map = (vm_map_t)mem;
234	memset(map, 0, sizeof(*map));
235	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
236	sx_init(&map->lock, "vm map (user)");
237	return (0);
238}
239
240#ifdef INVARIANTS
241static void
242vmspace_zdtor(void *mem, int size, void *arg)
243{
244	struct vmspace *vm;
245
246	vm = (struct vmspace *)mem;
247
248	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
249}
250static void
251vm_map_zdtor(void *mem, int size, void *arg)
252{
253	vm_map_t map;
254
255	map = (vm_map_t)mem;
256	KASSERT(map->nentries == 0,
257	    ("map %p nentries == %d on free.",
258	    map, map->nentries));
259	KASSERT(map->size == 0,
260	    ("map %p size == %lu on free.",
261	    map, (unsigned long)map->size));
262}
263#endif	/* INVARIANTS */
264
265/*
266 * Allocate a vmspace structure, including a vm_map and pmap,
267 * and initialize those structures.  The refcnt is set to 1.
268 *
269 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
270 */
271struct vmspace *
272vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
273{
274	struct vmspace *vm;
275
276	vm = uma_zalloc(vmspace_zone, M_WAITOK);
277
278	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
279
280	if (pinit == NULL)
281		pinit = &pmap_pinit;
282
283	if (!pinit(vmspace_pmap(vm))) {
284		uma_zfree(vmspace_zone, vm);
285		return (NULL);
286	}
287	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
288	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
289	vm->vm_refcnt = 1;
290	vm->vm_shm = NULL;
291	vm->vm_swrss = 0;
292	vm->vm_tsize = 0;
293	vm->vm_dsize = 0;
294	vm->vm_ssize = 0;
295	vm->vm_taddr = 0;
296	vm->vm_daddr = 0;
297	vm->vm_maxsaddr = 0;
298	return (vm);
299}
300
301#ifdef RACCT
302static void
303vmspace_container_reset(struct proc *p)
304{
305
306	PROC_LOCK(p);
307	racct_set(p, RACCT_DATA, 0);
308	racct_set(p, RACCT_STACK, 0);
309	racct_set(p, RACCT_RSS, 0);
310	racct_set(p, RACCT_MEMLOCK, 0);
311	racct_set(p, RACCT_VMEM, 0);
312	PROC_UNLOCK(p);
313}
314#endif
315
316static inline void
317vmspace_dofree(struct vmspace *vm)
318{
319
320	CTR1(KTR_VM, "vmspace_free: %p", vm);
321
322	/*
323	 * Make sure any SysV shm is freed, it might not have been in
324	 * exit1().
325	 */
326	shmexit(vm);
327
328	/*
329	 * Lock the map, to wait out all other references to it.
330	 * Delete all of the mappings and pages they hold, then call
331	 * the pmap module to reclaim anything left.
332	 */
333	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
334	    vm->vm_map.max_offset);
335
336	pmap_release(vmspace_pmap(vm));
337	vm->vm_map.pmap = NULL;
338	uma_zfree(vmspace_zone, vm);
339}
340
341void
342vmspace_free(struct vmspace *vm)
343{
344
345	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
346	    "vmspace_free() called with non-sleepable lock held");
347
348	if (vm->vm_refcnt == 0)
349		panic("vmspace_free: attempt to free already freed vmspace");
350
351	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
352		vmspace_dofree(vm);
353}
354
355void
356vmspace_exitfree(struct proc *p)
357{
358	struct vmspace *vm;
359
360	PROC_VMSPACE_LOCK(p);
361	vm = p->p_vmspace;
362	p->p_vmspace = NULL;
363	PROC_VMSPACE_UNLOCK(p);
364	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
365	vmspace_free(vm);
366}
367
368void
369vmspace_exit(struct thread *td)
370{
371	int refcnt;
372	struct vmspace *vm;
373	struct proc *p;
374
375	/*
376	 * Release user portion of address space.
377	 * This releases references to vnodes,
378	 * which could cause I/O if the file has been unlinked.
379	 * Need to do this early enough that we can still sleep.
380	 *
381	 * The last exiting process to reach this point releases as
382	 * much of the environment as it can. vmspace_dofree() is the
383	 * slower fallback in case another process had a temporary
384	 * reference to the vmspace.
385	 */
386
387	p = td->td_proc;
388	vm = p->p_vmspace;
389	atomic_add_int(&vmspace0.vm_refcnt, 1);
390	do {
391		refcnt = vm->vm_refcnt;
392		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
393			/* Switch now since other proc might free vmspace */
394			PROC_VMSPACE_LOCK(p);
395			p->p_vmspace = &vmspace0;
396			PROC_VMSPACE_UNLOCK(p);
397			pmap_activate(td);
398		}
399	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
400	if (refcnt == 1) {
401		if (p->p_vmspace != vm) {
402			/* vmspace not yet freed, switch back */
403			PROC_VMSPACE_LOCK(p);
404			p->p_vmspace = vm;
405			PROC_VMSPACE_UNLOCK(p);
406			pmap_activate(td);
407		}
408		pmap_remove_pages(vmspace_pmap(vm));
409		/* Switch now since this proc will free vmspace */
410		PROC_VMSPACE_LOCK(p);
411		p->p_vmspace = &vmspace0;
412		PROC_VMSPACE_UNLOCK(p);
413		pmap_activate(td);
414		vmspace_dofree(vm);
415	}
416#ifdef RACCT
417	if (racct_enable)
418		vmspace_container_reset(p);
419#endif
420}
421
422/* Acquire reference to vmspace owned by another process. */
423
424struct vmspace *
425vmspace_acquire_ref(struct proc *p)
426{
427	struct vmspace *vm;
428	int refcnt;
429
430	PROC_VMSPACE_LOCK(p);
431	vm = p->p_vmspace;
432	if (vm == NULL) {
433		PROC_VMSPACE_UNLOCK(p);
434		return (NULL);
435	}
436	do {
437		refcnt = vm->vm_refcnt;
438		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
439			PROC_VMSPACE_UNLOCK(p);
440			return (NULL);
441		}
442	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
443	if (vm != p->p_vmspace) {
444		PROC_VMSPACE_UNLOCK(p);
445		vmspace_free(vm);
446		return (NULL);
447	}
448	PROC_VMSPACE_UNLOCK(p);
449	return (vm);
450}
451
452void
453_vm_map_lock(vm_map_t map, const char *file, int line)
454{
455
456	if (map->system_map)
457		mtx_lock_flags_(&map->system_mtx, 0, file, line);
458	else
459		sx_xlock_(&map->lock, file, line);
460	map->timestamp++;
461}
462
463static void
464vm_map_process_deferred(void)
465{
466	struct thread *td;
467	vm_map_entry_t entry, next;
468	vm_object_t object;
469
470	td = curthread;
471	entry = td->td_map_def_user;
472	td->td_map_def_user = NULL;
473	while (entry != NULL) {
474		next = entry->next;
475		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
476			/*
477			 * Decrement the object's writemappings and
478			 * possibly the vnode's v_writecount.
479			 */
480			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
481			    ("Submap with writecount"));
482			object = entry->object.vm_object;
483			KASSERT(object != NULL, ("No object for writecount"));
484			vnode_pager_release_writecount(object, entry->start,
485			    entry->end);
486		}
487		vm_map_entry_deallocate(entry, FALSE);
488		entry = next;
489	}
490}
491
492void
493_vm_map_unlock(vm_map_t map, const char *file, int line)
494{
495
496	if (map->system_map)
497		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
498	else {
499		sx_xunlock_(&map->lock, file, line);
500		vm_map_process_deferred();
501	}
502}
503
504void
505_vm_map_lock_read(vm_map_t map, const char *file, int line)
506{
507
508	if (map->system_map)
509		mtx_lock_flags_(&map->system_mtx, 0, file, line);
510	else
511		sx_slock_(&map->lock, file, line);
512}
513
514void
515_vm_map_unlock_read(vm_map_t map, const char *file, int line)
516{
517
518	if (map->system_map)
519		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
520	else {
521		sx_sunlock_(&map->lock, file, line);
522		vm_map_process_deferred();
523	}
524}
525
526int
527_vm_map_trylock(vm_map_t map, const char *file, int line)
528{
529	int error;
530
531	error = map->system_map ?
532	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
533	    !sx_try_xlock_(&map->lock, file, line);
534	if (error == 0)
535		map->timestamp++;
536	return (error == 0);
537}
538
539int
540_vm_map_trylock_read(vm_map_t map, const char *file, int line)
541{
542	int error;
543
544	error = map->system_map ?
545	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
546	    !sx_try_slock_(&map->lock, file, line);
547	return (error == 0);
548}
549
550/*
551 *	_vm_map_lock_upgrade:	[ internal use only ]
552 *
553 *	Tries to upgrade a read (shared) lock on the specified map to a write
554 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
555 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
556 *	returned without a read or write lock held.
557 *
558 *	Requires that the map be read locked.
559 */
560int
561_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
562{
563	unsigned int last_timestamp;
564
565	if (map->system_map) {
566		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
567	} else {
568		if (!sx_try_upgrade_(&map->lock, file, line)) {
569			last_timestamp = map->timestamp;
570			sx_sunlock_(&map->lock, file, line);
571			vm_map_process_deferred();
572			/*
573			 * If the map's timestamp does not change while the
574			 * map is unlocked, then the upgrade succeeds.
575			 */
576			sx_xlock_(&map->lock, file, line);
577			if (last_timestamp != map->timestamp) {
578				sx_xunlock_(&map->lock, file, line);
579				return (1);
580			}
581		}
582	}
583	map->timestamp++;
584	return (0);
585}
586
587void
588_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
589{
590
591	if (map->system_map) {
592		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
593	} else
594		sx_downgrade_(&map->lock, file, line);
595}
596
597/*
598 *	vm_map_locked:
599 *
600 *	Returns a non-zero value if the caller holds a write (exclusive) lock
601 *	on the specified map and the value "0" otherwise.
602 */
603int
604vm_map_locked(vm_map_t map)
605{
606
607	if (map->system_map)
608		return (mtx_owned(&map->system_mtx));
609	else
610		return (sx_xlocked(&map->lock));
611}
612
613#ifdef INVARIANTS
614static void
615_vm_map_assert_locked(vm_map_t map, const char *file, int line)
616{
617
618	if (map->system_map)
619		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
620	else
621		sx_assert_(&map->lock, SA_XLOCKED, file, line);
622}
623
624#define	VM_MAP_ASSERT_LOCKED(map) \
625    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
626#else
627#define	VM_MAP_ASSERT_LOCKED(map)
628#endif
629
630/*
631 *	_vm_map_unlock_and_wait:
632 *
633 *	Atomically releases the lock on the specified map and puts the calling
634 *	thread to sleep.  The calling thread will remain asleep until either
635 *	vm_map_wakeup() is performed on the map or the specified timeout is
636 *	exceeded.
637 *
638 *	WARNING!  This function does not perform deferred deallocations of
639 *	objects and map	entries.  Therefore, the calling thread is expected to
640 *	reacquire the map lock after reawakening and later perform an ordinary
641 *	unlock operation, such as vm_map_unlock(), before completing its
642 *	operation on the map.
643 */
644int
645_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
646{
647
648	mtx_lock(&map_sleep_mtx);
649	if (map->system_map)
650		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
651	else
652		sx_xunlock_(&map->lock, file, line);
653	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
654	    timo));
655}
656
657/*
658 *	vm_map_wakeup:
659 *
660 *	Awaken any threads that have slept on the map using
661 *	vm_map_unlock_and_wait().
662 */
663void
664vm_map_wakeup(vm_map_t map)
665{
666
667	/*
668	 * Acquire and release map_sleep_mtx to prevent a wakeup()
669	 * from being performed (and lost) between the map unlock
670	 * and the msleep() in _vm_map_unlock_and_wait().
671	 */
672	mtx_lock(&map_sleep_mtx);
673	mtx_unlock(&map_sleep_mtx);
674	wakeup(&map->root);
675}
676
677void
678vm_map_busy(vm_map_t map)
679{
680
681	VM_MAP_ASSERT_LOCKED(map);
682	map->busy++;
683}
684
685void
686vm_map_unbusy(vm_map_t map)
687{
688
689	VM_MAP_ASSERT_LOCKED(map);
690	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
691	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
692		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
693		wakeup(&map->busy);
694	}
695}
696
697void
698vm_map_wait_busy(vm_map_t map)
699{
700
701	VM_MAP_ASSERT_LOCKED(map);
702	while (map->busy) {
703		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
704		if (map->system_map)
705			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
706		else
707			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
708	}
709	map->timestamp++;
710}
711
712long
713vmspace_resident_count(struct vmspace *vmspace)
714{
715	return pmap_resident_count(vmspace_pmap(vmspace));
716}
717
718/*
719 *	vm_map_create:
720 *
721 *	Creates and returns a new empty VM map with
722 *	the given physical map structure, and having
723 *	the given lower and upper address bounds.
724 */
725vm_map_t
726vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
727{
728	vm_map_t result;
729
730	result = uma_zalloc(mapzone, M_WAITOK);
731	CTR1(KTR_VM, "vm_map_create: %p", result);
732	_vm_map_init(result, pmap, min, max);
733	return (result);
734}
735
736/*
737 * Initialize an existing vm_map structure
738 * such as that in the vmspace structure.
739 */
740static void
741_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
742{
743
744	map->header.next = map->header.prev = &map->header;
745	map->needs_wakeup = FALSE;
746	map->system_map = 0;
747	map->pmap = pmap;
748	map->min_offset = min;
749	map->max_offset = max;
750	map->flags = 0;
751	map->root = NULL;
752	map->timestamp = 0;
753	map->busy = 0;
754}
755
756void
757vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
758{
759
760	_vm_map_init(map, pmap, min, max);
761	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
762	sx_init(&map->lock, "user map");
763}
764
765/*
766 *	vm_map_entry_dispose:	[ internal use only ]
767 *
768 *	Inverse of vm_map_entry_create.
769 */
770static void
771vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
772{
773	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
774}
775
776/*
777 *	vm_map_entry_create:	[ internal use only ]
778 *
779 *	Allocates a VM map entry for insertion.
780 *	No entry fields are filled in.
781 */
782static vm_map_entry_t
783vm_map_entry_create(vm_map_t map)
784{
785	vm_map_entry_t new_entry;
786
787	if (map->system_map)
788		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
789	else
790		new_entry = uma_zalloc(mapentzone, M_WAITOK);
791	if (new_entry == NULL)
792		panic("vm_map_entry_create: kernel resources exhausted");
793	return (new_entry);
794}
795
796/*
797 *	vm_map_entry_set_behavior:
798 *
799 *	Set the expected access behavior, either normal, random, or
800 *	sequential.
801 */
802static inline void
803vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
804{
805	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
806	    (behavior & MAP_ENTRY_BEHAV_MASK);
807}
808
809/*
810 *	vm_map_entry_set_max_free:
811 *
812 *	Set the max_free field in a vm_map_entry.
813 */
814static inline void
815vm_map_entry_set_max_free(vm_map_entry_t entry)
816{
817
818	entry->max_free = entry->adj_free;
819	if (entry->left != NULL && entry->left->max_free > entry->max_free)
820		entry->max_free = entry->left->max_free;
821	if (entry->right != NULL && entry->right->max_free > entry->max_free)
822		entry->max_free = entry->right->max_free;
823}
824
825/*
826 *	vm_map_entry_splay:
827 *
828 *	The Sleator and Tarjan top-down splay algorithm with the
829 *	following variation.  Max_free must be computed bottom-up, so
830 *	on the downward pass, maintain the left and right spines in
831 *	reverse order.  Then, make a second pass up each side to fix
832 *	the pointers and compute max_free.  The time bound is O(log n)
833 *	amortized.
834 *
835 *	The new root is the vm_map_entry containing "addr", or else an
836 *	adjacent entry (lower or higher) if addr is not in the tree.
837 *
838 *	The map must be locked, and leaves it so.
839 *
840 *	Returns: the new root.
841 */
842static vm_map_entry_t
843vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
844{
845	vm_map_entry_t llist, rlist;
846	vm_map_entry_t ltree, rtree;
847	vm_map_entry_t y;
848
849	/* Special case of empty tree. */
850	if (root == NULL)
851		return (root);
852
853	/*
854	 * Pass One: Splay down the tree until we find addr or a NULL
855	 * pointer where addr would go.  llist and rlist are the two
856	 * sides in reverse order (bottom-up), with llist linked by
857	 * the right pointer and rlist linked by the left pointer in
858	 * the vm_map_entry.  Wait until Pass Two to set max_free on
859	 * the two spines.
860	 */
861	llist = NULL;
862	rlist = NULL;
863	for (;;) {
864		/* root is never NULL in here. */
865		if (addr < root->start) {
866			y = root->left;
867			if (y == NULL)
868				break;
869			if (addr < y->start && y->left != NULL) {
870				/* Rotate right and put y on rlist. */
871				root->left = y->right;
872				y->right = root;
873				vm_map_entry_set_max_free(root);
874				root = y->left;
875				y->left = rlist;
876				rlist = y;
877			} else {
878				/* Put root on rlist. */
879				root->left = rlist;
880				rlist = root;
881				root = y;
882			}
883		} else if (addr >= root->end) {
884			y = root->right;
885			if (y == NULL)
886				break;
887			if (addr >= y->end && y->right != NULL) {
888				/* Rotate left and put y on llist. */
889				root->right = y->left;
890				y->left = root;
891				vm_map_entry_set_max_free(root);
892				root = y->right;
893				y->right = llist;
894				llist = y;
895			} else {
896				/* Put root on llist. */
897				root->right = llist;
898				llist = root;
899				root = y;
900			}
901		} else
902			break;
903	}
904
905	/*
906	 * Pass Two: Walk back up the two spines, flip the pointers
907	 * and set max_free.  The subtrees of the root go at the
908	 * bottom of llist and rlist.
909	 */
910	ltree = root->left;
911	while (llist != NULL) {
912		y = llist->right;
913		llist->right = ltree;
914		vm_map_entry_set_max_free(llist);
915		ltree = llist;
916		llist = y;
917	}
918	rtree = root->right;
919	while (rlist != NULL) {
920		y = rlist->left;
921		rlist->left = rtree;
922		vm_map_entry_set_max_free(rlist);
923		rtree = rlist;
924		rlist = y;
925	}
926
927	/*
928	 * Final assembly: add ltree and rtree as subtrees of root.
929	 */
930	root->left = ltree;
931	root->right = rtree;
932	vm_map_entry_set_max_free(root);
933
934	return (root);
935}
936
937/*
938 *	vm_map_entry_{un,}link:
939 *
940 *	Insert/remove entries from maps.
941 */
942static void
943vm_map_entry_link(vm_map_t map,
944		  vm_map_entry_t after_where,
945		  vm_map_entry_t entry)
946{
947
948	CTR4(KTR_VM,
949	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
950	    map->nentries, entry, after_where);
951	VM_MAP_ASSERT_LOCKED(map);
952	KASSERT(after_where == &map->header ||
953	    after_where->end <= entry->start,
954	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
955	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
956	KASSERT(after_where->next == &map->header ||
957	    entry->end <= after_where->next->start,
958	    ("vm_map_entry_link: new end %jx next start %jx overlap",
959	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
960
961	map->nentries++;
962	entry->prev = after_where;
963	entry->next = after_where->next;
964	entry->next->prev = entry;
965	after_where->next = entry;
966
967	if (after_where != &map->header) {
968		if (after_where != map->root)
969			vm_map_entry_splay(after_where->start, map->root);
970		entry->right = after_where->right;
971		entry->left = after_where;
972		after_where->right = NULL;
973		after_where->adj_free = entry->start - after_where->end;
974		vm_map_entry_set_max_free(after_where);
975	} else {
976		entry->right = map->root;
977		entry->left = NULL;
978	}
979	entry->adj_free = (entry->next == &map->header ? map->max_offset :
980	    entry->next->start) - entry->end;
981	vm_map_entry_set_max_free(entry);
982	map->root = entry;
983}
984
985static void
986vm_map_entry_unlink(vm_map_t map,
987		    vm_map_entry_t entry)
988{
989	vm_map_entry_t next, prev, root;
990
991	VM_MAP_ASSERT_LOCKED(map);
992	if (entry != map->root)
993		vm_map_entry_splay(entry->start, map->root);
994	if (entry->left == NULL)
995		root = entry->right;
996	else {
997		root = vm_map_entry_splay(entry->start, entry->left);
998		root->right = entry->right;
999		root->adj_free = (entry->next == &map->header ? map->max_offset :
1000		    entry->next->start) - root->end;
1001		vm_map_entry_set_max_free(root);
1002	}
1003	map->root = root;
1004
1005	prev = entry->prev;
1006	next = entry->next;
1007	next->prev = prev;
1008	prev->next = next;
1009	map->nentries--;
1010	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1011	    map->nentries, entry);
1012}
1013
1014/*
1015 *	vm_map_entry_resize_free:
1016 *
1017 *	Recompute the amount of free space following a vm_map_entry
1018 *	and propagate that value up the tree.  Call this function after
1019 *	resizing a map entry in-place, that is, without a call to
1020 *	vm_map_entry_link() or _unlink().
1021 *
1022 *	The map must be locked, and leaves it so.
1023 */
1024static void
1025vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1026{
1027
1028	/*
1029	 * Using splay trees without parent pointers, propagating
1030	 * max_free up the tree is done by moving the entry to the
1031	 * root and making the change there.
1032	 */
1033	if (entry != map->root)
1034		map->root = vm_map_entry_splay(entry->start, map->root);
1035
1036	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1037	    entry->next->start) - entry->end;
1038	vm_map_entry_set_max_free(entry);
1039}
1040
1041/*
1042 *	vm_map_lookup_entry:	[ internal use only ]
1043 *
1044 *	Finds the map entry containing (or
1045 *	immediately preceding) the specified address
1046 *	in the given map; the entry is returned
1047 *	in the "entry" parameter.  The boolean
1048 *	result indicates whether the address is
1049 *	actually contained in the map.
1050 */
1051boolean_t
1052vm_map_lookup_entry(
1053	vm_map_t map,
1054	vm_offset_t address,
1055	vm_map_entry_t *entry)	/* OUT */
1056{
1057	vm_map_entry_t cur;
1058	boolean_t locked;
1059
1060	/*
1061	 * If the map is empty, then the map entry immediately preceding
1062	 * "address" is the map's header.
1063	 */
1064	cur = map->root;
1065	if (cur == NULL)
1066		*entry = &map->header;
1067	else if (address >= cur->start && cur->end > address) {
1068		*entry = cur;
1069		return (TRUE);
1070	} else if ((locked = vm_map_locked(map)) ||
1071	    sx_try_upgrade(&map->lock)) {
1072		/*
1073		 * Splay requires a write lock on the map.  However, it only
1074		 * restructures the binary search tree; it does not otherwise
1075		 * change the map.  Thus, the map's timestamp need not change
1076		 * on a temporary upgrade.
1077		 */
1078		map->root = cur = vm_map_entry_splay(address, cur);
1079		if (!locked)
1080			sx_downgrade(&map->lock);
1081
1082		/*
1083		 * If "address" is contained within a map entry, the new root
1084		 * is that map entry.  Otherwise, the new root is a map entry
1085		 * immediately before or after "address".
1086		 */
1087		if (address >= cur->start) {
1088			*entry = cur;
1089			if (cur->end > address)
1090				return (TRUE);
1091		} else
1092			*entry = cur->prev;
1093	} else
1094		/*
1095		 * Since the map is only locked for read access, perform a
1096		 * standard binary search tree lookup for "address".
1097		 */
1098		for (;;) {
1099			if (address < cur->start) {
1100				if (cur->left == NULL) {
1101					*entry = cur->prev;
1102					break;
1103				}
1104				cur = cur->left;
1105			} else if (cur->end > address) {
1106				*entry = cur;
1107				return (TRUE);
1108			} else {
1109				if (cur->right == NULL) {
1110					*entry = cur;
1111					break;
1112				}
1113				cur = cur->right;
1114			}
1115		}
1116	return (FALSE);
1117}
1118
1119/*
1120 *	vm_map_insert:
1121 *
1122 *	Inserts the given whole VM object into the target
1123 *	map at the specified address range.  The object's
1124 *	size should match that of the address range.
1125 *
1126 *	Requires that the map be locked, and leaves it so.
1127 *
1128 *	If object is non-NULL, ref count must be bumped by caller
1129 *	prior to making call to account for the new entry.
1130 */
1131int
1132vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1133    vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1134{
1135	vm_map_entry_t new_entry, prev_entry, temp_entry;
1136	struct ucred *cred;
1137	vm_eflags_t protoeflags;
1138	vm_inherit_t inheritance;
1139
1140	VM_MAP_ASSERT_LOCKED(map);
1141	KASSERT((object != kmem_object && object != kernel_object) ||
1142	    (cow & MAP_COPY_ON_WRITE) == 0,
1143	    ("vm_map_insert: kmem or kernel object and COW"));
1144	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1145	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1146	KASSERT((prot & ~max) == 0,
1147	    ("prot %#x is not subset of max_prot %#x", prot, max));
1148
1149	/*
1150	 * Check that the start and end points are not bogus.
1151	 */
1152	if (start < map->min_offset || end > map->max_offset || start >= end)
1153		return (KERN_INVALID_ADDRESS);
1154
1155	/*
1156	 * Find the entry prior to the proposed starting address; if it's part
1157	 * of an existing entry, this range is bogus.
1158	 */
1159	if (vm_map_lookup_entry(map, start, &temp_entry))
1160		return (KERN_NO_SPACE);
1161
1162	prev_entry = temp_entry;
1163
1164	/*
1165	 * Assert that the next entry doesn't overlap the end point.
1166	 */
1167	if (prev_entry->next != &map->header && prev_entry->next->start < end)
1168		return (KERN_NO_SPACE);
1169
1170	protoeflags = 0;
1171	if (cow & MAP_COPY_ON_WRITE)
1172		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1173	if (cow & MAP_NOFAULT)
1174		protoeflags |= MAP_ENTRY_NOFAULT;
1175	if (cow & MAP_DISABLE_SYNCER)
1176		protoeflags |= MAP_ENTRY_NOSYNC;
1177	if (cow & MAP_DISABLE_COREDUMP)
1178		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1179	if (cow & MAP_STACK_GROWS_DOWN)
1180		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1181	if (cow & MAP_STACK_GROWS_UP)
1182		protoeflags |= MAP_ENTRY_GROWS_UP;
1183	if (cow & MAP_VN_WRITECOUNT)
1184		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1185	if (cow & MAP_INHERIT_SHARE)
1186		inheritance = VM_INHERIT_SHARE;
1187	else
1188		inheritance = VM_INHERIT_DEFAULT;
1189
1190	cred = NULL;
1191	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1192		goto charged;
1193	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1194	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1195		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1196			return (KERN_RESOURCE_SHORTAGE);
1197		KASSERT(object == NULL ||
1198		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1199		    object->cred == NULL,
1200		    ("overcommit: vm_map_insert o %p", object));
1201		cred = curthread->td_ucred;
1202	}
1203
1204charged:
1205	/* Expand the kernel pmap, if necessary. */
1206	if (map == kernel_map && end > kernel_vm_end)
1207		pmap_growkernel(end);
1208	if (object != NULL) {
1209		/*
1210		 * OBJ_ONEMAPPING must be cleared unless this mapping
1211		 * is trivially proven to be the only mapping for any
1212		 * of the object's pages.  (Object granularity
1213		 * reference counting is insufficient to recognize
1214		 * aliases with precision.)
1215		 */
1216		VM_OBJECT_WLOCK(object);
1217		if (object->ref_count > 1 || object->shadow_count != 0)
1218			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1219		VM_OBJECT_WUNLOCK(object);
1220	} else if (prev_entry != &map->header &&
1221	    prev_entry->eflags == protoeflags &&
1222	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1223	    prev_entry->end == start && prev_entry->wired_count == 0 &&
1224	    (prev_entry->cred == cred ||
1225	    (prev_entry->object.vm_object != NULL &&
1226	    prev_entry->object.vm_object->cred == cred)) &&
1227	    vm_object_coalesce(prev_entry->object.vm_object,
1228	    prev_entry->offset,
1229	    (vm_size_t)(prev_entry->end - prev_entry->start),
1230	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1231	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1232		/*
1233		 * We were able to extend the object.  Determine if we
1234		 * can extend the previous map entry to include the
1235		 * new range as well.
1236		 */
1237		if (prev_entry->inheritance == inheritance &&
1238		    prev_entry->protection == prot &&
1239		    prev_entry->max_protection == max) {
1240			map->size += end - prev_entry->end;
1241			prev_entry->end = end;
1242			vm_map_entry_resize_free(map, prev_entry);
1243			vm_map_simplify_entry(map, prev_entry);
1244			return (KERN_SUCCESS);
1245		}
1246
1247		/*
1248		 * If we can extend the object but cannot extend the
1249		 * map entry, we have to create a new map entry.  We
1250		 * must bump the ref count on the extended object to
1251		 * account for it.  object may be NULL.
1252		 */
1253		object = prev_entry->object.vm_object;
1254		offset = prev_entry->offset +
1255		    (prev_entry->end - prev_entry->start);
1256		vm_object_reference(object);
1257		if (cred != NULL && object != NULL && object->cred != NULL &&
1258		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1259			/* Object already accounts for this uid. */
1260			cred = NULL;
1261		}
1262	}
1263	if (cred != NULL)
1264		crhold(cred);
1265
1266	/*
1267	 * Create a new entry
1268	 */
1269	new_entry = vm_map_entry_create(map);
1270	new_entry->start = start;
1271	new_entry->end = end;
1272	new_entry->cred = NULL;
1273
1274	new_entry->eflags = protoeflags;
1275	new_entry->object.vm_object = object;
1276	new_entry->offset = offset;
1277	new_entry->avail_ssize = 0;
1278
1279	new_entry->inheritance = inheritance;
1280	new_entry->protection = prot;
1281	new_entry->max_protection = max;
1282	new_entry->wired_count = 0;
1283	new_entry->wiring_thread = NULL;
1284	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1285	new_entry->next_read = OFF_TO_IDX(offset);
1286
1287	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1288	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1289	new_entry->cred = cred;
1290
1291	/*
1292	 * Insert the new entry into the list
1293	 */
1294	vm_map_entry_link(map, prev_entry, new_entry);
1295	map->size += new_entry->end - new_entry->start;
1296
1297	/*
1298	 * Try to coalesce the new entry with both the previous and next
1299	 * entries in the list.  Previously, we only attempted to coalesce
1300	 * with the previous entry when object is NULL.  Here, we handle the
1301	 * other cases, which are less common.
1302	 */
1303	vm_map_simplify_entry(map, new_entry);
1304
1305	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1306		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1307		    end - start, cow & MAP_PREFAULT_PARTIAL);
1308	}
1309
1310	return (KERN_SUCCESS);
1311}
1312
1313/*
1314 *	vm_map_findspace:
1315 *
1316 *	Find the first fit (lowest VM address) for "length" free bytes
1317 *	beginning at address >= start in the given map.
1318 *
1319 *	In a vm_map_entry, "adj_free" is the amount of free space
1320 *	adjacent (higher address) to this entry, and "max_free" is the
1321 *	maximum amount of contiguous free space in its subtree.  This
1322 *	allows finding a free region in one path down the tree, so
1323 *	O(log n) amortized with splay trees.
1324 *
1325 *	The map must be locked, and leaves it so.
1326 *
1327 *	Returns: 0 on success, and starting address in *addr,
1328 *		 1 if insufficient space.
1329 */
1330int
1331vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1332    vm_offset_t *addr)	/* OUT */
1333{
1334	vm_map_entry_t entry;
1335	vm_offset_t st;
1336
1337	/*
1338	 * Request must fit within min/max VM address and must avoid
1339	 * address wrap.
1340	 */
1341	if (start < map->min_offset)
1342		start = map->min_offset;
1343	if (start + length > map->max_offset || start + length < start)
1344		return (1);
1345
1346	/* Empty tree means wide open address space. */
1347	if (map->root == NULL) {
1348		*addr = start;
1349		return (0);
1350	}
1351
1352	/*
1353	 * After splay, if start comes before root node, then there
1354	 * must be a gap from start to the root.
1355	 */
1356	map->root = vm_map_entry_splay(start, map->root);
1357	if (start + length <= map->root->start) {
1358		*addr = start;
1359		return (0);
1360	}
1361
1362	/*
1363	 * Root is the last node that might begin its gap before
1364	 * start, and this is the last comparison where address
1365	 * wrap might be a problem.
1366	 */
1367	st = (start > map->root->end) ? start : map->root->end;
1368	if (length <= map->root->end + map->root->adj_free - st) {
1369		*addr = st;
1370		return (0);
1371	}
1372
1373	/* With max_free, can immediately tell if no solution. */
1374	entry = map->root->right;
1375	if (entry == NULL || length > entry->max_free)
1376		return (1);
1377
1378	/*
1379	 * Search the right subtree in the order: left subtree, root,
1380	 * right subtree (first fit).  The previous splay implies that
1381	 * all regions in the right subtree have addresses > start.
1382	 */
1383	while (entry != NULL) {
1384		if (entry->left != NULL && entry->left->max_free >= length)
1385			entry = entry->left;
1386		else if (entry->adj_free >= length) {
1387			*addr = entry->end;
1388			return (0);
1389		} else
1390			entry = entry->right;
1391	}
1392
1393	/* Can't get here, so panic if we do. */
1394	panic("vm_map_findspace: max_free corrupt");
1395}
1396
1397int
1398vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1399    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1400    vm_prot_t max, int cow)
1401{
1402	vm_offset_t end;
1403	int result;
1404
1405	end = start + length;
1406	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1407	    object == NULL,
1408	    ("vm_map_fixed: non-NULL backing object for stack"));
1409	vm_map_lock(map);
1410	VM_MAP_RANGE_CHECK(map, start, end);
1411	if ((cow & MAP_CHECK_EXCL) == 0)
1412		vm_map_delete(map, start, end);
1413	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1414		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1415		    prot, max, cow);
1416	} else {
1417		result = vm_map_insert(map, object, offset, start, end,
1418		    prot, max, cow);
1419	}
1420	vm_map_unlock(map);
1421	return (result);
1422}
1423
1424/*
1425 *	vm_map_find finds an unallocated region in the target address
1426 *	map with the given length.  The search is defined to be
1427 *	first-fit from the specified address; the region found is
1428 *	returned in the same parameter.
1429 *
1430 *	If object is non-NULL, ref count must be bumped by caller
1431 *	prior to making call to account for the new entry.
1432 */
1433int
1434vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1435	    vm_offset_t *addr,	/* IN/OUT */
1436	    vm_size_t length, vm_offset_t max_addr, int find_space,
1437	    vm_prot_t prot, vm_prot_t max, int cow)
1438{
1439	vm_offset_t alignment, initial_addr, start;
1440	int result;
1441
1442	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1443	    object == NULL,
1444	    ("vm_map_find: non-NULL backing object for stack"));
1445	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1446	    (object->flags & OBJ_COLORED) == 0))
1447		find_space = VMFS_ANY_SPACE;
1448	if (find_space >> 8 != 0) {
1449		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1450		alignment = (vm_offset_t)1 << (find_space >> 8);
1451	} else
1452		alignment = 0;
1453	initial_addr = *addr;
1454again:
1455	start = initial_addr;
1456	vm_map_lock(map);
1457	do {
1458		if (find_space != VMFS_NO_SPACE) {
1459			if (vm_map_findspace(map, start, length, addr) ||
1460			    (max_addr != 0 && *addr + length > max_addr)) {
1461				vm_map_unlock(map);
1462				if (find_space == VMFS_OPTIMAL_SPACE) {
1463					find_space = VMFS_ANY_SPACE;
1464					goto again;
1465				}
1466				return (KERN_NO_SPACE);
1467			}
1468			switch (find_space) {
1469			case VMFS_SUPER_SPACE:
1470			case VMFS_OPTIMAL_SPACE:
1471				pmap_align_superpage(object, offset, addr,
1472				    length);
1473				break;
1474			case VMFS_ANY_SPACE:
1475				break;
1476			default:
1477				if ((*addr & (alignment - 1)) != 0) {
1478					*addr &= ~(alignment - 1);
1479					*addr += alignment;
1480				}
1481				break;
1482			}
1483
1484			start = *addr;
1485		}
1486		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1487			result = vm_map_stack_locked(map, start, length,
1488			    sgrowsiz, prot, max, cow);
1489		} else {
1490			result = vm_map_insert(map, object, offset, start,
1491			    start + length, prot, max, cow);
1492		}
1493	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1494	    find_space != VMFS_ANY_SPACE);
1495	vm_map_unlock(map);
1496	return (result);
1497}
1498
1499/*
1500 *	vm_map_simplify_entry:
1501 *
1502 *	Simplify the given map entry by merging with either neighbor.  This
1503 *	routine also has the ability to merge with both neighbors.
1504 *
1505 *	The map must be locked.
1506 *
1507 *	This routine guarentees that the passed entry remains valid (though
1508 *	possibly extended).  When merging, this routine may delete one or
1509 *	both neighbors.
1510 */
1511void
1512vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1513{
1514	vm_map_entry_t next, prev;
1515	vm_size_t prevsize, esize;
1516
1517	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1518	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1519		return;
1520
1521	prev = entry->prev;
1522	if (prev != &map->header) {
1523		prevsize = prev->end - prev->start;
1524		if ( (prev->end == entry->start) &&
1525		     (prev->object.vm_object == entry->object.vm_object) &&
1526		     (!prev->object.vm_object ||
1527			(prev->offset + prevsize == entry->offset)) &&
1528		     (prev->eflags == entry->eflags) &&
1529		     (prev->protection == entry->protection) &&
1530		     (prev->max_protection == entry->max_protection) &&
1531		     (prev->inheritance == entry->inheritance) &&
1532		     (prev->wired_count == entry->wired_count) &&
1533		     (prev->cred == entry->cred)) {
1534			vm_map_entry_unlink(map, prev);
1535			entry->start = prev->start;
1536			entry->offset = prev->offset;
1537			if (entry->prev != &map->header)
1538				vm_map_entry_resize_free(map, entry->prev);
1539
1540			/*
1541			 * If the backing object is a vnode object,
1542			 * vm_object_deallocate() calls vrele().
1543			 * However, vrele() does not lock the vnode
1544			 * because the vnode has additional
1545			 * references.  Thus, the map lock can be kept
1546			 * without causing a lock-order reversal with
1547			 * the vnode lock.
1548			 *
1549			 * Since we count the number of virtual page
1550			 * mappings in object->un_pager.vnp.writemappings,
1551			 * the writemappings value should not be adjusted
1552			 * when the entry is disposed of.
1553			 */
1554			if (prev->object.vm_object)
1555				vm_object_deallocate(prev->object.vm_object);
1556			if (prev->cred != NULL)
1557				crfree(prev->cred);
1558			vm_map_entry_dispose(map, prev);
1559		}
1560	}
1561
1562	next = entry->next;
1563	if (next != &map->header) {
1564		esize = entry->end - entry->start;
1565		if ((entry->end == next->start) &&
1566		    (next->object.vm_object == entry->object.vm_object) &&
1567		     (!entry->object.vm_object ||
1568			(entry->offset + esize == next->offset)) &&
1569		    (next->eflags == entry->eflags) &&
1570		    (next->protection == entry->protection) &&
1571		    (next->max_protection == entry->max_protection) &&
1572		    (next->inheritance == entry->inheritance) &&
1573		    (next->wired_count == entry->wired_count) &&
1574		    (next->cred == entry->cred)) {
1575			vm_map_entry_unlink(map, next);
1576			entry->end = next->end;
1577			vm_map_entry_resize_free(map, entry);
1578
1579			/*
1580			 * See comment above.
1581			 */
1582			if (next->object.vm_object)
1583				vm_object_deallocate(next->object.vm_object);
1584			if (next->cred != NULL)
1585				crfree(next->cred);
1586			vm_map_entry_dispose(map, next);
1587		}
1588	}
1589}
1590/*
1591 *	vm_map_clip_start:	[ internal use only ]
1592 *
1593 *	Asserts that the given entry begins at or after
1594 *	the specified address; if necessary,
1595 *	it splits the entry into two.
1596 */
1597#define vm_map_clip_start(map, entry, startaddr) \
1598{ \
1599	if (startaddr > entry->start) \
1600		_vm_map_clip_start(map, entry, startaddr); \
1601}
1602
1603/*
1604 *	This routine is called only when it is known that
1605 *	the entry must be split.
1606 */
1607static void
1608_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1609{
1610	vm_map_entry_t new_entry;
1611
1612	VM_MAP_ASSERT_LOCKED(map);
1613
1614	/*
1615	 * Split off the front portion -- note that we must insert the new
1616	 * entry BEFORE this one, so that this entry has the specified
1617	 * starting address.
1618	 */
1619	vm_map_simplify_entry(map, entry);
1620
1621	/*
1622	 * If there is no object backing this entry, we might as well create
1623	 * one now.  If we defer it, an object can get created after the map
1624	 * is clipped, and individual objects will be created for the split-up
1625	 * map.  This is a bit of a hack, but is also about the best place to
1626	 * put this improvement.
1627	 */
1628	if (entry->object.vm_object == NULL && !map->system_map) {
1629		vm_object_t object;
1630		object = vm_object_allocate(OBJT_DEFAULT,
1631				atop(entry->end - entry->start));
1632		entry->object.vm_object = object;
1633		entry->offset = 0;
1634		if (entry->cred != NULL) {
1635			object->cred = entry->cred;
1636			object->charge = entry->end - entry->start;
1637			entry->cred = NULL;
1638		}
1639	} else if (entry->object.vm_object != NULL &&
1640		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1641		   entry->cred != NULL) {
1642		VM_OBJECT_WLOCK(entry->object.vm_object);
1643		KASSERT(entry->object.vm_object->cred == NULL,
1644		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1645		entry->object.vm_object->cred = entry->cred;
1646		entry->object.vm_object->charge = entry->end - entry->start;
1647		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1648		entry->cred = NULL;
1649	}
1650
1651	new_entry = vm_map_entry_create(map);
1652	*new_entry = *entry;
1653
1654	new_entry->end = start;
1655	entry->offset += (start - entry->start);
1656	entry->start = start;
1657	if (new_entry->cred != NULL)
1658		crhold(entry->cred);
1659
1660	vm_map_entry_link(map, entry->prev, new_entry);
1661
1662	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1663		vm_object_reference(new_entry->object.vm_object);
1664		/*
1665		 * The object->un_pager.vnp.writemappings for the
1666		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1667		 * kept as is here.  The virtual pages are
1668		 * re-distributed among the clipped entries, so the sum is
1669		 * left the same.
1670		 */
1671	}
1672}
1673
1674/*
1675 *	vm_map_clip_end:	[ internal use only ]
1676 *
1677 *	Asserts that the given entry ends at or before
1678 *	the specified address; if necessary,
1679 *	it splits the entry into two.
1680 */
1681#define vm_map_clip_end(map, entry, endaddr) \
1682{ \
1683	if ((endaddr) < (entry->end)) \
1684		_vm_map_clip_end((map), (entry), (endaddr)); \
1685}
1686
1687/*
1688 *	This routine is called only when it is known that
1689 *	the entry must be split.
1690 */
1691static void
1692_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1693{
1694	vm_map_entry_t new_entry;
1695
1696	VM_MAP_ASSERT_LOCKED(map);
1697
1698	/*
1699	 * If there is no object backing this entry, we might as well create
1700	 * one now.  If we defer it, an object can get created after the map
1701	 * is clipped, and individual objects will be created for the split-up
1702	 * map.  This is a bit of a hack, but is also about the best place to
1703	 * put this improvement.
1704	 */
1705	if (entry->object.vm_object == NULL && !map->system_map) {
1706		vm_object_t object;
1707		object = vm_object_allocate(OBJT_DEFAULT,
1708				atop(entry->end - entry->start));
1709		entry->object.vm_object = object;
1710		entry->offset = 0;
1711		if (entry->cred != NULL) {
1712			object->cred = entry->cred;
1713			object->charge = entry->end - entry->start;
1714			entry->cred = NULL;
1715		}
1716	} else if (entry->object.vm_object != NULL &&
1717		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1718		   entry->cred != NULL) {
1719		VM_OBJECT_WLOCK(entry->object.vm_object);
1720		KASSERT(entry->object.vm_object->cred == NULL,
1721		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1722		entry->object.vm_object->cred = entry->cred;
1723		entry->object.vm_object->charge = entry->end - entry->start;
1724		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1725		entry->cred = NULL;
1726	}
1727
1728	/*
1729	 * Create a new entry and insert it AFTER the specified entry
1730	 */
1731	new_entry = vm_map_entry_create(map);
1732	*new_entry = *entry;
1733
1734	new_entry->start = entry->end = end;
1735	new_entry->offset += (end - entry->start);
1736	if (new_entry->cred != NULL)
1737		crhold(entry->cred);
1738
1739	vm_map_entry_link(map, entry, new_entry);
1740
1741	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1742		vm_object_reference(new_entry->object.vm_object);
1743	}
1744}
1745
1746/*
1747 *	vm_map_submap:		[ kernel use only ]
1748 *
1749 *	Mark the given range as handled by a subordinate map.
1750 *
1751 *	This range must have been created with vm_map_find,
1752 *	and no other operations may have been performed on this
1753 *	range prior to calling vm_map_submap.
1754 *
1755 *	Only a limited number of operations can be performed
1756 *	within this rage after calling vm_map_submap:
1757 *		vm_fault
1758 *	[Don't try vm_map_copy!]
1759 *
1760 *	To remove a submapping, one must first remove the
1761 *	range from the superior map, and then destroy the
1762 *	submap (if desired).  [Better yet, don't try it.]
1763 */
1764int
1765vm_map_submap(
1766	vm_map_t map,
1767	vm_offset_t start,
1768	vm_offset_t end,
1769	vm_map_t submap)
1770{
1771	vm_map_entry_t entry;
1772	int result = KERN_INVALID_ARGUMENT;
1773
1774	vm_map_lock(map);
1775
1776	VM_MAP_RANGE_CHECK(map, start, end);
1777
1778	if (vm_map_lookup_entry(map, start, &entry)) {
1779		vm_map_clip_start(map, entry, start);
1780	} else
1781		entry = entry->next;
1782
1783	vm_map_clip_end(map, entry, end);
1784
1785	if ((entry->start == start) && (entry->end == end) &&
1786	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1787	    (entry->object.vm_object == NULL)) {
1788		entry->object.sub_map = submap;
1789		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1790		result = KERN_SUCCESS;
1791	}
1792	vm_map_unlock(map);
1793
1794	return (result);
1795}
1796
1797/*
1798 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1799 */
1800#define	MAX_INIT_PT	96
1801
1802/*
1803 *	vm_map_pmap_enter:
1804 *
1805 *	Preload the specified map's pmap with mappings to the specified
1806 *	object's memory-resident pages.  No further physical pages are
1807 *	allocated, and no further virtual pages are retrieved from secondary
1808 *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1809 *	limited number of page mappings are created at the low-end of the
1810 *	specified address range.  (For this purpose, a superpage mapping
1811 *	counts as one page mapping.)  Otherwise, all resident pages within
1812 *	the specified address range are mapped.  Because these mappings are
1813 *	being created speculatively, cached pages are not reactivated and
1814 *	mapped.
1815 */
1816void
1817vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1818    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1819{
1820	vm_offset_t start;
1821	vm_page_t p, p_start;
1822	vm_pindex_t mask, psize, threshold, tmpidx;
1823
1824	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1825		return;
1826	VM_OBJECT_RLOCK(object);
1827	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1828		VM_OBJECT_RUNLOCK(object);
1829		VM_OBJECT_WLOCK(object);
1830		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1831			pmap_object_init_pt(map->pmap, addr, object, pindex,
1832			    size);
1833			VM_OBJECT_WUNLOCK(object);
1834			return;
1835		}
1836		VM_OBJECT_LOCK_DOWNGRADE(object);
1837	}
1838
1839	psize = atop(size);
1840	if (psize + pindex > object->size) {
1841		if (object->size < pindex) {
1842			VM_OBJECT_RUNLOCK(object);
1843			return;
1844		}
1845		psize = object->size - pindex;
1846	}
1847
1848	start = 0;
1849	p_start = NULL;
1850	threshold = MAX_INIT_PT;
1851
1852	p = vm_page_find_least(object, pindex);
1853	/*
1854	 * Assert: the variable p is either (1) the page with the
1855	 * least pindex greater than or equal to the parameter pindex
1856	 * or (2) NULL.
1857	 */
1858	for (;
1859	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1860	     p = TAILQ_NEXT(p, listq)) {
1861		/*
1862		 * don't allow an madvise to blow away our really
1863		 * free pages allocating pv entries.
1864		 */
1865		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1866		    cnt.v_free_count < cnt.v_free_reserved) ||
1867		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1868		    tmpidx >= threshold)) {
1869			psize = tmpidx;
1870			break;
1871		}
1872		if (p->valid == VM_PAGE_BITS_ALL) {
1873			if (p_start == NULL) {
1874				start = addr + ptoa(tmpidx);
1875				p_start = p;
1876			}
1877			/* Jump ahead if a superpage mapping is possible. */
1878			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1879			    (pagesizes[p->psind] - 1)) == 0) {
1880				mask = atop(pagesizes[p->psind]) - 1;
1881				if (tmpidx + mask < psize &&
1882				    vm_page_ps_is_valid(p)) {
1883					p += mask;
1884					threshold += mask;
1885				}
1886			}
1887		} else if (p_start != NULL) {
1888			pmap_enter_object(map->pmap, start, addr +
1889			    ptoa(tmpidx), p_start, prot);
1890			p_start = NULL;
1891		}
1892	}
1893	if (p_start != NULL)
1894		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1895		    p_start, prot);
1896	VM_OBJECT_RUNLOCK(object);
1897}
1898
1899/*
1900 *	vm_map_protect:
1901 *
1902 *	Sets the protection of the specified address
1903 *	region in the target map.  If "set_max" is
1904 *	specified, the maximum protection is to be set;
1905 *	otherwise, only the current protection is affected.
1906 */
1907int
1908vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1909	       vm_prot_t new_prot, boolean_t set_max)
1910{
1911	vm_map_entry_t current, entry;
1912	vm_object_t obj;
1913	struct ucred *cred;
1914	vm_prot_t old_prot;
1915
1916	if (start == end)
1917		return (KERN_SUCCESS);
1918
1919	vm_map_lock(map);
1920
1921	VM_MAP_RANGE_CHECK(map, start, end);
1922
1923	if (vm_map_lookup_entry(map, start, &entry)) {
1924		vm_map_clip_start(map, entry, start);
1925	} else {
1926		entry = entry->next;
1927	}
1928
1929	/*
1930	 * Make a first pass to check for protection violations.
1931	 */
1932	current = entry;
1933	while ((current != &map->header) && (current->start < end)) {
1934		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1935			vm_map_unlock(map);
1936			return (KERN_INVALID_ARGUMENT);
1937		}
1938		if ((new_prot & current->max_protection) != new_prot) {
1939			vm_map_unlock(map);
1940			return (KERN_PROTECTION_FAILURE);
1941		}
1942		current = current->next;
1943	}
1944
1945
1946	/*
1947	 * Do an accounting pass for private read-only mappings that
1948	 * now will do cow due to allowed write (e.g. debugger sets
1949	 * breakpoint on text segment)
1950	 */
1951	for (current = entry; (current != &map->header) &&
1952	     (current->start < end); current = current->next) {
1953
1954		vm_map_clip_end(map, current, end);
1955
1956		if (set_max ||
1957		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1958		    ENTRY_CHARGED(current)) {
1959			continue;
1960		}
1961
1962		cred = curthread->td_ucred;
1963		obj = current->object.vm_object;
1964
1965		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1966			if (!swap_reserve(current->end - current->start)) {
1967				vm_map_unlock(map);
1968				return (KERN_RESOURCE_SHORTAGE);
1969			}
1970			crhold(cred);
1971			current->cred = cred;
1972			continue;
1973		}
1974
1975		VM_OBJECT_WLOCK(obj);
1976		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1977			VM_OBJECT_WUNLOCK(obj);
1978			continue;
1979		}
1980
1981		/*
1982		 * Charge for the whole object allocation now, since
1983		 * we cannot distinguish between non-charged and
1984		 * charged clipped mapping of the same object later.
1985		 */
1986		KASSERT(obj->charge == 0,
1987		    ("vm_map_protect: object %p overcharged (entry %p)",
1988		    obj, current));
1989		if (!swap_reserve(ptoa(obj->size))) {
1990			VM_OBJECT_WUNLOCK(obj);
1991			vm_map_unlock(map);
1992			return (KERN_RESOURCE_SHORTAGE);
1993		}
1994
1995		crhold(cred);
1996		obj->cred = cred;
1997		obj->charge = ptoa(obj->size);
1998		VM_OBJECT_WUNLOCK(obj);
1999	}
2000
2001	/*
2002	 * Go back and fix up protections. [Note that clipping is not
2003	 * necessary the second time.]
2004	 */
2005	current = entry;
2006	while ((current != &map->header) && (current->start < end)) {
2007		old_prot = current->protection;
2008
2009		if (set_max)
2010			current->protection =
2011			    (current->max_protection = new_prot) &
2012			    old_prot;
2013		else
2014			current->protection = new_prot;
2015
2016		/*
2017		 * For user wired map entries, the normal lazy evaluation of
2018		 * write access upgrades through soft page faults is
2019		 * undesirable.  Instead, immediately copy any pages that are
2020		 * copy-on-write and enable write access in the physical map.
2021		 */
2022		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2023		    (current->protection & VM_PROT_WRITE) != 0 &&
2024		    (old_prot & VM_PROT_WRITE) == 0)
2025			vm_fault_copy_entry(map, map, current, current, NULL);
2026
2027		/*
2028		 * When restricting access, update the physical map.  Worry
2029		 * about copy-on-write here.
2030		 */
2031		if ((old_prot & ~current->protection) != 0) {
2032#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2033							VM_PROT_ALL)
2034			pmap_protect(map->pmap, current->start,
2035			    current->end,
2036			    current->protection & MASK(current));
2037#undef	MASK
2038		}
2039		vm_map_simplify_entry(map, current);
2040		current = current->next;
2041	}
2042	vm_map_unlock(map);
2043	return (KERN_SUCCESS);
2044}
2045
2046/*
2047 *	vm_map_madvise:
2048 *
2049 *	This routine traverses a processes map handling the madvise
2050 *	system call.  Advisories are classified as either those effecting
2051 *	the vm_map_entry structure, or those effecting the underlying
2052 *	objects.
2053 */
2054int
2055vm_map_madvise(
2056	vm_map_t map,
2057	vm_offset_t start,
2058	vm_offset_t end,
2059	int behav)
2060{
2061	vm_map_entry_t current, entry;
2062	int modify_map = 0;
2063
2064	/*
2065	 * Some madvise calls directly modify the vm_map_entry, in which case
2066	 * we need to use an exclusive lock on the map and we need to perform
2067	 * various clipping operations.  Otherwise we only need a read-lock
2068	 * on the map.
2069	 */
2070	switch(behav) {
2071	case MADV_NORMAL:
2072	case MADV_SEQUENTIAL:
2073	case MADV_RANDOM:
2074	case MADV_NOSYNC:
2075	case MADV_AUTOSYNC:
2076	case MADV_NOCORE:
2077	case MADV_CORE:
2078		if (start == end)
2079			return (KERN_SUCCESS);
2080		modify_map = 1;
2081		vm_map_lock(map);
2082		break;
2083	case MADV_WILLNEED:
2084	case MADV_DONTNEED:
2085	case MADV_FREE:
2086		if (start == end)
2087			return (KERN_SUCCESS);
2088		vm_map_lock_read(map);
2089		break;
2090	default:
2091		return (KERN_INVALID_ARGUMENT);
2092	}
2093
2094	/*
2095	 * Locate starting entry and clip if necessary.
2096	 */
2097	VM_MAP_RANGE_CHECK(map, start, end);
2098
2099	if (vm_map_lookup_entry(map, start, &entry)) {
2100		if (modify_map)
2101			vm_map_clip_start(map, entry, start);
2102	} else {
2103		entry = entry->next;
2104	}
2105
2106	if (modify_map) {
2107		/*
2108		 * madvise behaviors that are implemented in the vm_map_entry.
2109		 *
2110		 * We clip the vm_map_entry so that behavioral changes are
2111		 * limited to the specified address range.
2112		 */
2113		for (current = entry;
2114		     (current != &map->header) && (current->start < end);
2115		     current = current->next
2116		) {
2117			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2118				continue;
2119
2120			vm_map_clip_end(map, current, end);
2121
2122			switch (behav) {
2123			case MADV_NORMAL:
2124				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2125				break;
2126			case MADV_SEQUENTIAL:
2127				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2128				break;
2129			case MADV_RANDOM:
2130				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2131				break;
2132			case MADV_NOSYNC:
2133				current->eflags |= MAP_ENTRY_NOSYNC;
2134				break;
2135			case MADV_AUTOSYNC:
2136				current->eflags &= ~MAP_ENTRY_NOSYNC;
2137				break;
2138			case MADV_NOCORE:
2139				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2140				break;
2141			case MADV_CORE:
2142				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2143				break;
2144			default:
2145				break;
2146			}
2147			vm_map_simplify_entry(map, current);
2148		}
2149		vm_map_unlock(map);
2150	} else {
2151		vm_pindex_t pstart, pend;
2152
2153		/*
2154		 * madvise behaviors that are implemented in the underlying
2155		 * vm_object.
2156		 *
2157		 * Since we don't clip the vm_map_entry, we have to clip
2158		 * the vm_object pindex and count.
2159		 */
2160		for (current = entry;
2161		     (current != &map->header) && (current->start < end);
2162		     current = current->next
2163		) {
2164			vm_offset_t useEnd, useStart;
2165
2166			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2167				continue;
2168
2169			pstart = OFF_TO_IDX(current->offset);
2170			pend = pstart + atop(current->end - current->start);
2171			useStart = current->start;
2172			useEnd = current->end;
2173
2174			if (current->start < start) {
2175				pstart += atop(start - current->start);
2176				useStart = start;
2177			}
2178			if (current->end > end) {
2179				pend -= atop(current->end - end);
2180				useEnd = end;
2181			}
2182
2183			if (pstart >= pend)
2184				continue;
2185
2186			/*
2187			 * Perform the pmap_advise() before clearing
2188			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2189			 * concurrent pmap operation, such as pmap_remove(),
2190			 * could clear a reference in the pmap and set
2191			 * PGA_REFERENCED on the page before the pmap_advise()
2192			 * had completed.  Consequently, the page would appear
2193			 * referenced based upon an old reference that
2194			 * occurred before this pmap_advise() ran.
2195			 */
2196			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2197				pmap_advise(map->pmap, useStart, useEnd,
2198				    behav);
2199
2200			vm_object_madvise(current->object.vm_object, pstart,
2201			    pend, behav);
2202
2203			/*
2204			 * Pre-populate paging structures in the
2205			 * WILLNEED case.  For wired entries, the
2206			 * paging structures are already populated.
2207			 */
2208			if (behav == MADV_WILLNEED &&
2209			    current->wired_count == 0) {
2210				vm_map_pmap_enter(map,
2211				    useStart,
2212				    current->protection,
2213				    current->object.vm_object,
2214				    pstart,
2215				    ptoa(pend - pstart),
2216				    MAP_PREFAULT_MADVISE
2217				);
2218			}
2219		}
2220		vm_map_unlock_read(map);
2221	}
2222	return (0);
2223}
2224
2225
2226/*
2227 *	vm_map_inherit:
2228 *
2229 *	Sets the inheritance of the specified address
2230 *	range in the target map.  Inheritance
2231 *	affects how the map will be shared with
2232 *	child maps at the time of vmspace_fork.
2233 */
2234int
2235vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2236	       vm_inherit_t new_inheritance)
2237{
2238	vm_map_entry_t entry;
2239	vm_map_entry_t temp_entry;
2240
2241	switch (new_inheritance) {
2242	case VM_INHERIT_NONE:
2243	case VM_INHERIT_COPY:
2244	case VM_INHERIT_SHARE:
2245	case VM_INHERIT_ZERO:
2246		break;
2247	default:
2248		return (KERN_INVALID_ARGUMENT);
2249	}
2250	if (start == end)
2251		return (KERN_SUCCESS);
2252	vm_map_lock(map);
2253	VM_MAP_RANGE_CHECK(map, start, end);
2254	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2255		entry = temp_entry;
2256		vm_map_clip_start(map, entry, start);
2257	} else
2258		entry = temp_entry->next;
2259	while ((entry != &map->header) && (entry->start < end)) {
2260		vm_map_clip_end(map, entry, end);
2261		entry->inheritance = new_inheritance;
2262		vm_map_simplify_entry(map, entry);
2263		entry = entry->next;
2264	}
2265	vm_map_unlock(map);
2266	return (KERN_SUCCESS);
2267}
2268
2269/*
2270 *	vm_map_unwire:
2271 *
2272 *	Implements both kernel and user unwiring.
2273 */
2274int
2275vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2276    int flags)
2277{
2278	vm_map_entry_t entry, first_entry, tmp_entry;
2279	vm_offset_t saved_start;
2280	unsigned int last_timestamp;
2281	int rv;
2282	boolean_t need_wakeup, result, user_unwire;
2283
2284	if (start == end)
2285		return (KERN_SUCCESS);
2286	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2287	vm_map_lock(map);
2288	VM_MAP_RANGE_CHECK(map, start, end);
2289	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2290		if (flags & VM_MAP_WIRE_HOLESOK)
2291			first_entry = first_entry->next;
2292		else {
2293			vm_map_unlock(map);
2294			return (KERN_INVALID_ADDRESS);
2295		}
2296	}
2297	last_timestamp = map->timestamp;
2298	entry = first_entry;
2299	while (entry != &map->header && entry->start < end) {
2300		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2301			/*
2302			 * We have not yet clipped the entry.
2303			 */
2304			saved_start = (start >= entry->start) ? start :
2305			    entry->start;
2306			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2307			if (vm_map_unlock_and_wait(map, 0)) {
2308				/*
2309				 * Allow interruption of user unwiring?
2310				 */
2311			}
2312			vm_map_lock(map);
2313			if (last_timestamp+1 != map->timestamp) {
2314				/*
2315				 * Look again for the entry because the map was
2316				 * modified while it was unlocked.
2317				 * Specifically, the entry may have been
2318				 * clipped, merged, or deleted.
2319				 */
2320				if (!vm_map_lookup_entry(map, saved_start,
2321				    &tmp_entry)) {
2322					if (flags & VM_MAP_WIRE_HOLESOK)
2323						tmp_entry = tmp_entry->next;
2324					else {
2325						if (saved_start == start) {
2326							/*
2327							 * First_entry has been deleted.
2328							 */
2329							vm_map_unlock(map);
2330							return (KERN_INVALID_ADDRESS);
2331						}
2332						end = saved_start;
2333						rv = KERN_INVALID_ADDRESS;
2334						goto done;
2335					}
2336				}
2337				if (entry == first_entry)
2338					first_entry = tmp_entry;
2339				else
2340					first_entry = NULL;
2341				entry = tmp_entry;
2342			}
2343			last_timestamp = map->timestamp;
2344			continue;
2345		}
2346		vm_map_clip_start(map, entry, start);
2347		vm_map_clip_end(map, entry, end);
2348		/*
2349		 * Mark the entry in case the map lock is released.  (See
2350		 * above.)
2351		 */
2352		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2353		    entry->wiring_thread == NULL,
2354		    ("owned map entry %p", entry));
2355		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2356		entry->wiring_thread = curthread;
2357		/*
2358		 * Check the map for holes in the specified region.
2359		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2360		 */
2361		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2362		    (entry->end < end && (entry->next == &map->header ||
2363		    entry->next->start > entry->end))) {
2364			end = entry->end;
2365			rv = KERN_INVALID_ADDRESS;
2366			goto done;
2367		}
2368		/*
2369		 * If system unwiring, require that the entry is system wired.
2370		 */
2371		if (!user_unwire &&
2372		    vm_map_entry_system_wired_count(entry) == 0) {
2373			end = entry->end;
2374			rv = KERN_INVALID_ARGUMENT;
2375			goto done;
2376		}
2377		entry = entry->next;
2378	}
2379	rv = KERN_SUCCESS;
2380done:
2381	need_wakeup = FALSE;
2382	if (first_entry == NULL) {
2383		result = vm_map_lookup_entry(map, start, &first_entry);
2384		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2385			first_entry = first_entry->next;
2386		else
2387			KASSERT(result, ("vm_map_unwire: lookup failed"));
2388	}
2389	for (entry = first_entry; entry != &map->header && entry->start < end;
2390	    entry = entry->next) {
2391		/*
2392		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2393		 * space in the unwired region could have been mapped
2394		 * while the map lock was dropped for draining
2395		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2396		 * could be simultaneously wiring this new mapping
2397		 * entry.  Detect these cases and skip any entries
2398		 * marked as in transition by us.
2399		 */
2400		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2401		    entry->wiring_thread != curthread) {
2402			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2403			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2404			continue;
2405		}
2406
2407		if (rv == KERN_SUCCESS && (!user_unwire ||
2408		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2409			if (user_unwire)
2410				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2411			if (entry->wired_count == 1)
2412				vm_map_entry_unwire(map, entry);
2413			else
2414				entry->wired_count--;
2415		}
2416		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2417		    ("vm_map_unwire: in-transition flag missing %p", entry));
2418		KASSERT(entry->wiring_thread == curthread,
2419		    ("vm_map_unwire: alien wire %p", entry));
2420		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2421		entry->wiring_thread = NULL;
2422		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2423			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2424			need_wakeup = TRUE;
2425		}
2426		vm_map_simplify_entry(map, entry);
2427	}
2428	vm_map_unlock(map);
2429	if (need_wakeup)
2430		vm_map_wakeup(map);
2431	return (rv);
2432}
2433
2434/*
2435 *	vm_map_wire_entry_failure:
2436 *
2437 *	Handle a wiring failure on the given entry.
2438 *
2439 *	The map should be locked.
2440 */
2441static void
2442vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2443    vm_offset_t failed_addr)
2444{
2445
2446	VM_MAP_ASSERT_LOCKED(map);
2447	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2448	    entry->wired_count == 1,
2449	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2450	KASSERT(failed_addr < entry->end,
2451	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2452
2453	/*
2454	 * If any pages at the start of this entry were successfully wired,
2455	 * then unwire them.
2456	 */
2457	if (failed_addr > entry->start) {
2458		pmap_unwire(map->pmap, entry->start, failed_addr);
2459		vm_object_unwire(entry->object.vm_object, entry->offset,
2460		    failed_addr - entry->start, PQ_ACTIVE);
2461	}
2462
2463	/*
2464	 * Assign an out-of-range value to represent the failure to wire this
2465	 * entry.
2466	 */
2467	entry->wired_count = -1;
2468}
2469
2470/*
2471 *	vm_map_wire:
2472 *
2473 *	Implements both kernel and user wiring.
2474 */
2475int
2476vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2477    int flags)
2478{
2479	vm_map_entry_t entry, first_entry, tmp_entry;
2480	vm_offset_t faddr, saved_end, saved_start;
2481	unsigned int last_timestamp;
2482	int rv;
2483	boolean_t need_wakeup, result, user_wire;
2484	vm_prot_t prot;
2485
2486	if (start == end)
2487		return (KERN_SUCCESS);
2488	prot = 0;
2489	if (flags & VM_MAP_WIRE_WRITE)
2490		prot |= VM_PROT_WRITE;
2491	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2492	vm_map_lock(map);
2493	VM_MAP_RANGE_CHECK(map, start, end);
2494	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2495		if (flags & VM_MAP_WIRE_HOLESOK)
2496			first_entry = first_entry->next;
2497		else {
2498			vm_map_unlock(map);
2499			return (KERN_INVALID_ADDRESS);
2500		}
2501	}
2502	last_timestamp = map->timestamp;
2503	entry = first_entry;
2504	while (entry != &map->header && entry->start < end) {
2505		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2506			/*
2507			 * We have not yet clipped the entry.
2508			 */
2509			saved_start = (start >= entry->start) ? start :
2510			    entry->start;
2511			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2512			if (vm_map_unlock_and_wait(map, 0)) {
2513				/*
2514				 * Allow interruption of user wiring?
2515				 */
2516			}
2517			vm_map_lock(map);
2518			if (last_timestamp + 1 != map->timestamp) {
2519				/*
2520				 * Look again for the entry because the map was
2521				 * modified while it was unlocked.
2522				 * Specifically, the entry may have been
2523				 * clipped, merged, or deleted.
2524				 */
2525				if (!vm_map_lookup_entry(map, saved_start,
2526				    &tmp_entry)) {
2527					if (flags & VM_MAP_WIRE_HOLESOK)
2528						tmp_entry = tmp_entry->next;
2529					else {
2530						if (saved_start == start) {
2531							/*
2532							 * first_entry has been deleted.
2533							 */
2534							vm_map_unlock(map);
2535							return (KERN_INVALID_ADDRESS);
2536						}
2537						end = saved_start;
2538						rv = KERN_INVALID_ADDRESS;
2539						goto done;
2540					}
2541				}
2542				if (entry == first_entry)
2543					first_entry = tmp_entry;
2544				else
2545					first_entry = NULL;
2546				entry = tmp_entry;
2547			}
2548			last_timestamp = map->timestamp;
2549			continue;
2550		}
2551		vm_map_clip_start(map, entry, start);
2552		vm_map_clip_end(map, entry, end);
2553		/*
2554		 * Mark the entry in case the map lock is released.  (See
2555		 * above.)
2556		 */
2557		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2558		    entry->wiring_thread == NULL,
2559		    ("owned map entry %p", entry));
2560		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2561		entry->wiring_thread = curthread;
2562		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2563		    || (entry->protection & prot) != prot) {
2564			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2565			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2566				end = entry->end;
2567				rv = KERN_INVALID_ADDRESS;
2568				goto done;
2569			}
2570			goto next_entry;
2571		}
2572		if (entry->wired_count == 0) {
2573			entry->wired_count++;
2574			saved_start = entry->start;
2575			saved_end = entry->end;
2576
2577			/*
2578			 * Release the map lock, relying on the in-transition
2579			 * mark.  Mark the map busy for fork.
2580			 */
2581			vm_map_busy(map);
2582			vm_map_unlock(map);
2583
2584			faddr = saved_start;
2585			do {
2586				/*
2587				 * Simulate a fault to get the page and enter
2588				 * it into the physical map.
2589				 */
2590				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2591				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2592					break;
2593			} while ((faddr += PAGE_SIZE) < saved_end);
2594			vm_map_lock(map);
2595			vm_map_unbusy(map);
2596			if (last_timestamp + 1 != map->timestamp) {
2597				/*
2598				 * Look again for the entry because the map was
2599				 * modified while it was unlocked.  The entry
2600				 * may have been clipped, but NOT merged or
2601				 * deleted.
2602				 */
2603				result = vm_map_lookup_entry(map, saved_start,
2604				    &tmp_entry);
2605				KASSERT(result, ("vm_map_wire: lookup failed"));
2606				if (entry == first_entry)
2607					first_entry = tmp_entry;
2608				else
2609					first_entry = NULL;
2610				entry = tmp_entry;
2611				while (entry->end < saved_end) {
2612					/*
2613					 * In case of failure, handle entries
2614					 * that were not fully wired here;
2615					 * fully wired entries are handled
2616					 * later.
2617					 */
2618					if (rv != KERN_SUCCESS &&
2619					    faddr < entry->end)
2620						vm_map_wire_entry_failure(map,
2621						    entry, faddr);
2622					entry = entry->next;
2623				}
2624			}
2625			last_timestamp = map->timestamp;
2626			if (rv != KERN_SUCCESS) {
2627				vm_map_wire_entry_failure(map, entry, faddr);
2628				end = entry->end;
2629				goto done;
2630			}
2631		} else if (!user_wire ||
2632			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2633			entry->wired_count++;
2634		}
2635		/*
2636		 * Check the map for holes in the specified region.
2637		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2638		 */
2639	next_entry:
2640		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2641		    (entry->end < end && (entry->next == &map->header ||
2642		    entry->next->start > entry->end))) {
2643			end = entry->end;
2644			rv = KERN_INVALID_ADDRESS;
2645			goto done;
2646		}
2647		entry = entry->next;
2648	}
2649	rv = KERN_SUCCESS;
2650done:
2651	need_wakeup = FALSE;
2652	if (first_entry == NULL) {
2653		result = vm_map_lookup_entry(map, start, &first_entry);
2654		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2655			first_entry = first_entry->next;
2656		else
2657			KASSERT(result, ("vm_map_wire: lookup failed"));
2658	}
2659	for (entry = first_entry; entry != &map->header && entry->start < end;
2660	    entry = entry->next) {
2661		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2662			goto next_entry_done;
2663
2664		/*
2665		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2666		 * space in the unwired region could have been mapped
2667		 * while the map lock was dropped for faulting in the
2668		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2669		 * Moreover, another thread could be simultaneously
2670		 * wiring this new mapping entry.  Detect these cases
2671		 * and skip any entries marked as in transition by us.
2672		 */
2673		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2674		    entry->wiring_thread != curthread) {
2675			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2676			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2677			continue;
2678		}
2679
2680		if (rv == KERN_SUCCESS) {
2681			if (user_wire)
2682				entry->eflags |= MAP_ENTRY_USER_WIRED;
2683		} else if (entry->wired_count == -1) {
2684			/*
2685			 * Wiring failed on this entry.  Thus, unwiring is
2686			 * unnecessary.
2687			 */
2688			entry->wired_count = 0;
2689		} else if (!user_wire ||
2690		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2691			/*
2692			 * Undo the wiring.  Wiring succeeded on this entry
2693			 * but failed on a later entry.
2694			 */
2695			if (entry->wired_count == 1)
2696				vm_map_entry_unwire(map, entry);
2697			else
2698				entry->wired_count--;
2699		}
2700	next_entry_done:
2701		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2702		    ("vm_map_wire: in-transition flag missing %p", entry));
2703		KASSERT(entry->wiring_thread == curthread,
2704		    ("vm_map_wire: alien wire %p", entry));
2705		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2706		    MAP_ENTRY_WIRE_SKIPPED);
2707		entry->wiring_thread = NULL;
2708		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2709			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2710			need_wakeup = TRUE;
2711		}
2712		vm_map_simplify_entry(map, entry);
2713	}
2714	vm_map_unlock(map);
2715	if (need_wakeup)
2716		vm_map_wakeup(map);
2717	return (rv);
2718}
2719
2720/*
2721 * vm_map_sync
2722 *
2723 * Push any dirty cached pages in the address range to their pager.
2724 * If syncio is TRUE, dirty pages are written synchronously.
2725 * If invalidate is TRUE, any cached pages are freed as well.
2726 *
2727 * If the size of the region from start to end is zero, we are
2728 * supposed to flush all modified pages within the region containing
2729 * start.  Unfortunately, a region can be split or coalesced with
2730 * neighboring regions, making it difficult to determine what the
2731 * original region was.  Therefore, we approximate this requirement by
2732 * flushing the current region containing start.
2733 *
2734 * Returns an error if any part of the specified range is not mapped.
2735 */
2736int
2737vm_map_sync(
2738	vm_map_t map,
2739	vm_offset_t start,
2740	vm_offset_t end,
2741	boolean_t syncio,
2742	boolean_t invalidate)
2743{
2744	vm_map_entry_t current;
2745	vm_map_entry_t entry;
2746	vm_size_t size;
2747	vm_object_t object;
2748	vm_ooffset_t offset;
2749	unsigned int last_timestamp;
2750	boolean_t failed;
2751
2752	vm_map_lock_read(map);
2753	VM_MAP_RANGE_CHECK(map, start, end);
2754	if (!vm_map_lookup_entry(map, start, &entry)) {
2755		vm_map_unlock_read(map);
2756		return (KERN_INVALID_ADDRESS);
2757	} else if (start == end) {
2758		start = entry->start;
2759		end = entry->end;
2760	}
2761	/*
2762	 * Make a first pass to check for user-wired memory and holes.
2763	 */
2764	for (current = entry; current != &map->header && current->start < end;
2765	    current = current->next) {
2766		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2767			vm_map_unlock_read(map);
2768			return (KERN_INVALID_ARGUMENT);
2769		}
2770		if (end > current->end &&
2771		    (current->next == &map->header ||
2772			current->end != current->next->start)) {
2773			vm_map_unlock_read(map);
2774			return (KERN_INVALID_ADDRESS);
2775		}
2776	}
2777
2778	if (invalidate)
2779		pmap_remove(map->pmap, start, end);
2780	failed = FALSE;
2781
2782	/*
2783	 * Make a second pass, cleaning/uncaching pages from the indicated
2784	 * objects as we go.
2785	 */
2786	for (current = entry; current != &map->header && current->start < end;) {
2787		offset = current->offset + (start - current->start);
2788		size = (end <= current->end ? end : current->end) - start;
2789		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2790			vm_map_t smap;
2791			vm_map_entry_t tentry;
2792			vm_size_t tsize;
2793
2794			smap = current->object.sub_map;
2795			vm_map_lock_read(smap);
2796			(void) vm_map_lookup_entry(smap, offset, &tentry);
2797			tsize = tentry->end - offset;
2798			if (tsize < size)
2799				size = tsize;
2800			object = tentry->object.vm_object;
2801			offset = tentry->offset + (offset - tentry->start);
2802			vm_map_unlock_read(smap);
2803		} else {
2804			object = current->object.vm_object;
2805		}
2806		vm_object_reference(object);
2807		last_timestamp = map->timestamp;
2808		vm_map_unlock_read(map);
2809		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2810			failed = TRUE;
2811		start += size;
2812		vm_object_deallocate(object);
2813		vm_map_lock_read(map);
2814		if (last_timestamp == map->timestamp ||
2815		    !vm_map_lookup_entry(map, start, &current))
2816			current = current->next;
2817	}
2818
2819	vm_map_unlock_read(map);
2820	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2821}
2822
2823/*
2824 *	vm_map_entry_unwire:	[ internal use only ]
2825 *
2826 *	Make the region specified by this entry pageable.
2827 *
2828 *	The map in question should be locked.
2829 *	[This is the reason for this routine's existence.]
2830 */
2831static void
2832vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2833{
2834
2835	VM_MAP_ASSERT_LOCKED(map);
2836	KASSERT(entry->wired_count > 0,
2837	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2838	pmap_unwire(map->pmap, entry->start, entry->end);
2839	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2840	    entry->start, PQ_ACTIVE);
2841	entry->wired_count = 0;
2842}
2843
2844static void
2845vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2846{
2847
2848	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2849		vm_object_deallocate(entry->object.vm_object);
2850	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2851}
2852
2853/*
2854 *	vm_map_entry_delete:	[ internal use only ]
2855 *
2856 *	Deallocate the given entry from the target map.
2857 */
2858static void
2859vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2860{
2861	vm_object_t object;
2862	vm_pindex_t offidxstart, offidxend, count, size1;
2863	vm_ooffset_t size;
2864
2865	vm_map_entry_unlink(map, entry);
2866	object = entry->object.vm_object;
2867	size = entry->end - entry->start;
2868	map->size -= size;
2869
2870	if (entry->cred != NULL) {
2871		swap_release_by_cred(size, entry->cred);
2872		crfree(entry->cred);
2873	}
2874
2875	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2876	    (object != NULL)) {
2877		KASSERT(entry->cred == NULL || object->cred == NULL ||
2878		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2879		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2880		count = OFF_TO_IDX(size);
2881		offidxstart = OFF_TO_IDX(entry->offset);
2882		offidxend = offidxstart + count;
2883		VM_OBJECT_WLOCK(object);
2884		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2885		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2886		    object == kernel_object || object == kmem_object)) {
2887			vm_object_collapse(object);
2888
2889			/*
2890			 * The option OBJPR_NOTMAPPED can be passed here
2891			 * because vm_map_delete() already performed
2892			 * pmap_remove() on the only mapping to this range
2893			 * of pages.
2894			 */
2895			vm_object_page_remove(object, offidxstart, offidxend,
2896			    OBJPR_NOTMAPPED);
2897			if (object->type == OBJT_SWAP)
2898				swap_pager_freespace(object, offidxstart,
2899				    count);
2900			if (offidxend >= object->size &&
2901			    offidxstart < object->size) {
2902				size1 = object->size;
2903				object->size = offidxstart;
2904				if (object->cred != NULL) {
2905					size1 -= object->size;
2906					KASSERT(object->charge >= ptoa(size1),
2907					    ("object %p charge < 0", object));
2908					swap_release_by_cred(ptoa(size1),
2909					    object->cred);
2910					object->charge -= ptoa(size1);
2911				}
2912			}
2913		}
2914		VM_OBJECT_WUNLOCK(object);
2915	} else
2916		entry->object.vm_object = NULL;
2917	if (map->system_map)
2918		vm_map_entry_deallocate(entry, TRUE);
2919	else {
2920		entry->next = curthread->td_map_def_user;
2921		curthread->td_map_def_user = entry;
2922	}
2923}
2924
2925/*
2926 *	vm_map_delete:	[ internal use only ]
2927 *
2928 *	Deallocates the given address range from the target
2929 *	map.
2930 */
2931int
2932vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2933{
2934	vm_map_entry_t entry;
2935	vm_map_entry_t first_entry;
2936
2937	VM_MAP_ASSERT_LOCKED(map);
2938	if (start == end)
2939		return (KERN_SUCCESS);
2940
2941	/*
2942	 * Find the start of the region, and clip it
2943	 */
2944	if (!vm_map_lookup_entry(map, start, &first_entry))
2945		entry = first_entry->next;
2946	else {
2947		entry = first_entry;
2948		vm_map_clip_start(map, entry, start);
2949	}
2950
2951	/*
2952	 * Step through all entries in this region
2953	 */
2954	while ((entry != &map->header) && (entry->start < end)) {
2955		vm_map_entry_t next;
2956
2957		/*
2958		 * Wait for wiring or unwiring of an entry to complete.
2959		 * Also wait for any system wirings to disappear on
2960		 * user maps.
2961		 */
2962		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2963		    (vm_map_pmap(map) != kernel_pmap &&
2964		    vm_map_entry_system_wired_count(entry) != 0)) {
2965			unsigned int last_timestamp;
2966			vm_offset_t saved_start;
2967			vm_map_entry_t tmp_entry;
2968
2969			saved_start = entry->start;
2970			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2971			last_timestamp = map->timestamp;
2972			(void) vm_map_unlock_and_wait(map, 0);
2973			vm_map_lock(map);
2974			if (last_timestamp + 1 != map->timestamp) {
2975				/*
2976				 * Look again for the entry because the map was
2977				 * modified while it was unlocked.
2978				 * Specifically, the entry may have been
2979				 * clipped, merged, or deleted.
2980				 */
2981				if (!vm_map_lookup_entry(map, saved_start,
2982							 &tmp_entry))
2983					entry = tmp_entry->next;
2984				else {
2985					entry = tmp_entry;
2986					vm_map_clip_start(map, entry,
2987							  saved_start);
2988				}
2989			}
2990			continue;
2991		}
2992		vm_map_clip_end(map, entry, end);
2993
2994		next = entry->next;
2995
2996		/*
2997		 * Unwire before removing addresses from the pmap; otherwise,
2998		 * unwiring will put the entries back in the pmap.
2999		 */
3000		if (entry->wired_count != 0) {
3001			vm_map_entry_unwire(map, entry);
3002		}
3003
3004		pmap_remove(map->pmap, entry->start, entry->end);
3005
3006		/*
3007		 * Delete the entry only after removing all pmap
3008		 * entries pointing to its pages.  (Otherwise, its
3009		 * page frames may be reallocated, and any modify bits
3010		 * will be set in the wrong object!)
3011		 */
3012		vm_map_entry_delete(map, entry);
3013		entry = next;
3014	}
3015	return (KERN_SUCCESS);
3016}
3017
3018/*
3019 *	vm_map_remove:
3020 *
3021 *	Remove the given address range from the target map.
3022 *	This is the exported form of vm_map_delete.
3023 */
3024int
3025vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3026{
3027	int result;
3028
3029	vm_map_lock(map);
3030	VM_MAP_RANGE_CHECK(map, start, end);
3031	result = vm_map_delete(map, start, end);
3032	vm_map_unlock(map);
3033	return (result);
3034}
3035
3036/*
3037 *	vm_map_check_protection:
3038 *
3039 *	Assert that the target map allows the specified privilege on the
3040 *	entire address region given.  The entire region must be allocated.
3041 *
3042 *	WARNING!  This code does not and should not check whether the
3043 *	contents of the region is accessible.  For example a smaller file
3044 *	might be mapped into a larger address space.
3045 *
3046 *	NOTE!  This code is also called by munmap().
3047 *
3048 *	The map must be locked.  A read lock is sufficient.
3049 */
3050boolean_t
3051vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3052			vm_prot_t protection)
3053{
3054	vm_map_entry_t entry;
3055	vm_map_entry_t tmp_entry;
3056
3057	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3058		return (FALSE);
3059	entry = tmp_entry;
3060
3061	while (start < end) {
3062		if (entry == &map->header)
3063			return (FALSE);
3064		/*
3065		 * No holes allowed!
3066		 */
3067		if (start < entry->start)
3068			return (FALSE);
3069		/*
3070		 * Check protection associated with entry.
3071		 */
3072		if ((entry->protection & protection) != protection)
3073			return (FALSE);
3074		/* go to next entry */
3075		start = entry->end;
3076		entry = entry->next;
3077	}
3078	return (TRUE);
3079}
3080
3081/*
3082 *	vm_map_copy_entry:
3083 *
3084 *	Copies the contents of the source entry to the destination
3085 *	entry.  The entries *must* be aligned properly.
3086 */
3087static void
3088vm_map_copy_entry(
3089	vm_map_t src_map,
3090	vm_map_t dst_map,
3091	vm_map_entry_t src_entry,
3092	vm_map_entry_t dst_entry,
3093	vm_ooffset_t *fork_charge)
3094{
3095	vm_object_t src_object;
3096	vm_map_entry_t fake_entry;
3097	vm_offset_t size;
3098	struct ucred *cred;
3099	int charged;
3100
3101	VM_MAP_ASSERT_LOCKED(dst_map);
3102
3103	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3104		return;
3105
3106	if (src_entry->wired_count == 0 ||
3107	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3108		/*
3109		 * If the source entry is marked needs_copy, it is already
3110		 * write-protected.
3111		 */
3112		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3113		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3114			pmap_protect(src_map->pmap,
3115			    src_entry->start,
3116			    src_entry->end,
3117			    src_entry->protection & ~VM_PROT_WRITE);
3118		}
3119
3120		/*
3121		 * Make a copy of the object.
3122		 */
3123		size = src_entry->end - src_entry->start;
3124		if ((src_object = src_entry->object.vm_object) != NULL) {
3125			VM_OBJECT_WLOCK(src_object);
3126			charged = ENTRY_CHARGED(src_entry);
3127			if (src_object->handle == NULL &&
3128			    (src_object->type == OBJT_DEFAULT ||
3129			    src_object->type == OBJT_SWAP)) {
3130				vm_object_collapse(src_object);
3131				if ((src_object->flags & (OBJ_NOSPLIT |
3132				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3133					vm_object_split(src_entry);
3134					src_object =
3135					    src_entry->object.vm_object;
3136				}
3137			}
3138			vm_object_reference_locked(src_object);
3139			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3140			if (src_entry->cred != NULL &&
3141			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3142				KASSERT(src_object->cred == NULL,
3143				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3144				     src_object));
3145				src_object->cred = src_entry->cred;
3146				src_object->charge = size;
3147			}
3148			VM_OBJECT_WUNLOCK(src_object);
3149			dst_entry->object.vm_object = src_object;
3150			if (charged) {
3151				cred = curthread->td_ucred;
3152				crhold(cred);
3153				dst_entry->cred = cred;
3154				*fork_charge += size;
3155				if (!(src_entry->eflags &
3156				      MAP_ENTRY_NEEDS_COPY)) {
3157					crhold(cred);
3158					src_entry->cred = cred;
3159					*fork_charge += size;
3160				}
3161			}
3162			src_entry->eflags |= MAP_ENTRY_COW |
3163			    MAP_ENTRY_NEEDS_COPY;
3164			dst_entry->eflags |= MAP_ENTRY_COW |
3165			    MAP_ENTRY_NEEDS_COPY;
3166			dst_entry->offset = src_entry->offset;
3167			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3168				/*
3169				 * MAP_ENTRY_VN_WRITECNT cannot
3170				 * indicate write reference from
3171				 * src_entry, since the entry is
3172				 * marked as needs copy.  Allocate a
3173				 * fake entry that is used to
3174				 * decrement object->un_pager.vnp.writecount
3175				 * at the appropriate time.  Attach
3176				 * fake_entry to the deferred list.
3177				 */
3178				fake_entry = vm_map_entry_create(dst_map);
3179				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3180				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3181				vm_object_reference(src_object);
3182				fake_entry->object.vm_object = src_object;
3183				fake_entry->start = src_entry->start;
3184				fake_entry->end = src_entry->end;
3185				fake_entry->next = curthread->td_map_def_user;
3186				curthread->td_map_def_user = fake_entry;
3187			}
3188		} else {
3189			dst_entry->object.vm_object = NULL;
3190			dst_entry->offset = 0;
3191			if (src_entry->cred != NULL) {
3192				dst_entry->cred = curthread->td_ucred;
3193				crhold(dst_entry->cred);
3194				*fork_charge += size;
3195			}
3196		}
3197
3198		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3199		    dst_entry->end - dst_entry->start, src_entry->start);
3200	} else {
3201		/*
3202		 * We don't want to make writeable wired pages copy-on-write.
3203		 * Immediately copy these pages into the new map by simulating
3204		 * page faults.  The new pages are pageable.
3205		 */
3206		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3207		    fork_charge);
3208	}
3209}
3210
3211/*
3212 * vmspace_map_entry_forked:
3213 * Update the newly-forked vmspace each time a map entry is inherited
3214 * or copied.  The values for vm_dsize and vm_tsize are approximate
3215 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3216 */
3217static void
3218vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3219    vm_map_entry_t entry)
3220{
3221	vm_size_t entrysize;
3222	vm_offset_t newend;
3223
3224	entrysize = entry->end - entry->start;
3225	vm2->vm_map.size += entrysize;
3226	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3227		vm2->vm_ssize += btoc(entrysize);
3228	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3229	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3230		newend = MIN(entry->end,
3231		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3232		vm2->vm_dsize += btoc(newend - entry->start);
3233	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3234	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3235		newend = MIN(entry->end,
3236		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3237		vm2->vm_tsize += btoc(newend - entry->start);
3238	}
3239}
3240
3241/*
3242 * vmspace_fork:
3243 * Create a new process vmspace structure and vm_map
3244 * based on those of an existing process.  The new map
3245 * is based on the old map, according to the inheritance
3246 * values on the regions in that map.
3247 *
3248 * XXX It might be worth coalescing the entries added to the new vmspace.
3249 *
3250 * The source map must not be locked.
3251 */
3252struct vmspace *
3253vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3254{
3255	struct vmspace *vm2;
3256	vm_map_t new_map, old_map;
3257	vm_map_entry_t new_entry, old_entry;
3258	vm_object_t object;
3259	int locked;
3260
3261	old_map = &vm1->vm_map;
3262	/* Copy immutable fields of vm1 to vm2. */
3263	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3264	if (vm2 == NULL)
3265		return (NULL);
3266	vm2->vm_taddr = vm1->vm_taddr;
3267	vm2->vm_daddr = vm1->vm_daddr;
3268	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3269	vm_map_lock(old_map);
3270	if (old_map->busy)
3271		vm_map_wait_busy(old_map);
3272	new_map = &vm2->vm_map;
3273	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3274	KASSERT(locked, ("vmspace_fork: lock failed"));
3275
3276	old_entry = old_map->header.next;
3277
3278	while (old_entry != &old_map->header) {
3279		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3280			panic("vm_map_fork: encountered a submap");
3281
3282		switch (old_entry->inheritance) {
3283		case VM_INHERIT_NONE:
3284			break;
3285
3286		case VM_INHERIT_SHARE:
3287			/*
3288			 * Clone the entry, creating the shared object if necessary.
3289			 */
3290			object = old_entry->object.vm_object;
3291			if (object == NULL) {
3292				object = vm_object_allocate(OBJT_DEFAULT,
3293					atop(old_entry->end - old_entry->start));
3294				old_entry->object.vm_object = object;
3295				old_entry->offset = 0;
3296				if (old_entry->cred != NULL) {
3297					object->cred = old_entry->cred;
3298					object->charge = old_entry->end -
3299					    old_entry->start;
3300					old_entry->cred = NULL;
3301				}
3302			}
3303
3304			/*
3305			 * Add the reference before calling vm_object_shadow
3306			 * to insure that a shadow object is created.
3307			 */
3308			vm_object_reference(object);
3309			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3310				vm_object_shadow(&old_entry->object.vm_object,
3311				    &old_entry->offset,
3312				    old_entry->end - old_entry->start);
3313				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3314				/* Transfer the second reference too. */
3315				vm_object_reference(
3316				    old_entry->object.vm_object);
3317
3318				/*
3319				 * As in vm_map_simplify_entry(), the
3320				 * vnode lock will not be acquired in
3321				 * this call to vm_object_deallocate().
3322				 */
3323				vm_object_deallocate(object);
3324				object = old_entry->object.vm_object;
3325			}
3326			VM_OBJECT_WLOCK(object);
3327			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3328			if (old_entry->cred != NULL) {
3329				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3330				object->cred = old_entry->cred;
3331				object->charge = old_entry->end - old_entry->start;
3332				old_entry->cred = NULL;
3333			}
3334
3335			/*
3336			 * Assert the correct state of the vnode
3337			 * v_writecount while the object is locked, to
3338			 * not relock it later for the assertion
3339			 * correctness.
3340			 */
3341			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3342			    object->type == OBJT_VNODE) {
3343				KASSERT(((struct vnode *)object->handle)->
3344				    v_writecount > 0,
3345				    ("vmspace_fork: v_writecount %p", object));
3346				KASSERT(object->un_pager.vnp.writemappings > 0,
3347				    ("vmspace_fork: vnp.writecount %p",
3348				    object));
3349			}
3350			VM_OBJECT_WUNLOCK(object);
3351
3352			/*
3353			 * Clone the entry, referencing the shared object.
3354			 */
3355			new_entry = vm_map_entry_create(new_map);
3356			*new_entry = *old_entry;
3357			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3358			    MAP_ENTRY_IN_TRANSITION);
3359			new_entry->wiring_thread = NULL;
3360			new_entry->wired_count = 0;
3361			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3362				vnode_pager_update_writecount(object,
3363				    new_entry->start, new_entry->end);
3364			}
3365
3366			/*
3367			 * Insert the entry into the new map -- we know we're
3368			 * inserting at the end of the new map.
3369			 */
3370			vm_map_entry_link(new_map, new_map->header.prev,
3371			    new_entry);
3372			vmspace_map_entry_forked(vm1, vm2, new_entry);
3373
3374			/*
3375			 * Update the physical map
3376			 */
3377			pmap_copy(new_map->pmap, old_map->pmap,
3378			    new_entry->start,
3379			    (old_entry->end - old_entry->start),
3380			    old_entry->start);
3381			break;
3382
3383		case VM_INHERIT_COPY:
3384			/*
3385			 * Clone the entry and link into the map.
3386			 */
3387			new_entry = vm_map_entry_create(new_map);
3388			*new_entry = *old_entry;
3389			/*
3390			 * Copied entry is COW over the old object.
3391			 */
3392			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3393			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3394			new_entry->wiring_thread = NULL;
3395			new_entry->wired_count = 0;
3396			new_entry->object.vm_object = NULL;
3397			new_entry->cred = NULL;
3398			vm_map_entry_link(new_map, new_map->header.prev,
3399			    new_entry);
3400			vmspace_map_entry_forked(vm1, vm2, new_entry);
3401			vm_map_copy_entry(old_map, new_map, old_entry,
3402			    new_entry, fork_charge);
3403			break;
3404
3405		case VM_INHERIT_ZERO:
3406			/*
3407			 * Create a new anonymous mapping entry modelled from
3408			 * the old one.
3409			 */
3410			new_entry = vm_map_entry_create(new_map);
3411			memset(new_entry, 0, sizeof(*new_entry));
3412
3413			new_entry->start = old_entry->start;
3414			new_entry->end = old_entry->end;
3415			new_entry->avail_ssize = old_entry->avail_ssize;
3416			new_entry->eflags = old_entry->eflags &
3417			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3418			    MAP_ENTRY_VN_WRITECNT);
3419			new_entry->protection = old_entry->protection;
3420			new_entry->max_protection = old_entry->max_protection;
3421			new_entry->inheritance = VM_INHERIT_ZERO;
3422
3423			vm_map_entry_link(new_map, new_map->header.prev,
3424			    new_entry);
3425			vmspace_map_entry_forked(vm1, vm2, new_entry);
3426
3427			new_entry->cred = curthread->td_ucred;
3428			crhold(new_entry->cred);
3429			*fork_charge += (new_entry->end - new_entry->start);
3430
3431			break;
3432		}
3433		old_entry = old_entry->next;
3434	}
3435	/*
3436	 * Use inlined vm_map_unlock() to postpone handling the deferred
3437	 * map entries, which cannot be done until both old_map and
3438	 * new_map locks are released.
3439	 */
3440	sx_xunlock(&old_map->lock);
3441	sx_xunlock(&new_map->lock);
3442	vm_map_process_deferred();
3443
3444	return (vm2);
3445}
3446
3447int
3448vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3449    vm_prot_t prot, vm_prot_t max, int cow)
3450{
3451	vm_size_t growsize, init_ssize;
3452	rlim_t lmemlim, vmemlim;
3453	int rv;
3454
3455	growsize = sgrowsiz;
3456	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3457	vm_map_lock(map);
3458	PROC_LOCK(curproc);
3459	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3460	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3461	PROC_UNLOCK(curproc);
3462	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3463		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3464			rv = KERN_NO_SPACE;
3465			goto out;
3466		}
3467	}
3468	/* If we would blow our VMEM resource limit, no go */
3469	if (map->size + init_ssize > vmemlim) {
3470		rv = KERN_NO_SPACE;
3471		goto out;
3472	}
3473	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3474	    max, cow);
3475out:
3476	vm_map_unlock(map);
3477	return (rv);
3478}
3479
3480static int
3481vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3482    vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3483{
3484	vm_map_entry_t new_entry, prev_entry;
3485	vm_offset_t bot, top;
3486	vm_size_t init_ssize;
3487	int orient, rv;
3488
3489	/*
3490	 * The stack orientation is piggybacked with the cow argument.
3491	 * Extract it into orient and mask the cow argument so that we
3492	 * don't pass it around further.
3493	 * NOTE: We explicitly allow bi-directional stacks.
3494	 */
3495	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3496	KASSERT(orient != 0, ("No stack grow direction"));
3497
3498	if (addrbos < vm_map_min(map) ||
3499	    addrbos > vm_map_max(map) ||
3500	    addrbos + max_ssize < addrbos)
3501		return (KERN_NO_SPACE);
3502
3503	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3504
3505	/* If addr is already mapped, no go */
3506	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3507		return (KERN_NO_SPACE);
3508
3509	/*
3510	 * If we can't accomodate max_ssize in the current mapping, no go.
3511	 * However, we need to be aware that subsequent user mappings might
3512	 * map into the space we have reserved for stack, and currently this
3513	 * space is not protected.
3514	 *
3515	 * Hopefully we will at least detect this condition when we try to
3516	 * grow the stack.
3517	 */
3518	if ((prev_entry->next != &map->header) &&
3519	    (prev_entry->next->start < addrbos + max_ssize))
3520		return (KERN_NO_SPACE);
3521
3522	/*
3523	 * We initially map a stack of only init_ssize.  We will grow as
3524	 * needed later.  Depending on the orientation of the stack (i.e.
3525	 * the grow direction) we either map at the top of the range, the
3526	 * bottom of the range or in the middle.
3527	 *
3528	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3529	 * and cow to be 0.  Possibly we should eliminate these as input
3530	 * parameters, and just pass these values here in the insert call.
3531	 */
3532	if (orient == MAP_STACK_GROWS_DOWN)
3533		bot = addrbos + max_ssize - init_ssize;
3534	else if (orient == MAP_STACK_GROWS_UP)
3535		bot = addrbos;
3536	else
3537		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3538	top = bot + init_ssize;
3539	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3540
3541	/* Now set the avail_ssize amount. */
3542	if (rv == KERN_SUCCESS) {
3543		new_entry = prev_entry->next;
3544		if (new_entry->end != top || new_entry->start != bot)
3545			panic("Bad entry start/end for new stack entry");
3546
3547		new_entry->avail_ssize = max_ssize - init_ssize;
3548		KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3549		    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3550		    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3551		KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3552		    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3553		    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3554	}
3555
3556	return (rv);
3557}
3558
3559static int stack_guard_page = 0;
3560TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3561SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3562    &stack_guard_page, 0,
3563    "Insert stack guard page ahead of the growable segments.");
3564
3565/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3566 * desired address is already mapped, or if we successfully grow
3567 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3568 * stack range (this is strange, but preserves compatibility with
3569 * the grow function in vm_machdep.c).
3570 */
3571int
3572vm_map_growstack(struct proc *p, vm_offset_t addr)
3573{
3574	vm_map_entry_t next_entry, prev_entry;
3575	vm_map_entry_t new_entry, stack_entry;
3576	struct vmspace *vm = p->p_vmspace;
3577	vm_map_t map = &vm->vm_map;
3578	vm_offset_t end;
3579	vm_size_t growsize;
3580	size_t grow_amount, max_grow;
3581	rlim_t lmemlim, stacklim, vmemlim;
3582	int is_procstack, rv;
3583	struct ucred *cred;
3584#ifdef notyet
3585	uint64_t limit;
3586#endif
3587#ifdef RACCT
3588	int error;
3589#endif
3590
3591Retry:
3592	PROC_LOCK(p);
3593	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3594	stacklim = lim_cur(p, RLIMIT_STACK);
3595	vmemlim = lim_cur(p, RLIMIT_VMEM);
3596	PROC_UNLOCK(p);
3597
3598	vm_map_lock_read(map);
3599
3600	/* If addr is already in the entry range, no need to grow.*/
3601	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3602		vm_map_unlock_read(map);
3603		return (KERN_SUCCESS);
3604	}
3605
3606	next_entry = prev_entry->next;
3607	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3608		/*
3609		 * This entry does not grow upwards. Since the address lies
3610		 * beyond this entry, the next entry (if one exists) has to
3611		 * be a downward growable entry. The entry list header is
3612		 * never a growable entry, so it suffices to check the flags.
3613		 */
3614		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3615			vm_map_unlock_read(map);
3616			return (KERN_SUCCESS);
3617		}
3618		stack_entry = next_entry;
3619	} else {
3620		/*
3621		 * This entry grows upward. If the next entry does not at
3622		 * least grow downwards, this is the entry we need to grow.
3623		 * otherwise we have two possible choices and we have to
3624		 * select one.
3625		 */
3626		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3627			/*
3628			 * We have two choices; grow the entry closest to
3629			 * the address to minimize the amount of growth.
3630			 */
3631			if (addr - prev_entry->end <= next_entry->start - addr)
3632				stack_entry = prev_entry;
3633			else
3634				stack_entry = next_entry;
3635		} else
3636			stack_entry = prev_entry;
3637	}
3638
3639	if (stack_entry == next_entry) {
3640		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3641		KASSERT(addr < stack_entry->start, ("foo"));
3642		end = (prev_entry != &map->header) ? prev_entry->end :
3643		    stack_entry->start - stack_entry->avail_ssize;
3644		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3645		max_grow = stack_entry->start - end;
3646	} else {
3647		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3648		KASSERT(addr >= stack_entry->end, ("foo"));
3649		end = (next_entry != &map->header) ? next_entry->start :
3650		    stack_entry->end + stack_entry->avail_ssize;
3651		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3652		max_grow = end - stack_entry->end;
3653	}
3654
3655	if (grow_amount > stack_entry->avail_ssize) {
3656		vm_map_unlock_read(map);
3657		return (KERN_NO_SPACE);
3658	}
3659
3660	/*
3661	 * If there is no longer enough space between the entries nogo, and
3662	 * adjust the available space.  Note: this  should only happen if the
3663	 * user has mapped into the stack area after the stack was created,
3664	 * and is probably an error.
3665	 *
3666	 * This also effectively destroys any guard page the user might have
3667	 * intended by limiting the stack size.
3668	 */
3669	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3670		if (vm_map_lock_upgrade(map))
3671			goto Retry;
3672
3673		stack_entry->avail_ssize = max_grow;
3674
3675		vm_map_unlock(map);
3676		return (KERN_NO_SPACE);
3677	}
3678
3679	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
3680	    addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
3681
3682	/*
3683	 * If this is the main process stack, see if we're over the stack
3684	 * limit.
3685	 */
3686	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3687		vm_map_unlock_read(map);
3688		return (KERN_NO_SPACE);
3689	}
3690#ifdef RACCT
3691	if (racct_enable) {
3692		PROC_LOCK(p);
3693		if (is_procstack && racct_set(p, RACCT_STACK,
3694		    ctob(vm->vm_ssize) + grow_amount)) {
3695			PROC_UNLOCK(p);
3696			vm_map_unlock_read(map);
3697			return (KERN_NO_SPACE);
3698		}
3699		PROC_UNLOCK(p);
3700	}
3701#endif
3702
3703	/* Round up the grow amount modulo sgrowsiz */
3704	growsize = sgrowsiz;
3705	grow_amount = roundup(grow_amount, growsize);
3706	if (grow_amount > stack_entry->avail_ssize)
3707		grow_amount = stack_entry->avail_ssize;
3708	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3709		grow_amount = trunc_page((vm_size_t)stacklim) -
3710		    ctob(vm->vm_ssize);
3711	}
3712#ifdef notyet
3713	PROC_LOCK(p);
3714	limit = racct_get_available(p, RACCT_STACK);
3715	PROC_UNLOCK(p);
3716	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3717		grow_amount = limit - ctob(vm->vm_ssize);
3718#endif
3719	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3720		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3721			vm_map_unlock_read(map);
3722			rv = KERN_NO_SPACE;
3723			goto out;
3724		}
3725#ifdef RACCT
3726		if (racct_enable) {
3727			PROC_LOCK(p);
3728			if (racct_set(p, RACCT_MEMLOCK,
3729			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3730				PROC_UNLOCK(p);
3731				vm_map_unlock_read(map);
3732				rv = KERN_NO_SPACE;
3733				goto out;
3734			}
3735			PROC_UNLOCK(p);
3736		}
3737#endif
3738	}
3739	/* If we would blow our VMEM resource limit, no go */
3740	if (map->size + grow_amount > vmemlim) {
3741		vm_map_unlock_read(map);
3742		rv = KERN_NO_SPACE;
3743		goto out;
3744	}
3745#ifdef RACCT
3746	if (racct_enable) {
3747		PROC_LOCK(p);
3748		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3749			PROC_UNLOCK(p);
3750			vm_map_unlock_read(map);
3751			rv = KERN_NO_SPACE;
3752			goto out;
3753		}
3754		PROC_UNLOCK(p);
3755	}
3756#endif
3757
3758	if (vm_map_lock_upgrade(map))
3759		goto Retry;
3760
3761	if (stack_entry == next_entry) {
3762		/*
3763		 * Growing downward.
3764		 */
3765		/* Get the preliminary new entry start value */
3766		addr = stack_entry->start - grow_amount;
3767
3768		/*
3769		 * If this puts us into the previous entry, cut back our
3770		 * growth to the available space. Also, see the note above.
3771		 */
3772		if (addr < end) {
3773			stack_entry->avail_ssize = max_grow;
3774			addr = end;
3775			if (stack_guard_page)
3776				addr += PAGE_SIZE;
3777		}
3778
3779		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3780		    next_entry->protection, next_entry->max_protection,
3781		    MAP_STACK_GROWS_DOWN);
3782
3783		/* Adjust the available stack space by the amount we grew. */
3784		if (rv == KERN_SUCCESS) {
3785			new_entry = prev_entry->next;
3786			KASSERT(new_entry == stack_entry->prev, ("foo"));
3787			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3788			KASSERT(new_entry->start == addr, ("foo"));
3789			KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3790			    0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3791			grow_amount = new_entry->end - new_entry->start;
3792			new_entry->avail_ssize = stack_entry->avail_ssize -
3793			    grow_amount;
3794			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3795		}
3796	} else {
3797		/*
3798		 * Growing upward.
3799		 */
3800		addr = stack_entry->end + grow_amount;
3801
3802		/*
3803		 * If this puts us into the next entry, cut back our growth
3804		 * to the available space. Also, see the note above.
3805		 */
3806		if (addr > end) {
3807			stack_entry->avail_ssize = end - stack_entry->end;
3808			addr = end;
3809			if (stack_guard_page)
3810				addr -= PAGE_SIZE;
3811		}
3812
3813		grow_amount = addr - stack_entry->end;
3814		cred = stack_entry->cred;
3815		if (cred == NULL && stack_entry->object.vm_object != NULL)
3816			cred = stack_entry->object.vm_object->cred;
3817		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3818			rv = KERN_NO_SPACE;
3819		/* Grow the underlying object if applicable. */
3820		else if (stack_entry->object.vm_object == NULL ||
3821		    vm_object_coalesce(stack_entry->object.vm_object,
3822		    stack_entry->offset,
3823		    (vm_size_t)(stack_entry->end - stack_entry->start),
3824		    (vm_size_t)grow_amount, cred != NULL)) {
3825			map->size += (addr - stack_entry->end);
3826			/* Update the current entry. */
3827			stack_entry->end = addr;
3828			stack_entry->avail_ssize -= grow_amount;
3829			vm_map_entry_resize_free(map, stack_entry);
3830			rv = KERN_SUCCESS;
3831
3832			if (next_entry != &map->header)
3833				vm_map_clip_start(map, next_entry, addr);
3834		} else
3835			rv = KERN_FAILURE;
3836	}
3837
3838	if (rv == KERN_SUCCESS && is_procstack)
3839		vm->vm_ssize += btoc(grow_amount);
3840
3841	vm_map_unlock(map);
3842
3843	/*
3844	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3845	 */
3846	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3847		vm_map_wire(map,
3848		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3849		    (stack_entry == next_entry) ? stack_entry->start : addr,
3850		    (p->p_flag & P_SYSTEM)
3851		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3852		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3853	}
3854
3855out:
3856#ifdef RACCT
3857	if (racct_enable && rv != KERN_SUCCESS) {
3858		PROC_LOCK(p);
3859		error = racct_set(p, RACCT_VMEM, map->size);
3860		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3861		if (!old_mlock) {
3862			error = racct_set(p, RACCT_MEMLOCK,
3863			    ptoa(pmap_wired_count(map->pmap)));
3864			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3865		}
3866	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3867		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3868		PROC_UNLOCK(p);
3869	}
3870#endif
3871
3872	return (rv);
3873}
3874
3875/*
3876 * Unshare the specified VM space for exec.  If other processes are
3877 * mapped to it, then create a new one.  The new vmspace is null.
3878 */
3879int
3880vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3881{
3882	struct vmspace *oldvmspace = p->p_vmspace;
3883	struct vmspace *newvmspace;
3884
3885	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3886	    ("vmspace_exec recursed"));
3887	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3888	if (newvmspace == NULL)
3889		return (ENOMEM);
3890	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3891	/*
3892	 * This code is written like this for prototype purposes.  The
3893	 * goal is to avoid running down the vmspace here, but let the
3894	 * other process's that are still using the vmspace to finally
3895	 * run it down.  Even though there is little or no chance of blocking
3896	 * here, it is a good idea to keep this form for future mods.
3897	 */
3898	PROC_VMSPACE_LOCK(p);
3899	p->p_vmspace = newvmspace;
3900	PROC_VMSPACE_UNLOCK(p);
3901	if (p == curthread->td_proc)
3902		pmap_activate(curthread);
3903	curthread->td_pflags |= TDP_EXECVMSPC;
3904	return (0);
3905}
3906
3907/*
3908 * Unshare the specified VM space for forcing COW.  This
3909 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3910 */
3911int
3912vmspace_unshare(struct proc *p)
3913{
3914	struct vmspace *oldvmspace = p->p_vmspace;
3915	struct vmspace *newvmspace;
3916	vm_ooffset_t fork_charge;
3917
3918	if (oldvmspace->vm_refcnt == 1)
3919		return (0);
3920	fork_charge = 0;
3921	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3922	if (newvmspace == NULL)
3923		return (ENOMEM);
3924	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3925		vmspace_free(newvmspace);
3926		return (ENOMEM);
3927	}
3928	PROC_VMSPACE_LOCK(p);
3929	p->p_vmspace = newvmspace;
3930	PROC_VMSPACE_UNLOCK(p);
3931	if (p == curthread->td_proc)
3932		pmap_activate(curthread);
3933	vmspace_free(oldvmspace);
3934	return (0);
3935}
3936
3937/*
3938 *	vm_map_lookup:
3939 *
3940 *	Finds the VM object, offset, and
3941 *	protection for a given virtual address in the
3942 *	specified map, assuming a page fault of the
3943 *	type specified.
3944 *
3945 *	Leaves the map in question locked for read; return
3946 *	values are guaranteed until a vm_map_lookup_done
3947 *	call is performed.  Note that the map argument
3948 *	is in/out; the returned map must be used in
3949 *	the call to vm_map_lookup_done.
3950 *
3951 *	A handle (out_entry) is returned for use in
3952 *	vm_map_lookup_done, to make that fast.
3953 *
3954 *	If a lookup is requested with "write protection"
3955 *	specified, the map may be changed to perform virtual
3956 *	copying operations, although the data referenced will
3957 *	remain the same.
3958 */
3959int
3960vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3961	      vm_offset_t vaddr,
3962	      vm_prot_t fault_typea,
3963	      vm_map_entry_t *out_entry,	/* OUT */
3964	      vm_object_t *object,		/* OUT */
3965	      vm_pindex_t *pindex,		/* OUT */
3966	      vm_prot_t *out_prot,		/* OUT */
3967	      boolean_t *wired)			/* OUT */
3968{
3969	vm_map_entry_t entry;
3970	vm_map_t map = *var_map;
3971	vm_prot_t prot;
3972	vm_prot_t fault_type = fault_typea;
3973	vm_object_t eobject;
3974	vm_size_t size;
3975	struct ucred *cred;
3976
3977RetryLookup:;
3978
3979	vm_map_lock_read(map);
3980
3981	/*
3982	 * Lookup the faulting address.
3983	 */
3984	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3985		vm_map_unlock_read(map);
3986		return (KERN_INVALID_ADDRESS);
3987	}
3988
3989	entry = *out_entry;
3990
3991	/*
3992	 * Handle submaps.
3993	 */
3994	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3995		vm_map_t old_map = map;
3996
3997		*var_map = map = entry->object.sub_map;
3998		vm_map_unlock_read(old_map);
3999		goto RetryLookup;
4000	}
4001
4002	/*
4003	 * Check whether this task is allowed to have this page.
4004	 */
4005	prot = entry->protection;
4006	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4007	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4008		vm_map_unlock_read(map);
4009		return (KERN_PROTECTION_FAILURE);
4010	}
4011	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4012	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4013	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4014	    ("entry %p flags %x", entry, entry->eflags));
4015	if ((fault_typea & VM_PROT_COPY) != 0 &&
4016	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4017	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4018		vm_map_unlock_read(map);
4019		return (KERN_PROTECTION_FAILURE);
4020	}
4021
4022	/*
4023	 * If this page is not pageable, we have to get it for all possible
4024	 * accesses.
4025	 */
4026	*wired = (entry->wired_count != 0);
4027	if (*wired)
4028		fault_type = entry->protection;
4029	size = entry->end - entry->start;
4030	/*
4031	 * If the entry was copy-on-write, we either ...
4032	 */
4033	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4034		/*
4035		 * If we want to write the page, we may as well handle that
4036		 * now since we've got the map locked.
4037		 *
4038		 * If we don't need to write the page, we just demote the
4039		 * permissions allowed.
4040		 */
4041		if ((fault_type & VM_PROT_WRITE) != 0 ||
4042		    (fault_typea & VM_PROT_COPY) != 0) {
4043			/*
4044			 * Make a new object, and place it in the object
4045			 * chain.  Note that no new references have appeared
4046			 * -- one just moved from the map to the new
4047			 * object.
4048			 */
4049			if (vm_map_lock_upgrade(map))
4050				goto RetryLookup;
4051
4052			if (entry->cred == NULL) {
4053				/*
4054				 * The debugger owner is charged for
4055				 * the memory.
4056				 */
4057				cred = curthread->td_ucred;
4058				crhold(cred);
4059				if (!swap_reserve_by_cred(size, cred)) {
4060					crfree(cred);
4061					vm_map_unlock(map);
4062					return (KERN_RESOURCE_SHORTAGE);
4063				}
4064				entry->cred = cred;
4065			}
4066			vm_object_shadow(&entry->object.vm_object,
4067			    &entry->offset, size);
4068			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4069			eobject = entry->object.vm_object;
4070			if (eobject->cred != NULL) {
4071				/*
4072				 * The object was not shadowed.
4073				 */
4074				swap_release_by_cred(size, entry->cred);
4075				crfree(entry->cred);
4076				entry->cred = NULL;
4077			} else if (entry->cred != NULL) {
4078				VM_OBJECT_WLOCK(eobject);
4079				eobject->cred = entry->cred;
4080				eobject->charge = size;
4081				VM_OBJECT_WUNLOCK(eobject);
4082				entry->cred = NULL;
4083			}
4084
4085			vm_map_lock_downgrade(map);
4086		} else {
4087			/*
4088			 * We're attempting to read a copy-on-write page --
4089			 * don't allow writes.
4090			 */
4091			prot &= ~VM_PROT_WRITE;
4092		}
4093	}
4094
4095	/*
4096	 * Create an object if necessary.
4097	 */
4098	if (entry->object.vm_object == NULL &&
4099	    !map->system_map) {
4100		if (vm_map_lock_upgrade(map))
4101			goto RetryLookup;
4102		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4103		    atop(size));
4104		entry->offset = 0;
4105		if (entry->cred != NULL) {
4106			VM_OBJECT_WLOCK(entry->object.vm_object);
4107			entry->object.vm_object->cred = entry->cred;
4108			entry->object.vm_object->charge = size;
4109			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4110			entry->cred = NULL;
4111		}
4112		vm_map_lock_downgrade(map);
4113	}
4114
4115	/*
4116	 * Return the object/offset from this entry.  If the entry was
4117	 * copy-on-write or empty, it has been fixed up.
4118	 */
4119	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4120	*object = entry->object.vm_object;
4121
4122	*out_prot = prot;
4123	return (KERN_SUCCESS);
4124}
4125
4126/*
4127 *	vm_map_lookup_locked:
4128 *
4129 *	Lookup the faulting address.  A version of vm_map_lookup that returns
4130 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4131 */
4132int
4133vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4134		     vm_offset_t vaddr,
4135		     vm_prot_t fault_typea,
4136		     vm_map_entry_t *out_entry,	/* OUT */
4137		     vm_object_t *object,	/* OUT */
4138		     vm_pindex_t *pindex,	/* OUT */
4139		     vm_prot_t *out_prot,	/* OUT */
4140		     boolean_t *wired)		/* OUT */
4141{
4142	vm_map_entry_t entry;
4143	vm_map_t map = *var_map;
4144	vm_prot_t prot;
4145	vm_prot_t fault_type = fault_typea;
4146
4147	/*
4148	 * Lookup the faulting address.
4149	 */
4150	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4151		return (KERN_INVALID_ADDRESS);
4152
4153	entry = *out_entry;
4154
4155	/*
4156	 * Fail if the entry refers to a submap.
4157	 */
4158	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4159		return (KERN_FAILURE);
4160
4161	/*
4162	 * Check whether this task is allowed to have this page.
4163	 */
4164	prot = entry->protection;
4165	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4166	if ((fault_type & prot) != fault_type)
4167		return (KERN_PROTECTION_FAILURE);
4168
4169	/*
4170	 * If this page is not pageable, we have to get it for all possible
4171	 * accesses.
4172	 */
4173	*wired = (entry->wired_count != 0);
4174	if (*wired)
4175		fault_type = entry->protection;
4176
4177	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4178		/*
4179		 * Fail if the entry was copy-on-write for a write fault.
4180		 */
4181		if (fault_type & VM_PROT_WRITE)
4182			return (KERN_FAILURE);
4183		/*
4184		 * We're attempting to read a copy-on-write page --
4185		 * don't allow writes.
4186		 */
4187		prot &= ~VM_PROT_WRITE;
4188	}
4189
4190	/*
4191	 * Fail if an object should be created.
4192	 */
4193	if (entry->object.vm_object == NULL && !map->system_map)
4194		return (KERN_FAILURE);
4195
4196	/*
4197	 * Return the object/offset from this entry.  If the entry was
4198	 * copy-on-write or empty, it has been fixed up.
4199	 */
4200	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4201	*object = entry->object.vm_object;
4202
4203	*out_prot = prot;
4204	return (KERN_SUCCESS);
4205}
4206
4207/*
4208 *	vm_map_lookup_done:
4209 *
4210 *	Releases locks acquired by a vm_map_lookup
4211 *	(according to the handle returned by that lookup).
4212 */
4213void
4214vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4215{
4216	/*
4217	 * Unlock the main-level map
4218	 */
4219	vm_map_unlock_read(map);
4220}
4221
4222#include "opt_ddb.h"
4223#ifdef DDB
4224#include <sys/kernel.h>
4225
4226#include <ddb/ddb.h>
4227
4228static void
4229vm_map_print(vm_map_t map)
4230{
4231	vm_map_entry_t entry;
4232
4233	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4234	    (void *)map,
4235	    (void *)map->pmap, map->nentries, map->timestamp);
4236
4237	db_indent += 2;
4238	for (entry = map->header.next; entry != &map->header;
4239	    entry = entry->next) {
4240		db_iprintf("map entry %p: start=%p, end=%p\n",
4241		    (void *)entry, (void *)entry->start, (void *)entry->end);
4242		{
4243			static char *inheritance_name[4] =
4244			{"share", "copy", "none", "donate_copy"};
4245
4246			db_iprintf(" prot=%x/%x/%s",
4247			    entry->protection,
4248			    entry->max_protection,
4249			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4250			if (entry->wired_count != 0)
4251				db_printf(", wired");
4252		}
4253		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4254			db_printf(", share=%p, offset=0x%jx\n",
4255			    (void *)entry->object.sub_map,
4256			    (uintmax_t)entry->offset);
4257			if ((entry->prev == &map->header) ||
4258			    (entry->prev->object.sub_map !=
4259				entry->object.sub_map)) {
4260				db_indent += 2;
4261				vm_map_print((vm_map_t)entry->object.sub_map);
4262				db_indent -= 2;
4263			}
4264		} else {
4265			if (entry->cred != NULL)
4266				db_printf(", ruid %d", entry->cred->cr_ruid);
4267			db_printf(", object=%p, offset=0x%jx",
4268			    (void *)entry->object.vm_object,
4269			    (uintmax_t)entry->offset);
4270			if (entry->object.vm_object && entry->object.vm_object->cred)
4271				db_printf(", obj ruid %d charge %jx",
4272				    entry->object.vm_object->cred->cr_ruid,
4273				    (uintmax_t)entry->object.vm_object->charge);
4274			if (entry->eflags & MAP_ENTRY_COW)
4275				db_printf(", copy (%s)",
4276				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4277			db_printf("\n");
4278
4279			if ((entry->prev == &map->header) ||
4280			    (entry->prev->object.vm_object !=
4281				entry->object.vm_object)) {
4282				db_indent += 2;
4283				vm_object_print((db_expr_t)(intptr_t)
4284						entry->object.vm_object,
4285						0, 0, (char *)0);
4286				db_indent -= 2;
4287			}
4288		}
4289	}
4290	db_indent -= 2;
4291}
4292
4293DB_SHOW_COMMAND(map, map)
4294{
4295
4296	if (!have_addr) {
4297		db_printf("usage: show map <addr>\n");
4298		return;
4299	}
4300	vm_map_print((vm_map_t)addr);
4301}
4302
4303DB_SHOW_COMMAND(procvm, procvm)
4304{
4305	struct proc *p;
4306
4307	if (have_addr) {
4308		p = db_lookup_proc(addr);
4309	} else {
4310		p = curproc;
4311	}
4312
4313	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4314	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4315	    (void *)vmspace_pmap(p->p_vmspace));
4316
4317	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4318}
4319
4320#endif /* DDB */
4321