vm_map.c revision 312397
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_map.c 312397 2017-01-18 22:40:22Z jhb $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136#ifdef INVARIANTS
137static void vm_map_zdtor(void *mem, int size, void *arg);
138static void vmspace_zdtor(void *mem, int size, void *arg);
139#endif
140static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141    vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142    int cow);
143static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144    vm_offset_t failed_addr);
145
146#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
147    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
148     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
149
150/*
151 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
152 * stable.
153 */
154#define PROC_VMSPACE_LOCK(p) do { } while (0)
155#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
156
157/*
158 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
159 *
160 *	Asserts that the starting and ending region
161 *	addresses fall within the valid range of the map.
162 */
163#define	VM_MAP_RANGE_CHECK(map, start, end)		\
164		{					\
165		if (start < vm_map_min(map))		\
166			start = vm_map_min(map);	\
167		if (end > vm_map_max(map))		\
168			end = vm_map_max(map);		\
169		if (start > end)			\
170			start = end;			\
171		}
172
173/*
174 *	vm_map_startup:
175 *
176 *	Initialize the vm_map module.  Must be called before
177 *	any other vm_map routines.
178 *
179 *	Map and entry structures are allocated from the general
180 *	purpose memory pool with some exceptions:
181 *
182 *	- The kernel map and kmem submap are allocated statically.
183 *	- Kernel map entries are allocated out of a static pool.
184 *
185 *	These restrictions are necessary since malloc() uses the
186 *	maps and requires map entries.
187 */
188
189void
190vm_map_startup(void)
191{
192	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
193	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
194#ifdef INVARIANTS
195	    vm_map_zdtor,
196#else
197	    NULL,
198#endif
199	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200	uma_prealloc(mapzone, MAX_KMAP);
201	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
202	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
203	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
204	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
205	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
206	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
207#ifdef INVARIANTS
208	    vmspace_zdtor,
209#else
210	    NULL,
211#endif
212	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
213}
214
215static int
216vmspace_zinit(void *mem, int size, int flags)
217{
218	struct vmspace *vm;
219
220	vm = (struct vmspace *)mem;
221
222	vm->vm_map.pmap = NULL;
223	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
224	PMAP_LOCK_INIT(vmspace_pmap(vm));
225	return (0);
226}
227
228static int
229vm_map_zinit(void *mem, int size, int flags)
230{
231	vm_map_t map;
232
233	map = (vm_map_t)mem;
234	memset(map, 0, sizeof(*map));
235	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
236	sx_init(&map->lock, "vm map (user)");
237	return (0);
238}
239
240#ifdef INVARIANTS
241static void
242vmspace_zdtor(void *mem, int size, void *arg)
243{
244	struct vmspace *vm;
245
246	vm = (struct vmspace *)mem;
247
248	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
249}
250static void
251vm_map_zdtor(void *mem, int size, void *arg)
252{
253	vm_map_t map;
254
255	map = (vm_map_t)mem;
256	KASSERT(map->nentries == 0,
257	    ("map %p nentries == %d on free.",
258	    map, map->nentries));
259	KASSERT(map->size == 0,
260	    ("map %p size == %lu on free.",
261	    map, (unsigned long)map->size));
262}
263#endif	/* INVARIANTS */
264
265/*
266 * Allocate a vmspace structure, including a vm_map and pmap,
267 * and initialize those structures.  The refcnt is set to 1.
268 *
269 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
270 */
271struct vmspace *
272vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
273{
274	struct vmspace *vm;
275
276	vm = uma_zalloc(vmspace_zone, M_WAITOK);
277
278	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
279
280	if (pinit == NULL)
281		pinit = &pmap_pinit;
282
283	if (!pinit(vmspace_pmap(vm))) {
284		uma_zfree(vmspace_zone, vm);
285		return (NULL);
286	}
287	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
288	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
289	vm->vm_refcnt = 1;
290	vm->vm_shm = NULL;
291	vm->vm_swrss = 0;
292	vm->vm_tsize = 0;
293	vm->vm_dsize = 0;
294	vm->vm_ssize = 0;
295	vm->vm_taddr = 0;
296	vm->vm_daddr = 0;
297	vm->vm_maxsaddr = 0;
298	return (vm);
299}
300
301#ifdef RACCT
302static void
303vmspace_container_reset(struct proc *p)
304{
305
306	PROC_LOCK(p);
307	racct_set(p, RACCT_DATA, 0);
308	racct_set(p, RACCT_STACK, 0);
309	racct_set(p, RACCT_RSS, 0);
310	racct_set(p, RACCT_MEMLOCK, 0);
311	racct_set(p, RACCT_VMEM, 0);
312	PROC_UNLOCK(p);
313}
314#endif
315
316static inline void
317vmspace_dofree(struct vmspace *vm)
318{
319
320	CTR1(KTR_VM, "vmspace_free: %p", vm);
321
322	/*
323	 * Make sure any SysV shm is freed, it might not have been in
324	 * exit1().
325	 */
326	shmexit(vm);
327
328	/*
329	 * Lock the map, to wait out all other references to it.
330	 * Delete all of the mappings and pages they hold, then call
331	 * the pmap module to reclaim anything left.
332	 */
333	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
334	    vm->vm_map.max_offset);
335
336	pmap_release(vmspace_pmap(vm));
337	vm->vm_map.pmap = NULL;
338	uma_zfree(vmspace_zone, vm);
339}
340
341void
342vmspace_free(struct vmspace *vm)
343{
344
345	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
346	    "vmspace_free() called with non-sleepable lock held");
347
348	if (vm->vm_refcnt == 0)
349		panic("vmspace_free: attempt to free already freed vmspace");
350
351	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
352		vmspace_dofree(vm);
353}
354
355void
356vmspace_exitfree(struct proc *p)
357{
358	struct vmspace *vm;
359
360	PROC_VMSPACE_LOCK(p);
361	vm = p->p_vmspace;
362	p->p_vmspace = NULL;
363	PROC_VMSPACE_UNLOCK(p);
364	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
365	vmspace_free(vm);
366}
367
368void
369vmspace_exit(struct thread *td)
370{
371	int refcnt;
372	struct vmspace *vm;
373	struct proc *p;
374
375	/*
376	 * Release user portion of address space.
377	 * This releases references to vnodes,
378	 * which could cause I/O if the file has been unlinked.
379	 * Need to do this early enough that we can still sleep.
380	 *
381	 * The last exiting process to reach this point releases as
382	 * much of the environment as it can. vmspace_dofree() is the
383	 * slower fallback in case another process had a temporary
384	 * reference to the vmspace.
385	 */
386
387	p = td->td_proc;
388	vm = p->p_vmspace;
389	atomic_add_int(&vmspace0.vm_refcnt, 1);
390	do {
391		refcnt = vm->vm_refcnt;
392		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
393			/* Switch now since other proc might free vmspace */
394			PROC_VMSPACE_LOCK(p);
395			p->p_vmspace = &vmspace0;
396			PROC_VMSPACE_UNLOCK(p);
397			pmap_activate(td);
398		}
399	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
400	if (refcnt == 1) {
401		if (p->p_vmspace != vm) {
402			/* vmspace not yet freed, switch back */
403			PROC_VMSPACE_LOCK(p);
404			p->p_vmspace = vm;
405			PROC_VMSPACE_UNLOCK(p);
406			pmap_activate(td);
407		}
408		pmap_remove_pages(vmspace_pmap(vm));
409		/* Switch now since this proc will free vmspace */
410		PROC_VMSPACE_LOCK(p);
411		p->p_vmspace = &vmspace0;
412		PROC_VMSPACE_UNLOCK(p);
413		pmap_activate(td);
414		vmspace_dofree(vm);
415	}
416#ifdef RACCT
417	if (racct_enable)
418		vmspace_container_reset(p);
419#endif
420}
421
422/* Acquire reference to vmspace owned by another process. */
423
424struct vmspace *
425vmspace_acquire_ref(struct proc *p)
426{
427	struct vmspace *vm;
428	int refcnt;
429
430	PROC_VMSPACE_LOCK(p);
431	vm = p->p_vmspace;
432	if (vm == NULL) {
433		PROC_VMSPACE_UNLOCK(p);
434		return (NULL);
435	}
436	do {
437		refcnt = vm->vm_refcnt;
438		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
439			PROC_VMSPACE_UNLOCK(p);
440			return (NULL);
441		}
442	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
443	if (vm != p->p_vmspace) {
444		PROC_VMSPACE_UNLOCK(p);
445		vmspace_free(vm);
446		return (NULL);
447	}
448	PROC_VMSPACE_UNLOCK(p);
449	return (vm);
450}
451
452void
453_vm_map_lock(vm_map_t map, const char *file, int line)
454{
455
456	if (map->system_map)
457		mtx_lock_flags_(&map->system_mtx, 0, file, line);
458	else
459		sx_xlock_(&map->lock, file, line);
460	map->timestamp++;
461}
462
463static void
464vm_map_process_deferred(void)
465{
466	struct thread *td;
467	vm_map_entry_t entry, next;
468	vm_object_t object;
469
470	td = curthread;
471	entry = td->td_map_def_user;
472	td->td_map_def_user = NULL;
473	while (entry != NULL) {
474		next = entry->next;
475		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
476			/*
477			 * Decrement the object's writemappings and
478			 * possibly the vnode's v_writecount.
479			 */
480			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
481			    ("Submap with writecount"));
482			object = entry->object.vm_object;
483			KASSERT(object != NULL, ("No object for writecount"));
484			vnode_pager_release_writecount(object, entry->start,
485			    entry->end);
486		}
487		vm_map_entry_deallocate(entry, FALSE);
488		entry = next;
489	}
490}
491
492void
493_vm_map_unlock(vm_map_t map, const char *file, int line)
494{
495
496	if (map->system_map)
497		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
498	else {
499		sx_xunlock_(&map->lock, file, line);
500		vm_map_process_deferred();
501	}
502}
503
504void
505_vm_map_lock_read(vm_map_t map, const char *file, int line)
506{
507
508	if (map->system_map)
509		mtx_lock_flags_(&map->system_mtx, 0, file, line);
510	else
511		sx_slock_(&map->lock, file, line);
512}
513
514void
515_vm_map_unlock_read(vm_map_t map, const char *file, int line)
516{
517
518	if (map->system_map)
519		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
520	else {
521		sx_sunlock_(&map->lock, file, line);
522		vm_map_process_deferred();
523	}
524}
525
526int
527_vm_map_trylock(vm_map_t map, const char *file, int line)
528{
529	int error;
530
531	error = map->system_map ?
532	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
533	    !sx_try_xlock_(&map->lock, file, line);
534	if (error == 0)
535		map->timestamp++;
536	return (error == 0);
537}
538
539int
540_vm_map_trylock_read(vm_map_t map, const char *file, int line)
541{
542	int error;
543
544	error = map->system_map ?
545	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
546	    !sx_try_slock_(&map->lock, file, line);
547	return (error == 0);
548}
549
550/*
551 *	_vm_map_lock_upgrade:	[ internal use only ]
552 *
553 *	Tries to upgrade a read (shared) lock on the specified map to a write
554 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
555 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
556 *	returned without a read or write lock held.
557 *
558 *	Requires that the map be read locked.
559 */
560int
561_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
562{
563	unsigned int last_timestamp;
564
565	if (map->system_map) {
566		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
567	} else {
568		if (!sx_try_upgrade_(&map->lock, file, line)) {
569			last_timestamp = map->timestamp;
570			sx_sunlock_(&map->lock, file, line);
571			vm_map_process_deferred();
572			/*
573			 * If the map's timestamp does not change while the
574			 * map is unlocked, then the upgrade succeeds.
575			 */
576			sx_xlock_(&map->lock, file, line);
577			if (last_timestamp != map->timestamp) {
578				sx_xunlock_(&map->lock, file, line);
579				return (1);
580			}
581		}
582	}
583	map->timestamp++;
584	return (0);
585}
586
587void
588_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
589{
590
591	if (map->system_map) {
592		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
593	} else
594		sx_downgrade_(&map->lock, file, line);
595}
596
597/*
598 *	vm_map_locked:
599 *
600 *	Returns a non-zero value if the caller holds a write (exclusive) lock
601 *	on the specified map and the value "0" otherwise.
602 */
603int
604vm_map_locked(vm_map_t map)
605{
606
607	if (map->system_map)
608		return (mtx_owned(&map->system_mtx));
609	else
610		return (sx_xlocked(&map->lock));
611}
612
613#ifdef INVARIANTS
614static void
615_vm_map_assert_locked(vm_map_t map, const char *file, int line)
616{
617
618	if (map->system_map)
619		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
620	else
621		sx_assert_(&map->lock, SA_XLOCKED, file, line);
622}
623
624#define	VM_MAP_ASSERT_LOCKED(map) \
625    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
626#else
627#define	VM_MAP_ASSERT_LOCKED(map)
628#endif
629
630/*
631 *	_vm_map_unlock_and_wait:
632 *
633 *	Atomically releases the lock on the specified map and puts the calling
634 *	thread to sleep.  The calling thread will remain asleep until either
635 *	vm_map_wakeup() is performed on the map or the specified timeout is
636 *	exceeded.
637 *
638 *	WARNING!  This function does not perform deferred deallocations of
639 *	objects and map	entries.  Therefore, the calling thread is expected to
640 *	reacquire the map lock after reawakening and later perform an ordinary
641 *	unlock operation, such as vm_map_unlock(), before completing its
642 *	operation on the map.
643 */
644int
645_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
646{
647
648	mtx_lock(&map_sleep_mtx);
649	if (map->system_map)
650		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
651	else
652		sx_xunlock_(&map->lock, file, line);
653	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
654	    timo));
655}
656
657/*
658 *	vm_map_wakeup:
659 *
660 *	Awaken any threads that have slept on the map using
661 *	vm_map_unlock_and_wait().
662 */
663void
664vm_map_wakeup(vm_map_t map)
665{
666
667	/*
668	 * Acquire and release map_sleep_mtx to prevent a wakeup()
669	 * from being performed (and lost) between the map unlock
670	 * and the msleep() in _vm_map_unlock_and_wait().
671	 */
672	mtx_lock(&map_sleep_mtx);
673	mtx_unlock(&map_sleep_mtx);
674	wakeup(&map->root);
675}
676
677void
678vm_map_busy(vm_map_t map)
679{
680
681	VM_MAP_ASSERT_LOCKED(map);
682	map->busy++;
683}
684
685void
686vm_map_unbusy(vm_map_t map)
687{
688
689	VM_MAP_ASSERT_LOCKED(map);
690	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
691	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
692		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
693		wakeup(&map->busy);
694	}
695}
696
697void
698vm_map_wait_busy(vm_map_t map)
699{
700
701	VM_MAP_ASSERT_LOCKED(map);
702	while (map->busy) {
703		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
704		if (map->system_map)
705			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
706		else
707			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
708	}
709	map->timestamp++;
710}
711
712long
713vmspace_resident_count(struct vmspace *vmspace)
714{
715	return pmap_resident_count(vmspace_pmap(vmspace));
716}
717
718/*
719 *	vm_map_create:
720 *
721 *	Creates and returns a new empty VM map with
722 *	the given physical map structure, and having
723 *	the given lower and upper address bounds.
724 */
725vm_map_t
726vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
727{
728	vm_map_t result;
729
730	result = uma_zalloc(mapzone, M_WAITOK);
731	CTR1(KTR_VM, "vm_map_create: %p", result);
732	_vm_map_init(result, pmap, min, max);
733	return (result);
734}
735
736/*
737 * Initialize an existing vm_map structure
738 * such as that in the vmspace structure.
739 */
740static void
741_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
742{
743
744	map->header.next = map->header.prev = &map->header;
745	map->needs_wakeup = FALSE;
746	map->system_map = 0;
747	map->pmap = pmap;
748	map->min_offset = min;
749	map->max_offset = max;
750	map->flags = 0;
751	map->root = NULL;
752	map->timestamp = 0;
753	map->busy = 0;
754}
755
756void
757vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
758{
759
760	_vm_map_init(map, pmap, min, max);
761	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
762	sx_init(&map->lock, "user map");
763}
764
765/*
766 *	vm_map_entry_dispose:	[ internal use only ]
767 *
768 *	Inverse of vm_map_entry_create.
769 */
770static void
771vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
772{
773	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
774}
775
776/*
777 *	vm_map_entry_create:	[ internal use only ]
778 *
779 *	Allocates a VM map entry for insertion.
780 *	No entry fields are filled in.
781 */
782static vm_map_entry_t
783vm_map_entry_create(vm_map_t map)
784{
785	vm_map_entry_t new_entry;
786
787	if (map->system_map)
788		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
789	else
790		new_entry = uma_zalloc(mapentzone, M_WAITOK);
791	if (new_entry == NULL)
792		panic("vm_map_entry_create: kernel resources exhausted");
793	return (new_entry);
794}
795
796/*
797 *	vm_map_entry_set_behavior:
798 *
799 *	Set the expected access behavior, either normal, random, or
800 *	sequential.
801 */
802static inline void
803vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
804{
805	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
806	    (behavior & MAP_ENTRY_BEHAV_MASK);
807}
808
809/*
810 *	vm_map_entry_set_max_free:
811 *
812 *	Set the max_free field in a vm_map_entry.
813 */
814static inline void
815vm_map_entry_set_max_free(vm_map_entry_t entry)
816{
817
818	entry->max_free = entry->adj_free;
819	if (entry->left != NULL && entry->left->max_free > entry->max_free)
820		entry->max_free = entry->left->max_free;
821	if (entry->right != NULL && entry->right->max_free > entry->max_free)
822		entry->max_free = entry->right->max_free;
823}
824
825/*
826 *	vm_map_entry_splay:
827 *
828 *	The Sleator and Tarjan top-down splay algorithm with the
829 *	following variation.  Max_free must be computed bottom-up, so
830 *	on the downward pass, maintain the left and right spines in
831 *	reverse order.  Then, make a second pass up each side to fix
832 *	the pointers and compute max_free.  The time bound is O(log n)
833 *	amortized.
834 *
835 *	The new root is the vm_map_entry containing "addr", or else an
836 *	adjacent entry (lower or higher) if addr is not in the tree.
837 *
838 *	The map must be locked, and leaves it so.
839 *
840 *	Returns: the new root.
841 */
842static vm_map_entry_t
843vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
844{
845	vm_map_entry_t llist, rlist;
846	vm_map_entry_t ltree, rtree;
847	vm_map_entry_t y;
848
849	/* Special case of empty tree. */
850	if (root == NULL)
851		return (root);
852
853	/*
854	 * Pass One: Splay down the tree until we find addr or a NULL
855	 * pointer where addr would go.  llist and rlist are the two
856	 * sides in reverse order (bottom-up), with llist linked by
857	 * the right pointer and rlist linked by the left pointer in
858	 * the vm_map_entry.  Wait until Pass Two to set max_free on
859	 * the two spines.
860	 */
861	llist = NULL;
862	rlist = NULL;
863	for (;;) {
864		/* root is never NULL in here. */
865		if (addr < root->start) {
866			y = root->left;
867			if (y == NULL)
868				break;
869			if (addr < y->start && y->left != NULL) {
870				/* Rotate right and put y on rlist. */
871				root->left = y->right;
872				y->right = root;
873				vm_map_entry_set_max_free(root);
874				root = y->left;
875				y->left = rlist;
876				rlist = y;
877			} else {
878				/* Put root on rlist. */
879				root->left = rlist;
880				rlist = root;
881				root = y;
882			}
883		} else if (addr >= root->end) {
884			y = root->right;
885			if (y == NULL)
886				break;
887			if (addr >= y->end && y->right != NULL) {
888				/* Rotate left and put y on llist. */
889				root->right = y->left;
890				y->left = root;
891				vm_map_entry_set_max_free(root);
892				root = y->right;
893				y->right = llist;
894				llist = y;
895			} else {
896				/* Put root on llist. */
897				root->right = llist;
898				llist = root;
899				root = y;
900			}
901		} else
902			break;
903	}
904
905	/*
906	 * Pass Two: Walk back up the two spines, flip the pointers
907	 * and set max_free.  The subtrees of the root go at the
908	 * bottom of llist and rlist.
909	 */
910	ltree = root->left;
911	while (llist != NULL) {
912		y = llist->right;
913		llist->right = ltree;
914		vm_map_entry_set_max_free(llist);
915		ltree = llist;
916		llist = y;
917	}
918	rtree = root->right;
919	while (rlist != NULL) {
920		y = rlist->left;
921		rlist->left = rtree;
922		vm_map_entry_set_max_free(rlist);
923		rtree = rlist;
924		rlist = y;
925	}
926
927	/*
928	 * Final assembly: add ltree and rtree as subtrees of root.
929	 */
930	root->left = ltree;
931	root->right = rtree;
932	vm_map_entry_set_max_free(root);
933
934	return (root);
935}
936
937/*
938 *	vm_map_entry_{un,}link:
939 *
940 *	Insert/remove entries from maps.
941 */
942static void
943vm_map_entry_link(vm_map_t map,
944		  vm_map_entry_t after_where,
945		  vm_map_entry_t entry)
946{
947
948	CTR4(KTR_VM,
949	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
950	    map->nentries, entry, after_where);
951	VM_MAP_ASSERT_LOCKED(map);
952	KASSERT(after_where == &map->header ||
953	    after_where->end <= entry->start,
954	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
955	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
956	KASSERT(after_where->next == &map->header ||
957	    entry->end <= after_where->next->start,
958	    ("vm_map_entry_link: new end %jx next start %jx overlap",
959	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
960
961	map->nentries++;
962	entry->prev = after_where;
963	entry->next = after_where->next;
964	entry->next->prev = entry;
965	after_where->next = entry;
966
967	if (after_where != &map->header) {
968		if (after_where != map->root)
969			vm_map_entry_splay(after_where->start, map->root);
970		entry->right = after_where->right;
971		entry->left = after_where;
972		after_where->right = NULL;
973		after_where->adj_free = entry->start - after_where->end;
974		vm_map_entry_set_max_free(after_where);
975	} else {
976		entry->right = map->root;
977		entry->left = NULL;
978	}
979	entry->adj_free = (entry->next == &map->header ? map->max_offset :
980	    entry->next->start) - entry->end;
981	vm_map_entry_set_max_free(entry);
982	map->root = entry;
983}
984
985static void
986vm_map_entry_unlink(vm_map_t map,
987		    vm_map_entry_t entry)
988{
989	vm_map_entry_t next, prev, root;
990
991	VM_MAP_ASSERT_LOCKED(map);
992	if (entry != map->root)
993		vm_map_entry_splay(entry->start, map->root);
994	if (entry->left == NULL)
995		root = entry->right;
996	else {
997		root = vm_map_entry_splay(entry->start, entry->left);
998		root->right = entry->right;
999		root->adj_free = (entry->next == &map->header ? map->max_offset :
1000		    entry->next->start) - root->end;
1001		vm_map_entry_set_max_free(root);
1002	}
1003	map->root = root;
1004
1005	prev = entry->prev;
1006	next = entry->next;
1007	next->prev = prev;
1008	prev->next = next;
1009	map->nentries--;
1010	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1011	    map->nentries, entry);
1012}
1013
1014/*
1015 *	vm_map_entry_resize_free:
1016 *
1017 *	Recompute the amount of free space following a vm_map_entry
1018 *	and propagate that value up the tree.  Call this function after
1019 *	resizing a map entry in-place, that is, without a call to
1020 *	vm_map_entry_link() or _unlink().
1021 *
1022 *	The map must be locked, and leaves it so.
1023 */
1024static void
1025vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1026{
1027
1028	/*
1029	 * Using splay trees without parent pointers, propagating
1030	 * max_free up the tree is done by moving the entry to the
1031	 * root and making the change there.
1032	 */
1033	if (entry != map->root)
1034		map->root = vm_map_entry_splay(entry->start, map->root);
1035
1036	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1037	    entry->next->start) - entry->end;
1038	vm_map_entry_set_max_free(entry);
1039}
1040
1041/*
1042 *	vm_map_lookup_entry:	[ internal use only ]
1043 *
1044 *	Finds the map entry containing (or
1045 *	immediately preceding) the specified address
1046 *	in the given map; the entry is returned
1047 *	in the "entry" parameter.  The boolean
1048 *	result indicates whether the address is
1049 *	actually contained in the map.
1050 */
1051boolean_t
1052vm_map_lookup_entry(
1053	vm_map_t map,
1054	vm_offset_t address,
1055	vm_map_entry_t *entry)	/* OUT */
1056{
1057	vm_map_entry_t cur;
1058	boolean_t locked;
1059
1060	/*
1061	 * If the map is empty, then the map entry immediately preceding
1062	 * "address" is the map's header.
1063	 */
1064	cur = map->root;
1065	if (cur == NULL)
1066		*entry = &map->header;
1067	else if (address >= cur->start && cur->end > address) {
1068		*entry = cur;
1069		return (TRUE);
1070	} else if ((locked = vm_map_locked(map)) ||
1071	    sx_try_upgrade(&map->lock)) {
1072		/*
1073		 * Splay requires a write lock on the map.  However, it only
1074		 * restructures the binary search tree; it does not otherwise
1075		 * change the map.  Thus, the map's timestamp need not change
1076		 * on a temporary upgrade.
1077		 */
1078		map->root = cur = vm_map_entry_splay(address, cur);
1079		if (!locked)
1080			sx_downgrade(&map->lock);
1081
1082		/*
1083		 * If "address" is contained within a map entry, the new root
1084		 * is that map entry.  Otherwise, the new root is a map entry
1085		 * immediately before or after "address".
1086		 */
1087		if (address >= cur->start) {
1088			*entry = cur;
1089			if (cur->end > address)
1090				return (TRUE);
1091		} else
1092			*entry = cur->prev;
1093	} else
1094		/*
1095		 * Since the map is only locked for read access, perform a
1096		 * standard binary search tree lookup for "address".
1097		 */
1098		for (;;) {
1099			if (address < cur->start) {
1100				if (cur->left == NULL) {
1101					*entry = cur->prev;
1102					break;
1103				}
1104				cur = cur->left;
1105			} else if (cur->end > address) {
1106				*entry = cur;
1107				return (TRUE);
1108			} else {
1109				if (cur->right == NULL) {
1110					*entry = cur;
1111					break;
1112				}
1113				cur = cur->right;
1114			}
1115		}
1116	return (FALSE);
1117}
1118
1119/*
1120 *	vm_map_insert:
1121 *
1122 *	Inserts the given whole VM object into the target
1123 *	map at the specified address range.  The object's
1124 *	size should match that of the address range.
1125 *
1126 *	Requires that the map be locked, and leaves it so.
1127 *
1128 *	If object is non-NULL, ref count must be bumped by caller
1129 *	prior to making call to account for the new entry.
1130 */
1131int
1132vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1133    vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1134{
1135	vm_map_entry_t new_entry, prev_entry, temp_entry;
1136	struct ucred *cred;
1137	vm_eflags_t protoeflags;
1138	vm_inherit_t inheritance;
1139
1140	VM_MAP_ASSERT_LOCKED(map);
1141	KASSERT((object != kmem_object && object != kernel_object) ||
1142	    (cow & MAP_COPY_ON_WRITE) == 0,
1143	    ("vm_map_insert: kmem or kernel object and COW"));
1144	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1145	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1146
1147	/*
1148	 * Check that the start and end points are not bogus.
1149	 */
1150	if (start < map->min_offset || end > map->max_offset || start >= end)
1151		return (KERN_INVALID_ADDRESS);
1152
1153	/*
1154	 * Find the entry prior to the proposed starting address; if it's part
1155	 * of an existing entry, this range is bogus.
1156	 */
1157	if (vm_map_lookup_entry(map, start, &temp_entry))
1158		return (KERN_NO_SPACE);
1159
1160	prev_entry = temp_entry;
1161
1162	/*
1163	 * Assert that the next entry doesn't overlap the end point.
1164	 */
1165	if (prev_entry->next != &map->header && prev_entry->next->start < end)
1166		return (KERN_NO_SPACE);
1167
1168	protoeflags = 0;
1169	if (cow & MAP_COPY_ON_WRITE)
1170		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1171	if (cow & MAP_NOFAULT)
1172		protoeflags |= MAP_ENTRY_NOFAULT;
1173	if (cow & MAP_DISABLE_SYNCER)
1174		protoeflags |= MAP_ENTRY_NOSYNC;
1175	if (cow & MAP_DISABLE_COREDUMP)
1176		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1177	if (cow & MAP_STACK_GROWS_DOWN)
1178		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1179	if (cow & MAP_STACK_GROWS_UP)
1180		protoeflags |= MAP_ENTRY_GROWS_UP;
1181	if (cow & MAP_VN_WRITECOUNT)
1182		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1183	if (cow & MAP_INHERIT_SHARE)
1184		inheritance = VM_INHERIT_SHARE;
1185	else
1186		inheritance = VM_INHERIT_DEFAULT;
1187
1188	cred = NULL;
1189	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1190		goto charged;
1191	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1192	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1193		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1194			return (KERN_RESOURCE_SHORTAGE);
1195		KASSERT(object == NULL ||
1196		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1197		    object->cred == NULL,
1198		    ("overcommit: vm_map_insert o %p", object));
1199		cred = curthread->td_ucred;
1200	}
1201
1202charged:
1203	/* Expand the kernel pmap, if necessary. */
1204	if (map == kernel_map && end > kernel_vm_end)
1205		pmap_growkernel(end);
1206	if (object != NULL) {
1207		/*
1208		 * OBJ_ONEMAPPING must be cleared unless this mapping
1209		 * is trivially proven to be the only mapping for any
1210		 * of the object's pages.  (Object granularity
1211		 * reference counting is insufficient to recognize
1212		 * aliases with precision.)
1213		 */
1214		VM_OBJECT_WLOCK(object);
1215		if (object->ref_count > 1 || object->shadow_count != 0)
1216			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1217		VM_OBJECT_WUNLOCK(object);
1218	} else if (prev_entry != &map->header &&
1219	    prev_entry->eflags == protoeflags &&
1220	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1221	    prev_entry->end == start && prev_entry->wired_count == 0 &&
1222	    (prev_entry->cred == cred ||
1223	    (prev_entry->object.vm_object != NULL &&
1224	    prev_entry->object.vm_object->cred == cred)) &&
1225	    vm_object_coalesce(prev_entry->object.vm_object,
1226	    prev_entry->offset,
1227	    (vm_size_t)(prev_entry->end - prev_entry->start),
1228	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1229	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1230		/*
1231		 * We were able to extend the object.  Determine if we
1232		 * can extend the previous map entry to include the
1233		 * new range as well.
1234		 */
1235		if (prev_entry->inheritance == inheritance &&
1236		    prev_entry->protection == prot &&
1237		    prev_entry->max_protection == max) {
1238			map->size += end - prev_entry->end;
1239			prev_entry->end = end;
1240			vm_map_entry_resize_free(map, prev_entry);
1241			vm_map_simplify_entry(map, prev_entry);
1242			return (KERN_SUCCESS);
1243		}
1244
1245		/*
1246		 * If we can extend the object but cannot extend the
1247		 * map entry, we have to create a new map entry.  We
1248		 * must bump the ref count on the extended object to
1249		 * account for it.  object may be NULL.
1250		 */
1251		object = prev_entry->object.vm_object;
1252		offset = prev_entry->offset +
1253		    (prev_entry->end - prev_entry->start);
1254		vm_object_reference(object);
1255		if (cred != NULL && object != NULL && object->cred != NULL &&
1256		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1257			/* Object already accounts for this uid. */
1258			cred = NULL;
1259		}
1260	}
1261	if (cred != NULL)
1262		crhold(cred);
1263
1264	/*
1265	 * Create a new entry
1266	 */
1267	new_entry = vm_map_entry_create(map);
1268	new_entry->start = start;
1269	new_entry->end = end;
1270	new_entry->cred = NULL;
1271
1272	new_entry->eflags = protoeflags;
1273	new_entry->object.vm_object = object;
1274	new_entry->offset = offset;
1275	new_entry->avail_ssize = 0;
1276
1277	new_entry->inheritance = inheritance;
1278	new_entry->protection = prot;
1279	new_entry->max_protection = max;
1280	new_entry->wired_count = 0;
1281	new_entry->wiring_thread = NULL;
1282	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1283	new_entry->next_read = OFF_TO_IDX(offset);
1284
1285	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1286	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1287	new_entry->cred = cred;
1288
1289	/*
1290	 * Insert the new entry into the list
1291	 */
1292	vm_map_entry_link(map, prev_entry, new_entry);
1293	map->size += new_entry->end - new_entry->start;
1294
1295	/*
1296	 * Try to coalesce the new entry with both the previous and next
1297	 * entries in the list.  Previously, we only attempted to coalesce
1298	 * with the previous entry when object is NULL.  Here, we handle the
1299	 * other cases, which are less common.
1300	 */
1301	vm_map_simplify_entry(map, new_entry);
1302
1303	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1304		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1305		    end - start, cow & MAP_PREFAULT_PARTIAL);
1306	}
1307
1308	return (KERN_SUCCESS);
1309}
1310
1311/*
1312 *	vm_map_findspace:
1313 *
1314 *	Find the first fit (lowest VM address) for "length" free bytes
1315 *	beginning at address >= start in the given map.
1316 *
1317 *	In a vm_map_entry, "adj_free" is the amount of free space
1318 *	adjacent (higher address) to this entry, and "max_free" is the
1319 *	maximum amount of contiguous free space in its subtree.  This
1320 *	allows finding a free region in one path down the tree, so
1321 *	O(log n) amortized with splay trees.
1322 *
1323 *	The map must be locked, and leaves it so.
1324 *
1325 *	Returns: 0 on success, and starting address in *addr,
1326 *		 1 if insufficient space.
1327 */
1328int
1329vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1330    vm_offset_t *addr)	/* OUT */
1331{
1332	vm_map_entry_t entry;
1333	vm_offset_t st;
1334
1335	/*
1336	 * Request must fit within min/max VM address and must avoid
1337	 * address wrap.
1338	 */
1339	if (start < map->min_offset)
1340		start = map->min_offset;
1341	if (start + length > map->max_offset || start + length < start)
1342		return (1);
1343
1344	/* Empty tree means wide open address space. */
1345	if (map->root == NULL) {
1346		*addr = start;
1347		return (0);
1348	}
1349
1350	/*
1351	 * After splay, if start comes before root node, then there
1352	 * must be a gap from start to the root.
1353	 */
1354	map->root = vm_map_entry_splay(start, map->root);
1355	if (start + length <= map->root->start) {
1356		*addr = start;
1357		return (0);
1358	}
1359
1360	/*
1361	 * Root is the last node that might begin its gap before
1362	 * start, and this is the last comparison where address
1363	 * wrap might be a problem.
1364	 */
1365	st = (start > map->root->end) ? start : map->root->end;
1366	if (length <= map->root->end + map->root->adj_free - st) {
1367		*addr = st;
1368		return (0);
1369	}
1370
1371	/* With max_free, can immediately tell if no solution. */
1372	entry = map->root->right;
1373	if (entry == NULL || length > entry->max_free)
1374		return (1);
1375
1376	/*
1377	 * Search the right subtree in the order: left subtree, root,
1378	 * right subtree (first fit).  The previous splay implies that
1379	 * all regions in the right subtree have addresses > start.
1380	 */
1381	while (entry != NULL) {
1382		if (entry->left != NULL && entry->left->max_free >= length)
1383			entry = entry->left;
1384		else if (entry->adj_free >= length) {
1385			*addr = entry->end;
1386			return (0);
1387		} else
1388			entry = entry->right;
1389	}
1390
1391	/* Can't get here, so panic if we do. */
1392	panic("vm_map_findspace: max_free corrupt");
1393}
1394
1395int
1396vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1397    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1398    vm_prot_t max, int cow)
1399{
1400	vm_offset_t end;
1401	int result;
1402
1403	end = start + length;
1404	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1405	    object == NULL,
1406	    ("vm_map_fixed: non-NULL backing object for stack"));
1407	vm_map_lock(map);
1408	VM_MAP_RANGE_CHECK(map, start, end);
1409	if ((cow & MAP_CHECK_EXCL) == 0)
1410		vm_map_delete(map, start, end);
1411	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1412		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1413		    prot, max, cow);
1414	} else {
1415		result = vm_map_insert(map, object, offset, start, end,
1416		    prot, max, cow);
1417	}
1418	vm_map_unlock(map);
1419	return (result);
1420}
1421
1422/*
1423 *	vm_map_find finds an unallocated region in the target address
1424 *	map with the given length.  The search is defined to be
1425 *	first-fit from the specified address; the region found is
1426 *	returned in the same parameter.
1427 *
1428 *	If object is non-NULL, ref count must be bumped by caller
1429 *	prior to making call to account for the new entry.
1430 */
1431int
1432vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1433	    vm_offset_t *addr,	/* IN/OUT */
1434	    vm_size_t length, vm_offset_t max_addr, int find_space,
1435	    vm_prot_t prot, vm_prot_t max, int cow)
1436{
1437	vm_offset_t alignment, initial_addr, start;
1438	int result;
1439
1440	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1441	    object == NULL,
1442	    ("vm_map_find: non-NULL backing object for stack"));
1443	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1444	    (object->flags & OBJ_COLORED) == 0))
1445		find_space = VMFS_ANY_SPACE;
1446	if (find_space >> 8 != 0) {
1447		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1448		alignment = (vm_offset_t)1 << (find_space >> 8);
1449	} else
1450		alignment = 0;
1451	initial_addr = *addr;
1452again:
1453	start = initial_addr;
1454	vm_map_lock(map);
1455	do {
1456		if (find_space != VMFS_NO_SPACE) {
1457			if (vm_map_findspace(map, start, length, addr) ||
1458			    (max_addr != 0 && *addr + length > max_addr)) {
1459				vm_map_unlock(map);
1460				if (find_space == VMFS_OPTIMAL_SPACE) {
1461					find_space = VMFS_ANY_SPACE;
1462					goto again;
1463				}
1464				return (KERN_NO_SPACE);
1465			}
1466			switch (find_space) {
1467			case VMFS_SUPER_SPACE:
1468			case VMFS_OPTIMAL_SPACE:
1469				pmap_align_superpage(object, offset, addr,
1470				    length);
1471				break;
1472			case VMFS_ANY_SPACE:
1473				break;
1474			default:
1475				if ((*addr & (alignment - 1)) != 0) {
1476					*addr &= ~(alignment - 1);
1477					*addr += alignment;
1478				}
1479				break;
1480			}
1481
1482			start = *addr;
1483		}
1484		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1485			result = vm_map_stack_locked(map, start, length,
1486			    sgrowsiz, prot, max, cow);
1487		} else {
1488			result = vm_map_insert(map, object, offset, start,
1489			    start + length, prot, max, cow);
1490		}
1491	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1492	    find_space != VMFS_ANY_SPACE);
1493	vm_map_unlock(map);
1494	return (result);
1495}
1496
1497/*
1498 *	vm_map_simplify_entry:
1499 *
1500 *	Simplify the given map entry by merging with either neighbor.  This
1501 *	routine also has the ability to merge with both neighbors.
1502 *
1503 *	The map must be locked.
1504 *
1505 *	This routine guarentees that the passed entry remains valid (though
1506 *	possibly extended).  When merging, this routine may delete one or
1507 *	both neighbors.
1508 */
1509void
1510vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1511{
1512	vm_map_entry_t next, prev;
1513	vm_size_t prevsize, esize;
1514
1515	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1516	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1517		return;
1518
1519	prev = entry->prev;
1520	if (prev != &map->header) {
1521		prevsize = prev->end - prev->start;
1522		if ( (prev->end == entry->start) &&
1523		     (prev->object.vm_object == entry->object.vm_object) &&
1524		     (!prev->object.vm_object ||
1525			(prev->offset + prevsize == entry->offset)) &&
1526		     (prev->eflags == entry->eflags) &&
1527		     (prev->protection == entry->protection) &&
1528		     (prev->max_protection == entry->max_protection) &&
1529		     (prev->inheritance == entry->inheritance) &&
1530		     (prev->wired_count == entry->wired_count) &&
1531		     (prev->cred == entry->cred)) {
1532			vm_map_entry_unlink(map, prev);
1533			entry->start = prev->start;
1534			entry->offset = prev->offset;
1535			if (entry->prev != &map->header)
1536				vm_map_entry_resize_free(map, entry->prev);
1537
1538			/*
1539			 * If the backing object is a vnode object,
1540			 * vm_object_deallocate() calls vrele().
1541			 * However, vrele() does not lock the vnode
1542			 * because the vnode has additional
1543			 * references.  Thus, the map lock can be kept
1544			 * without causing a lock-order reversal with
1545			 * the vnode lock.
1546			 *
1547			 * Since we count the number of virtual page
1548			 * mappings in object->un_pager.vnp.writemappings,
1549			 * the writemappings value should not be adjusted
1550			 * when the entry is disposed of.
1551			 */
1552			if (prev->object.vm_object)
1553				vm_object_deallocate(prev->object.vm_object);
1554			if (prev->cred != NULL)
1555				crfree(prev->cred);
1556			vm_map_entry_dispose(map, prev);
1557		}
1558	}
1559
1560	next = entry->next;
1561	if (next != &map->header) {
1562		esize = entry->end - entry->start;
1563		if ((entry->end == next->start) &&
1564		    (next->object.vm_object == entry->object.vm_object) &&
1565		     (!entry->object.vm_object ||
1566			(entry->offset + esize == next->offset)) &&
1567		    (next->eflags == entry->eflags) &&
1568		    (next->protection == entry->protection) &&
1569		    (next->max_protection == entry->max_protection) &&
1570		    (next->inheritance == entry->inheritance) &&
1571		    (next->wired_count == entry->wired_count) &&
1572		    (next->cred == entry->cred)) {
1573			vm_map_entry_unlink(map, next);
1574			entry->end = next->end;
1575			vm_map_entry_resize_free(map, entry);
1576
1577			/*
1578			 * See comment above.
1579			 */
1580			if (next->object.vm_object)
1581				vm_object_deallocate(next->object.vm_object);
1582			if (next->cred != NULL)
1583				crfree(next->cred);
1584			vm_map_entry_dispose(map, next);
1585		}
1586	}
1587}
1588/*
1589 *	vm_map_clip_start:	[ internal use only ]
1590 *
1591 *	Asserts that the given entry begins at or after
1592 *	the specified address; if necessary,
1593 *	it splits the entry into two.
1594 */
1595#define vm_map_clip_start(map, entry, startaddr) \
1596{ \
1597	if (startaddr > entry->start) \
1598		_vm_map_clip_start(map, entry, startaddr); \
1599}
1600
1601/*
1602 *	This routine is called only when it is known that
1603 *	the entry must be split.
1604 */
1605static void
1606_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1607{
1608	vm_map_entry_t new_entry;
1609
1610	VM_MAP_ASSERT_LOCKED(map);
1611
1612	/*
1613	 * Split off the front portion -- note that we must insert the new
1614	 * entry BEFORE this one, so that this entry has the specified
1615	 * starting address.
1616	 */
1617	vm_map_simplify_entry(map, entry);
1618
1619	/*
1620	 * If there is no object backing this entry, we might as well create
1621	 * one now.  If we defer it, an object can get created after the map
1622	 * is clipped, and individual objects will be created for the split-up
1623	 * map.  This is a bit of a hack, but is also about the best place to
1624	 * put this improvement.
1625	 */
1626	if (entry->object.vm_object == NULL && !map->system_map) {
1627		vm_object_t object;
1628		object = vm_object_allocate(OBJT_DEFAULT,
1629				atop(entry->end - entry->start));
1630		entry->object.vm_object = object;
1631		entry->offset = 0;
1632		if (entry->cred != NULL) {
1633			object->cred = entry->cred;
1634			object->charge = entry->end - entry->start;
1635			entry->cred = NULL;
1636		}
1637	} else if (entry->object.vm_object != NULL &&
1638		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1639		   entry->cred != NULL) {
1640		VM_OBJECT_WLOCK(entry->object.vm_object);
1641		KASSERT(entry->object.vm_object->cred == NULL,
1642		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1643		entry->object.vm_object->cred = entry->cred;
1644		entry->object.vm_object->charge = entry->end - entry->start;
1645		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1646		entry->cred = NULL;
1647	}
1648
1649	new_entry = vm_map_entry_create(map);
1650	*new_entry = *entry;
1651
1652	new_entry->end = start;
1653	entry->offset += (start - entry->start);
1654	entry->start = start;
1655	if (new_entry->cred != NULL)
1656		crhold(entry->cred);
1657
1658	vm_map_entry_link(map, entry->prev, new_entry);
1659
1660	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1661		vm_object_reference(new_entry->object.vm_object);
1662		/*
1663		 * The object->un_pager.vnp.writemappings for the
1664		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1665		 * kept as is here.  The virtual pages are
1666		 * re-distributed among the clipped entries, so the sum is
1667		 * left the same.
1668		 */
1669	}
1670}
1671
1672/*
1673 *	vm_map_clip_end:	[ internal use only ]
1674 *
1675 *	Asserts that the given entry ends at or before
1676 *	the specified address; if necessary,
1677 *	it splits the entry into two.
1678 */
1679#define vm_map_clip_end(map, entry, endaddr) \
1680{ \
1681	if ((endaddr) < (entry->end)) \
1682		_vm_map_clip_end((map), (entry), (endaddr)); \
1683}
1684
1685/*
1686 *	This routine is called only when it is known that
1687 *	the entry must be split.
1688 */
1689static void
1690_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1691{
1692	vm_map_entry_t new_entry;
1693
1694	VM_MAP_ASSERT_LOCKED(map);
1695
1696	/*
1697	 * If there is no object backing this entry, we might as well create
1698	 * one now.  If we defer it, an object can get created after the map
1699	 * is clipped, and individual objects will be created for the split-up
1700	 * map.  This is a bit of a hack, but is also about the best place to
1701	 * put this improvement.
1702	 */
1703	if (entry->object.vm_object == NULL && !map->system_map) {
1704		vm_object_t object;
1705		object = vm_object_allocate(OBJT_DEFAULT,
1706				atop(entry->end - entry->start));
1707		entry->object.vm_object = object;
1708		entry->offset = 0;
1709		if (entry->cred != NULL) {
1710			object->cred = entry->cred;
1711			object->charge = entry->end - entry->start;
1712			entry->cred = NULL;
1713		}
1714	} else if (entry->object.vm_object != NULL &&
1715		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1716		   entry->cred != NULL) {
1717		VM_OBJECT_WLOCK(entry->object.vm_object);
1718		KASSERT(entry->object.vm_object->cred == NULL,
1719		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1720		entry->object.vm_object->cred = entry->cred;
1721		entry->object.vm_object->charge = entry->end - entry->start;
1722		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1723		entry->cred = NULL;
1724	}
1725
1726	/*
1727	 * Create a new entry and insert it AFTER the specified entry
1728	 */
1729	new_entry = vm_map_entry_create(map);
1730	*new_entry = *entry;
1731
1732	new_entry->start = entry->end = end;
1733	new_entry->offset += (end - entry->start);
1734	if (new_entry->cred != NULL)
1735		crhold(entry->cred);
1736
1737	vm_map_entry_link(map, entry, new_entry);
1738
1739	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1740		vm_object_reference(new_entry->object.vm_object);
1741	}
1742}
1743
1744/*
1745 *	vm_map_submap:		[ kernel use only ]
1746 *
1747 *	Mark the given range as handled by a subordinate map.
1748 *
1749 *	This range must have been created with vm_map_find,
1750 *	and no other operations may have been performed on this
1751 *	range prior to calling vm_map_submap.
1752 *
1753 *	Only a limited number of operations can be performed
1754 *	within this rage after calling vm_map_submap:
1755 *		vm_fault
1756 *	[Don't try vm_map_copy!]
1757 *
1758 *	To remove a submapping, one must first remove the
1759 *	range from the superior map, and then destroy the
1760 *	submap (if desired).  [Better yet, don't try it.]
1761 */
1762int
1763vm_map_submap(
1764	vm_map_t map,
1765	vm_offset_t start,
1766	vm_offset_t end,
1767	vm_map_t submap)
1768{
1769	vm_map_entry_t entry;
1770	int result = KERN_INVALID_ARGUMENT;
1771
1772	vm_map_lock(map);
1773
1774	VM_MAP_RANGE_CHECK(map, start, end);
1775
1776	if (vm_map_lookup_entry(map, start, &entry)) {
1777		vm_map_clip_start(map, entry, start);
1778	} else
1779		entry = entry->next;
1780
1781	vm_map_clip_end(map, entry, end);
1782
1783	if ((entry->start == start) && (entry->end == end) &&
1784	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1785	    (entry->object.vm_object == NULL)) {
1786		entry->object.sub_map = submap;
1787		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1788		result = KERN_SUCCESS;
1789	}
1790	vm_map_unlock(map);
1791
1792	return (result);
1793}
1794
1795/*
1796 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1797 */
1798#define	MAX_INIT_PT	96
1799
1800/*
1801 *	vm_map_pmap_enter:
1802 *
1803 *	Preload the specified map's pmap with mappings to the specified
1804 *	object's memory-resident pages.  No further physical pages are
1805 *	allocated, and no further virtual pages are retrieved from secondary
1806 *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1807 *	limited number of page mappings are created at the low-end of the
1808 *	specified address range.  (For this purpose, a superpage mapping
1809 *	counts as one page mapping.)  Otherwise, all resident pages within
1810 *	the specified address range are mapped.  Because these mappings are
1811 *	being created speculatively, cached pages are not reactivated and
1812 *	mapped.
1813 */
1814void
1815vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1816    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1817{
1818	vm_offset_t start;
1819	vm_page_t p, p_start;
1820	vm_pindex_t mask, psize, threshold, tmpidx;
1821
1822	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1823		return;
1824	VM_OBJECT_RLOCK(object);
1825	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1826		VM_OBJECT_RUNLOCK(object);
1827		VM_OBJECT_WLOCK(object);
1828		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1829			pmap_object_init_pt(map->pmap, addr, object, pindex,
1830			    size);
1831			VM_OBJECT_WUNLOCK(object);
1832			return;
1833		}
1834		VM_OBJECT_LOCK_DOWNGRADE(object);
1835	}
1836
1837	psize = atop(size);
1838	if (psize + pindex > object->size) {
1839		if (object->size < pindex) {
1840			VM_OBJECT_RUNLOCK(object);
1841			return;
1842		}
1843		psize = object->size - pindex;
1844	}
1845
1846	start = 0;
1847	p_start = NULL;
1848	threshold = MAX_INIT_PT;
1849
1850	p = vm_page_find_least(object, pindex);
1851	/*
1852	 * Assert: the variable p is either (1) the page with the
1853	 * least pindex greater than or equal to the parameter pindex
1854	 * or (2) NULL.
1855	 */
1856	for (;
1857	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1858	     p = TAILQ_NEXT(p, listq)) {
1859		/*
1860		 * don't allow an madvise to blow away our really
1861		 * free pages allocating pv entries.
1862		 */
1863		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1864		    cnt.v_free_count < cnt.v_free_reserved) ||
1865		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1866		    tmpidx >= threshold)) {
1867			psize = tmpidx;
1868			break;
1869		}
1870		if (p->valid == VM_PAGE_BITS_ALL) {
1871			if (p_start == NULL) {
1872				start = addr + ptoa(tmpidx);
1873				p_start = p;
1874			}
1875			/* Jump ahead if a superpage mapping is possible. */
1876			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1877			    (pagesizes[p->psind] - 1)) == 0) {
1878				mask = atop(pagesizes[p->psind]) - 1;
1879				if (tmpidx + mask < psize &&
1880				    vm_page_ps_is_valid(p)) {
1881					p += mask;
1882					threshold += mask;
1883				}
1884			}
1885		} else if (p_start != NULL) {
1886			pmap_enter_object(map->pmap, start, addr +
1887			    ptoa(tmpidx), p_start, prot);
1888			p_start = NULL;
1889		}
1890	}
1891	if (p_start != NULL)
1892		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1893		    p_start, prot);
1894	VM_OBJECT_RUNLOCK(object);
1895}
1896
1897/*
1898 *	vm_map_protect:
1899 *
1900 *	Sets the protection of the specified address
1901 *	region in the target map.  If "set_max" is
1902 *	specified, the maximum protection is to be set;
1903 *	otherwise, only the current protection is affected.
1904 */
1905int
1906vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1907	       vm_prot_t new_prot, boolean_t set_max)
1908{
1909	vm_map_entry_t current, entry;
1910	vm_object_t obj;
1911	struct ucred *cred;
1912	vm_prot_t old_prot;
1913
1914	if (start == end)
1915		return (KERN_SUCCESS);
1916
1917	vm_map_lock(map);
1918
1919	VM_MAP_RANGE_CHECK(map, start, end);
1920
1921	if (vm_map_lookup_entry(map, start, &entry)) {
1922		vm_map_clip_start(map, entry, start);
1923	} else {
1924		entry = entry->next;
1925	}
1926
1927	/*
1928	 * Make a first pass to check for protection violations.
1929	 */
1930	current = entry;
1931	while ((current != &map->header) && (current->start < end)) {
1932		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1933			vm_map_unlock(map);
1934			return (KERN_INVALID_ARGUMENT);
1935		}
1936		if ((new_prot & current->max_protection) != new_prot) {
1937			vm_map_unlock(map);
1938			return (KERN_PROTECTION_FAILURE);
1939		}
1940		current = current->next;
1941	}
1942
1943
1944	/*
1945	 * Do an accounting pass for private read-only mappings that
1946	 * now will do cow due to allowed write (e.g. debugger sets
1947	 * breakpoint on text segment)
1948	 */
1949	for (current = entry; (current != &map->header) &&
1950	     (current->start < end); current = current->next) {
1951
1952		vm_map_clip_end(map, current, end);
1953
1954		if (set_max ||
1955		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1956		    ENTRY_CHARGED(current)) {
1957			continue;
1958		}
1959
1960		cred = curthread->td_ucred;
1961		obj = current->object.vm_object;
1962
1963		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1964			if (!swap_reserve(current->end - current->start)) {
1965				vm_map_unlock(map);
1966				return (KERN_RESOURCE_SHORTAGE);
1967			}
1968			crhold(cred);
1969			current->cred = cred;
1970			continue;
1971		}
1972
1973		VM_OBJECT_WLOCK(obj);
1974		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1975			VM_OBJECT_WUNLOCK(obj);
1976			continue;
1977		}
1978
1979		/*
1980		 * Charge for the whole object allocation now, since
1981		 * we cannot distinguish between non-charged and
1982		 * charged clipped mapping of the same object later.
1983		 */
1984		KASSERT(obj->charge == 0,
1985		    ("vm_map_protect: object %p overcharged (entry %p)",
1986		    obj, current));
1987		if (!swap_reserve(ptoa(obj->size))) {
1988			VM_OBJECT_WUNLOCK(obj);
1989			vm_map_unlock(map);
1990			return (KERN_RESOURCE_SHORTAGE);
1991		}
1992
1993		crhold(cred);
1994		obj->cred = cred;
1995		obj->charge = ptoa(obj->size);
1996		VM_OBJECT_WUNLOCK(obj);
1997	}
1998
1999	/*
2000	 * Go back and fix up protections. [Note that clipping is not
2001	 * necessary the second time.]
2002	 */
2003	current = entry;
2004	while ((current != &map->header) && (current->start < end)) {
2005		old_prot = current->protection;
2006
2007		if (set_max)
2008			current->protection =
2009			    (current->max_protection = new_prot) &
2010			    old_prot;
2011		else
2012			current->protection = new_prot;
2013
2014		/*
2015		 * For user wired map entries, the normal lazy evaluation of
2016		 * write access upgrades through soft page faults is
2017		 * undesirable.  Instead, immediately copy any pages that are
2018		 * copy-on-write and enable write access in the physical map.
2019		 */
2020		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2021		    (current->protection & VM_PROT_WRITE) != 0 &&
2022		    (old_prot & VM_PROT_WRITE) == 0)
2023			vm_fault_copy_entry(map, map, current, current, NULL);
2024
2025		/*
2026		 * When restricting access, update the physical map.  Worry
2027		 * about copy-on-write here.
2028		 */
2029		if ((old_prot & ~current->protection) != 0) {
2030#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2031							VM_PROT_ALL)
2032			pmap_protect(map->pmap, current->start,
2033			    current->end,
2034			    current->protection & MASK(current));
2035#undef	MASK
2036		}
2037		vm_map_simplify_entry(map, current);
2038		current = current->next;
2039	}
2040	vm_map_unlock(map);
2041	return (KERN_SUCCESS);
2042}
2043
2044/*
2045 *	vm_map_madvise:
2046 *
2047 *	This routine traverses a processes map handling the madvise
2048 *	system call.  Advisories are classified as either those effecting
2049 *	the vm_map_entry structure, or those effecting the underlying
2050 *	objects.
2051 */
2052int
2053vm_map_madvise(
2054	vm_map_t map,
2055	vm_offset_t start,
2056	vm_offset_t end,
2057	int behav)
2058{
2059	vm_map_entry_t current, entry;
2060	int modify_map = 0;
2061
2062	/*
2063	 * Some madvise calls directly modify the vm_map_entry, in which case
2064	 * we need to use an exclusive lock on the map and we need to perform
2065	 * various clipping operations.  Otherwise we only need a read-lock
2066	 * on the map.
2067	 */
2068	switch(behav) {
2069	case MADV_NORMAL:
2070	case MADV_SEQUENTIAL:
2071	case MADV_RANDOM:
2072	case MADV_NOSYNC:
2073	case MADV_AUTOSYNC:
2074	case MADV_NOCORE:
2075	case MADV_CORE:
2076		if (start == end)
2077			return (KERN_SUCCESS);
2078		modify_map = 1;
2079		vm_map_lock(map);
2080		break;
2081	case MADV_WILLNEED:
2082	case MADV_DONTNEED:
2083	case MADV_FREE:
2084		if (start == end)
2085			return (KERN_SUCCESS);
2086		vm_map_lock_read(map);
2087		break;
2088	default:
2089		return (KERN_INVALID_ARGUMENT);
2090	}
2091
2092	/*
2093	 * Locate starting entry and clip if necessary.
2094	 */
2095	VM_MAP_RANGE_CHECK(map, start, end);
2096
2097	if (vm_map_lookup_entry(map, start, &entry)) {
2098		if (modify_map)
2099			vm_map_clip_start(map, entry, start);
2100	} else {
2101		entry = entry->next;
2102	}
2103
2104	if (modify_map) {
2105		/*
2106		 * madvise behaviors that are implemented in the vm_map_entry.
2107		 *
2108		 * We clip the vm_map_entry so that behavioral changes are
2109		 * limited to the specified address range.
2110		 */
2111		for (current = entry;
2112		     (current != &map->header) && (current->start < end);
2113		     current = current->next
2114		) {
2115			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2116				continue;
2117
2118			vm_map_clip_end(map, current, end);
2119
2120			switch (behav) {
2121			case MADV_NORMAL:
2122				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2123				break;
2124			case MADV_SEQUENTIAL:
2125				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2126				break;
2127			case MADV_RANDOM:
2128				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2129				break;
2130			case MADV_NOSYNC:
2131				current->eflags |= MAP_ENTRY_NOSYNC;
2132				break;
2133			case MADV_AUTOSYNC:
2134				current->eflags &= ~MAP_ENTRY_NOSYNC;
2135				break;
2136			case MADV_NOCORE:
2137				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2138				break;
2139			case MADV_CORE:
2140				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2141				break;
2142			default:
2143				break;
2144			}
2145			vm_map_simplify_entry(map, current);
2146		}
2147		vm_map_unlock(map);
2148	} else {
2149		vm_pindex_t pstart, pend;
2150
2151		/*
2152		 * madvise behaviors that are implemented in the underlying
2153		 * vm_object.
2154		 *
2155		 * Since we don't clip the vm_map_entry, we have to clip
2156		 * the vm_object pindex and count.
2157		 */
2158		for (current = entry;
2159		     (current != &map->header) && (current->start < end);
2160		     current = current->next
2161		) {
2162			vm_offset_t useEnd, useStart;
2163
2164			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2165				continue;
2166
2167			pstart = OFF_TO_IDX(current->offset);
2168			pend = pstart + atop(current->end - current->start);
2169			useStart = current->start;
2170			useEnd = current->end;
2171
2172			if (current->start < start) {
2173				pstart += atop(start - current->start);
2174				useStart = start;
2175			}
2176			if (current->end > end) {
2177				pend -= atop(current->end - end);
2178				useEnd = end;
2179			}
2180
2181			if (pstart >= pend)
2182				continue;
2183
2184			/*
2185			 * Perform the pmap_advise() before clearing
2186			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2187			 * concurrent pmap operation, such as pmap_remove(),
2188			 * could clear a reference in the pmap and set
2189			 * PGA_REFERENCED on the page before the pmap_advise()
2190			 * had completed.  Consequently, the page would appear
2191			 * referenced based upon an old reference that
2192			 * occurred before this pmap_advise() ran.
2193			 */
2194			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2195				pmap_advise(map->pmap, useStart, useEnd,
2196				    behav);
2197
2198			vm_object_madvise(current->object.vm_object, pstart,
2199			    pend, behav);
2200
2201			/*
2202			 * Pre-populate paging structures in the
2203			 * WILLNEED case.  For wired entries, the
2204			 * paging structures are already populated.
2205			 */
2206			if (behav == MADV_WILLNEED &&
2207			    current->wired_count == 0) {
2208				vm_map_pmap_enter(map,
2209				    useStart,
2210				    current->protection,
2211				    current->object.vm_object,
2212				    pstart,
2213				    ptoa(pend - pstart),
2214				    MAP_PREFAULT_MADVISE
2215				);
2216			}
2217		}
2218		vm_map_unlock_read(map);
2219	}
2220	return (0);
2221}
2222
2223
2224/*
2225 *	vm_map_inherit:
2226 *
2227 *	Sets the inheritance of the specified address
2228 *	range in the target map.  Inheritance
2229 *	affects how the map will be shared with
2230 *	child maps at the time of vmspace_fork.
2231 */
2232int
2233vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2234	       vm_inherit_t new_inheritance)
2235{
2236	vm_map_entry_t entry;
2237	vm_map_entry_t temp_entry;
2238
2239	switch (new_inheritance) {
2240	case VM_INHERIT_NONE:
2241	case VM_INHERIT_COPY:
2242	case VM_INHERIT_SHARE:
2243		break;
2244	default:
2245		return (KERN_INVALID_ARGUMENT);
2246	}
2247	if (start == end)
2248		return (KERN_SUCCESS);
2249	vm_map_lock(map);
2250	VM_MAP_RANGE_CHECK(map, start, end);
2251	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2252		entry = temp_entry;
2253		vm_map_clip_start(map, entry, start);
2254	} else
2255		entry = temp_entry->next;
2256	while ((entry != &map->header) && (entry->start < end)) {
2257		vm_map_clip_end(map, entry, end);
2258		entry->inheritance = new_inheritance;
2259		vm_map_simplify_entry(map, entry);
2260		entry = entry->next;
2261	}
2262	vm_map_unlock(map);
2263	return (KERN_SUCCESS);
2264}
2265
2266/*
2267 *	vm_map_unwire:
2268 *
2269 *	Implements both kernel and user unwiring.
2270 */
2271int
2272vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2273    int flags)
2274{
2275	vm_map_entry_t entry, first_entry, tmp_entry;
2276	vm_offset_t saved_start;
2277	unsigned int last_timestamp;
2278	int rv;
2279	boolean_t need_wakeup, result, user_unwire;
2280
2281	if (start == end)
2282		return (KERN_SUCCESS);
2283	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2284	vm_map_lock(map);
2285	VM_MAP_RANGE_CHECK(map, start, end);
2286	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2287		if (flags & VM_MAP_WIRE_HOLESOK)
2288			first_entry = first_entry->next;
2289		else {
2290			vm_map_unlock(map);
2291			return (KERN_INVALID_ADDRESS);
2292		}
2293	}
2294	last_timestamp = map->timestamp;
2295	entry = first_entry;
2296	while (entry != &map->header && entry->start < end) {
2297		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2298			/*
2299			 * We have not yet clipped the entry.
2300			 */
2301			saved_start = (start >= entry->start) ? start :
2302			    entry->start;
2303			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2304			if (vm_map_unlock_and_wait(map, 0)) {
2305				/*
2306				 * Allow interruption of user unwiring?
2307				 */
2308			}
2309			vm_map_lock(map);
2310			if (last_timestamp+1 != map->timestamp) {
2311				/*
2312				 * Look again for the entry because the map was
2313				 * modified while it was unlocked.
2314				 * Specifically, the entry may have been
2315				 * clipped, merged, or deleted.
2316				 */
2317				if (!vm_map_lookup_entry(map, saved_start,
2318				    &tmp_entry)) {
2319					if (flags & VM_MAP_WIRE_HOLESOK)
2320						tmp_entry = tmp_entry->next;
2321					else {
2322						if (saved_start == start) {
2323							/*
2324							 * First_entry has been deleted.
2325							 */
2326							vm_map_unlock(map);
2327							return (KERN_INVALID_ADDRESS);
2328						}
2329						end = saved_start;
2330						rv = KERN_INVALID_ADDRESS;
2331						goto done;
2332					}
2333				}
2334				if (entry == first_entry)
2335					first_entry = tmp_entry;
2336				else
2337					first_entry = NULL;
2338				entry = tmp_entry;
2339			}
2340			last_timestamp = map->timestamp;
2341			continue;
2342		}
2343		vm_map_clip_start(map, entry, start);
2344		vm_map_clip_end(map, entry, end);
2345		/*
2346		 * Mark the entry in case the map lock is released.  (See
2347		 * above.)
2348		 */
2349		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2350		    entry->wiring_thread == NULL,
2351		    ("owned map entry %p", entry));
2352		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2353		entry->wiring_thread = curthread;
2354		/*
2355		 * Check the map for holes in the specified region.
2356		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2357		 */
2358		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2359		    (entry->end < end && (entry->next == &map->header ||
2360		    entry->next->start > entry->end))) {
2361			end = entry->end;
2362			rv = KERN_INVALID_ADDRESS;
2363			goto done;
2364		}
2365		/*
2366		 * If system unwiring, require that the entry is system wired.
2367		 */
2368		if (!user_unwire &&
2369		    vm_map_entry_system_wired_count(entry) == 0) {
2370			end = entry->end;
2371			rv = KERN_INVALID_ARGUMENT;
2372			goto done;
2373		}
2374		entry = entry->next;
2375	}
2376	rv = KERN_SUCCESS;
2377done:
2378	need_wakeup = FALSE;
2379	if (first_entry == NULL) {
2380		result = vm_map_lookup_entry(map, start, &first_entry);
2381		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2382			first_entry = first_entry->next;
2383		else
2384			KASSERT(result, ("vm_map_unwire: lookup failed"));
2385	}
2386	for (entry = first_entry; entry != &map->header && entry->start < end;
2387	    entry = entry->next) {
2388		/*
2389		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2390		 * space in the unwired region could have been mapped
2391		 * while the map lock was dropped for draining
2392		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2393		 * could be simultaneously wiring this new mapping
2394		 * entry.  Detect these cases and skip any entries
2395		 * marked as in transition by us.
2396		 */
2397		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2398		    entry->wiring_thread != curthread) {
2399			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2400			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2401			continue;
2402		}
2403
2404		if (rv == KERN_SUCCESS && (!user_unwire ||
2405		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2406			if (user_unwire)
2407				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2408			if (entry->wired_count == 1)
2409				vm_map_entry_unwire(map, entry);
2410			else
2411				entry->wired_count--;
2412		}
2413		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2414		    ("vm_map_unwire: in-transition flag missing %p", entry));
2415		KASSERT(entry->wiring_thread == curthread,
2416		    ("vm_map_unwire: alien wire %p", entry));
2417		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2418		entry->wiring_thread = NULL;
2419		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2420			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2421			need_wakeup = TRUE;
2422		}
2423		vm_map_simplify_entry(map, entry);
2424	}
2425	vm_map_unlock(map);
2426	if (need_wakeup)
2427		vm_map_wakeup(map);
2428	return (rv);
2429}
2430
2431/*
2432 *	vm_map_wire_entry_failure:
2433 *
2434 *	Handle a wiring failure on the given entry.
2435 *
2436 *	The map should be locked.
2437 */
2438static void
2439vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2440    vm_offset_t failed_addr)
2441{
2442
2443	VM_MAP_ASSERT_LOCKED(map);
2444	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2445	    entry->wired_count == 1,
2446	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2447	KASSERT(failed_addr < entry->end,
2448	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2449
2450	/*
2451	 * If any pages at the start of this entry were successfully wired,
2452	 * then unwire them.
2453	 */
2454	if (failed_addr > entry->start) {
2455		pmap_unwire(map->pmap, entry->start, failed_addr);
2456		vm_object_unwire(entry->object.vm_object, entry->offset,
2457		    failed_addr - entry->start, PQ_ACTIVE);
2458	}
2459
2460	/*
2461	 * Assign an out-of-range value to represent the failure to wire this
2462	 * entry.
2463	 */
2464	entry->wired_count = -1;
2465}
2466
2467/*
2468 *	vm_map_wire:
2469 *
2470 *	Implements both kernel and user wiring.
2471 */
2472int
2473vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2474    int flags)
2475{
2476	vm_map_entry_t entry, first_entry, tmp_entry;
2477	vm_offset_t faddr, saved_end, saved_start;
2478	unsigned int last_timestamp;
2479	int rv;
2480	boolean_t need_wakeup, result, user_wire;
2481	vm_prot_t prot;
2482
2483	if (start == end)
2484		return (KERN_SUCCESS);
2485	prot = 0;
2486	if (flags & VM_MAP_WIRE_WRITE)
2487		prot |= VM_PROT_WRITE;
2488	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2489	vm_map_lock(map);
2490	VM_MAP_RANGE_CHECK(map, start, end);
2491	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2492		if (flags & VM_MAP_WIRE_HOLESOK)
2493			first_entry = first_entry->next;
2494		else {
2495			vm_map_unlock(map);
2496			return (KERN_INVALID_ADDRESS);
2497		}
2498	}
2499	last_timestamp = map->timestamp;
2500	entry = first_entry;
2501	while (entry != &map->header && entry->start < end) {
2502		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2503			/*
2504			 * We have not yet clipped the entry.
2505			 */
2506			saved_start = (start >= entry->start) ? start :
2507			    entry->start;
2508			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2509			if (vm_map_unlock_and_wait(map, 0)) {
2510				/*
2511				 * Allow interruption of user wiring?
2512				 */
2513			}
2514			vm_map_lock(map);
2515			if (last_timestamp + 1 != map->timestamp) {
2516				/*
2517				 * Look again for the entry because the map was
2518				 * modified while it was unlocked.
2519				 * Specifically, the entry may have been
2520				 * clipped, merged, or deleted.
2521				 */
2522				if (!vm_map_lookup_entry(map, saved_start,
2523				    &tmp_entry)) {
2524					if (flags & VM_MAP_WIRE_HOLESOK)
2525						tmp_entry = tmp_entry->next;
2526					else {
2527						if (saved_start == start) {
2528							/*
2529							 * first_entry has been deleted.
2530							 */
2531							vm_map_unlock(map);
2532							return (KERN_INVALID_ADDRESS);
2533						}
2534						end = saved_start;
2535						rv = KERN_INVALID_ADDRESS;
2536						goto done;
2537					}
2538				}
2539				if (entry == first_entry)
2540					first_entry = tmp_entry;
2541				else
2542					first_entry = NULL;
2543				entry = tmp_entry;
2544			}
2545			last_timestamp = map->timestamp;
2546			continue;
2547		}
2548		vm_map_clip_start(map, entry, start);
2549		vm_map_clip_end(map, entry, end);
2550		/*
2551		 * Mark the entry in case the map lock is released.  (See
2552		 * above.)
2553		 */
2554		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2555		    entry->wiring_thread == NULL,
2556		    ("owned map entry %p", entry));
2557		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2558		entry->wiring_thread = curthread;
2559		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2560		    || (entry->protection & prot) != prot) {
2561			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2562			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2563				end = entry->end;
2564				rv = KERN_INVALID_ADDRESS;
2565				goto done;
2566			}
2567			goto next_entry;
2568		}
2569		if (entry->wired_count == 0) {
2570			entry->wired_count++;
2571			saved_start = entry->start;
2572			saved_end = entry->end;
2573
2574			/*
2575			 * Release the map lock, relying on the in-transition
2576			 * mark.  Mark the map busy for fork.
2577			 */
2578			vm_map_busy(map);
2579			vm_map_unlock(map);
2580
2581			faddr = saved_start;
2582			do {
2583				/*
2584				 * Simulate a fault to get the page and enter
2585				 * it into the physical map.
2586				 */
2587				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2588				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2589					break;
2590			} while ((faddr += PAGE_SIZE) < saved_end);
2591			vm_map_lock(map);
2592			vm_map_unbusy(map);
2593			if (last_timestamp + 1 != map->timestamp) {
2594				/*
2595				 * Look again for the entry because the map was
2596				 * modified while it was unlocked.  The entry
2597				 * may have been clipped, but NOT merged or
2598				 * deleted.
2599				 */
2600				result = vm_map_lookup_entry(map, saved_start,
2601				    &tmp_entry);
2602				KASSERT(result, ("vm_map_wire: lookup failed"));
2603				if (entry == first_entry)
2604					first_entry = tmp_entry;
2605				else
2606					first_entry = NULL;
2607				entry = tmp_entry;
2608				while (entry->end < saved_end) {
2609					/*
2610					 * In case of failure, handle entries
2611					 * that were not fully wired here;
2612					 * fully wired entries are handled
2613					 * later.
2614					 */
2615					if (rv != KERN_SUCCESS &&
2616					    faddr < entry->end)
2617						vm_map_wire_entry_failure(map,
2618						    entry, faddr);
2619					entry = entry->next;
2620				}
2621			}
2622			last_timestamp = map->timestamp;
2623			if (rv != KERN_SUCCESS) {
2624				vm_map_wire_entry_failure(map, entry, faddr);
2625				end = entry->end;
2626				goto done;
2627			}
2628		} else if (!user_wire ||
2629			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2630			entry->wired_count++;
2631		}
2632		/*
2633		 * Check the map for holes in the specified region.
2634		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2635		 */
2636	next_entry:
2637		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2638		    (entry->end < end && (entry->next == &map->header ||
2639		    entry->next->start > entry->end))) {
2640			end = entry->end;
2641			rv = KERN_INVALID_ADDRESS;
2642			goto done;
2643		}
2644		entry = entry->next;
2645	}
2646	rv = KERN_SUCCESS;
2647done:
2648	need_wakeup = FALSE;
2649	if (first_entry == NULL) {
2650		result = vm_map_lookup_entry(map, start, &first_entry);
2651		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2652			first_entry = first_entry->next;
2653		else
2654			KASSERT(result, ("vm_map_wire: lookup failed"));
2655	}
2656	for (entry = first_entry; entry != &map->header && entry->start < end;
2657	    entry = entry->next) {
2658		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2659			goto next_entry_done;
2660
2661		/*
2662		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2663		 * space in the unwired region could have been mapped
2664		 * while the map lock was dropped for faulting in the
2665		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2666		 * Moreover, another thread could be simultaneously
2667		 * wiring this new mapping entry.  Detect these cases
2668		 * and skip any entries marked as in transition by us.
2669		 */
2670		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2671		    entry->wiring_thread != curthread) {
2672			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2673			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2674			continue;
2675		}
2676
2677		if (rv == KERN_SUCCESS) {
2678			if (user_wire)
2679				entry->eflags |= MAP_ENTRY_USER_WIRED;
2680		} else if (entry->wired_count == -1) {
2681			/*
2682			 * Wiring failed on this entry.  Thus, unwiring is
2683			 * unnecessary.
2684			 */
2685			entry->wired_count = 0;
2686		} else if (!user_wire ||
2687		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2688			/*
2689			 * Undo the wiring.  Wiring succeeded on this entry
2690			 * but failed on a later entry.
2691			 */
2692			if (entry->wired_count == 1)
2693				vm_map_entry_unwire(map, entry);
2694			else
2695				entry->wired_count--;
2696		}
2697	next_entry_done:
2698		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2699		    ("vm_map_wire: in-transition flag missing %p", entry));
2700		KASSERT(entry->wiring_thread == curthread,
2701		    ("vm_map_wire: alien wire %p", entry));
2702		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2703		    MAP_ENTRY_WIRE_SKIPPED);
2704		entry->wiring_thread = NULL;
2705		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2706			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2707			need_wakeup = TRUE;
2708		}
2709		vm_map_simplify_entry(map, entry);
2710	}
2711	vm_map_unlock(map);
2712	if (need_wakeup)
2713		vm_map_wakeup(map);
2714	return (rv);
2715}
2716
2717/*
2718 * vm_map_sync
2719 *
2720 * Push any dirty cached pages in the address range to their pager.
2721 * If syncio is TRUE, dirty pages are written synchronously.
2722 * If invalidate is TRUE, any cached pages are freed as well.
2723 *
2724 * If the size of the region from start to end is zero, we are
2725 * supposed to flush all modified pages within the region containing
2726 * start.  Unfortunately, a region can be split or coalesced with
2727 * neighboring regions, making it difficult to determine what the
2728 * original region was.  Therefore, we approximate this requirement by
2729 * flushing the current region containing start.
2730 *
2731 * Returns an error if any part of the specified range is not mapped.
2732 */
2733int
2734vm_map_sync(
2735	vm_map_t map,
2736	vm_offset_t start,
2737	vm_offset_t end,
2738	boolean_t syncio,
2739	boolean_t invalidate)
2740{
2741	vm_map_entry_t current;
2742	vm_map_entry_t entry;
2743	vm_size_t size;
2744	vm_object_t object;
2745	vm_ooffset_t offset;
2746	unsigned int last_timestamp;
2747	boolean_t failed;
2748
2749	vm_map_lock_read(map);
2750	VM_MAP_RANGE_CHECK(map, start, end);
2751	if (!vm_map_lookup_entry(map, start, &entry)) {
2752		vm_map_unlock_read(map);
2753		return (KERN_INVALID_ADDRESS);
2754	} else if (start == end) {
2755		start = entry->start;
2756		end = entry->end;
2757	}
2758	/*
2759	 * Make a first pass to check for user-wired memory and holes.
2760	 */
2761	for (current = entry; current != &map->header && current->start < end;
2762	    current = current->next) {
2763		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2764			vm_map_unlock_read(map);
2765			return (KERN_INVALID_ARGUMENT);
2766		}
2767		if (end > current->end &&
2768		    (current->next == &map->header ||
2769			current->end != current->next->start)) {
2770			vm_map_unlock_read(map);
2771			return (KERN_INVALID_ADDRESS);
2772		}
2773	}
2774
2775	if (invalidate)
2776		pmap_remove(map->pmap, start, end);
2777	failed = FALSE;
2778
2779	/*
2780	 * Make a second pass, cleaning/uncaching pages from the indicated
2781	 * objects as we go.
2782	 */
2783	for (current = entry; current != &map->header && current->start < end;) {
2784		offset = current->offset + (start - current->start);
2785		size = (end <= current->end ? end : current->end) - start;
2786		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2787			vm_map_t smap;
2788			vm_map_entry_t tentry;
2789			vm_size_t tsize;
2790
2791			smap = current->object.sub_map;
2792			vm_map_lock_read(smap);
2793			(void) vm_map_lookup_entry(smap, offset, &tentry);
2794			tsize = tentry->end - offset;
2795			if (tsize < size)
2796				size = tsize;
2797			object = tentry->object.vm_object;
2798			offset = tentry->offset + (offset - tentry->start);
2799			vm_map_unlock_read(smap);
2800		} else {
2801			object = current->object.vm_object;
2802		}
2803		vm_object_reference(object);
2804		last_timestamp = map->timestamp;
2805		vm_map_unlock_read(map);
2806		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2807			failed = TRUE;
2808		start += size;
2809		vm_object_deallocate(object);
2810		vm_map_lock_read(map);
2811		if (last_timestamp == map->timestamp ||
2812		    !vm_map_lookup_entry(map, start, &current))
2813			current = current->next;
2814	}
2815
2816	vm_map_unlock_read(map);
2817	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2818}
2819
2820/*
2821 *	vm_map_entry_unwire:	[ internal use only ]
2822 *
2823 *	Make the region specified by this entry pageable.
2824 *
2825 *	The map in question should be locked.
2826 *	[This is the reason for this routine's existence.]
2827 */
2828static void
2829vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2830{
2831
2832	VM_MAP_ASSERT_LOCKED(map);
2833	KASSERT(entry->wired_count > 0,
2834	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2835	pmap_unwire(map->pmap, entry->start, entry->end);
2836	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2837	    entry->start, PQ_ACTIVE);
2838	entry->wired_count = 0;
2839}
2840
2841static void
2842vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2843{
2844
2845	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2846		vm_object_deallocate(entry->object.vm_object);
2847	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2848}
2849
2850/*
2851 *	vm_map_entry_delete:	[ internal use only ]
2852 *
2853 *	Deallocate the given entry from the target map.
2854 */
2855static void
2856vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2857{
2858	vm_object_t object;
2859	vm_pindex_t offidxstart, offidxend, count, size1;
2860	vm_ooffset_t size;
2861
2862	vm_map_entry_unlink(map, entry);
2863	object = entry->object.vm_object;
2864	size = entry->end - entry->start;
2865	map->size -= size;
2866
2867	if (entry->cred != NULL) {
2868		swap_release_by_cred(size, entry->cred);
2869		crfree(entry->cred);
2870	}
2871
2872	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2873	    (object != NULL)) {
2874		KASSERT(entry->cred == NULL || object->cred == NULL ||
2875		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2876		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2877		count = OFF_TO_IDX(size);
2878		offidxstart = OFF_TO_IDX(entry->offset);
2879		offidxend = offidxstart + count;
2880		VM_OBJECT_WLOCK(object);
2881		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
2882		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2883		    object == kernel_object || object == kmem_object)) {
2884			vm_object_collapse(object);
2885
2886			/*
2887			 * The option OBJPR_NOTMAPPED can be passed here
2888			 * because vm_map_delete() already performed
2889			 * pmap_remove() on the only mapping to this range
2890			 * of pages.
2891			 */
2892			vm_object_page_remove(object, offidxstart, offidxend,
2893			    OBJPR_NOTMAPPED);
2894			if (object->type == OBJT_SWAP)
2895				swap_pager_freespace(object, offidxstart,
2896				    count);
2897			if (offidxend >= object->size &&
2898			    offidxstart < object->size) {
2899				size1 = object->size;
2900				object->size = offidxstart;
2901				if (object->cred != NULL) {
2902					size1 -= object->size;
2903					KASSERT(object->charge >= ptoa(size1),
2904					    ("object %p charge < 0", object));
2905					swap_release_by_cred(ptoa(size1),
2906					    object->cred);
2907					object->charge -= ptoa(size1);
2908				}
2909			}
2910		}
2911		VM_OBJECT_WUNLOCK(object);
2912	} else
2913		entry->object.vm_object = NULL;
2914	if (map->system_map)
2915		vm_map_entry_deallocate(entry, TRUE);
2916	else {
2917		entry->next = curthread->td_map_def_user;
2918		curthread->td_map_def_user = entry;
2919	}
2920}
2921
2922/*
2923 *	vm_map_delete:	[ internal use only ]
2924 *
2925 *	Deallocates the given address range from the target
2926 *	map.
2927 */
2928int
2929vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2930{
2931	vm_map_entry_t entry;
2932	vm_map_entry_t first_entry;
2933
2934	VM_MAP_ASSERT_LOCKED(map);
2935	if (start == end)
2936		return (KERN_SUCCESS);
2937
2938	/*
2939	 * Find the start of the region, and clip it
2940	 */
2941	if (!vm_map_lookup_entry(map, start, &first_entry))
2942		entry = first_entry->next;
2943	else {
2944		entry = first_entry;
2945		vm_map_clip_start(map, entry, start);
2946	}
2947
2948	/*
2949	 * Step through all entries in this region
2950	 */
2951	while ((entry != &map->header) && (entry->start < end)) {
2952		vm_map_entry_t next;
2953
2954		/*
2955		 * Wait for wiring or unwiring of an entry to complete.
2956		 * Also wait for any system wirings to disappear on
2957		 * user maps.
2958		 */
2959		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2960		    (vm_map_pmap(map) != kernel_pmap &&
2961		    vm_map_entry_system_wired_count(entry) != 0)) {
2962			unsigned int last_timestamp;
2963			vm_offset_t saved_start;
2964			vm_map_entry_t tmp_entry;
2965
2966			saved_start = entry->start;
2967			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2968			last_timestamp = map->timestamp;
2969			(void) vm_map_unlock_and_wait(map, 0);
2970			vm_map_lock(map);
2971			if (last_timestamp + 1 != map->timestamp) {
2972				/*
2973				 * Look again for the entry because the map was
2974				 * modified while it was unlocked.
2975				 * Specifically, the entry may have been
2976				 * clipped, merged, or deleted.
2977				 */
2978				if (!vm_map_lookup_entry(map, saved_start,
2979							 &tmp_entry))
2980					entry = tmp_entry->next;
2981				else {
2982					entry = tmp_entry;
2983					vm_map_clip_start(map, entry,
2984							  saved_start);
2985				}
2986			}
2987			continue;
2988		}
2989		vm_map_clip_end(map, entry, end);
2990
2991		next = entry->next;
2992
2993		/*
2994		 * Unwire before removing addresses from the pmap; otherwise,
2995		 * unwiring will put the entries back in the pmap.
2996		 */
2997		if (entry->wired_count != 0) {
2998			vm_map_entry_unwire(map, entry);
2999		}
3000
3001		pmap_remove(map->pmap, entry->start, entry->end);
3002
3003		/*
3004		 * Delete the entry only after removing all pmap
3005		 * entries pointing to its pages.  (Otherwise, its
3006		 * page frames may be reallocated, and any modify bits
3007		 * will be set in the wrong object!)
3008		 */
3009		vm_map_entry_delete(map, entry);
3010		entry = next;
3011	}
3012	return (KERN_SUCCESS);
3013}
3014
3015/*
3016 *	vm_map_remove:
3017 *
3018 *	Remove the given address range from the target map.
3019 *	This is the exported form of vm_map_delete.
3020 */
3021int
3022vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3023{
3024	int result;
3025
3026	vm_map_lock(map);
3027	VM_MAP_RANGE_CHECK(map, start, end);
3028	result = vm_map_delete(map, start, end);
3029	vm_map_unlock(map);
3030	return (result);
3031}
3032
3033/*
3034 *	vm_map_check_protection:
3035 *
3036 *	Assert that the target map allows the specified privilege on the
3037 *	entire address region given.  The entire region must be allocated.
3038 *
3039 *	WARNING!  This code does not and should not check whether the
3040 *	contents of the region is accessible.  For example a smaller file
3041 *	might be mapped into a larger address space.
3042 *
3043 *	NOTE!  This code is also called by munmap().
3044 *
3045 *	The map must be locked.  A read lock is sufficient.
3046 */
3047boolean_t
3048vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3049			vm_prot_t protection)
3050{
3051	vm_map_entry_t entry;
3052	vm_map_entry_t tmp_entry;
3053
3054	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3055		return (FALSE);
3056	entry = tmp_entry;
3057
3058	while (start < end) {
3059		if (entry == &map->header)
3060			return (FALSE);
3061		/*
3062		 * No holes allowed!
3063		 */
3064		if (start < entry->start)
3065			return (FALSE);
3066		/*
3067		 * Check protection associated with entry.
3068		 */
3069		if ((entry->protection & protection) != protection)
3070			return (FALSE);
3071		/* go to next entry */
3072		start = entry->end;
3073		entry = entry->next;
3074	}
3075	return (TRUE);
3076}
3077
3078/*
3079 *	vm_map_copy_entry:
3080 *
3081 *	Copies the contents of the source entry to the destination
3082 *	entry.  The entries *must* be aligned properly.
3083 */
3084static void
3085vm_map_copy_entry(
3086	vm_map_t src_map,
3087	vm_map_t dst_map,
3088	vm_map_entry_t src_entry,
3089	vm_map_entry_t dst_entry,
3090	vm_ooffset_t *fork_charge)
3091{
3092	vm_object_t src_object;
3093	vm_map_entry_t fake_entry;
3094	vm_offset_t size;
3095	struct ucred *cred;
3096	int charged;
3097
3098	VM_MAP_ASSERT_LOCKED(dst_map);
3099
3100	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3101		return;
3102
3103	if (src_entry->wired_count == 0 ||
3104	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3105		/*
3106		 * If the source entry is marked needs_copy, it is already
3107		 * write-protected.
3108		 */
3109		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3110		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3111			pmap_protect(src_map->pmap,
3112			    src_entry->start,
3113			    src_entry->end,
3114			    src_entry->protection & ~VM_PROT_WRITE);
3115		}
3116
3117		/*
3118		 * Make a copy of the object.
3119		 */
3120		size = src_entry->end - src_entry->start;
3121		if ((src_object = src_entry->object.vm_object) != NULL) {
3122			VM_OBJECT_WLOCK(src_object);
3123			charged = ENTRY_CHARGED(src_entry);
3124			if (src_object->handle == NULL &&
3125			    (src_object->type == OBJT_DEFAULT ||
3126			    src_object->type == OBJT_SWAP)) {
3127				vm_object_collapse(src_object);
3128				if ((src_object->flags & (OBJ_NOSPLIT |
3129				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3130					vm_object_split(src_entry);
3131					src_object =
3132					    src_entry->object.vm_object;
3133				}
3134			}
3135			vm_object_reference_locked(src_object);
3136			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3137			if (src_entry->cred != NULL &&
3138			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3139				KASSERT(src_object->cred == NULL,
3140				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3141				     src_object));
3142				src_object->cred = src_entry->cred;
3143				src_object->charge = size;
3144			}
3145			VM_OBJECT_WUNLOCK(src_object);
3146			dst_entry->object.vm_object = src_object;
3147			if (charged) {
3148				cred = curthread->td_ucred;
3149				crhold(cred);
3150				dst_entry->cred = cred;
3151				*fork_charge += size;
3152				if (!(src_entry->eflags &
3153				      MAP_ENTRY_NEEDS_COPY)) {
3154					crhold(cred);
3155					src_entry->cred = cred;
3156					*fork_charge += size;
3157				}
3158			}
3159			src_entry->eflags |= MAP_ENTRY_COW |
3160			    MAP_ENTRY_NEEDS_COPY;
3161			dst_entry->eflags |= MAP_ENTRY_COW |
3162			    MAP_ENTRY_NEEDS_COPY;
3163			dst_entry->offset = src_entry->offset;
3164			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3165				/*
3166				 * MAP_ENTRY_VN_WRITECNT cannot
3167				 * indicate write reference from
3168				 * src_entry, since the entry is
3169				 * marked as needs copy.  Allocate a
3170				 * fake entry that is used to
3171				 * decrement object->un_pager.vnp.writecount
3172				 * at the appropriate time.  Attach
3173				 * fake_entry to the deferred list.
3174				 */
3175				fake_entry = vm_map_entry_create(dst_map);
3176				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3177				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3178				vm_object_reference(src_object);
3179				fake_entry->object.vm_object = src_object;
3180				fake_entry->start = src_entry->start;
3181				fake_entry->end = src_entry->end;
3182				fake_entry->next = curthread->td_map_def_user;
3183				curthread->td_map_def_user = fake_entry;
3184			}
3185		} else {
3186			dst_entry->object.vm_object = NULL;
3187			dst_entry->offset = 0;
3188			if (src_entry->cred != NULL) {
3189				dst_entry->cred = curthread->td_ucred;
3190				crhold(dst_entry->cred);
3191				*fork_charge += size;
3192			}
3193		}
3194
3195		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3196		    dst_entry->end - dst_entry->start, src_entry->start);
3197	} else {
3198		/*
3199		 * We don't want to make writeable wired pages copy-on-write.
3200		 * Immediately copy these pages into the new map by simulating
3201		 * page faults.  The new pages are pageable.
3202		 */
3203		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3204		    fork_charge);
3205	}
3206}
3207
3208/*
3209 * vmspace_map_entry_forked:
3210 * Update the newly-forked vmspace each time a map entry is inherited
3211 * or copied.  The values for vm_dsize and vm_tsize are approximate
3212 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3213 */
3214static void
3215vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3216    vm_map_entry_t entry)
3217{
3218	vm_size_t entrysize;
3219	vm_offset_t newend;
3220
3221	entrysize = entry->end - entry->start;
3222	vm2->vm_map.size += entrysize;
3223	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3224		vm2->vm_ssize += btoc(entrysize);
3225	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3226	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3227		newend = MIN(entry->end,
3228		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3229		vm2->vm_dsize += btoc(newend - entry->start);
3230	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3231	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3232		newend = MIN(entry->end,
3233		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3234		vm2->vm_tsize += btoc(newend - entry->start);
3235	}
3236}
3237
3238/*
3239 * vmspace_fork:
3240 * Create a new process vmspace structure and vm_map
3241 * based on those of an existing process.  The new map
3242 * is based on the old map, according to the inheritance
3243 * values on the regions in that map.
3244 *
3245 * XXX It might be worth coalescing the entries added to the new vmspace.
3246 *
3247 * The source map must not be locked.
3248 */
3249struct vmspace *
3250vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3251{
3252	struct vmspace *vm2;
3253	vm_map_t new_map, old_map;
3254	vm_map_entry_t new_entry, old_entry;
3255	vm_object_t object;
3256	int locked;
3257
3258	old_map = &vm1->vm_map;
3259	/* Copy immutable fields of vm1 to vm2. */
3260	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3261	if (vm2 == NULL)
3262		return (NULL);
3263	vm2->vm_taddr = vm1->vm_taddr;
3264	vm2->vm_daddr = vm1->vm_daddr;
3265	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3266	vm_map_lock(old_map);
3267	if (old_map->busy)
3268		vm_map_wait_busy(old_map);
3269	new_map = &vm2->vm_map;
3270	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3271	KASSERT(locked, ("vmspace_fork: lock failed"));
3272
3273	old_entry = old_map->header.next;
3274
3275	while (old_entry != &old_map->header) {
3276		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3277			panic("vm_map_fork: encountered a submap");
3278
3279		switch (old_entry->inheritance) {
3280		case VM_INHERIT_NONE:
3281			break;
3282
3283		case VM_INHERIT_SHARE:
3284			/*
3285			 * Clone the entry, creating the shared object if necessary.
3286			 */
3287			object = old_entry->object.vm_object;
3288			if (object == NULL) {
3289				object = vm_object_allocate(OBJT_DEFAULT,
3290					atop(old_entry->end - old_entry->start));
3291				old_entry->object.vm_object = object;
3292				old_entry->offset = 0;
3293				if (old_entry->cred != NULL) {
3294					object->cred = old_entry->cred;
3295					object->charge = old_entry->end -
3296					    old_entry->start;
3297					old_entry->cred = NULL;
3298				}
3299			}
3300
3301			/*
3302			 * Add the reference before calling vm_object_shadow
3303			 * to insure that a shadow object is created.
3304			 */
3305			vm_object_reference(object);
3306			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3307				vm_object_shadow(&old_entry->object.vm_object,
3308				    &old_entry->offset,
3309				    old_entry->end - old_entry->start);
3310				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3311				/* Transfer the second reference too. */
3312				vm_object_reference(
3313				    old_entry->object.vm_object);
3314
3315				/*
3316				 * As in vm_map_simplify_entry(), the
3317				 * vnode lock will not be acquired in
3318				 * this call to vm_object_deallocate().
3319				 */
3320				vm_object_deallocate(object);
3321				object = old_entry->object.vm_object;
3322			}
3323			VM_OBJECT_WLOCK(object);
3324			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3325			if (old_entry->cred != NULL) {
3326				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3327				object->cred = old_entry->cred;
3328				object->charge = old_entry->end - old_entry->start;
3329				old_entry->cred = NULL;
3330			}
3331
3332			/*
3333			 * Assert the correct state of the vnode
3334			 * v_writecount while the object is locked, to
3335			 * not relock it later for the assertion
3336			 * correctness.
3337			 */
3338			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3339			    object->type == OBJT_VNODE) {
3340				KASSERT(((struct vnode *)object->handle)->
3341				    v_writecount > 0,
3342				    ("vmspace_fork: v_writecount %p", object));
3343				KASSERT(object->un_pager.vnp.writemappings > 0,
3344				    ("vmspace_fork: vnp.writecount %p",
3345				    object));
3346			}
3347			VM_OBJECT_WUNLOCK(object);
3348
3349			/*
3350			 * Clone the entry, referencing the shared object.
3351			 */
3352			new_entry = vm_map_entry_create(new_map);
3353			*new_entry = *old_entry;
3354			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3355			    MAP_ENTRY_IN_TRANSITION);
3356			new_entry->wiring_thread = NULL;
3357			new_entry->wired_count = 0;
3358			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3359				vnode_pager_update_writecount(object,
3360				    new_entry->start, new_entry->end);
3361			}
3362
3363			/*
3364			 * Insert the entry into the new map -- we know we're
3365			 * inserting at the end of the new map.
3366			 */
3367			vm_map_entry_link(new_map, new_map->header.prev,
3368			    new_entry);
3369			vmspace_map_entry_forked(vm1, vm2, new_entry);
3370
3371			/*
3372			 * Update the physical map
3373			 */
3374			pmap_copy(new_map->pmap, old_map->pmap,
3375			    new_entry->start,
3376			    (old_entry->end - old_entry->start),
3377			    old_entry->start);
3378			break;
3379
3380		case VM_INHERIT_COPY:
3381			/*
3382			 * Clone the entry and link into the map.
3383			 */
3384			new_entry = vm_map_entry_create(new_map);
3385			*new_entry = *old_entry;
3386			/*
3387			 * Copied entry is COW over the old object.
3388			 */
3389			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3390			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3391			new_entry->wiring_thread = NULL;
3392			new_entry->wired_count = 0;
3393			new_entry->object.vm_object = NULL;
3394			new_entry->cred = NULL;
3395			vm_map_entry_link(new_map, new_map->header.prev,
3396			    new_entry);
3397			vmspace_map_entry_forked(vm1, vm2, new_entry);
3398			vm_map_copy_entry(old_map, new_map, old_entry,
3399			    new_entry, fork_charge);
3400			break;
3401		}
3402		old_entry = old_entry->next;
3403	}
3404	/*
3405	 * Use inlined vm_map_unlock() to postpone handling the deferred
3406	 * map entries, which cannot be done until both old_map and
3407	 * new_map locks are released.
3408	 */
3409	sx_xunlock(&old_map->lock);
3410	sx_xunlock(&new_map->lock);
3411	vm_map_process_deferred();
3412
3413	return (vm2);
3414}
3415
3416int
3417vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3418    vm_prot_t prot, vm_prot_t max, int cow)
3419{
3420	vm_size_t growsize, init_ssize;
3421	rlim_t lmemlim, vmemlim;
3422	int rv;
3423
3424	growsize = sgrowsiz;
3425	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3426	vm_map_lock(map);
3427	PROC_LOCK(curproc);
3428	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3429	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3430	PROC_UNLOCK(curproc);
3431	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3432		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3433			rv = KERN_NO_SPACE;
3434			goto out;
3435		}
3436	}
3437	/* If we would blow our VMEM resource limit, no go */
3438	if (map->size + init_ssize > vmemlim) {
3439		rv = KERN_NO_SPACE;
3440		goto out;
3441	}
3442	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3443	    max, cow);
3444out:
3445	vm_map_unlock(map);
3446	return (rv);
3447}
3448
3449static int
3450vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3451    vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3452{
3453	vm_map_entry_t new_entry, prev_entry;
3454	vm_offset_t bot, top;
3455	vm_size_t init_ssize;
3456	int orient, rv;
3457
3458	/*
3459	 * The stack orientation is piggybacked with the cow argument.
3460	 * Extract it into orient and mask the cow argument so that we
3461	 * don't pass it around further.
3462	 * NOTE: We explicitly allow bi-directional stacks.
3463	 */
3464	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3465	KASSERT(orient != 0, ("No stack grow direction"));
3466
3467	if (addrbos < vm_map_min(map) ||
3468	    addrbos > vm_map_max(map) ||
3469	    addrbos + max_ssize < addrbos)
3470		return (KERN_NO_SPACE);
3471
3472	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3473
3474	/* If addr is already mapped, no go */
3475	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3476		return (KERN_NO_SPACE);
3477
3478	/*
3479	 * If we can't accomodate max_ssize in the current mapping, no go.
3480	 * However, we need to be aware that subsequent user mappings might
3481	 * map into the space we have reserved for stack, and currently this
3482	 * space is not protected.
3483	 *
3484	 * Hopefully we will at least detect this condition when we try to
3485	 * grow the stack.
3486	 */
3487	if ((prev_entry->next != &map->header) &&
3488	    (prev_entry->next->start < addrbos + max_ssize))
3489		return (KERN_NO_SPACE);
3490
3491	/*
3492	 * We initially map a stack of only init_ssize.  We will grow as
3493	 * needed later.  Depending on the orientation of the stack (i.e.
3494	 * the grow direction) we either map at the top of the range, the
3495	 * bottom of the range or in the middle.
3496	 *
3497	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3498	 * and cow to be 0.  Possibly we should eliminate these as input
3499	 * parameters, and just pass these values here in the insert call.
3500	 */
3501	if (orient == MAP_STACK_GROWS_DOWN)
3502		bot = addrbos + max_ssize - init_ssize;
3503	else if (orient == MAP_STACK_GROWS_UP)
3504		bot = addrbos;
3505	else
3506		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3507	top = bot + init_ssize;
3508	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3509
3510	/* Now set the avail_ssize amount. */
3511	if (rv == KERN_SUCCESS) {
3512		new_entry = prev_entry->next;
3513		if (new_entry->end != top || new_entry->start != bot)
3514			panic("Bad entry start/end for new stack entry");
3515
3516		new_entry->avail_ssize = max_ssize - init_ssize;
3517		KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3518		    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3519		    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3520		KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3521		    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3522		    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3523	}
3524
3525	return (rv);
3526}
3527
3528static int stack_guard_page = 0;
3529TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3530SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3531    &stack_guard_page, 0,
3532    "Insert stack guard page ahead of the growable segments.");
3533
3534/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3535 * desired address is already mapped, or if we successfully grow
3536 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3537 * stack range (this is strange, but preserves compatibility with
3538 * the grow function in vm_machdep.c).
3539 */
3540int
3541vm_map_growstack(struct proc *p, vm_offset_t addr)
3542{
3543	vm_map_entry_t next_entry, prev_entry;
3544	vm_map_entry_t new_entry, stack_entry;
3545	struct vmspace *vm = p->p_vmspace;
3546	vm_map_t map = &vm->vm_map;
3547	vm_offset_t end;
3548	vm_size_t growsize;
3549	size_t grow_amount, max_grow;
3550	rlim_t lmemlim, stacklim, vmemlim;
3551	int is_procstack, rv;
3552	struct ucred *cred;
3553#ifdef notyet
3554	uint64_t limit;
3555#endif
3556#ifdef RACCT
3557	int error;
3558#endif
3559
3560Retry:
3561	PROC_LOCK(p);
3562	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3563	stacklim = lim_cur(p, RLIMIT_STACK);
3564	vmemlim = lim_cur(p, RLIMIT_VMEM);
3565	PROC_UNLOCK(p);
3566
3567	vm_map_lock_read(map);
3568
3569	/* If addr is already in the entry range, no need to grow.*/
3570	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3571		vm_map_unlock_read(map);
3572		return (KERN_SUCCESS);
3573	}
3574
3575	next_entry = prev_entry->next;
3576	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3577		/*
3578		 * This entry does not grow upwards. Since the address lies
3579		 * beyond this entry, the next entry (if one exists) has to
3580		 * be a downward growable entry. The entry list header is
3581		 * never a growable entry, so it suffices to check the flags.
3582		 */
3583		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3584			vm_map_unlock_read(map);
3585			return (KERN_SUCCESS);
3586		}
3587		stack_entry = next_entry;
3588	} else {
3589		/*
3590		 * This entry grows upward. If the next entry does not at
3591		 * least grow downwards, this is the entry we need to grow.
3592		 * otherwise we have two possible choices and we have to
3593		 * select one.
3594		 */
3595		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3596			/*
3597			 * We have two choices; grow the entry closest to
3598			 * the address to minimize the amount of growth.
3599			 */
3600			if (addr - prev_entry->end <= next_entry->start - addr)
3601				stack_entry = prev_entry;
3602			else
3603				stack_entry = next_entry;
3604		} else
3605			stack_entry = prev_entry;
3606	}
3607
3608	if (stack_entry == next_entry) {
3609		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3610		KASSERT(addr < stack_entry->start, ("foo"));
3611		end = (prev_entry != &map->header) ? prev_entry->end :
3612		    stack_entry->start - stack_entry->avail_ssize;
3613		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3614		max_grow = stack_entry->start - end;
3615	} else {
3616		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3617		KASSERT(addr >= stack_entry->end, ("foo"));
3618		end = (next_entry != &map->header) ? next_entry->start :
3619		    stack_entry->end + stack_entry->avail_ssize;
3620		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3621		max_grow = end - stack_entry->end;
3622	}
3623
3624	if (grow_amount > stack_entry->avail_ssize) {
3625		vm_map_unlock_read(map);
3626		return (KERN_NO_SPACE);
3627	}
3628
3629	/*
3630	 * If there is no longer enough space between the entries nogo, and
3631	 * adjust the available space.  Note: this  should only happen if the
3632	 * user has mapped into the stack area after the stack was created,
3633	 * and is probably an error.
3634	 *
3635	 * This also effectively destroys any guard page the user might have
3636	 * intended by limiting the stack size.
3637	 */
3638	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3639		if (vm_map_lock_upgrade(map))
3640			goto Retry;
3641
3642		stack_entry->avail_ssize = max_grow;
3643
3644		vm_map_unlock(map);
3645		return (KERN_NO_SPACE);
3646	}
3647
3648	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
3649	    addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
3650
3651	/*
3652	 * If this is the main process stack, see if we're over the stack
3653	 * limit.
3654	 */
3655	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3656		vm_map_unlock_read(map);
3657		return (KERN_NO_SPACE);
3658	}
3659#ifdef RACCT
3660	if (racct_enable) {
3661		PROC_LOCK(p);
3662		if (is_procstack && racct_set(p, RACCT_STACK,
3663		    ctob(vm->vm_ssize) + grow_amount)) {
3664			PROC_UNLOCK(p);
3665			vm_map_unlock_read(map);
3666			return (KERN_NO_SPACE);
3667		}
3668		PROC_UNLOCK(p);
3669	}
3670#endif
3671
3672	/* Round up the grow amount modulo sgrowsiz */
3673	growsize = sgrowsiz;
3674	grow_amount = roundup(grow_amount, growsize);
3675	if (grow_amount > stack_entry->avail_ssize)
3676		grow_amount = stack_entry->avail_ssize;
3677	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3678		grow_amount = trunc_page((vm_size_t)stacklim) -
3679		    ctob(vm->vm_ssize);
3680	}
3681#ifdef notyet
3682	PROC_LOCK(p);
3683	limit = racct_get_available(p, RACCT_STACK);
3684	PROC_UNLOCK(p);
3685	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3686		grow_amount = limit - ctob(vm->vm_ssize);
3687#endif
3688	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3689		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3690			vm_map_unlock_read(map);
3691			rv = KERN_NO_SPACE;
3692			goto out;
3693		}
3694#ifdef RACCT
3695		if (racct_enable) {
3696			PROC_LOCK(p);
3697			if (racct_set(p, RACCT_MEMLOCK,
3698			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3699				PROC_UNLOCK(p);
3700				vm_map_unlock_read(map);
3701				rv = KERN_NO_SPACE;
3702				goto out;
3703			}
3704			PROC_UNLOCK(p);
3705		}
3706#endif
3707	}
3708	/* If we would blow our VMEM resource limit, no go */
3709	if (map->size + grow_amount > vmemlim) {
3710		vm_map_unlock_read(map);
3711		rv = KERN_NO_SPACE;
3712		goto out;
3713	}
3714#ifdef RACCT
3715	if (racct_enable) {
3716		PROC_LOCK(p);
3717		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3718			PROC_UNLOCK(p);
3719			vm_map_unlock_read(map);
3720			rv = KERN_NO_SPACE;
3721			goto out;
3722		}
3723		PROC_UNLOCK(p);
3724	}
3725#endif
3726
3727	if (vm_map_lock_upgrade(map))
3728		goto Retry;
3729
3730	if (stack_entry == next_entry) {
3731		/*
3732		 * Growing downward.
3733		 */
3734		/* Get the preliminary new entry start value */
3735		addr = stack_entry->start - grow_amount;
3736
3737		/*
3738		 * If this puts us into the previous entry, cut back our
3739		 * growth to the available space. Also, see the note above.
3740		 */
3741		if (addr < end) {
3742			stack_entry->avail_ssize = max_grow;
3743			addr = end;
3744			if (stack_guard_page)
3745				addr += PAGE_SIZE;
3746		}
3747
3748		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3749		    next_entry->protection, next_entry->max_protection,
3750		    MAP_STACK_GROWS_DOWN);
3751
3752		/* Adjust the available stack space by the amount we grew. */
3753		if (rv == KERN_SUCCESS) {
3754			new_entry = prev_entry->next;
3755			KASSERT(new_entry == stack_entry->prev, ("foo"));
3756			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3757			KASSERT(new_entry->start == addr, ("foo"));
3758			KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3759			    0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3760			grow_amount = new_entry->end - new_entry->start;
3761			new_entry->avail_ssize = stack_entry->avail_ssize -
3762			    grow_amount;
3763			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3764		}
3765	} else {
3766		/*
3767		 * Growing upward.
3768		 */
3769		addr = stack_entry->end + grow_amount;
3770
3771		/*
3772		 * If this puts us into the next entry, cut back our growth
3773		 * to the available space. Also, see the note above.
3774		 */
3775		if (addr > end) {
3776			stack_entry->avail_ssize = end - stack_entry->end;
3777			addr = end;
3778			if (stack_guard_page)
3779				addr -= PAGE_SIZE;
3780		}
3781
3782		grow_amount = addr - stack_entry->end;
3783		cred = stack_entry->cred;
3784		if (cred == NULL && stack_entry->object.vm_object != NULL)
3785			cred = stack_entry->object.vm_object->cred;
3786		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3787			rv = KERN_NO_SPACE;
3788		/* Grow the underlying object if applicable. */
3789		else if (stack_entry->object.vm_object == NULL ||
3790		    vm_object_coalesce(stack_entry->object.vm_object,
3791		    stack_entry->offset,
3792		    (vm_size_t)(stack_entry->end - stack_entry->start),
3793		    (vm_size_t)grow_amount, cred != NULL)) {
3794			map->size += (addr - stack_entry->end);
3795			/* Update the current entry. */
3796			stack_entry->end = addr;
3797			stack_entry->avail_ssize -= grow_amount;
3798			vm_map_entry_resize_free(map, stack_entry);
3799			rv = KERN_SUCCESS;
3800
3801			if (next_entry != &map->header)
3802				vm_map_clip_start(map, next_entry, addr);
3803		} else
3804			rv = KERN_FAILURE;
3805	}
3806
3807	if (rv == KERN_SUCCESS && is_procstack)
3808		vm->vm_ssize += btoc(grow_amount);
3809
3810	vm_map_unlock(map);
3811
3812	/*
3813	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3814	 */
3815	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3816		vm_map_wire(map,
3817		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3818		    (stack_entry == next_entry) ? stack_entry->start : addr,
3819		    (p->p_flag & P_SYSTEM)
3820		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3821		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3822	}
3823
3824out:
3825#ifdef RACCT
3826	if (racct_enable && rv != KERN_SUCCESS) {
3827		PROC_LOCK(p);
3828		error = racct_set(p, RACCT_VMEM, map->size);
3829		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3830		if (!old_mlock) {
3831			error = racct_set(p, RACCT_MEMLOCK,
3832			    ptoa(pmap_wired_count(map->pmap)));
3833			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3834		}
3835	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3836		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3837		PROC_UNLOCK(p);
3838	}
3839#endif
3840
3841	return (rv);
3842}
3843
3844/*
3845 * Unshare the specified VM space for exec.  If other processes are
3846 * mapped to it, then create a new one.  The new vmspace is null.
3847 */
3848int
3849vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3850{
3851	struct vmspace *oldvmspace = p->p_vmspace;
3852	struct vmspace *newvmspace;
3853
3854	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3855	    ("vmspace_exec recursed"));
3856	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3857	if (newvmspace == NULL)
3858		return (ENOMEM);
3859	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3860	/*
3861	 * This code is written like this for prototype purposes.  The
3862	 * goal is to avoid running down the vmspace here, but let the
3863	 * other process's that are still using the vmspace to finally
3864	 * run it down.  Even though there is little or no chance of blocking
3865	 * here, it is a good idea to keep this form for future mods.
3866	 */
3867	PROC_VMSPACE_LOCK(p);
3868	p->p_vmspace = newvmspace;
3869	PROC_VMSPACE_UNLOCK(p);
3870	if (p == curthread->td_proc)
3871		pmap_activate(curthread);
3872	curthread->td_pflags |= TDP_EXECVMSPC;
3873	return (0);
3874}
3875
3876/*
3877 * Unshare the specified VM space for forcing COW.  This
3878 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3879 */
3880int
3881vmspace_unshare(struct proc *p)
3882{
3883	struct vmspace *oldvmspace = p->p_vmspace;
3884	struct vmspace *newvmspace;
3885	vm_ooffset_t fork_charge;
3886
3887	if (oldvmspace->vm_refcnt == 1)
3888		return (0);
3889	fork_charge = 0;
3890	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3891	if (newvmspace == NULL)
3892		return (ENOMEM);
3893	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3894		vmspace_free(newvmspace);
3895		return (ENOMEM);
3896	}
3897	PROC_VMSPACE_LOCK(p);
3898	p->p_vmspace = newvmspace;
3899	PROC_VMSPACE_UNLOCK(p);
3900	if (p == curthread->td_proc)
3901		pmap_activate(curthread);
3902	vmspace_free(oldvmspace);
3903	return (0);
3904}
3905
3906/*
3907 *	vm_map_lookup:
3908 *
3909 *	Finds the VM object, offset, and
3910 *	protection for a given virtual address in the
3911 *	specified map, assuming a page fault of the
3912 *	type specified.
3913 *
3914 *	Leaves the map in question locked for read; return
3915 *	values are guaranteed until a vm_map_lookup_done
3916 *	call is performed.  Note that the map argument
3917 *	is in/out; the returned map must be used in
3918 *	the call to vm_map_lookup_done.
3919 *
3920 *	A handle (out_entry) is returned for use in
3921 *	vm_map_lookup_done, to make that fast.
3922 *
3923 *	If a lookup is requested with "write protection"
3924 *	specified, the map may be changed to perform virtual
3925 *	copying operations, although the data referenced will
3926 *	remain the same.
3927 */
3928int
3929vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3930	      vm_offset_t vaddr,
3931	      vm_prot_t fault_typea,
3932	      vm_map_entry_t *out_entry,	/* OUT */
3933	      vm_object_t *object,		/* OUT */
3934	      vm_pindex_t *pindex,		/* OUT */
3935	      vm_prot_t *out_prot,		/* OUT */
3936	      boolean_t *wired)			/* OUT */
3937{
3938	vm_map_entry_t entry;
3939	vm_map_t map = *var_map;
3940	vm_prot_t prot;
3941	vm_prot_t fault_type = fault_typea;
3942	vm_object_t eobject;
3943	vm_size_t size;
3944	struct ucred *cred;
3945
3946RetryLookup:;
3947
3948	vm_map_lock_read(map);
3949
3950	/*
3951	 * Lookup the faulting address.
3952	 */
3953	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3954		vm_map_unlock_read(map);
3955		return (KERN_INVALID_ADDRESS);
3956	}
3957
3958	entry = *out_entry;
3959
3960	/*
3961	 * Handle submaps.
3962	 */
3963	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3964		vm_map_t old_map = map;
3965
3966		*var_map = map = entry->object.sub_map;
3967		vm_map_unlock_read(old_map);
3968		goto RetryLookup;
3969	}
3970
3971	/*
3972	 * Check whether this task is allowed to have this page.
3973	 */
3974	prot = entry->protection;
3975	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3976	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3977		vm_map_unlock_read(map);
3978		return (KERN_PROTECTION_FAILURE);
3979	}
3980	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
3981	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
3982	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
3983	    ("entry %p flags %x", entry, entry->eflags));
3984	if ((fault_typea & VM_PROT_COPY) != 0 &&
3985	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3986	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3987		vm_map_unlock_read(map);
3988		return (KERN_PROTECTION_FAILURE);
3989	}
3990
3991	/*
3992	 * If this page is not pageable, we have to get it for all possible
3993	 * accesses.
3994	 */
3995	*wired = (entry->wired_count != 0);
3996	if (*wired)
3997		fault_type = entry->protection;
3998	size = entry->end - entry->start;
3999	/*
4000	 * If the entry was copy-on-write, we either ...
4001	 */
4002	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4003		/*
4004		 * If we want to write the page, we may as well handle that
4005		 * now since we've got the map locked.
4006		 *
4007		 * If we don't need to write the page, we just demote the
4008		 * permissions allowed.
4009		 */
4010		if ((fault_type & VM_PROT_WRITE) != 0 ||
4011		    (fault_typea & VM_PROT_COPY) != 0) {
4012			/*
4013			 * Make a new object, and place it in the object
4014			 * chain.  Note that no new references have appeared
4015			 * -- one just moved from the map to the new
4016			 * object.
4017			 */
4018			if (vm_map_lock_upgrade(map))
4019				goto RetryLookup;
4020
4021			if (entry->cred == NULL) {
4022				/*
4023				 * The debugger owner is charged for
4024				 * the memory.
4025				 */
4026				cred = curthread->td_ucred;
4027				crhold(cred);
4028				if (!swap_reserve_by_cred(size, cred)) {
4029					crfree(cred);
4030					vm_map_unlock(map);
4031					return (KERN_RESOURCE_SHORTAGE);
4032				}
4033				entry->cred = cred;
4034			}
4035			vm_object_shadow(&entry->object.vm_object,
4036			    &entry->offset, size);
4037			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4038			eobject = entry->object.vm_object;
4039			if (eobject->cred != NULL) {
4040				/*
4041				 * The object was not shadowed.
4042				 */
4043				swap_release_by_cred(size, entry->cred);
4044				crfree(entry->cred);
4045				entry->cred = NULL;
4046			} else if (entry->cred != NULL) {
4047				VM_OBJECT_WLOCK(eobject);
4048				eobject->cred = entry->cred;
4049				eobject->charge = size;
4050				VM_OBJECT_WUNLOCK(eobject);
4051				entry->cred = NULL;
4052			}
4053
4054			vm_map_lock_downgrade(map);
4055		} else {
4056			/*
4057			 * We're attempting to read a copy-on-write page --
4058			 * don't allow writes.
4059			 */
4060			prot &= ~VM_PROT_WRITE;
4061		}
4062	}
4063
4064	/*
4065	 * Create an object if necessary.
4066	 */
4067	if (entry->object.vm_object == NULL &&
4068	    !map->system_map) {
4069		if (vm_map_lock_upgrade(map))
4070			goto RetryLookup;
4071		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4072		    atop(size));
4073		entry->offset = 0;
4074		if (entry->cred != NULL) {
4075			VM_OBJECT_WLOCK(entry->object.vm_object);
4076			entry->object.vm_object->cred = entry->cred;
4077			entry->object.vm_object->charge = size;
4078			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4079			entry->cred = NULL;
4080		}
4081		vm_map_lock_downgrade(map);
4082	}
4083
4084	/*
4085	 * Return the object/offset from this entry.  If the entry was
4086	 * copy-on-write or empty, it has been fixed up.
4087	 */
4088	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4089	*object = entry->object.vm_object;
4090
4091	*out_prot = prot;
4092	return (KERN_SUCCESS);
4093}
4094
4095/*
4096 *	vm_map_lookup_locked:
4097 *
4098 *	Lookup the faulting address.  A version of vm_map_lookup that returns
4099 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4100 */
4101int
4102vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4103		     vm_offset_t vaddr,
4104		     vm_prot_t fault_typea,
4105		     vm_map_entry_t *out_entry,	/* OUT */
4106		     vm_object_t *object,	/* OUT */
4107		     vm_pindex_t *pindex,	/* OUT */
4108		     vm_prot_t *out_prot,	/* OUT */
4109		     boolean_t *wired)		/* OUT */
4110{
4111	vm_map_entry_t entry;
4112	vm_map_t map = *var_map;
4113	vm_prot_t prot;
4114	vm_prot_t fault_type = fault_typea;
4115
4116	/*
4117	 * Lookup the faulting address.
4118	 */
4119	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4120		return (KERN_INVALID_ADDRESS);
4121
4122	entry = *out_entry;
4123
4124	/*
4125	 * Fail if the entry refers to a submap.
4126	 */
4127	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4128		return (KERN_FAILURE);
4129
4130	/*
4131	 * Check whether this task is allowed to have this page.
4132	 */
4133	prot = entry->protection;
4134	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4135	if ((fault_type & prot) != fault_type)
4136		return (KERN_PROTECTION_FAILURE);
4137
4138	/*
4139	 * If this page is not pageable, we have to get it for all possible
4140	 * accesses.
4141	 */
4142	*wired = (entry->wired_count != 0);
4143	if (*wired)
4144		fault_type = entry->protection;
4145
4146	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4147		/*
4148		 * Fail if the entry was copy-on-write for a write fault.
4149		 */
4150		if (fault_type & VM_PROT_WRITE)
4151			return (KERN_FAILURE);
4152		/*
4153		 * We're attempting to read a copy-on-write page --
4154		 * don't allow writes.
4155		 */
4156		prot &= ~VM_PROT_WRITE;
4157	}
4158
4159	/*
4160	 * Fail if an object should be created.
4161	 */
4162	if (entry->object.vm_object == NULL && !map->system_map)
4163		return (KERN_FAILURE);
4164
4165	/*
4166	 * Return the object/offset from this entry.  If the entry was
4167	 * copy-on-write or empty, it has been fixed up.
4168	 */
4169	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4170	*object = entry->object.vm_object;
4171
4172	*out_prot = prot;
4173	return (KERN_SUCCESS);
4174}
4175
4176/*
4177 *	vm_map_lookup_done:
4178 *
4179 *	Releases locks acquired by a vm_map_lookup
4180 *	(according to the handle returned by that lookup).
4181 */
4182void
4183vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4184{
4185	/*
4186	 * Unlock the main-level map
4187	 */
4188	vm_map_unlock_read(map);
4189}
4190
4191#include "opt_ddb.h"
4192#ifdef DDB
4193#include <sys/kernel.h>
4194
4195#include <ddb/ddb.h>
4196
4197static void
4198vm_map_print(vm_map_t map)
4199{
4200	vm_map_entry_t entry;
4201
4202	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4203	    (void *)map,
4204	    (void *)map->pmap, map->nentries, map->timestamp);
4205
4206	db_indent += 2;
4207	for (entry = map->header.next; entry != &map->header;
4208	    entry = entry->next) {
4209		db_iprintf("map entry %p: start=%p, end=%p\n",
4210		    (void *)entry, (void *)entry->start, (void *)entry->end);
4211		{
4212			static char *inheritance_name[4] =
4213			{"share", "copy", "none", "donate_copy"};
4214
4215			db_iprintf(" prot=%x/%x/%s",
4216			    entry->protection,
4217			    entry->max_protection,
4218			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4219			if (entry->wired_count != 0)
4220				db_printf(", wired");
4221		}
4222		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4223			db_printf(", share=%p, offset=0x%jx\n",
4224			    (void *)entry->object.sub_map,
4225			    (uintmax_t)entry->offset);
4226			if ((entry->prev == &map->header) ||
4227			    (entry->prev->object.sub_map !=
4228				entry->object.sub_map)) {
4229				db_indent += 2;
4230				vm_map_print((vm_map_t)entry->object.sub_map);
4231				db_indent -= 2;
4232			}
4233		} else {
4234			if (entry->cred != NULL)
4235				db_printf(", ruid %d", entry->cred->cr_ruid);
4236			db_printf(", object=%p, offset=0x%jx",
4237			    (void *)entry->object.vm_object,
4238			    (uintmax_t)entry->offset);
4239			if (entry->object.vm_object && entry->object.vm_object->cred)
4240				db_printf(", obj ruid %d charge %jx",
4241				    entry->object.vm_object->cred->cr_ruid,
4242				    (uintmax_t)entry->object.vm_object->charge);
4243			if (entry->eflags & MAP_ENTRY_COW)
4244				db_printf(", copy (%s)",
4245				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4246			db_printf("\n");
4247
4248			if ((entry->prev == &map->header) ||
4249			    (entry->prev->object.vm_object !=
4250				entry->object.vm_object)) {
4251				db_indent += 2;
4252				vm_object_print((db_expr_t)(intptr_t)
4253						entry->object.vm_object,
4254						0, 0, (char *)0);
4255				db_indent -= 2;
4256			}
4257		}
4258	}
4259	db_indent -= 2;
4260}
4261
4262DB_SHOW_COMMAND(map, map)
4263{
4264
4265	if (!have_addr) {
4266		db_printf("usage: show map <addr>\n");
4267		return;
4268	}
4269	vm_map_print((vm_map_t)addr);
4270}
4271
4272DB_SHOW_COMMAND(procvm, procvm)
4273{
4274	struct proc *p;
4275
4276	if (have_addr) {
4277		p = db_lookup_proc(addr);
4278	} else {
4279		p = curproc;
4280	}
4281
4282	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4283	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4284	    (void *)vmspace_pmap(p->p_vmspace));
4285
4286	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4287}
4288
4289#endif /* DDB */
4290