vm_map.c revision 279474
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_map.c 279474 2015-03-01 04:39:07Z rstone $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136#ifdef INVARIANTS
137static void vm_map_zdtor(void *mem, int size, void *arg);
138static void vmspace_zdtor(void *mem, int size, void *arg);
139#endif
140static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141    vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142    int cow);
143static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144    vm_offset_t failed_addr);
145
146#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
147    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
148     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
149
150/*
151 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
152 * stable.
153 */
154#define PROC_VMSPACE_LOCK(p) do { } while (0)
155#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
156
157/*
158 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
159 *
160 *	Asserts that the starting and ending region
161 *	addresses fall within the valid range of the map.
162 */
163#define	VM_MAP_RANGE_CHECK(map, start, end)		\
164		{					\
165		if (start < vm_map_min(map))		\
166			start = vm_map_min(map);	\
167		if (end > vm_map_max(map))		\
168			end = vm_map_max(map);		\
169		if (start > end)			\
170			start = end;			\
171		}
172
173/*
174 *	vm_map_startup:
175 *
176 *	Initialize the vm_map module.  Must be called before
177 *	any other vm_map routines.
178 *
179 *	Map and entry structures are allocated from the general
180 *	purpose memory pool with some exceptions:
181 *
182 *	- The kernel map and kmem submap are allocated statically.
183 *	- Kernel map entries are allocated out of a static pool.
184 *
185 *	These restrictions are necessary since malloc() uses the
186 *	maps and requires map entries.
187 */
188
189void
190vm_map_startup(void)
191{
192	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
193	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
194#ifdef INVARIANTS
195	    vm_map_zdtor,
196#else
197	    NULL,
198#endif
199	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
200	uma_prealloc(mapzone, MAX_KMAP);
201	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
202	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
203	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
204	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
205	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
206	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
207#ifdef INVARIANTS
208	    vmspace_zdtor,
209#else
210	    NULL,
211#endif
212	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
213}
214
215static int
216vmspace_zinit(void *mem, int size, int flags)
217{
218	struct vmspace *vm;
219
220	vm = (struct vmspace *)mem;
221
222	vm->vm_map.pmap = NULL;
223	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
224	PMAP_LOCK_INIT(vmspace_pmap(vm));
225	return (0);
226}
227
228static int
229vm_map_zinit(void *mem, int size, int flags)
230{
231	vm_map_t map;
232
233	map = (vm_map_t)mem;
234	memset(map, 0, sizeof(*map));
235	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
236	sx_init(&map->lock, "vm map (user)");
237	return (0);
238}
239
240#ifdef INVARIANTS
241static void
242vmspace_zdtor(void *mem, int size, void *arg)
243{
244	struct vmspace *vm;
245
246	vm = (struct vmspace *)mem;
247
248	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
249}
250static void
251vm_map_zdtor(void *mem, int size, void *arg)
252{
253	vm_map_t map;
254
255	map = (vm_map_t)mem;
256	KASSERT(map->nentries == 0,
257	    ("map %p nentries == %d on free.",
258	    map, map->nentries));
259	KASSERT(map->size == 0,
260	    ("map %p size == %lu on free.",
261	    map, (unsigned long)map->size));
262}
263#endif	/* INVARIANTS */
264
265/*
266 * Allocate a vmspace structure, including a vm_map and pmap,
267 * and initialize those structures.  The refcnt is set to 1.
268 *
269 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
270 */
271struct vmspace *
272vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
273{
274	struct vmspace *vm;
275
276	vm = uma_zalloc(vmspace_zone, M_WAITOK);
277
278	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
279
280	if (pinit == NULL)
281		pinit = &pmap_pinit;
282
283	if (!pinit(vmspace_pmap(vm))) {
284		uma_zfree(vmspace_zone, vm);
285		return (NULL);
286	}
287	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
288	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
289	vm->vm_refcnt = 1;
290	vm->vm_shm = NULL;
291	vm->vm_swrss = 0;
292	vm->vm_tsize = 0;
293	vm->vm_dsize = 0;
294	vm->vm_ssize = 0;
295	vm->vm_taddr = 0;
296	vm->vm_daddr = 0;
297	vm->vm_maxsaddr = 0;
298	return (vm);
299}
300
301static void
302vmspace_container_reset(struct proc *p)
303{
304
305#ifdef RACCT
306	PROC_LOCK(p);
307	racct_set(p, RACCT_DATA, 0);
308	racct_set(p, RACCT_STACK, 0);
309	racct_set(p, RACCT_RSS, 0);
310	racct_set(p, RACCT_MEMLOCK, 0);
311	racct_set(p, RACCT_VMEM, 0);
312	PROC_UNLOCK(p);
313#endif
314}
315
316static inline void
317vmspace_dofree(struct vmspace *vm)
318{
319
320	CTR1(KTR_VM, "vmspace_free: %p", vm);
321
322	/*
323	 * Make sure any SysV shm is freed, it might not have been in
324	 * exit1().
325	 */
326	shmexit(vm);
327
328	/*
329	 * Lock the map, to wait out all other references to it.
330	 * Delete all of the mappings and pages they hold, then call
331	 * the pmap module to reclaim anything left.
332	 */
333	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
334	    vm->vm_map.max_offset);
335
336	pmap_release(vmspace_pmap(vm));
337	vm->vm_map.pmap = NULL;
338	uma_zfree(vmspace_zone, vm);
339}
340
341void
342vmspace_free(struct vmspace *vm)
343{
344
345	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
346	    "vmspace_free() called with non-sleepable lock held");
347
348	if (vm->vm_refcnt == 0)
349		panic("vmspace_free: attempt to free already freed vmspace");
350
351	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
352		vmspace_dofree(vm);
353}
354
355void
356vmspace_exitfree(struct proc *p)
357{
358	struct vmspace *vm;
359
360	PROC_VMSPACE_LOCK(p);
361	vm = p->p_vmspace;
362	p->p_vmspace = NULL;
363	PROC_VMSPACE_UNLOCK(p);
364	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
365	vmspace_free(vm);
366}
367
368void
369vmspace_exit(struct thread *td)
370{
371	int refcnt;
372	struct vmspace *vm;
373	struct proc *p;
374
375	/*
376	 * Release user portion of address space.
377	 * This releases references to vnodes,
378	 * which could cause I/O if the file has been unlinked.
379	 * Need to do this early enough that we can still sleep.
380	 *
381	 * The last exiting process to reach this point releases as
382	 * much of the environment as it can. vmspace_dofree() is the
383	 * slower fallback in case another process had a temporary
384	 * reference to the vmspace.
385	 */
386
387	p = td->td_proc;
388	vm = p->p_vmspace;
389	atomic_add_int(&vmspace0.vm_refcnt, 1);
390	do {
391		refcnt = vm->vm_refcnt;
392		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
393			/* Switch now since other proc might free vmspace */
394			PROC_VMSPACE_LOCK(p);
395			p->p_vmspace = &vmspace0;
396			PROC_VMSPACE_UNLOCK(p);
397			pmap_activate(td);
398		}
399	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
400	if (refcnt == 1) {
401		if (p->p_vmspace != vm) {
402			/* vmspace not yet freed, switch back */
403			PROC_VMSPACE_LOCK(p);
404			p->p_vmspace = vm;
405			PROC_VMSPACE_UNLOCK(p);
406			pmap_activate(td);
407		}
408		pmap_remove_pages(vmspace_pmap(vm));
409		/* Switch now since this proc will free vmspace */
410		PROC_VMSPACE_LOCK(p);
411		p->p_vmspace = &vmspace0;
412		PROC_VMSPACE_UNLOCK(p);
413		pmap_activate(td);
414		vmspace_dofree(vm);
415	}
416	vmspace_container_reset(p);
417}
418
419/* Acquire reference to vmspace owned by another process. */
420
421struct vmspace *
422vmspace_acquire_ref(struct proc *p)
423{
424	struct vmspace *vm;
425	int refcnt;
426
427	PROC_VMSPACE_LOCK(p);
428	vm = p->p_vmspace;
429	if (vm == NULL) {
430		PROC_VMSPACE_UNLOCK(p);
431		return (NULL);
432	}
433	do {
434		refcnt = vm->vm_refcnt;
435		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
436			PROC_VMSPACE_UNLOCK(p);
437			return (NULL);
438		}
439	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
440	if (vm != p->p_vmspace) {
441		PROC_VMSPACE_UNLOCK(p);
442		vmspace_free(vm);
443		return (NULL);
444	}
445	PROC_VMSPACE_UNLOCK(p);
446	return (vm);
447}
448
449void
450_vm_map_lock(vm_map_t map, const char *file, int line)
451{
452
453	if (map->system_map)
454		mtx_lock_flags_(&map->system_mtx, 0, file, line);
455	else
456		sx_xlock_(&map->lock, file, line);
457	map->timestamp++;
458}
459
460static void
461vm_map_process_deferred(void)
462{
463	struct thread *td;
464	vm_map_entry_t entry, next;
465	vm_object_t object;
466
467	td = curthread;
468	entry = td->td_map_def_user;
469	td->td_map_def_user = NULL;
470	while (entry != NULL) {
471		next = entry->next;
472		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
473			/*
474			 * Decrement the object's writemappings and
475			 * possibly the vnode's v_writecount.
476			 */
477			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
478			    ("Submap with writecount"));
479			object = entry->object.vm_object;
480			KASSERT(object != NULL, ("No object for writecount"));
481			vnode_pager_release_writecount(object, entry->start,
482			    entry->end);
483		}
484		vm_map_entry_deallocate(entry, FALSE);
485		entry = next;
486	}
487}
488
489void
490_vm_map_unlock(vm_map_t map, const char *file, int line)
491{
492
493	if (map->system_map)
494		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
495	else {
496		sx_xunlock_(&map->lock, file, line);
497		vm_map_process_deferred();
498	}
499}
500
501void
502_vm_map_lock_read(vm_map_t map, const char *file, int line)
503{
504
505	if (map->system_map)
506		mtx_lock_flags_(&map->system_mtx, 0, file, line);
507	else
508		sx_slock_(&map->lock, file, line);
509}
510
511void
512_vm_map_unlock_read(vm_map_t map, const char *file, int line)
513{
514
515	if (map->system_map)
516		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
517	else {
518		sx_sunlock_(&map->lock, file, line);
519		vm_map_process_deferred();
520	}
521}
522
523int
524_vm_map_trylock(vm_map_t map, const char *file, int line)
525{
526	int error;
527
528	error = map->system_map ?
529	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
530	    !sx_try_xlock_(&map->lock, file, line);
531	if (error == 0)
532		map->timestamp++;
533	return (error == 0);
534}
535
536int
537_vm_map_trylock_read(vm_map_t map, const char *file, int line)
538{
539	int error;
540
541	error = map->system_map ?
542	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
543	    !sx_try_slock_(&map->lock, file, line);
544	return (error == 0);
545}
546
547/*
548 *	_vm_map_lock_upgrade:	[ internal use only ]
549 *
550 *	Tries to upgrade a read (shared) lock on the specified map to a write
551 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
552 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
553 *	returned without a read or write lock held.
554 *
555 *	Requires that the map be read locked.
556 */
557int
558_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
559{
560	unsigned int last_timestamp;
561
562	if (map->system_map) {
563		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
564	} else {
565		if (!sx_try_upgrade_(&map->lock, file, line)) {
566			last_timestamp = map->timestamp;
567			sx_sunlock_(&map->lock, file, line);
568			vm_map_process_deferred();
569			/*
570			 * If the map's timestamp does not change while the
571			 * map is unlocked, then the upgrade succeeds.
572			 */
573			sx_xlock_(&map->lock, file, line);
574			if (last_timestamp != map->timestamp) {
575				sx_xunlock_(&map->lock, file, line);
576				return (1);
577			}
578		}
579	}
580	map->timestamp++;
581	return (0);
582}
583
584void
585_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
586{
587
588	if (map->system_map) {
589		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
590	} else
591		sx_downgrade_(&map->lock, file, line);
592}
593
594/*
595 *	vm_map_locked:
596 *
597 *	Returns a non-zero value if the caller holds a write (exclusive) lock
598 *	on the specified map and the value "0" otherwise.
599 */
600int
601vm_map_locked(vm_map_t map)
602{
603
604	if (map->system_map)
605		return (mtx_owned(&map->system_mtx));
606	else
607		return (sx_xlocked(&map->lock));
608}
609
610#ifdef INVARIANTS
611static void
612_vm_map_assert_locked(vm_map_t map, const char *file, int line)
613{
614
615	if (map->system_map)
616		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
617	else
618		sx_assert_(&map->lock, SA_XLOCKED, file, line);
619}
620
621#define	VM_MAP_ASSERT_LOCKED(map) \
622    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
623#else
624#define	VM_MAP_ASSERT_LOCKED(map)
625#endif
626
627/*
628 *	_vm_map_unlock_and_wait:
629 *
630 *	Atomically releases the lock on the specified map and puts the calling
631 *	thread to sleep.  The calling thread will remain asleep until either
632 *	vm_map_wakeup() is performed on the map or the specified timeout is
633 *	exceeded.
634 *
635 *	WARNING!  This function does not perform deferred deallocations of
636 *	objects and map	entries.  Therefore, the calling thread is expected to
637 *	reacquire the map lock after reawakening and later perform an ordinary
638 *	unlock operation, such as vm_map_unlock(), before completing its
639 *	operation on the map.
640 */
641int
642_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
643{
644
645	mtx_lock(&map_sleep_mtx);
646	if (map->system_map)
647		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
648	else
649		sx_xunlock_(&map->lock, file, line);
650	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
651	    timo));
652}
653
654/*
655 *	vm_map_wakeup:
656 *
657 *	Awaken any threads that have slept on the map using
658 *	vm_map_unlock_and_wait().
659 */
660void
661vm_map_wakeup(vm_map_t map)
662{
663
664	/*
665	 * Acquire and release map_sleep_mtx to prevent a wakeup()
666	 * from being performed (and lost) between the map unlock
667	 * and the msleep() in _vm_map_unlock_and_wait().
668	 */
669	mtx_lock(&map_sleep_mtx);
670	mtx_unlock(&map_sleep_mtx);
671	wakeup(&map->root);
672}
673
674void
675vm_map_busy(vm_map_t map)
676{
677
678	VM_MAP_ASSERT_LOCKED(map);
679	map->busy++;
680}
681
682void
683vm_map_unbusy(vm_map_t map)
684{
685
686	VM_MAP_ASSERT_LOCKED(map);
687	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
688	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
689		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
690		wakeup(&map->busy);
691	}
692}
693
694void
695vm_map_wait_busy(vm_map_t map)
696{
697
698	VM_MAP_ASSERT_LOCKED(map);
699	while (map->busy) {
700		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
701		if (map->system_map)
702			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
703		else
704			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
705	}
706	map->timestamp++;
707}
708
709long
710vmspace_resident_count(struct vmspace *vmspace)
711{
712	return pmap_resident_count(vmspace_pmap(vmspace));
713}
714
715/*
716 *	vm_map_create:
717 *
718 *	Creates and returns a new empty VM map with
719 *	the given physical map structure, and having
720 *	the given lower and upper address bounds.
721 */
722vm_map_t
723vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
724{
725	vm_map_t result;
726
727	result = uma_zalloc(mapzone, M_WAITOK);
728	CTR1(KTR_VM, "vm_map_create: %p", result);
729	_vm_map_init(result, pmap, min, max);
730	return (result);
731}
732
733/*
734 * Initialize an existing vm_map structure
735 * such as that in the vmspace structure.
736 */
737static void
738_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
739{
740
741	map->header.next = map->header.prev = &map->header;
742	map->needs_wakeup = FALSE;
743	map->system_map = 0;
744	map->pmap = pmap;
745	map->min_offset = min;
746	map->max_offset = max;
747	map->flags = 0;
748	map->root = NULL;
749	map->timestamp = 0;
750	map->busy = 0;
751}
752
753void
754vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
755{
756
757	_vm_map_init(map, pmap, min, max);
758	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
759	sx_init(&map->lock, "user map");
760}
761
762/*
763 *	vm_map_entry_dispose:	[ internal use only ]
764 *
765 *	Inverse of vm_map_entry_create.
766 */
767static void
768vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
769{
770	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
771}
772
773/*
774 *	vm_map_entry_create:	[ internal use only ]
775 *
776 *	Allocates a VM map entry for insertion.
777 *	No entry fields are filled in.
778 */
779static vm_map_entry_t
780vm_map_entry_create(vm_map_t map)
781{
782	vm_map_entry_t new_entry;
783
784	if (map->system_map)
785		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
786	else
787		new_entry = uma_zalloc(mapentzone, M_WAITOK);
788	if (new_entry == NULL)
789		panic("vm_map_entry_create: kernel resources exhausted");
790	return (new_entry);
791}
792
793/*
794 *	vm_map_entry_set_behavior:
795 *
796 *	Set the expected access behavior, either normal, random, or
797 *	sequential.
798 */
799static inline void
800vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
801{
802	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
803	    (behavior & MAP_ENTRY_BEHAV_MASK);
804}
805
806/*
807 *	vm_map_entry_set_max_free:
808 *
809 *	Set the max_free field in a vm_map_entry.
810 */
811static inline void
812vm_map_entry_set_max_free(vm_map_entry_t entry)
813{
814
815	entry->max_free = entry->adj_free;
816	if (entry->left != NULL && entry->left->max_free > entry->max_free)
817		entry->max_free = entry->left->max_free;
818	if (entry->right != NULL && entry->right->max_free > entry->max_free)
819		entry->max_free = entry->right->max_free;
820}
821
822/*
823 *	vm_map_entry_splay:
824 *
825 *	The Sleator and Tarjan top-down splay algorithm with the
826 *	following variation.  Max_free must be computed bottom-up, so
827 *	on the downward pass, maintain the left and right spines in
828 *	reverse order.  Then, make a second pass up each side to fix
829 *	the pointers and compute max_free.  The time bound is O(log n)
830 *	amortized.
831 *
832 *	The new root is the vm_map_entry containing "addr", or else an
833 *	adjacent entry (lower or higher) if addr is not in the tree.
834 *
835 *	The map must be locked, and leaves it so.
836 *
837 *	Returns: the new root.
838 */
839static vm_map_entry_t
840vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
841{
842	vm_map_entry_t llist, rlist;
843	vm_map_entry_t ltree, rtree;
844	vm_map_entry_t y;
845
846	/* Special case of empty tree. */
847	if (root == NULL)
848		return (root);
849
850	/*
851	 * Pass One: Splay down the tree until we find addr or a NULL
852	 * pointer where addr would go.  llist and rlist are the two
853	 * sides in reverse order (bottom-up), with llist linked by
854	 * the right pointer and rlist linked by the left pointer in
855	 * the vm_map_entry.  Wait until Pass Two to set max_free on
856	 * the two spines.
857	 */
858	llist = NULL;
859	rlist = NULL;
860	for (;;) {
861		/* root is never NULL in here. */
862		if (addr < root->start) {
863			y = root->left;
864			if (y == NULL)
865				break;
866			if (addr < y->start && y->left != NULL) {
867				/* Rotate right and put y on rlist. */
868				root->left = y->right;
869				y->right = root;
870				vm_map_entry_set_max_free(root);
871				root = y->left;
872				y->left = rlist;
873				rlist = y;
874			} else {
875				/* Put root on rlist. */
876				root->left = rlist;
877				rlist = root;
878				root = y;
879			}
880		} else if (addr >= root->end) {
881			y = root->right;
882			if (y == NULL)
883				break;
884			if (addr >= y->end && y->right != NULL) {
885				/* Rotate left and put y on llist. */
886				root->right = y->left;
887				y->left = root;
888				vm_map_entry_set_max_free(root);
889				root = y->right;
890				y->right = llist;
891				llist = y;
892			} else {
893				/* Put root on llist. */
894				root->right = llist;
895				llist = root;
896				root = y;
897			}
898		} else
899			break;
900	}
901
902	/*
903	 * Pass Two: Walk back up the two spines, flip the pointers
904	 * and set max_free.  The subtrees of the root go at the
905	 * bottom of llist and rlist.
906	 */
907	ltree = root->left;
908	while (llist != NULL) {
909		y = llist->right;
910		llist->right = ltree;
911		vm_map_entry_set_max_free(llist);
912		ltree = llist;
913		llist = y;
914	}
915	rtree = root->right;
916	while (rlist != NULL) {
917		y = rlist->left;
918		rlist->left = rtree;
919		vm_map_entry_set_max_free(rlist);
920		rtree = rlist;
921		rlist = y;
922	}
923
924	/*
925	 * Final assembly: add ltree and rtree as subtrees of root.
926	 */
927	root->left = ltree;
928	root->right = rtree;
929	vm_map_entry_set_max_free(root);
930
931	return (root);
932}
933
934/*
935 *	vm_map_entry_{un,}link:
936 *
937 *	Insert/remove entries from maps.
938 */
939static void
940vm_map_entry_link(vm_map_t map,
941		  vm_map_entry_t after_where,
942		  vm_map_entry_t entry)
943{
944
945	CTR4(KTR_VM,
946	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
947	    map->nentries, entry, after_where);
948	VM_MAP_ASSERT_LOCKED(map);
949	KASSERT(after_where == &map->header ||
950	    after_where->end <= entry->start,
951	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
952	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
953	KASSERT(after_where->next == &map->header ||
954	    entry->end <= after_where->next->start,
955	    ("vm_map_entry_link: new end %jx next start %jx overlap",
956	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
957
958	map->nentries++;
959	entry->prev = after_where;
960	entry->next = after_where->next;
961	entry->next->prev = entry;
962	after_where->next = entry;
963
964	if (after_where != &map->header) {
965		if (after_where != map->root)
966			vm_map_entry_splay(after_where->start, map->root);
967		entry->right = after_where->right;
968		entry->left = after_where;
969		after_where->right = NULL;
970		after_where->adj_free = entry->start - after_where->end;
971		vm_map_entry_set_max_free(after_where);
972	} else {
973		entry->right = map->root;
974		entry->left = NULL;
975	}
976	entry->adj_free = (entry->next == &map->header ? map->max_offset :
977	    entry->next->start) - entry->end;
978	vm_map_entry_set_max_free(entry);
979	map->root = entry;
980}
981
982static void
983vm_map_entry_unlink(vm_map_t map,
984		    vm_map_entry_t entry)
985{
986	vm_map_entry_t next, prev, root;
987
988	VM_MAP_ASSERT_LOCKED(map);
989	if (entry != map->root)
990		vm_map_entry_splay(entry->start, map->root);
991	if (entry->left == NULL)
992		root = entry->right;
993	else {
994		root = vm_map_entry_splay(entry->start, entry->left);
995		root->right = entry->right;
996		root->adj_free = (entry->next == &map->header ? map->max_offset :
997		    entry->next->start) - root->end;
998		vm_map_entry_set_max_free(root);
999	}
1000	map->root = root;
1001
1002	prev = entry->prev;
1003	next = entry->next;
1004	next->prev = prev;
1005	prev->next = next;
1006	map->nentries--;
1007	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1008	    map->nentries, entry);
1009}
1010
1011/*
1012 *	vm_map_entry_resize_free:
1013 *
1014 *	Recompute the amount of free space following a vm_map_entry
1015 *	and propagate that value up the tree.  Call this function after
1016 *	resizing a map entry in-place, that is, without a call to
1017 *	vm_map_entry_link() or _unlink().
1018 *
1019 *	The map must be locked, and leaves it so.
1020 */
1021static void
1022vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1023{
1024
1025	/*
1026	 * Using splay trees without parent pointers, propagating
1027	 * max_free up the tree is done by moving the entry to the
1028	 * root and making the change there.
1029	 */
1030	if (entry != map->root)
1031		map->root = vm_map_entry_splay(entry->start, map->root);
1032
1033	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1034	    entry->next->start) - entry->end;
1035	vm_map_entry_set_max_free(entry);
1036}
1037
1038/*
1039 *	vm_map_lookup_entry:	[ internal use only ]
1040 *
1041 *	Finds the map entry containing (or
1042 *	immediately preceding) the specified address
1043 *	in the given map; the entry is returned
1044 *	in the "entry" parameter.  The boolean
1045 *	result indicates whether the address is
1046 *	actually contained in the map.
1047 */
1048boolean_t
1049vm_map_lookup_entry(
1050	vm_map_t map,
1051	vm_offset_t address,
1052	vm_map_entry_t *entry)	/* OUT */
1053{
1054	vm_map_entry_t cur;
1055	boolean_t locked;
1056
1057	/*
1058	 * If the map is empty, then the map entry immediately preceding
1059	 * "address" is the map's header.
1060	 */
1061	cur = map->root;
1062	if (cur == NULL)
1063		*entry = &map->header;
1064	else if (address >= cur->start && cur->end > address) {
1065		*entry = cur;
1066		return (TRUE);
1067	} else if ((locked = vm_map_locked(map)) ||
1068	    sx_try_upgrade(&map->lock)) {
1069		/*
1070		 * Splay requires a write lock on the map.  However, it only
1071		 * restructures the binary search tree; it does not otherwise
1072		 * change the map.  Thus, the map's timestamp need not change
1073		 * on a temporary upgrade.
1074		 */
1075		map->root = cur = vm_map_entry_splay(address, cur);
1076		if (!locked)
1077			sx_downgrade(&map->lock);
1078
1079		/*
1080		 * If "address" is contained within a map entry, the new root
1081		 * is that map entry.  Otherwise, the new root is a map entry
1082		 * immediately before or after "address".
1083		 */
1084		if (address >= cur->start) {
1085			*entry = cur;
1086			if (cur->end > address)
1087				return (TRUE);
1088		} else
1089			*entry = cur->prev;
1090	} else
1091		/*
1092		 * Since the map is only locked for read access, perform a
1093		 * standard binary search tree lookup for "address".
1094		 */
1095		for (;;) {
1096			if (address < cur->start) {
1097				if (cur->left == NULL) {
1098					*entry = cur->prev;
1099					break;
1100				}
1101				cur = cur->left;
1102			} else if (cur->end > address) {
1103				*entry = cur;
1104				return (TRUE);
1105			} else {
1106				if (cur->right == NULL) {
1107					*entry = cur;
1108					break;
1109				}
1110				cur = cur->right;
1111			}
1112		}
1113	return (FALSE);
1114}
1115
1116/*
1117 *	vm_map_insert:
1118 *
1119 *	Inserts the given whole VM object into the target
1120 *	map at the specified address range.  The object's
1121 *	size should match that of the address range.
1122 *
1123 *	Requires that the map be locked, and leaves it so.
1124 *
1125 *	If object is non-NULL, ref count must be bumped by caller
1126 *	prior to making call to account for the new entry.
1127 */
1128int
1129vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1130	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1131	      int cow)
1132{
1133	vm_map_entry_t new_entry;
1134	vm_map_entry_t prev_entry;
1135	vm_map_entry_t temp_entry;
1136	vm_eflags_t protoeflags;
1137	struct ucred *cred;
1138	vm_inherit_t inheritance;
1139	boolean_t charge_prev_obj;
1140
1141	VM_MAP_ASSERT_LOCKED(map);
1142
1143	/*
1144	 * Check that the start and end points are not bogus.
1145	 */
1146	if ((start < map->min_offset) || (end > map->max_offset) ||
1147	    (start >= end))
1148		return (KERN_INVALID_ADDRESS);
1149
1150	/*
1151	 * Find the entry prior to the proposed starting address; if it's part
1152	 * of an existing entry, this range is bogus.
1153	 */
1154	if (vm_map_lookup_entry(map, start, &temp_entry))
1155		return (KERN_NO_SPACE);
1156
1157	prev_entry = temp_entry;
1158
1159	/*
1160	 * Assert that the next entry doesn't overlap the end point.
1161	 */
1162	if ((prev_entry->next != &map->header) &&
1163	    (prev_entry->next->start < end))
1164		return (KERN_NO_SPACE);
1165
1166	protoeflags = 0;
1167	charge_prev_obj = FALSE;
1168
1169	if (cow & MAP_COPY_ON_WRITE)
1170		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1171
1172	if (cow & MAP_NOFAULT) {
1173		protoeflags |= MAP_ENTRY_NOFAULT;
1174
1175		KASSERT(object == NULL,
1176			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1177	}
1178	if (cow & MAP_DISABLE_SYNCER)
1179		protoeflags |= MAP_ENTRY_NOSYNC;
1180	if (cow & MAP_DISABLE_COREDUMP)
1181		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1182	if (cow & MAP_VN_WRITECOUNT)
1183		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1184	if (cow & MAP_INHERIT_SHARE)
1185		inheritance = VM_INHERIT_SHARE;
1186	else
1187		inheritance = VM_INHERIT_DEFAULT;
1188
1189	cred = NULL;
1190	KASSERT((object != kmem_object && object != kernel_object) ||
1191	    ((object == kmem_object || object == kernel_object) &&
1192		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1193	    ("kmem or kernel object and cow"));
1194	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1195		goto charged;
1196	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1197	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1198		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1199			return (KERN_RESOURCE_SHORTAGE);
1200		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1201		    object->cred == NULL,
1202		    ("OVERCOMMIT: vm_map_insert o %p", object));
1203		cred = curthread->td_ucred;
1204		crhold(cred);
1205		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1206			charge_prev_obj = TRUE;
1207	}
1208
1209charged:
1210	/* Expand the kernel pmap, if necessary. */
1211	if (map == kernel_map && end > kernel_vm_end)
1212		pmap_growkernel(end);
1213	if (object != NULL) {
1214		/*
1215		 * OBJ_ONEMAPPING must be cleared unless this mapping
1216		 * is trivially proven to be the only mapping for any
1217		 * of the object's pages.  (Object granularity
1218		 * reference counting is insufficient to recognize
1219		 * aliases with precision.)
1220		 */
1221		VM_OBJECT_WLOCK(object);
1222		if (object->ref_count > 1 || object->shadow_count != 0)
1223			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1224		VM_OBJECT_WUNLOCK(object);
1225	}
1226	else if ((prev_entry != &map->header) &&
1227		 (prev_entry->eflags == protoeflags) &&
1228		 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1229		 (prev_entry->end == start) &&
1230		 (prev_entry->wired_count == 0) &&
1231		 (prev_entry->cred == cred ||
1232		  (prev_entry->object.vm_object != NULL &&
1233		   (prev_entry->object.vm_object->cred == cred))) &&
1234		   vm_object_coalesce(prev_entry->object.vm_object,
1235		       prev_entry->offset,
1236		       (vm_size_t)(prev_entry->end - prev_entry->start),
1237		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1238		/*
1239		 * We were able to extend the object.  Determine if we
1240		 * can extend the previous map entry to include the
1241		 * new range as well.
1242		 */
1243		if ((prev_entry->inheritance == inheritance) &&
1244		    (prev_entry->protection == prot) &&
1245		    (prev_entry->max_protection == max)) {
1246			map->size += (end - prev_entry->end);
1247			prev_entry->end = end;
1248			vm_map_entry_resize_free(map, prev_entry);
1249			vm_map_simplify_entry(map, prev_entry);
1250			if (cred != NULL)
1251				crfree(cred);
1252			return (KERN_SUCCESS);
1253		}
1254
1255		/*
1256		 * If we can extend the object but cannot extend the
1257		 * map entry, we have to create a new map entry.  We
1258		 * must bump the ref count on the extended object to
1259		 * account for it.  object may be NULL.
1260		 */
1261		object = prev_entry->object.vm_object;
1262		offset = prev_entry->offset +
1263			(prev_entry->end - prev_entry->start);
1264		vm_object_reference(object);
1265		if (cred != NULL && object != NULL && object->cred != NULL &&
1266		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1267			/* Object already accounts for this uid. */
1268			crfree(cred);
1269			cred = NULL;
1270		}
1271	}
1272
1273	/*
1274	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1275	 * in things like the buffer map where we manage kva but do not manage
1276	 * backing objects.
1277	 */
1278
1279	/*
1280	 * Create a new entry
1281	 */
1282	new_entry = vm_map_entry_create(map);
1283	new_entry->start = start;
1284	new_entry->end = end;
1285	new_entry->cred = NULL;
1286
1287	new_entry->eflags = protoeflags;
1288	new_entry->object.vm_object = object;
1289	new_entry->offset = offset;
1290	new_entry->avail_ssize = 0;
1291
1292	new_entry->inheritance = inheritance;
1293	new_entry->protection = prot;
1294	new_entry->max_protection = max;
1295	new_entry->wired_count = 0;
1296	new_entry->wiring_thread = NULL;
1297	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1298	new_entry->next_read = OFF_TO_IDX(offset);
1299
1300	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1301	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1302	new_entry->cred = cred;
1303
1304	/*
1305	 * Insert the new entry into the list
1306	 */
1307	vm_map_entry_link(map, prev_entry, new_entry);
1308	map->size += new_entry->end - new_entry->start;
1309
1310	/*
1311	 * It may be possible to merge the new entry with the next and/or
1312	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1313	 * panic can result from merging such entries.
1314	 */
1315	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1316		vm_map_simplify_entry(map, new_entry);
1317
1318	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1319		vm_map_pmap_enter(map, start, prot,
1320				    object, OFF_TO_IDX(offset), end - start,
1321				    cow & MAP_PREFAULT_PARTIAL);
1322	}
1323
1324	return (KERN_SUCCESS);
1325}
1326
1327/*
1328 *	vm_map_findspace:
1329 *
1330 *	Find the first fit (lowest VM address) for "length" free bytes
1331 *	beginning at address >= start in the given map.
1332 *
1333 *	In a vm_map_entry, "adj_free" is the amount of free space
1334 *	adjacent (higher address) to this entry, and "max_free" is the
1335 *	maximum amount of contiguous free space in its subtree.  This
1336 *	allows finding a free region in one path down the tree, so
1337 *	O(log n) amortized with splay trees.
1338 *
1339 *	The map must be locked, and leaves it so.
1340 *
1341 *	Returns: 0 on success, and starting address in *addr,
1342 *		 1 if insufficient space.
1343 */
1344int
1345vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1346    vm_offset_t *addr)	/* OUT */
1347{
1348	vm_map_entry_t entry;
1349	vm_offset_t st;
1350
1351	/*
1352	 * Request must fit within min/max VM address and must avoid
1353	 * address wrap.
1354	 */
1355	if (start < map->min_offset)
1356		start = map->min_offset;
1357	if (start + length > map->max_offset || start + length < start)
1358		return (1);
1359
1360	/* Empty tree means wide open address space. */
1361	if (map->root == NULL) {
1362		*addr = start;
1363		return (0);
1364	}
1365
1366	/*
1367	 * After splay, if start comes before root node, then there
1368	 * must be a gap from start to the root.
1369	 */
1370	map->root = vm_map_entry_splay(start, map->root);
1371	if (start + length <= map->root->start) {
1372		*addr = start;
1373		return (0);
1374	}
1375
1376	/*
1377	 * Root is the last node that might begin its gap before
1378	 * start, and this is the last comparison where address
1379	 * wrap might be a problem.
1380	 */
1381	st = (start > map->root->end) ? start : map->root->end;
1382	if (length <= map->root->end + map->root->adj_free - st) {
1383		*addr = st;
1384		return (0);
1385	}
1386
1387	/* With max_free, can immediately tell if no solution. */
1388	entry = map->root->right;
1389	if (entry == NULL || length > entry->max_free)
1390		return (1);
1391
1392	/*
1393	 * Search the right subtree in the order: left subtree, root,
1394	 * right subtree (first fit).  The previous splay implies that
1395	 * all regions in the right subtree have addresses > start.
1396	 */
1397	while (entry != NULL) {
1398		if (entry->left != NULL && entry->left->max_free >= length)
1399			entry = entry->left;
1400		else if (entry->adj_free >= length) {
1401			*addr = entry->end;
1402			return (0);
1403		} else
1404			entry = entry->right;
1405	}
1406
1407	/* Can't get here, so panic if we do. */
1408	panic("vm_map_findspace: max_free corrupt");
1409}
1410
1411int
1412vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1413    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1414    vm_prot_t max, int cow)
1415{
1416	vm_offset_t end;
1417	int result;
1418
1419	end = start + length;
1420	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1421	    object == NULL,
1422	    ("vm_map_fixed: non-NULL backing object for stack"));
1423	vm_map_lock(map);
1424	VM_MAP_RANGE_CHECK(map, start, end);
1425	if ((cow & MAP_CHECK_EXCL) == 0)
1426		vm_map_delete(map, start, end);
1427	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1428		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1429		    prot, max, cow);
1430	} else {
1431		result = vm_map_insert(map, object, offset, start, end,
1432		    prot, max, cow);
1433	}
1434	vm_map_unlock(map);
1435	return (result);
1436}
1437
1438/*
1439 *	vm_map_find finds an unallocated region in the target address
1440 *	map with the given length.  The search is defined to be
1441 *	first-fit from the specified address; the region found is
1442 *	returned in the same parameter.
1443 *
1444 *	If object is non-NULL, ref count must be bumped by caller
1445 *	prior to making call to account for the new entry.
1446 */
1447int
1448vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1449	    vm_offset_t *addr,	/* IN/OUT */
1450	    vm_size_t length, vm_offset_t max_addr, int find_space,
1451	    vm_prot_t prot, vm_prot_t max, int cow)
1452{
1453	vm_offset_t alignment, initial_addr, start;
1454	int result;
1455
1456	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1457	    object == NULL,
1458	    ("vm_map_find: non-NULL backing object for stack"));
1459	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1460	    (object->flags & OBJ_COLORED) == 0))
1461		find_space = VMFS_ANY_SPACE;
1462	if (find_space >> 8 != 0) {
1463		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1464		alignment = (vm_offset_t)1 << (find_space >> 8);
1465	} else
1466		alignment = 0;
1467	initial_addr = *addr;
1468again:
1469	start = initial_addr;
1470	vm_map_lock(map);
1471	do {
1472		if (find_space != VMFS_NO_SPACE) {
1473			if (vm_map_findspace(map, start, length, addr) ||
1474			    (max_addr != 0 && *addr + length > max_addr)) {
1475				vm_map_unlock(map);
1476				if (find_space == VMFS_OPTIMAL_SPACE) {
1477					find_space = VMFS_ANY_SPACE;
1478					goto again;
1479				}
1480				return (KERN_NO_SPACE);
1481			}
1482			switch (find_space) {
1483			case VMFS_SUPER_SPACE:
1484			case VMFS_OPTIMAL_SPACE:
1485				pmap_align_superpage(object, offset, addr,
1486				    length);
1487				break;
1488			case VMFS_ANY_SPACE:
1489				break;
1490			default:
1491				if ((*addr & (alignment - 1)) != 0) {
1492					*addr &= ~(alignment - 1);
1493					*addr += alignment;
1494				}
1495				break;
1496			}
1497
1498			start = *addr;
1499		}
1500		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1501			result = vm_map_stack_locked(map, start, length,
1502			    sgrowsiz, prot, max, cow);
1503		} else {
1504			result = vm_map_insert(map, object, offset, start,
1505			    start + length, prot, max, cow);
1506		}
1507	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1508	    find_space != VMFS_ANY_SPACE);
1509	vm_map_unlock(map);
1510	return (result);
1511}
1512
1513/*
1514 *	vm_map_simplify_entry:
1515 *
1516 *	Simplify the given map entry by merging with either neighbor.  This
1517 *	routine also has the ability to merge with both neighbors.
1518 *
1519 *	The map must be locked.
1520 *
1521 *	This routine guarentees that the passed entry remains valid (though
1522 *	possibly extended).  When merging, this routine may delete one or
1523 *	both neighbors.
1524 */
1525void
1526vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1527{
1528	vm_map_entry_t next, prev;
1529	vm_size_t prevsize, esize;
1530
1531	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1532		return;
1533
1534	prev = entry->prev;
1535	if (prev != &map->header) {
1536		prevsize = prev->end - prev->start;
1537		if ( (prev->end == entry->start) &&
1538		     (prev->object.vm_object == entry->object.vm_object) &&
1539		     (!prev->object.vm_object ||
1540			(prev->offset + prevsize == entry->offset)) &&
1541		     (prev->eflags == entry->eflags) &&
1542		     (prev->protection == entry->protection) &&
1543		     (prev->max_protection == entry->max_protection) &&
1544		     (prev->inheritance == entry->inheritance) &&
1545		     (prev->wired_count == entry->wired_count) &&
1546		     (prev->cred == entry->cred)) {
1547			vm_map_entry_unlink(map, prev);
1548			entry->start = prev->start;
1549			entry->offset = prev->offset;
1550			if (entry->prev != &map->header)
1551				vm_map_entry_resize_free(map, entry->prev);
1552
1553			/*
1554			 * If the backing object is a vnode object,
1555			 * vm_object_deallocate() calls vrele().
1556			 * However, vrele() does not lock the vnode
1557			 * because the vnode has additional
1558			 * references.  Thus, the map lock can be kept
1559			 * without causing a lock-order reversal with
1560			 * the vnode lock.
1561			 *
1562			 * Since we count the number of virtual page
1563			 * mappings in object->un_pager.vnp.writemappings,
1564			 * the writemappings value should not be adjusted
1565			 * when the entry is disposed of.
1566			 */
1567			if (prev->object.vm_object)
1568				vm_object_deallocate(prev->object.vm_object);
1569			if (prev->cred != NULL)
1570				crfree(prev->cred);
1571			vm_map_entry_dispose(map, prev);
1572		}
1573	}
1574
1575	next = entry->next;
1576	if (next != &map->header) {
1577		esize = entry->end - entry->start;
1578		if ((entry->end == next->start) &&
1579		    (next->object.vm_object == entry->object.vm_object) &&
1580		     (!entry->object.vm_object ||
1581			(entry->offset + esize == next->offset)) &&
1582		    (next->eflags == entry->eflags) &&
1583		    (next->protection == entry->protection) &&
1584		    (next->max_protection == entry->max_protection) &&
1585		    (next->inheritance == entry->inheritance) &&
1586		    (next->wired_count == entry->wired_count) &&
1587		    (next->cred == entry->cred)) {
1588			vm_map_entry_unlink(map, next);
1589			entry->end = next->end;
1590			vm_map_entry_resize_free(map, entry);
1591
1592			/*
1593			 * See comment above.
1594			 */
1595			if (next->object.vm_object)
1596				vm_object_deallocate(next->object.vm_object);
1597			if (next->cred != NULL)
1598				crfree(next->cred);
1599			vm_map_entry_dispose(map, next);
1600		}
1601	}
1602}
1603/*
1604 *	vm_map_clip_start:	[ internal use only ]
1605 *
1606 *	Asserts that the given entry begins at or after
1607 *	the specified address; if necessary,
1608 *	it splits the entry into two.
1609 */
1610#define vm_map_clip_start(map, entry, startaddr) \
1611{ \
1612	if (startaddr > entry->start) \
1613		_vm_map_clip_start(map, entry, startaddr); \
1614}
1615
1616/*
1617 *	This routine is called only when it is known that
1618 *	the entry must be split.
1619 */
1620static void
1621_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1622{
1623	vm_map_entry_t new_entry;
1624
1625	VM_MAP_ASSERT_LOCKED(map);
1626
1627	/*
1628	 * Split off the front portion -- note that we must insert the new
1629	 * entry BEFORE this one, so that this entry has the specified
1630	 * starting address.
1631	 */
1632	vm_map_simplify_entry(map, entry);
1633
1634	/*
1635	 * If there is no object backing this entry, we might as well create
1636	 * one now.  If we defer it, an object can get created after the map
1637	 * is clipped, and individual objects will be created for the split-up
1638	 * map.  This is a bit of a hack, but is also about the best place to
1639	 * put this improvement.
1640	 */
1641	if (entry->object.vm_object == NULL && !map->system_map) {
1642		vm_object_t object;
1643		object = vm_object_allocate(OBJT_DEFAULT,
1644				atop(entry->end - entry->start));
1645		entry->object.vm_object = object;
1646		entry->offset = 0;
1647		if (entry->cred != NULL) {
1648			object->cred = entry->cred;
1649			object->charge = entry->end - entry->start;
1650			entry->cred = NULL;
1651		}
1652	} else if (entry->object.vm_object != NULL &&
1653		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1654		   entry->cred != NULL) {
1655		VM_OBJECT_WLOCK(entry->object.vm_object);
1656		KASSERT(entry->object.vm_object->cred == NULL,
1657		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1658		entry->object.vm_object->cred = entry->cred;
1659		entry->object.vm_object->charge = entry->end - entry->start;
1660		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1661		entry->cred = NULL;
1662	}
1663
1664	new_entry = vm_map_entry_create(map);
1665	*new_entry = *entry;
1666
1667	new_entry->end = start;
1668	entry->offset += (start - entry->start);
1669	entry->start = start;
1670	if (new_entry->cred != NULL)
1671		crhold(entry->cred);
1672
1673	vm_map_entry_link(map, entry->prev, new_entry);
1674
1675	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1676		vm_object_reference(new_entry->object.vm_object);
1677		/*
1678		 * The object->un_pager.vnp.writemappings for the
1679		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1680		 * kept as is here.  The virtual pages are
1681		 * re-distributed among the clipped entries, so the sum is
1682		 * left the same.
1683		 */
1684	}
1685}
1686
1687/*
1688 *	vm_map_clip_end:	[ internal use only ]
1689 *
1690 *	Asserts that the given entry ends at or before
1691 *	the specified address; if necessary,
1692 *	it splits the entry into two.
1693 */
1694#define vm_map_clip_end(map, entry, endaddr) \
1695{ \
1696	if ((endaddr) < (entry->end)) \
1697		_vm_map_clip_end((map), (entry), (endaddr)); \
1698}
1699
1700/*
1701 *	This routine is called only when it is known that
1702 *	the entry must be split.
1703 */
1704static void
1705_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1706{
1707	vm_map_entry_t new_entry;
1708
1709	VM_MAP_ASSERT_LOCKED(map);
1710
1711	/*
1712	 * If there is no object backing this entry, we might as well create
1713	 * one now.  If we defer it, an object can get created after the map
1714	 * is clipped, and individual objects will be created for the split-up
1715	 * map.  This is a bit of a hack, but is also about the best place to
1716	 * put this improvement.
1717	 */
1718	if (entry->object.vm_object == NULL && !map->system_map) {
1719		vm_object_t object;
1720		object = vm_object_allocate(OBJT_DEFAULT,
1721				atop(entry->end - entry->start));
1722		entry->object.vm_object = object;
1723		entry->offset = 0;
1724		if (entry->cred != NULL) {
1725			object->cred = entry->cred;
1726			object->charge = entry->end - entry->start;
1727			entry->cred = NULL;
1728		}
1729	} else if (entry->object.vm_object != NULL &&
1730		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1731		   entry->cred != NULL) {
1732		VM_OBJECT_WLOCK(entry->object.vm_object);
1733		KASSERT(entry->object.vm_object->cred == NULL,
1734		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1735		entry->object.vm_object->cred = entry->cred;
1736		entry->object.vm_object->charge = entry->end - entry->start;
1737		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1738		entry->cred = NULL;
1739	}
1740
1741	/*
1742	 * Create a new entry and insert it AFTER the specified entry
1743	 */
1744	new_entry = vm_map_entry_create(map);
1745	*new_entry = *entry;
1746
1747	new_entry->start = entry->end = end;
1748	new_entry->offset += (end - entry->start);
1749	if (new_entry->cred != NULL)
1750		crhold(entry->cred);
1751
1752	vm_map_entry_link(map, entry, new_entry);
1753
1754	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1755		vm_object_reference(new_entry->object.vm_object);
1756	}
1757}
1758
1759/*
1760 *	vm_map_submap:		[ kernel use only ]
1761 *
1762 *	Mark the given range as handled by a subordinate map.
1763 *
1764 *	This range must have been created with vm_map_find,
1765 *	and no other operations may have been performed on this
1766 *	range prior to calling vm_map_submap.
1767 *
1768 *	Only a limited number of operations can be performed
1769 *	within this rage after calling vm_map_submap:
1770 *		vm_fault
1771 *	[Don't try vm_map_copy!]
1772 *
1773 *	To remove a submapping, one must first remove the
1774 *	range from the superior map, and then destroy the
1775 *	submap (if desired).  [Better yet, don't try it.]
1776 */
1777int
1778vm_map_submap(
1779	vm_map_t map,
1780	vm_offset_t start,
1781	vm_offset_t end,
1782	vm_map_t submap)
1783{
1784	vm_map_entry_t entry;
1785	int result = KERN_INVALID_ARGUMENT;
1786
1787	vm_map_lock(map);
1788
1789	VM_MAP_RANGE_CHECK(map, start, end);
1790
1791	if (vm_map_lookup_entry(map, start, &entry)) {
1792		vm_map_clip_start(map, entry, start);
1793	} else
1794		entry = entry->next;
1795
1796	vm_map_clip_end(map, entry, end);
1797
1798	if ((entry->start == start) && (entry->end == end) &&
1799	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1800	    (entry->object.vm_object == NULL)) {
1801		entry->object.sub_map = submap;
1802		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1803		result = KERN_SUCCESS;
1804	}
1805	vm_map_unlock(map);
1806
1807	return (result);
1808}
1809
1810/*
1811 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1812 */
1813#define	MAX_INIT_PT	96
1814
1815/*
1816 *	vm_map_pmap_enter:
1817 *
1818 *	Preload the specified map's pmap with mappings to the specified
1819 *	object's memory-resident pages.  No further physical pages are
1820 *	allocated, and no further virtual pages are retrieved from secondary
1821 *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1822 *	limited number of page mappings are created at the low-end of the
1823 *	specified address range.  (For this purpose, a superpage mapping
1824 *	counts as one page mapping.)  Otherwise, all resident pages within
1825 *	the specified address range are mapped.  Because these mappings are
1826 *	being created speculatively, cached pages are not reactivated and
1827 *	mapped.
1828 */
1829void
1830vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1831    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1832{
1833	vm_offset_t start;
1834	vm_page_t p, p_start;
1835	vm_pindex_t mask, psize, threshold, tmpidx;
1836
1837	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1838		return;
1839	VM_OBJECT_RLOCK(object);
1840	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1841		VM_OBJECT_RUNLOCK(object);
1842		VM_OBJECT_WLOCK(object);
1843		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1844			pmap_object_init_pt(map->pmap, addr, object, pindex,
1845			    size);
1846			VM_OBJECT_WUNLOCK(object);
1847			return;
1848		}
1849		VM_OBJECT_LOCK_DOWNGRADE(object);
1850	}
1851
1852	psize = atop(size);
1853	if (psize + pindex > object->size) {
1854		if (object->size < pindex) {
1855			VM_OBJECT_RUNLOCK(object);
1856			return;
1857		}
1858		psize = object->size - pindex;
1859	}
1860
1861	start = 0;
1862	p_start = NULL;
1863	threshold = MAX_INIT_PT;
1864
1865	p = vm_page_find_least(object, pindex);
1866	/*
1867	 * Assert: the variable p is either (1) the page with the
1868	 * least pindex greater than or equal to the parameter pindex
1869	 * or (2) NULL.
1870	 */
1871	for (;
1872	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1873	     p = TAILQ_NEXT(p, listq)) {
1874		/*
1875		 * don't allow an madvise to blow away our really
1876		 * free pages allocating pv entries.
1877		 */
1878		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1879		    cnt.v_free_count < cnt.v_free_reserved) ||
1880		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1881		    tmpidx >= threshold)) {
1882			psize = tmpidx;
1883			break;
1884		}
1885		if (p->valid == VM_PAGE_BITS_ALL) {
1886			if (p_start == NULL) {
1887				start = addr + ptoa(tmpidx);
1888				p_start = p;
1889			}
1890			/* Jump ahead if a superpage mapping is possible. */
1891			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1892			    (pagesizes[p->psind] - 1)) == 0) {
1893				mask = atop(pagesizes[p->psind]) - 1;
1894				if (tmpidx + mask < psize &&
1895				    vm_page_ps_is_valid(p)) {
1896					p += mask;
1897					threshold += mask;
1898				}
1899			}
1900		} else if (p_start != NULL) {
1901			pmap_enter_object(map->pmap, start, addr +
1902			    ptoa(tmpidx), p_start, prot);
1903			p_start = NULL;
1904		}
1905	}
1906	if (p_start != NULL)
1907		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1908		    p_start, prot);
1909	VM_OBJECT_RUNLOCK(object);
1910}
1911
1912/*
1913 *	vm_map_protect:
1914 *
1915 *	Sets the protection of the specified address
1916 *	region in the target map.  If "set_max" is
1917 *	specified, the maximum protection is to be set;
1918 *	otherwise, only the current protection is affected.
1919 */
1920int
1921vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1922	       vm_prot_t new_prot, boolean_t set_max)
1923{
1924	vm_map_entry_t current, entry;
1925	vm_object_t obj;
1926	struct ucred *cred;
1927	vm_prot_t old_prot;
1928
1929	if (start == end)
1930		return (KERN_SUCCESS);
1931
1932	vm_map_lock(map);
1933
1934	VM_MAP_RANGE_CHECK(map, start, end);
1935
1936	if (vm_map_lookup_entry(map, start, &entry)) {
1937		vm_map_clip_start(map, entry, start);
1938	} else {
1939		entry = entry->next;
1940	}
1941
1942	/*
1943	 * Make a first pass to check for protection violations.
1944	 */
1945	current = entry;
1946	while ((current != &map->header) && (current->start < end)) {
1947		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1948			vm_map_unlock(map);
1949			return (KERN_INVALID_ARGUMENT);
1950		}
1951		if ((new_prot & current->max_protection) != new_prot) {
1952			vm_map_unlock(map);
1953			return (KERN_PROTECTION_FAILURE);
1954		}
1955		current = current->next;
1956	}
1957
1958
1959	/*
1960	 * Do an accounting pass for private read-only mappings that
1961	 * now will do cow due to allowed write (e.g. debugger sets
1962	 * breakpoint on text segment)
1963	 */
1964	for (current = entry; (current != &map->header) &&
1965	     (current->start < end); current = current->next) {
1966
1967		vm_map_clip_end(map, current, end);
1968
1969		if (set_max ||
1970		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1971		    ENTRY_CHARGED(current)) {
1972			continue;
1973		}
1974
1975		cred = curthread->td_ucred;
1976		obj = current->object.vm_object;
1977
1978		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1979			if (!swap_reserve(current->end - current->start)) {
1980				vm_map_unlock(map);
1981				return (KERN_RESOURCE_SHORTAGE);
1982			}
1983			crhold(cred);
1984			current->cred = cred;
1985			continue;
1986		}
1987
1988		VM_OBJECT_WLOCK(obj);
1989		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1990			VM_OBJECT_WUNLOCK(obj);
1991			continue;
1992		}
1993
1994		/*
1995		 * Charge for the whole object allocation now, since
1996		 * we cannot distinguish between non-charged and
1997		 * charged clipped mapping of the same object later.
1998		 */
1999		KASSERT(obj->charge == 0,
2000		    ("vm_map_protect: object %p overcharged (entry %p)",
2001		    obj, current));
2002		if (!swap_reserve(ptoa(obj->size))) {
2003			VM_OBJECT_WUNLOCK(obj);
2004			vm_map_unlock(map);
2005			return (KERN_RESOURCE_SHORTAGE);
2006		}
2007
2008		crhold(cred);
2009		obj->cred = cred;
2010		obj->charge = ptoa(obj->size);
2011		VM_OBJECT_WUNLOCK(obj);
2012	}
2013
2014	/*
2015	 * Go back and fix up protections. [Note that clipping is not
2016	 * necessary the second time.]
2017	 */
2018	current = entry;
2019	while ((current != &map->header) && (current->start < end)) {
2020		old_prot = current->protection;
2021
2022		if (set_max)
2023			current->protection =
2024			    (current->max_protection = new_prot) &
2025			    old_prot;
2026		else
2027			current->protection = new_prot;
2028
2029		/*
2030		 * For user wired map entries, the normal lazy evaluation of
2031		 * write access upgrades through soft page faults is
2032		 * undesirable.  Instead, immediately copy any pages that are
2033		 * copy-on-write and enable write access in the physical map.
2034		 */
2035		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2036		    (current->protection & VM_PROT_WRITE) != 0 &&
2037		    (old_prot & VM_PROT_WRITE) == 0)
2038			vm_fault_copy_entry(map, map, current, current, NULL);
2039
2040		/*
2041		 * When restricting access, update the physical map.  Worry
2042		 * about copy-on-write here.
2043		 */
2044		if ((old_prot & ~current->protection) != 0) {
2045#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2046							VM_PROT_ALL)
2047			pmap_protect(map->pmap, current->start,
2048			    current->end,
2049			    current->protection & MASK(current));
2050#undef	MASK
2051		}
2052		vm_map_simplify_entry(map, current);
2053		current = current->next;
2054	}
2055	vm_map_unlock(map);
2056	return (KERN_SUCCESS);
2057}
2058
2059/*
2060 *	vm_map_madvise:
2061 *
2062 *	This routine traverses a processes map handling the madvise
2063 *	system call.  Advisories are classified as either those effecting
2064 *	the vm_map_entry structure, or those effecting the underlying
2065 *	objects.
2066 */
2067int
2068vm_map_madvise(
2069	vm_map_t map,
2070	vm_offset_t start,
2071	vm_offset_t end,
2072	int behav)
2073{
2074	vm_map_entry_t current, entry;
2075	int modify_map = 0;
2076
2077	/*
2078	 * Some madvise calls directly modify the vm_map_entry, in which case
2079	 * we need to use an exclusive lock on the map and we need to perform
2080	 * various clipping operations.  Otherwise we only need a read-lock
2081	 * on the map.
2082	 */
2083	switch(behav) {
2084	case MADV_NORMAL:
2085	case MADV_SEQUENTIAL:
2086	case MADV_RANDOM:
2087	case MADV_NOSYNC:
2088	case MADV_AUTOSYNC:
2089	case MADV_NOCORE:
2090	case MADV_CORE:
2091		if (start == end)
2092			return (KERN_SUCCESS);
2093		modify_map = 1;
2094		vm_map_lock(map);
2095		break;
2096	case MADV_WILLNEED:
2097	case MADV_DONTNEED:
2098	case MADV_FREE:
2099		if (start == end)
2100			return (KERN_SUCCESS);
2101		vm_map_lock_read(map);
2102		break;
2103	default:
2104		return (KERN_INVALID_ARGUMENT);
2105	}
2106
2107	/*
2108	 * Locate starting entry and clip if necessary.
2109	 */
2110	VM_MAP_RANGE_CHECK(map, start, end);
2111
2112	if (vm_map_lookup_entry(map, start, &entry)) {
2113		if (modify_map)
2114			vm_map_clip_start(map, entry, start);
2115	} else {
2116		entry = entry->next;
2117	}
2118
2119	if (modify_map) {
2120		/*
2121		 * madvise behaviors that are implemented in the vm_map_entry.
2122		 *
2123		 * We clip the vm_map_entry so that behavioral changes are
2124		 * limited to the specified address range.
2125		 */
2126		for (current = entry;
2127		     (current != &map->header) && (current->start < end);
2128		     current = current->next
2129		) {
2130			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2131				continue;
2132
2133			vm_map_clip_end(map, current, end);
2134
2135			switch (behav) {
2136			case MADV_NORMAL:
2137				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2138				break;
2139			case MADV_SEQUENTIAL:
2140				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2141				break;
2142			case MADV_RANDOM:
2143				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2144				break;
2145			case MADV_NOSYNC:
2146				current->eflags |= MAP_ENTRY_NOSYNC;
2147				break;
2148			case MADV_AUTOSYNC:
2149				current->eflags &= ~MAP_ENTRY_NOSYNC;
2150				break;
2151			case MADV_NOCORE:
2152				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2153				break;
2154			case MADV_CORE:
2155				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2156				break;
2157			default:
2158				break;
2159			}
2160			vm_map_simplify_entry(map, current);
2161		}
2162		vm_map_unlock(map);
2163	} else {
2164		vm_pindex_t pstart, pend;
2165
2166		/*
2167		 * madvise behaviors that are implemented in the underlying
2168		 * vm_object.
2169		 *
2170		 * Since we don't clip the vm_map_entry, we have to clip
2171		 * the vm_object pindex and count.
2172		 */
2173		for (current = entry;
2174		     (current != &map->header) && (current->start < end);
2175		     current = current->next
2176		) {
2177			vm_offset_t useEnd, useStart;
2178
2179			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2180				continue;
2181
2182			pstart = OFF_TO_IDX(current->offset);
2183			pend = pstart + atop(current->end - current->start);
2184			useStart = current->start;
2185			useEnd = current->end;
2186
2187			if (current->start < start) {
2188				pstart += atop(start - current->start);
2189				useStart = start;
2190			}
2191			if (current->end > end) {
2192				pend -= atop(current->end - end);
2193				useEnd = end;
2194			}
2195
2196			if (pstart >= pend)
2197				continue;
2198
2199			/*
2200			 * Perform the pmap_advise() before clearing
2201			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2202			 * concurrent pmap operation, such as pmap_remove(),
2203			 * could clear a reference in the pmap and set
2204			 * PGA_REFERENCED on the page before the pmap_advise()
2205			 * had completed.  Consequently, the page would appear
2206			 * referenced based upon an old reference that
2207			 * occurred before this pmap_advise() ran.
2208			 */
2209			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2210				pmap_advise(map->pmap, useStart, useEnd,
2211				    behav);
2212
2213			vm_object_madvise(current->object.vm_object, pstart,
2214			    pend, behav);
2215
2216			/*
2217			 * Pre-populate paging structures in the
2218			 * WILLNEED case.  For wired entries, the
2219			 * paging structures are already populated.
2220			 */
2221			if (behav == MADV_WILLNEED &&
2222			    current->wired_count == 0) {
2223				vm_map_pmap_enter(map,
2224				    useStart,
2225				    current->protection,
2226				    current->object.vm_object,
2227				    pstart,
2228				    ptoa(pend - pstart),
2229				    MAP_PREFAULT_MADVISE
2230				);
2231			}
2232		}
2233		vm_map_unlock_read(map);
2234	}
2235	return (0);
2236}
2237
2238
2239/*
2240 *	vm_map_inherit:
2241 *
2242 *	Sets the inheritance of the specified address
2243 *	range in the target map.  Inheritance
2244 *	affects how the map will be shared with
2245 *	child maps at the time of vmspace_fork.
2246 */
2247int
2248vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2249	       vm_inherit_t new_inheritance)
2250{
2251	vm_map_entry_t entry;
2252	vm_map_entry_t temp_entry;
2253
2254	switch (new_inheritance) {
2255	case VM_INHERIT_NONE:
2256	case VM_INHERIT_COPY:
2257	case VM_INHERIT_SHARE:
2258		break;
2259	default:
2260		return (KERN_INVALID_ARGUMENT);
2261	}
2262	if (start == end)
2263		return (KERN_SUCCESS);
2264	vm_map_lock(map);
2265	VM_MAP_RANGE_CHECK(map, start, end);
2266	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2267		entry = temp_entry;
2268		vm_map_clip_start(map, entry, start);
2269	} else
2270		entry = temp_entry->next;
2271	while ((entry != &map->header) && (entry->start < end)) {
2272		vm_map_clip_end(map, entry, end);
2273		entry->inheritance = new_inheritance;
2274		vm_map_simplify_entry(map, entry);
2275		entry = entry->next;
2276	}
2277	vm_map_unlock(map);
2278	return (KERN_SUCCESS);
2279}
2280
2281/*
2282 *	vm_map_unwire:
2283 *
2284 *	Implements both kernel and user unwiring.
2285 */
2286int
2287vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2288    int flags)
2289{
2290	vm_map_entry_t entry, first_entry, tmp_entry;
2291	vm_offset_t saved_start;
2292	unsigned int last_timestamp;
2293	int rv;
2294	boolean_t need_wakeup, result, user_unwire;
2295
2296	if (start == end)
2297		return (KERN_SUCCESS);
2298	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2299	vm_map_lock(map);
2300	VM_MAP_RANGE_CHECK(map, start, end);
2301	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2302		if (flags & VM_MAP_WIRE_HOLESOK)
2303			first_entry = first_entry->next;
2304		else {
2305			vm_map_unlock(map);
2306			return (KERN_INVALID_ADDRESS);
2307		}
2308	}
2309	last_timestamp = map->timestamp;
2310	entry = first_entry;
2311	while (entry != &map->header && entry->start < end) {
2312		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2313			/*
2314			 * We have not yet clipped the entry.
2315			 */
2316			saved_start = (start >= entry->start) ? start :
2317			    entry->start;
2318			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2319			if (vm_map_unlock_and_wait(map, 0)) {
2320				/*
2321				 * Allow interruption of user unwiring?
2322				 */
2323			}
2324			vm_map_lock(map);
2325			if (last_timestamp+1 != map->timestamp) {
2326				/*
2327				 * Look again for the entry because the map was
2328				 * modified while it was unlocked.
2329				 * Specifically, the entry may have been
2330				 * clipped, merged, or deleted.
2331				 */
2332				if (!vm_map_lookup_entry(map, saved_start,
2333				    &tmp_entry)) {
2334					if (flags & VM_MAP_WIRE_HOLESOK)
2335						tmp_entry = tmp_entry->next;
2336					else {
2337						if (saved_start == start) {
2338							/*
2339							 * First_entry has been deleted.
2340							 */
2341							vm_map_unlock(map);
2342							return (KERN_INVALID_ADDRESS);
2343						}
2344						end = saved_start;
2345						rv = KERN_INVALID_ADDRESS;
2346						goto done;
2347					}
2348				}
2349				if (entry == first_entry)
2350					first_entry = tmp_entry;
2351				else
2352					first_entry = NULL;
2353				entry = tmp_entry;
2354			}
2355			last_timestamp = map->timestamp;
2356			continue;
2357		}
2358		vm_map_clip_start(map, entry, start);
2359		vm_map_clip_end(map, entry, end);
2360		/*
2361		 * Mark the entry in case the map lock is released.  (See
2362		 * above.)
2363		 */
2364		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2365		    entry->wiring_thread == NULL,
2366		    ("owned map entry %p", entry));
2367		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2368		entry->wiring_thread = curthread;
2369		/*
2370		 * Check the map for holes in the specified region.
2371		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2372		 */
2373		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2374		    (entry->end < end && (entry->next == &map->header ||
2375		    entry->next->start > entry->end))) {
2376			end = entry->end;
2377			rv = KERN_INVALID_ADDRESS;
2378			goto done;
2379		}
2380		/*
2381		 * If system unwiring, require that the entry is system wired.
2382		 */
2383		if (!user_unwire &&
2384		    vm_map_entry_system_wired_count(entry) == 0) {
2385			end = entry->end;
2386			rv = KERN_INVALID_ARGUMENT;
2387			goto done;
2388		}
2389		entry = entry->next;
2390	}
2391	rv = KERN_SUCCESS;
2392done:
2393	need_wakeup = FALSE;
2394	if (first_entry == NULL) {
2395		result = vm_map_lookup_entry(map, start, &first_entry);
2396		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2397			first_entry = first_entry->next;
2398		else
2399			KASSERT(result, ("vm_map_unwire: lookup failed"));
2400	}
2401	for (entry = first_entry; entry != &map->header && entry->start < end;
2402	    entry = entry->next) {
2403		/*
2404		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2405		 * space in the unwired region could have been mapped
2406		 * while the map lock was dropped for draining
2407		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2408		 * could be simultaneously wiring this new mapping
2409		 * entry.  Detect these cases and skip any entries
2410		 * marked as in transition by us.
2411		 */
2412		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2413		    entry->wiring_thread != curthread) {
2414			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2415			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2416			continue;
2417		}
2418
2419		if (rv == KERN_SUCCESS && (!user_unwire ||
2420		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2421			if (user_unwire)
2422				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2423			if (entry->wired_count == 1)
2424				vm_map_entry_unwire(map, entry);
2425			else
2426				entry->wired_count--;
2427		}
2428		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2429		    ("vm_map_unwire: in-transition flag missing %p", entry));
2430		KASSERT(entry->wiring_thread == curthread,
2431		    ("vm_map_unwire: alien wire %p", entry));
2432		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2433		entry->wiring_thread = NULL;
2434		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2435			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2436			need_wakeup = TRUE;
2437		}
2438		vm_map_simplify_entry(map, entry);
2439	}
2440	vm_map_unlock(map);
2441	if (need_wakeup)
2442		vm_map_wakeup(map);
2443	return (rv);
2444}
2445
2446/*
2447 *	vm_map_wire_entry_failure:
2448 *
2449 *	Handle a wiring failure on the given entry.
2450 *
2451 *	The map should be locked.
2452 */
2453static void
2454vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2455    vm_offset_t failed_addr)
2456{
2457
2458	VM_MAP_ASSERT_LOCKED(map);
2459	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2460	    entry->wired_count == 1,
2461	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2462	KASSERT(failed_addr < entry->end,
2463	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2464
2465	/*
2466	 * If any pages at the start of this entry were successfully wired,
2467	 * then unwire them.
2468	 */
2469	if (failed_addr > entry->start) {
2470		pmap_unwire(map->pmap, entry->start, failed_addr);
2471		vm_object_unwire(entry->object.vm_object, entry->offset,
2472		    failed_addr - entry->start, PQ_ACTIVE);
2473	}
2474
2475	/*
2476	 * Assign an out-of-range value to represent the failure to wire this
2477	 * entry.
2478	 */
2479	entry->wired_count = -1;
2480}
2481
2482/*
2483 *	vm_map_wire:
2484 *
2485 *	Implements both kernel and user wiring.
2486 */
2487int
2488vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2489    int flags)
2490{
2491	vm_map_entry_t entry, first_entry, tmp_entry;
2492	vm_offset_t faddr, saved_end, saved_start;
2493	unsigned int last_timestamp;
2494	int rv;
2495	boolean_t need_wakeup, result, user_wire;
2496	vm_prot_t prot;
2497
2498	if (start == end)
2499		return (KERN_SUCCESS);
2500	prot = 0;
2501	if (flags & VM_MAP_WIRE_WRITE)
2502		prot |= VM_PROT_WRITE;
2503	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2504	vm_map_lock(map);
2505	VM_MAP_RANGE_CHECK(map, start, end);
2506	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2507		if (flags & VM_MAP_WIRE_HOLESOK)
2508			first_entry = first_entry->next;
2509		else {
2510			vm_map_unlock(map);
2511			return (KERN_INVALID_ADDRESS);
2512		}
2513	}
2514	last_timestamp = map->timestamp;
2515	entry = first_entry;
2516	while (entry != &map->header && entry->start < end) {
2517		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2518			/*
2519			 * We have not yet clipped the entry.
2520			 */
2521			saved_start = (start >= entry->start) ? start :
2522			    entry->start;
2523			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2524			if (vm_map_unlock_and_wait(map, 0)) {
2525				/*
2526				 * Allow interruption of user wiring?
2527				 */
2528			}
2529			vm_map_lock(map);
2530			if (last_timestamp + 1 != map->timestamp) {
2531				/*
2532				 * Look again for the entry because the map was
2533				 * modified while it was unlocked.
2534				 * Specifically, the entry may have been
2535				 * clipped, merged, or deleted.
2536				 */
2537				if (!vm_map_lookup_entry(map, saved_start,
2538				    &tmp_entry)) {
2539					if (flags & VM_MAP_WIRE_HOLESOK)
2540						tmp_entry = tmp_entry->next;
2541					else {
2542						if (saved_start == start) {
2543							/*
2544							 * first_entry has been deleted.
2545							 */
2546							vm_map_unlock(map);
2547							return (KERN_INVALID_ADDRESS);
2548						}
2549						end = saved_start;
2550						rv = KERN_INVALID_ADDRESS;
2551						goto done;
2552					}
2553				}
2554				if (entry == first_entry)
2555					first_entry = tmp_entry;
2556				else
2557					first_entry = NULL;
2558				entry = tmp_entry;
2559			}
2560			last_timestamp = map->timestamp;
2561			continue;
2562		}
2563		vm_map_clip_start(map, entry, start);
2564		vm_map_clip_end(map, entry, end);
2565		/*
2566		 * Mark the entry in case the map lock is released.  (See
2567		 * above.)
2568		 */
2569		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2570		    entry->wiring_thread == NULL,
2571		    ("owned map entry %p", entry));
2572		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2573		entry->wiring_thread = curthread;
2574		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2575		    || (entry->protection & prot) != prot) {
2576			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2577			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2578				end = entry->end;
2579				rv = KERN_INVALID_ADDRESS;
2580				goto done;
2581			}
2582			goto next_entry;
2583		}
2584		if (entry->wired_count == 0) {
2585			entry->wired_count++;
2586			saved_start = entry->start;
2587			saved_end = entry->end;
2588
2589			/*
2590			 * Release the map lock, relying on the in-transition
2591			 * mark.  Mark the map busy for fork.
2592			 */
2593			vm_map_busy(map);
2594			vm_map_unlock(map);
2595
2596			faddr = saved_start;
2597			do {
2598				/*
2599				 * Simulate a fault to get the page and enter
2600				 * it into the physical map.
2601				 */
2602				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2603				    VM_FAULT_CHANGE_WIRING)) != KERN_SUCCESS)
2604					break;
2605			} while ((faddr += PAGE_SIZE) < saved_end);
2606			vm_map_lock(map);
2607			vm_map_unbusy(map);
2608			if (last_timestamp + 1 != map->timestamp) {
2609				/*
2610				 * Look again for the entry because the map was
2611				 * modified while it was unlocked.  The entry
2612				 * may have been clipped, but NOT merged or
2613				 * deleted.
2614				 */
2615				result = vm_map_lookup_entry(map, saved_start,
2616				    &tmp_entry);
2617				KASSERT(result, ("vm_map_wire: lookup failed"));
2618				if (entry == first_entry)
2619					first_entry = tmp_entry;
2620				else
2621					first_entry = NULL;
2622				entry = tmp_entry;
2623				while (entry->end < saved_end) {
2624					/*
2625					 * In case of failure, handle entries
2626					 * that were not fully wired here;
2627					 * fully wired entries are handled
2628					 * later.
2629					 */
2630					if (rv != KERN_SUCCESS &&
2631					    faddr < entry->end)
2632						vm_map_wire_entry_failure(map,
2633						    entry, faddr);
2634					entry = entry->next;
2635				}
2636			}
2637			last_timestamp = map->timestamp;
2638			if (rv != KERN_SUCCESS) {
2639				vm_map_wire_entry_failure(map, entry, faddr);
2640				end = entry->end;
2641				goto done;
2642			}
2643		} else if (!user_wire ||
2644			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2645			entry->wired_count++;
2646		}
2647		/*
2648		 * Check the map for holes in the specified region.
2649		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2650		 */
2651	next_entry:
2652		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2653		    (entry->end < end && (entry->next == &map->header ||
2654		    entry->next->start > entry->end))) {
2655			end = entry->end;
2656			rv = KERN_INVALID_ADDRESS;
2657			goto done;
2658		}
2659		entry = entry->next;
2660	}
2661	rv = KERN_SUCCESS;
2662done:
2663	need_wakeup = FALSE;
2664	if (first_entry == NULL) {
2665		result = vm_map_lookup_entry(map, start, &first_entry);
2666		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2667			first_entry = first_entry->next;
2668		else
2669			KASSERT(result, ("vm_map_wire: lookup failed"));
2670	}
2671	for (entry = first_entry; entry != &map->header && entry->start < end;
2672	    entry = entry->next) {
2673		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2674			goto next_entry_done;
2675
2676		/*
2677		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2678		 * space in the unwired region could have been mapped
2679		 * while the map lock was dropped for faulting in the
2680		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2681		 * Moreover, another thread could be simultaneously
2682		 * wiring this new mapping entry.  Detect these cases
2683		 * and skip any entries marked as in transition by us.
2684		 */
2685		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2686		    entry->wiring_thread != curthread) {
2687			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2688			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2689			continue;
2690		}
2691
2692		if (rv == KERN_SUCCESS) {
2693			if (user_wire)
2694				entry->eflags |= MAP_ENTRY_USER_WIRED;
2695		} else if (entry->wired_count == -1) {
2696			/*
2697			 * Wiring failed on this entry.  Thus, unwiring is
2698			 * unnecessary.
2699			 */
2700			entry->wired_count = 0;
2701		} else if (!user_wire ||
2702		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2703			/*
2704			 * Undo the wiring.  Wiring succeeded on this entry
2705			 * but failed on a later entry.
2706			 */
2707			if (entry->wired_count == 1)
2708				vm_map_entry_unwire(map, entry);
2709			else
2710				entry->wired_count--;
2711		}
2712	next_entry_done:
2713		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2714		    ("vm_map_wire: in-transition flag missing %p", entry));
2715		KASSERT(entry->wiring_thread == curthread,
2716		    ("vm_map_wire: alien wire %p", entry));
2717		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2718		    MAP_ENTRY_WIRE_SKIPPED);
2719		entry->wiring_thread = NULL;
2720		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2721			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2722			need_wakeup = TRUE;
2723		}
2724		vm_map_simplify_entry(map, entry);
2725	}
2726	vm_map_unlock(map);
2727	if (need_wakeup)
2728		vm_map_wakeup(map);
2729	return (rv);
2730}
2731
2732/*
2733 * vm_map_sync
2734 *
2735 * Push any dirty cached pages in the address range to their pager.
2736 * If syncio is TRUE, dirty pages are written synchronously.
2737 * If invalidate is TRUE, any cached pages are freed as well.
2738 *
2739 * If the size of the region from start to end is zero, we are
2740 * supposed to flush all modified pages within the region containing
2741 * start.  Unfortunately, a region can be split or coalesced with
2742 * neighboring regions, making it difficult to determine what the
2743 * original region was.  Therefore, we approximate this requirement by
2744 * flushing the current region containing start.
2745 *
2746 * Returns an error if any part of the specified range is not mapped.
2747 */
2748int
2749vm_map_sync(
2750	vm_map_t map,
2751	vm_offset_t start,
2752	vm_offset_t end,
2753	boolean_t syncio,
2754	boolean_t invalidate)
2755{
2756	vm_map_entry_t current;
2757	vm_map_entry_t entry;
2758	vm_size_t size;
2759	vm_object_t object;
2760	vm_ooffset_t offset;
2761	unsigned int last_timestamp;
2762	boolean_t failed;
2763
2764	vm_map_lock_read(map);
2765	VM_MAP_RANGE_CHECK(map, start, end);
2766	if (!vm_map_lookup_entry(map, start, &entry)) {
2767		vm_map_unlock_read(map);
2768		return (KERN_INVALID_ADDRESS);
2769	} else if (start == end) {
2770		start = entry->start;
2771		end = entry->end;
2772	}
2773	/*
2774	 * Make a first pass to check for user-wired memory and holes.
2775	 */
2776	for (current = entry; current != &map->header && current->start < end;
2777	    current = current->next) {
2778		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2779			vm_map_unlock_read(map);
2780			return (KERN_INVALID_ARGUMENT);
2781		}
2782		if (end > current->end &&
2783		    (current->next == &map->header ||
2784			current->end != current->next->start)) {
2785			vm_map_unlock_read(map);
2786			return (KERN_INVALID_ADDRESS);
2787		}
2788	}
2789
2790	if (invalidate)
2791		pmap_remove(map->pmap, start, end);
2792	failed = FALSE;
2793
2794	/*
2795	 * Make a second pass, cleaning/uncaching pages from the indicated
2796	 * objects as we go.
2797	 */
2798	for (current = entry; current != &map->header && current->start < end;) {
2799		offset = current->offset + (start - current->start);
2800		size = (end <= current->end ? end : current->end) - start;
2801		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2802			vm_map_t smap;
2803			vm_map_entry_t tentry;
2804			vm_size_t tsize;
2805
2806			smap = current->object.sub_map;
2807			vm_map_lock_read(smap);
2808			(void) vm_map_lookup_entry(smap, offset, &tentry);
2809			tsize = tentry->end - offset;
2810			if (tsize < size)
2811				size = tsize;
2812			object = tentry->object.vm_object;
2813			offset = tentry->offset + (offset - tentry->start);
2814			vm_map_unlock_read(smap);
2815		} else {
2816			object = current->object.vm_object;
2817		}
2818		vm_object_reference(object);
2819		last_timestamp = map->timestamp;
2820		vm_map_unlock_read(map);
2821		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2822			failed = TRUE;
2823		start += size;
2824		vm_object_deallocate(object);
2825		vm_map_lock_read(map);
2826		if (last_timestamp == map->timestamp ||
2827		    !vm_map_lookup_entry(map, start, &current))
2828			current = current->next;
2829	}
2830
2831	vm_map_unlock_read(map);
2832	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2833}
2834
2835/*
2836 *	vm_map_entry_unwire:	[ internal use only ]
2837 *
2838 *	Make the region specified by this entry pageable.
2839 *
2840 *	The map in question should be locked.
2841 *	[This is the reason for this routine's existence.]
2842 */
2843static void
2844vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2845{
2846
2847	VM_MAP_ASSERT_LOCKED(map);
2848	KASSERT(entry->wired_count > 0,
2849	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2850	pmap_unwire(map->pmap, entry->start, entry->end);
2851	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2852	    entry->start, PQ_ACTIVE);
2853	entry->wired_count = 0;
2854}
2855
2856static void
2857vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2858{
2859
2860	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2861		vm_object_deallocate(entry->object.vm_object);
2862	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2863}
2864
2865/*
2866 *	vm_map_entry_delete:	[ internal use only ]
2867 *
2868 *	Deallocate the given entry from the target map.
2869 */
2870static void
2871vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2872{
2873	vm_object_t object;
2874	vm_pindex_t offidxstart, offidxend, count, size1;
2875	vm_ooffset_t size;
2876
2877	vm_map_entry_unlink(map, entry);
2878	object = entry->object.vm_object;
2879	size = entry->end - entry->start;
2880	map->size -= size;
2881
2882	if (entry->cred != NULL) {
2883		swap_release_by_cred(size, entry->cred);
2884		crfree(entry->cred);
2885	}
2886
2887	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2888	    (object != NULL)) {
2889		KASSERT(entry->cred == NULL || object->cred == NULL ||
2890		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2891		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2892		count = OFF_TO_IDX(size);
2893		offidxstart = OFF_TO_IDX(entry->offset);
2894		offidxend = offidxstart + count;
2895		VM_OBJECT_WLOCK(object);
2896		if (object->ref_count != 1 &&
2897		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2898		    object == kernel_object || object == kmem_object)) {
2899			vm_object_collapse(object);
2900
2901			/*
2902			 * The option OBJPR_NOTMAPPED can be passed here
2903			 * because vm_map_delete() already performed
2904			 * pmap_remove() on the only mapping to this range
2905			 * of pages.
2906			 */
2907			vm_object_page_remove(object, offidxstart, offidxend,
2908			    OBJPR_NOTMAPPED);
2909			if (object->type == OBJT_SWAP)
2910				swap_pager_freespace(object, offidxstart, count);
2911			if (offidxend >= object->size &&
2912			    offidxstart < object->size) {
2913				size1 = object->size;
2914				object->size = offidxstart;
2915				if (object->cred != NULL) {
2916					size1 -= object->size;
2917					KASSERT(object->charge >= ptoa(size1),
2918					    ("vm_map_entry_delete: object->charge < 0"));
2919					swap_release_by_cred(ptoa(size1), object->cred);
2920					object->charge -= ptoa(size1);
2921				}
2922			}
2923		}
2924		VM_OBJECT_WUNLOCK(object);
2925	} else
2926		entry->object.vm_object = NULL;
2927	if (map->system_map)
2928		vm_map_entry_deallocate(entry, TRUE);
2929	else {
2930		entry->next = curthread->td_map_def_user;
2931		curthread->td_map_def_user = entry;
2932	}
2933}
2934
2935/*
2936 *	vm_map_delete:	[ internal use only ]
2937 *
2938 *	Deallocates the given address range from the target
2939 *	map.
2940 */
2941int
2942vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2943{
2944	vm_map_entry_t entry;
2945	vm_map_entry_t first_entry;
2946
2947	VM_MAP_ASSERT_LOCKED(map);
2948	if (start == end)
2949		return (KERN_SUCCESS);
2950
2951	/*
2952	 * Find the start of the region, and clip it
2953	 */
2954	if (!vm_map_lookup_entry(map, start, &first_entry))
2955		entry = first_entry->next;
2956	else {
2957		entry = first_entry;
2958		vm_map_clip_start(map, entry, start);
2959	}
2960
2961	/*
2962	 * Step through all entries in this region
2963	 */
2964	while ((entry != &map->header) && (entry->start < end)) {
2965		vm_map_entry_t next;
2966
2967		/*
2968		 * Wait for wiring or unwiring of an entry to complete.
2969		 * Also wait for any system wirings to disappear on
2970		 * user maps.
2971		 */
2972		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2973		    (vm_map_pmap(map) != kernel_pmap &&
2974		    vm_map_entry_system_wired_count(entry) != 0)) {
2975			unsigned int last_timestamp;
2976			vm_offset_t saved_start;
2977			vm_map_entry_t tmp_entry;
2978
2979			saved_start = entry->start;
2980			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2981			last_timestamp = map->timestamp;
2982			(void) vm_map_unlock_and_wait(map, 0);
2983			vm_map_lock(map);
2984			if (last_timestamp + 1 != map->timestamp) {
2985				/*
2986				 * Look again for the entry because the map was
2987				 * modified while it was unlocked.
2988				 * Specifically, the entry may have been
2989				 * clipped, merged, or deleted.
2990				 */
2991				if (!vm_map_lookup_entry(map, saved_start,
2992							 &tmp_entry))
2993					entry = tmp_entry->next;
2994				else {
2995					entry = tmp_entry;
2996					vm_map_clip_start(map, entry,
2997							  saved_start);
2998				}
2999			}
3000			continue;
3001		}
3002		vm_map_clip_end(map, entry, end);
3003
3004		next = entry->next;
3005
3006		/*
3007		 * Unwire before removing addresses from the pmap; otherwise,
3008		 * unwiring will put the entries back in the pmap.
3009		 */
3010		if (entry->wired_count != 0) {
3011			vm_map_entry_unwire(map, entry);
3012		}
3013
3014		pmap_remove(map->pmap, entry->start, entry->end);
3015
3016		/*
3017		 * Delete the entry only after removing all pmap
3018		 * entries pointing to its pages.  (Otherwise, its
3019		 * page frames may be reallocated, and any modify bits
3020		 * will be set in the wrong object!)
3021		 */
3022		vm_map_entry_delete(map, entry);
3023		entry = next;
3024	}
3025	return (KERN_SUCCESS);
3026}
3027
3028/*
3029 *	vm_map_remove:
3030 *
3031 *	Remove the given address range from the target map.
3032 *	This is the exported form of vm_map_delete.
3033 */
3034int
3035vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3036{
3037	int result;
3038
3039	vm_map_lock(map);
3040	VM_MAP_RANGE_CHECK(map, start, end);
3041	result = vm_map_delete(map, start, end);
3042	vm_map_unlock(map);
3043	return (result);
3044}
3045
3046/*
3047 *	vm_map_check_protection:
3048 *
3049 *	Assert that the target map allows the specified privilege on the
3050 *	entire address region given.  The entire region must be allocated.
3051 *
3052 *	WARNING!  This code does not and should not check whether the
3053 *	contents of the region is accessible.  For example a smaller file
3054 *	might be mapped into a larger address space.
3055 *
3056 *	NOTE!  This code is also called by munmap().
3057 *
3058 *	The map must be locked.  A read lock is sufficient.
3059 */
3060boolean_t
3061vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3062			vm_prot_t protection)
3063{
3064	vm_map_entry_t entry;
3065	vm_map_entry_t tmp_entry;
3066
3067	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3068		return (FALSE);
3069	entry = tmp_entry;
3070
3071	while (start < end) {
3072		if (entry == &map->header)
3073			return (FALSE);
3074		/*
3075		 * No holes allowed!
3076		 */
3077		if (start < entry->start)
3078			return (FALSE);
3079		/*
3080		 * Check protection associated with entry.
3081		 */
3082		if ((entry->protection & protection) != protection)
3083			return (FALSE);
3084		/* go to next entry */
3085		start = entry->end;
3086		entry = entry->next;
3087	}
3088	return (TRUE);
3089}
3090
3091/*
3092 *	vm_map_copy_entry:
3093 *
3094 *	Copies the contents of the source entry to the destination
3095 *	entry.  The entries *must* be aligned properly.
3096 */
3097static void
3098vm_map_copy_entry(
3099	vm_map_t src_map,
3100	vm_map_t dst_map,
3101	vm_map_entry_t src_entry,
3102	vm_map_entry_t dst_entry,
3103	vm_ooffset_t *fork_charge)
3104{
3105	vm_object_t src_object;
3106	vm_map_entry_t fake_entry;
3107	vm_offset_t size;
3108	struct ucred *cred;
3109	int charged;
3110
3111	VM_MAP_ASSERT_LOCKED(dst_map);
3112
3113	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3114		return;
3115
3116	if (src_entry->wired_count == 0 ||
3117	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3118		/*
3119		 * If the source entry is marked needs_copy, it is already
3120		 * write-protected.
3121		 */
3122		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3123		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3124			pmap_protect(src_map->pmap,
3125			    src_entry->start,
3126			    src_entry->end,
3127			    src_entry->protection & ~VM_PROT_WRITE);
3128		}
3129
3130		/*
3131		 * Make a copy of the object.
3132		 */
3133		size = src_entry->end - src_entry->start;
3134		if ((src_object = src_entry->object.vm_object) != NULL) {
3135			VM_OBJECT_WLOCK(src_object);
3136			charged = ENTRY_CHARGED(src_entry);
3137			if ((src_object->handle == NULL) &&
3138				(src_object->type == OBJT_DEFAULT ||
3139				 src_object->type == OBJT_SWAP)) {
3140				vm_object_collapse(src_object);
3141				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3142					vm_object_split(src_entry);
3143					src_object = src_entry->object.vm_object;
3144				}
3145			}
3146			vm_object_reference_locked(src_object);
3147			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3148			if (src_entry->cred != NULL &&
3149			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3150				KASSERT(src_object->cred == NULL,
3151				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3152				     src_object));
3153				src_object->cred = src_entry->cred;
3154				src_object->charge = size;
3155			}
3156			VM_OBJECT_WUNLOCK(src_object);
3157			dst_entry->object.vm_object = src_object;
3158			if (charged) {
3159				cred = curthread->td_ucred;
3160				crhold(cred);
3161				dst_entry->cred = cred;
3162				*fork_charge += size;
3163				if (!(src_entry->eflags &
3164				      MAP_ENTRY_NEEDS_COPY)) {
3165					crhold(cred);
3166					src_entry->cred = cred;
3167					*fork_charge += size;
3168				}
3169			}
3170			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3171			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3172			dst_entry->offset = src_entry->offset;
3173			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3174				/*
3175				 * MAP_ENTRY_VN_WRITECNT cannot
3176				 * indicate write reference from
3177				 * src_entry, since the entry is
3178				 * marked as needs copy.  Allocate a
3179				 * fake entry that is used to
3180				 * decrement object->un_pager.vnp.writecount
3181				 * at the appropriate time.  Attach
3182				 * fake_entry to the deferred list.
3183				 */
3184				fake_entry = vm_map_entry_create(dst_map);
3185				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3186				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3187				vm_object_reference(src_object);
3188				fake_entry->object.vm_object = src_object;
3189				fake_entry->start = src_entry->start;
3190				fake_entry->end = src_entry->end;
3191				fake_entry->next = curthread->td_map_def_user;
3192				curthread->td_map_def_user = fake_entry;
3193			}
3194		} else {
3195			dst_entry->object.vm_object = NULL;
3196			dst_entry->offset = 0;
3197			if (src_entry->cred != NULL) {
3198				dst_entry->cred = curthread->td_ucred;
3199				crhold(dst_entry->cred);
3200				*fork_charge += size;
3201			}
3202		}
3203
3204		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3205		    dst_entry->end - dst_entry->start, src_entry->start);
3206	} else {
3207		/*
3208		 * We don't want to make writeable wired pages copy-on-write.
3209		 * Immediately copy these pages into the new map by simulating
3210		 * page faults.  The new pages are pageable.
3211		 */
3212		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3213		    fork_charge);
3214	}
3215}
3216
3217/*
3218 * vmspace_map_entry_forked:
3219 * Update the newly-forked vmspace each time a map entry is inherited
3220 * or copied.  The values for vm_dsize and vm_tsize are approximate
3221 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3222 */
3223static void
3224vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3225    vm_map_entry_t entry)
3226{
3227	vm_size_t entrysize;
3228	vm_offset_t newend;
3229
3230	entrysize = entry->end - entry->start;
3231	vm2->vm_map.size += entrysize;
3232	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3233		vm2->vm_ssize += btoc(entrysize);
3234	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3235	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3236		newend = MIN(entry->end,
3237		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3238		vm2->vm_dsize += btoc(newend - entry->start);
3239	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3240	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3241		newend = MIN(entry->end,
3242		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3243		vm2->vm_tsize += btoc(newend - entry->start);
3244	}
3245}
3246
3247/*
3248 * vmspace_fork:
3249 * Create a new process vmspace structure and vm_map
3250 * based on those of an existing process.  The new map
3251 * is based on the old map, according to the inheritance
3252 * values on the regions in that map.
3253 *
3254 * XXX It might be worth coalescing the entries added to the new vmspace.
3255 *
3256 * The source map must not be locked.
3257 */
3258struct vmspace *
3259vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3260{
3261	struct vmspace *vm2;
3262	vm_map_t new_map, old_map;
3263	vm_map_entry_t new_entry, old_entry;
3264	vm_object_t object;
3265	int locked;
3266
3267	old_map = &vm1->vm_map;
3268	/* Copy immutable fields of vm1 to vm2. */
3269	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3270	if (vm2 == NULL)
3271		return (NULL);
3272	vm2->vm_taddr = vm1->vm_taddr;
3273	vm2->vm_daddr = vm1->vm_daddr;
3274	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3275	vm_map_lock(old_map);
3276	if (old_map->busy)
3277		vm_map_wait_busy(old_map);
3278	new_map = &vm2->vm_map;
3279	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3280	KASSERT(locked, ("vmspace_fork: lock failed"));
3281
3282	old_entry = old_map->header.next;
3283
3284	while (old_entry != &old_map->header) {
3285		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3286			panic("vm_map_fork: encountered a submap");
3287
3288		switch (old_entry->inheritance) {
3289		case VM_INHERIT_NONE:
3290			break;
3291
3292		case VM_INHERIT_SHARE:
3293			/*
3294			 * Clone the entry, creating the shared object if necessary.
3295			 */
3296			object = old_entry->object.vm_object;
3297			if (object == NULL) {
3298				object = vm_object_allocate(OBJT_DEFAULT,
3299					atop(old_entry->end - old_entry->start));
3300				old_entry->object.vm_object = object;
3301				old_entry->offset = 0;
3302				if (old_entry->cred != NULL) {
3303					object->cred = old_entry->cred;
3304					object->charge = old_entry->end -
3305					    old_entry->start;
3306					old_entry->cred = NULL;
3307				}
3308			}
3309
3310			/*
3311			 * Add the reference before calling vm_object_shadow
3312			 * to insure that a shadow object is created.
3313			 */
3314			vm_object_reference(object);
3315			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3316				vm_object_shadow(&old_entry->object.vm_object,
3317				    &old_entry->offset,
3318				    old_entry->end - old_entry->start);
3319				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3320				/* Transfer the second reference too. */
3321				vm_object_reference(
3322				    old_entry->object.vm_object);
3323
3324				/*
3325				 * As in vm_map_simplify_entry(), the
3326				 * vnode lock will not be acquired in
3327				 * this call to vm_object_deallocate().
3328				 */
3329				vm_object_deallocate(object);
3330				object = old_entry->object.vm_object;
3331			}
3332			VM_OBJECT_WLOCK(object);
3333			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3334			if (old_entry->cred != NULL) {
3335				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3336				object->cred = old_entry->cred;
3337				object->charge = old_entry->end - old_entry->start;
3338				old_entry->cred = NULL;
3339			}
3340
3341			/*
3342			 * Assert the correct state of the vnode
3343			 * v_writecount while the object is locked, to
3344			 * not relock it later for the assertion
3345			 * correctness.
3346			 */
3347			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3348			    object->type == OBJT_VNODE) {
3349				KASSERT(((struct vnode *)object->handle)->
3350				    v_writecount > 0,
3351				    ("vmspace_fork: v_writecount %p", object));
3352				KASSERT(object->un_pager.vnp.writemappings > 0,
3353				    ("vmspace_fork: vnp.writecount %p",
3354				    object));
3355			}
3356			VM_OBJECT_WUNLOCK(object);
3357
3358			/*
3359			 * Clone the entry, referencing the shared object.
3360			 */
3361			new_entry = vm_map_entry_create(new_map);
3362			*new_entry = *old_entry;
3363			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3364			    MAP_ENTRY_IN_TRANSITION);
3365			new_entry->wiring_thread = NULL;
3366			new_entry->wired_count = 0;
3367			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3368				vnode_pager_update_writecount(object,
3369				    new_entry->start, new_entry->end);
3370			}
3371
3372			/*
3373			 * Insert the entry into the new map -- we know we're
3374			 * inserting at the end of the new map.
3375			 */
3376			vm_map_entry_link(new_map, new_map->header.prev,
3377			    new_entry);
3378			vmspace_map_entry_forked(vm1, vm2, new_entry);
3379
3380			/*
3381			 * Update the physical map
3382			 */
3383			pmap_copy(new_map->pmap, old_map->pmap,
3384			    new_entry->start,
3385			    (old_entry->end - old_entry->start),
3386			    old_entry->start);
3387			break;
3388
3389		case VM_INHERIT_COPY:
3390			/*
3391			 * Clone the entry and link into the map.
3392			 */
3393			new_entry = vm_map_entry_create(new_map);
3394			*new_entry = *old_entry;
3395			/*
3396			 * Copied entry is COW over the old object.
3397			 */
3398			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3399			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3400			new_entry->wiring_thread = NULL;
3401			new_entry->wired_count = 0;
3402			new_entry->object.vm_object = NULL;
3403			new_entry->cred = NULL;
3404			vm_map_entry_link(new_map, new_map->header.prev,
3405			    new_entry);
3406			vmspace_map_entry_forked(vm1, vm2, new_entry);
3407			vm_map_copy_entry(old_map, new_map, old_entry,
3408			    new_entry, fork_charge);
3409			break;
3410		}
3411		old_entry = old_entry->next;
3412	}
3413	/*
3414	 * Use inlined vm_map_unlock() to postpone handling the deferred
3415	 * map entries, which cannot be done until both old_map and
3416	 * new_map locks are released.
3417	 */
3418	sx_xunlock(&old_map->lock);
3419	sx_xunlock(&new_map->lock);
3420	vm_map_process_deferred();
3421
3422	return (vm2);
3423}
3424
3425int
3426vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3427    vm_prot_t prot, vm_prot_t max, int cow)
3428{
3429	vm_size_t growsize, init_ssize;
3430	rlim_t lmemlim, vmemlim;
3431	int rv;
3432
3433	growsize = sgrowsiz;
3434	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3435	vm_map_lock(map);
3436	PROC_LOCK(curproc);
3437	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3438	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3439	PROC_UNLOCK(curproc);
3440	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3441		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3442			rv = KERN_NO_SPACE;
3443			goto out;
3444		}
3445	}
3446	/* If we would blow our VMEM resource limit, no go */
3447	if (map->size + init_ssize > vmemlim) {
3448		rv = KERN_NO_SPACE;
3449		goto out;
3450	}
3451	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3452	    max, cow);
3453out:
3454	vm_map_unlock(map);
3455	return (rv);
3456}
3457
3458static int
3459vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3460    vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3461{
3462	vm_map_entry_t new_entry, prev_entry;
3463	vm_offset_t bot, top;
3464	vm_size_t init_ssize;
3465	int orient, rv;
3466
3467	/*
3468	 * The stack orientation is piggybacked with the cow argument.
3469	 * Extract it into orient and mask the cow argument so that we
3470	 * don't pass it around further.
3471	 * NOTE: We explicitly allow bi-directional stacks.
3472	 */
3473	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3474	KASSERT(orient != 0, ("No stack grow direction"));
3475
3476	if (addrbos < vm_map_min(map) ||
3477	    addrbos > vm_map_max(map) ||
3478	    addrbos + max_ssize < addrbos)
3479		return (KERN_NO_SPACE);
3480
3481	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3482
3483	/* If addr is already mapped, no go */
3484	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3485		return (KERN_NO_SPACE);
3486
3487	/*
3488	 * If we can't accomodate max_ssize in the current mapping, no go.
3489	 * However, we need to be aware that subsequent user mappings might
3490	 * map into the space we have reserved for stack, and currently this
3491	 * space is not protected.
3492	 *
3493	 * Hopefully we will at least detect this condition when we try to
3494	 * grow the stack.
3495	 */
3496	if ((prev_entry->next != &map->header) &&
3497	    (prev_entry->next->start < addrbos + max_ssize))
3498		return (KERN_NO_SPACE);
3499
3500	/*
3501	 * We initially map a stack of only init_ssize.  We will grow as
3502	 * needed later.  Depending on the orientation of the stack (i.e.
3503	 * the grow direction) we either map at the top of the range, the
3504	 * bottom of the range or in the middle.
3505	 *
3506	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3507	 * and cow to be 0.  Possibly we should eliminate these as input
3508	 * parameters, and just pass these values here in the insert call.
3509	 */
3510	if (orient == MAP_STACK_GROWS_DOWN)
3511		bot = addrbos + max_ssize - init_ssize;
3512	else if (orient == MAP_STACK_GROWS_UP)
3513		bot = addrbos;
3514	else
3515		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3516	top = bot + init_ssize;
3517	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3518
3519	/* Now set the avail_ssize amount. */
3520	if (rv == KERN_SUCCESS) {
3521		if (prev_entry != &map->header)
3522			vm_map_clip_end(map, prev_entry, bot);
3523		new_entry = prev_entry->next;
3524		if (new_entry->end != top || new_entry->start != bot)
3525			panic("Bad entry start/end for new stack entry");
3526
3527		new_entry->avail_ssize = max_ssize - init_ssize;
3528		if (orient & MAP_STACK_GROWS_DOWN)
3529			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3530		if (orient & MAP_STACK_GROWS_UP)
3531			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3532	}
3533
3534	return (rv);
3535}
3536
3537static int stack_guard_page = 0;
3538TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3539SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3540    &stack_guard_page, 0,
3541    "Insert stack guard page ahead of the growable segments.");
3542
3543/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3544 * desired address is already mapped, or if we successfully grow
3545 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3546 * stack range (this is strange, but preserves compatibility with
3547 * the grow function in vm_machdep.c).
3548 */
3549int
3550vm_map_growstack(struct proc *p, vm_offset_t addr)
3551{
3552	vm_map_entry_t next_entry, prev_entry;
3553	vm_map_entry_t new_entry, stack_entry;
3554	struct vmspace *vm = p->p_vmspace;
3555	vm_map_t map = &vm->vm_map;
3556	vm_offset_t end;
3557	vm_size_t growsize;
3558	size_t grow_amount, max_grow;
3559	rlim_t lmemlim, stacklim, vmemlim;
3560	int is_procstack, rv;
3561	struct ucred *cred;
3562#ifdef notyet
3563	uint64_t limit;
3564#endif
3565#ifdef RACCT
3566	int error;
3567#endif
3568
3569Retry:
3570	PROC_LOCK(p);
3571	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3572	stacklim = lim_cur(p, RLIMIT_STACK);
3573	vmemlim = lim_cur(p, RLIMIT_VMEM);
3574	PROC_UNLOCK(p);
3575
3576	vm_map_lock_read(map);
3577
3578	/* If addr is already in the entry range, no need to grow.*/
3579	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3580		vm_map_unlock_read(map);
3581		return (KERN_SUCCESS);
3582	}
3583
3584	next_entry = prev_entry->next;
3585	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3586		/*
3587		 * This entry does not grow upwards. Since the address lies
3588		 * beyond this entry, the next entry (if one exists) has to
3589		 * be a downward growable entry. The entry list header is
3590		 * never a growable entry, so it suffices to check the flags.
3591		 */
3592		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3593			vm_map_unlock_read(map);
3594			return (KERN_SUCCESS);
3595		}
3596		stack_entry = next_entry;
3597	} else {
3598		/*
3599		 * This entry grows upward. If the next entry does not at
3600		 * least grow downwards, this is the entry we need to grow.
3601		 * otherwise we have two possible choices and we have to
3602		 * select one.
3603		 */
3604		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3605			/*
3606			 * We have two choices; grow the entry closest to
3607			 * the address to minimize the amount of growth.
3608			 */
3609			if (addr - prev_entry->end <= next_entry->start - addr)
3610				stack_entry = prev_entry;
3611			else
3612				stack_entry = next_entry;
3613		} else
3614			stack_entry = prev_entry;
3615	}
3616
3617	if (stack_entry == next_entry) {
3618		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3619		KASSERT(addr < stack_entry->start, ("foo"));
3620		end = (prev_entry != &map->header) ? prev_entry->end :
3621		    stack_entry->start - stack_entry->avail_ssize;
3622		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3623		max_grow = stack_entry->start - end;
3624	} else {
3625		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3626		KASSERT(addr >= stack_entry->end, ("foo"));
3627		end = (next_entry != &map->header) ? next_entry->start :
3628		    stack_entry->end + stack_entry->avail_ssize;
3629		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3630		max_grow = end - stack_entry->end;
3631	}
3632
3633	if (grow_amount > stack_entry->avail_ssize) {
3634		vm_map_unlock_read(map);
3635		return (KERN_NO_SPACE);
3636	}
3637
3638	/*
3639	 * If there is no longer enough space between the entries nogo, and
3640	 * adjust the available space.  Note: this  should only happen if the
3641	 * user has mapped into the stack area after the stack was created,
3642	 * and is probably an error.
3643	 *
3644	 * This also effectively destroys any guard page the user might have
3645	 * intended by limiting the stack size.
3646	 */
3647	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3648		if (vm_map_lock_upgrade(map))
3649			goto Retry;
3650
3651		stack_entry->avail_ssize = max_grow;
3652
3653		vm_map_unlock(map);
3654		return (KERN_NO_SPACE);
3655	}
3656
3657	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3658
3659	/*
3660	 * If this is the main process stack, see if we're over the stack
3661	 * limit.
3662	 */
3663	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3664		vm_map_unlock_read(map);
3665		return (KERN_NO_SPACE);
3666	}
3667#ifdef RACCT
3668	PROC_LOCK(p);
3669	if (is_procstack &&
3670	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3671		PROC_UNLOCK(p);
3672		vm_map_unlock_read(map);
3673		return (KERN_NO_SPACE);
3674	}
3675	PROC_UNLOCK(p);
3676#endif
3677
3678	/* Round up the grow amount modulo sgrowsiz */
3679	growsize = sgrowsiz;
3680	grow_amount = roundup(grow_amount, growsize);
3681	if (grow_amount > stack_entry->avail_ssize)
3682		grow_amount = stack_entry->avail_ssize;
3683	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3684		grow_amount = trunc_page((vm_size_t)stacklim) -
3685		    ctob(vm->vm_ssize);
3686	}
3687#ifdef notyet
3688	PROC_LOCK(p);
3689	limit = racct_get_available(p, RACCT_STACK);
3690	PROC_UNLOCK(p);
3691	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3692		grow_amount = limit - ctob(vm->vm_ssize);
3693#endif
3694	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3695		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3696			vm_map_unlock_read(map);
3697			rv = KERN_NO_SPACE;
3698			goto out;
3699		}
3700#ifdef RACCT
3701		PROC_LOCK(p);
3702		if (racct_set(p, RACCT_MEMLOCK,
3703		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3704			PROC_UNLOCK(p);
3705			vm_map_unlock_read(map);
3706			rv = KERN_NO_SPACE;
3707			goto out;
3708		}
3709		PROC_UNLOCK(p);
3710#endif
3711	}
3712	/* If we would blow our VMEM resource limit, no go */
3713	if (map->size + grow_amount > vmemlim) {
3714		vm_map_unlock_read(map);
3715		rv = KERN_NO_SPACE;
3716		goto out;
3717	}
3718#ifdef RACCT
3719	PROC_LOCK(p);
3720	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3721		PROC_UNLOCK(p);
3722		vm_map_unlock_read(map);
3723		rv = KERN_NO_SPACE;
3724		goto out;
3725	}
3726	PROC_UNLOCK(p);
3727#endif
3728
3729	if (vm_map_lock_upgrade(map))
3730		goto Retry;
3731
3732	if (stack_entry == next_entry) {
3733		/*
3734		 * Growing downward.
3735		 */
3736		/* Get the preliminary new entry start value */
3737		addr = stack_entry->start - grow_amount;
3738
3739		/*
3740		 * If this puts us into the previous entry, cut back our
3741		 * growth to the available space. Also, see the note above.
3742		 */
3743		if (addr < end) {
3744			stack_entry->avail_ssize = max_grow;
3745			addr = end;
3746			if (stack_guard_page)
3747				addr += PAGE_SIZE;
3748		}
3749
3750		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3751		    next_entry->protection, next_entry->max_protection, 0);
3752
3753		/* Adjust the available stack space by the amount we grew. */
3754		if (rv == KERN_SUCCESS) {
3755			if (prev_entry != &map->header)
3756				vm_map_clip_end(map, prev_entry, addr);
3757			new_entry = prev_entry->next;
3758			KASSERT(new_entry == stack_entry->prev, ("foo"));
3759			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3760			KASSERT(new_entry->start == addr, ("foo"));
3761			grow_amount = new_entry->end - new_entry->start;
3762			new_entry->avail_ssize = stack_entry->avail_ssize -
3763			    grow_amount;
3764			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3765			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3766		}
3767	} else {
3768		/*
3769		 * Growing upward.
3770		 */
3771		addr = stack_entry->end + grow_amount;
3772
3773		/*
3774		 * If this puts us into the next entry, cut back our growth
3775		 * to the available space. Also, see the note above.
3776		 */
3777		if (addr > end) {
3778			stack_entry->avail_ssize = end - stack_entry->end;
3779			addr = end;
3780			if (stack_guard_page)
3781				addr -= PAGE_SIZE;
3782		}
3783
3784		grow_amount = addr - stack_entry->end;
3785		cred = stack_entry->cred;
3786		if (cred == NULL && stack_entry->object.vm_object != NULL)
3787			cred = stack_entry->object.vm_object->cred;
3788		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3789			rv = KERN_NO_SPACE;
3790		/* Grow the underlying object if applicable. */
3791		else if (stack_entry->object.vm_object == NULL ||
3792			 vm_object_coalesce(stack_entry->object.vm_object,
3793			 stack_entry->offset,
3794			 (vm_size_t)(stack_entry->end - stack_entry->start),
3795			 (vm_size_t)grow_amount, cred != NULL)) {
3796			map->size += (addr - stack_entry->end);
3797			/* Update the current entry. */
3798			stack_entry->end = addr;
3799			stack_entry->avail_ssize -= grow_amount;
3800			vm_map_entry_resize_free(map, stack_entry);
3801			rv = KERN_SUCCESS;
3802
3803			if (next_entry != &map->header)
3804				vm_map_clip_start(map, next_entry, addr);
3805		} else
3806			rv = KERN_FAILURE;
3807	}
3808
3809	if (rv == KERN_SUCCESS && is_procstack)
3810		vm->vm_ssize += btoc(grow_amount);
3811
3812	vm_map_unlock(map);
3813
3814	/*
3815	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3816	 */
3817	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3818		vm_map_wire(map,
3819		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3820		    (stack_entry == next_entry) ? stack_entry->start : addr,
3821		    (p->p_flag & P_SYSTEM)
3822		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3823		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3824	}
3825
3826out:
3827#ifdef RACCT
3828	if (rv != KERN_SUCCESS) {
3829		PROC_LOCK(p);
3830		error = racct_set(p, RACCT_VMEM, map->size);
3831		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3832		if (!old_mlock) {
3833			error = racct_set(p, RACCT_MEMLOCK,
3834			    ptoa(pmap_wired_count(map->pmap)));
3835			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3836		}
3837	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3838		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3839		PROC_UNLOCK(p);
3840	}
3841#endif
3842
3843	return (rv);
3844}
3845
3846/*
3847 * Unshare the specified VM space for exec.  If other processes are
3848 * mapped to it, then create a new one.  The new vmspace is null.
3849 */
3850int
3851vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3852{
3853	struct vmspace *oldvmspace = p->p_vmspace;
3854	struct vmspace *newvmspace;
3855
3856	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3857	    ("vmspace_exec recursed"));
3858	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3859	if (newvmspace == NULL)
3860		return (ENOMEM);
3861	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3862	/*
3863	 * This code is written like this for prototype purposes.  The
3864	 * goal is to avoid running down the vmspace here, but let the
3865	 * other process's that are still using the vmspace to finally
3866	 * run it down.  Even though there is little or no chance of blocking
3867	 * here, it is a good idea to keep this form for future mods.
3868	 */
3869	PROC_VMSPACE_LOCK(p);
3870	p->p_vmspace = newvmspace;
3871	PROC_VMSPACE_UNLOCK(p);
3872	if (p == curthread->td_proc)
3873		pmap_activate(curthread);
3874	curthread->td_pflags |= TDP_EXECVMSPC;
3875	return (0);
3876}
3877
3878/*
3879 * Unshare the specified VM space for forcing COW.  This
3880 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3881 */
3882int
3883vmspace_unshare(struct proc *p)
3884{
3885	struct vmspace *oldvmspace = p->p_vmspace;
3886	struct vmspace *newvmspace;
3887	vm_ooffset_t fork_charge;
3888
3889	if (oldvmspace->vm_refcnt == 1)
3890		return (0);
3891	fork_charge = 0;
3892	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3893	if (newvmspace == NULL)
3894		return (ENOMEM);
3895	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3896		vmspace_free(newvmspace);
3897		return (ENOMEM);
3898	}
3899	PROC_VMSPACE_LOCK(p);
3900	p->p_vmspace = newvmspace;
3901	PROC_VMSPACE_UNLOCK(p);
3902	if (p == curthread->td_proc)
3903		pmap_activate(curthread);
3904	vmspace_free(oldvmspace);
3905	return (0);
3906}
3907
3908/*
3909 *	vm_map_lookup:
3910 *
3911 *	Finds the VM object, offset, and
3912 *	protection for a given virtual address in the
3913 *	specified map, assuming a page fault of the
3914 *	type specified.
3915 *
3916 *	Leaves the map in question locked for read; return
3917 *	values are guaranteed until a vm_map_lookup_done
3918 *	call is performed.  Note that the map argument
3919 *	is in/out; the returned map must be used in
3920 *	the call to vm_map_lookup_done.
3921 *
3922 *	A handle (out_entry) is returned for use in
3923 *	vm_map_lookup_done, to make that fast.
3924 *
3925 *	If a lookup is requested with "write protection"
3926 *	specified, the map may be changed to perform virtual
3927 *	copying operations, although the data referenced will
3928 *	remain the same.
3929 */
3930int
3931vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3932	      vm_offset_t vaddr,
3933	      vm_prot_t fault_typea,
3934	      vm_map_entry_t *out_entry,	/* OUT */
3935	      vm_object_t *object,		/* OUT */
3936	      vm_pindex_t *pindex,		/* OUT */
3937	      vm_prot_t *out_prot,		/* OUT */
3938	      boolean_t *wired)			/* OUT */
3939{
3940	vm_map_entry_t entry;
3941	vm_map_t map = *var_map;
3942	vm_prot_t prot;
3943	vm_prot_t fault_type = fault_typea;
3944	vm_object_t eobject;
3945	vm_size_t size;
3946	struct ucred *cred;
3947
3948RetryLookup:;
3949
3950	vm_map_lock_read(map);
3951
3952	/*
3953	 * Lookup the faulting address.
3954	 */
3955	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3956		vm_map_unlock_read(map);
3957		return (KERN_INVALID_ADDRESS);
3958	}
3959
3960	entry = *out_entry;
3961
3962	/*
3963	 * Handle submaps.
3964	 */
3965	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3966		vm_map_t old_map = map;
3967
3968		*var_map = map = entry->object.sub_map;
3969		vm_map_unlock_read(old_map);
3970		goto RetryLookup;
3971	}
3972
3973	/*
3974	 * Check whether this task is allowed to have this page.
3975	 */
3976	prot = entry->protection;
3977	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3978	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3979		vm_map_unlock_read(map);
3980		return (KERN_PROTECTION_FAILURE);
3981	}
3982	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3983	    (entry->eflags & MAP_ENTRY_COW) &&
3984	    (fault_type & VM_PROT_WRITE)) {
3985		vm_map_unlock_read(map);
3986		return (KERN_PROTECTION_FAILURE);
3987	}
3988	if ((fault_typea & VM_PROT_COPY) != 0 &&
3989	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3990	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3991		vm_map_unlock_read(map);
3992		return (KERN_PROTECTION_FAILURE);
3993	}
3994
3995	/*
3996	 * If this page is not pageable, we have to get it for all possible
3997	 * accesses.
3998	 */
3999	*wired = (entry->wired_count != 0);
4000	if (*wired)
4001		fault_type = entry->protection;
4002	size = entry->end - entry->start;
4003	/*
4004	 * If the entry was copy-on-write, we either ...
4005	 */
4006	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4007		/*
4008		 * If we want to write the page, we may as well handle that
4009		 * now since we've got the map locked.
4010		 *
4011		 * If we don't need to write the page, we just demote the
4012		 * permissions allowed.
4013		 */
4014		if ((fault_type & VM_PROT_WRITE) != 0 ||
4015		    (fault_typea & VM_PROT_COPY) != 0) {
4016			/*
4017			 * Make a new object, and place it in the object
4018			 * chain.  Note that no new references have appeared
4019			 * -- one just moved from the map to the new
4020			 * object.
4021			 */
4022			if (vm_map_lock_upgrade(map))
4023				goto RetryLookup;
4024
4025			if (entry->cred == NULL) {
4026				/*
4027				 * The debugger owner is charged for
4028				 * the memory.
4029				 */
4030				cred = curthread->td_ucred;
4031				crhold(cred);
4032				if (!swap_reserve_by_cred(size, cred)) {
4033					crfree(cred);
4034					vm_map_unlock(map);
4035					return (KERN_RESOURCE_SHORTAGE);
4036				}
4037				entry->cred = cred;
4038			}
4039			vm_object_shadow(&entry->object.vm_object,
4040			    &entry->offset, size);
4041			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4042			eobject = entry->object.vm_object;
4043			if (eobject->cred != NULL) {
4044				/*
4045				 * The object was not shadowed.
4046				 */
4047				swap_release_by_cred(size, entry->cred);
4048				crfree(entry->cred);
4049				entry->cred = NULL;
4050			} else if (entry->cred != NULL) {
4051				VM_OBJECT_WLOCK(eobject);
4052				eobject->cred = entry->cred;
4053				eobject->charge = size;
4054				VM_OBJECT_WUNLOCK(eobject);
4055				entry->cred = NULL;
4056			}
4057
4058			vm_map_lock_downgrade(map);
4059		} else {
4060			/*
4061			 * We're attempting to read a copy-on-write page --
4062			 * don't allow writes.
4063			 */
4064			prot &= ~VM_PROT_WRITE;
4065		}
4066	}
4067
4068	/*
4069	 * Create an object if necessary.
4070	 */
4071	if (entry->object.vm_object == NULL &&
4072	    !map->system_map) {
4073		if (vm_map_lock_upgrade(map))
4074			goto RetryLookup;
4075		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4076		    atop(size));
4077		entry->offset = 0;
4078		if (entry->cred != NULL) {
4079			VM_OBJECT_WLOCK(entry->object.vm_object);
4080			entry->object.vm_object->cred = entry->cred;
4081			entry->object.vm_object->charge = size;
4082			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4083			entry->cred = NULL;
4084		}
4085		vm_map_lock_downgrade(map);
4086	}
4087
4088	/*
4089	 * Return the object/offset from this entry.  If the entry was
4090	 * copy-on-write or empty, it has been fixed up.
4091	 */
4092	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4093	*object = entry->object.vm_object;
4094
4095	*out_prot = prot;
4096	return (KERN_SUCCESS);
4097}
4098
4099/*
4100 *	vm_map_lookup_locked:
4101 *
4102 *	Lookup the faulting address.  A version of vm_map_lookup that returns
4103 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4104 */
4105int
4106vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4107		     vm_offset_t vaddr,
4108		     vm_prot_t fault_typea,
4109		     vm_map_entry_t *out_entry,	/* OUT */
4110		     vm_object_t *object,	/* OUT */
4111		     vm_pindex_t *pindex,	/* OUT */
4112		     vm_prot_t *out_prot,	/* OUT */
4113		     boolean_t *wired)		/* OUT */
4114{
4115	vm_map_entry_t entry;
4116	vm_map_t map = *var_map;
4117	vm_prot_t prot;
4118	vm_prot_t fault_type = fault_typea;
4119
4120	/*
4121	 * Lookup the faulting address.
4122	 */
4123	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4124		return (KERN_INVALID_ADDRESS);
4125
4126	entry = *out_entry;
4127
4128	/*
4129	 * Fail if the entry refers to a submap.
4130	 */
4131	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4132		return (KERN_FAILURE);
4133
4134	/*
4135	 * Check whether this task is allowed to have this page.
4136	 */
4137	prot = entry->protection;
4138	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4139	if ((fault_type & prot) != fault_type)
4140		return (KERN_PROTECTION_FAILURE);
4141	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4142	    (entry->eflags & MAP_ENTRY_COW) &&
4143	    (fault_type & VM_PROT_WRITE))
4144		return (KERN_PROTECTION_FAILURE);
4145
4146	/*
4147	 * If this page is not pageable, we have to get it for all possible
4148	 * accesses.
4149	 */
4150	*wired = (entry->wired_count != 0);
4151	if (*wired)
4152		fault_type = entry->protection;
4153
4154	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4155		/*
4156		 * Fail if the entry was copy-on-write for a write fault.
4157		 */
4158		if (fault_type & VM_PROT_WRITE)
4159			return (KERN_FAILURE);
4160		/*
4161		 * We're attempting to read a copy-on-write page --
4162		 * don't allow writes.
4163		 */
4164		prot &= ~VM_PROT_WRITE;
4165	}
4166
4167	/*
4168	 * Fail if an object should be created.
4169	 */
4170	if (entry->object.vm_object == NULL && !map->system_map)
4171		return (KERN_FAILURE);
4172
4173	/*
4174	 * Return the object/offset from this entry.  If the entry was
4175	 * copy-on-write or empty, it has been fixed up.
4176	 */
4177	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4178	*object = entry->object.vm_object;
4179
4180	*out_prot = prot;
4181	return (KERN_SUCCESS);
4182}
4183
4184/*
4185 *	vm_map_lookup_done:
4186 *
4187 *	Releases locks acquired by a vm_map_lookup
4188 *	(according to the handle returned by that lookup).
4189 */
4190void
4191vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4192{
4193	/*
4194	 * Unlock the main-level map
4195	 */
4196	vm_map_unlock_read(map);
4197}
4198
4199#include "opt_ddb.h"
4200#ifdef DDB
4201#include <sys/kernel.h>
4202
4203#include <ddb/ddb.h>
4204
4205static void
4206vm_map_print(vm_map_t map)
4207{
4208	vm_map_entry_t entry;
4209
4210	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4211	    (void *)map,
4212	    (void *)map->pmap, map->nentries, map->timestamp);
4213
4214	db_indent += 2;
4215	for (entry = map->header.next; entry != &map->header;
4216	    entry = entry->next) {
4217		db_iprintf("map entry %p: start=%p, end=%p\n",
4218		    (void *)entry, (void *)entry->start, (void *)entry->end);
4219		{
4220			static char *inheritance_name[4] =
4221			{"share", "copy", "none", "donate_copy"};
4222
4223			db_iprintf(" prot=%x/%x/%s",
4224			    entry->protection,
4225			    entry->max_protection,
4226			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4227			if (entry->wired_count != 0)
4228				db_printf(", wired");
4229		}
4230		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4231			db_printf(", share=%p, offset=0x%jx\n",
4232			    (void *)entry->object.sub_map,
4233			    (uintmax_t)entry->offset);
4234			if ((entry->prev == &map->header) ||
4235			    (entry->prev->object.sub_map !=
4236				entry->object.sub_map)) {
4237				db_indent += 2;
4238				vm_map_print((vm_map_t)entry->object.sub_map);
4239				db_indent -= 2;
4240			}
4241		} else {
4242			if (entry->cred != NULL)
4243				db_printf(", ruid %d", entry->cred->cr_ruid);
4244			db_printf(", object=%p, offset=0x%jx",
4245			    (void *)entry->object.vm_object,
4246			    (uintmax_t)entry->offset);
4247			if (entry->object.vm_object && entry->object.vm_object->cred)
4248				db_printf(", obj ruid %d charge %jx",
4249				    entry->object.vm_object->cred->cr_ruid,
4250				    (uintmax_t)entry->object.vm_object->charge);
4251			if (entry->eflags & MAP_ENTRY_COW)
4252				db_printf(", copy (%s)",
4253				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4254			db_printf("\n");
4255
4256			if ((entry->prev == &map->header) ||
4257			    (entry->prev->object.vm_object !=
4258				entry->object.vm_object)) {
4259				db_indent += 2;
4260				vm_object_print((db_expr_t)(intptr_t)
4261						entry->object.vm_object,
4262						0, 0, (char *)0);
4263				db_indent -= 2;
4264			}
4265		}
4266	}
4267	db_indent -= 2;
4268}
4269
4270DB_SHOW_COMMAND(map, map)
4271{
4272
4273	if (!have_addr) {
4274		db_printf("usage: show map <addr>\n");
4275		return;
4276	}
4277	vm_map_print((vm_map_t)addr);
4278}
4279
4280DB_SHOW_COMMAND(procvm, procvm)
4281{
4282	struct proc *p;
4283
4284	if (have_addr) {
4285		p = (struct proc *) addr;
4286	} else {
4287		p = curproc;
4288	}
4289
4290	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4291	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4292	    (void *)vmspace_pmap(p->p_vmspace));
4293
4294	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4295}
4296
4297#endif /* DDB */
4298