vm_map.c revision 267901
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_map.c 267901 2014-06-26 08:30:08Z kib $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135#ifdef INVARIANTS
136static void vm_map_zdtor(void *mem, int size, void *arg);
137static void vmspace_zdtor(void *mem, int size, void *arg);
138#endif
139static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
140    vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
141    int cow);
142
143#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
144    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
145     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
146
147/*
148 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
149 * stable.
150 */
151#define PROC_VMSPACE_LOCK(p) do { } while (0)
152#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
153
154/*
155 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
156 *
157 *	Asserts that the starting and ending region
158 *	addresses fall within the valid range of the map.
159 */
160#define	VM_MAP_RANGE_CHECK(map, start, end)		\
161		{					\
162		if (start < vm_map_min(map))		\
163			start = vm_map_min(map);	\
164		if (end > vm_map_max(map))		\
165			end = vm_map_max(map);		\
166		if (start > end)			\
167			start = end;			\
168		}
169
170/*
171 *	vm_map_startup:
172 *
173 *	Initialize the vm_map module.  Must be called before
174 *	any other vm_map routines.
175 *
176 *	Map and entry structures are allocated from the general
177 *	purpose memory pool with some exceptions:
178 *
179 *	- The kernel map and kmem submap are allocated statically.
180 *	- Kernel map entries are allocated out of a static pool.
181 *
182 *	These restrictions are necessary since malloc() uses the
183 *	maps and requires map entries.
184 */
185
186void
187vm_map_startup(void)
188{
189	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
190	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
191#ifdef INVARIANTS
192	    vm_map_zdtor,
193#else
194	    NULL,
195#endif
196	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
197	uma_prealloc(mapzone, MAX_KMAP);
198	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
199	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
200	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
201	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
202	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
203	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
204#ifdef INVARIANTS
205	    vmspace_zdtor,
206#else
207	    NULL,
208#endif
209	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
210}
211
212static int
213vmspace_zinit(void *mem, int size, int flags)
214{
215	struct vmspace *vm;
216
217	vm = (struct vmspace *)mem;
218
219	vm->vm_map.pmap = NULL;
220	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
221	PMAP_LOCK_INIT(vmspace_pmap(vm));
222	return (0);
223}
224
225static int
226vm_map_zinit(void *mem, int size, int flags)
227{
228	vm_map_t map;
229
230	map = (vm_map_t)mem;
231	memset(map, 0, sizeof(*map));
232	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
233	sx_init(&map->lock, "vm map (user)");
234	return (0);
235}
236
237#ifdef INVARIANTS
238static void
239vmspace_zdtor(void *mem, int size, void *arg)
240{
241	struct vmspace *vm;
242
243	vm = (struct vmspace *)mem;
244
245	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
246}
247static void
248vm_map_zdtor(void *mem, int size, void *arg)
249{
250	vm_map_t map;
251
252	map = (vm_map_t)mem;
253	KASSERT(map->nentries == 0,
254	    ("map %p nentries == %d on free.",
255	    map, map->nentries));
256	KASSERT(map->size == 0,
257	    ("map %p size == %lu on free.",
258	    map, (unsigned long)map->size));
259}
260#endif	/* INVARIANTS */
261
262/*
263 * Allocate a vmspace structure, including a vm_map and pmap,
264 * and initialize those structures.  The refcnt is set to 1.
265 *
266 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
267 */
268struct vmspace *
269vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
270{
271	struct vmspace *vm;
272
273	vm = uma_zalloc(vmspace_zone, M_WAITOK);
274
275	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
276
277	if (pinit == NULL)
278		pinit = &pmap_pinit;
279
280	if (!pinit(vmspace_pmap(vm))) {
281		uma_zfree(vmspace_zone, vm);
282		return (NULL);
283	}
284	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
285	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
286	vm->vm_refcnt = 1;
287	vm->vm_shm = NULL;
288	vm->vm_swrss = 0;
289	vm->vm_tsize = 0;
290	vm->vm_dsize = 0;
291	vm->vm_ssize = 0;
292	vm->vm_taddr = 0;
293	vm->vm_daddr = 0;
294	vm->vm_maxsaddr = 0;
295	return (vm);
296}
297
298static void
299vmspace_container_reset(struct proc *p)
300{
301
302#ifdef RACCT
303	PROC_LOCK(p);
304	racct_set(p, RACCT_DATA, 0);
305	racct_set(p, RACCT_STACK, 0);
306	racct_set(p, RACCT_RSS, 0);
307	racct_set(p, RACCT_MEMLOCK, 0);
308	racct_set(p, RACCT_VMEM, 0);
309	PROC_UNLOCK(p);
310#endif
311}
312
313static inline void
314vmspace_dofree(struct vmspace *vm)
315{
316
317	CTR1(KTR_VM, "vmspace_free: %p", vm);
318
319	/*
320	 * Make sure any SysV shm is freed, it might not have been in
321	 * exit1().
322	 */
323	shmexit(vm);
324
325	/*
326	 * Lock the map, to wait out all other references to it.
327	 * Delete all of the mappings and pages they hold, then call
328	 * the pmap module to reclaim anything left.
329	 */
330	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
331	    vm->vm_map.max_offset);
332
333	pmap_release(vmspace_pmap(vm));
334	vm->vm_map.pmap = NULL;
335	uma_zfree(vmspace_zone, vm);
336}
337
338void
339vmspace_free(struct vmspace *vm)
340{
341
342	if (vm->vm_refcnt == 0)
343		panic("vmspace_free: attempt to free already freed vmspace");
344
345	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
346		vmspace_dofree(vm);
347}
348
349void
350vmspace_exitfree(struct proc *p)
351{
352	struct vmspace *vm;
353
354	PROC_VMSPACE_LOCK(p);
355	vm = p->p_vmspace;
356	p->p_vmspace = NULL;
357	PROC_VMSPACE_UNLOCK(p);
358	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
359	vmspace_free(vm);
360}
361
362void
363vmspace_exit(struct thread *td)
364{
365	int refcnt;
366	struct vmspace *vm;
367	struct proc *p;
368
369	/*
370	 * Release user portion of address space.
371	 * This releases references to vnodes,
372	 * which could cause I/O if the file has been unlinked.
373	 * Need to do this early enough that we can still sleep.
374	 *
375	 * The last exiting process to reach this point releases as
376	 * much of the environment as it can. vmspace_dofree() is the
377	 * slower fallback in case another process had a temporary
378	 * reference to the vmspace.
379	 */
380
381	p = td->td_proc;
382	vm = p->p_vmspace;
383	atomic_add_int(&vmspace0.vm_refcnt, 1);
384	do {
385		refcnt = vm->vm_refcnt;
386		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
387			/* Switch now since other proc might free vmspace */
388			PROC_VMSPACE_LOCK(p);
389			p->p_vmspace = &vmspace0;
390			PROC_VMSPACE_UNLOCK(p);
391			pmap_activate(td);
392		}
393	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
394	if (refcnt == 1) {
395		if (p->p_vmspace != vm) {
396			/* vmspace not yet freed, switch back */
397			PROC_VMSPACE_LOCK(p);
398			p->p_vmspace = vm;
399			PROC_VMSPACE_UNLOCK(p);
400			pmap_activate(td);
401		}
402		pmap_remove_pages(vmspace_pmap(vm));
403		/* Switch now since this proc will free vmspace */
404		PROC_VMSPACE_LOCK(p);
405		p->p_vmspace = &vmspace0;
406		PROC_VMSPACE_UNLOCK(p);
407		pmap_activate(td);
408		vmspace_dofree(vm);
409	}
410	vmspace_container_reset(p);
411}
412
413/* Acquire reference to vmspace owned by another process. */
414
415struct vmspace *
416vmspace_acquire_ref(struct proc *p)
417{
418	struct vmspace *vm;
419	int refcnt;
420
421	PROC_VMSPACE_LOCK(p);
422	vm = p->p_vmspace;
423	if (vm == NULL) {
424		PROC_VMSPACE_UNLOCK(p);
425		return (NULL);
426	}
427	do {
428		refcnt = vm->vm_refcnt;
429		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
430			PROC_VMSPACE_UNLOCK(p);
431			return (NULL);
432		}
433	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
434	if (vm != p->p_vmspace) {
435		PROC_VMSPACE_UNLOCK(p);
436		vmspace_free(vm);
437		return (NULL);
438	}
439	PROC_VMSPACE_UNLOCK(p);
440	return (vm);
441}
442
443void
444_vm_map_lock(vm_map_t map, const char *file, int line)
445{
446
447	if (map->system_map)
448		mtx_lock_flags_(&map->system_mtx, 0, file, line);
449	else
450		sx_xlock_(&map->lock, file, line);
451	map->timestamp++;
452}
453
454static void
455vm_map_process_deferred(void)
456{
457	struct thread *td;
458	vm_map_entry_t entry, next;
459	vm_object_t object;
460
461	td = curthread;
462	entry = td->td_map_def_user;
463	td->td_map_def_user = NULL;
464	while (entry != NULL) {
465		next = entry->next;
466		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
467			/*
468			 * Decrement the object's writemappings and
469			 * possibly the vnode's v_writecount.
470			 */
471			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
472			    ("Submap with writecount"));
473			object = entry->object.vm_object;
474			KASSERT(object != NULL, ("No object for writecount"));
475			vnode_pager_release_writecount(object, entry->start,
476			    entry->end);
477		}
478		vm_map_entry_deallocate(entry, FALSE);
479		entry = next;
480	}
481}
482
483void
484_vm_map_unlock(vm_map_t map, const char *file, int line)
485{
486
487	if (map->system_map)
488		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
489	else {
490		sx_xunlock_(&map->lock, file, line);
491		vm_map_process_deferred();
492	}
493}
494
495void
496_vm_map_lock_read(vm_map_t map, const char *file, int line)
497{
498
499	if (map->system_map)
500		mtx_lock_flags_(&map->system_mtx, 0, file, line);
501	else
502		sx_slock_(&map->lock, file, line);
503}
504
505void
506_vm_map_unlock_read(vm_map_t map, const char *file, int line)
507{
508
509	if (map->system_map)
510		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
511	else {
512		sx_sunlock_(&map->lock, file, line);
513		vm_map_process_deferred();
514	}
515}
516
517int
518_vm_map_trylock(vm_map_t map, const char *file, int line)
519{
520	int error;
521
522	error = map->system_map ?
523	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
524	    !sx_try_xlock_(&map->lock, file, line);
525	if (error == 0)
526		map->timestamp++;
527	return (error == 0);
528}
529
530int
531_vm_map_trylock_read(vm_map_t map, const char *file, int line)
532{
533	int error;
534
535	error = map->system_map ?
536	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
537	    !sx_try_slock_(&map->lock, file, line);
538	return (error == 0);
539}
540
541/*
542 *	_vm_map_lock_upgrade:	[ internal use only ]
543 *
544 *	Tries to upgrade a read (shared) lock on the specified map to a write
545 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
546 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
547 *	returned without a read or write lock held.
548 *
549 *	Requires that the map be read locked.
550 */
551int
552_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
553{
554	unsigned int last_timestamp;
555
556	if (map->system_map) {
557		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
558	} else {
559		if (!sx_try_upgrade_(&map->lock, file, line)) {
560			last_timestamp = map->timestamp;
561			sx_sunlock_(&map->lock, file, line);
562			vm_map_process_deferred();
563			/*
564			 * If the map's timestamp does not change while the
565			 * map is unlocked, then the upgrade succeeds.
566			 */
567			sx_xlock_(&map->lock, file, line);
568			if (last_timestamp != map->timestamp) {
569				sx_xunlock_(&map->lock, file, line);
570				return (1);
571			}
572		}
573	}
574	map->timestamp++;
575	return (0);
576}
577
578void
579_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
580{
581
582	if (map->system_map) {
583		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
584	} else
585		sx_downgrade_(&map->lock, file, line);
586}
587
588/*
589 *	vm_map_locked:
590 *
591 *	Returns a non-zero value if the caller holds a write (exclusive) lock
592 *	on the specified map and the value "0" otherwise.
593 */
594int
595vm_map_locked(vm_map_t map)
596{
597
598	if (map->system_map)
599		return (mtx_owned(&map->system_mtx));
600	else
601		return (sx_xlocked(&map->lock));
602}
603
604#ifdef INVARIANTS
605static void
606_vm_map_assert_locked(vm_map_t map, const char *file, int line)
607{
608
609	if (map->system_map)
610		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
611	else
612		sx_assert_(&map->lock, SA_XLOCKED, file, line);
613}
614
615#define	VM_MAP_ASSERT_LOCKED(map) \
616    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
617#else
618#define	VM_MAP_ASSERT_LOCKED(map)
619#endif
620
621/*
622 *	_vm_map_unlock_and_wait:
623 *
624 *	Atomically releases the lock on the specified map and puts the calling
625 *	thread to sleep.  The calling thread will remain asleep until either
626 *	vm_map_wakeup() is performed on the map or the specified timeout is
627 *	exceeded.
628 *
629 *	WARNING!  This function does not perform deferred deallocations of
630 *	objects and map	entries.  Therefore, the calling thread is expected to
631 *	reacquire the map lock after reawakening and later perform an ordinary
632 *	unlock operation, such as vm_map_unlock(), before completing its
633 *	operation on the map.
634 */
635int
636_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
637{
638
639	mtx_lock(&map_sleep_mtx);
640	if (map->system_map)
641		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
642	else
643		sx_xunlock_(&map->lock, file, line);
644	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
645	    timo));
646}
647
648/*
649 *	vm_map_wakeup:
650 *
651 *	Awaken any threads that have slept on the map using
652 *	vm_map_unlock_and_wait().
653 */
654void
655vm_map_wakeup(vm_map_t map)
656{
657
658	/*
659	 * Acquire and release map_sleep_mtx to prevent a wakeup()
660	 * from being performed (and lost) between the map unlock
661	 * and the msleep() in _vm_map_unlock_and_wait().
662	 */
663	mtx_lock(&map_sleep_mtx);
664	mtx_unlock(&map_sleep_mtx);
665	wakeup(&map->root);
666}
667
668void
669vm_map_busy(vm_map_t map)
670{
671
672	VM_MAP_ASSERT_LOCKED(map);
673	map->busy++;
674}
675
676void
677vm_map_unbusy(vm_map_t map)
678{
679
680	VM_MAP_ASSERT_LOCKED(map);
681	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
682	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
683		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
684		wakeup(&map->busy);
685	}
686}
687
688void
689vm_map_wait_busy(vm_map_t map)
690{
691
692	VM_MAP_ASSERT_LOCKED(map);
693	while (map->busy) {
694		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
695		if (map->system_map)
696			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
697		else
698			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
699	}
700	map->timestamp++;
701}
702
703long
704vmspace_resident_count(struct vmspace *vmspace)
705{
706	return pmap_resident_count(vmspace_pmap(vmspace));
707}
708
709/*
710 *	vm_map_create:
711 *
712 *	Creates and returns a new empty VM map with
713 *	the given physical map structure, and having
714 *	the given lower and upper address bounds.
715 */
716vm_map_t
717vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
718{
719	vm_map_t result;
720
721	result = uma_zalloc(mapzone, M_WAITOK);
722	CTR1(KTR_VM, "vm_map_create: %p", result);
723	_vm_map_init(result, pmap, min, max);
724	return (result);
725}
726
727/*
728 * Initialize an existing vm_map structure
729 * such as that in the vmspace structure.
730 */
731static void
732_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
733{
734
735	map->header.next = map->header.prev = &map->header;
736	map->needs_wakeup = FALSE;
737	map->system_map = 0;
738	map->pmap = pmap;
739	map->min_offset = min;
740	map->max_offset = max;
741	map->flags = 0;
742	map->root = NULL;
743	map->timestamp = 0;
744	map->busy = 0;
745}
746
747void
748vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
749{
750
751	_vm_map_init(map, pmap, min, max);
752	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
753	sx_init(&map->lock, "user map");
754}
755
756/*
757 *	vm_map_entry_dispose:	[ internal use only ]
758 *
759 *	Inverse of vm_map_entry_create.
760 */
761static void
762vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
763{
764	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
765}
766
767/*
768 *	vm_map_entry_create:	[ internal use only ]
769 *
770 *	Allocates a VM map entry for insertion.
771 *	No entry fields are filled in.
772 */
773static vm_map_entry_t
774vm_map_entry_create(vm_map_t map)
775{
776	vm_map_entry_t new_entry;
777
778	if (map->system_map)
779		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
780	else
781		new_entry = uma_zalloc(mapentzone, M_WAITOK);
782	if (new_entry == NULL)
783		panic("vm_map_entry_create: kernel resources exhausted");
784	return (new_entry);
785}
786
787/*
788 *	vm_map_entry_set_behavior:
789 *
790 *	Set the expected access behavior, either normal, random, or
791 *	sequential.
792 */
793static inline void
794vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
795{
796	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
797	    (behavior & MAP_ENTRY_BEHAV_MASK);
798}
799
800/*
801 *	vm_map_entry_set_max_free:
802 *
803 *	Set the max_free field in a vm_map_entry.
804 */
805static inline void
806vm_map_entry_set_max_free(vm_map_entry_t entry)
807{
808
809	entry->max_free = entry->adj_free;
810	if (entry->left != NULL && entry->left->max_free > entry->max_free)
811		entry->max_free = entry->left->max_free;
812	if (entry->right != NULL && entry->right->max_free > entry->max_free)
813		entry->max_free = entry->right->max_free;
814}
815
816/*
817 *	vm_map_entry_splay:
818 *
819 *	The Sleator and Tarjan top-down splay algorithm with the
820 *	following variation.  Max_free must be computed bottom-up, so
821 *	on the downward pass, maintain the left and right spines in
822 *	reverse order.  Then, make a second pass up each side to fix
823 *	the pointers and compute max_free.  The time bound is O(log n)
824 *	amortized.
825 *
826 *	The new root is the vm_map_entry containing "addr", or else an
827 *	adjacent entry (lower or higher) if addr is not in the tree.
828 *
829 *	The map must be locked, and leaves it so.
830 *
831 *	Returns: the new root.
832 */
833static vm_map_entry_t
834vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
835{
836	vm_map_entry_t llist, rlist;
837	vm_map_entry_t ltree, rtree;
838	vm_map_entry_t y;
839
840	/* Special case of empty tree. */
841	if (root == NULL)
842		return (root);
843
844	/*
845	 * Pass One: Splay down the tree until we find addr or a NULL
846	 * pointer where addr would go.  llist and rlist are the two
847	 * sides in reverse order (bottom-up), with llist linked by
848	 * the right pointer and rlist linked by the left pointer in
849	 * the vm_map_entry.  Wait until Pass Two to set max_free on
850	 * the two spines.
851	 */
852	llist = NULL;
853	rlist = NULL;
854	for (;;) {
855		/* root is never NULL in here. */
856		if (addr < root->start) {
857			y = root->left;
858			if (y == NULL)
859				break;
860			if (addr < y->start && y->left != NULL) {
861				/* Rotate right and put y on rlist. */
862				root->left = y->right;
863				y->right = root;
864				vm_map_entry_set_max_free(root);
865				root = y->left;
866				y->left = rlist;
867				rlist = y;
868			} else {
869				/* Put root on rlist. */
870				root->left = rlist;
871				rlist = root;
872				root = y;
873			}
874		} else if (addr >= root->end) {
875			y = root->right;
876			if (y == NULL)
877				break;
878			if (addr >= y->end && y->right != NULL) {
879				/* Rotate left and put y on llist. */
880				root->right = y->left;
881				y->left = root;
882				vm_map_entry_set_max_free(root);
883				root = y->right;
884				y->right = llist;
885				llist = y;
886			} else {
887				/* Put root on llist. */
888				root->right = llist;
889				llist = root;
890				root = y;
891			}
892		} else
893			break;
894	}
895
896	/*
897	 * Pass Two: Walk back up the two spines, flip the pointers
898	 * and set max_free.  The subtrees of the root go at the
899	 * bottom of llist and rlist.
900	 */
901	ltree = root->left;
902	while (llist != NULL) {
903		y = llist->right;
904		llist->right = ltree;
905		vm_map_entry_set_max_free(llist);
906		ltree = llist;
907		llist = y;
908	}
909	rtree = root->right;
910	while (rlist != NULL) {
911		y = rlist->left;
912		rlist->left = rtree;
913		vm_map_entry_set_max_free(rlist);
914		rtree = rlist;
915		rlist = y;
916	}
917
918	/*
919	 * Final assembly: add ltree and rtree as subtrees of root.
920	 */
921	root->left = ltree;
922	root->right = rtree;
923	vm_map_entry_set_max_free(root);
924
925	return (root);
926}
927
928/*
929 *	vm_map_entry_{un,}link:
930 *
931 *	Insert/remove entries from maps.
932 */
933static void
934vm_map_entry_link(vm_map_t map,
935		  vm_map_entry_t after_where,
936		  vm_map_entry_t entry)
937{
938
939	CTR4(KTR_VM,
940	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
941	    map->nentries, entry, after_where);
942	VM_MAP_ASSERT_LOCKED(map);
943	map->nentries++;
944	entry->prev = after_where;
945	entry->next = after_where->next;
946	entry->next->prev = entry;
947	after_where->next = entry;
948
949	if (after_where != &map->header) {
950		if (after_where != map->root)
951			vm_map_entry_splay(after_where->start, map->root);
952		entry->right = after_where->right;
953		entry->left = after_where;
954		after_where->right = NULL;
955		after_where->adj_free = entry->start - after_where->end;
956		vm_map_entry_set_max_free(after_where);
957	} else {
958		entry->right = map->root;
959		entry->left = NULL;
960	}
961	entry->adj_free = (entry->next == &map->header ? map->max_offset :
962	    entry->next->start) - entry->end;
963	vm_map_entry_set_max_free(entry);
964	map->root = entry;
965}
966
967static void
968vm_map_entry_unlink(vm_map_t map,
969		    vm_map_entry_t entry)
970{
971	vm_map_entry_t next, prev, root;
972
973	VM_MAP_ASSERT_LOCKED(map);
974	if (entry != map->root)
975		vm_map_entry_splay(entry->start, map->root);
976	if (entry->left == NULL)
977		root = entry->right;
978	else {
979		root = vm_map_entry_splay(entry->start, entry->left);
980		root->right = entry->right;
981		root->adj_free = (entry->next == &map->header ? map->max_offset :
982		    entry->next->start) - root->end;
983		vm_map_entry_set_max_free(root);
984	}
985	map->root = root;
986
987	prev = entry->prev;
988	next = entry->next;
989	next->prev = prev;
990	prev->next = next;
991	map->nentries--;
992	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
993	    map->nentries, entry);
994}
995
996/*
997 *	vm_map_entry_resize_free:
998 *
999 *	Recompute the amount of free space following a vm_map_entry
1000 *	and propagate that value up the tree.  Call this function after
1001 *	resizing a map entry in-place, that is, without a call to
1002 *	vm_map_entry_link() or _unlink().
1003 *
1004 *	The map must be locked, and leaves it so.
1005 */
1006static void
1007vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1008{
1009
1010	/*
1011	 * Using splay trees without parent pointers, propagating
1012	 * max_free up the tree is done by moving the entry to the
1013	 * root and making the change there.
1014	 */
1015	if (entry != map->root)
1016		map->root = vm_map_entry_splay(entry->start, map->root);
1017
1018	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1019	    entry->next->start) - entry->end;
1020	vm_map_entry_set_max_free(entry);
1021}
1022
1023/*
1024 *	vm_map_lookup_entry:	[ internal use only ]
1025 *
1026 *	Finds the map entry containing (or
1027 *	immediately preceding) the specified address
1028 *	in the given map; the entry is returned
1029 *	in the "entry" parameter.  The boolean
1030 *	result indicates whether the address is
1031 *	actually contained in the map.
1032 */
1033boolean_t
1034vm_map_lookup_entry(
1035	vm_map_t map,
1036	vm_offset_t address,
1037	vm_map_entry_t *entry)	/* OUT */
1038{
1039	vm_map_entry_t cur;
1040	boolean_t locked;
1041
1042	/*
1043	 * If the map is empty, then the map entry immediately preceding
1044	 * "address" is the map's header.
1045	 */
1046	cur = map->root;
1047	if (cur == NULL)
1048		*entry = &map->header;
1049	else if (address >= cur->start && cur->end > address) {
1050		*entry = cur;
1051		return (TRUE);
1052	} else if ((locked = vm_map_locked(map)) ||
1053	    sx_try_upgrade(&map->lock)) {
1054		/*
1055		 * Splay requires a write lock on the map.  However, it only
1056		 * restructures the binary search tree; it does not otherwise
1057		 * change the map.  Thus, the map's timestamp need not change
1058		 * on a temporary upgrade.
1059		 */
1060		map->root = cur = vm_map_entry_splay(address, cur);
1061		if (!locked)
1062			sx_downgrade(&map->lock);
1063
1064		/*
1065		 * If "address" is contained within a map entry, the new root
1066		 * is that map entry.  Otherwise, the new root is a map entry
1067		 * immediately before or after "address".
1068		 */
1069		if (address >= cur->start) {
1070			*entry = cur;
1071			if (cur->end > address)
1072				return (TRUE);
1073		} else
1074			*entry = cur->prev;
1075	} else
1076		/*
1077		 * Since the map is only locked for read access, perform a
1078		 * standard binary search tree lookup for "address".
1079		 */
1080		for (;;) {
1081			if (address < cur->start) {
1082				if (cur->left == NULL) {
1083					*entry = cur->prev;
1084					break;
1085				}
1086				cur = cur->left;
1087			} else if (cur->end > address) {
1088				*entry = cur;
1089				return (TRUE);
1090			} else {
1091				if (cur->right == NULL) {
1092					*entry = cur;
1093					break;
1094				}
1095				cur = cur->right;
1096			}
1097		}
1098	return (FALSE);
1099}
1100
1101/*
1102 *	vm_map_insert:
1103 *
1104 *	Inserts the given whole VM object into the target
1105 *	map at the specified address range.  The object's
1106 *	size should match that of the address range.
1107 *
1108 *	Requires that the map be locked, and leaves it so.
1109 *
1110 *	If object is non-NULL, ref count must be bumped by caller
1111 *	prior to making call to account for the new entry.
1112 */
1113int
1114vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1115	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1116	      int cow)
1117{
1118	vm_map_entry_t new_entry;
1119	vm_map_entry_t prev_entry;
1120	vm_map_entry_t temp_entry;
1121	vm_eflags_t protoeflags;
1122	struct ucred *cred;
1123	vm_inherit_t inheritance;
1124	boolean_t charge_prev_obj;
1125
1126	VM_MAP_ASSERT_LOCKED(map);
1127
1128	/*
1129	 * Check that the start and end points are not bogus.
1130	 */
1131	if ((start < map->min_offset) || (end > map->max_offset) ||
1132	    (start >= end))
1133		return (KERN_INVALID_ADDRESS);
1134
1135	/*
1136	 * Find the entry prior to the proposed starting address; if it's part
1137	 * of an existing entry, this range is bogus.
1138	 */
1139	if (vm_map_lookup_entry(map, start, &temp_entry))
1140		return (KERN_NO_SPACE);
1141
1142	prev_entry = temp_entry;
1143
1144	/*
1145	 * Assert that the next entry doesn't overlap the end point.
1146	 */
1147	if ((prev_entry->next != &map->header) &&
1148	    (prev_entry->next->start < end))
1149		return (KERN_NO_SPACE);
1150
1151	protoeflags = 0;
1152	charge_prev_obj = FALSE;
1153
1154	if (cow & MAP_COPY_ON_WRITE)
1155		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1156
1157	if (cow & MAP_NOFAULT) {
1158		protoeflags |= MAP_ENTRY_NOFAULT;
1159
1160		KASSERT(object == NULL,
1161			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1162	}
1163	if (cow & MAP_DISABLE_SYNCER)
1164		protoeflags |= MAP_ENTRY_NOSYNC;
1165	if (cow & MAP_DISABLE_COREDUMP)
1166		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1167	if (cow & MAP_VN_WRITECOUNT)
1168		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1169	if (cow & MAP_INHERIT_SHARE)
1170		inheritance = VM_INHERIT_SHARE;
1171	else
1172		inheritance = VM_INHERIT_DEFAULT;
1173
1174	cred = NULL;
1175	KASSERT((object != kmem_object && object != kernel_object) ||
1176	    ((object == kmem_object || object == kernel_object) &&
1177		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1178	    ("kmem or kernel object and cow"));
1179	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1180		goto charged;
1181	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1182	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1183		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1184			return (KERN_RESOURCE_SHORTAGE);
1185		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1186		    object->cred == NULL,
1187		    ("OVERCOMMIT: vm_map_insert o %p", object));
1188		cred = curthread->td_ucred;
1189		crhold(cred);
1190		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1191			charge_prev_obj = TRUE;
1192	}
1193
1194charged:
1195	/* Expand the kernel pmap, if necessary. */
1196	if (map == kernel_map && end > kernel_vm_end)
1197		pmap_growkernel(end);
1198	if (object != NULL) {
1199		/*
1200		 * OBJ_ONEMAPPING must be cleared unless this mapping
1201		 * is trivially proven to be the only mapping for any
1202		 * of the object's pages.  (Object granularity
1203		 * reference counting is insufficient to recognize
1204		 * aliases with precision.)
1205		 */
1206		VM_OBJECT_WLOCK(object);
1207		if (object->ref_count > 1 || object->shadow_count != 0)
1208			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1209		VM_OBJECT_WUNLOCK(object);
1210	}
1211	else if ((prev_entry != &map->header) &&
1212		 (prev_entry->eflags == protoeflags) &&
1213		 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1214		 (prev_entry->end == start) &&
1215		 (prev_entry->wired_count == 0) &&
1216		 (prev_entry->cred == cred ||
1217		  (prev_entry->object.vm_object != NULL &&
1218		   (prev_entry->object.vm_object->cred == cred))) &&
1219		   vm_object_coalesce(prev_entry->object.vm_object,
1220		       prev_entry->offset,
1221		       (vm_size_t)(prev_entry->end - prev_entry->start),
1222		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1223		/*
1224		 * We were able to extend the object.  Determine if we
1225		 * can extend the previous map entry to include the
1226		 * new range as well.
1227		 */
1228		if ((prev_entry->inheritance == inheritance) &&
1229		    (prev_entry->protection == prot) &&
1230		    (prev_entry->max_protection == max)) {
1231			map->size += (end - prev_entry->end);
1232			prev_entry->end = end;
1233			vm_map_entry_resize_free(map, prev_entry);
1234			vm_map_simplify_entry(map, prev_entry);
1235			if (cred != NULL)
1236				crfree(cred);
1237			return (KERN_SUCCESS);
1238		}
1239
1240		/*
1241		 * If we can extend the object but cannot extend the
1242		 * map entry, we have to create a new map entry.  We
1243		 * must bump the ref count on the extended object to
1244		 * account for it.  object may be NULL.
1245		 */
1246		object = prev_entry->object.vm_object;
1247		offset = prev_entry->offset +
1248			(prev_entry->end - prev_entry->start);
1249		vm_object_reference(object);
1250		if (cred != NULL && object != NULL && object->cred != NULL &&
1251		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1252			/* Object already accounts for this uid. */
1253			crfree(cred);
1254			cred = NULL;
1255		}
1256	}
1257
1258	/*
1259	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1260	 * in things like the buffer map where we manage kva but do not manage
1261	 * backing objects.
1262	 */
1263
1264	/*
1265	 * Create a new entry
1266	 */
1267	new_entry = vm_map_entry_create(map);
1268	new_entry->start = start;
1269	new_entry->end = end;
1270	new_entry->cred = NULL;
1271
1272	new_entry->eflags = protoeflags;
1273	new_entry->object.vm_object = object;
1274	new_entry->offset = offset;
1275	new_entry->avail_ssize = 0;
1276
1277	new_entry->inheritance = inheritance;
1278	new_entry->protection = prot;
1279	new_entry->max_protection = max;
1280	new_entry->wired_count = 0;
1281	new_entry->wiring_thread = NULL;
1282	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1283	new_entry->next_read = OFF_TO_IDX(offset);
1284
1285	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1286	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1287	new_entry->cred = cred;
1288
1289	/*
1290	 * Insert the new entry into the list
1291	 */
1292	vm_map_entry_link(map, prev_entry, new_entry);
1293	map->size += new_entry->end - new_entry->start;
1294
1295	/*
1296	 * It may be possible to merge the new entry with the next and/or
1297	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1298	 * panic can result from merging such entries.
1299	 */
1300	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1301		vm_map_simplify_entry(map, new_entry);
1302
1303	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1304		vm_map_pmap_enter(map, start, prot,
1305				    object, OFF_TO_IDX(offset), end - start,
1306				    cow & MAP_PREFAULT_PARTIAL);
1307	}
1308
1309	return (KERN_SUCCESS);
1310}
1311
1312/*
1313 *	vm_map_findspace:
1314 *
1315 *	Find the first fit (lowest VM address) for "length" free bytes
1316 *	beginning at address >= start in the given map.
1317 *
1318 *	In a vm_map_entry, "adj_free" is the amount of free space
1319 *	adjacent (higher address) to this entry, and "max_free" is the
1320 *	maximum amount of contiguous free space in its subtree.  This
1321 *	allows finding a free region in one path down the tree, so
1322 *	O(log n) amortized with splay trees.
1323 *
1324 *	The map must be locked, and leaves it so.
1325 *
1326 *	Returns: 0 on success, and starting address in *addr,
1327 *		 1 if insufficient space.
1328 */
1329int
1330vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1331    vm_offset_t *addr)	/* OUT */
1332{
1333	vm_map_entry_t entry;
1334	vm_offset_t st;
1335
1336	/*
1337	 * Request must fit within min/max VM address and must avoid
1338	 * address wrap.
1339	 */
1340	if (start < map->min_offset)
1341		start = map->min_offset;
1342	if (start + length > map->max_offset || start + length < start)
1343		return (1);
1344
1345	/* Empty tree means wide open address space. */
1346	if (map->root == NULL) {
1347		*addr = start;
1348		return (0);
1349	}
1350
1351	/*
1352	 * After splay, if start comes before root node, then there
1353	 * must be a gap from start to the root.
1354	 */
1355	map->root = vm_map_entry_splay(start, map->root);
1356	if (start + length <= map->root->start) {
1357		*addr = start;
1358		return (0);
1359	}
1360
1361	/*
1362	 * Root is the last node that might begin its gap before
1363	 * start, and this is the last comparison where address
1364	 * wrap might be a problem.
1365	 */
1366	st = (start > map->root->end) ? start : map->root->end;
1367	if (length <= map->root->end + map->root->adj_free - st) {
1368		*addr = st;
1369		return (0);
1370	}
1371
1372	/* With max_free, can immediately tell if no solution. */
1373	entry = map->root->right;
1374	if (entry == NULL || length > entry->max_free)
1375		return (1);
1376
1377	/*
1378	 * Search the right subtree in the order: left subtree, root,
1379	 * right subtree (first fit).  The previous splay implies that
1380	 * all regions in the right subtree have addresses > start.
1381	 */
1382	while (entry != NULL) {
1383		if (entry->left != NULL && entry->left->max_free >= length)
1384			entry = entry->left;
1385		else if (entry->adj_free >= length) {
1386			*addr = entry->end;
1387			return (0);
1388		} else
1389			entry = entry->right;
1390	}
1391
1392	/* Can't get here, so panic if we do. */
1393	panic("vm_map_findspace: max_free corrupt");
1394}
1395
1396int
1397vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1398    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1399    vm_prot_t max, int cow)
1400{
1401	vm_offset_t end;
1402	int result;
1403
1404	end = start + length;
1405	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1406	    object == NULL,
1407	    ("vm_map_fixed: non-NULL backing object for stack"));
1408	vm_map_lock(map);
1409	VM_MAP_RANGE_CHECK(map, start, end);
1410	if ((cow & MAP_CHECK_EXCL) == 0)
1411		vm_map_delete(map, start, end);
1412	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1413		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1414		    prot, max, cow);
1415	} else {
1416		result = vm_map_insert(map, object, offset, start, end,
1417		    prot, max, cow);
1418	}
1419	vm_map_unlock(map);
1420	return (result);
1421}
1422
1423/*
1424 *	vm_map_find finds an unallocated region in the target address
1425 *	map with the given length.  The search is defined to be
1426 *	first-fit from the specified address; the region found is
1427 *	returned in the same parameter.
1428 *
1429 *	If object is non-NULL, ref count must be bumped by caller
1430 *	prior to making call to account for the new entry.
1431 */
1432int
1433vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1434	    vm_offset_t *addr,	/* IN/OUT */
1435	    vm_size_t length, vm_offset_t max_addr, int find_space,
1436	    vm_prot_t prot, vm_prot_t max, int cow)
1437{
1438	vm_offset_t alignment, initial_addr, start;
1439	int result;
1440
1441	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1442	    object == NULL,
1443	    ("vm_map_find: non-NULL backing object for stack"));
1444	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1445	    (object->flags & OBJ_COLORED) == 0))
1446		find_space = VMFS_ANY_SPACE;
1447	if (find_space >> 8 != 0) {
1448		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1449		alignment = (vm_offset_t)1 << (find_space >> 8);
1450	} else
1451		alignment = 0;
1452	initial_addr = *addr;
1453again:
1454	start = initial_addr;
1455	vm_map_lock(map);
1456	do {
1457		if (find_space != VMFS_NO_SPACE) {
1458			if (vm_map_findspace(map, start, length, addr) ||
1459			    (max_addr != 0 && *addr + length > max_addr)) {
1460				vm_map_unlock(map);
1461				if (find_space == VMFS_OPTIMAL_SPACE) {
1462					find_space = VMFS_ANY_SPACE;
1463					goto again;
1464				}
1465				return (KERN_NO_SPACE);
1466			}
1467			switch (find_space) {
1468			case VMFS_SUPER_SPACE:
1469			case VMFS_OPTIMAL_SPACE:
1470				pmap_align_superpage(object, offset, addr,
1471				    length);
1472				break;
1473			case VMFS_ANY_SPACE:
1474				break;
1475			default:
1476				if ((*addr & (alignment - 1)) != 0) {
1477					*addr &= ~(alignment - 1);
1478					*addr += alignment;
1479				}
1480				break;
1481			}
1482
1483			start = *addr;
1484		}
1485		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1486			result = vm_map_stack_locked(map, start, length,
1487			    sgrowsiz, prot, max, cow);
1488		} else {
1489			result = vm_map_insert(map, object, offset, start,
1490			    start + length, prot, max, cow);
1491		}
1492	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1493	    find_space != VMFS_ANY_SPACE);
1494	vm_map_unlock(map);
1495	return (result);
1496}
1497
1498/*
1499 *	vm_map_simplify_entry:
1500 *
1501 *	Simplify the given map entry by merging with either neighbor.  This
1502 *	routine also has the ability to merge with both neighbors.
1503 *
1504 *	The map must be locked.
1505 *
1506 *	This routine guarentees that the passed entry remains valid (though
1507 *	possibly extended).  When merging, this routine may delete one or
1508 *	both neighbors.
1509 */
1510void
1511vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1512{
1513	vm_map_entry_t next, prev;
1514	vm_size_t prevsize, esize;
1515
1516	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1517		return;
1518
1519	prev = entry->prev;
1520	if (prev != &map->header) {
1521		prevsize = prev->end - prev->start;
1522		if ( (prev->end == entry->start) &&
1523		     (prev->object.vm_object == entry->object.vm_object) &&
1524		     (!prev->object.vm_object ||
1525			(prev->offset + prevsize == entry->offset)) &&
1526		     (prev->eflags == entry->eflags) &&
1527		     (prev->protection == entry->protection) &&
1528		     (prev->max_protection == entry->max_protection) &&
1529		     (prev->inheritance == entry->inheritance) &&
1530		     (prev->wired_count == entry->wired_count) &&
1531		     (prev->cred == entry->cred)) {
1532			vm_map_entry_unlink(map, prev);
1533			entry->start = prev->start;
1534			entry->offset = prev->offset;
1535			if (entry->prev != &map->header)
1536				vm_map_entry_resize_free(map, entry->prev);
1537
1538			/*
1539			 * If the backing object is a vnode object,
1540			 * vm_object_deallocate() calls vrele().
1541			 * However, vrele() does not lock the vnode
1542			 * because the vnode has additional
1543			 * references.  Thus, the map lock can be kept
1544			 * without causing a lock-order reversal with
1545			 * the vnode lock.
1546			 *
1547			 * Since we count the number of virtual page
1548			 * mappings in object->un_pager.vnp.writemappings,
1549			 * the writemappings value should not be adjusted
1550			 * when the entry is disposed of.
1551			 */
1552			if (prev->object.vm_object)
1553				vm_object_deallocate(prev->object.vm_object);
1554			if (prev->cred != NULL)
1555				crfree(prev->cred);
1556			vm_map_entry_dispose(map, prev);
1557		}
1558	}
1559
1560	next = entry->next;
1561	if (next != &map->header) {
1562		esize = entry->end - entry->start;
1563		if ((entry->end == next->start) &&
1564		    (next->object.vm_object == entry->object.vm_object) &&
1565		     (!entry->object.vm_object ||
1566			(entry->offset + esize == next->offset)) &&
1567		    (next->eflags == entry->eflags) &&
1568		    (next->protection == entry->protection) &&
1569		    (next->max_protection == entry->max_protection) &&
1570		    (next->inheritance == entry->inheritance) &&
1571		    (next->wired_count == entry->wired_count) &&
1572		    (next->cred == entry->cred)) {
1573			vm_map_entry_unlink(map, next);
1574			entry->end = next->end;
1575			vm_map_entry_resize_free(map, entry);
1576
1577			/*
1578			 * See comment above.
1579			 */
1580			if (next->object.vm_object)
1581				vm_object_deallocate(next->object.vm_object);
1582			if (next->cred != NULL)
1583				crfree(next->cred);
1584			vm_map_entry_dispose(map, next);
1585		}
1586	}
1587}
1588/*
1589 *	vm_map_clip_start:	[ internal use only ]
1590 *
1591 *	Asserts that the given entry begins at or after
1592 *	the specified address; if necessary,
1593 *	it splits the entry into two.
1594 */
1595#define vm_map_clip_start(map, entry, startaddr) \
1596{ \
1597	if (startaddr > entry->start) \
1598		_vm_map_clip_start(map, entry, startaddr); \
1599}
1600
1601/*
1602 *	This routine is called only when it is known that
1603 *	the entry must be split.
1604 */
1605static void
1606_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1607{
1608	vm_map_entry_t new_entry;
1609
1610	VM_MAP_ASSERT_LOCKED(map);
1611
1612	/*
1613	 * Split off the front portion -- note that we must insert the new
1614	 * entry BEFORE this one, so that this entry has the specified
1615	 * starting address.
1616	 */
1617	vm_map_simplify_entry(map, entry);
1618
1619	/*
1620	 * If there is no object backing this entry, we might as well create
1621	 * one now.  If we defer it, an object can get created after the map
1622	 * is clipped, and individual objects will be created for the split-up
1623	 * map.  This is a bit of a hack, but is also about the best place to
1624	 * put this improvement.
1625	 */
1626	if (entry->object.vm_object == NULL && !map->system_map) {
1627		vm_object_t object;
1628		object = vm_object_allocate(OBJT_DEFAULT,
1629				atop(entry->end - entry->start));
1630		entry->object.vm_object = object;
1631		entry->offset = 0;
1632		if (entry->cred != NULL) {
1633			object->cred = entry->cred;
1634			object->charge = entry->end - entry->start;
1635			entry->cred = NULL;
1636		}
1637	} else if (entry->object.vm_object != NULL &&
1638		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1639		   entry->cred != NULL) {
1640		VM_OBJECT_WLOCK(entry->object.vm_object);
1641		KASSERT(entry->object.vm_object->cred == NULL,
1642		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1643		entry->object.vm_object->cred = entry->cred;
1644		entry->object.vm_object->charge = entry->end - entry->start;
1645		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1646		entry->cred = NULL;
1647	}
1648
1649	new_entry = vm_map_entry_create(map);
1650	*new_entry = *entry;
1651
1652	new_entry->end = start;
1653	entry->offset += (start - entry->start);
1654	entry->start = start;
1655	if (new_entry->cred != NULL)
1656		crhold(entry->cred);
1657
1658	vm_map_entry_link(map, entry->prev, new_entry);
1659
1660	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1661		vm_object_reference(new_entry->object.vm_object);
1662		/*
1663		 * The object->un_pager.vnp.writemappings for the
1664		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1665		 * kept as is here.  The virtual pages are
1666		 * re-distributed among the clipped entries, so the sum is
1667		 * left the same.
1668		 */
1669	}
1670}
1671
1672/*
1673 *	vm_map_clip_end:	[ internal use only ]
1674 *
1675 *	Asserts that the given entry ends at or before
1676 *	the specified address; if necessary,
1677 *	it splits the entry into two.
1678 */
1679#define vm_map_clip_end(map, entry, endaddr) \
1680{ \
1681	if ((endaddr) < (entry->end)) \
1682		_vm_map_clip_end((map), (entry), (endaddr)); \
1683}
1684
1685/*
1686 *	This routine is called only when it is known that
1687 *	the entry must be split.
1688 */
1689static void
1690_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1691{
1692	vm_map_entry_t new_entry;
1693
1694	VM_MAP_ASSERT_LOCKED(map);
1695
1696	/*
1697	 * If there is no object backing this entry, we might as well create
1698	 * one now.  If we defer it, an object can get created after the map
1699	 * is clipped, and individual objects will be created for the split-up
1700	 * map.  This is a bit of a hack, but is also about the best place to
1701	 * put this improvement.
1702	 */
1703	if (entry->object.vm_object == NULL && !map->system_map) {
1704		vm_object_t object;
1705		object = vm_object_allocate(OBJT_DEFAULT,
1706				atop(entry->end - entry->start));
1707		entry->object.vm_object = object;
1708		entry->offset = 0;
1709		if (entry->cred != NULL) {
1710			object->cred = entry->cred;
1711			object->charge = entry->end - entry->start;
1712			entry->cred = NULL;
1713		}
1714	} else if (entry->object.vm_object != NULL &&
1715		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1716		   entry->cred != NULL) {
1717		VM_OBJECT_WLOCK(entry->object.vm_object);
1718		KASSERT(entry->object.vm_object->cred == NULL,
1719		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1720		entry->object.vm_object->cred = entry->cred;
1721		entry->object.vm_object->charge = entry->end - entry->start;
1722		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1723		entry->cred = NULL;
1724	}
1725
1726	/*
1727	 * Create a new entry and insert it AFTER the specified entry
1728	 */
1729	new_entry = vm_map_entry_create(map);
1730	*new_entry = *entry;
1731
1732	new_entry->start = entry->end = end;
1733	new_entry->offset += (end - entry->start);
1734	if (new_entry->cred != NULL)
1735		crhold(entry->cred);
1736
1737	vm_map_entry_link(map, entry, new_entry);
1738
1739	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1740		vm_object_reference(new_entry->object.vm_object);
1741	}
1742}
1743
1744/*
1745 *	vm_map_submap:		[ kernel use only ]
1746 *
1747 *	Mark the given range as handled by a subordinate map.
1748 *
1749 *	This range must have been created with vm_map_find,
1750 *	and no other operations may have been performed on this
1751 *	range prior to calling vm_map_submap.
1752 *
1753 *	Only a limited number of operations can be performed
1754 *	within this rage after calling vm_map_submap:
1755 *		vm_fault
1756 *	[Don't try vm_map_copy!]
1757 *
1758 *	To remove a submapping, one must first remove the
1759 *	range from the superior map, and then destroy the
1760 *	submap (if desired).  [Better yet, don't try it.]
1761 */
1762int
1763vm_map_submap(
1764	vm_map_t map,
1765	vm_offset_t start,
1766	vm_offset_t end,
1767	vm_map_t submap)
1768{
1769	vm_map_entry_t entry;
1770	int result = KERN_INVALID_ARGUMENT;
1771
1772	vm_map_lock(map);
1773
1774	VM_MAP_RANGE_CHECK(map, start, end);
1775
1776	if (vm_map_lookup_entry(map, start, &entry)) {
1777		vm_map_clip_start(map, entry, start);
1778	} else
1779		entry = entry->next;
1780
1781	vm_map_clip_end(map, entry, end);
1782
1783	if ((entry->start == start) && (entry->end == end) &&
1784	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1785	    (entry->object.vm_object == NULL)) {
1786		entry->object.sub_map = submap;
1787		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1788		result = KERN_SUCCESS;
1789	}
1790	vm_map_unlock(map);
1791
1792	return (result);
1793}
1794
1795/*
1796 * The maximum number of pages to map
1797 */
1798#define	MAX_INIT_PT	96
1799
1800/*
1801 *	vm_map_pmap_enter:
1802 *
1803 *	Preload read-only mappings for the specified object's resident pages
1804 *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1805 *	the resident pages within the address range [addr, addr + ulmin(size,
1806 *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1807 *	the specified address range are mapped.  This eliminates many soft
1808 *	faults on process startup and immediately after an mmap(2).  Because
1809 *	these are speculative mappings, cached pages are not reactivated and
1810 *	mapped.
1811 */
1812void
1813vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1814    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1815{
1816	vm_offset_t start;
1817	vm_page_t p, p_start;
1818	vm_pindex_t psize, tmpidx;
1819
1820	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1821		return;
1822	VM_OBJECT_RLOCK(object);
1823	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1824		VM_OBJECT_RUNLOCK(object);
1825		VM_OBJECT_WLOCK(object);
1826		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1827			pmap_object_init_pt(map->pmap, addr, object, pindex,
1828			    size);
1829			VM_OBJECT_WUNLOCK(object);
1830			return;
1831		}
1832		VM_OBJECT_LOCK_DOWNGRADE(object);
1833	}
1834
1835	psize = atop(size);
1836	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1837		psize = MAX_INIT_PT;
1838	if (psize + pindex > object->size) {
1839		if (object->size < pindex) {
1840			VM_OBJECT_RUNLOCK(object);
1841			return;
1842		}
1843		psize = object->size - pindex;
1844	}
1845
1846	start = 0;
1847	p_start = NULL;
1848
1849	p = vm_page_find_least(object, pindex);
1850	/*
1851	 * Assert: the variable p is either (1) the page with the
1852	 * least pindex greater than or equal to the parameter pindex
1853	 * or (2) NULL.
1854	 */
1855	for (;
1856	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1857	     p = TAILQ_NEXT(p, listq)) {
1858		/*
1859		 * don't allow an madvise to blow away our really
1860		 * free pages allocating pv entries.
1861		 */
1862		if ((flags & MAP_PREFAULT_MADVISE) &&
1863		    cnt.v_free_count < cnt.v_free_reserved) {
1864			psize = tmpidx;
1865			break;
1866		}
1867		if (p->valid == VM_PAGE_BITS_ALL) {
1868			if (p_start == NULL) {
1869				start = addr + ptoa(tmpidx);
1870				p_start = p;
1871			}
1872		} else if (p_start != NULL) {
1873			pmap_enter_object(map->pmap, start, addr +
1874			    ptoa(tmpidx), p_start, prot);
1875			p_start = NULL;
1876		}
1877	}
1878	if (p_start != NULL)
1879		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1880		    p_start, prot);
1881	VM_OBJECT_RUNLOCK(object);
1882}
1883
1884/*
1885 *	vm_map_protect:
1886 *
1887 *	Sets the protection of the specified address
1888 *	region in the target map.  If "set_max" is
1889 *	specified, the maximum protection is to be set;
1890 *	otherwise, only the current protection is affected.
1891 */
1892int
1893vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1894	       vm_prot_t new_prot, boolean_t set_max)
1895{
1896	vm_map_entry_t current, entry;
1897	vm_object_t obj;
1898	struct ucred *cred;
1899	vm_prot_t old_prot;
1900
1901	if (start == end)
1902		return (KERN_SUCCESS);
1903
1904	vm_map_lock(map);
1905
1906	VM_MAP_RANGE_CHECK(map, start, end);
1907
1908	if (vm_map_lookup_entry(map, start, &entry)) {
1909		vm_map_clip_start(map, entry, start);
1910	} else {
1911		entry = entry->next;
1912	}
1913
1914	/*
1915	 * Make a first pass to check for protection violations.
1916	 */
1917	current = entry;
1918	while ((current != &map->header) && (current->start < end)) {
1919		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1920			vm_map_unlock(map);
1921			return (KERN_INVALID_ARGUMENT);
1922		}
1923		if ((new_prot & current->max_protection) != new_prot) {
1924			vm_map_unlock(map);
1925			return (KERN_PROTECTION_FAILURE);
1926		}
1927		current = current->next;
1928	}
1929
1930
1931	/*
1932	 * Do an accounting pass for private read-only mappings that
1933	 * now will do cow due to allowed write (e.g. debugger sets
1934	 * breakpoint on text segment)
1935	 */
1936	for (current = entry; (current != &map->header) &&
1937	     (current->start < end); current = current->next) {
1938
1939		vm_map_clip_end(map, current, end);
1940
1941		if (set_max ||
1942		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1943		    ENTRY_CHARGED(current)) {
1944			continue;
1945		}
1946
1947		cred = curthread->td_ucred;
1948		obj = current->object.vm_object;
1949
1950		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1951			if (!swap_reserve(current->end - current->start)) {
1952				vm_map_unlock(map);
1953				return (KERN_RESOURCE_SHORTAGE);
1954			}
1955			crhold(cred);
1956			current->cred = cred;
1957			continue;
1958		}
1959
1960		VM_OBJECT_WLOCK(obj);
1961		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1962			VM_OBJECT_WUNLOCK(obj);
1963			continue;
1964		}
1965
1966		/*
1967		 * Charge for the whole object allocation now, since
1968		 * we cannot distinguish between non-charged and
1969		 * charged clipped mapping of the same object later.
1970		 */
1971		KASSERT(obj->charge == 0,
1972		    ("vm_map_protect: object %p overcharged (entry %p)",
1973		    obj, current));
1974		if (!swap_reserve(ptoa(obj->size))) {
1975			VM_OBJECT_WUNLOCK(obj);
1976			vm_map_unlock(map);
1977			return (KERN_RESOURCE_SHORTAGE);
1978		}
1979
1980		crhold(cred);
1981		obj->cred = cred;
1982		obj->charge = ptoa(obj->size);
1983		VM_OBJECT_WUNLOCK(obj);
1984	}
1985
1986	/*
1987	 * Go back and fix up protections. [Note that clipping is not
1988	 * necessary the second time.]
1989	 */
1990	current = entry;
1991	while ((current != &map->header) && (current->start < end)) {
1992		old_prot = current->protection;
1993
1994		if (set_max)
1995			current->protection =
1996			    (current->max_protection = new_prot) &
1997			    old_prot;
1998		else
1999			current->protection = new_prot;
2000
2001		/*
2002		 * For user wired map entries, the normal lazy evaluation of
2003		 * write access upgrades through soft page faults is
2004		 * undesirable.  Instead, immediately copy any pages that are
2005		 * copy-on-write and enable write access in the physical map.
2006		 */
2007		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2008		    (current->protection & VM_PROT_WRITE) != 0 &&
2009		    (old_prot & VM_PROT_WRITE) == 0)
2010			vm_fault_copy_entry(map, map, current, current, NULL);
2011
2012		/*
2013		 * When restricting access, update the physical map.  Worry
2014		 * about copy-on-write here.
2015		 */
2016		if ((old_prot & ~current->protection) != 0) {
2017#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2018							VM_PROT_ALL)
2019			pmap_protect(map->pmap, current->start,
2020			    current->end,
2021			    current->protection & MASK(current));
2022#undef	MASK
2023		}
2024		vm_map_simplify_entry(map, current);
2025		current = current->next;
2026	}
2027	vm_map_unlock(map);
2028	return (KERN_SUCCESS);
2029}
2030
2031/*
2032 *	vm_map_madvise:
2033 *
2034 *	This routine traverses a processes map handling the madvise
2035 *	system call.  Advisories are classified as either those effecting
2036 *	the vm_map_entry structure, or those effecting the underlying
2037 *	objects.
2038 */
2039int
2040vm_map_madvise(
2041	vm_map_t map,
2042	vm_offset_t start,
2043	vm_offset_t end,
2044	int behav)
2045{
2046	vm_map_entry_t current, entry;
2047	int modify_map = 0;
2048
2049	/*
2050	 * Some madvise calls directly modify the vm_map_entry, in which case
2051	 * we need to use an exclusive lock on the map and we need to perform
2052	 * various clipping operations.  Otherwise we only need a read-lock
2053	 * on the map.
2054	 */
2055	switch(behav) {
2056	case MADV_NORMAL:
2057	case MADV_SEQUENTIAL:
2058	case MADV_RANDOM:
2059	case MADV_NOSYNC:
2060	case MADV_AUTOSYNC:
2061	case MADV_NOCORE:
2062	case MADV_CORE:
2063		if (start == end)
2064			return (KERN_SUCCESS);
2065		modify_map = 1;
2066		vm_map_lock(map);
2067		break;
2068	case MADV_WILLNEED:
2069	case MADV_DONTNEED:
2070	case MADV_FREE:
2071		if (start == end)
2072			return (KERN_SUCCESS);
2073		vm_map_lock_read(map);
2074		break;
2075	default:
2076		return (KERN_INVALID_ARGUMENT);
2077	}
2078
2079	/*
2080	 * Locate starting entry and clip if necessary.
2081	 */
2082	VM_MAP_RANGE_CHECK(map, start, end);
2083
2084	if (vm_map_lookup_entry(map, start, &entry)) {
2085		if (modify_map)
2086			vm_map_clip_start(map, entry, start);
2087	} else {
2088		entry = entry->next;
2089	}
2090
2091	if (modify_map) {
2092		/*
2093		 * madvise behaviors that are implemented in the vm_map_entry.
2094		 *
2095		 * We clip the vm_map_entry so that behavioral changes are
2096		 * limited to the specified address range.
2097		 */
2098		for (current = entry;
2099		     (current != &map->header) && (current->start < end);
2100		     current = current->next
2101		) {
2102			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2103				continue;
2104
2105			vm_map_clip_end(map, current, end);
2106
2107			switch (behav) {
2108			case MADV_NORMAL:
2109				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2110				break;
2111			case MADV_SEQUENTIAL:
2112				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2113				break;
2114			case MADV_RANDOM:
2115				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2116				break;
2117			case MADV_NOSYNC:
2118				current->eflags |= MAP_ENTRY_NOSYNC;
2119				break;
2120			case MADV_AUTOSYNC:
2121				current->eflags &= ~MAP_ENTRY_NOSYNC;
2122				break;
2123			case MADV_NOCORE:
2124				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2125				break;
2126			case MADV_CORE:
2127				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2128				break;
2129			default:
2130				break;
2131			}
2132			vm_map_simplify_entry(map, current);
2133		}
2134		vm_map_unlock(map);
2135	} else {
2136		vm_pindex_t pstart, pend;
2137
2138		/*
2139		 * madvise behaviors that are implemented in the underlying
2140		 * vm_object.
2141		 *
2142		 * Since we don't clip the vm_map_entry, we have to clip
2143		 * the vm_object pindex and count.
2144		 */
2145		for (current = entry;
2146		     (current != &map->header) && (current->start < end);
2147		     current = current->next
2148		) {
2149			vm_offset_t useEnd, useStart;
2150
2151			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2152				continue;
2153
2154			pstart = OFF_TO_IDX(current->offset);
2155			pend = pstart + atop(current->end - current->start);
2156			useStart = current->start;
2157			useEnd = current->end;
2158
2159			if (current->start < start) {
2160				pstart += atop(start - current->start);
2161				useStart = start;
2162			}
2163			if (current->end > end) {
2164				pend -= atop(current->end - end);
2165				useEnd = end;
2166			}
2167
2168			if (pstart >= pend)
2169				continue;
2170
2171			/*
2172			 * Perform the pmap_advise() before clearing
2173			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2174			 * concurrent pmap operation, such as pmap_remove(),
2175			 * could clear a reference in the pmap and set
2176			 * PGA_REFERENCED on the page before the pmap_advise()
2177			 * had completed.  Consequently, the page would appear
2178			 * referenced based upon an old reference that
2179			 * occurred before this pmap_advise() ran.
2180			 */
2181			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2182				pmap_advise(map->pmap, useStart, useEnd,
2183				    behav);
2184
2185			vm_object_madvise(current->object.vm_object, pstart,
2186			    pend, behav);
2187			if (behav == MADV_WILLNEED) {
2188				vm_map_pmap_enter(map,
2189				    useStart,
2190				    current->protection,
2191				    current->object.vm_object,
2192				    pstart,
2193				    ptoa(pend - pstart),
2194				    MAP_PREFAULT_MADVISE
2195				);
2196			}
2197		}
2198		vm_map_unlock_read(map);
2199	}
2200	return (0);
2201}
2202
2203
2204/*
2205 *	vm_map_inherit:
2206 *
2207 *	Sets the inheritance of the specified address
2208 *	range in the target map.  Inheritance
2209 *	affects how the map will be shared with
2210 *	child maps at the time of vmspace_fork.
2211 */
2212int
2213vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2214	       vm_inherit_t new_inheritance)
2215{
2216	vm_map_entry_t entry;
2217	vm_map_entry_t temp_entry;
2218
2219	switch (new_inheritance) {
2220	case VM_INHERIT_NONE:
2221	case VM_INHERIT_COPY:
2222	case VM_INHERIT_SHARE:
2223		break;
2224	default:
2225		return (KERN_INVALID_ARGUMENT);
2226	}
2227	if (start == end)
2228		return (KERN_SUCCESS);
2229	vm_map_lock(map);
2230	VM_MAP_RANGE_CHECK(map, start, end);
2231	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2232		entry = temp_entry;
2233		vm_map_clip_start(map, entry, start);
2234	} else
2235		entry = temp_entry->next;
2236	while ((entry != &map->header) && (entry->start < end)) {
2237		vm_map_clip_end(map, entry, end);
2238		entry->inheritance = new_inheritance;
2239		vm_map_simplify_entry(map, entry);
2240		entry = entry->next;
2241	}
2242	vm_map_unlock(map);
2243	return (KERN_SUCCESS);
2244}
2245
2246/*
2247 *	vm_map_unwire:
2248 *
2249 *	Implements both kernel and user unwiring.
2250 */
2251int
2252vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2253    int flags)
2254{
2255	vm_map_entry_t entry, first_entry, tmp_entry;
2256	vm_offset_t saved_start;
2257	unsigned int last_timestamp;
2258	int rv;
2259	boolean_t need_wakeup, result, user_unwire;
2260
2261	if (start == end)
2262		return (KERN_SUCCESS);
2263	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2264	vm_map_lock(map);
2265	VM_MAP_RANGE_CHECK(map, start, end);
2266	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2267		if (flags & VM_MAP_WIRE_HOLESOK)
2268			first_entry = first_entry->next;
2269		else {
2270			vm_map_unlock(map);
2271			return (KERN_INVALID_ADDRESS);
2272		}
2273	}
2274	last_timestamp = map->timestamp;
2275	entry = first_entry;
2276	while (entry != &map->header && entry->start < end) {
2277		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2278			/*
2279			 * We have not yet clipped the entry.
2280			 */
2281			saved_start = (start >= entry->start) ? start :
2282			    entry->start;
2283			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2284			if (vm_map_unlock_and_wait(map, 0)) {
2285				/*
2286				 * Allow interruption of user unwiring?
2287				 */
2288			}
2289			vm_map_lock(map);
2290			if (last_timestamp+1 != map->timestamp) {
2291				/*
2292				 * Look again for the entry because the map was
2293				 * modified while it was unlocked.
2294				 * Specifically, the entry may have been
2295				 * clipped, merged, or deleted.
2296				 */
2297				if (!vm_map_lookup_entry(map, saved_start,
2298				    &tmp_entry)) {
2299					if (flags & VM_MAP_WIRE_HOLESOK)
2300						tmp_entry = tmp_entry->next;
2301					else {
2302						if (saved_start == start) {
2303							/*
2304							 * First_entry has been deleted.
2305							 */
2306							vm_map_unlock(map);
2307							return (KERN_INVALID_ADDRESS);
2308						}
2309						end = saved_start;
2310						rv = KERN_INVALID_ADDRESS;
2311						goto done;
2312					}
2313				}
2314				if (entry == first_entry)
2315					first_entry = tmp_entry;
2316				else
2317					first_entry = NULL;
2318				entry = tmp_entry;
2319			}
2320			last_timestamp = map->timestamp;
2321			continue;
2322		}
2323		vm_map_clip_start(map, entry, start);
2324		vm_map_clip_end(map, entry, end);
2325		/*
2326		 * Mark the entry in case the map lock is released.  (See
2327		 * above.)
2328		 */
2329		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2330		    entry->wiring_thread == NULL,
2331		    ("owned map entry %p", entry));
2332		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2333		entry->wiring_thread = curthread;
2334		/*
2335		 * Check the map for holes in the specified region.
2336		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2337		 */
2338		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2339		    (entry->end < end && (entry->next == &map->header ||
2340		    entry->next->start > entry->end))) {
2341			end = entry->end;
2342			rv = KERN_INVALID_ADDRESS;
2343			goto done;
2344		}
2345		/*
2346		 * If system unwiring, require that the entry is system wired.
2347		 */
2348		if (!user_unwire &&
2349		    vm_map_entry_system_wired_count(entry) == 0) {
2350			end = entry->end;
2351			rv = KERN_INVALID_ARGUMENT;
2352			goto done;
2353		}
2354		entry = entry->next;
2355	}
2356	rv = KERN_SUCCESS;
2357done:
2358	need_wakeup = FALSE;
2359	if (first_entry == NULL) {
2360		result = vm_map_lookup_entry(map, start, &first_entry);
2361		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2362			first_entry = first_entry->next;
2363		else
2364			KASSERT(result, ("vm_map_unwire: lookup failed"));
2365	}
2366	for (entry = first_entry; entry != &map->header && entry->start < end;
2367	    entry = entry->next) {
2368		/*
2369		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2370		 * space in the unwired region could have been mapped
2371		 * while the map lock was dropped for draining
2372		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2373		 * could be simultaneously wiring this new mapping
2374		 * entry.  Detect these cases and skip any entries
2375		 * marked as in transition by us.
2376		 */
2377		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2378		    entry->wiring_thread != curthread) {
2379			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2380			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2381			continue;
2382		}
2383
2384		if (rv == KERN_SUCCESS && (!user_unwire ||
2385		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2386			if (user_unwire)
2387				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2388			entry->wired_count--;
2389			if (entry->wired_count == 0) {
2390				/*
2391				 * Retain the map lock.
2392				 */
2393				vm_fault_unwire(map, entry->start, entry->end,
2394				    entry->object.vm_object != NULL &&
2395				    (entry->object.vm_object->flags &
2396				    OBJ_FICTITIOUS) != 0);
2397			}
2398		}
2399		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2400		    ("vm_map_unwire: in-transition flag missing %p", entry));
2401		KASSERT(entry->wiring_thread == curthread,
2402		    ("vm_map_unwire: alien wire %p", entry));
2403		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2404		entry->wiring_thread = NULL;
2405		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2406			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2407			need_wakeup = TRUE;
2408		}
2409		vm_map_simplify_entry(map, entry);
2410	}
2411	vm_map_unlock(map);
2412	if (need_wakeup)
2413		vm_map_wakeup(map);
2414	return (rv);
2415}
2416
2417/*
2418 *	vm_map_wire:
2419 *
2420 *	Implements both kernel and user wiring.
2421 */
2422int
2423vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2424    int flags)
2425{
2426	vm_map_entry_t entry, first_entry, tmp_entry;
2427	vm_offset_t saved_end, saved_start;
2428	unsigned int last_timestamp;
2429	int rv;
2430	boolean_t fictitious, need_wakeup, result, user_wire;
2431	vm_prot_t prot;
2432
2433	if (start == end)
2434		return (KERN_SUCCESS);
2435	prot = 0;
2436	if (flags & VM_MAP_WIRE_WRITE)
2437		prot |= VM_PROT_WRITE;
2438	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2439	vm_map_lock(map);
2440	VM_MAP_RANGE_CHECK(map, start, end);
2441	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2442		if (flags & VM_MAP_WIRE_HOLESOK)
2443			first_entry = first_entry->next;
2444		else {
2445			vm_map_unlock(map);
2446			return (KERN_INVALID_ADDRESS);
2447		}
2448	}
2449	last_timestamp = map->timestamp;
2450	entry = first_entry;
2451	while (entry != &map->header && entry->start < end) {
2452		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2453			/*
2454			 * We have not yet clipped the entry.
2455			 */
2456			saved_start = (start >= entry->start) ? start :
2457			    entry->start;
2458			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2459			if (vm_map_unlock_and_wait(map, 0)) {
2460				/*
2461				 * Allow interruption of user wiring?
2462				 */
2463			}
2464			vm_map_lock(map);
2465			if (last_timestamp + 1 != map->timestamp) {
2466				/*
2467				 * Look again for the entry because the map was
2468				 * modified while it was unlocked.
2469				 * Specifically, the entry may have been
2470				 * clipped, merged, or deleted.
2471				 */
2472				if (!vm_map_lookup_entry(map, saved_start,
2473				    &tmp_entry)) {
2474					if (flags & VM_MAP_WIRE_HOLESOK)
2475						tmp_entry = tmp_entry->next;
2476					else {
2477						if (saved_start == start) {
2478							/*
2479							 * first_entry has been deleted.
2480							 */
2481							vm_map_unlock(map);
2482							return (KERN_INVALID_ADDRESS);
2483						}
2484						end = saved_start;
2485						rv = KERN_INVALID_ADDRESS;
2486						goto done;
2487					}
2488				}
2489				if (entry == first_entry)
2490					first_entry = tmp_entry;
2491				else
2492					first_entry = NULL;
2493				entry = tmp_entry;
2494			}
2495			last_timestamp = map->timestamp;
2496			continue;
2497		}
2498		vm_map_clip_start(map, entry, start);
2499		vm_map_clip_end(map, entry, end);
2500		/*
2501		 * Mark the entry in case the map lock is released.  (See
2502		 * above.)
2503		 */
2504		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2505		    entry->wiring_thread == NULL,
2506		    ("owned map entry %p", entry));
2507		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2508		entry->wiring_thread = curthread;
2509		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2510		    || (entry->protection & prot) != prot) {
2511			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2512			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2513				end = entry->end;
2514				rv = KERN_INVALID_ADDRESS;
2515				goto done;
2516			}
2517			goto next_entry;
2518		}
2519		if (entry->wired_count == 0) {
2520			entry->wired_count++;
2521			saved_start = entry->start;
2522			saved_end = entry->end;
2523			fictitious = entry->object.vm_object != NULL &&
2524			    (entry->object.vm_object->flags &
2525			    OBJ_FICTITIOUS) != 0;
2526			/*
2527			 * Release the map lock, relying on the in-transition
2528			 * mark.  Mark the map busy for fork.
2529			 */
2530			vm_map_busy(map);
2531			vm_map_unlock(map);
2532			rv = vm_fault_wire(map, saved_start, saved_end,
2533			    fictitious);
2534			vm_map_lock(map);
2535			vm_map_unbusy(map);
2536			if (last_timestamp + 1 != map->timestamp) {
2537				/*
2538				 * Look again for the entry because the map was
2539				 * modified while it was unlocked.  The entry
2540				 * may have been clipped, but NOT merged or
2541				 * deleted.
2542				 */
2543				result = vm_map_lookup_entry(map, saved_start,
2544				    &tmp_entry);
2545				KASSERT(result, ("vm_map_wire: lookup failed"));
2546				if (entry == first_entry)
2547					first_entry = tmp_entry;
2548				else
2549					first_entry = NULL;
2550				entry = tmp_entry;
2551				while (entry->end < saved_end) {
2552					if (rv != KERN_SUCCESS) {
2553						KASSERT(entry->wired_count == 1,
2554						    ("vm_map_wire: bad count"));
2555						entry->wired_count = -1;
2556					}
2557					entry = entry->next;
2558				}
2559			}
2560			last_timestamp = map->timestamp;
2561			if (rv != KERN_SUCCESS) {
2562				KASSERT(entry->wired_count == 1,
2563				    ("vm_map_wire: bad count"));
2564				/*
2565				 * Assign an out-of-range value to represent
2566				 * the failure to wire this entry.
2567				 */
2568				entry->wired_count = -1;
2569				end = entry->end;
2570				goto done;
2571			}
2572		} else if (!user_wire ||
2573			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2574			entry->wired_count++;
2575		}
2576		/*
2577		 * Check the map for holes in the specified region.
2578		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2579		 */
2580	next_entry:
2581		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2582		    (entry->end < end && (entry->next == &map->header ||
2583		    entry->next->start > entry->end))) {
2584			end = entry->end;
2585			rv = KERN_INVALID_ADDRESS;
2586			goto done;
2587		}
2588		entry = entry->next;
2589	}
2590	rv = KERN_SUCCESS;
2591done:
2592	need_wakeup = FALSE;
2593	if (first_entry == NULL) {
2594		result = vm_map_lookup_entry(map, start, &first_entry);
2595		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2596			first_entry = first_entry->next;
2597		else
2598			KASSERT(result, ("vm_map_wire: lookup failed"));
2599	}
2600	for (entry = first_entry; entry != &map->header && entry->start < end;
2601	    entry = entry->next) {
2602		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2603			goto next_entry_done;
2604
2605		/*
2606		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2607		 * space in the unwired region could have been mapped
2608		 * while the map lock was dropped for faulting in the
2609		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2610		 * Moreover, another thread could be simultaneously
2611		 * wiring this new mapping entry.  Detect these cases
2612		 * and skip any entries marked as in transition by us.
2613		 */
2614		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2615		    entry->wiring_thread != curthread) {
2616			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2617			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2618			continue;
2619		}
2620
2621		if (rv == KERN_SUCCESS) {
2622			if (user_wire)
2623				entry->eflags |= MAP_ENTRY_USER_WIRED;
2624		} else if (entry->wired_count == -1) {
2625			/*
2626			 * Wiring failed on this entry.  Thus, unwiring is
2627			 * unnecessary.
2628			 */
2629			entry->wired_count = 0;
2630		} else {
2631			if (!user_wire ||
2632			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2633				entry->wired_count--;
2634			if (entry->wired_count == 0) {
2635				/*
2636				 * Retain the map lock.
2637				 */
2638				vm_fault_unwire(map, entry->start, entry->end,
2639				    entry->object.vm_object != NULL &&
2640				    (entry->object.vm_object->flags &
2641				    OBJ_FICTITIOUS) != 0);
2642			}
2643		}
2644	next_entry_done:
2645		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2646		    ("vm_map_wire: in-transition flag missing %p", entry));
2647		KASSERT(entry->wiring_thread == curthread,
2648		    ("vm_map_wire: alien wire %p", entry));
2649		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2650		    MAP_ENTRY_WIRE_SKIPPED);
2651		entry->wiring_thread = NULL;
2652		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2653			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2654			need_wakeup = TRUE;
2655		}
2656		vm_map_simplify_entry(map, entry);
2657	}
2658	vm_map_unlock(map);
2659	if (need_wakeup)
2660		vm_map_wakeup(map);
2661	return (rv);
2662}
2663
2664/*
2665 * vm_map_sync
2666 *
2667 * Push any dirty cached pages in the address range to their pager.
2668 * If syncio is TRUE, dirty pages are written synchronously.
2669 * If invalidate is TRUE, any cached pages are freed as well.
2670 *
2671 * If the size of the region from start to end is zero, we are
2672 * supposed to flush all modified pages within the region containing
2673 * start.  Unfortunately, a region can be split or coalesced with
2674 * neighboring regions, making it difficult to determine what the
2675 * original region was.  Therefore, we approximate this requirement by
2676 * flushing the current region containing start.
2677 *
2678 * Returns an error if any part of the specified range is not mapped.
2679 */
2680int
2681vm_map_sync(
2682	vm_map_t map,
2683	vm_offset_t start,
2684	vm_offset_t end,
2685	boolean_t syncio,
2686	boolean_t invalidate)
2687{
2688	vm_map_entry_t current;
2689	vm_map_entry_t entry;
2690	vm_size_t size;
2691	vm_object_t object;
2692	vm_ooffset_t offset;
2693	unsigned int last_timestamp;
2694	boolean_t failed;
2695
2696	vm_map_lock_read(map);
2697	VM_MAP_RANGE_CHECK(map, start, end);
2698	if (!vm_map_lookup_entry(map, start, &entry)) {
2699		vm_map_unlock_read(map);
2700		return (KERN_INVALID_ADDRESS);
2701	} else if (start == end) {
2702		start = entry->start;
2703		end = entry->end;
2704	}
2705	/*
2706	 * Make a first pass to check for user-wired memory and holes.
2707	 */
2708	for (current = entry; current != &map->header && current->start < end;
2709	    current = current->next) {
2710		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2711			vm_map_unlock_read(map);
2712			return (KERN_INVALID_ARGUMENT);
2713		}
2714		if (end > current->end &&
2715		    (current->next == &map->header ||
2716			current->end != current->next->start)) {
2717			vm_map_unlock_read(map);
2718			return (KERN_INVALID_ADDRESS);
2719		}
2720	}
2721
2722	if (invalidate)
2723		pmap_remove(map->pmap, start, end);
2724	failed = FALSE;
2725
2726	/*
2727	 * Make a second pass, cleaning/uncaching pages from the indicated
2728	 * objects as we go.
2729	 */
2730	for (current = entry; current != &map->header && current->start < end;) {
2731		offset = current->offset + (start - current->start);
2732		size = (end <= current->end ? end : current->end) - start;
2733		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2734			vm_map_t smap;
2735			vm_map_entry_t tentry;
2736			vm_size_t tsize;
2737
2738			smap = current->object.sub_map;
2739			vm_map_lock_read(smap);
2740			(void) vm_map_lookup_entry(smap, offset, &tentry);
2741			tsize = tentry->end - offset;
2742			if (tsize < size)
2743				size = tsize;
2744			object = tentry->object.vm_object;
2745			offset = tentry->offset + (offset - tentry->start);
2746			vm_map_unlock_read(smap);
2747		} else {
2748			object = current->object.vm_object;
2749		}
2750		vm_object_reference(object);
2751		last_timestamp = map->timestamp;
2752		vm_map_unlock_read(map);
2753		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2754			failed = TRUE;
2755		start += size;
2756		vm_object_deallocate(object);
2757		vm_map_lock_read(map);
2758		if (last_timestamp == map->timestamp ||
2759		    !vm_map_lookup_entry(map, start, &current))
2760			current = current->next;
2761	}
2762
2763	vm_map_unlock_read(map);
2764	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2765}
2766
2767/*
2768 *	vm_map_entry_unwire:	[ internal use only ]
2769 *
2770 *	Make the region specified by this entry pageable.
2771 *
2772 *	The map in question should be locked.
2773 *	[This is the reason for this routine's existence.]
2774 */
2775static void
2776vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2777{
2778	vm_fault_unwire(map, entry->start, entry->end,
2779	    entry->object.vm_object != NULL &&
2780	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2781	entry->wired_count = 0;
2782}
2783
2784static void
2785vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2786{
2787
2788	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2789		vm_object_deallocate(entry->object.vm_object);
2790	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2791}
2792
2793/*
2794 *	vm_map_entry_delete:	[ internal use only ]
2795 *
2796 *	Deallocate the given entry from the target map.
2797 */
2798static void
2799vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2800{
2801	vm_object_t object;
2802	vm_pindex_t offidxstart, offidxend, count, size1;
2803	vm_ooffset_t size;
2804
2805	vm_map_entry_unlink(map, entry);
2806	object = entry->object.vm_object;
2807	size = entry->end - entry->start;
2808	map->size -= size;
2809
2810	if (entry->cred != NULL) {
2811		swap_release_by_cred(size, entry->cred);
2812		crfree(entry->cred);
2813	}
2814
2815	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2816	    (object != NULL)) {
2817		KASSERT(entry->cred == NULL || object->cred == NULL ||
2818		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2819		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2820		count = OFF_TO_IDX(size);
2821		offidxstart = OFF_TO_IDX(entry->offset);
2822		offidxend = offidxstart + count;
2823		VM_OBJECT_WLOCK(object);
2824		if (object->ref_count != 1 &&
2825		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2826		    object == kernel_object || object == kmem_object)) {
2827			vm_object_collapse(object);
2828
2829			/*
2830			 * The option OBJPR_NOTMAPPED can be passed here
2831			 * because vm_map_delete() already performed
2832			 * pmap_remove() on the only mapping to this range
2833			 * of pages.
2834			 */
2835			vm_object_page_remove(object, offidxstart, offidxend,
2836			    OBJPR_NOTMAPPED);
2837			if (object->type == OBJT_SWAP)
2838				swap_pager_freespace(object, offidxstart, count);
2839			if (offidxend >= object->size &&
2840			    offidxstart < object->size) {
2841				size1 = object->size;
2842				object->size = offidxstart;
2843				if (object->cred != NULL) {
2844					size1 -= object->size;
2845					KASSERT(object->charge >= ptoa(size1),
2846					    ("vm_map_entry_delete: object->charge < 0"));
2847					swap_release_by_cred(ptoa(size1), object->cred);
2848					object->charge -= ptoa(size1);
2849				}
2850			}
2851		}
2852		VM_OBJECT_WUNLOCK(object);
2853	} else
2854		entry->object.vm_object = NULL;
2855	if (map->system_map)
2856		vm_map_entry_deallocate(entry, TRUE);
2857	else {
2858		entry->next = curthread->td_map_def_user;
2859		curthread->td_map_def_user = entry;
2860	}
2861}
2862
2863/*
2864 *	vm_map_delete:	[ internal use only ]
2865 *
2866 *	Deallocates the given address range from the target
2867 *	map.
2868 */
2869int
2870vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2871{
2872	vm_map_entry_t entry;
2873	vm_map_entry_t first_entry;
2874
2875	VM_MAP_ASSERT_LOCKED(map);
2876	if (start == end)
2877		return (KERN_SUCCESS);
2878
2879	/*
2880	 * Find the start of the region, and clip it
2881	 */
2882	if (!vm_map_lookup_entry(map, start, &first_entry))
2883		entry = first_entry->next;
2884	else {
2885		entry = first_entry;
2886		vm_map_clip_start(map, entry, start);
2887	}
2888
2889	/*
2890	 * Step through all entries in this region
2891	 */
2892	while ((entry != &map->header) && (entry->start < end)) {
2893		vm_map_entry_t next;
2894
2895		/*
2896		 * Wait for wiring or unwiring of an entry to complete.
2897		 * Also wait for any system wirings to disappear on
2898		 * user maps.
2899		 */
2900		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2901		    (vm_map_pmap(map) != kernel_pmap &&
2902		    vm_map_entry_system_wired_count(entry) != 0)) {
2903			unsigned int last_timestamp;
2904			vm_offset_t saved_start;
2905			vm_map_entry_t tmp_entry;
2906
2907			saved_start = entry->start;
2908			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2909			last_timestamp = map->timestamp;
2910			(void) vm_map_unlock_and_wait(map, 0);
2911			vm_map_lock(map);
2912			if (last_timestamp + 1 != map->timestamp) {
2913				/*
2914				 * Look again for the entry because the map was
2915				 * modified while it was unlocked.
2916				 * Specifically, the entry may have been
2917				 * clipped, merged, or deleted.
2918				 */
2919				if (!vm_map_lookup_entry(map, saved_start,
2920							 &tmp_entry))
2921					entry = tmp_entry->next;
2922				else {
2923					entry = tmp_entry;
2924					vm_map_clip_start(map, entry,
2925							  saved_start);
2926				}
2927			}
2928			continue;
2929		}
2930		vm_map_clip_end(map, entry, end);
2931
2932		next = entry->next;
2933
2934		/*
2935		 * Unwire before removing addresses from the pmap; otherwise,
2936		 * unwiring will put the entries back in the pmap.
2937		 */
2938		if (entry->wired_count != 0) {
2939			vm_map_entry_unwire(map, entry);
2940		}
2941
2942		pmap_remove(map->pmap, entry->start, entry->end);
2943
2944		/*
2945		 * Delete the entry only after removing all pmap
2946		 * entries pointing to its pages.  (Otherwise, its
2947		 * page frames may be reallocated, and any modify bits
2948		 * will be set in the wrong object!)
2949		 */
2950		vm_map_entry_delete(map, entry);
2951		entry = next;
2952	}
2953	return (KERN_SUCCESS);
2954}
2955
2956/*
2957 *	vm_map_remove:
2958 *
2959 *	Remove the given address range from the target map.
2960 *	This is the exported form of vm_map_delete.
2961 */
2962int
2963vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2964{
2965	int result;
2966
2967	vm_map_lock(map);
2968	VM_MAP_RANGE_CHECK(map, start, end);
2969	result = vm_map_delete(map, start, end);
2970	vm_map_unlock(map);
2971	return (result);
2972}
2973
2974/*
2975 *	vm_map_check_protection:
2976 *
2977 *	Assert that the target map allows the specified privilege on the
2978 *	entire address region given.  The entire region must be allocated.
2979 *
2980 *	WARNING!  This code does not and should not check whether the
2981 *	contents of the region is accessible.  For example a smaller file
2982 *	might be mapped into a larger address space.
2983 *
2984 *	NOTE!  This code is also called by munmap().
2985 *
2986 *	The map must be locked.  A read lock is sufficient.
2987 */
2988boolean_t
2989vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2990			vm_prot_t protection)
2991{
2992	vm_map_entry_t entry;
2993	vm_map_entry_t tmp_entry;
2994
2995	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2996		return (FALSE);
2997	entry = tmp_entry;
2998
2999	while (start < end) {
3000		if (entry == &map->header)
3001			return (FALSE);
3002		/*
3003		 * No holes allowed!
3004		 */
3005		if (start < entry->start)
3006			return (FALSE);
3007		/*
3008		 * Check protection associated with entry.
3009		 */
3010		if ((entry->protection & protection) != protection)
3011			return (FALSE);
3012		/* go to next entry */
3013		start = entry->end;
3014		entry = entry->next;
3015	}
3016	return (TRUE);
3017}
3018
3019/*
3020 *	vm_map_copy_entry:
3021 *
3022 *	Copies the contents of the source entry to the destination
3023 *	entry.  The entries *must* be aligned properly.
3024 */
3025static void
3026vm_map_copy_entry(
3027	vm_map_t src_map,
3028	vm_map_t dst_map,
3029	vm_map_entry_t src_entry,
3030	vm_map_entry_t dst_entry,
3031	vm_ooffset_t *fork_charge)
3032{
3033	vm_object_t src_object;
3034	vm_map_entry_t fake_entry;
3035	vm_offset_t size;
3036	struct ucred *cred;
3037	int charged;
3038
3039	VM_MAP_ASSERT_LOCKED(dst_map);
3040
3041	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3042		return;
3043
3044	if (src_entry->wired_count == 0 ||
3045	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3046		/*
3047		 * If the source entry is marked needs_copy, it is already
3048		 * write-protected.
3049		 */
3050		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3051		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3052			pmap_protect(src_map->pmap,
3053			    src_entry->start,
3054			    src_entry->end,
3055			    src_entry->protection & ~VM_PROT_WRITE);
3056		}
3057
3058		/*
3059		 * Make a copy of the object.
3060		 */
3061		size = src_entry->end - src_entry->start;
3062		if ((src_object = src_entry->object.vm_object) != NULL) {
3063			VM_OBJECT_WLOCK(src_object);
3064			charged = ENTRY_CHARGED(src_entry);
3065			if ((src_object->handle == NULL) &&
3066				(src_object->type == OBJT_DEFAULT ||
3067				 src_object->type == OBJT_SWAP)) {
3068				vm_object_collapse(src_object);
3069				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3070					vm_object_split(src_entry);
3071					src_object = src_entry->object.vm_object;
3072				}
3073			}
3074			vm_object_reference_locked(src_object);
3075			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3076			if (src_entry->cred != NULL &&
3077			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3078				KASSERT(src_object->cred == NULL,
3079				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3080				     src_object));
3081				src_object->cred = src_entry->cred;
3082				src_object->charge = size;
3083			}
3084			VM_OBJECT_WUNLOCK(src_object);
3085			dst_entry->object.vm_object = src_object;
3086			if (charged) {
3087				cred = curthread->td_ucred;
3088				crhold(cred);
3089				dst_entry->cred = cred;
3090				*fork_charge += size;
3091				if (!(src_entry->eflags &
3092				      MAP_ENTRY_NEEDS_COPY)) {
3093					crhold(cred);
3094					src_entry->cred = cred;
3095					*fork_charge += size;
3096				}
3097			}
3098			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3099			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3100			dst_entry->offset = src_entry->offset;
3101			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3102				/*
3103				 * MAP_ENTRY_VN_WRITECNT cannot
3104				 * indicate write reference from
3105				 * src_entry, since the entry is
3106				 * marked as needs copy.  Allocate a
3107				 * fake entry that is used to
3108				 * decrement object->un_pager.vnp.writecount
3109				 * at the appropriate time.  Attach
3110				 * fake_entry to the deferred list.
3111				 */
3112				fake_entry = vm_map_entry_create(dst_map);
3113				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3114				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3115				vm_object_reference(src_object);
3116				fake_entry->object.vm_object = src_object;
3117				fake_entry->start = src_entry->start;
3118				fake_entry->end = src_entry->end;
3119				fake_entry->next = curthread->td_map_def_user;
3120				curthread->td_map_def_user = fake_entry;
3121			}
3122		} else {
3123			dst_entry->object.vm_object = NULL;
3124			dst_entry->offset = 0;
3125			if (src_entry->cred != NULL) {
3126				dst_entry->cred = curthread->td_ucred;
3127				crhold(dst_entry->cred);
3128				*fork_charge += size;
3129			}
3130		}
3131
3132		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3133		    dst_entry->end - dst_entry->start, src_entry->start);
3134	} else {
3135		/*
3136		 * We don't want to make writeable wired pages copy-on-write.
3137		 * Immediately copy these pages into the new map by simulating
3138		 * page faults.  The new pages are pageable.
3139		 */
3140		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3141		    fork_charge);
3142	}
3143}
3144
3145/*
3146 * vmspace_map_entry_forked:
3147 * Update the newly-forked vmspace each time a map entry is inherited
3148 * or copied.  The values for vm_dsize and vm_tsize are approximate
3149 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3150 */
3151static void
3152vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3153    vm_map_entry_t entry)
3154{
3155	vm_size_t entrysize;
3156	vm_offset_t newend;
3157
3158	entrysize = entry->end - entry->start;
3159	vm2->vm_map.size += entrysize;
3160	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3161		vm2->vm_ssize += btoc(entrysize);
3162	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3163	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3164		newend = MIN(entry->end,
3165		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3166		vm2->vm_dsize += btoc(newend - entry->start);
3167	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3168	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3169		newend = MIN(entry->end,
3170		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3171		vm2->vm_tsize += btoc(newend - entry->start);
3172	}
3173}
3174
3175/*
3176 * vmspace_fork:
3177 * Create a new process vmspace structure and vm_map
3178 * based on those of an existing process.  The new map
3179 * is based on the old map, according to the inheritance
3180 * values on the regions in that map.
3181 *
3182 * XXX It might be worth coalescing the entries added to the new vmspace.
3183 *
3184 * The source map must not be locked.
3185 */
3186struct vmspace *
3187vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3188{
3189	struct vmspace *vm2;
3190	vm_map_t new_map, old_map;
3191	vm_map_entry_t new_entry, old_entry;
3192	vm_object_t object;
3193	int locked;
3194
3195	old_map = &vm1->vm_map;
3196	/* Copy immutable fields of vm1 to vm2. */
3197	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3198	if (vm2 == NULL)
3199		return (NULL);
3200	vm2->vm_taddr = vm1->vm_taddr;
3201	vm2->vm_daddr = vm1->vm_daddr;
3202	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3203	vm_map_lock(old_map);
3204	if (old_map->busy)
3205		vm_map_wait_busy(old_map);
3206	new_map = &vm2->vm_map;
3207	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3208	KASSERT(locked, ("vmspace_fork: lock failed"));
3209
3210	old_entry = old_map->header.next;
3211
3212	while (old_entry != &old_map->header) {
3213		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3214			panic("vm_map_fork: encountered a submap");
3215
3216		switch (old_entry->inheritance) {
3217		case VM_INHERIT_NONE:
3218			break;
3219
3220		case VM_INHERIT_SHARE:
3221			/*
3222			 * Clone the entry, creating the shared object if necessary.
3223			 */
3224			object = old_entry->object.vm_object;
3225			if (object == NULL) {
3226				object = vm_object_allocate(OBJT_DEFAULT,
3227					atop(old_entry->end - old_entry->start));
3228				old_entry->object.vm_object = object;
3229				old_entry->offset = 0;
3230				if (old_entry->cred != NULL) {
3231					object->cred = old_entry->cred;
3232					object->charge = old_entry->end -
3233					    old_entry->start;
3234					old_entry->cred = NULL;
3235				}
3236			}
3237
3238			/*
3239			 * Add the reference before calling vm_object_shadow
3240			 * to insure that a shadow object is created.
3241			 */
3242			vm_object_reference(object);
3243			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3244				vm_object_shadow(&old_entry->object.vm_object,
3245				    &old_entry->offset,
3246				    old_entry->end - old_entry->start);
3247				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3248				/* Transfer the second reference too. */
3249				vm_object_reference(
3250				    old_entry->object.vm_object);
3251
3252				/*
3253				 * As in vm_map_simplify_entry(), the
3254				 * vnode lock will not be acquired in
3255				 * this call to vm_object_deallocate().
3256				 */
3257				vm_object_deallocate(object);
3258				object = old_entry->object.vm_object;
3259			}
3260			VM_OBJECT_WLOCK(object);
3261			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3262			if (old_entry->cred != NULL) {
3263				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3264				object->cred = old_entry->cred;
3265				object->charge = old_entry->end - old_entry->start;
3266				old_entry->cred = NULL;
3267			}
3268
3269			/*
3270			 * Assert the correct state of the vnode
3271			 * v_writecount while the object is locked, to
3272			 * not relock it later for the assertion
3273			 * correctness.
3274			 */
3275			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3276			    object->type == OBJT_VNODE) {
3277				KASSERT(((struct vnode *)object->handle)->
3278				    v_writecount > 0,
3279				    ("vmspace_fork: v_writecount %p", object));
3280				KASSERT(object->un_pager.vnp.writemappings > 0,
3281				    ("vmspace_fork: vnp.writecount %p",
3282				    object));
3283			}
3284			VM_OBJECT_WUNLOCK(object);
3285
3286			/*
3287			 * Clone the entry, referencing the shared object.
3288			 */
3289			new_entry = vm_map_entry_create(new_map);
3290			*new_entry = *old_entry;
3291			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3292			    MAP_ENTRY_IN_TRANSITION);
3293			new_entry->wiring_thread = NULL;
3294			new_entry->wired_count = 0;
3295			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3296				vnode_pager_update_writecount(object,
3297				    new_entry->start, new_entry->end);
3298			}
3299
3300			/*
3301			 * Insert the entry into the new map -- we know we're
3302			 * inserting at the end of the new map.
3303			 */
3304			vm_map_entry_link(new_map, new_map->header.prev,
3305			    new_entry);
3306			vmspace_map_entry_forked(vm1, vm2, new_entry);
3307
3308			/*
3309			 * Update the physical map
3310			 */
3311			pmap_copy(new_map->pmap, old_map->pmap,
3312			    new_entry->start,
3313			    (old_entry->end - old_entry->start),
3314			    old_entry->start);
3315			break;
3316
3317		case VM_INHERIT_COPY:
3318			/*
3319			 * Clone the entry and link into the map.
3320			 */
3321			new_entry = vm_map_entry_create(new_map);
3322			*new_entry = *old_entry;
3323			/*
3324			 * Copied entry is COW over the old object.
3325			 */
3326			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3327			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3328			new_entry->wiring_thread = NULL;
3329			new_entry->wired_count = 0;
3330			new_entry->object.vm_object = NULL;
3331			new_entry->cred = NULL;
3332			vm_map_entry_link(new_map, new_map->header.prev,
3333			    new_entry);
3334			vmspace_map_entry_forked(vm1, vm2, new_entry);
3335			vm_map_copy_entry(old_map, new_map, old_entry,
3336			    new_entry, fork_charge);
3337			break;
3338		}
3339		old_entry = old_entry->next;
3340	}
3341	/*
3342	 * Use inlined vm_map_unlock() to postpone handling the deferred
3343	 * map entries, which cannot be done until both old_map and
3344	 * new_map locks are released.
3345	 */
3346	sx_xunlock(&old_map->lock);
3347	sx_xunlock(&new_map->lock);
3348	vm_map_process_deferred();
3349
3350	return (vm2);
3351}
3352
3353int
3354vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3355    vm_prot_t prot, vm_prot_t max, int cow)
3356{
3357	vm_size_t growsize, init_ssize;
3358	rlim_t lmemlim, vmemlim;
3359	int rv;
3360
3361	growsize = sgrowsiz;
3362	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3363	vm_map_lock(map);
3364	PROC_LOCK(curproc);
3365	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3366	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3367	PROC_UNLOCK(curproc);
3368	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3369		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3370			rv = KERN_NO_SPACE;
3371			goto out;
3372		}
3373	}
3374	/* If we would blow our VMEM resource limit, no go */
3375	if (map->size + init_ssize > vmemlim) {
3376		rv = KERN_NO_SPACE;
3377		goto out;
3378	}
3379	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3380	    max, cow);
3381out:
3382	vm_map_unlock(map);
3383	return (rv);
3384}
3385
3386static int
3387vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3388    vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3389{
3390	vm_map_entry_t new_entry, prev_entry;
3391	vm_offset_t bot, top;
3392	vm_size_t init_ssize;
3393	int orient, rv;
3394
3395	/*
3396	 * The stack orientation is piggybacked with the cow argument.
3397	 * Extract it into orient and mask the cow argument so that we
3398	 * don't pass it around further.
3399	 * NOTE: We explicitly allow bi-directional stacks.
3400	 */
3401	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3402	KASSERT(orient != 0, ("No stack grow direction"));
3403
3404	if (addrbos < vm_map_min(map) ||
3405	    addrbos > vm_map_max(map) ||
3406	    addrbos + max_ssize < addrbos)
3407		return (KERN_NO_SPACE);
3408
3409	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3410
3411	/* If addr is already mapped, no go */
3412	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3413		return (KERN_NO_SPACE);
3414
3415	/*
3416	 * If we can't accomodate max_ssize in the current mapping, no go.
3417	 * However, we need to be aware that subsequent user mappings might
3418	 * map into the space we have reserved for stack, and currently this
3419	 * space is not protected.
3420	 *
3421	 * Hopefully we will at least detect this condition when we try to
3422	 * grow the stack.
3423	 */
3424	if ((prev_entry->next != &map->header) &&
3425	    (prev_entry->next->start < addrbos + max_ssize))
3426		return (KERN_NO_SPACE);
3427
3428	/*
3429	 * We initially map a stack of only init_ssize.  We will grow as
3430	 * needed later.  Depending on the orientation of the stack (i.e.
3431	 * the grow direction) we either map at the top of the range, the
3432	 * bottom of the range or in the middle.
3433	 *
3434	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3435	 * and cow to be 0.  Possibly we should eliminate these as input
3436	 * parameters, and just pass these values here in the insert call.
3437	 */
3438	if (orient == MAP_STACK_GROWS_DOWN)
3439		bot = addrbos + max_ssize - init_ssize;
3440	else if (orient == MAP_STACK_GROWS_UP)
3441		bot = addrbos;
3442	else
3443		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3444	top = bot + init_ssize;
3445	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3446
3447	/* Now set the avail_ssize amount. */
3448	if (rv == KERN_SUCCESS) {
3449		if (prev_entry != &map->header)
3450			vm_map_clip_end(map, prev_entry, bot);
3451		new_entry = prev_entry->next;
3452		if (new_entry->end != top || new_entry->start != bot)
3453			panic("Bad entry start/end for new stack entry");
3454
3455		new_entry->avail_ssize = max_ssize - init_ssize;
3456		if (orient & MAP_STACK_GROWS_DOWN)
3457			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3458		if (orient & MAP_STACK_GROWS_UP)
3459			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3460	}
3461
3462	return (rv);
3463}
3464
3465static int stack_guard_page = 0;
3466TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3467SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3468    &stack_guard_page, 0,
3469    "Insert stack guard page ahead of the growable segments.");
3470
3471/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3472 * desired address is already mapped, or if we successfully grow
3473 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3474 * stack range (this is strange, but preserves compatibility with
3475 * the grow function in vm_machdep.c).
3476 */
3477int
3478vm_map_growstack(struct proc *p, vm_offset_t addr)
3479{
3480	vm_map_entry_t next_entry, prev_entry;
3481	vm_map_entry_t new_entry, stack_entry;
3482	struct vmspace *vm = p->p_vmspace;
3483	vm_map_t map = &vm->vm_map;
3484	vm_offset_t end;
3485	vm_size_t growsize;
3486	size_t grow_amount, max_grow;
3487	rlim_t lmemlim, stacklim, vmemlim;
3488	int is_procstack, rv;
3489	struct ucred *cred;
3490#ifdef notyet
3491	uint64_t limit;
3492#endif
3493#ifdef RACCT
3494	int error;
3495#endif
3496
3497Retry:
3498	PROC_LOCK(p);
3499	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3500	stacklim = lim_cur(p, RLIMIT_STACK);
3501	vmemlim = lim_cur(p, RLIMIT_VMEM);
3502	PROC_UNLOCK(p);
3503
3504	vm_map_lock_read(map);
3505
3506	/* If addr is already in the entry range, no need to grow.*/
3507	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3508		vm_map_unlock_read(map);
3509		return (KERN_SUCCESS);
3510	}
3511
3512	next_entry = prev_entry->next;
3513	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3514		/*
3515		 * This entry does not grow upwards. Since the address lies
3516		 * beyond this entry, the next entry (if one exists) has to
3517		 * be a downward growable entry. The entry list header is
3518		 * never a growable entry, so it suffices to check the flags.
3519		 */
3520		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3521			vm_map_unlock_read(map);
3522			return (KERN_SUCCESS);
3523		}
3524		stack_entry = next_entry;
3525	} else {
3526		/*
3527		 * This entry grows upward. If the next entry does not at
3528		 * least grow downwards, this is the entry we need to grow.
3529		 * otherwise we have two possible choices and we have to
3530		 * select one.
3531		 */
3532		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3533			/*
3534			 * We have two choices; grow the entry closest to
3535			 * the address to minimize the amount of growth.
3536			 */
3537			if (addr - prev_entry->end <= next_entry->start - addr)
3538				stack_entry = prev_entry;
3539			else
3540				stack_entry = next_entry;
3541		} else
3542			stack_entry = prev_entry;
3543	}
3544
3545	if (stack_entry == next_entry) {
3546		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3547		KASSERT(addr < stack_entry->start, ("foo"));
3548		end = (prev_entry != &map->header) ? prev_entry->end :
3549		    stack_entry->start - stack_entry->avail_ssize;
3550		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3551		max_grow = stack_entry->start - end;
3552	} else {
3553		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3554		KASSERT(addr >= stack_entry->end, ("foo"));
3555		end = (next_entry != &map->header) ? next_entry->start :
3556		    stack_entry->end + stack_entry->avail_ssize;
3557		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3558		max_grow = end - stack_entry->end;
3559	}
3560
3561	if (grow_amount > stack_entry->avail_ssize) {
3562		vm_map_unlock_read(map);
3563		return (KERN_NO_SPACE);
3564	}
3565
3566	/*
3567	 * If there is no longer enough space between the entries nogo, and
3568	 * adjust the available space.  Note: this  should only happen if the
3569	 * user has mapped into the stack area after the stack was created,
3570	 * and is probably an error.
3571	 *
3572	 * This also effectively destroys any guard page the user might have
3573	 * intended by limiting the stack size.
3574	 */
3575	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3576		if (vm_map_lock_upgrade(map))
3577			goto Retry;
3578
3579		stack_entry->avail_ssize = max_grow;
3580
3581		vm_map_unlock(map);
3582		return (KERN_NO_SPACE);
3583	}
3584
3585	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3586
3587	/*
3588	 * If this is the main process stack, see if we're over the stack
3589	 * limit.
3590	 */
3591	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3592		vm_map_unlock_read(map);
3593		return (KERN_NO_SPACE);
3594	}
3595#ifdef RACCT
3596	PROC_LOCK(p);
3597	if (is_procstack &&
3598	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3599		PROC_UNLOCK(p);
3600		vm_map_unlock_read(map);
3601		return (KERN_NO_SPACE);
3602	}
3603	PROC_UNLOCK(p);
3604#endif
3605
3606	/* Round up the grow amount modulo sgrowsiz */
3607	growsize = sgrowsiz;
3608	grow_amount = roundup(grow_amount, growsize);
3609	if (grow_amount > stack_entry->avail_ssize)
3610		grow_amount = stack_entry->avail_ssize;
3611	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3612		grow_amount = trunc_page((vm_size_t)stacklim) -
3613		    ctob(vm->vm_ssize);
3614	}
3615#ifdef notyet
3616	PROC_LOCK(p);
3617	limit = racct_get_available(p, RACCT_STACK);
3618	PROC_UNLOCK(p);
3619	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3620		grow_amount = limit - ctob(vm->vm_ssize);
3621#endif
3622	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3623		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3624			vm_map_unlock_read(map);
3625			rv = KERN_NO_SPACE;
3626			goto out;
3627		}
3628#ifdef RACCT
3629		PROC_LOCK(p);
3630		if (racct_set(p, RACCT_MEMLOCK,
3631		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3632			PROC_UNLOCK(p);
3633			vm_map_unlock_read(map);
3634			rv = KERN_NO_SPACE;
3635			goto out;
3636		}
3637		PROC_UNLOCK(p);
3638#endif
3639	}
3640	/* If we would blow our VMEM resource limit, no go */
3641	if (map->size + grow_amount > vmemlim) {
3642		vm_map_unlock_read(map);
3643		rv = KERN_NO_SPACE;
3644		goto out;
3645	}
3646#ifdef RACCT
3647	PROC_LOCK(p);
3648	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3649		PROC_UNLOCK(p);
3650		vm_map_unlock_read(map);
3651		rv = KERN_NO_SPACE;
3652		goto out;
3653	}
3654	PROC_UNLOCK(p);
3655#endif
3656
3657	if (vm_map_lock_upgrade(map))
3658		goto Retry;
3659
3660	if (stack_entry == next_entry) {
3661		/*
3662		 * Growing downward.
3663		 */
3664		/* Get the preliminary new entry start value */
3665		addr = stack_entry->start - grow_amount;
3666
3667		/*
3668		 * If this puts us into the previous entry, cut back our
3669		 * growth to the available space. Also, see the note above.
3670		 */
3671		if (addr < end) {
3672			stack_entry->avail_ssize = max_grow;
3673			addr = end;
3674			if (stack_guard_page)
3675				addr += PAGE_SIZE;
3676		}
3677
3678		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3679		    next_entry->protection, next_entry->max_protection, 0);
3680
3681		/* Adjust the available stack space by the amount we grew. */
3682		if (rv == KERN_SUCCESS) {
3683			if (prev_entry != &map->header)
3684				vm_map_clip_end(map, prev_entry, addr);
3685			new_entry = prev_entry->next;
3686			KASSERT(new_entry == stack_entry->prev, ("foo"));
3687			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3688			KASSERT(new_entry->start == addr, ("foo"));
3689			grow_amount = new_entry->end - new_entry->start;
3690			new_entry->avail_ssize = stack_entry->avail_ssize -
3691			    grow_amount;
3692			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3693			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3694		}
3695	} else {
3696		/*
3697		 * Growing upward.
3698		 */
3699		addr = stack_entry->end + grow_amount;
3700
3701		/*
3702		 * If this puts us into the next entry, cut back our growth
3703		 * to the available space. Also, see the note above.
3704		 */
3705		if (addr > end) {
3706			stack_entry->avail_ssize = end - stack_entry->end;
3707			addr = end;
3708			if (stack_guard_page)
3709				addr -= PAGE_SIZE;
3710		}
3711
3712		grow_amount = addr - stack_entry->end;
3713		cred = stack_entry->cred;
3714		if (cred == NULL && stack_entry->object.vm_object != NULL)
3715			cred = stack_entry->object.vm_object->cred;
3716		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3717			rv = KERN_NO_SPACE;
3718		/* Grow the underlying object if applicable. */
3719		else if (stack_entry->object.vm_object == NULL ||
3720			 vm_object_coalesce(stack_entry->object.vm_object,
3721			 stack_entry->offset,
3722			 (vm_size_t)(stack_entry->end - stack_entry->start),
3723			 (vm_size_t)grow_amount, cred != NULL)) {
3724			map->size += (addr - stack_entry->end);
3725			/* Update the current entry. */
3726			stack_entry->end = addr;
3727			stack_entry->avail_ssize -= grow_amount;
3728			vm_map_entry_resize_free(map, stack_entry);
3729			rv = KERN_SUCCESS;
3730
3731			if (next_entry != &map->header)
3732				vm_map_clip_start(map, next_entry, addr);
3733		} else
3734			rv = KERN_FAILURE;
3735	}
3736
3737	if (rv == KERN_SUCCESS && is_procstack)
3738		vm->vm_ssize += btoc(grow_amount);
3739
3740	vm_map_unlock(map);
3741
3742	/*
3743	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3744	 */
3745	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3746		vm_map_wire(map,
3747		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3748		    (stack_entry == next_entry) ? stack_entry->start : addr,
3749		    (p->p_flag & P_SYSTEM)
3750		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3751		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3752	}
3753
3754out:
3755#ifdef RACCT
3756	if (rv != KERN_SUCCESS) {
3757		PROC_LOCK(p);
3758		error = racct_set(p, RACCT_VMEM, map->size);
3759		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3760		if (!old_mlock) {
3761			error = racct_set(p, RACCT_MEMLOCK,
3762			    ptoa(pmap_wired_count(map->pmap)));
3763			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3764		}
3765	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3766		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3767		PROC_UNLOCK(p);
3768	}
3769#endif
3770
3771	return (rv);
3772}
3773
3774/*
3775 * Unshare the specified VM space for exec.  If other processes are
3776 * mapped to it, then create a new one.  The new vmspace is null.
3777 */
3778int
3779vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3780{
3781	struct vmspace *oldvmspace = p->p_vmspace;
3782	struct vmspace *newvmspace;
3783
3784	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3785	    ("vmspace_exec recursed"));
3786	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3787	if (newvmspace == NULL)
3788		return (ENOMEM);
3789	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3790	/*
3791	 * This code is written like this for prototype purposes.  The
3792	 * goal is to avoid running down the vmspace here, but let the
3793	 * other process's that are still using the vmspace to finally
3794	 * run it down.  Even though there is little or no chance of blocking
3795	 * here, it is a good idea to keep this form for future mods.
3796	 */
3797	PROC_VMSPACE_LOCK(p);
3798	p->p_vmspace = newvmspace;
3799	PROC_VMSPACE_UNLOCK(p);
3800	if (p == curthread->td_proc)
3801		pmap_activate(curthread);
3802	curthread->td_pflags |= TDP_EXECVMSPC;
3803	return (0);
3804}
3805
3806/*
3807 * Unshare the specified VM space for forcing COW.  This
3808 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3809 */
3810int
3811vmspace_unshare(struct proc *p)
3812{
3813	struct vmspace *oldvmspace = p->p_vmspace;
3814	struct vmspace *newvmspace;
3815	vm_ooffset_t fork_charge;
3816
3817	if (oldvmspace->vm_refcnt == 1)
3818		return (0);
3819	fork_charge = 0;
3820	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3821	if (newvmspace == NULL)
3822		return (ENOMEM);
3823	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3824		vmspace_free(newvmspace);
3825		return (ENOMEM);
3826	}
3827	PROC_VMSPACE_LOCK(p);
3828	p->p_vmspace = newvmspace;
3829	PROC_VMSPACE_UNLOCK(p);
3830	if (p == curthread->td_proc)
3831		pmap_activate(curthread);
3832	vmspace_free(oldvmspace);
3833	return (0);
3834}
3835
3836/*
3837 *	vm_map_lookup:
3838 *
3839 *	Finds the VM object, offset, and
3840 *	protection for a given virtual address in the
3841 *	specified map, assuming a page fault of the
3842 *	type specified.
3843 *
3844 *	Leaves the map in question locked for read; return
3845 *	values are guaranteed until a vm_map_lookup_done
3846 *	call is performed.  Note that the map argument
3847 *	is in/out; the returned map must be used in
3848 *	the call to vm_map_lookup_done.
3849 *
3850 *	A handle (out_entry) is returned for use in
3851 *	vm_map_lookup_done, to make that fast.
3852 *
3853 *	If a lookup is requested with "write protection"
3854 *	specified, the map may be changed to perform virtual
3855 *	copying operations, although the data referenced will
3856 *	remain the same.
3857 */
3858int
3859vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3860	      vm_offset_t vaddr,
3861	      vm_prot_t fault_typea,
3862	      vm_map_entry_t *out_entry,	/* OUT */
3863	      vm_object_t *object,		/* OUT */
3864	      vm_pindex_t *pindex,		/* OUT */
3865	      vm_prot_t *out_prot,		/* OUT */
3866	      boolean_t *wired)			/* OUT */
3867{
3868	vm_map_entry_t entry;
3869	vm_map_t map = *var_map;
3870	vm_prot_t prot;
3871	vm_prot_t fault_type = fault_typea;
3872	vm_object_t eobject;
3873	vm_size_t size;
3874	struct ucred *cred;
3875
3876RetryLookup:;
3877
3878	vm_map_lock_read(map);
3879
3880	/*
3881	 * Lookup the faulting address.
3882	 */
3883	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3884		vm_map_unlock_read(map);
3885		return (KERN_INVALID_ADDRESS);
3886	}
3887
3888	entry = *out_entry;
3889
3890	/*
3891	 * Handle submaps.
3892	 */
3893	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3894		vm_map_t old_map = map;
3895
3896		*var_map = map = entry->object.sub_map;
3897		vm_map_unlock_read(old_map);
3898		goto RetryLookup;
3899	}
3900
3901	/*
3902	 * Check whether this task is allowed to have this page.
3903	 */
3904	prot = entry->protection;
3905	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3906	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3907		vm_map_unlock_read(map);
3908		return (KERN_PROTECTION_FAILURE);
3909	}
3910	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3911	    (entry->eflags & MAP_ENTRY_COW) &&
3912	    (fault_type & VM_PROT_WRITE)) {
3913		vm_map_unlock_read(map);
3914		return (KERN_PROTECTION_FAILURE);
3915	}
3916	if ((fault_typea & VM_PROT_COPY) != 0 &&
3917	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3918	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3919		vm_map_unlock_read(map);
3920		return (KERN_PROTECTION_FAILURE);
3921	}
3922
3923	/*
3924	 * If this page is not pageable, we have to get it for all possible
3925	 * accesses.
3926	 */
3927	*wired = (entry->wired_count != 0);
3928	if (*wired)
3929		fault_type = entry->protection;
3930	size = entry->end - entry->start;
3931	/*
3932	 * If the entry was copy-on-write, we either ...
3933	 */
3934	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3935		/*
3936		 * If we want to write the page, we may as well handle that
3937		 * now since we've got the map locked.
3938		 *
3939		 * If we don't need to write the page, we just demote the
3940		 * permissions allowed.
3941		 */
3942		if ((fault_type & VM_PROT_WRITE) != 0 ||
3943		    (fault_typea & VM_PROT_COPY) != 0) {
3944			/*
3945			 * Make a new object, and place it in the object
3946			 * chain.  Note that no new references have appeared
3947			 * -- one just moved from the map to the new
3948			 * object.
3949			 */
3950			if (vm_map_lock_upgrade(map))
3951				goto RetryLookup;
3952
3953			if (entry->cred == NULL) {
3954				/*
3955				 * The debugger owner is charged for
3956				 * the memory.
3957				 */
3958				cred = curthread->td_ucred;
3959				crhold(cred);
3960				if (!swap_reserve_by_cred(size, cred)) {
3961					crfree(cred);
3962					vm_map_unlock(map);
3963					return (KERN_RESOURCE_SHORTAGE);
3964				}
3965				entry->cred = cred;
3966			}
3967			vm_object_shadow(&entry->object.vm_object,
3968			    &entry->offset, size);
3969			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3970			eobject = entry->object.vm_object;
3971			if (eobject->cred != NULL) {
3972				/*
3973				 * The object was not shadowed.
3974				 */
3975				swap_release_by_cred(size, entry->cred);
3976				crfree(entry->cred);
3977				entry->cred = NULL;
3978			} else if (entry->cred != NULL) {
3979				VM_OBJECT_WLOCK(eobject);
3980				eobject->cred = entry->cred;
3981				eobject->charge = size;
3982				VM_OBJECT_WUNLOCK(eobject);
3983				entry->cred = NULL;
3984			}
3985
3986			vm_map_lock_downgrade(map);
3987		} else {
3988			/*
3989			 * We're attempting to read a copy-on-write page --
3990			 * don't allow writes.
3991			 */
3992			prot &= ~VM_PROT_WRITE;
3993		}
3994	}
3995
3996	/*
3997	 * Create an object if necessary.
3998	 */
3999	if (entry->object.vm_object == NULL &&
4000	    !map->system_map) {
4001		if (vm_map_lock_upgrade(map))
4002			goto RetryLookup;
4003		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4004		    atop(size));
4005		entry->offset = 0;
4006		if (entry->cred != NULL) {
4007			VM_OBJECT_WLOCK(entry->object.vm_object);
4008			entry->object.vm_object->cred = entry->cred;
4009			entry->object.vm_object->charge = size;
4010			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4011			entry->cred = NULL;
4012		}
4013		vm_map_lock_downgrade(map);
4014	}
4015
4016	/*
4017	 * Return the object/offset from this entry.  If the entry was
4018	 * copy-on-write or empty, it has been fixed up.
4019	 */
4020	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4021	*object = entry->object.vm_object;
4022
4023	*out_prot = prot;
4024	return (KERN_SUCCESS);
4025}
4026
4027/*
4028 *	vm_map_lookup_locked:
4029 *
4030 *	Lookup the faulting address.  A version of vm_map_lookup that returns
4031 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4032 */
4033int
4034vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4035		     vm_offset_t vaddr,
4036		     vm_prot_t fault_typea,
4037		     vm_map_entry_t *out_entry,	/* OUT */
4038		     vm_object_t *object,	/* OUT */
4039		     vm_pindex_t *pindex,	/* OUT */
4040		     vm_prot_t *out_prot,	/* OUT */
4041		     boolean_t *wired)		/* OUT */
4042{
4043	vm_map_entry_t entry;
4044	vm_map_t map = *var_map;
4045	vm_prot_t prot;
4046	vm_prot_t fault_type = fault_typea;
4047
4048	/*
4049	 * Lookup the faulting address.
4050	 */
4051	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4052		return (KERN_INVALID_ADDRESS);
4053
4054	entry = *out_entry;
4055
4056	/*
4057	 * Fail if the entry refers to a submap.
4058	 */
4059	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4060		return (KERN_FAILURE);
4061
4062	/*
4063	 * Check whether this task is allowed to have this page.
4064	 */
4065	prot = entry->protection;
4066	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4067	if ((fault_type & prot) != fault_type)
4068		return (KERN_PROTECTION_FAILURE);
4069	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4070	    (entry->eflags & MAP_ENTRY_COW) &&
4071	    (fault_type & VM_PROT_WRITE))
4072		return (KERN_PROTECTION_FAILURE);
4073
4074	/*
4075	 * If this page is not pageable, we have to get it for all possible
4076	 * accesses.
4077	 */
4078	*wired = (entry->wired_count != 0);
4079	if (*wired)
4080		fault_type = entry->protection;
4081
4082	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4083		/*
4084		 * Fail if the entry was copy-on-write for a write fault.
4085		 */
4086		if (fault_type & VM_PROT_WRITE)
4087			return (KERN_FAILURE);
4088		/*
4089		 * We're attempting to read a copy-on-write page --
4090		 * don't allow writes.
4091		 */
4092		prot &= ~VM_PROT_WRITE;
4093	}
4094
4095	/*
4096	 * Fail if an object should be created.
4097	 */
4098	if (entry->object.vm_object == NULL && !map->system_map)
4099		return (KERN_FAILURE);
4100
4101	/*
4102	 * Return the object/offset from this entry.  If the entry was
4103	 * copy-on-write or empty, it has been fixed up.
4104	 */
4105	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4106	*object = entry->object.vm_object;
4107
4108	*out_prot = prot;
4109	return (KERN_SUCCESS);
4110}
4111
4112/*
4113 *	vm_map_lookup_done:
4114 *
4115 *	Releases locks acquired by a vm_map_lookup
4116 *	(according to the handle returned by that lookup).
4117 */
4118void
4119vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4120{
4121	/*
4122	 * Unlock the main-level map
4123	 */
4124	vm_map_unlock_read(map);
4125}
4126
4127#include "opt_ddb.h"
4128#ifdef DDB
4129#include <sys/kernel.h>
4130
4131#include <ddb/ddb.h>
4132
4133static void
4134vm_map_print(vm_map_t map)
4135{
4136	vm_map_entry_t entry;
4137
4138	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4139	    (void *)map,
4140	    (void *)map->pmap, map->nentries, map->timestamp);
4141
4142	db_indent += 2;
4143	for (entry = map->header.next; entry != &map->header;
4144	    entry = entry->next) {
4145		db_iprintf("map entry %p: start=%p, end=%p\n",
4146		    (void *)entry, (void *)entry->start, (void *)entry->end);
4147		{
4148			static char *inheritance_name[4] =
4149			{"share", "copy", "none", "donate_copy"};
4150
4151			db_iprintf(" prot=%x/%x/%s",
4152			    entry->protection,
4153			    entry->max_protection,
4154			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4155			if (entry->wired_count != 0)
4156				db_printf(", wired");
4157		}
4158		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4159			db_printf(", share=%p, offset=0x%jx\n",
4160			    (void *)entry->object.sub_map,
4161			    (uintmax_t)entry->offset);
4162			if ((entry->prev == &map->header) ||
4163			    (entry->prev->object.sub_map !=
4164				entry->object.sub_map)) {
4165				db_indent += 2;
4166				vm_map_print((vm_map_t)entry->object.sub_map);
4167				db_indent -= 2;
4168			}
4169		} else {
4170			if (entry->cred != NULL)
4171				db_printf(", ruid %d", entry->cred->cr_ruid);
4172			db_printf(", object=%p, offset=0x%jx",
4173			    (void *)entry->object.vm_object,
4174			    (uintmax_t)entry->offset);
4175			if (entry->object.vm_object && entry->object.vm_object->cred)
4176				db_printf(", obj ruid %d charge %jx",
4177				    entry->object.vm_object->cred->cr_ruid,
4178				    (uintmax_t)entry->object.vm_object->charge);
4179			if (entry->eflags & MAP_ENTRY_COW)
4180				db_printf(", copy (%s)",
4181				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4182			db_printf("\n");
4183
4184			if ((entry->prev == &map->header) ||
4185			    (entry->prev->object.vm_object !=
4186				entry->object.vm_object)) {
4187				db_indent += 2;
4188				vm_object_print((db_expr_t)(intptr_t)
4189						entry->object.vm_object,
4190						0, 0, (char *)0);
4191				db_indent -= 2;
4192			}
4193		}
4194	}
4195	db_indent -= 2;
4196}
4197
4198DB_SHOW_COMMAND(map, map)
4199{
4200
4201	if (!have_addr) {
4202		db_printf("usage: show map <addr>\n");
4203		return;
4204	}
4205	vm_map_print((vm_map_t)addr);
4206}
4207
4208DB_SHOW_COMMAND(procvm, procvm)
4209{
4210	struct proc *p;
4211
4212	if (have_addr) {
4213		p = (struct proc *) addr;
4214	} else {
4215		p = curproc;
4216	}
4217
4218	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4219	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4220	    (void *)vmspace_pmap(p->p_vmspace));
4221
4222	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4223}
4224
4225#endif /* DDB */
4226