vm_map.c revision 267772
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_map.c 267772 2014-06-23 08:08:22Z kib $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135#ifdef INVARIANTS
136static void vm_map_zdtor(void *mem, int size, void *arg);
137static void vmspace_zdtor(void *mem, int size, void *arg);
138#endif
139static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
140    vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
141    int cow);
142
143#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
144    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
145     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
146
147/*
148 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
149 * stable.
150 */
151#define PROC_VMSPACE_LOCK(p) do { } while (0)
152#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
153
154/*
155 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
156 *
157 *	Asserts that the starting and ending region
158 *	addresses fall within the valid range of the map.
159 */
160#define	VM_MAP_RANGE_CHECK(map, start, end)		\
161		{					\
162		if (start < vm_map_min(map))		\
163			start = vm_map_min(map);	\
164		if (end > vm_map_max(map))		\
165			end = vm_map_max(map);		\
166		if (start > end)			\
167			start = end;			\
168		}
169
170/*
171 *	vm_map_startup:
172 *
173 *	Initialize the vm_map module.  Must be called before
174 *	any other vm_map routines.
175 *
176 *	Map and entry structures are allocated from the general
177 *	purpose memory pool with some exceptions:
178 *
179 *	- The kernel map and kmem submap are allocated statically.
180 *	- Kernel map entries are allocated out of a static pool.
181 *
182 *	These restrictions are necessary since malloc() uses the
183 *	maps and requires map entries.
184 */
185
186void
187vm_map_startup(void)
188{
189	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
190	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
191#ifdef INVARIANTS
192	    vm_map_zdtor,
193#else
194	    NULL,
195#endif
196	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
197	uma_prealloc(mapzone, MAX_KMAP);
198	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
199	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
200	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
201	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
202	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
203	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
204#ifdef INVARIANTS
205	    vmspace_zdtor,
206#else
207	    NULL,
208#endif
209	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
210}
211
212static int
213vmspace_zinit(void *mem, int size, int flags)
214{
215	struct vmspace *vm;
216
217	vm = (struct vmspace *)mem;
218
219	vm->vm_map.pmap = NULL;
220	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
221	PMAP_LOCK_INIT(vmspace_pmap(vm));
222	return (0);
223}
224
225static int
226vm_map_zinit(void *mem, int size, int flags)
227{
228	vm_map_t map;
229
230	map = (vm_map_t)mem;
231	memset(map, 0, sizeof(*map));
232	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
233	sx_init(&map->lock, "vm map (user)");
234	return (0);
235}
236
237#ifdef INVARIANTS
238static void
239vmspace_zdtor(void *mem, int size, void *arg)
240{
241	struct vmspace *vm;
242
243	vm = (struct vmspace *)mem;
244
245	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
246}
247static void
248vm_map_zdtor(void *mem, int size, void *arg)
249{
250	vm_map_t map;
251
252	map = (vm_map_t)mem;
253	KASSERT(map->nentries == 0,
254	    ("map %p nentries == %d on free.",
255	    map, map->nentries));
256	KASSERT(map->size == 0,
257	    ("map %p size == %lu on free.",
258	    map, (unsigned long)map->size));
259}
260#endif	/* INVARIANTS */
261
262/*
263 * Allocate a vmspace structure, including a vm_map and pmap,
264 * and initialize those structures.  The refcnt is set to 1.
265 *
266 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
267 */
268struct vmspace *
269vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
270{
271	struct vmspace *vm;
272
273	vm = uma_zalloc(vmspace_zone, M_WAITOK);
274
275	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
276
277	if (pinit == NULL)
278		pinit = &pmap_pinit;
279
280	if (!pinit(vmspace_pmap(vm))) {
281		uma_zfree(vmspace_zone, vm);
282		return (NULL);
283	}
284	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
285	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
286	vm->vm_refcnt = 1;
287	vm->vm_shm = NULL;
288	vm->vm_swrss = 0;
289	vm->vm_tsize = 0;
290	vm->vm_dsize = 0;
291	vm->vm_ssize = 0;
292	vm->vm_taddr = 0;
293	vm->vm_daddr = 0;
294	vm->vm_maxsaddr = 0;
295	return (vm);
296}
297
298static void
299vmspace_container_reset(struct proc *p)
300{
301
302#ifdef RACCT
303	PROC_LOCK(p);
304	racct_set(p, RACCT_DATA, 0);
305	racct_set(p, RACCT_STACK, 0);
306	racct_set(p, RACCT_RSS, 0);
307	racct_set(p, RACCT_MEMLOCK, 0);
308	racct_set(p, RACCT_VMEM, 0);
309	PROC_UNLOCK(p);
310#endif
311}
312
313static inline void
314vmspace_dofree(struct vmspace *vm)
315{
316
317	CTR1(KTR_VM, "vmspace_free: %p", vm);
318
319	/*
320	 * Make sure any SysV shm is freed, it might not have been in
321	 * exit1().
322	 */
323	shmexit(vm);
324
325	/*
326	 * Lock the map, to wait out all other references to it.
327	 * Delete all of the mappings and pages they hold, then call
328	 * the pmap module to reclaim anything left.
329	 */
330	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
331	    vm->vm_map.max_offset);
332
333	pmap_release(vmspace_pmap(vm));
334	vm->vm_map.pmap = NULL;
335	uma_zfree(vmspace_zone, vm);
336}
337
338void
339vmspace_free(struct vmspace *vm)
340{
341
342	if (vm->vm_refcnt == 0)
343		panic("vmspace_free: attempt to free already freed vmspace");
344
345	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
346		vmspace_dofree(vm);
347}
348
349void
350vmspace_exitfree(struct proc *p)
351{
352	struct vmspace *vm;
353
354	PROC_VMSPACE_LOCK(p);
355	vm = p->p_vmspace;
356	p->p_vmspace = NULL;
357	PROC_VMSPACE_UNLOCK(p);
358	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
359	vmspace_free(vm);
360}
361
362void
363vmspace_exit(struct thread *td)
364{
365	int refcnt;
366	struct vmspace *vm;
367	struct proc *p;
368
369	/*
370	 * Release user portion of address space.
371	 * This releases references to vnodes,
372	 * which could cause I/O if the file has been unlinked.
373	 * Need to do this early enough that we can still sleep.
374	 *
375	 * The last exiting process to reach this point releases as
376	 * much of the environment as it can. vmspace_dofree() is the
377	 * slower fallback in case another process had a temporary
378	 * reference to the vmspace.
379	 */
380
381	p = td->td_proc;
382	vm = p->p_vmspace;
383	atomic_add_int(&vmspace0.vm_refcnt, 1);
384	do {
385		refcnt = vm->vm_refcnt;
386		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
387			/* Switch now since other proc might free vmspace */
388			PROC_VMSPACE_LOCK(p);
389			p->p_vmspace = &vmspace0;
390			PROC_VMSPACE_UNLOCK(p);
391			pmap_activate(td);
392		}
393	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
394	if (refcnt == 1) {
395		if (p->p_vmspace != vm) {
396			/* vmspace not yet freed, switch back */
397			PROC_VMSPACE_LOCK(p);
398			p->p_vmspace = vm;
399			PROC_VMSPACE_UNLOCK(p);
400			pmap_activate(td);
401		}
402		pmap_remove_pages(vmspace_pmap(vm));
403		/* Switch now since this proc will free vmspace */
404		PROC_VMSPACE_LOCK(p);
405		p->p_vmspace = &vmspace0;
406		PROC_VMSPACE_UNLOCK(p);
407		pmap_activate(td);
408		vmspace_dofree(vm);
409	}
410	vmspace_container_reset(p);
411}
412
413/* Acquire reference to vmspace owned by another process. */
414
415struct vmspace *
416vmspace_acquire_ref(struct proc *p)
417{
418	struct vmspace *vm;
419	int refcnt;
420
421	PROC_VMSPACE_LOCK(p);
422	vm = p->p_vmspace;
423	if (vm == NULL) {
424		PROC_VMSPACE_UNLOCK(p);
425		return (NULL);
426	}
427	do {
428		refcnt = vm->vm_refcnt;
429		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
430			PROC_VMSPACE_UNLOCK(p);
431			return (NULL);
432		}
433	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
434	if (vm != p->p_vmspace) {
435		PROC_VMSPACE_UNLOCK(p);
436		vmspace_free(vm);
437		return (NULL);
438	}
439	PROC_VMSPACE_UNLOCK(p);
440	return (vm);
441}
442
443void
444_vm_map_lock(vm_map_t map, const char *file, int line)
445{
446
447	if (map->system_map)
448		mtx_lock_flags_(&map->system_mtx, 0, file, line);
449	else
450		sx_xlock_(&map->lock, file, line);
451	map->timestamp++;
452}
453
454static void
455vm_map_process_deferred(void)
456{
457	struct thread *td;
458	vm_map_entry_t entry, next;
459	vm_object_t object;
460
461	td = curthread;
462	entry = td->td_map_def_user;
463	td->td_map_def_user = NULL;
464	while (entry != NULL) {
465		next = entry->next;
466		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
467			/*
468			 * Decrement the object's writemappings and
469			 * possibly the vnode's v_writecount.
470			 */
471			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
472			    ("Submap with writecount"));
473			object = entry->object.vm_object;
474			KASSERT(object != NULL, ("No object for writecount"));
475			vnode_pager_release_writecount(object, entry->start,
476			    entry->end);
477		}
478		vm_map_entry_deallocate(entry, FALSE);
479		entry = next;
480	}
481}
482
483void
484_vm_map_unlock(vm_map_t map, const char *file, int line)
485{
486
487	if (map->system_map)
488		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
489	else {
490		sx_xunlock_(&map->lock, file, line);
491		vm_map_process_deferred();
492	}
493}
494
495void
496_vm_map_lock_read(vm_map_t map, const char *file, int line)
497{
498
499	if (map->system_map)
500		mtx_lock_flags_(&map->system_mtx, 0, file, line);
501	else
502		sx_slock_(&map->lock, file, line);
503}
504
505void
506_vm_map_unlock_read(vm_map_t map, const char *file, int line)
507{
508
509	if (map->system_map)
510		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
511	else {
512		sx_sunlock_(&map->lock, file, line);
513		vm_map_process_deferred();
514	}
515}
516
517int
518_vm_map_trylock(vm_map_t map, const char *file, int line)
519{
520	int error;
521
522	error = map->system_map ?
523	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
524	    !sx_try_xlock_(&map->lock, file, line);
525	if (error == 0)
526		map->timestamp++;
527	return (error == 0);
528}
529
530int
531_vm_map_trylock_read(vm_map_t map, const char *file, int line)
532{
533	int error;
534
535	error = map->system_map ?
536	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
537	    !sx_try_slock_(&map->lock, file, line);
538	return (error == 0);
539}
540
541/*
542 *	_vm_map_lock_upgrade:	[ internal use only ]
543 *
544 *	Tries to upgrade a read (shared) lock on the specified map to a write
545 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
546 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
547 *	returned without a read or write lock held.
548 *
549 *	Requires that the map be read locked.
550 */
551int
552_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
553{
554	unsigned int last_timestamp;
555
556	if (map->system_map) {
557		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
558	} else {
559		if (!sx_try_upgrade_(&map->lock, file, line)) {
560			last_timestamp = map->timestamp;
561			sx_sunlock_(&map->lock, file, line);
562			vm_map_process_deferred();
563			/*
564			 * If the map's timestamp does not change while the
565			 * map is unlocked, then the upgrade succeeds.
566			 */
567			sx_xlock_(&map->lock, file, line);
568			if (last_timestamp != map->timestamp) {
569				sx_xunlock_(&map->lock, file, line);
570				return (1);
571			}
572		}
573	}
574	map->timestamp++;
575	return (0);
576}
577
578void
579_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
580{
581
582	if (map->system_map) {
583		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
584	} else
585		sx_downgrade_(&map->lock, file, line);
586}
587
588/*
589 *	vm_map_locked:
590 *
591 *	Returns a non-zero value if the caller holds a write (exclusive) lock
592 *	on the specified map and the value "0" otherwise.
593 */
594int
595vm_map_locked(vm_map_t map)
596{
597
598	if (map->system_map)
599		return (mtx_owned(&map->system_mtx));
600	else
601		return (sx_xlocked(&map->lock));
602}
603
604#ifdef INVARIANTS
605static void
606_vm_map_assert_locked(vm_map_t map, const char *file, int line)
607{
608
609	if (map->system_map)
610		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
611	else
612		sx_assert_(&map->lock, SA_XLOCKED, file, line);
613}
614
615#define	VM_MAP_ASSERT_LOCKED(map) \
616    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
617#else
618#define	VM_MAP_ASSERT_LOCKED(map)
619#endif
620
621/*
622 *	_vm_map_unlock_and_wait:
623 *
624 *	Atomically releases the lock on the specified map and puts the calling
625 *	thread to sleep.  The calling thread will remain asleep until either
626 *	vm_map_wakeup() is performed on the map or the specified timeout is
627 *	exceeded.
628 *
629 *	WARNING!  This function does not perform deferred deallocations of
630 *	objects and map	entries.  Therefore, the calling thread is expected to
631 *	reacquire the map lock after reawakening and later perform an ordinary
632 *	unlock operation, such as vm_map_unlock(), before completing its
633 *	operation on the map.
634 */
635int
636_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
637{
638
639	mtx_lock(&map_sleep_mtx);
640	if (map->system_map)
641		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
642	else
643		sx_xunlock_(&map->lock, file, line);
644	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
645	    timo));
646}
647
648/*
649 *	vm_map_wakeup:
650 *
651 *	Awaken any threads that have slept on the map using
652 *	vm_map_unlock_and_wait().
653 */
654void
655vm_map_wakeup(vm_map_t map)
656{
657
658	/*
659	 * Acquire and release map_sleep_mtx to prevent a wakeup()
660	 * from being performed (and lost) between the map unlock
661	 * and the msleep() in _vm_map_unlock_and_wait().
662	 */
663	mtx_lock(&map_sleep_mtx);
664	mtx_unlock(&map_sleep_mtx);
665	wakeup(&map->root);
666}
667
668void
669vm_map_busy(vm_map_t map)
670{
671
672	VM_MAP_ASSERT_LOCKED(map);
673	map->busy++;
674}
675
676void
677vm_map_unbusy(vm_map_t map)
678{
679
680	VM_MAP_ASSERT_LOCKED(map);
681	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
682	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
683		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
684		wakeup(&map->busy);
685	}
686}
687
688void
689vm_map_wait_busy(vm_map_t map)
690{
691
692	VM_MAP_ASSERT_LOCKED(map);
693	while (map->busy) {
694		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
695		if (map->system_map)
696			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
697		else
698			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
699	}
700	map->timestamp++;
701}
702
703long
704vmspace_resident_count(struct vmspace *vmspace)
705{
706	return pmap_resident_count(vmspace_pmap(vmspace));
707}
708
709/*
710 *	vm_map_create:
711 *
712 *	Creates and returns a new empty VM map with
713 *	the given physical map structure, and having
714 *	the given lower and upper address bounds.
715 */
716vm_map_t
717vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
718{
719	vm_map_t result;
720
721	result = uma_zalloc(mapzone, M_WAITOK);
722	CTR1(KTR_VM, "vm_map_create: %p", result);
723	_vm_map_init(result, pmap, min, max);
724	return (result);
725}
726
727/*
728 * Initialize an existing vm_map structure
729 * such as that in the vmspace structure.
730 */
731static void
732_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
733{
734
735	map->header.next = map->header.prev = &map->header;
736	map->needs_wakeup = FALSE;
737	map->system_map = 0;
738	map->pmap = pmap;
739	map->min_offset = min;
740	map->max_offset = max;
741	map->flags = 0;
742	map->root = NULL;
743	map->timestamp = 0;
744	map->busy = 0;
745}
746
747void
748vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
749{
750
751	_vm_map_init(map, pmap, min, max);
752	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
753	sx_init(&map->lock, "user map");
754}
755
756/*
757 *	vm_map_entry_dispose:	[ internal use only ]
758 *
759 *	Inverse of vm_map_entry_create.
760 */
761static void
762vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
763{
764	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
765}
766
767/*
768 *	vm_map_entry_create:	[ internal use only ]
769 *
770 *	Allocates a VM map entry for insertion.
771 *	No entry fields are filled in.
772 */
773static vm_map_entry_t
774vm_map_entry_create(vm_map_t map)
775{
776	vm_map_entry_t new_entry;
777
778	if (map->system_map)
779		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
780	else
781		new_entry = uma_zalloc(mapentzone, M_WAITOK);
782	if (new_entry == NULL)
783		panic("vm_map_entry_create: kernel resources exhausted");
784	return (new_entry);
785}
786
787/*
788 *	vm_map_entry_set_behavior:
789 *
790 *	Set the expected access behavior, either normal, random, or
791 *	sequential.
792 */
793static inline void
794vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
795{
796	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
797	    (behavior & MAP_ENTRY_BEHAV_MASK);
798}
799
800/*
801 *	vm_map_entry_set_max_free:
802 *
803 *	Set the max_free field in a vm_map_entry.
804 */
805static inline void
806vm_map_entry_set_max_free(vm_map_entry_t entry)
807{
808
809	entry->max_free = entry->adj_free;
810	if (entry->left != NULL && entry->left->max_free > entry->max_free)
811		entry->max_free = entry->left->max_free;
812	if (entry->right != NULL && entry->right->max_free > entry->max_free)
813		entry->max_free = entry->right->max_free;
814}
815
816/*
817 *	vm_map_entry_splay:
818 *
819 *	The Sleator and Tarjan top-down splay algorithm with the
820 *	following variation.  Max_free must be computed bottom-up, so
821 *	on the downward pass, maintain the left and right spines in
822 *	reverse order.  Then, make a second pass up each side to fix
823 *	the pointers and compute max_free.  The time bound is O(log n)
824 *	amortized.
825 *
826 *	The new root is the vm_map_entry containing "addr", or else an
827 *	adjacent entry (lower or higher) if addr is not in the tree.
828 *
829 *	The map must be locked, and leaves it so.
830 *
831 *	Returns: the new root.
832 */
833static vm_map_entry_t
834vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
835{
836	vm_map_entry_t llist, rlist;
837	vm_map_entry_t ltree, rtree;
838	vm_map_entry_t y;
839
840	/* Special case of empty tree. */
841	if (root == NULL)
842		return (root);
843
844	/*
845	 * Pass One: Splay down the tree until we find addr or a NULL
846	 * pointer where addr would go.  llist and rlist are the two
847	 * sides in reverse order (bottom-up), with llist linked by
848	 * the right pointer and rlist linked by the left pointer in
849	 * the vm_map_entry.  Wait until Pass Two to set max_free on
850	 * the two spines.
851	 */
852	llist = NULL;
853	rlist = NULL;
854	for (;;) {
855		/* root is never NULL in here. */
856		if (addr < root->start) {
857			y = root->left;
858			if (y == NULL)
859				break;
860			if (addr < y->start && y->left != NULL) {
861				/* Rotate right and put y on rlist. */
862				root->left = y->right;
863				y->right = root;
864				vm_map_entry_set_max_free(root);
865				root = y->left;
866				y->left = rlist;
867				rlist = y;
868			} else {
869				/* Put root on rlist. */
870				root->left = rlist;
871				rlist = root;
872				root = y;
873			}
874		} else if (addr >= root->end) {
875			y = root->right;
876			if (y == NULL)
877				break;
878			if (addr >= y->end && y->right != NULL) {
879				/* Rotate left and put y on llist. */
880				root->right = y->left;
881				y->left = root;
882				vm_map_entry_set_max_free(root);
883				root = y->right;
884				y->right = llist;
885				llist = y;
886			} else {
887				/* Put root on llist. */
888				root->right = llist;
889				llist = root;
890				root = y;
891			}
892		} else
893			break;
894	}
895
896	/*
897	 * Pass Two: Walk back up the two spines, flip the pointers
898	 * and set max_free.  The subtrees of the root go at the
899	 * bottom of llist and rlist.
900	 */
901	ltree = root->left;
902	while (llist != NULL) {
903		y = llist->right;
904		llist->right = ltree;
905		vm_map_entry_set_max_free(llist);
906		ltree = llist;
907		llist = y;
908	}
909	rtree = root->right;
910	while (rlist != NULL) {
911		y = rlist->left;
912		rlist->left = rtree;
913		vm_map_entry_set_max_free(rlist);
914		rtree = rlist;
915		rlist = y;
916	}
917
918	/*
919	 * Final assembly: add ltree and rtree as subtrees of root.
920	 */
921	root->left = ltree;
922	root->right = rtree;
923	vm_map_entry_set_max_free(root);
924
925	return (root);
926}
927
928/*
929 *	vm_map_entry_{un,}link:
930 *
931 *	Insert/remove entries from maps.
932 */
933static void
934vm_map_entry_link(vm_map_t map,
935		  vm_map_entry_t after_where,
936		  vm_map_entry_t entry)
937{
938
939	CTR4(KTR_VM,
940	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
941	    map->nentries, entry, after_where);
942	VM_MAP_ASSERT_LOCKED(map);
943	map->nentries++;
944	entry->prev = after_where;
945	entry->next = after_where->next;
946	entry->next->prev = entry;
947	after_where->next = entry;
948
949	if (after_where != &map->header) {
950		if (after_where != map->root)
951			vm_map_entry_splay(after_where->start, map->root);
952		entry->right = after_where->right;
953		entry->left = after_where;
954		after_where->right = NULL;
955		after_where->adj_free = entry->start - after_where->end;
956		vm_map_entry_set_max_free(after_where);
957	} else {
958		entry->right = map->root;
959		entry->left = NULL;
960	}
961	entry->adj_free = (entry->next == &map->header ? map->max_offset :
962	    entry->next->start) - entry->end;
963	vm_map_entry_set_max_free(entry);
964	map->root = entry;
965}
966
967static void
968vm_map_entry_unlink(vm_map_t map,
969		    vm_map_entry_t entry)
970{
971	vm_map_entry_t next, prev, root;
972
973	VM_MAP_ASSERT_LOCKED(map);
974	if (entry != map->root)
975		vm_map_entry_splay(entry->start, map->root);
976	if (entry->left == NULL)
977		root = entry->right;
978	else {
979		root = vm_map_entry_splay(entry->start, entry->left);
980		root->right = entry->right;
981		root->adj_free = (entry->next == &map->header ? map->max_offset :
982		    entry->next->start) - root->end;
983		vm_map_entry_set_max_free(root);
984	}
985	map->root = root;
986
987	prev = entry->prev;
988	next = entry->next;
989	next->prev = prev;
990	prev->next = next;
991	map->nentries--;
992	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
993	    map->nentries, entry);
994}
995
996/*
997 *	vm_map_entry_resize_free:
998 *
999 *	Recompute the amount of free space following a vm_map_entry
1000 *	and propagate that value up the tree.  Call this function after
1001 *	resizing a map entry in-place, that is, without a call to
1002 *	vm_map_entry_link() or _unlink().
1003 *
1004 *	The map must be locked, and leaves it so.
1005 */
1006static void
1007vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1008{
1009
1010	/*
1011	 * Using splay trees without parent pointers, propagating
1012	 * max_free up the tree is done by moving the entry to the
1013	 * root and making the change there.
1014	 */
1015	if (entry != map->root)
1016		map->root = vm_map_entry_splay(entry->start, map->root);
1017
1018	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1019	    entry->next->start) - entry->end;
1020	vm_map_entry_set_max_free(entry);
1021}
1022
1023/*
1024 *	vm_map_lookup_entry:	[ internal use only ]
1025 *
1026 *	Finds the map entry containing (or
1027 *	immediately preceding) the specified address
1028 *	in the given map; the entry is returned
1029 *	in the "entry" parameter.  The boolean
1030 *	result indicates whether the address is
1031 *	actually contained in the map.
1032 */
1033boolean_t
1034vm_map_lookup_entry(
1035	vm_map_t map,
1036	vm_offset_t address,
1037	vm_map_entry_t *entry)	/* OUT */
1038{
1039	vm_map_entry_t cur;
1040	boolean_t locked;
1041
1042	/*
1043	 * If the map is empty, then the map entry immediately preceding
1044	 * "address" is the map's header.
1045	 */
1046	cur = map->root;
1047	if (cur == NULL)
1048		*entry = &map->header;
1049	else if (address >= cur->start && cur->end > address) {
1050		*entry = cur;
1051		return (TRUE);
1052	} else if ((locked = vm_map_locked(map)) ||
1053	    sx_try_upgrade(&map->lock)) {
1054		/*
1055		 * Splay requires a write lock on the map.  However, it only
1056		 * restructures the binary search tree; it does not otherwise
1057		 * change the map.  Thus, the map's timestamp need not change
1058		 * on a temporary upgrade.
1059		 */
1060		map->root = cur = vm_map_entry_splay(address, cur);
1061		if (!locked)
1062			sx_downgrade(&map->lock);
1063
1064		/*
1065		 * If "address" is contained within a map entry, the new root
1066		 * is that map entry.  Otherwise, the new root is a map entry
1067		 * immediately before or after "address".
1068		 */
1069		if (address >= cur->start) {
1070			*entry = cur;
1071			if (cur->end > address)
1072				return (TRUE);
1073		} else
1074			*entry = cur->prev;
1075	} else
1076		/*
1077		 * Since the map is only locked for read access, perform a
1078		 * standard binary search tree lookup for "address".
1079		 */
1080		for (;;) {
1081			if (address < cur->start) {
1082				if (cur->left == NULL) {
1083					*entry = cur->prev;
1084					break;
1085				}
1086				cur = cur->left;
1087			} else if (cur->end > address) {
1088				*entry = cur;
1089				return (TRUE);
1090			} else {
1091				if (cur->right == NULL) {
1092					*entry = cur;
1093					break;
1094				}
1095				cur = cur->right;
1096			}
1097		}
1098	return (FALSE);
1099}
1100
1101/*
1102 *	vm_map_insert:
1103 *
1104 *	Inserts the given whole VM object into the target
1105 *	map at the specified address range.  The object's
1106 *	size should match that of the address range.
1107 *
1108 *	Requires that the map be locked, and leaves it so.
1109 *
1110 *	If object is non-NULL, ref count must be bumped by caller
1111 *	prior to making call to account for the new entry.
1112 */
1113int
1114vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1115	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1116	      int cow)
1117{
1118	vm_map_entry_t new_entry;
1119	vm_map_entry_t prev_entry;
1120	vm_map_entry_t temp_entry;
1121	vm_eflags_t protoeflags;
1122	struct ucred *cred;
1123	vm_inherit_t inheritance;
1124	boolean_t charge_prev_obj;
1125
1126	VM_MAP_ASSERT_LOCKED(map);
1127
1128	/*
1129	 * Check that the start and end points are not bogus.
1130	 */
1131	if ((start < map->min_offset) || (end > map->max_offset) ||
1132	    (start >= end))
1133		return (KERN_INVALID_ADDRESS);
1134
1135	/*
1136	 * Find the entry prior to the proposed starting address; if it's part
1137	 * of an existing entry, this range is bogus.
1138	 */
1139	if (vm_map_lookup_entry(map, start, &temp_entry))
1140		return (KERN_NO_SPACE);
1141
1142	prev_entry = temp_entry;
1143
1144	/*
1145	 * Assert that the next entry doesn't overlap the end point.
1146	 */
1147	if ((prev_entry->next != &map->header) &&
1148	    (prev_entry->next->start < end))
1149		return (KERN_NO_SPACE);
1150
1151	protoeflags = 0;
1152	charge_prev_obj = FALSE;
1153
1154	if (cow & MAP_COPY_ON_WRITE)
1155		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1156
1157	if (cow & MAP_NOFAULT) {
1158		protoeflags |= MAP_ENTRY_NOFAULT;
1159
1160		KASSERT(object == NULL,
1161			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1162	}
1163	if (cow & MAP_DISABLE_SYNCER)
1164		protoeflags |= MAP_ENTRY_NOSYNC;
1165	if (cow & MAP_DISABLE_COREDUMP)
1166		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1167	if (cow & MAP_VN_WRITECOUNT)
1168		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1169	if (cow & MAP_INHERIT_SHARE)
1170		inheritance = VM_INHERIT_SHARE;
1171	else
1172		inheritance = VM_INHERIT_DEFAULT;
1173
1174	cred = NULL;
1175	KASSERT((object != kmem_object && object != kernel_object) ||
1176	    ((object == kmem_object || object == kernel_object) &&
1177		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1178	    ("kmem or kernel object and cow"));
1179	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1180		goto charged;
1181	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1182	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1183		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1184			return (KERN_RESOURCE_SHORTAGE);
1185		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1186		    object->cred == NULL,
1187		    ("OVERCOMMIT: vm_map_insert o %p", object));
1188		cred = curthread->td_ucred;
1189		crhold(cred);
1190		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1191			charge_prev_obj = TRUE;
1192	}
1193
1194charged:
1195	/* Expand the kernel pmap, if necessary. */
1196	if (map == kernel_map && end > kernel_vm_end)
1197		pmap_growkernel(end);
1198	if (object != NULL) {
1199		/*
1200		 * OBJ_ONEMAPPING must be cleared unless this mapping
1201		 * is trivially proven to be the only mapping for any
1202		 * of the object's pages.  (Object granularity
1203		 * reference counting is insufficient to recognize
1204		 * aliases with precision.)
1205		 */
1206		VM_OBJECT_WLOCK(object);
1207		if (object->ref_count > 1 || object->shadow_count != 0)
1208			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1209		VM_OBJECT_WUNLOCK(object);
1210	}
1211	else if ((prev_entry != &map->header) &&
1212		 (prev_entry->eflags == protoeflags) &&
1213		 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 &&
1214		 (prev_entry->end == start) &&
1215		 (prev_entry->wired_count == 0) &&
1216		 (prev_entry->cred == cred ||
1217		  (prev_entry->object.vm_object != NULL &&
1218		   (prev_entry->object.vm_object->cred == cred))) &&
1219		   vm_object_coalesce(prev_entry->object.vm_object,
1220		       prev_entry->offset,
1221		       (vm_size_t)(prev_entry->end - prev_entry->start),
1222		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1223		/*
1224		 * We were able to extend the object.  Determine if we
1225		 * can extend the previous map entry to include the
1226		 * new range as well.
1227		 */
1228		if ((prev_entry->inheritance == inheritance) &&
1229		    (prev_entry->protection == prot) &&
1230		    (prev_entry->max_protection == max)) {
1231			map->size += (end - prev_entry->end);
1232			prev_entry->end = end;
1233			vm_map_entry_resize_free(map, prev_entry);
1234			vm_map_simplify_entry(map, prev_entry);
1235			if (cred != NULL)
1236				crfree(cred);
1237			return (KERN_SUCCESS);
1238		}
1239
1240		/*
1241		 * If we can extend the object but cannot extend the
1242		 * map entry, we have to create a new map entry.  We
1243		 * must bump the ref count on the extended object to
1244		 * account for it.  object may be NULL.
1245		 */
1246		object = prev_entry->object.vm_object;
1247		offset = prev_entry->offset +
1248			(prev_entry->end - prev_entry->start);
1249		vm_object_reference(object);
1250		if (cred != NULL && object != NULL && object->cred != NULL &&
1251		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1252			/* Object already accounts for this uid. */
1253			crfree(cred);
1254			cred = NULL;
1255		}
1256	}
1257
1258	/*
1259	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1260	 * in things like the buffer map where we manage kva but do not manage
1261	 * backing objects.
1262	 */
1263
1264	/*
1265	 * Create a new entry
1266	 */
1267	new_entry = vm_map_entry_create(map);
1268	new_entry->start = start;
1269	new_entry->end = end;
1270	new_entry->cred = NULL;
1271
1272	new_entry->eflags = protoeflags;
1273	new_entry->object.vm_object = object;
1274	new_entry->offset = offset;
1275	new_entry->avail_ssize = 0;
1276
1277	new_entry->inheritance = inheritance;
1278	new_entry->protection = prot;
1279	new_entry->max_protection = max;
1280	new_entry->wired_count = 0;
1281	new_entry->wiring_thread = NULL;
1282	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1283	new_entry->next_read = OFF_TO_IDX(offset);
1284
1285	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1286	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1287	new_entry->cred = cred;
1288
1289	/*
1290	 * Insert the new entry into the list
1291	 */
1292	vm_map_entry_link(map, prev_entry, new_entry);
1293	map->size += new_entry->end - new_entry->start;
1294
1295	/*
1296	 * It may be possible to merge the new entry with the next and/or
1297	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1298	 * panic can result from merging such entries.
1299	 */
1300	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1301		vm_map_simplify_entry(map, new_entry);
1302
1303	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1304		vm_map_pmap_enter(map, start, prot,
1305				    object, OFF_TO_IDX(offset), end - start,
1306				    cow & MAP_PREFAULT_PARTIAL);
1307	}
1308
1309	return (KERN_SUCCESS);
1310}
1311
1312/*
1313 *	vm_map_findspace:
1314 *
1315 *	Find the first fit (lowest VM address) for "length" free bytes
1316 *	beginning at address >= start in the given map.
1317 *
1318 *	In a vm_map_entry, "adj_free" is the amount of free space
1319 *	adjacent (higher address) to this entry, and "max_free" is the
1320 *	maximum amount of contiguous free space in its subtree.  This
1321 *	allows finding a free region in one path down the tree, so
1322 *	O(log n) amortized with splay trees.
1323 *
1324 *	The map must be locked, and leaves it so.
1325 *
1326 *	Returns: 0 on success, and starting address in *addr,
1327 *		 1 if insufficient space.
1328 */
1329int
1330vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1331    vm_offset_t *addr)	/* OUT */
1332{
1333	vm_map_entry_t entry;
1334	vm_offset_t st;
1335
1336	/*
1337	 * Request must fit within min/max VM address and must avoid
1338	 * address wrap.
1339	 */
1340	if (start < map->min_offset)
1341		start = map->min_offset;
1342	if (start + length > map->max_offset || start + length < start)
1343		return (1);
1344
1345	/* Empty tree means wide open address space. */
1346	if (map->root == NULL) {
1347		*addr = start;
1348		return (0);
1349	}
1350
1351	/*
1352	 * After splay, if start comes before root node, then there
1353	 * must be a gap from start to the root.
1354	 */
1355	map->root = vm_map_entry_splay(start, map->root);
1356	if (start + length <= map->root->start) {
1357		*addr = start;
1358		return (0);
1359	}
1360
1361	/*
1362	 * Root is the last node that might begin its gap before
1363	 * start, and this is the last comparison where address
1364	 * wrap might be a problem.
1365	 */
1366	st = (start > map->root->end) ? start : map->root->end;
1367	if (length <= map->root->end + map->root->adj_free - st) {
1368		*addr = st;
1369		return (0);
1370	}
1371
1372	/* With max_free, can immediately tell if no solution. */
1373	entry = map->root->right;
1374	if (entry == NULL || length > entry->max_free)
1375		return (1);
1376
1377	/*
1378	 * Search the right subtree in the order: left subtree, root,
1379	 * right subtree (first fit).  The previous splay implies that
1380	 * all regions in the right subtree have addresses > start.
1381	 */
1382	while (entry != NULL) {
1383		if (entry->left != NULL && entry->left->max_free >= length)
1384			entry = entry->left;
1385		else if (entry->adj_free >= length) {
1386			*addr = entry->end;
1387			return (0);
1388		} else
1389			entry = entry->right;
1390	}
1391
1392	/* Can't get here, so panic if we do. */
1393	panic("vm_map_findspace: max_free corrupt");
1394}
1395
1396int
1397vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1398    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1399    vm_prot_t max, int cow)
1400{
1401	vm_offset_t end;
1402	int result;
1403
1404	end = start + length;
1405	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1406	    object == NULL,
1407	    ("vm_map_fixed: non-NULL backing object for stack"));
1408	vm_map_lock(map);
1409	VM_MAP_RANGE_CHECK(map, start, end);
1410	(void) vm_map_delete(map, start, end);
1411	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1412		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1413		    prot, max, cow);
1414	} else {
1415		result = vm_map_insert(map, object, offset, start, end,
1416		    prot, max, cow);
1417	}
1418	vm_map_unlock(map);
1419	return (result);
1420}
1421
1422/*
1423 *	vm_map_find finds an unallocated region in the target address
1424 *	map with the given length.  The search is defined to be
1425 *	first-fit from the specified address; the region found is
1426 *	returned in the same parameter.
1427 *
1428 *	If object is non-NULL, ref count must be bumped by caller
1429 *	prior to making call to account for the new entry.
1430 */
1431int
1432vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1433	    vm_offset_t *addr,	/* IN/OUT */
1434	    vm_size_t length, vm_offset_t max_addr, int find_space,
1435	    vm_prot_t prot, vm_prot_t max, int cow)
1436{
1437	vm_offset_t alignment, initial_addr, start;
1438	int result;
1439
1440	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1441	    object == NULL,
1442	    ("vm_map_find: non-NULL backing object for stack"));
1443	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1444	    (object->flags & OBJ_COLORED) == 0))
1445		find_space = VMFS_ANY_SPACE;
1446	if (find_space >> 8 != 0) {
1447		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1448		alignment = (vm_offset_t)1 << (find_space >> 8);
1449	} else
1450		alignment = 0;
1451	initial_addr = *addr;
1452again:
1453	start = initial_addr;
1454	vm_map_lock(map);
1455	do {
1456		if (find_space != VMFS_NO_SPACE) {
1457			if (vm_map_findspace(map, start, length, addr) ||
1458			    (max_addr != 0 && *addr + length > max_addr)) {
1459				vm_map_unlock(map);
1460				if (find_space == VMFS_OPTIMAL_SPACE) {
1461					find_space = VMFS_ANY_SPACE;
1462					goto again;
1463				}
1464				return (KERN_NO_SPACE);
1465			}
1466			switch (find_space) {
1467			case VMFS_SUPER_SPACE:
1468			case VMFS_OPTIMAL_SPACE:
1469				pmap_align_superpage(object, offset, addr,
1470				    length);
1471				break;
1472			case VMFS_ANY_SPACE:
1473				break;
1474			default:
1475				if ((*addr & (alignment - 1)) != 0) {
1476					*addr &= ~(alignment - 1);
1477					*addr += alignment;
1478				}
1479				break;
1480			}
1481
1482			start = *addr;
1483		}
1484		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1485			result = vm_map_stack_locked(map, start, length,
1486			    sgrowsiz, prot, max, cow);
1487		} else {
1488			result = vm_map_insert(map, object, offset, start,
1489			    start + length, prot, max, cow);
1490		}
1491	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1492	    find_space != VMFS_ANY_SPACE);
1493	vm_map_unlock(map);
1494	return (result);
1495}
1496
1497/*
1498 *	vm_map_simplify_entry:
1499 *
1500 *	Simplify the given map entry by merging with either neighbor.  This
1501 *	routine also has the ability to merge with both neighbors.
1502 *
1503 *	The map must be locked.
1504 *
1505 *	This routine guarentees that the passed entry remains valid (though
1506 *	possibly extended).  When merging, this routine may delete one or
1507 *	both neighbors.
1508 */
1509void
1510vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1511{
1512	vm_map_entry_t next, prev;
1513	vm_size_t prevsize, esize;
1514
1515	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1516		return;
1517
1518	prev = entry->prev;
1519	if (prev != &map->header) {
1520		prevsize = prev->end - prev->start;
1521		if ( (prev->end == entry->start) &&
1522		     (prev->object.vm_object == entry->object.vm_object) &&
1523		     (!prev->object.vm_object ||
1524			(prev->offset + prevsize == entry->offset)) &&
1525		     (prev->eflags == entry->eflags) &&
1526		     (prev->protection == entry->protection) &&
1527		     (prev->max_protection == entry->max_protection) &&
1528		     (prev->inheritance == entry->inheritance) &&
1529		     (prev->wired_count == entry->wired_count) &&
1530		     (prev->cred == entry->cred)) {
1531			vm_map_entry_unlink(map, prev);
1532			entry->start = prev->start;
1533			entry->offset = prev->offset;
1534			if (entry->prev != &map->header)
1535				vm_map_entry_resize_free(map, entry->prev);
1536
1537			/*
1538			 * If the backing object is a vnode object,
1539			 * vm_object_deallocate() calls vrele().
1540			 * However, vrele() does not lock the vnode
1541			 * because the vnode has additional
1542			 * references.  Thus, the map lock can be kept
1543			 * without causing a lock-order reversal with
1544			 * the vnode lock.
1545			 *
1546			 * Since we count the number of virtual page
1547			 * mappings in object->un_pager.vnp.writemappings,
1548			 * the writemappings value should not be adjusted
1549			 * when the entry is disposed of.
1550			 */
1551			if (prev->object.vm_object)
1552				vm_object_deallocate(prev->object.vm_object);
1553			if (prev->cred != NULL)
1554				crfree(prev->cred);
1555			vm_map_entry_dispose(map, prev);
1556		}
1557	}
1558
1559	next = entry->next;
1560	if (next != &map->header) {
1561		esize = entry->end - entry->start;
1562		if ((entry->end == next->start) &&
1563		    (next->object.vm_object == entry->object.vm_object) &&
1564		     (!entry->object.vm_object ||
1565			(entry->offset + esize == next->offset)) &&
1566		    (next->eflags == entry->eflags) &&
1567		    (next->protection == entry->protection) &&
1568		    (next->max_protection == entry->max_protection) &&
1569		    (next->inheritance == entry->inheritance) &&
1570		    (next->wired_count == entry->wired_count) &&
1571		    (next->cred == entry->cred)) {
1572			vm_map_entry_unlink(map, next);
1573			entry->end = next->end;
1574			vm_map_entry_resize_free(map, entry);
1575
1576			/*
1577			 * See comment above.
1578			 */
1579			if (next->object.vm_object)
1580				vm_object_deallocate(next->object.vm_object);
1581			if (next->cred != NULL)
1582				crfree(next->cred);
1583			vm_map_entry_dispose(map, next);
1584		}
1585	}
1586}
1587/*
1588 *	vm_map_clip_start:	[ internal use only ]
1589 *
1590 *	Asserts that the given entry begins at or after
1591 *	the specified address; if necessary,
1592 *	it splits the entry into two.
1593 */
1594#define vm_map_clip_start(map, entry, startaddr) \
1595{ \
1596	if (startaddr > entry->start) \
1597		_vm_map_clip_start(map, entry, startaddr); \
1598}
1599
1600/*
1601 *	This routine is called only when it is known that
1602 *	the entry must be split.
1603 */
1604static void
1605_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1606{
1607	vm_map_entry_t new_entry;
1608
1609	VM_MAP_ASSERT_LOCKED(map);
1610
1611	/*
1612	 * Split off the front portion -- note that we must insert the new
1613	 * entry BEFORE this one, so that this entry has the specified
1614	 * starting address.
1615	 */
1616	vm_map_simplify_entry(map, entry);
1617
1618	/*
1619	 * If there is no object backing this entry, we might as well create
1620	 * one now.  If we defer it, an object can get created after the map
1621	 * is clipped, and individual objects will be created for the split-up
1622	 * map.  This is a bit of a hack, but is also about the best place to
1623	 * put this improvement.
1624	 */
1625	if (entry->object.vm_object == NULL && !map->system_map) {
1626		vm_object_t object;
1627		object = vm_object_allocate(OBJT_DEFAULT,
1628				atop(entry->end - entry->start));
1629		entry->object.vm_object = object;
1630		entry->offset = 0;
1631		if (entry->cred != NULL) {
1632			object->cred = entry->cred;
1633			object->charge = entry->end - entry->start;
1634			entry->cred = NULL;
1635		}
1636	} else if (entry->object.vm_object != NULL &&
1637		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1638		   entry->cred != NULL) {
1639		VM_OBJECT_WLOCK(entry->object.vm_object);
1640		KASSERT(entry->object.vm_object->cred == NULL,
1641		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1642		entry->object.vm_object->cred = entry->cred;
1643		entry->object.vm_object->charge = entry->end - entry->start;
1644		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1645		entry->cred = NULL;
1646	}
1647
1648	new_entry = vm_map_entry_create(map);
1649	*new_entry = *entry;
1650
1651	new_entry->end = start;
1652	entry->offset += (start - entry->start);
1653	entry->start = start;
1654	if (new_entry->cred != NULL)
1655		crhold(entry->cred);
1656
1657	vm_map_entry_link(map, entry->prev, new_entry);
1658
1659	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1660		vm_object_reference(new_entry->object.vm_object);
1661		/*
1662		 * The object->un_pager.vnp.writemappings for the
1663		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1664		 * kept as is here.  The virtual pages are
1665		 * re-distributed among the clipped entries, so the sum is
1666		 * left the same.
1667		 */
1668	}
1669}
1670
1671/*
1672 *	vm_map_clip_end:	[ internal use only ]
1673 *
1674 *	Asserts that the given entry ends at or before
1675 *	the specified address; if necessary,
1676 *	it splits the entry into two.
1677 */
1678#define vm_map_clip_end(map, entry, endaddr) \
1679{ \
1680	if ((endaddr) < (entry->end)) \
1681		_vm_map_clip_end((map), (entry), (endaddr)); \
1682}
1683
1684/*
1685 *	This routine is called only when it is known that
1686 *	the entry must be split.
1687 */
1688static void
1689_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1690{
1691	vm_map_entry_t new_entry;
1692
1693	VM_MAP_ASSERT_LOCKED(map);
1694
1695	/*
1696	 * If there is no object backing this entry, we might as well create
1697	 * one now.  If we defer it, an object can get created after the map
1698	 * is clipped, and individual objects will be created for the split-up
1699	 * map.  This is a bit of a hack, but is also about the best place to
1700	 * put this improvement.
1701	 */
1702	if (entry->object.vm_object == NULL && !map->system_map) {
1703		vm_object_t object;
1704		object = vm_object_allocate(OBJT_DEFAULT,
1705				atop(entry->end - entry->start));
1706		entry->object.vm_object = object;
1707		entry->offset = 0;
1708		if (entry->cred != NULL) {
1709			object->cred = entry->cred;
1710			object->charge = entry->end - entry->start;
1711			entry->cred = NULL;
1712		}
1713	} else if (entry->object.vm_object != NULL &&
1714		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1715		   entry->cred != NULL) {
1716		VM_OBJECT_WLOCK(entry->object.vm_object);
1717		KASSERT(entry->object.vm_object->cred == NULL,
1718		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1719		entry->object.vm_object->cred = entry->cred;
1720		entry->object.vm_object->charge = entry->end - entry->start;
1721		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1722		entry->cred = NULL;
1723	}
1724
1725	/*
1726	 * Create a new entry and insert it AFTER the specified entry
1727	 */
1728	new_entry = vm_map_entry_create(map);
1729	*new_entry = *entry;
1730
1731	new_entry->start = entry->end = end;
1732	new_entry->offset += (end - entry->start);
1733	if (new_entry->cred != NULL)
1734		crhold(entry->cred);
1735
1736	vm_map_entry_link(map, entry, new_entry);
1737
1738	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1739		vm_object_reference(new_entry->object.vm_object);
1740	}
1741}
1742
1743/*
1744 *	vm_map_submap:		[ kernel use only ]
1745 *
1746 *	Mark the given range as handled by a subordinate map.
1747 *
1748 *	This range must have been created with vm_map_find,
1749 *	and no other operations may have been performed on this
1750 *	range prior to calling vm_map_submap.
1751 *
1752 *	Only a limited number of operations can be performed
1753 *	within this rage after calling vm_map_submap:
1754 *		vm_fault
1755 *	[Don't try vm_map_copy!]
1756 *
1757 *	To remove a submapping, one must first remove the
1758 *	range from the superior map, and then destroy the
1759 *	submap (if desired).  [Better yet, don't try it.]
1760 */
1761int
1762vm_map_submap(
1763	vm_map_t map,
1764	vm_offset_t start,
1765	vm_offset_t end,
1766	vm_map_t submap)
1767{
1768	vm_map_entry_t entry;
1769	int result = KERN_INVALID_ARGUMENT;
1770
1771	vm_map_lock(map);
1772
1773	VM_MAP_RANGE_CHECK(map, start, end);
1774
1775	if (vm_map_lookup_entry(map, start, &entry)) {
1776		vm_map_clip_start(map, entry, start);
1777	} else
1778		entry = entry->next;
1779
1780	vm_map_clip_end(map, entry, end);
1781
1782	if ((entry->start == start) && (entry->end == end) &&
1783	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1784	    (entry->object.vm_object == NULL)) {
1785		entry->object.sub_map = submap;
1786		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1787		result = KERN_SUCCESS;
1788	}
1789	vm_map_unlock(map);
1790
1791	return (result);
1792}
1793
1794/*
1795 * The maximum number of pages to map
1796 */
1797#define	MAX_INIT_PT	96
1798
1799/*
1800 *	vm_map_pmap_enter:
1801 *
1802 *	Preload read-only mappings for the specified object's resident pages
1803 *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1804 *	the resident pages within the address range [addr, addr + ulmin(size,
1805 *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1806 *	the specified address range are mapped.  This eliminates many soft
1807 *	faults on process startup and immediately after an mmap(2).  Because
1808 *	these are speculative mappings, cached pages are not reactivated and
1809 *	mapped.
1810 */
1811void
1812vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1813    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1814{
1815	vm_offset_t start;
1816	vm_page_t p, p_start;
1817	vm_pindex_t psize, tmpidx;
1818
1819	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1820		return;
1821	VM_OBJECT_RLOCK(object);
1822	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1823		VM_OBJECT_RUNLOCK(object);
1824		VM_OBJECT_WLOCK(object);
1825		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1826			pmap_object_init_pt(map->pmap, addr, object, pindex,
1827			    size);
1828			VM_OBJECT_WUNLOCK(object);
1829			return;
1830		}
1831		VM_OBJECT_LOCK_DOWNGRADE(object);
1832	}
1833
1834	psize = atop(size);
1835	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1836		psize = MAX_INIT_PT;
1837	if (psize + pindex > object->size) {
1838		if (object->size < pindex) {
1839			VM_OBJECT_RUNLOCK(object);
1840			return;
1841		}
1842		psize = object->size - pindex;
1843	}
1844
1845	start = 0;
1846	p_start = NULL;
1847
1848	p = vm_page_find_least(object, pindex);
1849	/*
1850	 * Assert: the variable p is either (1) the page with the
1851	 * least pindex greater than or equal to the parameter pindex
1852	 * or (2) NULL.
1853	 */
1854	for (;
1855	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1856	     p = TAILQ_NEXT(p, listq)) {
1857		/*
1858		 * don't allow an madvise to blow away our really
1859		 * free pages allocating pv entries.
1860		 */
1861		if ((flags & MAP_PREFAULT_MADVISE) &&
1862		    cnt.v_free_count < cnt.v_free_reserved) {
1863			psize = tmpidx;
1864			break;
1865		}
1866		if (p->valid == VM_PAGE_BITS_ALL) {
1867			if (p_start == NULL) {
1868				start = addr + ptoa(tmpidx);
1869				p_start = p;
1870			}
1871		} else if (p_start != NULL) {
1872			pmap_enter_object(map->pmap, start, addr +
1873			    ptoa(tmpidx), p_start, prot);
1874			p_start = NULL;
1875		}
1876	}
1877	if (p_start != NULL)
1878		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1879		    p_start, prot);
1880	VM_OBJECT_RUNLOCK(object);
1881}
1882
1883/*
1884 *	vm_map_protect:
1885 *
1886 *	Sets the protection of the specified address
1887 *	region in the target map.  If "set_max" is
1888 *	specified, the maximum protection is to be set;
1889 *	otherwise, only the current protection is affected.
1890 */
1891int
1892vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1893	       vm_prot_t new_prot, boolean_t set_max)
1894{
1895	vm_map_entry_t current, entry;
1896	vm_object_t obj;
1897	struct ucred *cred;
1898	vm_prot_t old_prot;
1899
1900	if (start == end)
1901		return (KERN_SUCCESS);
1902
1903	vm_map_lock(map);
1904
1905	VM_MAP_RANGE_CHECK(map, start, end);
1906
1907	if (vm_map_lookup_entry(map, start, &entry)) {
1908		vm_map_clip_start(map, entry, start);
1909	} else {
1910		entry = entry->next;
1911	}
1912
1913	/*
1914	 * Make a first pass to check for protection violations.
1915	 */
1916	current = entry;
1917	while ((current != &map->header) && (current->start < end)) {
1918		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1919			vm_map_unlock(map);
1920			return (KERN_INVALID_ARGUMENT);
1921		}
1922		if ((new_prot & current->max_protection) != new_prot) {
1923			vm_map_unlock(map);
1924			return (KERN_PROTECTION_FAILURE);
1925		}
1926		current = current->next;
1927	}
1928
1929
1930	/*
1931	 * Do an accounting pass for private read-only mappings that
1932	 * now will do cow due to allowed write (e.g. debugger sets
1933	 * breakpoint on text segment)
1934	 */
1935	for (current = entry; (current != &map->header) &&
1936	     (current->start < end); current = current->next) {
1937
1938		vm_map_clip_end(map, current, end);
1939
1940		if (set_max ||
1941		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1942		    ENTRY_CHARGED(current)) {
1943			continue;
1944		}
1945
1946		cred = curthread->td_ucred;
1947		obj = current->object.vm_object;
1948
1949		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1950			if (!swap_reserve(current->end - current->start)) {
1951				vm_map_unlock(map);
1952				return (KERN_RESOURCE_SHORTAGE);
1953			}
1954			crhold(cred);
1955			current->cred = cred;
1956			continue;
1957		}
1958
1959		VM_OBJECT_WLOCK(obj);
1960		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1961			VM_OBJECT_WUNLOCK(obj);
1962			continue;
1963		}
1964
1965		/*
1966		 * Charge for the whole object allocation now, since
1967		 * we cannot distinguish between non-charged and
1968		 * charged clipped mapping of the same object later.
1969		 */
1970		KASSERT(obj->charge == 0,
1971		    ("vm_map_protect: object %p overcharged (entry %p)",
1972		    obj, current));
1973		if (!swap_reserve(ptoa(obj->size))) {
1974			VM_OBJECT_WUNLOCK(obj);
1975			vm_map_unlock(map);
1976			return (KERN_RESOURCE_SHORTAGE);
1977		}
1978
1979		crhold(cred);
1980		obj->cred = cred;
1981		obj->charge = ptoa(obj->size);
1982		VM_OBJECT_WUNLOCK(obj);
1983	}
1984
1985	/*
1986	 * Go back and fix up protections. [Note that clipping is not
1987	 * necessary the second time.]
1988	 */
1989	current = entry;
1990	while ((current != &map->header) && (current->start < end)) {
1991		old_prot = current->protection;
1992
1993		if (set_max)
1994			current->protection =
1995			    (current->max_protection = new_prot) &
1996			    old_prot;
1997		else
1998			current->protection = new_prot;
1999
2000		/*
2001		 * For user wired map entries, the normal lazy evaluation of
2002		 * write access upgrades through soft page faults is
2003		 * undesirable.  Instead, immediately copy any pages that are
2004		 * copy-on-write and enable write access in the physical map.
2005		 */
2006		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2007		    (current->protection & VM_PROT_WRITE) != 0 &&
2008		    (old_prot & VM_PROT_WRITE) == 0)
2009			vm_fault_copy_entry(map, map, current, current, NULL);
2010
2011		/*
2012		 * When restricting access, update the physical map.  Worry
2013		 * about copy-on-write here.
2014		 */
2015		if ((old_prot & ~current->protection) != 0) {
2016#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2017							VM_PROT_ALL)
2018			pmap_protect(map->pmap, current->start,
2019			    current->end,
2020			    current->protection & MASK(current));
2021#undef	MASK
2022		}
2023		vm_map_simplify_entry(map, current);
2024		current = current->next;
2025	}
2026	vm_map_unlock(map);
2027	return (KERN_SUCCESS);
2028}
2029
2030/*
2031 *	vm_map_madvise:
2032 *
2033 *	This routine traverses a processes map handling the madvise
2034 *	system call.  Advisories are classified as either those effecting
2035 *	the vm_map_entry structure, or those effecting the underlying
2036 *	objects.
2037 */
2038int
2039vm_map_madvise(
2040	vm_map_t map,
2041	vm_offset_t start,
2042	vm_offset_t end,
2043	int behav)
2044{
2045	vm_map_entry_t current, entry;
2046	int modify_map = 0;
2047
2048	/*
2049	 * Some madvise calls directly modify the vm_map_entry, in which case
2050	 * we need to use an exclusive lock on the map and we need to perform
2051	 * various clipping operations.  Otherwise we only need a read-lock
2052	 * on the map.
2053	 */
2054	switch(behav) {
2055	case MADV_NORMAL:
2056	case MADV_SEQUENTIAL:
2057	case MADV_RANDOM:
2058	case MADV_NOSYNC:
2059	case MADV_AUTOSYNC:
2060	case MADV_NOCORE:
2061	case MADV_CORE:
2062		if (start == end)
2063			return (KERN_SUCCESS);
2064		modify_map = 1;
2065		vm_map_lock(map);
2066		break;
2067	case MADV_WILLNEED:
2068	case MADV_DONTNEED:
2069	case MADV_FREE:
2070		if (start == end)
2071			return (KERN_SUCCESS);
2072		vm_map_lock_read(map);
2073		break;
2074	default:
2075		return (KERN_INVALID_ARGUMENT);
2076	}
2077
2078	/*
2079	 * Locate starting entry and clip if necessary.
2080	 */
2081	VM_MAP_RANGE_CHECK(map, start, end);
2082
2083	if (vm_map_lookup_entry(map, start, &entry)) {
2084		if (modify_map)
2085			vm_map_clip_start(map, entry, start);
2086	} else {
2087		entry = entry->next;
2088	}
2089
2090	if (modify_map) {
2091		/*
2092		 * madvise behaviors that are implemented in the vm_map_entry.
2093		 *
2094		 * We clip the vm_map_entry so that behavioral changes are
2095		 * limited to the specified address range.
2096		 */
2097		for (current = entry;
2098		     (current != &map->header) && (current->start < end);
2099		     current = current->next
2100		) {
2101			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2102				continue;
2103
2104			vm_map_clip_end(map, current, end);
2105
2106			switch (behav) {
2107			case MADV_NORMAL:
2108				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2109				break;
2110			case MADV_SEQUENTIAL:
2111				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2112				break;
2113			case MADV_RANDOM:
2114				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2115				break;
2116			case MADV_NOSYNC:
2117				current->eflags |= MAP_ENTRY_NOSYNC;
2118				break;
2119			case MADV_AUTOSYNC:
2120				current->eflags &= ~MAP_ENTRY_NOSYNC;
2121				break;
2122			case MADV_NOCORE:
2123				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2124				break;
2125			case MADV_CORE:
2126				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2127				break;
2128			default:
2129				break;
2130			}
2131			vm_map_simplify_entry(map, current);
2132		}
2133		vm_map_unlock(map);
2134	} else {
2135		vm_pindex_t pstart, pend;
2136
2137		/*
2138		 * madvise behaviors that are implemented in the underlying
2139		 * vm_object.
2140		 *
2141		 * Since we don't clip the vm_map_entry, we have to clip
2142		 * the vm_object pindex and count.
2143		 */
2144		for (current = entry;
2145		     (current != &map->header) && (current->start < end);
2146		     current = current->next
2147		) {
2148			vm_offset_t useEnd, useStart;
2149
2150			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2151				continue;
2152
2153			pstart = OFF_TO_IDX(current->offset);
2154			pend = pstart + atop(current->end - current->start);
2155			useStart = current->start;
2156			useEnd = current->end;
2157
2158			if (current->start < start) {
2159				pstart += atop(start - current->start);
2160				useStart = start;
2161			}
2162			if (current->end > end) {
2163				pend -= atop(current->end - end);
2164				useEnd = end;
2165			}
2166
2167			if (pstart >= pend)
2168				continue;
2169
2170			/*
2171			 * Perform the pmap_advise() before clearing
2172			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2173			 * concurrent pmap operation, such as pmap_remove(),
2174			 * could clear a reference in the pmap and set
2175			 * PGA_REFERENCED on the page before the pmap_advise()
2176			 * had completed.  Consequently, the page would appear
2177			 * referenced based upon an old reference that
2178			 * occurred before this pmap_advise() ran.
2179			 */
2180			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2181				pmap_advise(map->pmap, useStart, useEnd,
2182				    behav);
2183
2184			vm_object_madvise(current->object.vm_object, pstart,
2185			    pend, behav);
2186			if (behav == MADV_WILLNEED) {
2187				vm_map_pmap_enter(map,
2188				    useStart,
2189				    current->protection,
2190				    current->object.vm_object,
2191				    pstart,
2192				    ptoa(pend - pstart),
2193				    MAP_PREFAULT_MADVISE
2194				);
2195			}
2196		}
2197		vm_map_unlock_read(map);
2198	}
2199	return (0);
2200}
2201
2202
2203/*
2204 *	vm_map_inherit:
2205 *
2206 *	Sets the inheritance of the specified address
2207 *	range in the target map.  Inheritance
2208 *	affects how the map will be shared with
2209 *	child maps at the time of vmspace_fork.
2210 */
2211int
2212vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2213	       vm_inherit_t new_inheritance)
2214{
2215	vm_map_entry_t entry;
2216	vm_map_entry_t temp_entry;
2217
2218	switch (new_inheritance) {
2219	case VM_INHERIT_NONE:
2220	case VM_INHERIT_COPY:
2221	case VM_INHERIT_SHARE:
2222		break;
2223	default:
2224		return (KERN_INVALID_ARGUMENT);
2225	}
2226	if (start == end)
2227		return (KERN_SUCCESS);
2228	vm_map_lock(map);
2229	VM_MAP_RANGE_CHECK(map, start, end);
2230	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2231		entry = temp_entry;
2232		vm_map_clip_start(map, entry, start);
2233	} else
2234		entry = temp_entry->next;
2235	while ((entry != &map->header) && (entry->start < end)) {
2236		vm_map_clip_end(map, entry, end);
2237		entry->inheritance = new_inheritance;
2238		vm_map_simplify_entry(map, entry);
2239		entry = entry->next;
2240	}
2241	vm_map_unlock(map);
2242	return (KERN_SUCCESS);
2243}
2244
2245/*
2246 *	vm_map_unwire:
2247 *
2248 *	Implements both kernel and user unwiring.
2249 */
2250int
2251vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2252    int flags)
2253{
2254	vm_map_entry_t entry, first_entry, tmp_entry;
2255	vm_offset_t saved_start;
2256	unsigned int last_timestamp;
2257	int rv;
2258	boolean_t need_wakeup, result, user_unwire;
2259
2260	if (start == end)
2261		return (KERN_SUCCESS);
2262	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2263	vm_map_lock(map);
2264	VM_MAP_RANGE_CHECK(map, start, end);
2265	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2266		if (flags & VM_MAP_WIRE_HOLESOK)
2267			first_entry = first_entry->next;
2268		else {
2269			vm_map_unlock(map);
2270			return (KERN_INVALID_ADDRESS);
2271		}
2272	}
2273	last_timestamp = map->timestamp;
2274	entry = first_entry;
2275	while (entry != &map->header && entry->start < end) {
2276		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2277			/*
2278			 * We have not yet clipped the entry.
2279			 */
2280			saved_start = (start >= entry->start) ? start :
2281			    entry->start;
2282			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2283			if (vm_map_unlock_and_wait(map, 0)) {
2284				/*
2285				 * Allow interruption of user unwiring?
2286				 */
2287			}
2288			vm_map_lock(map);
2289			if (last_timestamp+1 != map->timestamp) {
2290				/*
2291				 * Look again for the entry because the map was
2292				 * modified while it was unlocked.
2293				 * Specifically, the entry may have been
2294				 * clipped, merged, or deleted.
2295				 */
2296				if (!vm_map_lookup_entry(map, saved_start,
2297				    &tmp_entry)) {
2298					if (flags & VM_MAP_WIRE_HOLESOK)
2299						tmp_entry = tmp_entry->next;
2300					else {
2301						if (saved_start == start) {
2302							/*
2303							 * First_entry has been deleted.
2304							 */
2305							vm_map_unlock(map);
2306							return (KERN_INVALID_ADDRESS);
2307						}
2308						end = saved_start;
2309						rv = KERN_INVALID_ADDRESS;
2310						goto done;
2311					}
2312				}
2313				if (entry == first_entry)
2314					first_entry = tmp_entry;
2315				else
2316					first_entry = NULL;
2317				entry = tmp_entry;
2318			}
2319			last_timestamp = map->timestamp;
2320			continue;
2321		}
2322		vm_map_clip_start(map, entry, start);
2323		vm_map_clip_end(map, entry, end);
2324		/*
2325		 * Mark the entry in case the map lock is released.  (See
2326		 * above.)
2327		 */
2328		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2329		    entry->wiring_thread == NULL,
2330		    ("owned map entry %p", entry));
2331		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2332		entry->wiring_thread = curthread;
2333		/*
2334		 * Check the map for holes in the specified region.
2335		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2336		 */
2337		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2338		    (entry->end < end && (entry->next == &map->header ||
2339		    entry->next->start > entry->end))) {
2340			end = entry->end;
2341			rv = KERN_INVALID_ADDRESS;
2342			goto done;
2343		}
2344		/*
2345		 * If system unwiring, require that the entry is system wired.
2346		 */
2347		if (!user_unwire &&
2348		    vm_map_entry_system_wired_count(entry) == 0) {
2349			end = entry->end;
2350			rv = KERN_INVALID_ARGUMENT;
2351			goto done;
2352		}
2353		entry = entry->next;
2354	}
2355	rv = KERN_SUCCESS;
2356done:
2357	need_wakeup = FALSE;
2358	if (first_entry == NULL) {
2359		result = vm_map_lookup_entry(map, start, &first_entry);
2360		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2361			first_entry = first_entry->next;
2362		else
2363			KASSERT(result, ("vm_map_unwire: lookup failed"));
2364	}
2365	for (entry = first_entry; entry != &map->header && entry->start < end;
2366	    entry = entry->next) {
2367		/*
2368		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2369		 * space in the unwired region could have been mapped
2370		 * while the map lock was dropped for draining
2371		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2372		 * could be simultaneously wiring this new mapping
2373		 * entry.  Detect these cases and skip any entries
2374		 * marked as in transition by us.
2375		 */
2376		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2377		    entry->wiring_thread != curthread) {
2378			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2379			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2380			continue;
2381		}
2382
2383		if (rv == KERN_SUCCESS && (!user_unwire ||
2384		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2385			if (user_unwire)
2386				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2387			entry->wired_count--;
2388			if (entry->wired_count == 0) {
2389				/*
2390				 * Retain the map lock.
2391				 */
2392				vm_fault_unwire(map, entry->start, entry->end,
2393				    entry->object.vm_object != NULL &&
2394				    (entry->object.vm_object->flags &
2395				    OBJ_FICTITIOUS) != 0);
2396			}
2397		}
2398		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2399		    ("vm_map_unwire: in-transition flag missing %p", entry));
2400		KASSERT(entry->wiring_thread == curthread,
2401		    ("vm_map_unwire: alien wire %p", entry));
2402		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2403		entry->wiring_thread = NULL;
2404		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2405			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2406			need_wakeup = TRUE;
2407		}
2408		vm_map_simplify_entry(map, entry);
2409	}
2410	vm_map_unlock(map);
2411	if (need_wakeup)
2412		vm_map_wakeup(map);
2413	return (rv);
2414}
2415
2416/*
2417 *	vm_map_wire:
2418 *
2419 *	Implements both kernel and user wiring.
2420 */
2421int
2422vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2423    int flags)
2424{
2425	vm_map_entry_t entry, first_entry, tmp_entry;
2426	vm_offset_t saved_end, saved_start;
2427	unsigned int last_timestamp;
2428	int rv;
2429	boolean_t fictitious, need_wakeup, result, user_wire;
2430	vm_prot_t prot;
2431
2432	if (start == end)
2433		return (KERN_SUCCESS);
2434	prot = 0;
2435	if (flags & VM_MAP_WIRE_WRITE)
2436		prot |= VM_PROT_WRITE;
2437	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2438	vm_map_lock(map);
2439	VM_MAP_RANGE_CHECK(map, start, end);
2440	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2441		if (flags & VM_MAP_WIRE_HOLESOK)
2442			first_entry = first_entry->next;
2443		else {
2444			vm_map_unlock(map);
2445			return (KERN_INVALID_ADDRESS);
2446		}
2447	}
2448	last_timestamp = map->timestamp;
2449	entry = first_entry;
2450	while (entry != &map->header && entry->start < end) {
2451		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2452			/*
2453			 * We have not yet clipped the entry.
2454			 */
2455			saved_start = (start >= entry->start) ? start :
2456			    entry->start;
2457			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2458			if (vm_map_unlock_and_wait(map, 0)) {
2459				/*
2460				 * Allow interruption of user wiring?
2461				 */
2462			}
2463			vm_map_lock(map);
2464			if (last_timestamp + 1 != map->timestamp) {
2465				/*
2466				 * Look again for the entry because the map was
2467				 * modified while it was unlocked.
2468				 * Specifically, the entry may have been
2469				 * clipped, merged, or deleted.
2470				 */
2471				if (!vm_map_lookup_entry(map, saved_start,
2472				    &tmp_entry)) {
2473					if (flags & VM_MAP_WIRE_HOLESOK)
2474						tmp_entry = tmp_entry->next;
2475					else {
2476						if (saved_start == start) {
2477							/*
2478							 * first_entry has been deleted.
2479							 */
2480							vm_map_unlock(map);
2481							return (KERN_INVALID_ADDRESS);
2482						}
2483						end = saved_start;
2484						rv = KERN_INVALID_ADDRESS;
2485						goto done;
2486					}
2487				}
2488				if (entry == first_entry)
2489					first_entry = tmp_entry;
2490				else
2491					first_entry = NULL;
2492				entry = tmp_entry;
2493			}
2494			last_timestamp = map->timestamp;
2495			continue;
2496		}
2497		vm_map_clip_start(map, entry, start);
2498		vm_map_clip_end(map, entry, end);
2499		/*
2500		 * Mark the entry in case the map lock is released.  (See
2501		 * above.)
2502		 */
2503		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2504		    entry->wiring_thread == NULL,
2505		    ("owned map entry %p", entry));
2506		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2507		entry->wiring_thread = curthread;
2508		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2509		    || (entry->protection & prot) != prot) {
2510			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2511			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2512				end = entry->end;
2513				rv = KERN_INVALID_ADDRESS;
2514				goto done;
2515			}
2516			goto next_entry;
2517		}
2518		if (entry->wired_count == 0) {
2519			entry->wired_count++;
2520			saved_start = entry->start;
2521			saved_end = entry->end;
2522			fictitious = entry->object.vm_object != NULL &&
2523			    (entry->object.vm_object->flags &
2524			    OBJ_FICTITIOUS) != 0;
2525			/*
2526			 * Release the map lock, relying on the in-transition
2527			 * mark.  Mark the map busy for fork.
2528			 */
2529			vm_map_busy(map);
2530			vm_map_unlock(map);
2531			rv = vm_fault_wire(map, saved_start, saved_end,
2532			    fictitious);
2533			vm_map_lock(map);
2534			vm_map_unbusy(map);
2535			if (last_timestamp + 1 != map->timestamp) {
2536				/*
2537				 * Look again for the entry because the map was
2538				 * modified while it was unlocked.  The entry
2539				 * may have been clipped, but NOT merged or
2540				 * deleted.
2541				 */
2542				result = vm_map_lookup_entry(map, saved_start,
2543				    &tmp_entry);
2544				KASSERT(result, ("vm_map_wire: lookup failed"));
2545				if (entry == first_entry)
2546					first_entry = tmp_entry;
2547				else
2548					first_entry = NULL;
2549				entry = tmp_entry;
2550				while (entry->end < saved_end) {
2551					if (rv != KERN_SUCCESS) {
2552						KASSERT(entry->wired_count == 1,
2553						    ("vm_map_wire: bad count"));
2554						entry->wired_count = -1;
2555					}
2556					entry = entry->next;
2557				}
2558			}
2559			last_timestamp = map->timestamp;
2560			if (rv != KERN_SUCCESS) {
2561				KASSERT(entry->wired_count == 1,
2562				    ("vm_map_wire: bad count"));
2563				/*
2564				 * Assign an out-of-range value to represent
2565				 * the failure to wire this entry.
2566				 */
2567				entry->wired_count = -1;
2568				end = entry->end;
2569				goto done;
2570			}
2571		} else if (!user_wire ||
2572			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2573			entry->wired_count++;
2574		}
2575		/*
2576		 * Check the map for holes in the specified region.
2577		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2578		 */
2579	next_entry:
2580		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2581		    (entry->end < end && (entry->next == &map->header ||
2582		    entry->next->start > entry->end))) {
2583			end = entry->end;
2584			rv = KERN_INVALID_ADDRESS;
2585			goto done;
2586		}
2587		entry = entry->next;
2588	}
2589	rv = KERN_SUCCESS;
2590done:
2591	need_wakeup = FALSE;
2592	if (first_entry == NULL) {
2593		result = vm_map_lookup_entry(map, start, &first_entry);
2594		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2595			first_entry = first_entry->next;
2596		else
2597			KASSERT(result, ("vm_map_wire: lookup failed"));
2598	}
2599	for (entry = first_entry; entry != &map->header && entry->start < end;
2600	    entry = entry->next) {
2601		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2602			goto next_entry_done;
2603
2604		/*
2605		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2606		 * space in the unwired region could have been mapped
2607		 * while the map lock was dropped for faulting in the
2608		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2609		 * Moreover, another thread could be simultaneously
2610		 * wiring this new mapping entry.  Detect these cases
2611		 * and skip any entries marked as in transition by us.
2612		 */
2613		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2614		    entry->wiring_thread != curthread) {
2615			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2616			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2617			continue;
2618		}
2619
2620		if (rv == KERN_SUCCESS) {
2621			if (user_wire)
2622				entry->eflags |= MAP_ENTRY_USER_WIRED;
2623		} else if (entry->wired_count == -1) {
2624			/*
2625			 * Wiring failed on this entry.  Thus, unwiring is
2626			 * unnecessary.
2627			 */
2628			entry->wired_count = 0;
2629		} else {
2630			if (!user_wire ||
2631			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2632				entry->wired_count--;
2633			if (entry->wired_count == 0) {
2634				/*
2635				 * Retain the map lock.
2636				 */
2637				vm_fault_unwire(map, entry->start, entry->end,
2638				    entry->object.vm_object != NULL &&
2639				    (entry->object.vm_object->flags &
2640				    OBJ_FICTITIOUS) != 0);
2641			}
2642		}
2643	next_entry_done:
2644		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2645		    ("vm_map_wire: in-transition flag missing %p", entry));
2646		KASSERT(entry->wiring_thread == curthread,
2647		    ("vm_map_wire: alien wire %p", entry));
2648		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2649		    MAP_ENTRY_WIRE_SKIPPED);
2650		entry->wiring_thread = NULL;
2651		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2652			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2653			need_wakeup = TRUE;
2654		}
2655		vm_map_simplify_entry(map, entry);
2656	}
2657	vm_map_unlock(map);
2658	if (need_wakeup)
2659		vm_map_wakeup(map);
2660	return (rv);
2661}
2662
2663/*
2664 * vm_map_sync
2665 *
2666 * Push any dirty cached pages in the address range to their pager.
2667 * If syncio is TRUE, dirty pages are written synchronously.
2668 * If invalidate is TRUE, any cached pages are freed as well.
2669 *
2670 * If the size of the region from start to end is zero, we are
2671 * supposed to flush all modified pages within the region containing
2672 * start.  Unfortunately, a region can be split or coalesced with
2673 * neighboring regions, making it difficult to determine what the
2674 * original region was.  Therefore, we approximate this requirement by
2675 * flushing the current region containing start.
2676 *
2677 * Returns an error if any part of the specified range is not mapped.
2678 */
2679int
2680vm_map_sync(
2681	vm_map_t map,
2682	vm_offset_t start,
2683	vm_offset_t end,
2684	boolean_t syncio,
2685	boolean_t invalidate)
2686{
2687	vm_map_entry_t current;
2688	vm_map_entry_t entry;
2689	vm_size_t size;
2690	vm_object_t object;
2691	vm_ooffset_t offset;
2692	unsigned int last_timestamp;
2693	boolean_t failed;
2694
2695	vm_map_lock_read(map);
2696	VM_MAP_RANGE_CHECK(map, start, end);
2697	if (!vm_map_lookup_entry(map, start, &entry)) {
2698		vm_map_unlock_read(map);
2699		return (KERN_INVALID_ADDRESS);
2700	} else if (start == end) {
2701		start = entry->start;
2702		end = entry->end;
2703	}
2704	/*
2705	 * Make a first pass to check for user-wired memory and holes.
2706	 */
2707	for (current = entry; current != &map->header && current->start < end;
2708	    current = current->next) {
2709		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2710			vm_map_unlock_read(map);
2711			return (KERN_INVALID_ARGUMENT);
2712		}
2713		if (end > current->end &&
2714		    (current->next == &map->header ||
2715			current->end != current->next->start)) {
2716			vm_map_unlock_read(map);
2717			return (KERN_INVALID_ADDRESS);
2718		}
2719	}
2720
2721	if (invalidate)
2722		pmap_remove(map->pmap, start, end);
2723	failed = FALSE;
2724
2725	/*
2726	 * Make a second pass, cleaning/uncaching pages from the indicated
2727	 * objects as we go.
2728	 */
2729	for (current = entry; current != &map->header && current->start < end;) {
2730		offset = current->offset + (start - current->start);
2731		size = (end <= current->end ? end : current->end) - start;
2732		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2733			vm_map_t smap;
2734			vm_map_entry_t tentry;
2735			vm_size_t tsize;
2736
2737			smap = current->object.sub_map;
2738			vm_map_lock_read(smap);
2739			(void) vm_map_lookup_entry(smap, offset, &tentry);
2740			tsize = tentry->end - offset;
2741			if (tsize < size)
2742				size = tsize;
2743			object = tentry->object.vm_object;
2744			offset = tentry->offset + (offset - tentry->start);
2745			vm_map_unlock_read(smap);
2746		} else {
2747			object = current->object.vm_object;
2748		}
2749		vm_object_reference(object);
2750		last_timestamp = map->timestamp;
2751		vm_map_unlock_read(map);
2752		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2753			failed = TRUE;
2754		start += size;
2755		vm_object_deallocate(object);
2756		vm_map_lock_read(map);
2757		if (last_timestamp == map->timestamp ||
2758		    !vm_map_lookup_entry(map, start, &current))
2759			current = current->next;
2760	}
2761
2762	vm_map_unlock_read(map);
2763	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2764}
2765
2766/*
2767 *	vm_map_entry_unwire:	[ internal use only ]
2768 *
2769 *	Make the region specified by this entry pageable.
2770 *
2771 *	The map in question should be locked.
2772 *	[This is the reason for this routine's existence.]
2773 */
2774static void
2775vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2776{
2777	vm_fault_unwire(map, entry->start, entry->end,
2778	    entry->object.vm_object != NULL &&
2779	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2780	entry->wired_count = 0;
2781}
2782
2783static void
2784vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2785{
2786
2787	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2788		vm_object_deallocate(entry->object.vm_object);
2789	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2790}
2791
2792/*
2793 *	vm_map_entry_delete:	[ internal use only ]
2794 *
2795 *	Deallocate the given entry from the target map.
2796 */
2797static void
2798vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2799{
2800	vm_object_t object;
2801	vm_pindex_t offidxstart, offidxend, count, size1;
2802	vm_ooffset_t size;
2803
2804	vm_map_entry_unlink(map, entry);
2805	object = entry->object.vm_object;
2806	size = entry->end - entry->start;
2807	map->size -= size;
2808
2809	if (entry->cred != NULL) {
2810		swap_release_by_cred(size, entry->cred);
2811		crfree(entry->cred);
2812	}
2813
2814	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2815	    (object != NULL)) {
2816		KASSERT(entry->cred == NULL || object->cred == NULL ||
2817		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2818		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2819		count = OFF_TO_IDX(size);
2820		offidxstart = OFF_TO_IDX(entry->offset);
2821		offidxend = offidxstart + count;
2822		VM_OBJECT_WLOCK(object);
2823		if (object->ref_count != 1 &&
2824		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2825		    object == kernel_object || object == kmem_object)) {
2826			vm_object_collapse(object);
2827
2828			/*
2829			 * The option OBJPR_NOTMAPPED can be passed here
2830			 * because vm_map_delete() already performed
2831			 * pmap_remove() on the only mapping to this range
2832			 * of pages.
2833			 */
2834			vm_object_page_remove(object, offidxstart, offidxend,
2835			    OBJPR_NOTMAPPED);
2836			if (object->type == OBJT_SWAP)
2837				swap_pager_freespace(object, offidxstart, count);
2838			if (offidxend >= object->size &&
2839			    offidxstart < object->size) {
2840				size1 = object->size;
2841				object->size = offidxstart;
2842				if (object->cred != NULL) {
2843					size1 -= object->size;
2844					KASSERT(object->charge >= ptoa(size1),
2845					    ("vm_map_entry_delete: object->charge < 0"));
2846					swap_release_by_cred(ptoa(size1), object->cred);
2847					object->charge -= ptoa(size1);
2848				}
2849			}
2850		}
2851		VM_OBJECT_WUNLOCK(object);
2852	} else
2853		entry->object.vm_object = NULL;
2854	if (map->system_map)
2855		vm_map_entry_deallocate(entry, TRUE);
2856	else {
2857		entry->next = curthread->td_map_def_user;
2858		curthread->td_map_def_user = entry;
2859	}
2860}
2861
2862/*
2863 *	vm_map_delete:	[ internal use only ]
2864 *
2865 *	Deallocates the given address range from the target
2866 *	map.
2867 */
2868int
2869vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2870{
2871	vm_map_entry_t entry;
2872	vm_map_entry_t first_entry;
2873
2874	VM_MAP_ASSERT_LOCKED(map);
2875	if (start == end)
2876		return (KERN_SUCCESS);
2877
2878	/*
2879	 * Find the start of the region, and clip it
2880	 */
2881	if (!vm_map_lookup_entry(map, start, &first_entry))
2882		entry = first_entry->next;
2883	else {
2884		entry = first_entry;
2885		vm_map_clip_start(map, entry, start);
2886	}
2887
2888	/*
2889	 * Step through all entries in this region
2890	 */
2891	while ((entry != &map->header) && (entry->start < end)) {
2892		vm_map_entry_t next;
2893
2894		/*
2895		 * Wait for wiring or unwiring of an entry to complete.
2896		 * Also wait for any system wirings to disappear on
2897		 * user maps.
2898		 */
2899		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2900		    (vm_map_pmap(map) != kernel_pmap &&
2901		    vm_map_entry_system_wired_count(entry) != 0)) {
2902			unsigned int last_timestamp;
2903			vm_offset_t saved_start;
2904			vm_map_entry_t tmp_entry;
2905
2906			saved_start = entry->start;
2907			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2908			last_timestamp = map->timestamp;
2909			(void) vm_map_unlock_and_wait(map, 0);
2910			vm_map_lock(map);
2911			if (last_timestamp + 1 != map->timestamp) {
2912				/*
2913				 * Look again for the entry because the map was
2914				 * modified while it was unlocked.
2915				 * Specifically, the entry may have been
2916				 * clipped, merged, or deleted.
2917				 */
2918				if (!vm_map_lookup_entry(map, saved_start,
2919							 &tmp_entry))
2920					entry = tmp_entry->next;
2921				else {
2922					entry = tmp_entry;
2923					vm_map_clip_start(map, entry,
2924							  saved_start);
2925				}
2926			}
2927			continue;
2928		}
2929		vm_map_clip_end(map, entry, end);
2930
2931		next = entry->next;
2932
2933		/*
2934		 * Unwire before removing addresses from the pmap; otherwise,
2935		 * unwiring will put the entries back in the pmap.
2936		 */
2937		if (entry->wired_count != 0) {
2938			vm_map_entry_unwire(map, entry);
2939		}
2940
2941		pmap_remove(map->pmap, entry->start, entry->end);
2942
2943		/*
2944		 * Delete the entry only after removing all pmap
2945		 * entries pointing to its pages.  (Otherwise, its
2946		 * page frames may be reallocated, and any modify bits
2947		 * will be set in the wrong object!)
2948		 */
2949		vm_map_entry_delete(map, entry);
2950		entry = next;
2951	}
2952	return (KERN_SUCCESS);
2953}
2954
2955/*
2956 *	vm_map_remove:
2957 *
2958 *	Remove the given address range from the target map.
2959 *	This is the exported form of vm_map_delete.
2960 */
2961int
2962vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2963{
2964	int result;
2965
2966	vm_map_lock(map);
2967	VM_MAP_RANGE_CHECK(map, start, end);
2968	result = vm_map_delete(map, start, end);
2969	vm_map_unlock(map);
2970	return (result);
2971}
2972
2973/*
2974 *	vm_map_check_protection:
2975 *
2976 *	Assert that the target map allows the specified privilege on the
2977 *	entire address region given.  The entire region must be allocated.
2978 *
2979 *	WARNING!  This code does not and should not check whether the
2980 *	contents of the region is accessible.  For example a smaller file
2981 *	might be mapped into a larger address space.
2982 *
2983 *	NOTE!  This code is also called by munmap().
2984 *
2985 *	The map must be locked.  A read lock is sufficient.
2986 */
2987boolean_t
2988vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2989			vm_prot_t protection)
2990{
2991	vm_map_entry_t entry;
2992	vm_map_entry_t tmp_entry;
2993
2994	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2995		return (FALSE);
2996	entry = tmp_entry;
2997
2998	while (start < end) {
2999		if (entry == &map->header)
3000			return (FALSE);
3001		/*
3002		 * No holes allowed!
3003		 */
3004		if (start < entry->start)
3005			return (FALSE);
3006		/*
3007		 * Check protection associated with entry.
3008		 */
3009		if ((entry->protection & protection) != protection)
3010			return (FALSE);
3011		/* go to next entry */
3012		start = entry->end;
3013		entry = entry->next;
3014	}
3015	return (TRUE);
3016}
3017
3018/*
3019 *	vm_map_copy_entry:
3020 *
3021 *	Copies the contents of the source entry to the destination
3022 *	entry.  The entries *must* be aligned properly.
3023 */
3024static void
3025vm_map_copy_entry(
3026	vm_map_t src_map,
3027	vm_map_t dst_map,
3028	vm_map_entry_t src_entry,
3029	vm_map_entry_t dst_entry,
3030	vm_ooffset_t *fork_charge)
3031{
3032	vm_object_t src_object;
3033	vm_map_entry_t fake_entry;
3034	vm_offset_t size;
3035	struct ucred *cred;
3036	int charged;
3037
3038	VM_MAP_ASSERT_LOCKED(dst_map);
3039
3040	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3041		return;
3042
3043	if (src_entry->wired_count == 0 ||
3044	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3045		/*
3046		 * If the source entry is marked needs_copy, it is already
3047		 * write-protected.
3048		 */
3049		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3050		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3051			pmap_protect(src_map->pmap,
3052			    src_entry->start,
3053			    src_entry->end,
3054			    src_entry->protection & ~VM_PROT_WRITE);
3055		}
3056
3057		/*
3058		 * Make a copy of the object.
3059		 */
3060		size = src_entry->end - src_entry->start;
3061		if ((src_object = src_entry->object.vm_object) != NULL) {
3062			VM_OBJECT_WLOCK(src_object);
3063			charged = ENTRY_CHARGED(src_entry);
3064			if ((src_object->handle == NULL) &&
3065				(src_object->type == OBJT_DEFAULT ||
3066				 src_object->type == OBJT_SWAP)) {
3067				vm_object_collapse(src_object);
3068				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3069					vm_object_split(src_entry);
3070					src_object = src_entry->object.vm_object;
3071				}
3072			}
3073			vm_object_reference_locked(src_object);
3074			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3075			if (src_entry->cred != NULL &&
3076			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3077				KASSERT(src_object->cred == NULL,
3078				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3079				     src_object));
3080				src_object->cred = src_entry->cred;
3081				src_object->charge = size;
3082			}
3083			VM_OBJECT_WUNLOCK(src_object);
3084			dst_entry->object.vm_object = src_object;
3085			if (charged) {
3086				cred = curthread->td_ucred;
3087				crhold(cred);
3088				dst_entry->cred = cred;
3089				*fork_charge += size;
3090				if (!(src_entry->eflags &
3091				      MAP_ENTRY_NEEDS_COPY)) {
3092					crhold(cred);
3093					src_entry->cred = cred;
3094					*fork_charge += size;
3095				}
3096			}
3097			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3098			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3099			dst_entry->offset = src_entry->offset;
3100			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3101				/*
3102				 * MAP_ENTRY_VN_WRITECNT cannot
3103				 * indicate write reference from
3104				 * src_entry, since the entry is
3105				 * marked as needs copy.  Allocate a
3106				 * fake entry that is used to
3107				 * decrement object->un_pager.vnp.writecount
3108				 * at the appropriate time.  Attach
3109				 * fake_entry to the deferred list.
3110				 */
3111				fake_entry = vm_map_entry_create(dst_map);
3112				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3113				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3114				vm_object_reference(src_object);
3115				fake_entry->object.vm_object = src_object;
3116				fake_entry->start = src_entry->start;
3117				fake_entry->end = src_entry->end;
3118				fake_entry->next = curthread->td_map_def_user;
3119				curthread->td_map_def_user = fake_entry;
3120			}
3121		} else {
3122			dst_entry->object.vm_object = NULL;
3123			dst_entry->offset = 0;
3124			if (src_entry->cred != NULL) {
3125				dst_entry->cred = curthread->td_ucred;
3126				crhold(dst_entry->cred);
3127				*fork_charge += size;
3128			}
3129		}
3130
3131		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3132		    dst_entry->end - dst_entry->start, src_entry->start);
3133	} else {
3134		/*
3135		 * We don't want to make writeable wired pages copy-on-write.
3136		 * Immediately copy these pages into the new map by simulating
3137		 * page faults.  The new pages are pageable.
3138		 */
3139		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3140		    fork_charge);
3141	}
3142}
3143
3144/*
3145 * vmspace_map_entry_forked:
3146 * Update the newly-forked vmspace each time a map entry is inherited
3147 * or copied.  The values for vm_dsize and vm_tsize are approximate
3148 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3149 */
3150static void
3151vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3152    vm_map_entry_t entry)
3153{
3154	vm_size_t entrysize;
3155	vm_offset_t newend;
3156
3157	entrysize = entry->end - entry->start;
3158	vm2->vm_map.size += entrysize;
3159	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3160		vm2->vm_ssize += btoc(entrysize);
3161	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3162	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3163		newend = MIN(entry->end,
3164		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3165		vm2->vm_dsize += btoc(newend - entry->start);
3166	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3167	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3168		newend = MIN(entry->end,
3169		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3170		vm2->vm_tsize += btoc(newend - entry->start);
3171	}
3172}
3173
3174/*
3175 * vmspace_fork:
3176 * Create a new process vmspace structure and vm_map
3177 * based on those of an existing process.  The new map
3178 * is based on the old map, according to the inheritance
3179 * values on the regions in that map.
3180 *
3181 * XXX It might be worth coalescing the entries added to the new vmspace.
3182 *
3183 * The source map must not be locked.
3184 */
3185struct vmspace *
3186vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3187{
3188	struct vmspace *vm2;
3189	vm_map_t new_map, old_map;
3190	vm_map_entry_t new_entry, old_entry;
3191	vm_object_t object;
3192	int locked;
3193
3194	old_map = &vm1->vm_map;
3195	/* Copy immutable fields of vm1 to vm2. */
3196	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3197	if (vm2 == NULL)
3198		return (NULL);
3199	vm2->vm_taddr = vm1->vm_taddr;
3200	vm2->vm_daddr = vm1->vm_daddr;
3201	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3202	vm_map_lock(old_map);
3203	if (old_map->busy)
3204		vm_map_wait_busy(old_map);
3205	new_map = &vm2->vm_map;
3206	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3207	KASSERT(locked, ("vmspace_fork: lock failed"));
3208
3209	old_entry = old_map->header.next;
3210
3211	while (old_entry != &old_map->header) {
3212		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3213			panic("vm_map_fork: encountered a submap");
3214
3215		switch (old_entry->inheritance) {
3216		case VM_INHERIT_NONE:
3217			break;
3218
3219		case VM_INHERIT_SHARE:
3220			/*
3221			 * Clone the entry, creating the shared object if necessary.
3222			 */
3223			object = old_entry->object.vm_object;
3224			if (object == NULL) {
3225				object = vm_object_allocate(OBJT_DEFAULT,
3226					atop(old_entry->end - old_entry->start));
3227				old_entry->object.vm_object = object;
3228				old_entry->offset = 0;
3229				if (old_entry->cred != NULL) {
3230					object->cred = old_entry->cred;
3231					object->charge = old_entry->end -
3232					    old_entry->start;
3233					old_entry->cred = NULL;
3234				}
3235			}
3236
3237			/*
3238			 * Add the reference before calling vm_object_shadow
3239			 * to insure that a shadow object is created.
3240			 */
3241			vm_object_reference(object);
3242			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3243				vm_object_shadow(&old_entry->object.vm_object,
3244				    &old_entry->offset,
3245				    old_entry->end - old_entry->start);
3246				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3247				/* Transfer the second reference too. */
3248				vm_object_reference(
3249				    old_entry->object.vm_object);
3250
3251				/*
3252				 * As in vm_map_simplify_entry(), the
3253				 * vnode lock will not be acquired in
3254				 * this call to vm_object_deallocate().
3255				 */
3256				vm_object_deallocate(object);
3257				object = old_entry->object.vm_object;
3258			}
3259			VM_OBJECT_WLOCK(object);
3260			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3261			if (old_entry->cred != NULL) {
3262				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3263				object->cred = old_entry->cred;
3264				object->charge = old_entry->end - old_entry->start;
3265				old_entry->cred = NULL;
3266			}
3267
3268			/*
3269			 * Assert the correct state of the vnode
3270			 * v_writecount while the object is locked, to
3271			 * not relock it later for the assertion
3272			 * correctness.
3273			 */
3274			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3275			    object->type == OBJT_VNODE) {
3276				KASSERT(((struct vnode *)object->handle)->
3277				    v_writecount > 0,
3278				    ("vmspace_fork: v_writecount %p", object));
3279				KASSERT(object->un_pager.vnp.writemappings > 0,
3280				    ("vmspace_fork: vnp.writecount %p",
3281				    object));
3282			}
3283			VM_OBJECT_WUNLOCK(object);
3284
3285			/*
3286			 * Clone the entry, referencing the shared object.
3287			 */
3288			new_entry = vm_map_entry_create(new_map);
3289			*new_entry = *old_entry;
3290			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3291			    MAP_ENTRY_IN_TRANSITION);
3292			new_entry->wiring_thread = NULL;
3293			new_entry->wired_count = 0;
3294			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3295				vnode_pager_update_writecount(object,
3296				    new_entry->start, new_entry->end);
3297			}
3298
3299			/*
3300			 * Insert the entry into the new map -- we know we're
3301			 * inserting at the end of the new map.
3302			 */
3303			vm_map_entry_link(new_map, new_map->header.prev,
3304			    new_entry);
3305			vmspace_map_entry_forked(vm1, vm2, new_entry);
3306
3307			/*
3308			 * Update the physical map
3309			 */
3310			pmap_copy(new_map->pmap, old_map->pmap,
3311			    new_entry->start,
3312			    (old_entry->end - old_entry->start),
3313			    old_entry->start);
3314			break;
3315
3316		case VM_INHERIT_COPY:
3317			/*
3318			 * Clone the entry and link into the map.
3319			 */
3320			new_entry = vm_map_entry_create(new_map);
3321			*new_entry = *old_entry;
3322			/*
3323			 * Copied entry is COW over the old object.
3324			 */
3325			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3326			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3327			new_entry->wiring_thread = NULL;
3328			new_entry->wired_count = 0;
3329			new_entry->object.vm_object = NULL;
3330			new_entry->cred = NULL;
3331			vm_map_entry_link(new_map, new_map->header.prev,
3332			    new_entry);
3333			vmspace_map_entry_forked(vm1, vm2, new_entry);
3334			vm_map_copy_entry(old_map, new_map, old_entry,
3335			    new_entry, fork_charge);
3336			break;
3337		}
3338		old_entry = old_entry->next;
3339	}
3340	/*
3341	 * Use inlined vm_map_unlock() to postpone handling the deferred
3342	 * map entries, which cannot be done until both old_map and
3343	 * new_map locks are released.
3344	 */
3345	sx_xunlock(&old_map->lock);
3346	sx_xunlock(&new_map->lock);
3347	vm_map_process_deferred();
3348
3349	return (vm2);
3350}
3351
3352int
3353vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3354    vm_prot_t prot, vm_prot_t max, int cow)
3355{
3356	vm_size_t growsize, init_ssize;
3357	rlim_t lmemlim, vmemlim;
3358	int rv;
3359
3360	growsize = sgrowsiz;
3361	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3362	vm_map_lock(map);
3363	PROC_LOCK(curproc);
3364	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3365	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3366	PROC_UNLOCK(curproc);
3367	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3368		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3369			rv = KERN_NO_SPACE;
3370			goto out;
3371		}
3372	}
3373	/* If we would blow our VMEM resource limit, no go */
3374	if (map->size + init_ssize > vmemlim) {
3375		rv = KERN_NO_SPACE;
3376		goto out;
3377	}
3378	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3379	    max, cow);
3380out:
3381	vm_map_unlock(map);
3382	return (rv);
3383}
3384
3385static int
3386vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3387    vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3388{
3389	vm_map_entry_t new_entry, prev_entry;
3390	vm_offset_t bot, top;
3391	vm_size_t init_ssize;
3392	int orient, rv;
3393
3394	/*
3395	 * The stack orientation is piggybacked with the cow argument.
3396	 * Extract it into orient and mask the cow argument so that we
3397	 * don't pass it around further.
3398	 * NOTE: We explicitly allow bi-directional stacks.
3399	 */
3400	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3401	KASSERT(orient != 0, ("No stack grow direction"));
3402
3403	if (addrbos < vm_map_min(map) ||
3404	    addrbos > vm_map_max(map) ||
3405	    addrbos + max_ssize < addrbos)
3406		return (KERN_NO_SPACE);
3407
3408	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3409
3410	/* If addr is already mapped, no go */
3411	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3412		return (KERN_NO_SPACE);
3413
3414	/*
3415	 * If we can't accomodate max_ssize in the current mapping, no go.
3416	 * However, we need to be aware that subsequent user mappings might
3417	 * map into the space we have reserved for stack, and currently this
3418	 * space is not protected.
3419	 *
3420	 * Hopefully we will at least detect this condition when we try to
3421	 * grow the stack.
3422	 */
3423	if ((prev_entry->next != &map->header) &&
3424	    (prev_entry->next->start < addrbos + max_ssize))
3425		return (KERN_NO_SPACE);
3426
3427	/*
3428	 * We initially map a stack of only init_ssize.  We will grow as
3429	 * needed later.  Depending on the orientation of the stack (i.e.
3430	 * the grow direction) we either map at the top of the range, the
3431	 * bottom of the range or in the middle.
3432	 *
3433	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3434	 * and cow to be 0.  Possibly we should eliminate these as input
3435	 * parameters, and just pass these values here in the insert call.
3436	 */
3437	if (orient == MAP_STACK_GROWS_DOWN)
3438		bot = addrbos + max_ssize - init_ssize;
3439	else if (orient == MAP_STACK_GROWS_UP)
3440		bot = addrbos;
3441	else
3442		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3443	top = bot + init_ssize;
3444	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3445
3446	/* Now set the avail_ssize amount. */
3447	if (rv == KERN_SUCCESS) {
3448		if (prev_entry != &map->header)
3449			vm_map_clip_end(map, prev_entry, bot);
3450		new_entry = prev_entry->next;
3451		if (new_entry->end != top || new_entry->start != bot)
3452			panic("Bad entry start/end for new stack entry");
3453
3454		new_entry->avail_ssize = max_ssize - init_ssize;
3455		if (orient & MAP_STACK_GROWS_DOWN)
3456			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3457		if (orient & MAP_STACK_GROWS_UP)
3458			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3459	}
3460
3461	return (rv);
3462}
3463
3464static int stack_guard_page = 0;
3465TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3466SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3467    &stack_guard_page, 0,
3468    "Insert stack guard page ahead of the growable segments.");
3469
3470/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3471 * desired address is already mapped, or if we successfully grow
3472 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3473 * stack range (this is strange, but preserves compatibility with
3474 * the grow function in vm_machdep.c).
3475 */
3476int
3477vm_map_growstack(struct proc *p, vm_offset_t addr)
3478{
3479	vm_map_entry_t next_entry, prev_entry;
3480	vm_map_entry_t new_entry, stack_entry;
3481	struct vmspace *vm = p->p_vmspace;
3482	vm_map_t map = &vm->vm_map;
3483	vm_offset_t end;
3484	vm_size_t growsize;
3485	size_t grow_amount, max_grow;
3486	rlim_t lmemlim, stacklim, vmemlim;
3487	int is_procstack, rv;
3488	struct ucred *cred;
3489#ifdef notyet
3490	uint64_t limit;
3491#endif
3492#ifdef RACCT
3493	int error;
3494#endif
3495
3496Retry:
3497	PROC_LOCK(p);
3498	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3499	stacklim = lim_cur(p, RLIMIT_STACK);
3500	vmemlim = lim_cur(p, RLIMIT_VMEM);
3501	PROC_UNLOCK(p);
3502
3503	vm_map_lock_read(map);
3504
3505	/* If addr is already in the entry range, no need to grow.*/
3506	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3507		vm_map_unlock_read(map);
3508		return (KERN_SUCCESS);
3509	}
3510
3511	next_entry = prev_entry->next;
3512	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3513		/*
3514		 * This entry does not grow upwards. Since the address lies
3515		 * beyond this entry, the next entry (if one exists) has to
3516		 * be a downward growable entry. The entry list header is
3517		 * never a growable entry, so it suffices to check the flags.
3518		 */
3519		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3520			vm_map_unlock_read(map);
3521			return (KERN_SUCCESS);
3522		}
3523		stack_entry = next_entry;
3524	} else {
3525		/*
3526		 * This entry grows upward. If the next entry does not at
3527		 * least grow downwards, this is the entry we need to grow.
3528		 * otherwise we have two possible choices and we have to
3529		 * select one.
3530		 */
3531		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3532			/*
3533			 * We have two choices; grow the entry closest to
3534			 * the address to minimize the amount of growth.
3535			 */
3536			if (addr - prev_entry->end <= next_entry->start - addr)
3537				stack_entry = prev_entry;
3538			else
3539				stack_entry = next_entry;
3540		} else
3541			stack_entry = prev_entry;
3542	}
3543
3544	if (stack_entry == next_entry) {
3545		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3546		KASSERT(addr < stack_entry->start, ("foo"));
3547		end = (prev_entry != &map->header) ? prev_entry->end :
3548		    stack_entry->start - stack_entry->avail_ssize;
3549		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3550		max_grow = stack_entry->start - end;
3551	} else {
3552		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3553		KASSERT(addr >= stack_entry->end, ("foo"));
3554		end = (next_entry != &map->header) ? next_entry->start :
3555		    stack_entry->end + stack_entry->avail_ssize;
3556		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3557		max_grow = end - stack_entry->end;
3558	}
3559
3560	if (grow_amount > stack_entry->avail_ssize) {
3561		vm_map_unlock_read(map);
3562		return (KERN_NO_SPACE);
3563	}
3564
3565	/*
3566	 * If there is no longer enough space between the entries nogo, and
3567	 * adjust the available space.  Note: this  should only happen if the
3568	 * user has mapped into the stack area after the stack was created,
3569	 * and is probably an error.
3570	 *
3571	 * This also effectively destroys any guard page the user might have
3572	 * intended by limiting the stack size.
3573	 */
3574	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3575		if (vm_map_lock_upgrade(map))
3576			goto Retry;
3577
3578		stack_entry->avail_ssize = max_grow;
3579
3580		vm_map_unlock(map);
3581		return (KERN_NO_SPACE);
3582	}
3583
3584	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3585
3586	/*
3587	 * If this is the main process stack, see if we're over the stack
3588	 * limit.
3589	 */
3590	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3591		vm_map_unlock_read(map);
3592		return (KERN_NO_SPACE);
3593	}
3594#ifdef RACCT
3595	PROC_LOCK(p);
3596	if (is_procstack &&
3597	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3598		PROC_UNLOCK(p);
3599		vm_map_unlock_read(map);
3600		return (KERN_NO_SPACE);
3601	}
3602	PROC_UNLOCK(p);
3603#endif
3604
3605	/* Round up the grow amount modulo sgrowsiz */
3606	growsize = sgrowsiz;
3607	grow_amount = roundup(grow_amount, growsize);
3608	if (grow_amount > stack_entry->avail_ssize)
3609		grow_amount = stack_entry->avail_ssize;
3610	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3611		grow_amount = trunc_page((vm_size_t)stacklim) -
3612		    ctob(vm->vm_ssize);
3613	}
3614#ifdef notyet
3615	PROC_LOCK(p);
3616	limit = racct_get_available(p, RACCT_STACK);
3617	PROC_UNLOCK(p);
3618	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3619		grow_amount = limit - ctob(vm->vm_ssize);
3620#endif
3621	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3622		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3623			vm_map_unlock_read(map);
3624			rv = KERN_NO_SPACE;
3625			goto out;
3626		}
3627#ifdef RACCT
3628		PROC_LOCK(p);
3629		if (racct_set(p, RACCT_MEMLOCK,
3630		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3631			PROC_UNLOCK(p);
3632			vm_map_unlock_read(map);
3633			rv = KERN_NO_SPACE;
3634			goto out;
3635		}
3636		PROC_UNLOCK(p);
3637#endif
3638	}
3639	/* If we would blow our VMEM resource limit, no go */
3640	if (map->size + grow_amount > vmemlim) {
3641		vm_map_unlock_read(map);
3642		rv = KERN_NO_SPACE;
3643		goto out;
3644	}
3645#ifdef RACCT
3646	PROC_LOCK(p);
3647	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3648		PROC_UNLOCK(p);
3649		vm_map_unlock_read(map);
3650		rv = KERN_NO_SPACE;
3651		goto out;
3652	}
3653	PROC_UNLOCK(p);
3654#endif
3655
3656	if (vm_map_lock_upgrade(map))
3657		goto Retry;
3658
3659	if (stack_entry == next_entry) {
3660		/*
3661		 * Growing downward.
3662		 */
3663		/* Get the preliminary new entry start value */
3664		addr = stack_entry->start - grow_amount;
3665
3666		/*
3667		 * If this puts us into the previous entry, cut back our
3668		 * growth to the available space. Also, see the note above.
3669		 */
3670		if (addr < end) {
3671			stack_entry->avail_ssize = max_grow;
3672			addr = end;
3673			if (stack_guard_page)
3674				addr += PAGE_SIZE;
3675		}
3676
3677		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3678		    next_entry->protection, next_entry->max_protection, 0);
3679
3680		/* Adjust the available stack space by the amount we grew. */
3681		if (rv == KERN_SUCCESS) {
3682			if (prev_entry != &map->header)
3683				vm_map_clip_end(map, prev_entry, addr);
3684			new_entry = prev_entry->next;
3685			KASSERT(new_entry == stack_entry->prev, ("foo"));
3686			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3687			KASSERT(new_entry->start == addr, ("foo"));
3688			grow_amount = new_entry->end - new_entry->start;
3689			new_entry->avail_ssize = stack_entry->avail_ssize -
3690			    grow_amount;
3691			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3692			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3693		}
3694	} else {
3695		/*
3696		 * Growing upward.
3697		 */
3698		addr = stack_entry->end + grow_amount;
3699
3700		/*
3701		 * If this puts us into the next entry, cut back our growth
3702		 * to the available space. Also, see the note above.
3703		 */
3704		if (addr > end) {
3705			stack_entry->avail_ssize = end - stack_entry->end;
3706			addr = end;
3707			if (stack_guard_page)
3708				addr -= PAGE_SIZE;
3709		}
3710
3711		grow_amount = addr - stack_entry->end;
3712		cred = stack_entry->cred;
3713		if (cred == NULL && stack_entry->object.vm_object != NULL)
3714			cred = stack_entry->object.vm_object->cred;
3715		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3716			rv = KERN_NO_SPACE;
3717		/* Grow the underlying object if applicable. */
3718		else if (stack_entry->object.vm_object == NULL ||
3719			 vm_object_coalesce(stack_entry->object.vm_object,
3720			 stack_entry->offset,
3721			 (vm_size_t)(stack_entry->end - stack_entry->start),
3722			 (vm_size_t)grow_amount, cred != NULL)) {
3723			map->size += (addr - stack_entry->end);
3724			/* Update the current entry. */
3725			stack_entry->end = addr;
3726			stack_entry->avail_ssize -= grow_amount;
3727			vm_map_entry_resize_free(map, stack_entry);
3728			rv = KERN_SUCCESS;
3729
3730			if (next_entry != &map->header)
3731				vm_map_clip_start(map, next_entry, addr);
3732		} else
3733			rv = KERN_FAILURE;
3734	}
3735
3736	if (rv == KERN_SUCCESS && is_procstack)
3737		vm->vm_ssize += btoc(grow_amount);
3738
3739	vm_map_unlock(map);
3740
3741	/*
3742	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3743	 */
3744	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3745		vm_map_wire(map,
3746		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3747		    (stack_entry == next_entry) ? stack_entry->start : addr,
3748		    (p->p_flag & P_SYSTEM)
3749		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3750		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3751	}
3752
3753out:
3754#ifdef RACCT
3755	if (rv != KERN_SUCCESS) {
3756		PROC_LOCK(p);
3757		error = racct_set(p, RACCT_VMEM, map->size);
3758		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3759		if (!old_mlock) {
3760			error = racct_set(p, RACCT_MEMLOCK,
3761			    ptoa(pmap_wired_count(map->pmap)));
3762			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3763		}
3764	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3765		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3766		PROC_UNLOCK(p);
3767	}
3768#endif
3769
3770	return (rv);
3771}
3772
3773/*
3774 * Unshare the specified VM space for exec.  If other processes are
3775 * mapped to it, then create a new one.  The new vmspace is null.
3776 */
3777int
3778vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3779{
3780	struct vmspace *oldvmspace = p->p_vmspace;
3781	struct vmspace *newvmspace;
3782
3783	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3784	    ("vmspace_exec recursed"));
3785	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3786	if (newvmspace == NULL)
3787		return (ENOMEM);
3788	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3789	/*
3790	 * This code is written like this for prototype purposes.  The
3791	 * goal is to avoid running down the vmspace here, but let the
3792	 * other process's that are still using the vmspace to finally
3793	 * run it down.  Even though there is little or no chance of blocking
3794	 * here, it is a good idea to keep this form for future mods.
3795	 */
3796	PROC_VMSPACE_LOCK(p);
3797	p->p_vmspace = newvmspace;
3798	PROC_VMSPACE_UNLOCK(p);
3799	if (p == curthread->td_proc)
3800		pmap_activate(curthread);
3801	curthread->td_pflags |= TDP_EXECVMSPC;
3802	return (0);
3803}
3804
3805/*
3806 * Unshare the specified VM space for forcing COW.  This
3807 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3808 */
3809int
3810vmspace_unshare(struct proc *p)
3811{
3812	struct vmspace *oldvmspace = p->p_vmspace;
3813	struct vmspace *newvmspace;
3814	vm_ooffset_t fork_charge;
3815
3816	if (oldvmspace->vm_refcnt == 1)
3817		return (0);
3818	fork_charge = 0;
3819	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3820	if (newvmspace == NULL)
3821		return (ENOMEM);
3822	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3823		vmspace_free(newvmspace);
3824		return (ENOMEM);
3825	}
3826	PROC_VMSPACE_LOCK(p);
3827	p->p_vmspace = newvmspace;
3828	PROC_VMSPACE_UNLOCK(p);
3829	if (p == curthread->td_proc)
3830		pmap_activate(curthread);
3831	vmspace_free(oldvmspace);
3832	return (0);
3833}
3834
3835/*
3836 *	vm_map_lookup:
3837 *
3838 *	Finds the VM object, offset, and
3839 *	protection for a given virtual address in the
3840 *	specified map, assuming a page fault of the
3841 *	type specified.
3842 *
3843 *	Leaves the map in question locked for read; return
3844 *	values are guaranteed until a vm_map_lookup_done
3845 *	call is performed.  Note that the map argument
3846 *	is in/out; the returned map must be used in
3847 *	the call to vm_map_lookup_done.
3848 *
3849 *	A handle (out_entry) is returned for use in
3850 *	vm_map_lookup_done, to make that fast.
3851 *
3852 *	If a lookup is requested with "write protection"
3853 *	specified, the map may be changed to perform virtual
3854 *	copying operations, although the data referenced will
3855 *	remain the same.
3856 */
3857int
3858vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3859	      vm_offset_t vaddr,
3860	      vm_prot_t fault_typea,
3861	      vm_map_entry_t *out_entry,	/* OUT */
3862	      vm_object_t *object,		/* OUT */
3863	      vm_pindex_t *pindex,		/* OUT */
3864	      vm_prot_t *out_prot,		/* OUT */
3865	      boolean_t *wired)			/* OUT */
3866{
3867	vm_map_entry_t entry;
3868	vm_map_t map = *var_map;
3869	vm_prot_t prot;
3870	vm_prot_t fault_type = fault_typea;
3871	vm_object_t eobject;
3872	vm_size_t size;
3873	struct ucred *cred;
3874
3875RetryLookup:;
3876
3877	vm_map_lock_read(map);
3878
3879	/*
3880	 * Lookup the faulting address.
3881	 */
3882	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3883		vm_map_unlock_read(map);
3884		return (KERN_INVALID_ADDRESS);
3885	}
3886
3887	entry = *out_entry;
3888
3889	/*
3890	 * Handle submaps.
3891	 */
3892	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3893		vm_map_t old_map = map;
3894
3895		*var_map = map = entry->object.sub_map;
3896		vm_map_unlock_read(old_map);
3897		goto RetryLookup;
3898	}
3899
3900	/*
3901	 * Check whether this task is allowed to have this page.
3902	 */
3903	prot = entry->protection;
3904	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3905	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3906		vm_map_unlock_read(map);
3907		return (KERN_PROTECTION_FAILURE);
3908	}
3909	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3910	    (entry->eflags & MAP_ENTRY_COW) &&
3911	    (fault_type & VM_PROT_WRITE)) {
3912		vm_map_unlock_read(map);
3913		return (KERN_PROTECTION_FAILURE);
3914	}
3915	if ((fault_typea & VM_PROT_COPY) != 0 &&
3916	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3917	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3918		vm_map_unlock_read(map);
3919		return (KERN_PROTECTION_FAILURE);
3920	}
3921
3922	/*
3923	 * If this page is not pageable, we have to get it for all possible
3924	 * accesses.
3925	 */
3926	*wired = (entry->wired_count != 0);
3927	if (*wired)
3928		fault_type = entry->protection;
3929	size = entry->end - entry->start;
3930	/*
3931	 * If the entry was copy-on-write, we either ...
3932	 */
3933	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3934		/*
3935		 * If we want to write the page, we may as well handle that
3936		 * now since we've got the map locked.
3937		 *
3938		 * If we don't need to write the page, we just demote the
3939		 * permissions allowed.
3940		 */
3941		if ((fault_type & VM_PROT_WRITE) != 0 ||
3942		    (fault_typea & VM_PROT_COPY) != 0) {
3943			/*
3944			 * Make a new object, and place it in the object
3945			 * chain.  Note that no new references have appeared
3946			 * -- one just moved from the map to the new
3947			 * object.
3948			 */
3949			if (vm_map_lock_upgrade(map))
3950				goto RetryLookup;
3951
3952			if (entry->cred == NULL) {
3953				/*
3954				 * The debugger owner is charged for
3955				 * the memory.
3956				 */
3957				cred = curthread->td_ucred;
3958				crhold(cred);
3959				if (!swap_reserve_by_cred(size, cred)) {
3960					crfree(cred);
3961					vm_map_unlock(map);
3962					return (KERN_RESOURCE_SHORTAGE);
3963				}
3964				entry->cred = cred;
3965			}
3966			vm_object_shadow(&entry->object.vm_object,
3967			    &entry->offset, size);
3968			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3969			eobject = entry->object.vm_object;
3970			if (eobject->cred != NULL) {
3971				/*
3972				 * The object was not shadowed.
3973				 */
3974				swap_release_by_cred(size, entry->cred);
3975				crfree(entry->cred);
3976				entry->cred = NULL;
3977			} else if (entry->cred != NULL) {
3978				VM_OBJECT_WLOCK(eobject);
3979				eobject->cred = entry->cred;
3980				eobject->charge = size;
3981				VM_OBJECT_WUNLOCK(eobject);
3982				entry->cred = NULL;
3983			}
3984
3985			vm_map_lock_downgrade(map);
3986		} else {
3987			/*
3988			 * We're attempting to read a copy-on-write page --
3989			 * don't allow writes.
3990			 */
3991			prot &= ~VM_PROT_WRITE;
3992		}
3993	}
3994
3995	/*
3996	 * Create an object if necessary.
3997	 */
3998	if (entry->object.vm_object == NULL &&
3999	    !map->system_map) {
4000		if (vm_map_lock_upgrade(map))
4001			goto RetryLookup;
4002		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4003		    atop(size));
4004		entry->offset = 0;
4005		if (entry->cred != NULL) {
4006			VM_OBJECT_WLOCK(entry->object.vm_object);
4007			entry->object.vm_object->cred = entry->cred;
4008			entry->object.vm_object->charge = size;
4009			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4010			entry->cred = NULL;
4011		}
4012		vm_map_lock_downgrade(map);
4013	}
4014
4015	/*
4016	 * Return the object/offset from this entry.  If the entry was
4017	 * copy-on-write or empty, it has been fixed up.
4018	 */
4019	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4020	*object = entry->object.vm_object;
4021
4022	*out_prot = prot;
4023	return (KERN_SUCCESS);
4024}
4025
4026/*
4027 *	vm_map_lookup_locked:
4028 *
4029 *	Lookup the faulting address.  A version of vm_map_lookup that returns
4030 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4031 */
4032int
4033vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4034		     vm_offset_t vaddr,
4035		     vm_prot_t fault_typea,
4036		     vm_map_entry_t *out_entry,	/* OUT */
4037		     vm_object_t *object,	/* OUT */
4038		     vm_pindex_t *pindex,	/* OUT */
4039		     vm_prot_t *out_prot,	/* OUT */
4040		     boolean_t *wired)		/* OUT */
4041{
4042	vm_map_entry_t entry;
4043	vm_map_t map = *var_map;
4044	vm_prot_t prot;
4045	vm_prot_t fault_type = fault_typea;
4046
4047	/*
4048	 * Lookup the faulting address.
4049	 */
4050	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4051		return (KERN_INVALID_ADDRESS);
4052
4053	entry = *out_entry;
4054
4055	/*
4056	 * Fail if the entry refers to a submap.
4057	 */
4058	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4059		return (KERN_FAILURE);
4060
4061	/*
4062	 * Check whether this task is allowed to have this page.
4063	 */
4064	prot = entry->protection;
4065	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4066	if ((fault_type & prot) != fault_type)
4067		return (KERN_PROTECTION_FAILURE);
4068	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4069	    (entry->eflags & MAP_ENTRY_COW) &&
4070	    (fault_type & VM_PROT_WRITE))
4071		return (KERN_PROTECTION_FAILURE);
4072
4073	/*
4074	 * If this page is not pageable, we have to get it for all possible
4075	 * accesses.
4076	 */
4077	*wired = (entry->wired_count != 0);
4078	if (*wired)
4079		fault_type = entry->protection;
4080
4081	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4082		/*
4083		 * Fail if the entry was copy-on-write for a write fault.
4084		 */
4085		if (fault_type & VM_PROT_WRITE)
4086			return (KERN_FAILURE);
4087		/*
4088		 * We're attempting to read a copy-on-write page --
4089		 * don't allow writes.
4090		 */
4091		prot &= ~VM_PROT_WRITE;
4092	}
4093
4094	/*
4095	 * Fail if an object should be created.
4096	 */
4097	if (entry->object.vm_object == NULL && !map->system_map)
4098		return (KERN_FAILURE);
4099
4100	/*
4101	 * Return the object/offset from this entry.  If the entry was
4102	 * copy-on-write or empty, it has been fixed up.
4103	 */
4104	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4105	*object = entry->object.vm_object;
4106
4107	*out_prot = prot;
4108	return (KERN_SUCCESS);
4109}
4110
4111/*
4112 *	vm_map_lookup_done:
4113 *
4114 *	Releases locks acquired by a vm_map_lookup
4115 *	(according to the handle returned by that lookup).
4116 */
4117void
4118vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4119{
4120	/*
4121	 * Unlock the main-level map
4122	 */
4123	vm_map_unlock_read(map);
4124}
4125
4126#include "opt_ddb.h"
4127#ifdef DDB
4128#include <sys/kernel.h>
4129
4130#include <ddb/ddb.h>
4131
4132static void
4133vm_map_print(vm_map_t map)
4134{
4135	vm_map_entry_t entry;
4136
4137	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4138	    (void *)map,
4139	    (void *)map->pmap, map->nentries, map->timestamp);
4140
4141	db_indent += 2;
4142	for (entry = map->header.next; entry != &map->header;
4143	    entry = entry->next) {
4144		db_iprintf("map entry %p: start=%p, end=%p\n",
4145		    (void *)entry, (void *)entry->start, (void *)entry->end);
4146		{
4147			static char *inheritance_name[4] =
4148			{"share", "copy", "none", "donate_copy"};
4149
4150			db_iprintf(" prot=%x/%x/%s",
4151			    entry->protection,
4152			    entry->max_protection,
4153			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4154			if (entry->wired_count != 0)
4155				db_printf(", wired");
4156		}
4157		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4158			db_printf(", share=%p, offset=0x%jx\n",
4159			    (void *)entry->object.sub_map,
4160			    (uintmax_t)entry->offset);
4161			if ((entry->prev == &map->header) ||
4162			    (entry->prev->object.sub_map !=
4163				entry->object.sub_map)) {
4164				db_indent += 2;
4165				vm_map_print((vm_map_t)entry->object.sub_map);
4166				db_indent -= 2;
4167			}
4168		} else {
4169			if (entry->cred != NULL)
4170				db_printf(", ruid %d", entry->cred->cr_ruid);
4171			db_printf(", object=%p, offset=0x%jx",
4172			    (void *)entry->object.vm_object,
4173			    (uintmax_t)entry->offset);
4174			if (entry->object.vm_object && entry->object.vm_object->cred)
4175				db_printf(", obj ruid %d charge %jx",
4176				    entry->object.vm_object->cred->cr_ruid,
4177				    (uintmax_t)entry->object.vm_object->charge);
4178			if (entry->eflags & MAP_ENTRY_COW)
4179				db_printf(", copy (%s)",
4180				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4181			db_printf("\n");
4182
4183			if ((entry->prev == &map->header) ||
4184			    (entry->prev->object.vm_object !=
4185				entry->object.vm_object)) {
4186				db_indent += 2;
4187				vm_object_print((db_expr_t)(intptr_t)
4188						entry->object.vm_object,
4189						0, 0, (char *)0);
4190				db_indent -= 2;
4191			}
4192		}
4193	}
4194	db_indent -= 2;
4195}
4196
4197DB_SHOW_COMMAND(map, map)
4198{
4199
4200	if (!have_addr) {
4201		db_printf("usage: show map <addr>\n");
4202		return;
4203	}
4204	vm_map_print((vm_map_t)addr);
4205}
4206
4207DB_SHOW_COMMAND(procvm, procvm)
4208{
4209	struct proc *p;
4210
4211	if (have_addr) {
4212		p = (struct proc *) addr;
4213	} else {
4214		p = curproc;
4215	}
4216
4217	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4218	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4219	    (void *)vmspace_pmap(p->p_vmspace));
4220
4221	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4222}
4223
4224#endif /* DDB */
4225