vm_map.c revision 266302
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_map.c 266302 2014-05-17 11:29:32Z kib $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135#ifdef INVARIANTS
136static void vm_map_zdtor(void *mem, int size, void *arg);
137static void vmspace_zdtor(void *mem, int size, void *arg);
138#endif
139
140#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
141    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
142     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
143
144/*
145 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
146 * stable.
147 */
148#define PROC_VMSPACE_LOCK(p) do { } while (0)
149#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
150
151/*
152 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
153 *
154 *	Asserts that the starting and ending region
155 *	addresses fall within the valid range of the map.
156 */
157#define	VM_MAP_RANGE_CHECK(map, start, end)		\
158		{					\
159		if (start < vm_map_min(map))		\
160			start = vm_map_min(map);	\
161		if (end > vm_map_max(map))		\
162			end = vm_map_max(map);		\
163		if (start > end)			\
164			start = end;			\
165		}
166
167/*
168 *	vm_map_startup:
169 *
170 *	Initialize the vm_map module.  Must be called before
171 *	any other vm_map routines.
172 *
173 *	Map and entry structures are allocated from the general
174 *	purpose memory pool with some exceptions:
175 *
176 *	- The kernel map and kmem submap are allocated statically.
177 *	- Kernel map entries are allocated out of a static pool.
178 *
179 *	These restrictions are necessary since malloc() uses the
180 *	maps and requires map entries.
181 */
182
183void
184vm_map_startup(void)
185{
186	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
187	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
188#ifdef INVARIANTS
189	    vm_map_zdtor,
190#else
191	    NULL,
192#endif
193	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194	uma_prealloc(mapzone, MAX_KMAP);
195	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
196	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
197	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
198	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
201#ifdef INVARIANTS
202	    vmspace_zdtor,
203#else
204	    NULL,
205#endif
206	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207}
208
209static int
210vmspace_zinit(void *mem, int size, int flags)
211{
212	struct vmspace *vm;
213
214	vm = (struct vmspace *)mem;
215
216	vm->vm_map.pmap = NULL;
217	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
218	PMAP_LOCK_INIT(vmspace_pmap(vm));
219	return (0);
220}
221
222static int
223vm_map_zinit(void *mem, int size, int flags)
224{
225	vm_map_t map;
226
227	map = (vm_map_t)mem;
228	memset(map, 0, sizeof(*map));
229	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
230	sx_init(&map->lock, "vm map (user)");
231	return (0);
232}
233
234#ifdef INVARIANTS
235static void
236vmspace_zdtor(void *mem, int size, void *arg)
237{
238	struct vmspace *vm;
239
240	vm = (struct vmspace *)mem;
241
242	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
243}
244static void
245vm_map_zdtor(void *mem, int size, void *arg)
246{
247	vm_map_t map;
248
249	map = (vm_map_t)mem;
250	KASSERT(map->nentries == 0,
251	    ("map %p nentries == %d on free.",
252	    map, map->nentries));
253	KASSERT(map->size == 0,
254	    ("map %p size == %lu on free.",
255	    map, (unsigned long)map->size));
256}
257#endif	/* INVARIANTS */
258
259/*
260 * Allocate a vmspace structure, including a vm_map and pmap,
261 * and initialize those structures.  The refcnt is set to 1.
262 *
263 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
264 */
265struct vmspace *
266vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
267{
268	struct vmspace *vm;
269
270	vm = uma_zalloc(vmspace_zone, M_WAITOK);
271
272	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
273
274	if (pinit == NULL)
275		pinit = &pmap_pinit;
276
277	if (!pinit(vmspace_pmap(vm))) {
278		uma_zfree(vmspace_zone, vm);
279		return (NULL);
280	}
281	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
282	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
283	vm->vm_refcnt = 1;
284	vm->vm_shm = NULL;
285	vm->vm_swrss = 0;
286	vm->vm_tsize = 0;
287	vm->vm_dsize = 0;
288	vm->vm_ssize = 0;
289	vm->vm_taddr = 0;
290	vm->vm_daddr = 0;
291	vm->vm_maxsaddr = 0;
292	return (vm);
293}
294
295static void
296vmspace_container_reset(struct proc *p)
297{
298
299#ifdef RACCT
300	PROC_LOCK(p);
301	racct_set(p, RACCT_DATA, 0);
302	racct_set(p, RACCT_STACK, 0);
303	racct_set(p, RACCT_RSS, 0);
304	racct_set(p, RACCT_MEMLOCK, 0);
305	racct_set(p, RACCT_VMEM, 0);
306	PROC_UNLOCK(p);
307#endif
308}
309
310static inline void
311vmspace_dofree(struct vmspace *vm)
312{
313
314	CTR1(KTR_VM, "vmspace_free: %p", vm);
315
316	/*
317	 * Make sure any SysV shm is freed, it might not have been in
318	 * exit1().
319	 */
320	shmexit(vm);
321
322	/*
323	 * Lock the map, to wait out all other references to it.
324	 * Delete all of the mappings and pages they hold, then call
325	 * the pmap module to reclaim anything left.
326	 */
327	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
328	    vm->vm_map.max_offset);
329
330	pmap_release(vmspace_pmap(vm));
331	vm->vm_map.pmap = NULL;
332	uma_zfree(vmspace_zone, vm);
333}
334
335void
336vmspace_free(struct vmspace *vm)
337{
338
339	if (vm->vm_refcnt == 0)
340		panic("vmspace_free: attempt to free already freed vmspace");
341
342	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
343		vmspace_dofree(vm);
344}
345
346void
347vmspace_exitfree(struct proc *p)
348{
349	struct vmspace *vm;
350
351	PROC_VMSPACE_LOCK(p);
352	vm = p->p_vmspace;
353	p->p_vmspace = NULL;
354	PROC_VMSPACE_UNLOCK(p);
355	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
356	vmspace_free(vm);
357}
358
359void
360vmspace_exit(struct thread *td)
361{
362	int refcnt;
363	struct vmspace *vm;
364	struct proc *p;
365
366	/*
367	 * Release user portion of address space.
368	 * This releases references to vnodes,
369	 * which could cause I/O if the file has been unlinked.
370	 * Need to do this early enough that we can still sleep.
371	 *
372	 * The last exiting process to reach this point releases as
373	 * much of the environment as it can. vmspace_dofree() is the
374	 * slower fallback in case another process had a temporary
375	 * reference to the vmspace.
376	 */
377
378	p = td->td_proc;
379	vm = p->p_vmspace;
380	atomic_add_int(&vmspace0.vm_refcnt, 1);
381	do {
382		refcnt = vm->vm_refcnt;
383		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
384			/* Switch now since other proc might free vmspace */
385			PROC_VMSPACE_LOCK(p);
386			p->p_vmspace = &vmspace0;
387			PROC_VMSPACE_UNLOCK(p);
388			pmap_activate(td);
389		}
390	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
391	if (refcnt == 1) {
392		if (p->p_vmspace != vm) {
393			/* vmspace not yet freed, switch back */
394			PROC_VMSPACE_LOCK(p);
395			p->p_vmspace = vm;
396			PROC_VMSPACE_UNLOCK(p);
397			pmap_activate(td);
398		}
399		pmap_remove_pages(vmspace_pmap(vm));
400		/* Switch now since this proc will free vmspace */
401		PROC_VMSPACE_LOCK(p);
402		p->p_vmspace = &vmspace0;
403		PROC_VMSPACE_UNLOCK(p);
404		pmap_activate(td);
405		vmspace_dofree(vm);
406	}
407	vmspace_container_reset(p);
408}
409
410/* Acquire reference to vmspace owned by another process. */
411
412struct vmspace *
413vmspace_acquire_ref(struct proc *p)
414{
415	struct vmspace *vm;
416	int refcnt;
417
418	PROC_VMSPACE_LOCK(p);
419	vm = p->p_vmspace;
420	if (vm == NULL) {
421		PROC_VMSPACE_UNLOCK(p);
422		return (NULL);
423	}
424	do {
425		refcnt = vm->vm_refcnt;
426		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
427			PROC_VMSPACE_UNLOCK(p);
428			return (NULL);
429		}
430	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
431	if (vm != p->p_vmspace) {
432		PROC_VMSPACE_UNLOCK(p);
433		vmspace_free(vm);
434		return (NULL);
435	}
436	PROC_VMSPACE_UNLOCK(p);
437	return (vm);
438}
439
440void
441_vm_map_lock(vm_map_t map, const char *file, int line)
442{
443
444	if (map->system_map)
445		mtx_lock_flags_(&map->system_mtx, 0, file, line);
446	else
447		sx_xlock_(&map->lock, file, line);
448	map->timestamp++;
449}
450
451static void
452vm_map_process_deferred(void)
453{
454	struct thread *td;
455	vm_map_entry_t entry, next;
456	vm_object_t object;
457
458	td = curthread;
459	entry = td->td_map_def_user;
460	td->td_map_def_user = NULL;
461	while (entry != NULL) {
462		next = entry->next;
463		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
464			/*
465			 * Decrement the object's writemappings and
466			 * possibly the vnode's v_writecount.
467			 */
468			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
469			    ("Submap with writecount"));
470			object = entry->object.vm_object;
471			KASSERT(object != NULL, ("No object for writecount"));
472			vnode_pager_release_writecount(object, entry->start,
473			    entry->end);
474		}
475		vm_map_entry_deallocate(entry, FALSE);
476		entry = next;
477	}
478}
479
480void
481_vm_map_unlock(vm_map_t map, const char *file, int line)
482{
483
484	if (map->system_map)
485		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
486	else {
487		sx_xunlock_(&map->lock, file, line);
488		vm_map_process_deferred();
489	}
490}
491
492void
493_vm_map_lock_read(vm_map_t map, const char *file, int line)
494{
495
496	if (map->system_map)
497		mtx_lock_flags_(&map->system_mtx, 0, file, line);
498	else
499		sx_slock_(&map->lock, file, line);
500}
501
502void
503_vm_map_unlock_read(vm_map_t map, const char *file, int line)
504{
505
506	if (map->system_map)
507		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508	else {
509		sx_sunlock_(&map->lock, file, line);
510		vm_map_process_deferred();
511	}
512}
513
514int
515_vm_map_trylock(vm_map_t map, const char *file, int line)
516{
517	int error;
518
519	error = map->system_map ?
520	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
521	    !sx_try_xlock_(&map->lock, file, line);
522	if (error == 0)
523		map->timestamp++;
524	return (error == 0);
525}
526
527int
528_vm_map_trylock_read(vm_map_t map, const char *file, int line)
529{
530	int error;
531
532	error = map->system_map ?
533	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
534	    !sx_try_slock_(&map->lock, file, line);
535	return (error == 0);
536}
537
538/*
539 *	_vm_map_lock_upgrade:	[ internal use only ]
540 *
541 *	Tries to upgrade a read (shared) lock on the specified map to a write
542 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
543 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
544 *	returned without a read or write lock held.
545 *
546 *	Requires that the map be read locked.
547 */
548int
549_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
550{
551	unsigned int last_timestamp;
552
553	if (map->system_map) {
554		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
555	} else {
556		if (!sx_try_upgrade_(&map->lock, file, line)) {
557			last_timestamp = map->timestamp;
558			sx_sunlock_(&map->lock, file, line);
559			vm_map_process_deferred();
560			/*
561			 * If the map's timestamp does not change while the
562			 * map is unlocked, then the upgrade succeeds.
563			 */
564			sx_xlock_(&map->lock, file, line);
565			if (last_timestamp != map->timestamp) {
566				sx_xunlock_(&map->lock, file, line);
567				return (1);
568			}
569		}
570	}
571	map->timestamp++;
572	return (0);
573}
574
575void
576_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
577{
578
579	if (map->system_map) {
580		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
581	} else
582		sx_downgrade_(&map->lock, file, line);
583}
584
585/*
586 *	vm_map_locked:
587 *
588 *	Returns a non-zero value if the caller holds a write (exclusive) lock
589 *	on the specified map and the value "0" otherwise.
590 */
591int
592vm_map_locked(vm_map_t map)
593{
594
595	if (map->system_map)
596		return (mtx_owned(&map->system_mtx));
597	else
598		return (sx_xlocked(&map->lock));
599}
600
601#ifdef INVARIANTS
602static void
603_vm_map_assert_locked(vm_map_t map, const char *file, int line)
604{
605
606	if (map->system_map)
607		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
608	else
609		sx_assert_(&map->lock, SA_XLOCKED, file, line);
610}
611
612#define	VM_MAP_ASSERT_LOCKED(map) \
613    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
614#else
615#define	VM_MAP_ASSERT_LOCKED(map)
616#endif
617
618/*
619 *	_vm_map_unlock_and_wait:
620 *
621 *	Atomically releases the lock on the specified map and puts the calling
622 *	thread to sleep.  The calling thread will remain asleep until either
623 *	vm_map_wakeup() is performed on the map or the specified timeout is
624 *	exceeded.
625 *
626 *	WARNING!  This function does not perform deferred deallocations of
627 *	objects and map	entries.  Therefore, the calling thread is expected to
628 *	reacquire the map lock after reawakening and later perform an ordinary
629 *	unlock operation, such as vm_map_unlock(), before completing its
630 *	operation on the map.
631 */
632int
633_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
634{
635
636	mtx_lock(&map_sleep_mtx);
637	if (map->system_map)
638		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
639	else
640		sx_xunlock_(&map->lock, file, line);
641	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
642	    timo));
643}
644
645/*
646 *	vm_map_wakeup:
647 *
648 *	Awaken any threads that have slept on the map using
649 *	vm_map_unlock_and_wait().
650 */
651void
652vm_map_wakeup(vm_map_t map)
653{
654
655	/*
656	 * Acquire and release map_sleep_mtx to prevent a wakeup()
657	 * from being performed (and lost) between the map unlock
658	 * and the msleep() in _vm_map_unlock_and_wait().
659	 */
660	mtx_lock(&map_sleep_mtx);
661	mtx_unlock(&map_sleep_mtx);
662	wakeup(&map->root);
663}
664
665void
666vm_map_busy(vm_map_t map)
667{
668
669	VM_MAP_ASSERT_LOCKED(map);
670	map->busy++;
671}
672
673void
674vm_map_unbusy(vm_map_t map)
675{
676
677	VM_MAP_ASSERT_LOCKED(map);
678	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
679	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
680		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
681		wakeup(&map->busy);
682	}
683}
684
685void
686vm_map_wait_busy(vm_map_t map)
687{
688
689	VM_MAP_ASSERT_LOCKED(map);
690	while (map->busy) {
691		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
692		if (map->system_map)
693			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
694		else
695			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
696	}
697	map->timestamp++;
698}
699
700long
701vmspace_resident_count(struct vmspace *vmspace)
702{
703	return pmap_resident_count(vmspace_pmap(vmspace));
704}
705
706/*
707 *	vm_map_create:
708 *
709 *	Creates and returns a new empty VM map with
710 *	the given physical map structure, and having
711 *	the given lower and upper address bounds.
712 */
713vm_map_t
714vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
715{
716	vm_map_t result;
717
718	result = uma_zalloc(mapzone, M_WAITOK);
719	CTR1(KTR_VM, "vm_map_create: %p", result);
720	_vm_map_init(result, pmap, min, max);
721	return (result);
722}
723
724/*
725 * Initialize an existing vm_map structure
726 * such as that in the vmspace structure.
727 */
728static void
729_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
730{
731
732	map->header.next = map->header.prev = &map->header;
733	map->needs_wakeup = FALSE;
734	map->system_map = 0;
735	map->pmap = pmap;
736	map->min_offset = min;
737	map->max_offset = max;
738	map->flags = 0;
739	map->root = NULL;
740	map->timestamp = 0;
741	map->busy = 0;
742}
743
744void
745vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
746{
747
748	_vm_map_init(map, pmap, min, max);
749	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
750	sx_init(&map->lock, "user map");
751}
752
753/*
754 *	vm_map_entry_dispose:	[ internal use only ]
755 *
756 *	Inverse of vm_map_entry_create.
757 */
758static void
759vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
760{
761	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
762}
763
764/*
765 *	vm_map_entry_create:	[ internal use only ]
766 *
767 *	Allocates a VM map entry for insertion.
768 *	No entry fields are filled in.
769 */
770static vm_map_entry_t
771vm_map_entry_create(vm_map_t map)
772{
773	vm_map_entry_t new_entry;
774
775	if (map->system_map)
776		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
777	else
778		new_entry = uma_zalloc(mapentzone, M_WAITOK);
779	if (new_entry == NULL)
780		panic("vm_map_entry_create: kernel resources exhausted");
781	return (new_entry);
782}
783
784/*
785 *	vm_map_entry_set_behavior:
786 *
787 *	Set the expected access behavior, either normal, random, or
788 *	sequential.
789 */
790static inline void
791vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
792{
793	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
794	    (behavior & MAP_ENTRY_BEHAV_MASK);
795}
796
797/*
798 *	vm_map_entry_set_max_free:
799 *
800 *	Set the max_free field in a vm_map_entry.
801 */
802static inline void
803vm_map_entry_set_max_free(vm_map_entry_t entry)
804{
805
806	entry->max_free = entry->adj_free;
807	if (entry->left != NULL && entry->left->max_free > entry->max_free)
808		entry->max_free = entry->left->max_free;
809	if (entry->right != NULL && entry->right->max_free > entry->max_free)
810		entry->max_free = entry->right->max_free;
811}
812
813/*
814 *	vm_map_entry_splay:
815 *
816 *	The Sleator and Tarjan top-down splay algorithm with the
817 *	following variation.  Max_free must be computed bottom-up, so
818 *	on the downward pass, maintain the left and right spines in
819 *	reverse order.  Then, make a second pass up each side to fix
820 *	the pointers and compute max_free.  The time bound is O(log n)
821 *	amortized.
822 *
823 *	The new root is the vm_map_entry containing "addr", or else an
824 *	adjacent entry (lower or higher) if addr is not in the tree.
825 *
826 *	The map must be locked, and leaves it so.
827 *
828 *	Returns: the new root.
829 */
830static vm_map_entry_t
831vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
832{
833	vm_map_entry_t llist, rlist;
834	vm_map_entry_t ltree, rtree;
835	vm_map_entry_t y;
836
837	/* Special case of empty tree. */
838	if (root == NULL)
839		return (root);
840
841	/*
842	 * Pass One: Splay down the tree until we find addr or a NULL
843	 * pointer where addr would go.  llist and rlist are the two
844	 * sides in reverse order (bottom-up), with llist linked by
845	 * the right pointer and rlist linked by the left pointer in
846	 * the vm_map_entry.  Wait until Pass Two to set max_free on
847	 * the two spines.
848	 */
849	llist = NULL;
850	rlist = NULL;
851	for (;;) {
852		/* root is never NULL in here. */
853		if (addr < root->start) {
854			y = root->left;
855			if (y == NULL)
856				break;
857			if (addr < y->start && y->left != NULL) {
858				/* Rotate right and put y on rlist. */
859				root->left = y->right;
860				y->right = root;
861				vm_map_entry_set_max_free(root);
862				root = y->left;
863				y->left = rlist;
864				rlist = y;
865			} else {
866				/* Put root on rlist. */
867				root->left = rlist;
868				rlist = root;
869				root = y;
870			}
871		} else if (addr >= root->end) {
872			y = root->right;
873			if (y == NULL)
874				break;
875			if (addr >= y->end && y->right != NULL) {
876				/* Rotate left and put y on llist. */
877				root->right = y->left;
878				y->left = root;
879				vm_map_entry_set_max_free(root);
880				root = y->right;
881				y->right = llist;
882				llist = y;
883			} else {
884				/* Put root on llist. */
885				root->right = llist;
886				llist = root;
887				root = y;
888			}
889		} else
890			break;
891	}
892
893	/*
894	 * Pass Two: Walk back up the two spines, flip the pointers
895	 * and set max_free.  The subtrees of the root go at the
896	 * bottom of llist and rlist.
897	 */
898	ltree = root->left;
899	while (llist != NULL) {
900		y = llist->right;
901		llist->right = ltree;
902		vm_map_entry_set_max_free(llist);
903		ltree = llist;
904		llist = y;
905	}
906	rtree = root->right;
907	while (rlist != NULL) {
908		y = rlist->left;
909		rlist->left = rtree;
910		vm_map_entry_set_max_free(rlist);
911		rtree = rlist;
912		rlist = y;
913	}
914
915	/*
916	 * Final assembly: add ltree and rtree as subtrees of root.
917	 */
918	root->left = ltree;
919	root->right = rtree;
920	vm_map_entry_set_max_free(root);
921
922	return (root);
923}
924
925/*
926 *	vm_map_entry_{un,}link:
927 *
928 *	Insert/remove entries from maps.
929 */
930static void
931vm_map_entry_link(vm_map_t map,
932		  vm_map_entry_t after_where,
933		  vm_map_entry_t entry)
934{
935
936	CTR4(KTR_VM,
937	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
938	    map->nentries, entry, after_where);
939	VM_MAP_ASSERT_LOCKED(map);
940	map->nentries++;
941	entry->prev = after_where;
942	entry->next = after_where->next;
943	entry->next->prev = entry;
944	after_where->next = entry;
945
946	if (after_where != &map->header) {
947		if (after_where != map->root)
948			vm_map_entry_splay(after_where->start, map->root);
949		entry->right = after_where->right;
950		entry->left = after_where;
951		after_where->right = NULL;
952		after_where->adj_free = entry->start - after_where->end;
953		vm_map_entry_set_max_free(after_where);
954	} else {
955		entry->right = map->root;
956		entry->left = NULL;
957	}
958	entry->adj_free = (entry->next == &map->header ? map->max_offset :
959	    entry->next->start) - entry->end;
960	vm_map_entry_set_max_free(entry);
961	map->root = entry;
962}
963
964static void
965vm_map_entry_unlink(vm_map_t map,
966		    vm_map_entry_t entry)
967{
968	vm_map_entry_t next, prev, root;
969
970	VM_MAP_ASSERT_LOCKED(map);
971	if (entry != map->root)
972		vm_map_entry_splay(entry->start, map->root);
973	if (entry->left == NULL)
974		root = entry->right;
975	else {
976		root = vm_map_entry_splay(entry->start, entry->left);
977		root->right = entry->right;
978		root->adj_free = (entry->next == &map->header ? map->max_offset :
979		    entry->next->start) - root->end;
980		vm_map_entry_set_max_free(root);
981	}
982	map->root = root;
983
984	prev = entry->prev;
985	next = entry->next;
986	next->prev = prev;
987	prev->next = next;
988	map->nentries--;
989	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
990	    map->nentries, entry);
991}
992
993/*
994 *	vm_map_entry_resize_free:
995 *
996 *	Recompute the amount of free space following a vm_map_entry
997 *	and propagate that value up the tree.  Call this function after
998 *	resizing a map entry in-place, that is, without a call to
999 *	vm_map_entry_link() or _unlink().
1000 *
1001 *	The map must be locked, and leaves it so.
1002 */
1003static void
1004vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1005{
1006
1007	/*
1008	 * Using splay trees without parent pointers, propagating
1009	 * max_free up the tree is done by moving the entry to the
1010	 * root and making the change there.
1011	 */
1012	if (entry != map->root)
1013		map->root = vm_map_entry_splay(entry->start, map->root);
1014
1015	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1016	    entry->next->start) - entry->end;
1017	vm_map_entry_set_max_free(entry);
1018}
1019
1020/*
1021 *	vm_map_lookup_entry:	[ internal use only ]
1022 *
1023 *	Finds the map entry containing (or
1024 *	immediately preceding) the specified address
1025 *	in the given map; the entry is returned
1026 *	in the "entry" parameter.  The boolean
1027 *	result indicates whether the address is
1028 *	actually contained in the map.
1029 */
1030boolean_t
1031vm_map_lookup_entry(
1032	vm_map_t map,
1033	vm_offset_t address,
1034	vm_map_entry_t *entry)	/* OUT */
1035{
1036	vm_map_entry_t cur;
1037	boolean_t locked;
1038
1039	/*
1040	 * If the map is empty, then the map entry immediately preceding
1041	 * "address" is the map's header.
1042	 */
1043	cur = map->root;
1044	if (cur == NULL)
1045		*entry = &map->header;
1046	else if (address >= cur->start && cur->end > address) {
1047		*entry = cur;
1048		return (TRUE);
1049	} else if ((locked = vm_map_locked(map)) ||
1050	    sx_try_upgrade(&map->lock)) {
1051		/*
1052		 * Splay requires a write lock on the map.  However, it only
1053		 * restructures the binary search tree; it does not otherwise
1054		 * change the map.  Thus, the map's timestamp need not change
1055		 * on a temporary upgrade.
1056		 */
1057		map->root = cur = vm_map_entry_splay(address, cur);
1058		if (!locked)
1059			sx_downgrade(&map->lock);
1060
1061		/*
1062		 * If "address" is contained within a map entry, the new root
1063		 * is that map entry.  Otherwise, the new root is a map entry
1064		 * immediately before or after "address".
1065		 */
1066		if (address >= cur->start) {
1067			*entry = cur;
1068			if (cur->end > address)
1069				return (TRUE);
1070		} else
1071			*entry = cur->prev;
1072	} else
1073		/*
1074		 * Since the map is only locked for read access, perform a
1075		 * standard binary search tree lookup for "address".
1076		 */
1077		for (;;) {
1078			if (address < cur->start) {
1079				if (cur->left == NULL) {
1080					*entry = cur->prev;
1081					break;
1082				}
1083				cur = cur->left;
1084			} else if (cur->end > address) {
1085				*entry = cur;
1086				return (TRUE);
1087			} else {
1088				if (cur->right == NULL) {
1089					*entry = cur;
1090					break;
1091				}
1092				cur = cur->right;
1093			}
1094		}
1095	return (FALSE);
1096}
1097
1098/*
1099 *	vm_map_insert:
1100 *
1101 *	Inserts the given whole VM object into the target
1102 *	map at the specified address range.  The object's
1103 *	size should match that of the address range.
1104 *
1105 *	Requires that the map be locked, and leaves it so.
1106 *
1107 *	If object is non-NULL, ref count must be bumped by caller
1108 *	prior to making call to account for the new entry.
1109 */
1110int
1111vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1112	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1113	      int cow)
1114{
1115	vm_map_entry_t new_entry;
1116	vm_map_entry_t prev_entry;
1117	vm_map_entry_t temp_entry;
1118	vm_eflags_t protoeflags;
1119	struct ucred *cred;
1120	vm_inherit_t inheritance;
1121	boolean_t charge_prev_obj;
1122
1123	VM_MAP_ASSERT_LOCKED(map);
1124
1125	/*
1126	 * Check that the start and end points are not bogus.
1127	 */
1128	if ((start < map->min_offset) || (end > map->max_offset) ||
1129	    (start >= end))
1130		return (KERN_INVALID_ADDRESS);
1131
1132	/*
1133	 * Find the entry prior to the proposed starting address; if it's part
1134	 * of an existing entry, this range is bogus.
1135	 */
1136	if (vm_map_lookup_entry(map, start, &temp_entry))
1137		return (KERN_NO_SPACE);
1138
1139	prev_entry = temp_entry;
1140
1141	/*
1142	 * Assert that the next entry doesn't overlap the end point.
1143	 */
1144	if ((prev_entry->next != &map->header) &&
1145	    (prev_entry->next->start < end))
1146		return (KERN_NO_SPACE);
1147
1148	protoeflags = 0;
1149	charge_prev_obj = FALSE;
1150
1151	if (cow & MAP_COPY_ON_WRITE)
1152		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1153
1154	if (cow & MAP_NOFAULT) {
1155		protoeflags |= MAP_ENTRY_NOFAULT;
1156
1157		KASSERT(object == NULL,
1158			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1159	}
1160	if (cow & MAP_DISABLE_SYNCER)
1161		protoeflags |= MAP_ENTRY_NOSYNC;
1162	if (cow & MAP_DISABLE_COREDUMP)
1163		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1164	if (cow & MAP_VN_WRITECOUNT)
1165		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1166	if (cow & MAP_INHERIT_SHARE)
1167		inheritance = VM_INHERIT_SHARE;
1168	else
1169		inheritance = VM_INHERIT_DEFAULT;
1170
1171	cred = NULL;
1172	KASSERT((object != kmem_object && object != kernel_object) ||
1173	    ((object == kmem_object || object == kernel_object) &&
1174		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1175	    ("kmem or kernel object and cow"));
1176	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1177		goto charged;
1178	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1179	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1180		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1181			return (KERN_RESOURCE_SHORTAGE);
1182		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1183		    object->cred == NULL,
1184		    ("OVERCOMMIT: vm_map_insert o %p", object));
1185		cred = curthread->td_ucred;
1186		crhold(cred);
1187		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1188			charge_prev_obj = TRUE;
1189	}
1190
1191charged:
1192	/* Expand the kernel pmap, if necessary. */
1193	if (map == kernel_map && end > kernel_vm_end)
1194		pmap_growkernel(end);
1195	if (object != NULL) {
1196		/*
1197		 * OBJ_ONEMAPPING must be cleared unless this mapping
1198		 * is trivially proven to be the only mapping for any
1199		 * of the object's pages.  (Object granularity
1200		 * reference counting is insufficient to recognize
1201		 * aliases with precision.)
1202		 */
1203		VM_OBJECT_WLOCK(object);
1204		if (object->ref_count > 1 || object->shadow_count != 0)
1205			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1206		VM_OBJECT_WUNLOCK(object);
1207	}
1208	else if ((prev_entry != &map->header) &&
1209		 (prev_entry->eflags == protoeflags) &&
1210		 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 &&
1211		 (prev_entry->end == start) &&
1212		 (prev_entry->wired_count == 0) &&
1213		 (prev_entry->cred == cred ||
1214		  (prev_entry->object.vm_object != NULL &&
1215		   (prev_entry->object.vm_object->cred == cred))) &&
1216		   vm_object_coalesce(prev_entry->object.vm_object,
1217		       prev_entry->offset,
1218		       (vm_size_t)(prev_entry->end - prev_entry->start),
1219		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1220		/*
1221		 * We were able to extend the object.  Determine if we
1222		 * can extend the previous map entry to include the
1223		 * new range as well.
1224		 */
1225		if ((prev_entry->inheritance == inheritance) &&
1226		    (prev_entry->protection == prot) &&
1227		    (prev_entry->max_protection == max)) {
1228			map->size += (end - prev_entry->end);
1229			prev_entry->end = end;
1230			vm_map_entry_resize_free(map, prev_entry);
1231			vm_map_simplify_entry(map, prev_entry);
1232			if (cred != NULL)
1233				crfree(cred);
1234			return (KERN_SUCCESS);
1235		}
1236
1237		/*
1238		 * If we can extend the object but cannot extend the
1239		 * map entry, we have to create a new map entry.  We
1240		 * must bump the ref count on the extended object to
1241		 * account for it.  object may be NULL.
1242		 */
1243		object = prev_entry->object.vm_object;
1244		offset = prev_entry->offset +
1245			(prev_entry->end - prev_entry->start);
1246		vm_object_reference(object);
1247		if (cred != NULL && object != NULL && object->cred != NULL &&
1248		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1249			/* Object already accounts for this uid. */
1250			crfree(cred);
1251			cred = NULL;
1252		}
1253	}
1254
1255	/*
1256	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1257	 * in things like the buffer map where we manage kva but do not manage
1258	 * backing objects.
1259	 */
1260
1261	/*
1262	 * Create a new entry
1263	 */
1264	new_entry = vm_map_entry_create(map);
1265	new_entry->start = start;
1266	new_entry->end = end;
1267	new_entry->cred = NULL;
1268
1269	new_entry->eflags = protoeflags;
1270	new_entry->object.vm_object = object;
1271	new_entry->offset = offset;
1272	new_entry->avail_ssize = 0;
1273
1274	new_entry->inheritance = inheritance;
1275	new_entry->protection = prot;
1276	new_entry->max_protection = max;
1277	new_entry->wired_count = 0;
1278	new_entry->wiring_thread = NULL;
1279	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1280	new_entry->next_read = OFF_TO_IDX(offset);
1281
1282	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1283	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1284	new_entry->cred = cred;
1285
1286	/*
1287	 * Insert the new entry into the list
1288	 */
1289	vm_map_entry_link(map, prev_entry, new_entry);
1290	map->size += new_entry->end - new_entry->start;
1291
1292	/*
1293	 * It may be possible to merge the new entry with the next and/or
1294	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1295	 * panic can result from merging such entries.
1296	 */
1297	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1298		vm_map_simplify_entry(map, new_entry);
1299
1300	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1301		vm_map_pmap_enter(map, start, prot,
1302				    object, OFF_TO_IDX(offset), end - start,
1303				    cow & MAP_PREFAULT_PARTIAL);
1304	}
1305
1306	return (KERN_SUCCESS);
1307}
1308
1309/*
1310 *	vm_map_findspace:
1311 *
1312 *	Find the first fit (lowest VM address) for "length" free bytes
1313 *	beginning at address >= start in the given map.
1314 *
1315 *	In a vm_map_entry, "adj_free" is the amount of free space
1316 *	adjacent (higher address) to this entry, and "max_free" is the
1317 *	maximum amount of contiguous free space in its subtree.  This
1318 *	allows finding a free region in one path down the tree, so
1319 *	O(log n) amortized with splay trees.
1320 *
1321 *	The map must be locked, and leaves it so.
1322 *
1323 *	Returns: 0 on success, and starting address in *addr,
1324 *		 1 if insufficient space.
1325 */
1326int
1327vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1328    vm_offset_t *addr)	/* OUT */
1329{
1330	vm_map_entry_t entry;
1331	vm_offset_t st;
1332
1333	/*
1334	 * Request must fit within min/max VM address and must avoid
1335	 * address wrap.
1336	 */
1337	if (start < map->min_offset)
1338		start = map->min_offset;
1339	if (start + length > map->max_offset || start + length < start)
1340		return (1);
1341
1342	/* Empty tree means wide open address space. */
1343	if (map->root == NULL) {
1344		*addr = start;
1345		return (0);
1346	}
1347
1348	/*
1349	 * After splay, if start comes before root node, then there
1350	 * must be a gap from start to the root.
1351	 */
1352	map->root = vm_map_entry_splay(start, map->root);
1353	if (start + length <= map->root->start) {
1354		*addr = start;
1355		return (0);
1356	}
1357
1358	/*
1359	 * Root is the last node that might begin its gap before
1360	 * start, and this is the last comparison where address
1361	 * wrap might be a problem.
1362	 */
1363	st = (start > map->root->end) ? start : map->root->end;
1364	if (length <= map->root->end + map->root->adj_free - st) {
1365		*addr = st;
1366		return (0);
1367	}
1368
1369	/* With max_free, can immediately tell if no solution. */
1370	entry = map->root->right;
1371	if (entry == NULL || length > entry->max_free)
1372		return (1);
1373
1374	/*
1375	 * Search the right subtree in the order: left subtree, root,
1376	 * right subtree (first fit).  The previous splay implies that
1377	 * all regions in the right subtree have addresses > start.
1378	 */
1379	while (entry != NULL) {
1380		if (entry->left != NULL && entry->left->max_free >= length)
1381			entry = entry->left;
1382		else if (entry->adj_free >= length) {
1383			*addr = entry->end;
1384			return (0);
1385		} else
1386			entry = entry->right;
1387	}
1388
1389	/* Can't get here, so panic if we do. */
1390	panic("vm_map_findspace: max_free corrupt");
1391}
1392
1393int
1394vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1395    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1396    vm_prot_t max, int cow)
1397{
1398	vm_offset_t end;
1399	int result;
1400
1401	end = start + length;
1402	vm_map_lock(map);
1403	VM_MAP_RANGE_CHECK(map, start, end);
1404	(void) vm_map_delete(map, start, end);
1405	result = vm_map_insert(map, object, offset, start, end, prot,
1406	    max, cow);
1407	vm_map_unlock(map);
1408	return (result);
1409}
1410
1411/*
1412 *	vm_map_find finds an unallocated region in the target address
1413 *	map with the given length.  The search is defined to be
1414 *	first-fit from the specified address; the region found is
1415 *	returned in the same parameter.
1416 *
1417 *	If object is non-NULL, ref count must be bumped by caller
1418 *	prior to making call to account for the new entry.
1419 */
1420int
1421vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1422	    vm_offset_t *addr,	/* IN/OUT */
1423	    vm_size_t length, vm_offset_t max_addr, int find_space,
1424	    vm_prot_t prot, vm_prot_t max, int cow)
1425{
1426	vm_offset_t alignment, initial_addr, start;
1427	int result;
1428
1429	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1430	    (object->flags & OBJ_COLORED) == 0))
1431		find_space = VMFS_ANY_SPACE;
1432	if (find_space >> 8 != 0) {
1433		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1434		alignment = (vm_offset_t)1 << (find_space >> 8);
1435	} else
1436		alignment = 0;
1437	initial_addr = *addr;
1438again:
1439	start = initial_addr;
1440	vm_map_lock(map);
1441	do {
1442		if (find_space != VMFS_NO_SPACE) {
1443			if (vm_map_findspace(map, start, length, addr) ||
1444			    (max_addr != 0 && *addr + length > max_addr)) {
1445				vm_map_unlock(map);
1446				if (find_space == VMFS_OPTIMAL_SPACE) {
1447					find_space = VMFS_ANY_SPACE;
1448					goto again;
1449				}
1450				return (KERN_NO_SPACE);
1451			}
1452			switch (find_space) {
1453			case VMFS_SUPER_SPACE:
1454			case VMFS_OPTIMAL_SPACE:
1455				pmap_align_superpage(object, offset, addr,
1456				    length);
1457				break;
1458			case VMFS_ANY_SPACE:
1459				break;
1460			default:
1461				if ((*addr & (alignment - 1)) != 0) {
1462					*addr &= ~(alignment - 1);
1463					*addr += alignment;
1464				}
1465				break;
1466			}
1467
1468			start = *addr;
1469		}
1470		result = vm_map_insert(map, object, offset, start, start +
1471		    length, prot, max, cow);
1472	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1473	    find_space != VMFS_ANY_SPACE);
1474	vm_map_unlock(map);
1475	return (result);
1476}
1477
1478/*
1479 *	vm_map_simplify_entry:
1480 *
1481 *	Simplify the given map entry by merging with either neighbor.  This
1482 *	routine also has the ability to merge with both neighbors.
1483 *
1484 *	The map must be locked.
1485 *
1486 *	This routine guarentees that the passed entry remains valid (though
1487 *	possibly extended).  When merging, this routine may delete one or
1488 *	both neighbors.
1489 */
1490void
1491vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1492{
1493	vm_map_entry_t next, prev;
1494	vm_size_t prevsize, esize;
1495
1496	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1497		return;
1498
1499	prev = entry->prev;
1500	if (prev != &map->header) {
1501		prevsize = prev->end - prev->start;
1502		if ( (prev->end == entry->start) &&
1503		     (prev->object.vm_object == entry->object.vm_object) &&
1504		     (!prev->object.vm_object ||
1505			(prev->offset + prevsize == entry->offset)) &&
1506		     (prev->eflags == entry->eflags) &&
1507		     (prev->protection == entry->protection) &&
1508		     (prev->max_protection == entry->max_protection) &&
1509		     (prev->inheritance == entry->inheritance) &&
1510		     (prev->wired_count == entry->wired_count) &&
1511		     (prev->cred == entry->cred)) {
1512			vm_map_entry_unlink(map, prev);
1513			entry->start = prev->start;
1514			entry->offset = prev->offset;
1515			if (entry->prev != &map->header)
1516				vm_map_entry_resize_free(map, entry->prev);
1517
1518			/*
1519			 * If the backing object is a vnode object,
1520			 * vm_object_deallocate() calls vrele().
1521			 * However, vrele() does not lock the vnode
1522			 * because the vnode has additional
1523			 * references.  Thus, the map lock can be kept
1524			 * without causing a lock-order reversal with
1525			 * the vnode lock.
1526			 *
1527			 * Since we count the number of virtual page
1528			 * mappings in object->un_pager.vnp.writemappings,
1529			 * the writemappings value should not be adjusted
1530			 * when the entry is disposed of.
1531			 */
1532			if (prev->object.vm_object)
1533				vm_object_deallocate(prev->object.vm_object);
1534			if (prev->cred != NULL)
1535				crfree(prev->cred);
1536			vm_map_entry_dispose(map, prev);
1537		}
1538	}
1539
1540	next = entry->next;
1541	if (next != &map->header) {
1542		esize = entry->end - entry->start;
1543		if ((entry->end == next->start) &&
1544		    (next->object.vm_object == entry->object.vm_object) &&
1545		     (!entry->object.vm_object ||
1546			(entry->offset + esize == next->offset)) &&
1547		    (next->eflags == entry->eflags) &&
1548		    (next->protection == entry->protection) &&
1549		    (next->max_protection == entry->max_protection) &&
1550		    (next->inheritance == entry->inheritance) &&
1551		    (next->wired_count == entry->wired_count) &&
1552		    (next->cred == entry->cred)) {
1553			vm_map_entry_unlink(map, next);
1554			entry->end = next->end;
1555			vm_map_entry_resize_free(map, entry);
1556
1557			/*
1558			 * See comment above.
1559			 */
1560			if (next->object.vm_object)
1561				vm_object_deallocate(next->object.vm_object);
1562			if (next->cred != NULL)
1563				crfree(next->cred);
1564			vm_map_entry_dispose(map, next);
1565		}
1566	}
1567}
1568/*
1569 *	vm_map_clip_start:	[ internal use only ]
1570 *
1571 *	Asserts that the given entry begins at or after
1572 *	the specified address; if necessary,
1573 *	it splits the entry into two.
1574 */
1575#define vm_map_clip_start(map, entry, startaddr) \
1576{ \
1577	if (startaddr > entry->start) \
1578		_vm_map_clip_start(map, entry, startaddr); \
1579}
1580
1581/*
1582 *	This routine is called only when it is known that
1583 *	the entry must be split.
1584 */
1585static void
1586_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1587{
1588	vm_map_entry_t new_entry;
1589
1590	VM_MAP_ASSERT_LOCKED(map);
1591
1592	/*
1593	 * Split off the front portion -- note that we must insert the new
1594	 * entry BEFORE this one, so that this entry has the specified
1595	 * starting address.
1596	 */
1597	vm_map_simplify_entry(map, entry);
1598
1599	/*
1600	 * If there is no object backing this entry, we might as well create
1601	 * one now.  If we defer it, an object can get created after the map
1602	 * is clipped, and individual objects will be created for the split-up
1603	 * map.  This is a bit of a hack, but is also about the best place to
1604	 * put this improvement.
1605	 */
1606	if (entry->object.vm_object == NULL && !map->system_map) {
1607		vm_object_t object;
1608		object = vm_object_allocate(OBJT_DEFAULT,
1609				atop(entry->end - entry->start));
1610		entry->object.vm_object = object;
1611		entry->offset = 0;
1612		if (entry->cred != NULL) {
1613			object->cred = entry->cred;
1614			object->charge = entry->end - entry->start;
1615			entry->cred = NULL;
1616		}
1617	} else if (entry->object.vm_object != NULL &&
1618		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1619		   entry->cred != NULL) {
1620		VM_OBJECT_WLOCK(entry->object.vm_object);
1621		KASSERT(entry->object.vm_object->cred == NULL,
1622		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1623		entry->object.vm_object->cred = entry->cred;
1624		entry->object.vm_object->charge = entry->end - entry->start;
1625		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1626		entry->cred = NULL;
1627	}
1628
1629	new_entry = vm_map_entry_create(map);
1630	*new_entry = *entry;
1631
1632	new_entry->end = start;
1633	entry->offset += (start - entry->start);
1634	entry->start = start;
1635	if (new_entry->cred != NULL)
1636		crhold(entry->cred);
1637
1638	vm_map_entry_link(map, entry->prev, new_entry);
1639
1640	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1641		vm_object_reference(new_entry->object.vm_object);
1642		/*
1643		 * The object->un_pager.vnp.writemappings for the
1644		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1645		 * kept as is here.  The virtual pages are
1646		 * re-distributed among the clipped entries, so the sum is
1647		 * left the same.
1648		 */
1649	}
1650}
1651
1652/*
1653 *	vm_map_clip_end:	[ internal use only ]
1654 *
1655 *	Asserts that the given entry ends at or before
1656 *	the specified address; if necessary,
1657 *	it splits the entry into two.
1658 */
1659#define vm_map_clip_end(map, entry, endaddr) \
1660{ \
1661	if ((endaddr) < (entry->end)) \
1662		_vm_map_clip_end((map), (entry), (endaddr)); \
1663}
1664
1665/*
1666 *	This routine is called only when it is known that
1667 *	the entry must be split.
1668 */
1669static void
1670_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1671{
1672	vm_map_entry_t new_entry;
1673
1674	VM_MAP_ASSERT_LOCKED(map);
1675
1676	/*
1677	 * If there is no object backing this entry, we might as well create
1678	 * one now.  If we defer it, an object can get created after the map
1679	 * is clipped, and individual objects will be created for the split-up
1680	 * map.  This is a bit of a hack, but is also about the best place to
1681	 * put this improvement.
1682	 */
1683	if (entry->object.vm_object == NULL && !map->system_map) {
1684		vm_object_t object;
1685		object = vm_object_allocate(OBJT_DEFAULT,
1686				atop(entry->end - entry->start));
1687		entry->object.vm_object = object;
1688		entry->offset = 0;
1689		if (entry->cred != NULL) {
1690			object->cred = entry->cred;
1691			object->charge = entry->end - entry->start;
1692			entry->cred = NULL;
1693		}
1694	} else if (entry->object.vm_object != NULL &&
1695		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1696		   entry->cred != NULL) {
1697		VM_OBJECT_WLOCK(entry->object.vm_object);
1698		KASSERT(entry->object.vm_object->cred == NULL,
1699		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1700		entry->object.vm_object->cred = entry->cred;
1701		entry->object.vm_object->charge = entry->end - entry->start;
1702		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1703		entry->cred = NULL;
1704	}
1705
1706	/*
1707	 * Create a new entry and insert it AFTER the specified entry
1708	 */
1709	new_entry = vm_map_entry_create(map);
1710	*new_entry = *entry;
1711
1712	new_entry->start = entry->end = end;
1713	new_entry->offset += (end - entry->start);
1714	if (new_entry->cred != NULL)
1715		crhold(entry->cred);
1716
1717	vm_map_entry_link(map, entry, new_entry);
1718
1719	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1720		vm_object_reference(new_entry->object.vm_object);
1721	}
1722}
1723
1724/*
1725 *	vm_map_submap:		[ kernel use only ]
1726 *
1727 *	Mark the given range as handled by a subordinate map.
1728 *
1729 *	This range must have been created with vm_map_find,
1730 *	and no other operations may have been performed on this
1731 *	range prior to calling vm_map_submap.
1732 *
1733 *	Only a limited number of operations can be performed
1734 *	within this rage after calling vm_map_submap:
1735 *		vm_fault
1736 *	[Don't try vm_map_copy!]
1737 *
1738 *	To remove a submapping, one must first remove the
1739 *	range from the superior map, and then destroy the
1740 *	submap (if desired).  [Better yet, don't try it.]
1741 */
1742int
1743vm_map_submap(
1744	vm_map_t map,
1745	vm_offset_t start,
1746	vm_offset_t end,
1747	vm_map_t submap)
1748{
1749	vm_map_entry_t entry;
1750	int result = KERN_INVALID_ARGUMENT;
1751
1752	vm_map_lock(map);
1753
1754	VM_MAP_RANGE_CHECK(map, start, end);
1755
1756	if (vm_map_lookup_entry(map, start, &entry)) {
1757		vm_map_clip_start(map, entry, start);
1758	} else
1759		entry = entry->next;
1760
1761	vm_map_clip_end(map, entry, end);
1762
1763	if ((entry->start == start) && (entry->end == end) &&
1764	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1765	    (entry->object.vm_object == NULL)) {
1766		entry->object.sub_map = submap;
1767		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1768		result = KERN_SUCCESS;
1769	}
1770	vm_map_unlock(map);
1771
1772	return (result);
1773}
1774
1775/*
1776 * The maximum number of pages to map
1777 */
1778#define	MAX_INIT_PT	96
1779
1780/*
1781 *	vm_map_pmap_enter:
1782 *
1783 *	Preload read-only mappings for the specified object's resident pages
1784 *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1785 *	the resident pages within the address range [addr, addr + ulmin(size,
1786 *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1787 *	the specified address range are mapped.  This eliminates many soft
1788 *	faults on process startup and immediately after an mmap(2).  Because
1789 *	these are speculative mappings, cached pages are not reactivated and
1790 *	mapped.
1791 */
1792void
1793vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1794    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1795{
1796	vm_offset_t start;
1797	vm_page_t p, p_start;
1798	vm_pindex_t psize, tmpidx;
1799
1800	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1801		return;
1802	VM_OBJECT_RLOCK(object);
1803	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1804		VM_OBJECT_RUNLOCK(object);
1805		VM_OBJECT_WLOCK(object);
1806		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1807			pmap_object_init_pt(map->pmap, addr, object, pindex,
1808			    size);
1809			VM_OBJECT_WUNLOCK(object);
1810			return;
1811		}
1812		VM_OBJECT_LOCK_DOWNGRADE(object);
1813	}
1814
1815	psize = atop(size);
1816	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1817		psize = MAX_INIT_PT;
1818	if (psize + pindex > object->size) {
1819		if (object->size < pindex) {
1820			VM_OBJECT_RUNLOCK(object);
1821			return;
1822		}
1823		psize = object->size - pindex;
1824	}
1825
1826	start = 0;
1827	p_start = NULL;
1828
1829	p = vm_page_find_least(object, pindex);
1830	/*
1831	 * Assert: the variable p is either (1) the page with the
1832	 * least pindex greater than or equal to the parameter pindex
1833	 * or (2) NULL.
1834	 */
1835	for (;
1836	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1837	     p = TAILQ_NEXT(p, listq)) {
1838		/*
1839		 * don't allow an madvise to blow away our really
1840		 * free pages allocating pv entries.
1841		 */
1842		if ((flags & MAP_PREFAULT_MADVISE) &&
1843		    cnt.v_free_count < cnt.v_free_reserved) {
1844			psize = tmpidx;
1845			break;
1846		}
1847		if (p->valid == VM_PAGE_BITS_ALL) {
1848			if (p_start == NULL) {
1849				start = addr + ptoa(tmpidx);
1850				p_start = p;
1851			}
1852		} else if (p_start != NULL) {
1853			pmap_enter_object(map->pmap, start, addr +
1854			    ptoa(tmpidx), p_start, prot);
1855			p_start = NULL;
1856		}
1857	}
1858	if (p_start != NULL)
1859		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1860		    p_start, prot);
1861	VM_OBJECT_RUNLOCK(object);
1862}
1863
1864/*
1865 *	vm_map_protect:
1866 *
1867 *	Sets the protection of the specified address
1868 *	region in the target map.  If "set_max" is
1869 *	specified, the maximum protection is to be set;
1870 *	otherwise, only the current protection is affected.
1871 */
1872int
1873vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1874	       vm_prot_t new_prot, boolean_t set_max)
1875{
1876	vm_map_entry_t current, entry;
1877	vm_object_t obj;
1878	struct ucred *cred;
1879	vm_prot_t old_prot;
1880
1881	if (start == end)
1882		return (KERN_SUCCESS);
1883
1884	vm_map_lock(map);
1885
1886	VM_MAP_RANGE_CHECK(map, start, end);
1887
1888	if (vm_map_lookup_entry(map, start, &entry)) {
1889		vm_map_clip_start(map, entry, start);
1890	} else {
1891		entry = entry->next;
1892	}
1893
1894	/*
1895	 * Make a first pass to check for protection violations.
1896	 */
1897	current = entry;
1898	while ((current != &map->header) && (current->start < end)) {
1899		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1900			vm_map_unlock(map);
1901			return (KERN_INVALID_ARGUMENT);
1902		}
1903		if ((new_prot & current->max_protection) != new_prot) {
1904			vm_map_unlock(map);
1905			return (KERN_PROTECTION_FAILURE);
1906		}
1907		current = current->next;
1908	}
1909
1910
1911	/*
1912	 * Do an accounting pass for private read-only mappings that
1913	 * now will do cow due to allowed write (e.g. debugger sets
1914	 * breakpoint on text segment)
1915	 */
1916	for (current = entry; (current != &map->header) &&
1917	     (current->start < end); current = current->next) {
1918
1919		vm_map_clip_end(map, current, end);
1920
1921		if (set_max ||
1922		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1923		    ENTRY_CHARGED(current)) {
1924			continue;
1925		}
1926
1927		cred = curthread->td_ucred;
1928		obj = current->object.vm_object;
1929
1930		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1931			if (!swap_reserve(current->end - current->start)) {
1932				vm_map_unlock(map);
1933				return (KERN_RESOURCE_SHORTAGE);
1934			}
1935			crhold(cred);
1936			current->cred = cred;
1937			continue;
1938		}
1939
1940		VM_OBJECT_WLOCK(obj);
1941		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1942			VM_OBJECT_WUNLOCK(obj);
1943			continue;
1944		}
1945
1946		/*
1947		 * Charge for the whole object allocation now, since
1948		 * we cannot distinguish between non-charged and
1949		 * charged clipped mapping of the same object later.
1950		 */
1951		KASSERT(obj->charge == 0,
1952		    ("vm_map_protect: object %p overcharged (entry %p)",
1953		    obj, current));
1954		if (!swap_reserve(ptoa(obj->size))) {
1955			VM_OBJECT_WUNLOCK(obj);
1956			vm_map_unlock(map);
1957			return (KERN_RESOURCE_SHORTAGE);
1958		}
1959
1960		crhold(cred);
1961		obj->cred = cred;
1962		obj->charge = ptoa(obj->size);
1963		VM_OBJECT_WUNLOCK(obj);
1964	}
1965
1966	/*
1967	 * Go back and fix up protections. [Note that clipping is not
1968	 * necessary the second time.]
1969	 */
1970	current = entry;
1971	while ((current != &map->header) && (current->start < end)) {
1972		old_prot = current->protection;
1973
1974		if (set_max)
1975			current->protection =
1976			    (current->max_protection = new_prot) &
1977			    old_prot;
1978		else
1979			current->protection = new_prot;
1980
1981		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1982		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1983		    (current->protection & VM_PROT_WRITE) != 0 &&
1984		    (old_prot & VM_PROT_WRITE) == 0) {
1985			vm_fault_copy_entry(map, map, current, current, NULL);
1986		}
1987
1988		/*
1989		 * When restricting access, update the physical map.  Worry
1990		 * about copy-on-write here.
1991		 */
1992		if ((old_prot & ~current->protection) != 0) {
1993#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1994							VM_PROT_ALL)
1995			pmap_protect(map->pmap, current->start,
1996			    current->end,
1997			    current->protection & MASK(current));
1998#undef	MASK
1999		}
2000		vm_map_simplify_entry(map, current);
2001		current = current->next;
2002	}
2003	vm_map_unlock(map);
2004	return (KERN_SUCCESS);
2005}
2006
2007/*
2008 *	vm_map_madvise:
2009 *
2010 *	This routine traverses a processes map handling the madvise
2011 *	system call.  Advisories are classified as either those effecting
2012 *	the vm_map_entry structure, or those effecting the underlying
2013 *	objects.
2014 */
2015int
2016vm_map_madvise(
2017	vm_map_t map,
2018	vm_offset_t start,
2019	vm_offset_t end,
2020	int behav)
2021{
2022	vm_map_entry_t current, entry;
2023	int modify_map = 0;
2024
2025	/*
2026	 * Some madvise calls directly modify the vm_map_entry, in which case
2027	 * we need to use an exclusive lock on the map and we need to perform
2028	 * various clipping operations.  Otherwise we only need a read-lock
2029	 * on the map.
2030	 */
2031	switch(behav) {
2032	case MADV_NORMAL:
2033	case MADV_SEQUENTIAL:
2034	case MADV_RANDOM:
2035	case MADV_NOSYNC:
2036	case MADV_AUTOSYNC:
2037	case MADV_NOCORE:
2038	case MADV_CORE:
2039		if (start == end)
2040			return (KERN_SUCCESS);
2041		modify_map = 1;
2042		vm_map_lock(map);
2043		break;
2044	case MADV_WILLNEED:
2045	case MADV_DONTNEED:
2046	case MADV_FREE:
2047		if (start == end)
2048			return (KERN_SUCCESS);
2049		vm_map_lock_read(map);
2050		break;
2051	default:
2052		return (KERN_INVALID_ARGUMENT);
2053	}
2054
2055	/*
2056	 * Locate starting entry and clip if necessary.
2057	 */
2058	VM_MAP_RANGE_CHECK(map, start, end);
2059
2060	if (vm_map_lookup_entry(map, start, &entry)) {
2061		if (modify_map)
2062			vm_map_clip_start(map, entry, start);
2063	} else {
2064		entry = entry->next;
2065	}
2066
2067	if (modify_map) {
2068		/*
2069		 * madvise behaviors that are implemented in the vm_map_entry.
2070		 *
2071		 * We clip the vm_map_entry so that behavioral changes are
2072		 * limited to the specified address range.
2073		 */
2074		for (current = entry;
2075		     (current != &map->header) && (current->start < end);
2076		     current = current->next
2077		) {
2078			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2079				continue;
2080
2081			vm_map_clip_end(map, current, end);
2082
2083			switch (behav) {
2084			case MADV_NORMAL:
2085				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2086				break;
2087			case MADV_SEQUENTIAL:
2088				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2089				break;
2090			case MADV_RANDOM:
2091				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2092				break;
2093			case MADV_NOSYNC:
2094				current->eflags |= MAP_ENTRY_NOSYNC;
2095				break;
2096			case MADV_AUTOSYNC:
2097				current->eflags &= ~MAP_ENTRY_NOSYNC;
2098				break;
2099			case MADV_NOCORE:
2100				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2101				break;
2102			case MADV_CORE:
2103				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2104				break;
2105			default:
2106				break;
2107			}
2108			vm_map_simplify_entry(map, current);
2109		}
2110		vm_map_unlock(map);
2111	} else {
2112		vm_pindex_t pstart, pend;
2113
2114		/*
2115		 * madvise behaviors that are implemented in the underlying
2116		 * vm_object.
2117		 *
2118		 * Since we don't clip the vm_map_entry, we have to clip
2119		 * the vm_object pindex and count.
2120		 */
2121		for (current = entry;
2122		     (current != &map->header) && (current->start < end);
2123		     current = current->next
2124		) {
2125			vm_offset_t useEnd, useStart;
2126
2127			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2128				continue;
2129
2130			pstart = OFF_TO_IDX(current->offset);
2131			pend = pstart + atop(current->end - current->start);
2132			useStart = current->start;
2133			useEnd = current->end;
2134
2135			if (current->start < start) {
2136				pstart += atop(start - current->start);
2137				useStart = start;
2138			}
2139			if (current->end > end) {
2140				pend -= atop(current->end - end);
2141				useEnd = end;
2142			}
2143
2144			if (pstart >= pend)
2145				continue;
2146
2147			/*
2148			 * Perform the pmap_advise() before clearing
2149			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2150			 * concurrent pmap operation, such as pmap_remove(),
2151			 * could clear a reference in the pmap and set
2152			 * PGA_REFERENCED on the page before the pmap_advise()
2153			 * had completed.  Consequently, the page would appear
2154			 * referenced based upon an old reference that
2155			 * occurred before this pmap_advise() ran.
2156			 */
2157			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2158				pmap_advise(map->pmap, useStart, useEnd,
2159				    behav);
2160
2161			vm_object_madvise(current->object.vm_object, pstart,
2162			    pend, behav);
2163			if (behav == MADV_WILLNEED) {
2164				vm_map_pmap_enter(map,
2165				    useStart,
2166				    current->protection,
2167				    current->object.vm_object,
2168				    pstart,
2169				    ptoa(pend - pstart),
2170				    MAP_PREFAULT_MADVISE
2171				);
2172			}
2173		}
2174		vm_map_unlock_read(map);
2175	}
2176	return (0);
2177}
2178
2179
2180/*
2181 *	vm_map_inherit:
2182 *
2183 *	Sets the inheritance of the specified address
2184 *	range in the target map.  Inheritance
2185 *	affects how the map will be shared with
2186 *	child maps at the time of vmspace_fork.
2187 */
2188int
2189vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2190	       vm_inherit_t new_inheritance)
2191{
2192	vm_map_entry_t entry;
2193	vm_map_entry_t temp_entry;
2194
2195	switch (new_inheritance) {
2196	case VM_INHERIT_NONE:
2197	case VM_INHERIT_COPY:
2198	case VM_INHERIT_SHARE:
2199		break;
2200	default:
2201		return (KERN_INVALID_ARGUMENT);
2202	}
2203	if (start == end)
2204		return (KERN_SUCCESS);
2205	vm_map_lock(map);
2206	VM_MAP_RANGE_CHECK(map, start, end);
2207	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2208		entry = temp_entry;
2209		vm_map_clip_start(map, entry, start);
2210	} else
2211		entry = temp_entry->next;
2212	while ((entry != &map->header) && (entry->start < end)) {
2213		vm_map_clip_end(map, entry, end);
2214		entry->inheritance = new_inheritance;
2215		vm_map_simplify_entry(map, entry);
2216		entry = entry->next;
2217	}
2218	vm_map_unlock(map);
2219	return (KERN_SUCCESS);
2220}
2221
2222/*
2223 *	vm_map_unwire:
2224 *
2225 *	Implements both kernel and user unwiring.
2226 */
2227int
2228vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2229    int flags)
2230{
2231	vm_map_entry_t entry, first_entry, tmp_entry;
2232	vm_offset_t saved_start;
2233	unsigned int last_timestamp;
2234	int rv;
2235	boolean_t need_wakeup, result, user_unwire;
2236
2237	if (start == end)
2238		return (KERN_SUCCESS);
2239	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2240	vm_map_lock(map);
2241	VM_MAP_RANGE_CHECK(map, start, end);
2242	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2243		if (flags & VM_MAP_WIRE_HOLESOK)
2244			first_entry = first_entry->next;
2245		else {
2246			vm_map_unlock(map);
2247			return (KERN_INVALID_ADDRESS);
2248		}
2249	}
2250	last_timestamp = map->timestamp;
2251	entry = first_entry;
2252	while (entry != &map->header && entry->start < end) {
2253		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2254			/*
2255			 * We have not yet clipped the entry.
2256			 */
2257			saved_start = (start >= entry->start) ? start :
2258			    entry->start;
2259			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2260			if (vm_map_unlock_and_wait(map, 0)) {
2261				/*
2262				 * Allow interruption of user unwiring?
2263				 */
2264			}
2265			vm_map_lock(map);
2266			if (last_timestamp+1 != map->timestamp) {
2267				/*
2268				 * Look again for the entry because the map was
2269				 * modified while it was unlocked.
2270				 * Specifically, the entry may have been
2271				 * clipped, merged, or deleted.
2272				 */
2273				if (!vm_map_lookup_entry(map, saved_start,
2274				    &tmp_entry)) {
2275					if (flags & VM_MAP_WIRE_HOLESOK)
2276						tmp_entry = tmp_entry->next;
2277					else {
2278						if (saved_start == start) {
2279							/*
2280							 * First_entry has been deleted.
2281							 */
2282							vm_map_unlock(map);
2283							return (KERN_INVALID_ADDRESS);
2284						}
2285						end = saved_start;
2286						rv = KERN_INVALID_ADDRESS;
2287						goto done;
2288					}
2289				}
2290				if (entry == first_entry)
2291					first_entry = tmp_entry;
2292				else
2293					first_entry = NULL;
2294				entry = tmp_entry;
2295			}
2296			last_timestamp = map->timestamp;
2297			continue;
2298		}
2299		vm_map_clip_start(map, entry, start);
2300		vm_map_clip_end(map, entry, end);
2301		/*
2302		 * Mark the entry in case the map lock is released.  (See
2303		 * above.)
2304		 */
2305		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2306		    entry->wiring_thread == NULL,
2307		    ("owned map entry %p", entry));
2308		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2309		entry->wiring_thread = curthread;
2310		/*
2311		 * Check the map for holes in the specified region.
2312		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2313		 */
2314		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2315		    (entry->end < end && (entry->next == &map->header ||
2316		    entry->next->start > entry->end))) {
2317			end = entry->end;
2318			rv = KERN_INVALID_ADDRESS;
2319			goto done;
2320		}
2321		/*
2322		 * If system unwiring, require that the entry is system wired.
2323		 */
2324		if (!user_unwire &&
2325		    vm_map_entry_system_wired_count(entry) == 0) {
2326			end = entry->end;
2327			rv = KERN_INVALID_ARGUMENT;
2328			goto done;
2329		}
2330		entry = entry->next;
2331	}
2332	rv = KERN_SUCCESS;
2333done:
2334	need_wakeup = FALSE;
2335	if (first_entry == NULL) {
2336		result = vm_map_lookup_entry(map, start, &first_entry);
2337		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2338			first_entry = first_entry->next;
2339		else
2340			KASSERT(result, ("vm_map_unwire: lookup failed"));
2341	}
2342	for (entry = first_entry; entry != &map->header && entry->start < end;
2343	    entry = entry->next) {
2344		/*
2345		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2346		 * space in the unwired region could have been mapped
2347		 * while the map lock was dropped for draining
2348		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2349		 * could be simultaneously wiring this new mapping
2350		 * entry.  Detect these cases and skip any entries
2351		 * marked as in transition by us.
2352		 */
2353		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2354		    entry->wiring_thread != curthread) {
2355			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2356			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2357			continue;
2358		}
2359
2360		if (rv == KERN_SUCCESS && (!user_unwire ||
2361		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2362			if (user_unwire)
2363				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2364			entry->wired_count--;
2365			if (entry->wired_count == 0) {
2366				/*
2367				 * Retain the map lock.
2368				 */
2369				vm_fault_unwire(map, entry->start, entry->end,
2370				    entry->object.vm_object != NULL &&
2371				    (entry->object.vm_object->flags &
2372				    OBJ_FICTITIOUS) != 0);
2373			}
2374		}
2375		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2376		    ("vm_map_unwire: in-transition flag missing %p", entry));
2377		KASSERT(entry->wiring_thread == curthread,
2378		    ("vm_map_unwire: alien wire %p", entry));
2379		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2380		entry->wiring_thread = NULL;
2381		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2382			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2383			need_wakeup = TRUE;
2384		}
2385		vm_map_simplify_entry(map, entry);
2386	}
2387	vm_map_unlock(map);
2388	if (need_wakeup)
2389		vm_map_wakeup(map);
2390	return (rv);
2391}
2392
2393/*
2394 *	vm_map_wire:
2395 *
2396 *	Implements both kernel and user wiring.
2397 */
2398int
2399vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2400    int flags)
2401{
2402	vm_map_entry_t entry, first_entry, tmp_entry;
2403	vm_offset_t saved_end, saved_start;
2404	unsigned int last_timestamp;
2405	int rv;
2406	boolean_t fictitious, need_wakeup, result, user_wire;
2407	vm_prot_t prot;
2408
2409	if (start == end)
2410		return (KERN_SUCCESS);
2411	prot = 0;
2412	if (flags & VM_MAP_WIRE_WRITE)
2413		prot |= VM_PROT_WRITE;
2414	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2415	vm_map_lock(map);
2416	VM_MAP_RANGE_CHECK(map, start, end);
2417	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2418		if (flags & VM_MAP_WIRE_HOLESOK)
2419			first_entry = first_entry->next;
2420		else {
2421			vm_map_unlock(map);
2422			return (KERN_INVALID_ADDRESS);
2423		}
2424	}
2425	last_timestamp = map->timestamp;
2426	entry = first_entry;
2427	while (entry != &map->header && entry->start < end) {
2428		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2429			/*
2430			 * We have not yet clipped the entry.
2431			 */
2432			saved_start = (start >= entry->start) ? start :
2433			    entry->start;
2434			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2435			if (vm_map_unlock_and_wait(map, 0)) {
2436				/*
2437				 * Allow interruption of user wiring?
2438				 */
2439			}
2440			vm_map_lock(map);
2441			if (last_timestamp + 1 != map->timestamp) {
2442				/*
2443				 * Look again for the entry because the map was
2444				 * modified while it was unlocked.
2445				 * Specifically, the entry may have been
2446				 * clipped, merged, or deleted.
2447				 */
2448				if (!vm_map_lookup_entry(map, saved_start,
2449				    &tmp_entry)) {
2450					if (flags & VM_MAP_WIRE_HOLESOK)
2451						tmp_entry = tmp_entry->next;
2452					else {
2453						if (saved_start == start) {
2454							/*
2455							 * first_entry has been deleted.
2456							 */
2457							vm_map_unlock(map);
2458							return (KERN_INVALID_ADDRESS);
2459						}
2460						end = saved_start;
2461						rv = KERN_INVALID_ADDRESS;
2462						goto done;
2463					}
2464				}
2465				if (entry == first_entry)
2466					first_entry = tmp_entry;
2467				else
2468					first_entry = NULL;
2469				entry = tmp_entry;
2470			}
2471			last_timestamp = map->timestamp;
2472			continue;
2473		}
2474		vm_map_clip_start(map, entry, start);
2475		vm_map_clip_end(map, entry, end);
2476		/*
2477		 * Mark the entry in case the map lock is released.  (See
2478		 * above.)
2479		 */
2480		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2481		    entry->wiring_thread == NULL,
2482		    ("owned map entry %p", entry));
2483		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2484		entry->wiring_thread = curthread;
2485		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2486		    || (entry->protection & prot) != prot) {
2487			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2488			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2489				end = entry->end;
2490				rv = KERN_INVALID_ADDRESS;
2491				goto done;
2492			}
2493			goto next_entry;
2494		}
2495		if (entry->wired_count == 0) {
2496			entry->wired_count++;
2497			saved_start = entry->start;
2498			saved_end = entry->end;
2499			fictitious = entry->object.vm_object != NULL &&
2500			    (entry->object.vm_object->flags &
2501			    OBJ_FICTITIOUS) != 0;
2502			/*
2503			 * Release the map lock, relying on the in-transition
2504			 * mark.  Mark the map busy for fork.
2505			 */
2506			vm_map_busy(map);
2507			vm_map_unlock(map);
2508			rv = vm_fault_wire(map, saved_start, saved_end,
2509			    fictitious);
2510			vm_map_lock(map);
2511			vm_map_unbusy(map);
2512			if (last_timestamp + 1 != map->timestamp) {
2513				/*
2514				 * Look again for the entry because the map was
2515				 * modified while it was unlocked.  The entry
2516				 * may have been clipped, but NOT merged or
2517				 * deleted.
2518				 */
2519				result = vm_map_lookup_entry(map, saved_start,
2520				    &tmp_entry);
2521				KASSERT(result, ("vm_map_wire: lookup failed"));
2522				if (entry == first_entry)
2523					first_entry = tmp_entry;
2524				else
2525					first_entry = NULL;
2526				entry = tmp_entry;
2527				while (entry->end < saved_end) {
2528					if (rv != KERN_SUCCESS) {
2529						KASSERT(entry->wired_count == 1,
2530						    ("vm_map_wire: bad count"));
2531						entry->wired_count = -1;
2532					}
2533					entry = entry->next;
2534				}
2535			}
2536			last_timestamp = map->timestamp;
2537			if (rv != KERN_SUCCESS) {
2538				KASSERT(entry->wired_count == 1,
2539				    ("vm_map_wire: bad count"));
2540				/*
2541				 * Assign an out-of-range value to represent
2542				 * the failure to wire this entry.
2543				 */
2544				entry->wired_count = -1;
2545				end = entry->end;
2546				goto done;
2547			}
2548		} else if (!user_wire ||
2549			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2550			entry->wired_count++;
2551		}
2552		/*
2553		 * Check the map for holes in the specified region.
2554		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2555		 */
2556	next_entry:
2557		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2558		    (entry->end < end && (entry->next == &map->header ||
2559		    entry->next->start > entry->end))) {
2560			end = entry->end;
2561			rv = KERN_INVALID_ADDRESS;
2562			goto done;
2563		}
2564		entry = entry->next;
2565	}
2566	rv = KERN_SUCCESS;
2567done:
2568	need_wakeup = FALSE;
2569	if (first_entry == NULL) {
2570		result = vm_map_lookup_entry(map, start, &first_entry);
2571		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2572			first_entry = first_entry->next;
2573		else
2574			KASSERT(result, ("vm_map_wire: lookup failed"));
2575	}
2576	for (entry = first_entry; entry != &map->header && entry->start < end;
2577	    entry = entry->next) {
2578		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2579			goto next_entry_done;
2580
2581		/*
2582		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2583		 * space in the unwired region could have been mapped
2584		 * while the map lock was dropped for faulting in the
2585		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2586		 * Moreover, another thread could be simultaneously
2587		 * wiring this new mapping entry.  Detect these cases
2588		 * and skip any entries marked as in transition by us.
2589		 */
2590		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2591		    entry->wiring_thread != curthread) {
2592			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2593			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2594			continue;
2595		}
2596
2597		if (rv == KERN_SUCCESS) {
2598			if (user_wire)
2599				entry->eflags |= MAP_ENTRY_USER_WIRED;
2600		} else if (entry->wired_count == -1) {
2601			/*
2602			 * Wiring failed on this entry.  Thus, unwiring is
2603			 * unnecessary.
2604			 */
2605			entry->wired_count = 0;
2606		} else {
2607			if (!user_wire ||
2608			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2609				entry->wired_count--;
2610			if (entry->wired_count == 0) {
2611				/*
2612				 * Retain the map lock.
2613				 */
2614				vm_fault_unwire(map, entry->start, entry->end,
2615				    entry->object.vm_object != NULL &&
2616				    (entry->object.vm_object->flags &
2617				    OBJ_FICTITIOUS) != 0);
2618			}
2619		}
2620	next_entry_done:
2621		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2622		    ("vm_map_wire: in-transition flag missing %p", entry));
2623		KASSERT(entry->wiring_thread == curthread,
2624		    ("vm_map_wire: alien wire %p", entry));
2625		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2626		    MAP_ENTRY_WIRE_SKIPPED);
2627		entry->wiring_thread = NULL;
2628		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2629			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2630			need_wakeup = TRUE;
2631		}
2632		vm_map_simplify_entry(map, entry);
2633	}
2634	vm_map_unlock(map);
2635	if (need_wakeup)
2636		vm_map_wakeup(map);
2637	return (rv);
2638}
2639
2640/*
2641 * vm_map_sync
2642 *
2643 * Push any dirty cached pages in the address range to their pager.
2644 * If syncio is TRUE, dirty pages are written synchronously.
2645 * If invalidate is TRUE, any cached pages are freed as well.
2646 *
2647 * If the size of the region from start to end is zero, we are
2648 * supposed to flush all modified pages within the region containing
2649 * start.  Unfortunately, a region can be split or coalesced with
2650 * neighboring regions, making it difficult to determine what the
2651 * original region was.  Therefore, we approximate this requirement by
2652 * flushing the current region containing start.
2653 *
2654 * Returns an error if any part of the specified range is not mapped.
2655 */
2656int
2657vm_map_sync(
2658	vm_map_t map,
2659	vm_offset_t start,
2660	vm_offset_t end,
2661	boolean_t syncio,
2662	boolean_t invalidate)
2663{
2664	vm_map_entry_t current;
2665	vm_map_entry_t entry;
2666	vm_size_t size;
2667	vm_object_t object;
2668	vm_ooffset_t offset;
2669	unsigned int last_timestamp;
2670	boolean_t failed;
2671
2672	vm_map_lock_read(map);
2673	VM_MAP_RANGE_CHECK(map, start, end);
2674	if (!vm_map_lookup_entry(map, start, &entry)) {
2675		vm_map_unlock_read(map);
2676		return (KERN_INVALID_ADDRESS);
2677	} else if (start == end) {
2678		start = entry->start;
2679		end = entry->end;
2680	}
2681	/*
2682	 * Make a first pass to check for user-wired memory and holes.
2683	 */
2684	for (current = entry; current != &map->header && current->start < end;
2685	    current = current->next) {
2686		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2687			vm_map_unlock_read(map);
2688			return (KERN_INVALID_ARGUMENT);
2689		}
2690		if (end > current->end &&
2691		    (current->next == &map->header ||
2692			current->end != current->next->start)) {
2693			vm_map_unlock_read(map);
2694			return (KERN_INVALID_ADDRESS);
2695		}
2696	}
2697
2698	if (invalidate)
2699		pmap_remove(map->pmap, start, end);
2700	failed = FALSE;
2701
2702	/*
2703	 * Make a second pass, cleaning/uncaching pages from the indicated
2704	 * objects as we go.
2705	 */
2706	for (current = entry; current != &map->header && current->start < end;) {
2707		offset = current->offset + (start - current->start);
2708		size = (end <= current->end ? end : current->end) - start;
2709		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2710			vm_map_t smap;
2711			vm_map_entry_t tentry;
2712			vm_size_t tsize;
2713
2714			smap = current->object.sub_map;
2715			vm_map_lock_read(smap);
2716			(void) vm_map_lookup_entry(smap, offset, &tentry);
2717			tsize = tentry->end - offset;
2718			if (tsize < size)
2719				size = tsize;
2720			object = tentry->object.vm_object;
2721			offset = tentry->offset + (offset - tentry->start);
2722			vm_map_unlock_read(smap);
2723		} else {
2724			object = current->object.vm_object;
2725		}
2726		vm_object_reference(object);
2727		last_timestamp = map->timestamp;
2728		vm_map_unlock_read(map);
2729		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2730			failed = TRUE;
2731		start += size;
2732		vm_object_deallocate(object);
2733		vm_map_lock_read(map);
2734		if (last_timestamp == map->timestamp ||
2735		    !vm_map_lookup_entry(map, start, &current))
2736			current = current->next;
2737	}
2738
2739	vm_map_unlock_read(map);
2740	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2741}
2742
2743/*
2744 *	vm_map_entry_unwire:	[ internal use only ]
2745 *
2746 *	Make the region specified by this entry pageable.
2747 *
2748 *	The map in question should be locked.
2749 *	[This is the reason for this routine's existence.]
2750 */
2751static void
2752vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2753{
2754	vm_fault_unwire(map, entry->start, entry->end,
2755	    entry->object.vm_object != NULL &&
2756	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2757	entry->wired_count = 0;
2758}
2759
2760static void
2761vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2762{
2763
2764	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2765		vm_object_deallocate(entry->object.vm_object);
2766	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2767}
2768
2769/*
2770 *	vm_map_entry_delete:	[ internal use only ]
2771 *
2772 *	Deallocate the given entry from the target map.
2773 */
2774static void
2775vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2776{
2777	vm_object_t object;
2778	vm_pindex_t offidxstart, offidxend, count, size1;
2779	vm_ooffset_t size;
2780
2781	vm_map_entry_unlink(map, entry);
2782	object = entry->object.vm_object;
2783	size = entry->end - entry->start;
2784	map->size -= size;
2785
2786	if (entry->cred != NULL) {
2787		swap_release_by_cred(size, entry->cred);
2788		crfree(entry->cred);
2789	}
2790
2791	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2792	    (object != NULL)) {
2793		KASSERT(entry->cred == NULL || object->cred == NULL ||
2794		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2795		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2796		count = OFF_TO_IDX(size);
2797		offidxstart = OFF_TO_IDX(entry->offset);
2798		offidxend = offidxstart + count;
2799		VM_OBJECT_WLOCK(object);
2800		if (object->ref_count != 1 &&
2801		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2802		    object == kernel_object || object == kmem_object)) {
2803			vm_object_collapse(object);
2804
2805			/*
2806			 * The option OBJPR_NOTMAPPED can be passed here
2807			 * because vm_map_delete() already performed
2808			 * pmap_remove() on the only mapping to this range
2809			 * of pages.
2810			 */
2811			vm_object_page_remove(object, offidxstart, offidxend,
2812			    OBJPR_NOTMAPPED);
2813			if (object->type == OBJT_SWAP)
2814				swap_pager_freespace(object, offidxstart, count);
2815			if (offidxend >= object->size &&
2816			    offidxstart < object->size) {
2817				size1 = object->size;
2818				object->size = offidxstart;
2819				if (object->cred != NULL) {
2820					size1 -= object->size;
2821					KASSERT(object->charge >= ptoa(size1),
2822					    ("vm_map_entry_delete: object->charge < 0"));
2823					swap_release_by_cred(ptoa(size1), object->cred);
2824					object->charge -= ptoa(size1);
2825				}
2826			}
2827		}
2828		VM_OBJECT_WUNLOCK(object);
2829	} else
2830		entry->object.vm_object = NULL;
2831	if (map->system_map)
2832		vm_map_entry_deallocate(entry, TRUE);
2833	else {
2834		entry->next = curthread->td_map_def_user;
2835		curthread->td_map_def_user = entry;
2836	}
2837}
2838
2839/*
2840 *	vm_map_delete:	[ internal use only ]
2841 *
2842 *	Deallocates the given address range from the target
2843 *	map.
2844 */
2845int
2846vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2847{
2848	vm_map_entry_t entry;
2849	vm_map_entry_t first_entry;
2850
2851	VM_MAP_ASSERT_LOCKED(map);
2852	if (start == end)
2853		return (KERN_SUCCESS);
2854
2855	/*
2856	 * Find the start of the region, and clip it
2857	 */
2858	if (!vm_map_lookup_entry(map, start, &first_entry))
2859		entry = first_entry->next;
2860	else {
2861		entry = first_entry;
2862		vm_map_clip_start(map, entry, start);
2863	}
2864
2865	/*
2866	 * Step through all entries in this region
2867	 */
2868	while ((entry != &map->header) && (entry->start < end)) {
2869		vm_map_entry_t next;
2870
2871		/*
2872		 * Wait for wiring or unwiring of an entry to complete.
2873		 * Also wait for any system wirings to disappear on
2874		 * user maps.
2875		 */
2876		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2877		    (vm_map_pmap(map) != kernel_pmap &&
2878		    vm_map_entry_system_wired_count(entry) != 0)) {
2879			unsigned int last_timestamp;
2880			vm_offset_t saved_start;
2881			vm_map_entry_t tmp_entry;
2882
2883			saved_start = entry->start;
2884			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2885			last_timestamp = map->timestamp;
2886			(void) vm_map_unlock_and_wait(map, 0);
2887			vm_map_lock(map);
2888			if (last_timestamp + 1 != map->timestamp) {
2889				/*
2890				 * Look again for the entry because the map was
2891				 * modified while it was unlocked.
2892				 * Specifically, the entry may have been
2893				 * clipped, merged, or deleted.
2894				 */
2895				if (!vm_map_lookup_entry(map, saved_start,
2896							 &tmp_entry))
2897					entry = tmp_entry->next;
2898				else {
2899					entry = tmp_entry;
2900					vm_map_clip_start(map, entry,
2901							  saved_start);
2902				}
2903			}
2904			continue;
2905		}
2906		vm_map_clip_end(map, entry, end);
2907
2908		next = entry->next;
2909
2910		/*
2911		 * Unwire before removing addresses from the pmap; otherwise,
2912		 * unwiring will put the entries back in the pmap.
2913		 */
2914		if (entry->wired_count != 0) {
2915			vm_map_entry_unwire(map, entry);
2916		}
2917
2918		pmap_remove(map->pmap, entry->start, entry->end);
2919
2920		/*
2921		 * Delete the entry only after removing all pmap
2922		 * entries pointing to its pages.  (Otherwise, its
2923		 * page frames may be reallocated, and any modify bits
2924		 * will be set in the wrong object!)
2925		 */
2926		vm_map_entry_delete(map, entry);
2927		entry = next;
2928	}
2929	return (KERN_SUCCESS);
2930}
2931
2932/*
2933 *	vm_map_remove:
2934 *
2935 *	Remove the given address range from the target map.
2936 *	This is the exported form of vm_map_delete.
2937 */
2938int
2939vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2940{
2941	int result;
2942
2943	vm_map_lock(map);
2944	VM_MAP_RANGE_CHECK(map, start, end);
2945	result = vm_map_delete(map, start, end);
2946	vm_map_unlock(map);
2947	return (result);
2948}
2949
2950/*
2951 *	vm_map_check_protection:
2952 *
2953 *	Assert that the target map allows the specified privilege on the
2954 *	entire address region given.  The entire region must be allocated.
2955 *
2956 *	WARNING!  This code does not and should not check whether the
2957 *	contents of the region is accessible.  For example a smaller file
2958 *	might be mapped into a larger address space.
2959 *
2960 *	NOTE!  This code is also called by munmap().
2961 *
2962 *	The map must be locked.  A read lock is sufficient.
2963 */
2964boolean_t
2965vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2966			vm_prot_t protection)
2967{
2968	vm_map_entry_t entry;
2969	vm_map_entry_t tmp_entry;
2970
2971	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2972		return (FALSE);
2973	entry = tmp_entry;
2974
2975	while (start < end) {
2976		if (entry == &map->header)
2977			return (FALSE);
2978		/*
2979		 * No holes allowed!
2980		 */
2981		if (start < entry->start)
2982			return (FALSE);
2983		/*
2984		 * Check protection associated with entry.
2985		 */
2986		if ((entry->protection & protection) != protection)
2987			return (FALSE);
2988		/* go to next entry */
2989		start = entry->end;
2990		entry = entry->next;
2991	}
2992	return (TRUE);
2993}
2994
2995/*
2996 *	vm_map_copy_entry:
2997 *
2998 *	Copies the contents of the source entry to the destination
2999 *	entry.  The entries *must* be aligned properly.
3000 */
3001static void
3002vm_map_copy_entry(
3003	vm_map_t src_map,
3004	vm_map_t dst_map,
3005	vm_map_entry_t src_entry,
3006	vm_map_entry_t dst_entry,
3007	vm_ooffset_t *fork_charge)
3008{
3009	vm_object_t src_object;
3010	vm_map_entry_t fake_entry;
3011	vm_offset_t size;
3012	struct ucred *cred;
3013	int charged;
3014
3015	VM_MAP_ASSERT_LOCKED(dst_map);
3016
3017	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3018		return;
3019
3020	if (src_entry->wired_count == 0) {
3021
3022		/*
3023		 * If the source entry is marked needs_copy, it is already
3024		 * write-protected.
3025		 */
3026		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3027			pmap_protect(src_map->pmap,
3028			    src_entry->start,
3029			    src_entry->end,
3030			    src_entry->protection & ~VM_PROT_WRITE);
3031		}
3032
3033		/*
3034		 * Make a copy of the object.
3035		 */
3036		size = src_entry->end - src_entry->start;
3037		if ((src_object = src_entry->object.vm_object) != NULL) {
3038			VM_OBJECT_WLOCK(src_object);
3039			charged = ENTRY_CHARGED(src_entry);
3040			if ((src_object->handle == NULL) &&
3041				(src_object->type == OBJT_DEFAULT ||
3042				 src_object->type == OBJT_SWAP)) {
3043				vm_object_collapse(src_object);
3044				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3045					vm_object_split(src_entry);
3046					src_object = src_entry->object.vm_object;
3047				}
3048			}
3049			vm_object_reference_locked(src_object);
3050			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3051			if (src_entry->cred != NULL &&
3052			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3053				KASSERT(src_object->cred == NULL,
3054				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3055				     src_object));
3056				src_object->cred = src_entry->cred;
3057				src_object->charge = size;
3058			}
3059			VM_OBJECT_WUNLOCK(src_object);
3060			dst_entry->object.vm_object = src_object;
3061			if (charged) {
3062				cred = curthread->td_ucred;
3063				crhold(cred);
3064				dst_entry->cred = cred;
3065				*fork_charge += size;
3066				if (!(src_entry->eflags &
3067				      MAP_ENTRY_NEEDS_COPY)) {
3068					crhold(cred);
3069					src_entry->cred = cred;
3070					*fork_charge += size;
3071				}
3072			}
3073			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3074			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3075			dst_entry->offset = src_entry->offset;
3076			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3077				/*
3078				 * MAP_ENTRY_VN_WRITECNT cannot
3079				 * indicate write reference from
3080				 * src_entry, since the entry is
3081				 * marked as needs copy.  Allocate a
3082				 * fake entry that is used to
3083				 * decrement object->un_pager.vnp.writecount
3084				 * at the appropriate time.  Attach
3085				 * fake_entry to the deferred list.
3086				 */
3087				fake_entry = vm_map_entry_create(dst_map);
3088				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3089				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3090				vm_object_reference(src_object);
3091				fake_entry->object.vm_object = src_object;
3092				fake_entry->start = src_entry->start;
3093				fake_entry->end = src_entry->end;
3094				fake_entry->next = curthread->td_map_def_user;
3095				curthread->td_map_def_user = fake_entry;
3096			}
3097		} else {
3098			dst_entry->object.vm_object = NULL;
3099			dst_entry->offset = 0;
3100			if (src_entry->cred != NULL) {
3101				dst_entry->cred = curthread->td_ucred;
3102				crhold(dst_entry->cred);
3103				*fork_charge += size;
3104			}
3105		}
3106
3107		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3108		    dst_entry->end - dst_entry->start, src_entry->start);
3109	} else {
3110		/*
3111		 * Of course, wired down pages can't be set copy-on-write.
3112		 * Cause wired pages to be copied into the new map by
3113		 * simulating faults (the new pages are pageable)
3114		 */
3115		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3116		    fork_charge);
3117	}
3118}
3119
3120/*
3121 * vmspace_map_entry_forked:
3122 * Update the newly-forked vmspace each time a map entry is inherited
3123 * or copied.  The values for vm_dsize and vm_tsize are approximate
3124 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3125 */
3126static void
3127vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3128    vm_map_entry_t entry)
3129{
3130	vm_size_t entrysize;
3131	vm_offset_t newend;
3132
3133	entrysize = entry->end - entry->start;
3134	vm2->vm_map.size += entrysize;
3135	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3136		vm2->vm_ssize += btoc(entrysize);
3137	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3138	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3139		newend = MIN(entry->end,
3140		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3141		vm2->vm_dsize += btoc(newend - entry->start);
3142	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3143	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3144		newend = MIN(entry->end,
3145		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3146		vm2->vm_tsize += btoc(newend - entry->start);
3147	}
3148}
3149
3150/*
3151 * vmspace_fork:
3152 * Create a new process vmspace structure and vm_map
3153 * based on those of an existing process.  The new map
3154 * is based on the old map, according to the inheritance
3155 * values on the regions in that map.
3156 *
3157 * XXX It might be worth coalescing the entries added to the new vmspace.
3158 *
3159 * The source map must not be locked.
3160 */
3161struct vmspace *
3162vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3163{
3164	struct vmspace *vm2;
3165	vm_map_t new_map, old_map;
3166	vm_map_entry_t new_entry, old_entry;
3167	vm_object_t object;
3168	int locked;
3169
3170	old_map = &vm1->vm_map;
3171	/* Copy immutable fields of vm1 to vm2. */
3172	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3173	if (vm2 == NULL)
3174		return (NULL);
3175	vm2->vm_taddr = vm1->vm_taddr;
3176	vm2->vm_daddr = vm1->vm_daddr;
3177	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3178	vm_map_lock(old_map);
3179	if (old_map->busy)
3180		vm_map_wait_busy(old_map);
3181	new_map = &vm2->vm_map;
3182	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3183	KASSERT(locked, ("vmspace_fork: lock failed"));
3184
3185	old_entry = old_map->header.next;
3186
3187	while (old_entry != &old_map->header) {
3188		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3189			panic("vm_map_fork: encountered a submap");
3190
3191		switch (old_entry->inheritance) {
3192		case VM_INHERIT_NONE:
3193			break;
3194
3195		case VM_INHERIT_SHARE:
3196			/*
3197			 * Clone the entry, creating the shared object if necessary.
3198			 */
3199			object = old_entry->object.vm_object;
3200			if (object == NULL) {
3201				object = vm_object_allocate(OBJT_DEFAULT,
3202					atop(old_entry->end - old_entry->start));
3203				old_entry->object.vm_object = object;
3204				old_entry->offset = 0;
3205				if (old_entry->cred != NULL) {
3206					object->cred = old_entry->cred;
3207					object->charge = old_entry->end -
3208					    old_entry->start;
3209					old_entry->cred = NULL;
3210				}
3211			}
3212
3213			/*
3214			 * Add the reference before calling vm_object_shadow
3215			 * to insure that a shadow object is created.
3216			 */
3217			vm_object_reference(object);
3218			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3219				vm_object_shadow(&old_entry->object.vm_object,
3220				    &old_entry->offset,
3221				    old_entry->end - old_entry->start);
3222				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3223				/* Transfer the second reference too. */
3224				vm_object_reference(
3225				    old_entry->object.vm_object);
3226
3227				/*
3228				 * As in vm_map_simplify_entry(), the
3229				 * vnode lock will not be acquired in
3230				 * this call to vm_object_deallocate().
3231				 */
3232				vm_object_deallocate(object);
3233				object = old_entry->object.vm_object;
3234			}
3235			VM_OBJECT_WLOCK(object);
3236			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3237			if (old_entry->cred != NULL) {
3238				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3239				object->cred = old_entry->cred;
3240				object->charge = old_entry->end - old_entry->start;
3241				old_entry->cred = NULL;
3242			}
3243
3244			/*
3245			 * Assert the correct state of the vnode
3246			 * v_writecount while the object is locked, to
3247			 * not relock it later for the assertion
3248			 * correctness.
3249			 */
3250			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3251			    object->type == OBJT_VNODE) {
3252				KASSERT(((struct vnode *)object->handle)->
3253				    v_writecount > 0,
3254				    ("vmspace_fork: v_writecount %p", object));
3255				KASSERT(object->un_pager.vnp.writemappings > 0,
3256				    ("vmspace_fork: vnp.writecount %p",
3257				    object));
3258			}
3259			VM_OBJECT_WUNLOCK(object);
3260
3261			/*
3262			 * Clone the entry, referencing the shared object.
3263			 */
3264			new_entry = vm_map_entry_create(new_map);
3265			*new_entry = *old_entry;
3266			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3267			    MAP_ENTRY_IN_TRANSITION);
3268			new_entry->wiring_thread = NULL;
3269			new_entry->wired_count = 0;
3270			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3271				vnode_pager_update_writecount(object,
3272				    new_entry->start, new_entry->end);
3273			}
3274
3275			/*
3276			 * Insert the entry into the new map -- we know we're
3277			 * inserting at the end of the new map.
3278			 */
3279			vm_map_entry_link(new_map, new_map->header.prev,
3280			    new_entry);
3281			vmspace_map_entry_forked(vm1, vm2, new_entry);
3282
3283			/*
3284			 * Update the physical map
3285			 */
3286			pmap_copy(new_map->pmap, old_map->pmap,
3287			    new_entry->start,
3288			    (old_entry->end - old_entry->start),
3289			    old_entry->start);
3290			break;
3291
3292		case VM_INHERIT_COPY:
3293			/*
3294			 * Clone the entry and link into the map.
3295			 */
3296			new_entry = vm_map_entry_create(new_map);
3297			*new_entry = *old_entry;
3298			/*
3299			 * Copied entry is COW over the old object.
3300			 */
3301			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3302			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3303			new_entry->wiring_thread = NULL;
3304			new_entry->wired_count = 0;
3305			new_entry->object.vm_object = NULL;
3306			new_entry->cred = NULL;
3307			vm_map_entry_link(new_map, new_map->header.prev,
3308			    new_entry);
3309			vmspace_map_entry_forked(vm1, vm2, new_entry);
3310			vm_map_copy_entry(old_map, new_map, old_entry,
3311			    new_entry, fork_charge);
3312			break;
3313		}
3314		old_entry = old_entry->next;
3315	}
3316	/*
3317	 * Use inlined vm_map_unlock() to postpone handling the deferred
3318	 * map entries, which cannot be done until both old_map and
3319	 * new_map locks are released.
3320	 */
3321	sx_xunlock(&old_map->lock);
3322	sx_xunlock(&new_map->lock);
3323	vm_map_process_deferred();
3324
3325	return (vm2);
3326}
3327
3328int
3329vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3330    vm_prot_t prot, vm_prot_t max, int cow)
3331{
3332	vm_map_entry_t new_entry, prev_entry;
3333	vm_offset_t bot, top;
3334	vm_size_t growsize, init_ssize;
3335	int orient, rv;
3336	rlim_t lmemlim, vmemlim;
3337
3338	/*
3339	 * The stack orientation is piggybacked with the cow argument.
3340	 * Extract it into orient and mask the cow argument so that we
3341	 * don't pass it around further.
3342	 * NOTE: We explicitly allow bi-directional stacks.
3343	 */
3344	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3345	KASSERT(orient != 0, ("No stack grow direction"));
3346
3347	if (addrbos < vm_map_min(map) ||
3348	    addrbos > vm_map_max(map) ||
3349	    addrbos + max_ssize < addrbos)
3350		return (KERN_NO_SPACE);
3351
3352	growsize = sgrowsiz;
3353	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3354
3355	PROC_LOCK(curproc);
3356	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3357	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3358	PROC_UNLOCK(curproc);
3359
3360	vm_map_lock(map);
3361
3362	/* If addr is already mapped, no go */
3363	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3364		vm_map_unlock(map);
3365		return (KERN_NO_SPACE);
3366	}
3367
3368	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3369		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3370			vm_map_unlock(map);
3371			return (KERN_NO_SPACE);
3372		}
3373	}
3374
3375	/* If we would blow our VMEM resource limit, no go */
3376	if (map->size + init_ssize > vmemlim) {
3377		vm_map_unlock(map);
3378		return (KERN_NO_SPACE);
3379	}
3380
3381	/*
3382	 * If we can't accomodate max_ssize in the current mapping, no go.
3383	 * However, we need to be aware that subsequent user mappings might
3384	 * map into the space we have reserved for stack, and currently this
3385	 * space is not protected.
3386	 *
3387	 * Hopefully we will at least detect this condition when we try to
3388	 * grow the stack.
3389	 */
3390	if ((prev_entry->next != &map->header) &&
3391	    (prev_entry->next->start < addrbos + max_ssize)) {
3392		vm_map_unlock(map);
3393		return (KERN_NO_SPACE);
3394	}
3395
3396	/*
3397	 * We initially map a stack of only init_ssize.  We will grow as
3398	 * needed later.  Depending on the orientation of the stack (i.e.
3399	 * the grow direction) we either map at the top of the range, the
3400	 * bottom of the range or in the middle.
3401	 *
3402	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3403	 * and cow to be 0.  Possibly we should eliminate these as input
3404	 * parameters, and just pass these values here in the insert call.
3405	 */
3406	if (orient == MAP_STACK_GROWS_DOWN)
3407		bot = addrbos + max_ssize - init_ssize;
3408	else if (orient == MAP_STACK_GROWS_UP)
3409		bot = addrbos;
3410	else
3411		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3412	top = bot + init_ssize;
3413	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3414
3415	/* Now set the avail_ssize amount. */
3416	if (rv == KERN_SUCCESS) {
3417		if (prev_entry != &map->header)
3418			vm_map_clip_end(map, prev_entry, bot);
3419		new_entry = prev_entry->next;
3420		if (new_entry->end != top || new_entry->start != bot)
3421			panic("Bad entry start/end for new stack entry");
3422
3423		new_entry->avail_ssize = max_ssize - init_ssize;
3424		if (orient & MAP_STACK_GROWS_DOWN)
3425			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3426		if (orient & MAP_STACK_GROWS_UP)
3427			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3428	}
3429
3430	vm_map_unlock(map);
3431	return (rv);
3432}
3433
3434static int stack_guard_page = 0;
3435TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3436SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3437    &stack_guard_page, 0,
3438    "Insert stack guard page ahead of the growable segments.");
3439
3440/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3441 * desired address is already mapped, or if we successfully grow
3442 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3443 * stack range (this is strange, but preserves compatibility with
3444 * the grow function in vm_machdep.c).
3445 */
3446int
3447vm_map_growstack(struct proc *p, vm_offset_t addr)
3448{
3449	vm_map_entry_t next_entry, prev_entry;
3450	vm_map_entry_t new_entry, stack_entry;
3451	struct vmspace *vm = p->p_vmspace;
3452	vm_map_t map = &vm->vm_map;
3453	vm_offset_t end;
3454	vm_size_t growsize;
3455	size_t grow_amount, max_grow;
3456	rlim_t lmemlim, stacklim, vmemlim;
3457	int is_procstack, rv;
3458	struct ucred *cred;
3459#ifdef notyet
3460	uint64_t limit;
3461#endif
3462#ifdef RACCT
3463	int error;
3464#endif
3465
3466Retry:
3467	PROC_LOCK(p);
3468	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3469	stacklim = lim_cur(p, RLIMIT_STACK);
3470	vmemlim = lim_cur(p, RLIMIT_VMEM);
3471	PROC_UNLOCK(p);
3472
3473	vm_map_lock_read(map);
3474
3475	/* If addr is already in the entry range, no need to grow.*/
3476	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3477		vm_map_unlock_read(map);
3478		return (KERN_SUCCESS);
3479	}
3480
3481	next_entry = prev_entry->next;
3482	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3483		/*
3484		 * This entry does not grow upwards. Since the address lies
3485		 * beyond this entry, the next entry (if one exists) has to
3486		 * be a downward growable entry. The entry list header is
3487		 * never a growable entry, so it suffices to check the flags.
3488		 */
3489		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3490			vm_map_unlock_read(map);
3491			return (KERN_SUCCESS);
3492		}
3493		stack_entry = next_entry;
3494	} else {
3495		/*
3496		 * This entry grows upward. If the next entry does not at
3497		 * least grow downwards, this is the entry we need to grow.
3498		 * otherwise we have two possible choices and we have to
3499		 * select one.
3500		 */
3501		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3502			/*
3503			 * We have two choices; grow the entry closest to
3504			 * the address to minimize the amount of growth.
3505			 */
3506			if (addr - prev_entry->end <= next_entry->start - addr)
3507				stack_entry = prev_entry;
3508			else
3509				stack_entry = next_entry;
3510		} else
3511			stack_entry = prev_entry;
3512	}
3513
3514	if (stack_entry == next_entry) {
3515		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3516		KASSERT(addr < stack_entry->start, ("foo"));
3517		end = (prev_entry != &map->header) ? prev_entry->end :
3518		    stack_entry->start - stack_entry->avail_ssize;
3519		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3520		max_grow = stack_entry->start - end;
3521	} else {
3522		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3523		KASSERT(addr >= stack_entry->end, ("foo"));
3524		end = (next_entry != &map->header) ? next_entry->start :
3525		    stack_entry->end + stack_entry->avail_ssize;
3526		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3527		max_grow = end - stack_entry->end;
3528	}
3529
3530	if (grow_amount > stack_entry->avail_ssize) {
3531		vm_map_unlock_read(map);
3532		return (KERN_NO_SPACE);
3533	}
3534
3535	/*
3536	 * If there is no longer enough space between the entries nogo, and
3537	 * adjust the available space.  Note: this  should only happen if the
3538	 * user has mapped into the stack area after the stack was created,
3539	 * and is probably an error.
3540	 *
3541	 * This also effectively destroys any guard page the user might have
3542	 * intended by limiting the stack size.
3543	 */
3544	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3545		if (vm_map_lock_upgrade(map))
3546			goto Retry;
3547
3548		stack_entry->avail_ssize = max_grow;
3549
3550		vm_map_unlock(map);
3551		return (KERN_NO_SPACE);
3552	}
3553
3554	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3555
3556	/*
3557	 * If this is the main process stack, see if we're over the stack
3558	 * limit.
3559	 */
3560	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3561		vm_map_unlock_read(map);
3562		return (KERN_NO_SPACE);
3563	}
3564#ifdef RACCT
3565	PROC_LOCK(p);
3566	if (is_procstack &&
3567	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3568		PROC_UNLOCK(p);
3569		vm_map_unlock_read(map);
3570		return (KERN_NO_SPACE);
3571	}
3572	PROC_UNLOCK(p);
3573#endif
3574
3575	/* Round up the grow amount modulo sgrowsiz */
3576	growsize = sgrowsiz;
3577	grow_amount = roundup(grow_amount, growsize);
3578	if (grow_amount > stack_entry->avail_ssize)
3579		grow_amount = stack_entry->avail_ssize;
3580	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3581		grow_amount = trunc_page((vm_size_t)stacklim) -
3582		    ctob(vm->vm_ssize);
3583	}
3584#ifdef notyet
3585	PROC_LOCK(p);
3586	limit = racct_get_available(p, RACCT_STACK);
3587	PROC_UNLOCK(p);
3588	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3589		grow_amount = limit - ctob(vm->vm_ssize);
3590#endif
3591	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3592		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3593			vm_map_unlock_read(map);
3594			rv = KERN_NO_SPACE;
3595			goto out;
3596		}
3597#ifdef RACCT
3598		PROC_LOCK(p);
3599		if (racct_set(p, RACCT_MEMLOCK,
3600		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3601			PROC_UNLOCK(p);
3602			vm_map_unlock_read(map);
3603			rv = KERN_NO_SPACE;
3604			goto out;
3605		}
3606		PROC_UNLOCK(p);
3607#endif
3608	}
3609	/* If we would blow our VMEM resource limit, no go */
3610	if (map->size + grow_amount > vmemlim) {
3611		vm_map_unlock_read(map);
3612		rv = KERN_NO_SPACE;
3613		goto out;
3614	}
3615#ifdef RACCT
3616	PROC_LOCK(p);
3617	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3618		PROC_UNLOCK(p);
3619		vm_map_unlock_read(map);
3620		rv = KERN_NO_SPACE;
3621		goto out;
3622	}
3623	PROC_UNLOCK(p);
3624#endif
3625
3626	if (vm_map_lock_upgrade(map))
3627		goto Retry;
3628
3629	if (stack_entry == next_entry) {
3630		/*
3631		 * Growing downward.
3632		 */
3633		/* Get the preliminary new entry start value */
3634		addr = stack_entry->start - grow_amount;
3635
3636		/*
3637		 * If this puts us into the previous entry, cut back our
3638		 * growth to the available space. Also, see the note above.
3639		 */
3640		if (addr < end) {
3641			stack_entry->avail_ssize = max_grow;
3642			addr = end;
3643			if (stack_guard_page)
3644				addr += PAGE_SIZE;
3645		}
3646
3647		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3648		    next_entry->protection, next_entry->max_protection, 0);
3649
3650		/* Adjust the available stack space by the amount we grew. */
3651		if (rv == KERN_SUCCESS) {
3652			if (prev_entry != &map->header)
3653				vm_map_clip_end(map, prev_entry, addr);
3654			new_entry = prev_entry->next;
3655			KASSERT(new_entry == stack_entry->prev, ("foo"));
3656			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3657			KASSERT(new_entry->start == addr, ("foo"));
3658			grow_amount = new_entry->end - new_entry->start;
3659			new_entry->avail_ssize = stack_entry->avail_ssize -
3660			    grow_amount;
3661			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3662			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3663		}
3664	} else {
3665		/*
3666		 * Growing upward.
3667		 */
3668		addr = stack_entry->end + grow_amount;
3669
3670		/*
3671		 * If this puts us into the next entry, cut back our growth
3672		 * to the available space. Also, see the note above.
3673		 */
3674		if (addr > end) {
3675			stack_entry->avail_ssize = end - stack_entry->end;
3676			addr = end;
3677			if (stack_guard_page)
3678				addr -= PAGE_SIZE;
3679		}
3680
3681		grow_amount = addr - stack_entry->end;
3682		cred = stack_entry->cred;
3683		if (cred == NULL && stack_entry->object.vm_object != NULL)
3684			cred = stack_entry->object.vm_object->cred;
3685		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3686			rv = KERN_NO_SPACE;
3687		/* Grow the underlying object if applicable. */
3688		else if (stack_entry->object.vm_object == NULL ||
3689			 vm_object_coalesce(stack_entry->object.vm_object,
3690			 stack_entry->offset,
3691			 (vm_size_t)(stack_entry->end - stack_entry->start),
3692			 (vm_size_t)grow_amount, cred != NULL)) {
3693			map->size += (addr - stack_entry->end);
3694			/* Update the current entry. */
3695			stack_entry->end = addr;
3696			stack_entry->avail_ssize -= grow_amount;
3697			vm_map_entry_resize_free(map, stack_entry);
3698			rv = KERN_SUCCESS;
3699
3700			if (next_entry != &map->header)
3701				vm_map_clip_start(map, next_entry, addr);
3702		} else
3703			rv = KERN_FAILURE;
3704	}
3705
3706	if (rv == KERN_SUCCESS && is_procstack)
3707		vm->vm_ssize += btoc(grow_amount);
3708
3709	vm_map_unlock(map);
3710
3711	/*
3712	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3713	 */
3714	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3715		vm_map_wire(map,
3716		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3717		    (stack_entry == next_entry) ? stack_entry->start : addr,
3718		    (p->p_flag & P_SYSTEM)
3719		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3720		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3721	}
3722
3723out:
3724#ifdef RACCT
3725	if (rv != KERN_SUCCESS) {
3726		PROC_LOCK(p);
3727		error = racct_set(p, RACCT_VMEM, map->size);
3728		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3729		if (!old_mlock) {
3730			error = racct_set(p, RACCT_MEMLOCK,
3731			    ptoa(pmap_wired_count(map->pmap)));
3732			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3733		}
3734	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3735		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3736		PROC_UNLOCK(p);
3737	}
3738#endif
3739
3740	return (rv);
3741}
3742
3743/*
3744 * Unshare the specified VM space for exec.  If other processes are
3745 * mapped to it, then create a new one.  The new vmspace is null.
3746 */
3747int
3748vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3749{
3750	struct vmspace *oldvmspace = p->p_vmspace;
3751	struct vmspace *newvmspace;
3752
3753	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3754	if (newvmspace == NULL)
3755		return (ENOMEM);
3756	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3757	/*
3758	 * This code is written like this for prototype purposes.  The
3759	 * goal is to avoid running down the vmspace here, but let the
3760	 * other process's that are still using the vmspace to finally
3761	 * run it down.  Even though there is little or no chance of blocking
3762	 * here, it is a good idea to keep this form for future mods.
3763	 */
3764	PROC_VMSPACE_LOCK(p);
3765	p->p_vmspace = newvmspace;
3766	PROC_VMSPACE_UNLOCK(p);
3767	if (p == curthread->td_proc)
3768		pmap_activate(curthread);
3769	vmspace_free(oldvmspace);
3770	return (0);
3771}
3772
3773/*
3774 * Unshare the specified VM space for forcing COW.  This
3775 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3776 */
3777int
3778vmspace_unshare(struct proc *p)
3779{
3780	struct vmspace *oldvmspace = p->p_vmspace;
3781	struct vmspace *newvmspace;
3782	vm_ooffset_t fork_charge;
3783
3784	if (oldvmspace->vm_refcnt == 1)
3785		return (0);
3786	fork_charge = 0;
3787	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3788	if (newvmspace == NULL)
3789		return (ENOMEM);
3790	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3791		vmspace_free(newvmspace);
3792		return (ENOMEM);
3793	}
3794	PROC_VMSPACE_LOCK(p);
3795	p->p_vmspace = newvmspace;
3796	PROC_VMSPACE_UNLOCK(p);
3797	if (p == curthread->td_proc)
3798		pmap_activate(curthread);
3799	vmspace_free(oldvmspace);
3800	return (0);
3801}
3802
3803/*
3804 *	vm_map_lookup:
3805 *
3806 *	Finds the VM object, offset, and
3807 *	protection for a given virtual address in the
3808 *	specified map, assuming a page fault of the
3809 *	type specified.
3810 *
3811 *	Leaves the map in question locked for read; return
3812 *	values are guaranteed until a vm_map_lookup_done
3813 *	call is performed.  Note that the map argument
3814 *	is in/out; the returned map must be used in
3815 *	the call to vm_map_lookup_done.
3816 *
3817 *	A handle (out_entry) is returned for use in
3818 *	vm_map_lookup_done, to make that fast.
3819 *
3820 *	If a lookup is requested with "write protection"
3821 *	specified, the map may be changed to perform virtual
3822 *	copying operations, although the data referenced will
3823 *	remain the same.
3824 */
3825int
3826vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3827	      vm_offset_t vaddr,
3828	      vm_prot_t fault_typea,
3829	      vm_map_entry_t *out_entry,	/* OUT */
3830	      vm_object_t *object,		/* OUT */
3831	      vm_pindex_t *pindex,		/* OUT */
3832	      vm_prot_t *out_prot,		/* OUT */
3833	      boolean_t *wired)			/* OUT */
3834{
3835	vm_map_entry_t entry;
3836	vm_map_t map = *var_map;
3837	vm_prot_t prot;
3838	vm_prot_t fault_type = fault_typea;
3839	vm_object_t eobject;
3840	vm_size_t size;
3841	struct ucred *cred;
3842
3843RetryLookup:;
3844
3845	vm_map_lock_read(map);
3846
3847	/*
3848	 * Lookup the faulting address.
3849	 */
3850	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3851		vm_map_unlock_read(map);
3852		return (KERN_INVALID_ADDRESS);
3853	}
3854
3855	entry = *out_entry;
3856
3857	/*
3858	 * Handle submaps.
3859	 */
3860	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3861		vm_map_t old_map = map;
3862
3863		*var_map = map = entry->object.sub_map;
3864		vm_map_unlock_read(old_map);
3865		goto RetryLookup;
3866	}
3867
3868	/*
3869	 * Check whether this task is allowed to have this page.
3870	 */
3871	prot = entry->protection;
3872	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3873	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3874		vm_map_unlock_read(map);
3875		return (KERN_PROTECTION_FAILURE);
3876	}
3877	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3878	    (entry->eflags & MAP_ENTRY_COW) &&
3879	    (fault_type & VM_PROT_WRITE)) {
3880		vm_map_unlock_read(map);
3881		return (KERN_PROTECTION_FAILURE);
3882	}
3883	if ((fault_typea & VM_PROT_COPY) != 0 &&
3884	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3885	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3886		vm_map_unlock_read(map);
3887		return (KERN_PROTECTION_FAILURE);
3888	}
3889
3890	/*
3891	 * If this page is not pageable, we have to get it for all possible
3892	 * accesses.
3893	 */
3894	*wired = (entry->wired_count != 0);
3895	if (*wired)
3896		fault_type = entry->protection;
3897	size = entry->end - entry->start;
3898	/*
3899	 * If the entry was copy-on-write, we either ...
3900	 */
3901	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3902		/*
3903		 * If we want to write the page, we may as well handle that
3904		 * now since we've got the map locked.
3905		 *
3906		 * If we don't need to write the page, we just demote the
3907		 * permissions allowed.
3908		 */
3909		if ((fault_type & VM_PROT_WRITE) != 0 ||
3910		    (fault_typea & VM_PROT_COPY) != 0) {
3911			/*
3912			 * Make a new object, and place it in the object
3913			 * chain.  Note that no new references have appeared
3914			 * -- one just moved from the map to the new
3915			 * object.
3916			 */
3917			if (vm_map_lock_upgrade(map))
3918				goto RetryLookup;
3919
3920			if (entry->cred == NULL) {
3921				/*
3922				 * The debugger owner is charged for
3923				 * the memory.
3924				 */
3925				cred = curthread->td_ucred;
3926				crhold(cred);
3927				if (!swap_reserve_by_cred(size, cred)) {
3928					crfree(cred);
3929					vm_map_unlock(map);
3930					return (KERN_RESOURCE_SHORTAGE);
3931				}
3932				entry->cred = cred;
3933			}
3934			vm_object_shadow(&entry->object.vm_object,
3935			    &entry->offset, size);
3936			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3937			eobject = entry->object.vm_object;
3938			if (eobject->cred != NULL) {
3939				/*
3940				 * The object was not shadowed.
3941				 */
3942				swap_release_by_cred(size, entry->cred);
3943				crfree(entry->cred);
3944				entry->cred = NULL;
3945			} else if (entry->cred != NULL) {
3946				VM_OBJECT_WLOCK(eobject);
3947				eobject->cred = entry->cred;
3948				eobject->charge = size;
3949				VM_OBJECT_WUNLOCK(eobject);
3950				entry->cred = NULL;
3951			}
3952
3953			vm_map_lock_downgrade(map);
3954		} else {
3955			/*
3956			 * We're attempting to read a copy-on-write page --
3957			 * don't allow writes.
3958			 */
3959			prot &= ~VM_PROT_WRITE;
3960		}
3961	}
3962
3963	/*
3964	 * Create an object if necessary.
3965	 */
3966	if (entry->object.vm_object == NULL &&
3967	    !map->system_map) {
3968		if (vm_map_lock_upgrade(map))
3969			goto RetryLookup;
3970		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3971		    atop(size));
3972		entry->offset = 0;
3973		if (entry->cred != NULL) {
3974			VM_OBJECT_WLOCK(entry->object.vm_object);
3975			entry->object.vm_object->cred = entry->cred;
3976			entry->object.vm_object->charge = size;
3977			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3978			entry->cred = NULL;
3979		}
3980		vm_map_lock_downgrade(map);
3981	}
3982
3983	/*
3984	 * Return the object/offset from this entry.  If the entry was
3985	 * copy-on-write or empty, it has been fixed up.
3986	 */
3987	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3988	*object = entry->object.vm_object;
3989
3990	*out_prot = prot;
3991	return (KERN_SUCCESS);
3992}
3993
3994/*
3995 *	vm_map_lookup_locked:
3996 *
3997 *	Lookup the faulting address.  A version of vm_map_lookup that returns
3998 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3999 */
4000int
4001vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4002		     vm_offset_t vaddr,
4003		     vm_prot_t fault_typea,
4004		     vm_map_entry_t *out_entry,	/* OUT */
4005		     vm_object_t *object,	/* OUT */
4006		     vm_pindex_t *pindex,	/* OUT */
4007		     vm_prot_t *out_prot,	/* OUT */
4008		     boolean_t *wired)		/* OUT */
4009{
4010	vm_map_entry_t entry;
4011	vm_map_t map = *var_map;
4012	vm_prot_t prot;
4013	vm_prot_t fault_type = fault_typea;
4014
4015	/*
4016	 * Lookup the faulting address.
4017	 */
4018	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4019		return (KERN_INVALID_ADDRESS);
4020
4021	entry = *out_entry;
4022
4023	/*
4024	 * Fail if the entry refers to a submap.
4025	 */
4026	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4027		return (KERN_FAILURE);
4028
4029	/*
4030	 * Check whether this task is allowed to have this page.
4031	 */
4032	prot = entry->protection;
4033	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4034	if ((fault_type & prot) != fault_type)
4035		return (KERN_PROTECTION_FAILURE);
4036	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4037	    (entry->eflags & MAP_ENTRY_COW) &&
4038	    (fault_type & VM_PROT_WRITE))
4039		return (KERN_PROTECTION_FAILURE);
4040
4041	/*
4042	 * If this page is not pageable, we have to get it for all possible
4043	 * accesses.
4044	 */
4045	*wired = (entry->wired_count != 0);
4046	if (*wired)
4047		fault_type = entry->protection;
4048
4049	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4050		/*
4051		 * Fail if the entry was copy-on-write for a write fault.
4052		 */
4053		if (fault_type & VM_PROT_WRITE)
4054			return (KERN_FAILURE);
4055		/*
4056		 * We're attempting to read a copy-on-write page --
4057		 * don't allow writes.
4058		 */
4059		prot &= ~VM_PROT_WRITE;
4060	}
4061
4062	/*
4063	 * Fail if an object should be created.
4064	 */
4065	if (entry->object.vm_object == NULL && !map->system_map)
4066		return (KERN_FAILURE);
4067
4068	/*
4069	 * Return the object/offset from this entry.  If the entry was
4070	 * copy-on-write or empty, it has been fixed up.
4071	 */
4072	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4073	*object = entry->object.vm_object;
4074
4075	*out_prot = prot;
4076	return (KERN_SUCCESS);
4077}
4078
4079/*
4080 *	vm_map_lookup_done:
4081 *
4082 *	Releases locks acquired by a vm_map_lookup
4083 *	(according to the handle returned by that lookup).
4084 */
4085void
4086vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4087{
4088	/*
4089	 * Unlock the main-level map
4090	 */
4091	vm_map_unlock_read(map);
4092}
4093
4094#include "opt_ddb.h"
4095#ifdef DDB
4096#include <sys/kernel.h>
4097
4098#include <ddb/ddb.h>
4099
4100static void
4101vm_map_print(vm_map_t map)
4102{
4103	vm_map_entry_t entry;
4104
4105	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4106	    (void *)map,
4107	    (void *)map->pmap, map->nentries, map->timestamp);
4108
4109	db_indent += 2;
4110	for (entry = map->header.next; entry != &map->header;
4111	    entry = entry->next) {
4112		db_iprintf("map entry %p: start=%p, end=%p\n",
4113		    (void *)entry, (void *)entry->start, (void *)entry->end);
4114		{
4115			static char *inheritance_name[4] =
4116			{"share", "copy", "none", "donate_copy"};
4117
4118			db_iprintf(" prot=%x/%x/%s",
4119			    entry->protection,
4120			    entry->max_protection,
4121			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4122			if (entry->wired_count != 0)
4123				db_printf(", wired");
4124		}
4125		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4126			db_printf(", share=%p, offset=0x%jx\n",
4127			    (void *)entry->object.sub_map,
4128			    (uintmax_t)entry->offset);
4129			if ((entry->prev == &map->header) ||
4130			    (entry->prev->object.sub_map !=
4131				entry->object.sub_map)) {
4132				db_indent += 2;
4133				vm_map_print((vm_map_t)entry->object.sub_map);
4134				db_indent -= 2;
4135			}
4136		} else {
4137			if (entry->cred != NULL)
4138				db_printf(", ruid %d", entry->cred->cr_ruid);
4139			db_printf(", object=%p, offset=0x%jx",
4140			    (void *)entry->object.vm_object,
4141			    (uintmax_t)entry->offset);
4142			if (entry->object.vm_object && entry->object.vm_object->cred)
4143				db_printf(", obj ruid %d charge %jx",
4144				    entry->object.vm_object->cred->cr_ruid,
4145				    (uintmax_t)entry->object.vm_object->charge);
4146			if (entry->eflags & MAP_ENTRY_COW)
4147				db_printf(", copy (%s)",
4148				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4149			db_printf("\n");
4150
4151			if ((entry->prev == &map->header) ||
4152			    (entry->prev->object.vm_object !=
4153				entry->object.vm_object)) {
4154				db_indent += 2;
4155				vm_object_print((db_expr_t)(intptr_t)
4156						entry->object.vm_object,
4157						0, 0, (char *)0);
4158				db_indent -= 2;
4159			}
4160		}
4161	}
4162	db_indent -= 2;
4163}
4164
4165DB_SHOW_COMMAND(map, map)
4166{
4167
4168	if (!have_addr) {
4169		db_printf("usage: show map <addr>\n");
4170		return;
4171	}
4172	vm_map_print((vm_map_t)addr);
4173}
4174
4175DB_SHOW_COMMAND(procvm, procvm)
4176{
4177	struct proc *p;
4178
4179	if (have_addr) {
4180		p = (struct proc *) addr;
4181	} else {
4182		p = curproc;
4183	}
4184
4185	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4186	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4187	    (void *)vmspace_pmap(p->p_vmspace));
4188
4189	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4190}
4191
4192#endif /* DDB */
4193