vm_map.c revision 260081
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_map.c 260081 2013-12-30 08:57:54Z kib $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135#ifdef INVARIANTS
136static void vm_map_zdtor(void *mem, int size, void *arg);
137static void vmspace_zdtor(void *mem, int size, void *arg);
138#endif
139
140#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
141    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
142     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
143
144/*
145 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
146 * stable.
147 */
148#define PROC_VMSPACE_LOCK(p) do { } while (0)
149#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
150
151/*
152 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
153 *
154 *	Asserts that the starting and ending region
155 *	addresses fall within the valid range of the map.
156 */
157#define	VM_MAP_RANGE_CHECK(map, start, end)		\
158		{					\
159		if (start < vm_map_min(map))		\
160			start = vm_map_min(map);	\
161		if (end > vm_map_max(map))		\
162			end = vm_map_max(map);		\
163		if (start > end)			\
164			start = end;			\
165		}
166
167/*
168 *	vm_map_startup:
169 *
170 *	Initialize the vm_map module.  Must be called before
171 *	any other vm_map routines.
172 *
173 *	Map and entry structures are allocated from the general
174 *	purpose memory pool with some exceptions:
175 *
176 *	- The kernel map and kmem submap are allocated statically.
177 *	- Kernel map entries are allocated out of a static pool.
178 *
179 *	These restrictions are necessary since malloc() uses the
180 *	maps and requires map entries.
181 */
182
183void
184vm_map_startup(void)
185{
186	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
187	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
188#ifdef INVARIANTS
189	    vm_map_zdtor,
190#else
191	    NULL,
192#endif
193	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194	uma_prealloc(mapzone, MAX_KMAP);
195	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
196	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
197	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
198	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
201#ifdef INVARIANTS
202	    vmspace_zdtor,
203#else
204	    NULL,
205#endif
206	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207}
208
209static int
210vmspace_zinit(void *mem, int size, int flags)
211{
212	struct vmspace *vm;
213
214	vm = (struct vmspace *)mem;
215
216	vm->vm_map.pmap = NULL;
217	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
218	PMAP_LOCK_INIT(vmspace_pmap(vm));
219	return (0);
220}
221
222static int
223vm_map_zinit(void *mem, int size, int flags)
224{
225	vm_map_t map;
226
227	map = (vm_map_t)mem;
228	memset(map, 0, sizeof(*map));
229	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
230	sx_init(&map->lock, "vm map (user)");
231	return (0);
232}
233
234#ifdef INVARIANTS
235static void
236vmspace_zdtor(void *mem, int size, void *arg)
237{
238	struct vmspace *vm;
239
240	vm = (struct vmspace *)mem;
241
242	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
243}
244static void
245vm_map_zdtor(void *mem, int size, void *arg)
246{
247	vm_map_t map;
248
249	map = (vm_map_t)mem;
250	KASSERT(map->nentries == 0,
251	    ("map %p nentries == %d on free.",
252	    map, map->nentries));
253	KASSERT(map->size == 0,
254	    ("map %p size == %lu on free.",
255	    map, (unsigned long)map->size));
256}
257#endif	/* INVARIANTS */
258
259/*
260 * Allocate a vmspace structure, including a vm_map and pmap,
261 * and initialize those structures.  The refcnt is set to 1.
262 *
263 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
264 */
265struct vmspace *
266vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
267{
268	struct vmspace *vm;
269
270	vm = uma_zalloc(vmspace_zone, M_WAITOK);
271
272	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
273
274	if (pinit == NULL)
275		pinit = &pmap_pinit;
276
277	if (!pinit(vmspace_pmap(vm))) {
278		uma_zfree(vmspace_zone, vm);
279		return (NULL);
280	}
281	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
282	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
283	vm->vm_refcnt = 1;
284	vm->vm_shm = NULL;
285	vm->vm_swrss = 0;
286	vm->vm_tsize = 0;
287	vm->vm_dsize = 0;
288	vm->vm_ssize = 0;
289	vm->vm_taddr = 0;
290	vm->vm_daddr = 0;
291	vm->vm_maxsaddr = 0;
292	return (vm);
293}
294
295static void
296vmspace_container_reset(struct proc *p)
297{
298
299#ifdef RACCT
300	PROC_LOCK(p);
301	racct_set(p, RACCT_DATA, 0);
302	racct_set(p, RACCT_STACK, 0);
303	racct_set(p, RACCT_RSS, 0);
304	racct_set(p, RACCT_MEMLOCK, 0);
305	racct_set(p, RACCT_VMEM, 0);
306	PROC_UNLOCK(p);
307#endif
308}
309
310static inline void
311vmspace_dofree(struct vmspace *vm)
312{
313
314	CTR1(KTR_VM, "vmspace_free: %p", vm);
315
316	/*
317	 * Make sure any SysV shm is freed, it might not have been in
318	 * exit1().
319	 */
320	shmexit(vm);
321
322	/*
323	 * Lock the map, to wait out all other references to it.
324	 * Delete all of the mappings and pages they hold, then call
325	 * the pmap module to reclaim anything left.
326	 */
327	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
328	    vm->vm_map.max_offset);
329
330	pmap_release(vmspace_pmap(vm));
331	vm->vm_map.pmap = NULL;
332	uma_zfree(vmspace_zone, vm);
333}
334
335void
336vmspace_free(struct vmspace *vm)
337{
338
339	if (vm->vm_refcnt == 0)
340		panic("vmspace_free: attempt to free already freed vmspace");
341
342	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
343		vmspace_dofree(vm);
344}
345
346void
347vmspace_exitfree(struct proc *p)
348{
349	struct vmspace *vm;
350
351	PROC_VMSPACE_LOCK(p);
352	vm = p->p_vmspace;
353	p->p_vmspace = NULL;
354	PROC_VMSPACE_UNLOCK(p);
355	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
356	vmspace_free(vm);
357}
358
359void
360vmspace_exit(struct thread *td)
361{
362	int refcnt;
363	struct vmspace *vm;
364	struct proc *p;
365
366	/*
367	 * Release user portion of address space.
368	 * This releases references to vnodes,
369	 * which could cause I/O if the file has been unlinked.
370	 * Need to do this early enough that we can still sleep.
371	 *
372	 * The last exiting process to reach this point releases as
373	 * much of the environment as it can. vmspace_dofree() is the
374	 * slower fallback in case another process had a temporary
375	 * reference to the vmspace.
376	 */
377
378	p = td->td_proc;
379	vm = p->p_vmspace;
380	atomic_add_int(&vmspace0.vm_refcnt, 1);
381	do {
382		refcnt = vm->vm_refcnt;
383		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
384			/* Switch now since other proc might free vmspace */
385			PROC_VMSPACE_LOCK(p);
386			p->p_vmspace = &vmspace0;
387			PROC_VMSPACE_UNLOCK(p);
388			pmap_activate(td);
389		}
390	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
391	if (refcnt == 1) {
392		if (p->p_vmspace != vm) {
393			/* vmspace not yet freed, switch back */
394			PROC_VMSPACE_LOCK(p);
395			p->p_vmspace = vm;
396			PROC_VMSPACE_UNLOCK(p);
397			pmap_activate(td);
398		}
399		pmap_remove_pages(vmspace_pmap(vm));
400		/* Switch now since this proc will free vmspace */
401		PROC_VMSPACE_LOCK(p);
402		p->p_vmspace = &vmspace0;
403		PROC_VMSPACE_UNLOCK(p);
404		pmap_activate(td);
405		vmspace_dofree(vm);
406	}
407	vmspace_container_reset(p);
408}
409
410/* Acquire reference to vmspace owned by another process. */
411
412struct vmspace *
413vmspace_acquire_ref(struct proc *p)
414{
415	struct vmspace *vm;
416	int refcnt;
417
418	PROC_VMSPACE_LOCK(p);
419	vm = p->p_vmspace;
420	if (vm == NULL) {
421		PROC_VMSPACE_UNLOCK(p);
422		return (NULL);
423	}
424	do {
425		refcnt = vm->vm_refcnt;
426		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
427			PROC_VMSPACE_UNLOCK(p);
428			return (NULL);
429		}
430	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
431	if (vm != p->p_vmspace) {
432		PROC_VMSPACE_UNLOCK(p);
433		vmspace_free(vm);
434		return (NULL);
435	}
436	PROC_VMSPACE_UNLOCK(p);
437	return (vm);
438}
439
440void
441_vm_map_lock(vm_map_t map, const char *file, int line)
442{
443
444	if (map->system_map)
445		mtx_lock_flags_(&map->system_mtx, 0, file, line);
446	else
447		sx_xlock_(&map->lock, file, line);
448	map->timestamp++;
449}
450
451static void
452vm_map_process_deferred(void)
453{
454	struct thread *td;
455	vm_map_entry_t entry, next;
456	vm_object_t object;
457
458	td = curthread;
459	entry = td->td_map_def_user;
460	td->td_map_def_user = NULL;
461	while (entry != NULL) {
462		next = entry->next;
463		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
464			/*
465			 * Decrement the object's writemappings and
466			 * possibly the vnode's v_writecount.
467			 */
468			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
469			    ("Submap with writecount"));
470			object = entry->object.vm_object;
471			KASSERT(object != NULL, ("No object for writecount"));
472			vnode_pager_release_writecount(object, entry->start,
473			    entry->end);
474		}
475		vm_map_entry_deallocate(entry, FALSE);
476		entry = next;
477	}
478}
479
480void
481_vm_map_unlock(vm_map_t map, const char *file, int line)
482{
483
484	if (map->system_map)
485		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
486	else {
487		sx_xunlock_(&map->lock, file, line);
488		vm_map_process_deferred();
489	}
490}
491
492void
493_vm_map_lock_read(vm_map_t map, const char *file, int line)
494{
495
496	if (map->system_map)
497		mtx_lock_flags_(&map->system_mtx, 0, file, line);
498	else
499		sx_slock_(&map->lock, file, line);
500}
501
502void
503_vm_map_unlock_read(vm_map_t map, const char *file, int line)
504{
505
506	if (map->system_map)
507		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508	else {
509		sx_sunlock_(&map->lock, file, line);
510		vm_map_process_deferred();
511	}
512}
513
514int
515_vm_map_trylock(vm_map_t map, const char *file, int line)
516{
517	int error;
518
519	error = map->system_map ?
520	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
521	    !sx_try_xlock_(&map->lock, file, line);
522	if (error == 0)
523		map->timestamp++;
524	return (error == 0);
525}
526
527int
528_vm_map_trylock_read(vm_map_t map, const char *file, int line)
529{
530	int error;
531
532	error = map->system_map ?
533	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
534	    !sx_try_slock_(&map->lock, file, line);
535	return (error == 0);
536}
537
538/*
539 *	_vm_map_lock_upgrade:	[ internal use only ]
540 *
541 *	Tries to upgrade a read (shared) lock on the specified map to a write
542 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
543 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
544 *	returned without a read or write lock held.
545 *
546 *	Requires that the map be read locked.
547 */
548int
549_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
550{
551	unsigned int last_timestamp;
552
553	if (map->system_map) {
554		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
555	} else {
556		if (!sx_try_upgrade_(&map->lock, file, line)) {
557			last_timestamp = map->timestamp;
558			sx_sunlock_(&map->lock, file, line);
559			vm_map_process_deferred();
560			/*
561			 * If the map's timestamp does not change while the
562			 * map is unlocked, then the upgrade succeeds.
563			 */
564			sx_xlock_(&map->lock, file, line);
565			if (last_timestamp != map->timestamp) {
566				sx_xunlock_(&map->lock, file, line);
567				return (1);
568			}
569		}
570	}
571	map->timestamp++;
572	return (0);
573}
574
575void
576_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
577{
578
579	if (map->system_map) {
580		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
581	} else
582		sx_downgrade_(&map->lock, file, line);
583}
584
585/*
586 *	vm_map_locked:
587 *
588 *	Returns a non-zero value if the caller holds a write (exclusive) lock
589 *	on the specified map and the value "0" otherwise.
590 */
591int
592vm_map_locked(vm_map_t map)
593{
594
595	if (map->system_map)
596		return (mtx_owned(&map->system_mtx));
597	else
598		return (sx_xlocked(&map->lock));
599}
600
601#ifdef INVARIANTS
602static void
603_vm_map_assert_locked(vm_map_t map, const char *file, int line)
604{
605
606	if (map->system_map)
607		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
608	else
609		sx_assert_(&map->lock, SA_XLOCKED, file, line);
610}
611
612#define	VM_MAP_ASSERT_LOCKED(map) \
613    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
614#else
615#define	VM_MAP_ASSERT_LOCKED(map)
616#endif
617
618/*
619 *	_vm_map_unlock_and_wait:
620 *
621 *	Atomically releases the lock on the specified map and puts the calling
622 *	thread to sleep.  The calling thread will remain asleep until either
623 *	vm_map_wakeup() is performed on the map or the specified timeout is
624 *	exceeded.
625 *
626 *	WARNING!  This function does not perform deferred deallocations of
627 *	objects and map	entries.  Therefore, the calling thread is expected to
628 *	reacquire the map lock after reawakening and later perform an ordinary
629 *	unlock operation, such as vm_map_unlock(), before completing its
630 *	operation on the map.
631 */
632int
633_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
634{
635
636	mtx_lock(&map_sleep_mtx);
637	if (map->system_map)
638		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
639	else
640		sx_xunlock_(&map->lock, file, line);
641	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
642	    timo));
643}
644
645/*
646 *	vm_map_wakeup:
647 *
648 *	Awaken any threads that have slept on the map using
649 *	vm_map_unlock_and_wait().
650 */
651void
652vm_map_wakeup(vm_map_t map)
653{
654
655	/*
656	 * Acquire and release map_sleep_mtx to prevent a wakeup()
657	 * from being performed (and lost) between the map unlock
658	 * and the msleep() in _vm_map_unlock_and_wait().
659	 */
660	mtx_lock(&map_sleep_mtx);
661	mtx_unlock(&map_sleep_mtx);
662	wakeup(&map->root);
663}
664
665void
666vm_map_busy(vm_map_t map)
667{
668
669	VM_MAP_ASSERT_LOCKED(map);
670	map->busy++;
671}
672
673void
674vm_map_unbusy(vm_map_t map)
675{
676
677	VM_MAP_ASSERT_LOCKED(map);
678	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
679	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
680		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
681		wakeup(&map->busy);
682	}
683}
684
685void
686vm_map_wait_busy(vm_map_t map)
687{
688
689	VM_MAP_ASSERT_LOCKED(map);
690	while (map->busy) {
691		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
692		if (map->system_map)
693			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
694		else
695			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
696	}
697	map->timestamp++;
698}
699
700long
701vmspace_resident_count(struct vmspace *vmspace)
702{
703	return pmap_resident_count(vmspace_pmap(vmspace));
704}
705
706/*
707 *	vm_map_create:
708 *
709 *	Creates and returns a new empty VM map with
710 *	the given physical map structure, and having
711 *	the given lower and upper address bounds.
712 */
713vm_map_t
714vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
715{
716	vm_map_t result;
717
718	result = uma_zalloc(mapzone, M_WAITOK);
719	CTR1(KTR_VM, "vm_map_create: %p", result);
720	_vm_map_init(result, pmap, min, max);
721	return (result);
722}
723
724/*
725 * Initialize an existing vm_map structure
726 * such as that in the vmspace structure.
727 */
728static void
729_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
730{
731
732	map->header.next = map->header.prev = &map->header;
733	map->needs_wakeup = FALSE;
734	map->system_map = 0;
735	map->pmap = pmap;
736	map->min_offset = min;
737	map->max_offset = max;
738	map->flags = 0;
739	map->root = NULL;
740	map->timestamp = 0;
741	map->busy = 0;
742}
743
744void
745vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
746{
747
748	_vm_map_init(map, pmap, min, max);
749	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
750	sx_init(&map->lock, "user map");
751}
752
753/*
754 *	vm_map_entry_dispose:	[ internal use only ]
755 *
756 *	Inverse of vm_map_entry_create.
757 */
758static void
759vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
760{
761	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
762}
763
764/*
765 *	vm_map_entry_create:	[ internal use only ]
766 *
767 *	Allocates a VM map entry for insertion.
768 *	No entry fields are filled in.
769 */
770static vm_map_entry_t
771vm_map_entry_create(vm_map_t map)
772{
773	vm_map_entry_t new_entry;
774
775	if (map->system_map)
776		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
777	else
778		new_entry = uma_zalloc(mapentzone, M_WAITOK);
779	if (new_entry == NULL)
780		panic("vm_map_entry_create: kernel resources exhausted");
781	return (new_entry);
782}
783
784/*
785 *	vm_map_entry_set_behavior:
786 *
787 *	Set the expected access behavior, either normal, random, or
788 *	sequential.
789 */
790static inline void
791vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
792{
793	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
794	    (behavior & MAP_ENTRY_BEHAV_MASK);
795}
796
797/*
798 *	vm_map_entry_set_max_free:
799 *
800 *	Set the max_free field in a vm_map_entry.
801 */
802static inline void
803vm_map_entry_set_max_free(vm_map_entry_t entry)
804{
805
806	entry->max_free = entry->adj_free;
807	if (entry->left != NULL && entry->left->max_free > entry->max_free)
808		entry->max_free = entry->left->max_free;
809	if (entry->right != NULL && entry->right->max_free > entry->max_free)
810		entry->max_free = entry->right->max_free;
811}
812
813/*
814 *	vm_map_entry_splay:
815 *
816 *	The Sleator and Tarjan top-down splay algorithm with the
817 *	following variation.  Max_free must be computed bottom-up, so
818 *	on the downward pass, maintain the left and right spines in
819 *	reverse order.  Then, make a second pass up each side to fix
820 *	the pointers and compute max_free.  The time bound is O(log n)
821 *	amortized.
822 *
823 *	The new root is the vm_map_entry containing "addr", or else an
824 *	adjacent entry (lower or higher) if addr is not in the tree.
825 *
826 *	The map must be locked, and leaves it so.
827 *
828 *	Returns: the new root.
829 */
830static vm_map_entry_t
831vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
832{
833	vm_map_entry_t llist, rlist;
834	vm_map_entry_t ltree, rtree;
835	vm_map_entry_t y;
836
837	/* Special case of empty tree. */
838	if (root == NULL)
839		return (root);
840
841	/*
842	 * Pass One: Splay down the tree until we find addr or a NULL
843	 * pointer where addr would go.  llist and rlist are the two
844	 * sides in reverse order (bottom-up), with llist linked by
845	 * the right pointer and rlist linked by the left pointer in
846	 * the vm_map_entry.  Wait until Pass Two to set max_free on
847	 * the two spines.
848	 */
849	llist = NULL;
850	rlist = NULL;
851	for (;;) {
852		/* root is never NULL in here. */
853		if (addr < root->start) {
854			y = root->left;
855			if (y == NULL)
856				break;
857			if (addr < y->start && y->left != NULL) {
858				/* Rotate right and put y on rlist. */
859				root->left = y->right;
860				y->right = root;
861				vm_map_entry_set_max_free(root);
862				root = y->left;
863				y->left = rlist;
864				rlist = y;
865			} else {
866				/* Put root on rlist. */
867				root->left = rlist;
868				rlist = root;
869				root = y;
870			}
871		} else if (addr >= root->end) {
872			y = root->right;
873			if (y == NULL)
874				break;
875			if (addr >= y->end && y->right != NULL) {
876				/* Rotate left and put y on llist. */
877				root->right = y->left;
878				y->left = root;
879				vm_map_entry_set_max_free(root);
880				root = y->right;
881				y->right = llist;
882				llist = y;
883			} else {
884				/* Put root on llist. */
885				root->right = llist;
886				llist = root;
887				root = y;
888			}
889		} else
890			break;
891	}
892
893	/*
894	 * Pass Two: Walk back up the two spines, flip the pointers
895	 * and set max_free.  The subtrees of the root go at the
896	 * bottom of llist and rlist.
897	 */
898	ltree = root->left;
899	while (llist != NULL) {
900		y = llist->right;
901		llist->right = ltree;
902		vm_map_entry_set_max_free(llist);
903		ltree = llist;
904		llist = y;
905	}
906	rtree = root->right;
907	while (rlist != NULL) {
908		y = rlist->left;
909		rlist->left = rtree;
910		vm_map_entry_set_max_free(rlist);
911		rtree = rlist;
912		rlist = y;
913	}
914
915	/*
916	 * Final assembly: add ltree and rtree as subtrees of root.
917	 */
918	root->left = ltree;
919	root->right = rtree;
920	vm_map_entry_set_max_free(root);
921
922	return (root);
923}
924
925/*
926 *	vm_map_entry_{un,}link:
927 *
928 *	Insert/remove entries from maps.
929 */
930static void
931vm_map_entry_link(vm_map_t map,
932		  vm_map_entry_t after_where,
933		  vm_map_entry_t entry)
934{
935
936	CTR4(KTR_VM,
937	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
938	    map->nentries, entry, after_where);
939	VM_MAP_ASSERT_LOCKED(map);
940	map->nentries++;
941	entry->prev = after_where;
942	entry->next = after_where->next;
943	entry->next->prev = entry;
944	after_where->next = entry;
945
946	if (after_where != &map->header) {
947		if (after_where != map->root)
948			vm_map_entry_splay(after_where->start, map->root);
949		entry->right = after_where->right;
950		entry->left = after_where;
951		after_where->right = NULL;
952		after_where->adj_free = entry->start - after_where->end;
953		vm_map_entry_set_max_free(after_where);
954	} else {
955		entry->right = map->root;
956		entry->left = NULL;
957	}
958	entry->adj_free = (entry->next == &map->header ? map->max_offset :
959	    entry->next->start) - entry->end;
960	vm_map_entry_set_max_free(entry);
961	map->root = entry;
962}
963
964static void
965vm_map_entry_unlink(vm_map_t map,
966		    vm_map_entry_t entry)
967{
968	vm_map_entry_t next, prev, root;
969
970	VM_MAP_ASSERT_LOCKED(map);
971	if (entry != map->root)
972		vm_map_entry_splay(entry->start, map->root);
973	if (entry->left == NULL)
974		root = entry->right;
975	else {
976		root = vm_map_entry_splay(entry->start, entry->left);
977		root->right = entry->right;
978		root->adj_free = (entry->next == &map->header ? map->max_offset :
979		    entry->next->start) - root->end;
980		vm_map_entry_set_max_free(root);
981	}
982	map->root = root;
983
984	prev = entry->prev;
985	next = entry->next;
986	next->prev = prev;
987	prev->next = next;
988	map->nentries--;
989	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
990	    map->nentries, entry);
991}
992
993/*
994 *	vm_map_entry_resize_free:
995 *
996 *	Recompute the amount of free space following a vm_map_entry
997 *	and propagate that value up the tree.  Call this function after
998 *	resizing a map entry in-place, that is, without a call to
999 *	vm_map_entry_link() or _unlink().
1000 *
1001 *	The map must be locked, and leaves it so.
1002 */
1003static void
1004vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1005{
1006
1007	/*
1008	 * Using splay trees without parent pointers, propagating
1009	 * max_free up the tree is done by moving the entry to the
1010	 * root and making the change there.
1011	 */
1012	if (entry != map->root)
1013		map->root = vm_map_entry_splay(entry->start, map->root);
1014
1015	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1016	    entry->next->start) - entry->end;
1017	vm_map_entry_set_max_free(entry);
1018}
1019
1020/*
1021 *	vm_map_lookup_entry:	[ internal use only ]
1022 *
1023 *	Finds the map entry containing (or
1024 *	immediately preceding) the specified address
1025 *	in the given map; the entry is returned
1026 *	in the "entry" parameter.  The boolean
1027 *	result indicates whether the address is
1028 *	actually contained in the map.
1029 */
1030boolean_t
1031vm_map_lookup_entry(
1032	vm_map_t map,
1033	vm_offset_t address,
1034	vm_map_entry_t *entry)	/* OUT */
1035{
1036	vm_map_entry_t cur;
1037	boolean_t locked;
1038
1039	/*
1040	 * If the map is empty, then the map entry immediately preceding
1041	 * "address" is the map's header.
1042	 */
1043	cur = map->root;
1044	if (cur == NULL)
1045		*entry = &map->header;
1046	else if (address >= cur->start && cur->end > address) {
1047		*entry = cur;
1048		return (TRUE);
1049	} else if ((locked = vm_map_locked(map)) ||
1050	    sx_try_upgrade(&map->lock)) {
1051		/*
1052		 * Splay requires a write lock on the map.  However, it only
1053		 * restructures the binary search tree; it does not otherwise
1054		 * change the map.  Thus, the map's timestamp need not change
1055		 * on a temporary upgrade.
1056		 */
1057		map->root = cur = vm_map_entry_splay(address, cur);
1058		if (!locked)
1059			sx_downgrade(&map->lock);
1060
1061		/*
1062		 * If "address" is contained within a map entry, the new root
1063		 * is that map entry.  Otherwise, the new root is a map entry
1064		 * immediately before or after "address".
1065		 */
1066		if (address >= cur->start) {
1067			*entry = cur;
1068			if (cur->end > address)
1069				return (TRUE);
1070		} else
1071			*entry = cur->prev;
1072	} else
1073		/*
1074		 * Since the map is only locked for read access, perform a
1075		 * standard binary search tree lookup for "address".
1076		 */
1077		for (;;) {
1078			if (address < cur->start) {
1079				if (cur->left == NULL) {
1080					*entry = cur->prev;
1081					break;
1082				}
1083				cur = cur->left;
1084			} else if (cur->end > address) {
1085				*entry = cur;
1086				return (TRUE);
1087			} else {
1088				if (cur->right == NULL) {
1089					*entry = cur;
1090					break;
1091				}
1092				cur = cur->right;
1093			}
1094		}
1095	return (FALSE);
1096}
1097
1098/*
1099 *	vm_map_insert:
1100 *
1101 *	Inserts the given whole VM object into the target
1102 *	map at the specified address range.  The object's
1103 *	size should match that of the address range.
1104 *
1105 *	Requires that the map be locked, and leaves it so.
1106 *
1107 *	If object is non-NULL, ref count must be bumped by caller
1108 *	prior to making call to account for the new entry.
1109 */
1110int
1111vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1112	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1113	      int cow)
1114{
1115	vm_map_entry_t new_entry;
1116	vm_map_entry_t prev_entry;
1117	vm_map_entry_t temp_entry;
1118	vm_eflags_t protoeflags;
1119	struct ucred *cred;
1120	vm_inherit_t inheritance;
1121	boolean_t charge_prev_obj;
1122
1123	VM_MAP_ASSERT_LOCKED(map);
1124
1125	/*
1126	 * Check that the start and end points are not bogus.
1127	 */
1128	if ((start < map->min_offset) || (end > map->max_offset) ||
1129	    (start >= end))
1130		return (KERN_INVALID_ADDRESS);
1131
1132	/*
1133	 * Find the entry prior to the proposed starting address; if it's part
1134	 * of an existing entry, this range is bogus.
1135	 */
1136	if (vm_map_lookup_entry(map, start, &temp_entry))
1137		return (KERN_NO_SPACE);
1138
1139	prev_entry = temp_entry;
1140
1141	/*
1142	 * Assert that the next entry doesn't overlap the end point.
1143	 */
1144	if ((prev_entry->next != &map->header) &&
1145	    (prev_entry->next->start < end))
1146		return (KERN_NO_SPACE);
1147
1148	protoeflags = 0;
1149	charge_prev_obj = FALSE;
1150
1151	if (cow & MAP_COPY_ON_WRITE)
1152		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1153
1154	if (cow & MAP_NOFAULT) {
1155		protoeflags |= MAP_ENTRY_NOFAULT;
1156
1157		KASSERT(object == NULL,
1158			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1159	}
1160	if (cow & MAP_DISABLE_SYNCER)
1161		protoeflags |= MAP_ENTRY_NOSYNC;
1162	if (cow & MAP_DISABLE_COREDUMP)
1163		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1164	if (cow & MAP_VN_WRITECOUNT)
1165		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1166	if (cow & MAP_INHERIT_SHARE)
1167		inheritance = VM_INHERIT_SHARE;
1168	else
1169		inheritance = VM_INHERIT_DEFAULT;
1170
1171	cred = NULL;
1172	KASSERT((object != kmem_object && object != kernel_object) ||
1173	    ((object == kmem_object || object == kernel_object) &&
1174		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1175	    ("kmem or kernel object and cow"));
1176	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1177		goto charged;
1178	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1179	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1180		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1181			return (KERN_RESOURCE_SHORTAGE);
1182		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1183		    object->cred == NULL,
1184		    ("OVERCOMMIT: vm_map_insert o %p", object));
1185		cred = curthread->td_ucred;
1186		crhold(cred);
1187		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1188			charge_prev_obj = TRUE;
1189	}
1190
1191charged:
1192	/* Expand the kernel pmap, if necessary. */
1193	if (map == kernel_map && end > kernel_vm_end)
1194		pmap_growkernel(end);
1195	if (object != NULL) {
1196		/*
1197		 * OBJ_ONEMAPPING must be cleared unless this mapping
1198		 * is trivially proven to be the only mapping for any
1199		 * of the object's pages.  (Object granularity
1200		 * reference counting is insufficient to recognize
1201		 * aliases with precision.)
1202		 */
1203		VM_OBJECT_WLOCK(object);
1204		if (object->ref_count > 1 || object->shadow_count != 0)
1205			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1206		VM_OBJECT_WUNLOCK(object);
1207	}
1208	else if ((prev_entry != &map->header) &&
1209		 (prev_entry->eflags == protoeflags) &&
1210		 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 &&
1211		 (prev_entry->end == start) &&
1212		 (prev_entry->wired_count == 0) &&
1213		 (prev_entry->cred == cred ||
1214		  (prev_entry->object.vm_object != NULL &&
1215		   (prev_entry->object.vm_object->cred == cred))) &&
1216		   vm_object_coalesce(prev_entry->object.vm_object,
1217		       prev_entry->offset,
1218		       (vm_size_t)(prev_entry->end - prev_entry->start),
1219		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1220		/*
1221		 * We were able to extend the object.  Determine if we
1222		 * can extend the previous map entry to include the
1223		 * new range as well.
1224		 */
1225		if ((prev_entry->inheritance == inheritance) &&
1226		    (prev_entry->protection == prot) &&
1227		    (prev_entry->max_protection == max)) {
1228			map->size += (end - prev_entry->end);
1229			prev_entry->end = end;
1230			vm_map_entry_resize_free(map, prev_entry);
1231			vm_map_simplify_entry(map, prev_entry);
1232			if (cred != NULL)
1233				crfree(cred);
1234			return (KERN_SUCCESS);
1235		}
1236
1237		/*
1238		 * If we can extend the object but cannot extend the
1239		 * map entry, we have to create a new map entry.  We
1240		 * must bump the ref count on the extended object to
1241		 * account for it.  object may be NULL.
1242		 */
1243		object = prev_entry->object.vm_object;
1244		offset = prev_entry->offset +
1245			(prev_entry->end - prev_entry->start);
1246		vm_object_reference(object);
1247		if (cred != NULL && object != NULL && object->cred != NULL &&
1248		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1249			/* Object already accounts for this uid. */
1250			crfree(cred);
1251			cred = NULL;
1252		}
1253	}
1254
1255	/*
1256	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1257	 * in things like the buffer map where we manage kva but do not manage
1258	 * backing objects.
1259	 */
1260
1261	/*
1262	 * Create a new entry
1263	 */
1264	new_entry = vm_map_entry_create(map);
1265	new_entry->start = start;
1266	new_entry->end = end;
1267	new_entry->cred = NULL;
1268
1269	new_entry->eflags = protoeflags;
1270	new_entry->object.vm_object = object;
1271	new_entry->offset = offset;
1272	new_entry->avail_ssize = 0;
1273
1274	new_entry->inheritance = inheritance;
1275	new_entry->protection = prot;
1276	new_entry->max_protection = max;
1277	new_entry->wired_count = 0;
1278	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1279	new_entry->next_read = OFF_TO_IDX(offset);
1280
1281	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1282	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1283	new_entry->cred = cred;
1284
1285	/*
1286	 * Insert the new entry into the list
1287	 */
1288	vm_map_entry_link(map, prev_entry, new_entry);
1289	map->size += new_entry->end - new_entry->start;
1290
1291	/*
1292	 * It may be possible to merge the new entry with the next and/or
1293	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1294	 * panic can result from merging such entries.
1295	 */
1296	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1297		vm_map_simplify_entry(map, new_entry);
1298
1299	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1300		vm_map_pmap_enter(map, start, prot,
1301				    object, OFF_TO_IDX(offset), end - start,
1302				    cow & MAP_PREFAULT_PARTIAL);
1303	}
1304
1305	return (KERN_SUCCESS);
1306}
1307
1308/*
1309 *	vm_map_findspace:
1310 *
1311 *	Find the first fit (lowest VM address) for "length" free bytes
1312 *	beginning at address >= start in the given map.
1313 *
1314 *	In a vm_map_entry, "adj_free" is the amount of free space
1315 *	adjacent (higher address) to this entry, and "max_free" is the
1316 *	maximum amount of contiguous free space in its subtree.  This
1317 *	allows finding a free region in one path down the tree, so
1318 *	O(log n) amortized with splay trees.
1319 *
1320 *	The map must be locked, and leaves it so.
1321 *
1322 *	Returns: 0 on success, and starting address in *addr,
1323 *		 1 if insufficient space.
1324 */
1325int
1326vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1327    vm_offset_t *addr)	/* OUT */
1328{
1329	vm_map_entry_t entry;
1330	vm_offset_t st;
1331
1332	/*
1333	 * Request must fit within min/max VM address and must avoid
1334	 * address wrap.
1335	 */
1336	if (start < map->min_offset)
1337		start = map->min_offset;
1338	if (start + length > map->max_offset || start + length < start)
1339		return (1);
1340
1341	/* Empty tree means wide open address space. */
1342	if (map->root == NULL) {
1343		*addr = start;
1344		return (0);
1345	}
1346
1347	/*
1348	 * After splay, if start comes before root node, then there
1349	 * must be a gap from start to the root.
1350	 */
1351	map->root = vm_map_entry_splay(start, map->root);
1352	if (start + length <= map->root->start) {
1353		*addr = start;
1354		return (0);
1355	}
1356
1357	/*
1358	 * Root is the last node that might begin its gap before
1359	 * start, and this is the last comparison where address
1360	 * wrap might be a problem.
1361	 */
1362	st = (start > map->root->end) ? start : map->root->end;
1363	if (length <= map->root->end + map->root->adj_free - st) {
1364		*addr = st;
1365		return (0);
1366	}
1367
1368	/* With max_free, can immediately tell if no solution. */
1369	entry = map->root->right;
1370	if (entry == NULL || length > entry->max_free)
1371		return (1);
1372
1373	/*
1374	 * Search the right subtree in the order: left subtree, root,
1375	 * right subtree (first fit).  The previous splay implies that
1376	 * all regions in the right subtree have addresses > start.
1377	 */
1378	while (entry != NULL) {
1379		if (entry->left != NULL && entry->left->max_free >= length)
1380			entry = entry->left;
1381		else if (entry->adj_free >= length) {
1382			*addr = entry->end;
1383			return (0);
1384		} else
1385			entry = entry->right;
1386	}
1387
1388	/* Can't get here, so panic if we do. */
1389	panic("vm_map_findspace: max_free corrupt");
1390}
1391
1392int
1393vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1394    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1395    vm_prot_t max, int cow)
1396{
1397	vm_offset_t end;
1398	int result;
1399
1400	end = start + length;
1401	vm_map_lock(map);
1402	VM_MAP_RANGE_CHECK(map, start, end);
1403	(void) vm_map_delete(map, start, end);
1404	result = vm_map_insert(map, object, offset, start, end, prot,
1405	    max, cow);
1406	vm_map_unlock(map);
1407	return (result);
1408}
1409
1410/*
1411 *	vm_map_find finds an unallocated region in the target address
1412 *	map with the given length.  The search is defined to be
1413 *	first-fit from the specified address; the region found is
1414 *	returned in the same parameter.
1415 *
1416 *	If object is non-NULL, ref count must be bumped by caller
1417 *	prior to making call to account for the new entry.
1418 */
1419int
1420vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1421	    vm_offset_t *addr,	/* IN/OUT */
1422	    vm_size_t length, vm_offset_t max_addr, int find_space,
1423	    vm_prot_t prot, vm_prot_t max, int cow)
1424{
1425	vm_offset_t alignment, initial_addr, start;
1426	int result;
1427
1428	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1429	    (object->flags & OBJ_COLORED) == 0))
1430		find_space = VMFS_ANY_SPACE;
1431	if (find_space >> 8 != 0) {
1432		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1433		alignment = (vm_offset_t)1 << (find_space >> 8);
1434	} else
1435		alignment = 0;
1436	initial_addr = *addr;
1437again:
1438	start = initial_addr;
1439	vm_map_lock(map);
1440	do {
1441		if (find_space != VMFS_NO_SPACE) {
1442			if (vm_map_findspace(map, start, length, addr) ||
1443			    (max_addr != 0 && *addr + length > max_addr)) {
1444				vm_map_unlock(map);
1445				if (find_space == VMFS_OPTIMAL_SPACE) {
1446					find_space = VMFS_ANY_SPACE;
1447					goto again;
1448				}
1449				return (KERN_NO_SPACE);
1450			}
1451			switch (find_space) {
1452			case VMFS_SUPER_SPACE:
1453			case VMFS_OPTIMAL_SPACE:
1454				pmap_align_superpage(object, offset, addr,
1455				    length);
1456				break;
1457			case VMFS_ANY_SPACE:
1458				break;
1459			default:
1460				if ((*addr & (alignment - 1)) != 0) {
1461					*addr &= ~(alignment - 1);
1462					*addr += alignment;
1463				}
1464				break;
1465			}
1466
1467			start = *addr;
1468		}
1469		result = vm_map_insert(map, object, offset, start, start +
1470		    length, prot, max, cow);
1471	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1472	    find_space != VMFS_ANY_SPACE);
1473	vm_map_unlock(map);
1474	return (result);
1475}
1476
1477/*
1478 *	vm_map_simplify_entry:
1479 *
1480 *	Simplify the given map entry by merging with either neighbor.  This
1481 *	routine also has the ability to merge with both neighbors.
1482 *
1483 *	The map must be locked.
1484 *
1485 *	This routine guarentees that the passed entry remains valid (though
1486 *	possibly extended).  When merging, this routine may delete one or
1487 *	both neighbors.
1488 */
1489void
1490vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1491{
1492	vm_map_entry_t next, prev;
1493	vm_size_t prevsize, esize;
1494
1495	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1496		return;
1497
1498	prev = entry->prev;
1499	if (prev != &map->header) {
1500		prevsize = prev->end - prev->start;
1501		if ( (prev->end == entry->start) &&
1502		     (prev->object.vm_object == entry->object.vm_object) &&
1503		     (!prev->object.vm_object ||
1504			(prev->offset + prevsize == entry->offset)) &&
1505		     (prev->eflags == entry->eflags) &&
1506		     (prev->protection == entry->protection) &&
1507		     (prev->max_protection == entry->max_protection) &&
1508		     (prev->inheritance == entry->inheritance) &&
1509		     (prev->wired_count == entry->wired_count) &&
1510		     (prev->cred == entry->cred)) {
1511			vm_map_entry_unlink(map, prev);
1512			entry->start = prev->start;
1513			entry->offset = prev->offset;
1514			if (entry->prev != &map->header)
1515				vm_map_entry_resize_free(map, entry->prev);
1516
1517			/*
1518			 * If the backing object is a vnode object,
1519			 * vm_object_deallocate() calls vrele().
1520			 * However, vrele() does not lock the vnode
1521			 * because the vnode has additional
1522			 * references.  Thus, the map lock can be kept
1523			 * without causing a lock-order reversal with
1524			 * the vnode lock.
1525			 *
1526			 * Since we count the number of virtual page
1527			 * mappings in object->un_pager.vnp.writemappings,
1528			 * the writemappings value should not be adjusted
1529			 * when the entry is disposed of.
1530			 */
1531			if (prev->object.vm_object)
1532				vm_object_deallocate(prev->object.vm_object);
1533			if (prev->cred != NULL)
1534				crfree(prev->cred);
1535			vm_map_entry_dispose(map, prev);
1536		}
1537	}
1538
1539	next = entry->next;
1540	if (next != &map->header) {
1541		esize = entry->end - entry->start;
1542		if ((entry->end == next->start) &&
1543		    (next->object.vm_object == entry->object.vm_object) &&
1544		     (!entry->object.vm_object ||
1545			(entry->offset + esize == next->offset)) &&
1546		    (next->eflags == entry->eflags) &&
1547		    (next->protection == entry->protection) &&
1548		    (next->max_protection == entry->max_protection) &&
1549		    (next->inheritance == entry->inheritance) &&
1550		    (next->wired_count == entry->wired_count) &&
1551		    (next->cred == entry->cred)) {
1552			vm_map_entry_unlink(map, next);
1553			entry->end = next->end;
1554			vm_map_entry_resize_free(map, entry);
1555
1556			/*
1557			 * See comment above.
1558			 */
1559			if (next->object.vm_object)
1560				vm_object_deallocate(next->object.vm_object);
1561			if (next->cred != NULL)
1562				crfree(next->cred);
1563			vm_map_entry_dispose(map, next);
1564		}
1565	}
1566}
1567/*
1568 *	vm_map_clip_start:	[ internal use only ]
1569 *
1570 *	Asserts that the given entry begins at or after
1571 *	the specified address; if necessary,
1572 *	it splits the entry into two.
1573 */
1574#define vm_map_clip_start(map, entry, startaddr) \
1575{ \
1576	if (startaddr > entry->start) \
1577		_vm_map_clip_start(map, entry, startaddr); \
1578}
1579
1580/*
1581 *	This routine is called only when it is known that
1582 *	the entry must be split.
1583 */
1584static void
1585_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1586{
1587	vm_map_entry_t new_entry;
1588
1589	VM_MAP_ASSERT_LOCKED(map);
1590
1591	/*
1592	 * Split off the front portion -- note that we must insert the new
1593	 * entry BEFORE this one, so that this entry has the specified
1594	 * starting address.
1595	 */
1596	vm_map_simplify_entry(map, entry);
1597
1598	/*
1599	 * If there is no object backing this entry, we might as well create
1600	 * one now.  If we defer it, an object can get created after the map
1601	 * is clipped, and individual objects will be created for the split-up
1602	 * map.  This is a bit of a hack, but is also about the best place to
1603	 * put this improvement.
1604	 */
1605	if (entry->object.vm_object == NULL && !map->system_map) {
1606		vm_object_t object;
1607		object = vm_object_allocate(OBJT_DEFAULT,
1608				atop(entry->end - entry->start));
1609		entry->object.vm_object = object;
1610		entry->offset = 0;
1611		if (entry->cred != NULL) {
1612			object->cred = entry->cred;
1613			object->charge = entry->end - entry->start;
1614			entry->cred = NULL;
1615		}
1616	} else if (entry->object.vm_object != NULL &&
1617		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1618		   entry->cred != NULL) {
1619		VM_OBJECT_WLOCK(entry->object.vm_object);
1620		KASSERT(entry->object.vm_object->cred == NULL,
1621		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1622		entry->object.vm_object->cred = entry->cred;
1623		entry->object.vm_object->charge = entry->end - entry->start;
1624		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1625		entry->cred = NULL;
1626	}
1627
1628	new_entry = vm_map_entry_create(map);
1629	*new_entry = *entry;
1630
1631	new_entry->end = start;
1632	entry->offset += (start - entry->start);
1633	entry->start = start;
1634	if (new_entry->cred != NULL)
1635		crhold(entry->cred);
1636
1637	vm_map_entry_link(map, entry->prev, new_entry);
1638
1639	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1640		vm_object_reference(new_entry->object.vm_object);
1641		/*
1642		 * The object->un_pager.vnp.writemappings for the
1643		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1644		 * kept as is here.  The virtual pages are
1645		 * re-distributed among the clipped entries, so the sum is
1646		 * left the same.
1647		 */
1648	}
1649}
1650
1651/*
1652 *	vm_map_clip_end:	[ internal use only ]
1653 *
1654 *	Asserts that the given entry ends at or before
1655 *	the specified address; if necessary,
1656 *	it splits the entry into two.
1657 */
1658#define vm_map_clip_end(map, entry, endaddr) \
1659{ \
1660	if ((endaddr) < (entry->end)) \
1661		_vm_map_clip_end((map), (entry), (endaddr)); \
1662}
1663
1664/*
1665 *	This routine is called only when it is known that
1666 *	the entry must be split.
1667 */
1668static void
1669_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1670{
1671	vm_map_entry_t new_entry;
1672
1673	VM_MAP_ASSERT_LOCKED(map);
1674
1675	/*
1676	 * If there is no object backing this entry, we might as well create
1677	 * one now.  If we defer it, an object can get created after the map
1678	 * is clipped, and individual objects will be created for the split-up
1679	 * map.  This is a bit of a hack, but is also about the best place to
1680	 * put this improvement.
1681	 */
1682	if (entry->object.vm_object == NULL && !map->system_map) {
1683		vm_object_t object;
1684		object = vm_object_allocate(OBJT_DEFAULT,
1685				atop(entry->end - entry->start));
1686		entry->object.vm_object = object;
1687		entry->offset = 0;
1688		if (entry->cred != NULL) {
1689			object->cred = entry->cred;
1690			object->charge = entry->end - entry->start;
1691			entry->cred = NULL;
1692		}
1693	} else if (entry->object.vm_object != NULL &&
1694		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1695		   entry->cred != NULL) {
1696		VM_OBJECT_WLOCK(entry->object.vm_object);
1697		KASSERT(entry->object.vm_object->cred == NULL,
1698		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1699		entry->object.vm_object->cred = entry->cred;
1700		entry->object.vm_object->charge = entry->end - entry->start;
1701		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1702		entry->cred = NULL;
1703	}
1704
1705	/*
1706	 * Create a new entry and insert it AFTER the specified entry
1707	 */
1708	new_entry = vm_map_entry_create(map);
1709	*new_entry = *entry;
1710
1711	new_entry->start = entry->end = end;
1712	new_entry->offset += (end - entry->start);
1713	if (new_entry->cred != NULL)
1714		crhold(entry->cred);
1715
1716	vm_map_entry_link(map, entry, new_entry);
1717
1718	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1719		vm_object_reference(new_entry->object.vm_object);
1720	}
1721}
1722
1723/*
1724 *	vm_map_submap:		[ kernel use only ]
1725 *
1726 *	Mark the given range as handled by a subordinate map.
1727 *
1728 *	This range must have been created with vm_map_find,
1729 *	and no other operations may have been performed on this
1730 *	range prior to calling vm_map_submap.
1731 *
1732 *	Only a limited number of operations can be performed
1733 *	within this rage after calling vm_map_submap:
1734 *		vm_fault
1735 *	[Don't try vm_map_copy!]
1736 *
1737 *	To remove a submapping, one must first remove the
1738 *	range from the superior map, and then destroy the
1739 *	submap (if desired).  [Better yet, don't try it.]
1740 */
1741int
1742vm_map_submap(
1743	vm_map_t map,
1744	vm_offset_t start,
1745	vm_offset_t end,
1746	vm_map_t submap)
1747{
1748	vm_map_entry_t entry;
1749	int result = KERN_INVALID_ARGUMENT;
1750
1751	vm_map_lock(map);
1752
1753	VM_MAP_RANGE_CHECK(map, start, end);
1754
1755	if (vm_map_lookup_entry(map, start, &entry)) {
1756		vm_map_clip_start(map, entry, start);
1757	} else
1758		entry = entry->next;
1759
1760	vm_map_clip_end(map, entry, end);
1761
1762	if ((entry->start == start) && (entry->end == end) &&
1763	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1764	    (entry->object.vm_object == NULL)) {
1765		entry->object.sub_map = submap;
1766		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1767		result = KERN_SUCCESS;
1768	}
1769	vm_map_unlock(map);
1770
1771	return (result);
1772}
1773
1774/*
1775 * The maximum number of pages to map
1776 */
1777#define	MAX_INIT_PT	96
1778
1779/*
1780 *	vm_map_pmap_enter:
1781 *
1782 *	Preload read-only mappings for the specified object's resident pages
1783 *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1784 *	the resident pages within the address range [addr, addr + ulmin(size,
1785 *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1786 *	the specified address range are mapped.  This eliminates many soft
1787 *	faults on process startup and immediately after an mmap(2).  Because
1788 *	these are speculative mappings, cached pages are not reactivated and
1789 *	mapped.
1790 */
1791void
1792vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1793    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1794{
1795	vm_offset_t start;
1796	vm_page_t p, p_start;
1797	vm_pindex_t psize, tmpidx;
1798
1799	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1800		return;
1801	VM_OBJECT_RLOCK(object);
1802	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1803		VM_OBJECT_RUNLOCK(object);
1804		VM_OBJECT_WLOCK(object);
1805		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1806			pmap_object_init_pt(map->pmap, addr, object, pindex,
1807			    size);
1808			VM_OBJECT_WUNLOCK(object);
1809			return;
1810		}
1811		VM_OBJECT_LOCK_DOWNGRADE(object);
1812	}
1813
1814	psize = atop(size);
1815	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1816		psize = MAX_INIT_PT;
1817	if (psize + pindex > object->size) {
1818		if (object->size < pindex) {
1819			VM_OBJECT_RUNLOCK(object);
1820			return;
1821		}
1822		psize = object->size - pindex;
1823	}
1824
1825	start = 0;
1826	p_start = NULL;
1827
1828	p = vm_page_find_least(object, pindex);
1829	/*
1830	 * Assert: the variable p is either (1) the page with the
1831	 * least pindex greater than or equal to the parameter pindex
1832	 * or (2) NULL.
1833	 */
1834	for (;
1835	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1836	     p = TAILQ_NEXT(p, listq)) {
1837		/*
1838		 * don't allow an madvise to blow away our really
1839		 * free pages allocating pv entries.
1840		 */
1841		if ((flags & MAP_PREFAULT_MADVISE) &&
1842		    cnt.v_free_count < cnt.v_free_reserved) {
1843			psize = tmpidx;
1844			break;
1845		}
1846		if (p->valid == VM_PAGE_BITS_ALL) {
1847			if (p_start == NULL) {
1848				start = addr + ptoa(tmpidx);
1849				p_start = p;
1850			}
1851		} else if (p_start != NULL) {
1852			pmap_enter_object(map->pmap, start, addr +
1853			    ptoa(tmpidx), p_start, prot);
1854			p_start = NULL;
1855		}
1856	}
1857	if (p_start != NULL)
1858		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1859		    p_start, prot);
1860	VM_OBJECT_RUNLOCK(object);
1861}
1862
1863/*
1864 *	vm_map_protect:
1865 *
1866 *	Sets the protection of the specified address
1867 *	region in the target map.  If "set_max" is
1868 *	specified, the maximum protection is to be set;
1869 *	otherwise, only the current protection is affected.
1870 */
1871int
1872vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1873	       vm_prot_t new_prot, boolean_t set_max)
1874{
1875	vm_map_entry_t current, entry;
1876	vm_object_t obj;
1877	struct ucred *cred;
1878	vm_prot_t old_prot;
1879
1880	if (start == end)
1881		return (KERN_SUCCESS);
1882
1883	vm_map_lock(map);
1884
1885	VM_MAP_RANGE_CHECK(map, start, end);
1886
1887	if (vm_map_lookup_entry(map, start, &entry)) {
1888		vm_map_clip_start(map, entry, start);
1889	} else {
1890		entry = entry->next;
1891	}
1892
1893	/*
1894	 * Make a first pass to check for protection violations.
1895	 */
1896	current = entry;
1897	while ((current != &map->header) && (current->start < end)) {
1898		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1899			vm_map_unlock(map);
1900			return (KERN_INVALID_ARGUMENT);
1901		}
1902		if ((new_prot & current->max_protection) != new_prot) {
1903			vm_map_unlock(map);
1904			return (KERN_PROTECTION_FAILURE);
1905		}
1906		current = current->next;
1907	}
1908
1909
1910	/*
1911	 * Do an accounting pass for private read-only mappings that
1912	 * now will do cow due to allowed write (e.g. debugger sets
1913	 * breakpoint on text segment)
1914	 */
1915	for (current = entry; (current != &map->header) &&
1916	     (current->start < end); current = current->next) {
1917
1918		vm_map_clip_end(map, current, end);
1919
1920		if (set_max ||
1921		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1922		    ENTRY_CHARGED(current)) {
1923			continue;
1924		}
1925
1926		cred = curthread->td_ucred;
1927		obj = current->object.vm_object;
1928
1929		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1930			if (!swap_reserve(current->end - current->start)) {
1931				vm_map_unlock(map);
1932				return (KERN_RESOURCE_SHORTAGE);
1933			}
1934			crhold(cred);
1935			current->cred = cred;
1936			continue;
1937		}
1938
1939		VM_OBJECT_WLOCK(obj);
1940		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1941			VM_OBJECT_WUNLOCK(obj);
1942			continue;
1943		}
1944
1945		/*
1946		 * Charge for the whole object allocation now, since
1947		 * we cannot distinguish between non-charged and
1948		 * charged clipped mapping of the same object later.
1949		 */
1950		KASSERT(obj->charge == 0,
1951		    ("vm_map_protect: object %p overcharged\n", obj));
1952		if (!swap_reserve(ptoa(obj->size))) {
1953			VM_OBJECT_WUNLOCK(obj);
1954			vm_map_unlock(map);
1955			return (KERN_RESOURCE_SHORTAGE);
1956		}
1957
1958		crhold(cred);
1959		obj->cred = cred;
1960		obj->charge = ptoa(obj->size);
1961		VM_OBJECT_WUNLOCK(obj);
1962	}
1963
1964	/*
1965	 * Go back and fix up protections. [Note that clipping is not
1966	 * necessary the second time.]
1967	 */
1968	current = entry;
1969	while ((current != &map->header) && (current->start < end)) {
1970		old_prot = current->protection;
1971
1972		if (set_max)
1973			current->protection =
1974			    (current->max_protection = new_prot) &
1975			    old_prot;
1976		else
1977			current->protection = new_prot;
1978
1979		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1980		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1981		    (current->protection & VM_PROT_WRITE) != 0 &&
1982		    (old_prot & VM_PROT_WRITE) == 0) {
1983			vm_fault_copy_entry(map, map, current, current, NULL);
1984		}
1985
1986		/*
1987		 * When restricting access, update the physical map.  Worry
1988		 * about copy-on-write here.
1989		 */
1990		if ((old_prot & ~current->protection) != 0) {
1991#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1992							VM_PROT_ALL)
1993			pmap_protect(map->pmap, current->start,
1994			    current->end,
1995			    current->protection & MASK(current));
1996#undef	MASK
1997		}
1998		vm_map_simplify_entry(map, current);
1999		current = current->next;
2000	}
2001	vm_map_unlock(map);
2002	return (KERN_SUCCESS);
2003}
2004
2005/*
2006 *	vm_map_madvise:
2007 *
2008 *	This routine traverses a processes map handling the madvise
2009 *	system call.  Advisories are classified as either those effecting
2010 *	the vm_map_entry structure, or those effecting the underlying
2011 *	objects.
2012 */
2013int
2014vm_map_madvise(
2015	vm_map_t map,
2016	vm_offset_t start,
2017	vm_offset_t end,
2018	int behav)
2019{
2020	vm_map_entry_t current, entry;
2021	int modify_map = 0;
2022
2023	/*
2024	 * Some madvise calls directly modify the vm_map_entry, in which case
2025	 * we need to use an exclusive lock on the map and we need to perform
2026	 * various clipping operations.  Otherwise we only need a read-lock
2027	 * on the map.
2028	 */
2029	switch(behav) {
2030	case MADV_NORMAL:
2031	case MADV_SEQUENTIAL:
2032	case MADV_RANDOM:
2033	case MADV_NOSYNC:
2034	case MADV_AUTOSYNC:
2035	case MADV_NOCORE:
2036	case MADV_CORE:
2037		if (start == end)
2038			return (KERN_SUCCESS);
2039		modify_map = 1;
2040		vm_map_lock(map);
2041		break;
2042	case MADV_WILLNEED:
2043	case MADV_DONTNEED:
2044	case MADV_FREE:
2045		if (start == end)
2046			return (KERN_SUCCESS);
2047		vm_map_lock_read(map);
2048		break;
2049	default:
2050		return (KERN_INVALID_ARGUMENT);
2051	}
2052
2053	/*
2054	 * Locate starting entry and clip if necessary.
2055	 */
2056	VM_MAP_RANGE_CHECK(map, start, end);
2057
2058	if (vm_map_lookup_entry(map, start, &entry)) {
2059		if (modify_map)
2060			vm_map_clip_start(map, entry, start);
2061	} else {
2062		entry = entry->next;
2063	}
2064
2065	if (modify_map) {
2066		/*
2067		 * madvise behaviors that are implemented in the vm_map_entry.
2068		 *
2069		 * We clip the vm_map_entry so that behavioral changes are
2070		 * limited to the specified address range.
2071		 */
2072		for (current = entry;
2073		     (current != &map->header) && (current->start < end);
2074		     current = current->next
2075		) {
2076			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2077				continue;
2078
2079			vm_map_clip_end(map, current, end);
2080
2081			switch (behav) {
2082			case MADV_NORMAL:
2083				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2084				break;
2085			case MADV_SEQUENTIAL:
2086				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2087				break;
2088			case MADV_RANDOM:
2089				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2090				break;
2091			case MADV_NOSYNC:
2092				current->eflags |= MAP_ENTRY_NOSYNC;
2093				break;
2094			case MADV_AUTOSYNC:
2095				current->eflags &= ~MAP_ENTRY_NOSYNC;
2096				break;
2097			case MADV_NOCORE:
2098				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2099				break;
2100			case MADV_CORE:
2101				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2102				break;
2103			default:
2104				break;
2105			}
2106			vm_map_simplify_entry(map, current);
2107		}
2108		vm_map_unlock(map);
2109	} else {
2110		vm_pindex_t pstart, pend;
2111
2112		/*
2113		 * madvise behaviors that are implemented in the underlying
2114		 * vm_object.
2115		 *
2116		 * Since we don't clip the vm_map_entry, we have to clip
2117		 * the vm_object pindex and count.
2118		 */
2119		for (current = entry;
2120		     (current != &map->header) && (current->start < end);
2121		     current = current->next
2122		) {
2123			vm_offset_t useEnd, useStart;
2124
2125			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2126				continue;
2127
2128			pstart = OFF_TO_IDX(current->offset);
2129			pend = pstart + atop(current->end - current->start);
2130			useStart = current->start;
2131			useEnd = current->end;
2132
2133			if (current->start < start) {
2134				pstart += atop(start - current->start);
2135				useStart = start;
2136			}
2137			if (current->end > end) {
2138				pend -= atop(current->end - end);
2139				useEnd = end;
2140			}
2141
2142			if (pstart >= pend)
2143				continue;
2144
2145			/*
2146			 * Perform the pmap_advise() before clearing
2147			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2148			 * concurrent pmap operation, such as pmap_remove(),
2149			 * could clear a reference in the pmap and set
2150			 * PGA_REFERENCED on the page before the pmap_advise()
2151			 * had completed.  Consequently, the page would appear
2152			 * referenced based upon an old reference that
2153			 * occurred before this pmap_advise() ran.
2154			 */
2155			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2156				pmap_advise(map->pmap, useStart, useEnd,
2157				    behav);
2158
2159			vm_object_madvise(current->object.vm_object, pstart,
2160			    pend, behav);
2161			if (behav == MADV_WILLNEED) {
2162				vm_map_pmap_enter(map,
2163				    useStart,
2164				    current->protection,
2165				    current->object.vm_object,
2166				    pstart,
2167				    ptoa(pend - pstart),
2168				    MAP_PREFAULT_MADVISE
2169				);
2170			}
2171		}
2172		vm_map_unlock_read(map);
2173	}
2174	return (0);
2175}
2176
2177
2178/*
2179 *	vm_map_inherit:
2180 *
2181 *	Sets the inheritance of the specified address
2182 *	range in the target map.  Inheritance
2183 *	affects how the map will be shared with
2184 *	child maps at the time of vmspace_fork.
2185 */
2186int
2187vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2188	       vm_inherit_t new_inheritance)
2189{
2190	vm_map_entry_t entry;
2191	vm_map_entry_t temp_entry;
2192
2193	switch (new_inheritance) {
2194	case VM_INHERIT_NONE:
2195	case VM_INHERIT_COPY:
2196	case VM_INHERIT_SHARE:
2197		break;
2198	default:
2199		return (KERN_INVALID_ARGUMENT);
2200	}
2201	if (start == end)
2202		return (KERN_SUCCESS);
2203	vm_map_lock(map);
2204	VM_MAP_RANGE_CHECK(map, start, end);
2205	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2206		entry = temp_entry;
2207		vm_map_clip_start(map, entry, start);
2208	} else
2209		entry = temp_entry->next;
2210	while ((entry != &map->header) && (entry->start < end)) {
2211		vm_map_clip_end(map, entry, end);
2212		entry->inheritance = new_inheritance;
2213		vm_map_simplify_entry(map, entry);
2214		entry = entry->next;
2215	}
2216	vm_map_unlock(map);
2217	return (KERN_SUCCESS);
2218}
2219
2220/*
2221 *	vm_map_unwire:
2222 *
2223 *	Implements both kernel and user unwiring.
2224 */
2225int
2226vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2227    int flags)
2228{
2229	vm_map_entry_t entry, first_entry, tmp_entry;
2230	vm_offset_t saved_start;
2231	unsigned int last_timestamp;
2232	int rv;
2233	boolean_t need_wakeup, result, user_unwire;
2234
2235	if (start == end)
2236		return (KERN_SUCCESS);
2237	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2238	vm_map_lock(map);
2239	VM_MAP_RANGE_CHECK(map, start, end);
2240	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2241		if (flags & VM_MAP_WIRE_HOLESOK)
2242			first_entry = first_entry->next;
2243		else {
2244			vm_map_unlock(map);
2245			return (KERN_INVALID_ADDRESS);
2246		}
2247	}
2248	last_timestamp = map->timestamp;
2249	entry = first_entry;
2250	while (entry != &map->header && entry->start < end) {
2251		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2252			/*
2253			 * We have not yet clipped the entry.
2254			 */
2255			saved_start = (start >= entry->start) ? start :
2256			    entry->start;
2257			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2258			if (vm_map_unlock_and_wait(map, 0)) {
2259				/*
2260				 * Allow interruption of user unwiring?
2261				 */
2262			}
2263			vm_map_lock(map);
2264			if (last_timestamp+1 != map->timestamp) {
2265				/*
2266				 * Look again for the entry because the map was
2267				 * modified while it was unlocked.
2268				 * Specifically, the entry may have been
2269				 * clipped, merged, or deleted.
2270				 */
2271				if (!vm_map_lookup_entry(map, saved_start,
2272				    &tmp_entry)) {
2273					if (flags & VM_MAP_WIRE_HOLESOK)
2274						tmp_entry = tmp_entry->next;
2275					else {
2276						if (saved_start == start) {
2277							/*
2278							 * First_entry has been deleted.
2279							 */
2280							vm_map_unlock(map);
2281							return (KERN_INVALID_ADDRESS);
2282						}
2283						end = saved_start;
2284						rv = KERN_INVALID_ADDRESS;
2285						goto done;
2286					}
2287				}
2288				if (entry == first_entry)
2289					first_entry = tmp_entry;
2290				else
2291					first_entry = NULL;
2292				entry = tmp_entry;
2293			}
2294			last_timestamp = map->timestamp;
2295			continue;
2296		}
2297		vm_map_clip_start(map, entry, start);
2298		vm_map_clip_end(map, entry, end);
2299		/*
2300		 * Mark the entry in case the map lock is released.  (See
2301		 * above.)
2302		 */
2303		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2304		    entry->wiring_thread == NULL,
2305		    ("owned map entry %p", entry));
2306		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2307		entry->wiring_thread = curthread;
2308		/*
2309		 * Check the map for holes in the specified region.
2310		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2311		 */
2312		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2313		    (entry->end < end && (entry->next == &map->header ||
2314		    entry->next->start > entry->end))) {
2315			end = entry->end;
2316			rv = KERN_INVALID_ADDRESS;
2317			goto done;
2318		}
2319		/*
2320		 * If system unwiring, require that the entry is system wired.
2321		 */
2322		if (!user_unwire &&
2323		    vm_map_entry_system_wired_count(entry) == 0) {
2324			end = entry->end;
2325			rv = KERN_INVALID_ARGUMENT;
2326			goto done;
2327		}
2328		entry = entry->next;
2329	}
2330	rv = KERN_SUCCESS;
2331done:
2332	need_wakeup = FALSE;
2333	if (first_entry == NULL) {
2334		result = vm_map_lookup_entry(map, start, &first_entry);
2335		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2336			first_entry = first_entry->next;
2337		else
2338			KASSERT(result, ("vm_map_unwire: lookup failed"));
2339	}
2340	for (entry = first_entry; entry != &map->header && entry->start < end;
2341	    entry = entry->next) {
2342		/*
2343		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2344		 * space in the unwired region could have been mapped
2345		 * while the map lock was dropped for draining
2346		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2347		 * could be simultaneously wiring this new mapping
2348		 * entry.  Detect these cases and skip any entries
2349		 * marked as in transition by us.
2350		 */
2351		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2352		    entry->wiring_thread != curthread) {
2353			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2354			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2355			continue;
2356		}
2357
2358		if (rv == KERN_SUCCESS && (!user_unwire ||
2359		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2360			if (user_unwire)
2361				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2362			entry->wired_count--;
2363			if (entry->wired_count == 0) {
2364				/*
2365				 * Retain the map lock.
2366				 */
2367				vm_fault_unwire(map, entry->start, entry->end,
2368				    entry->object.vm_object != NULL &&
2369				    (entry->object.vm_object->flags &
2370				    OBJ_FICTITIOUS) != 0);
2371			}
2372		}
2373		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2374		    ("vm_map_unwire: in-transition flag missing %p", entry));
2375		KASSERT(entry->wiring_thread == curthread,
2376		    ("vm_map_unwire: alien wire %p", entry));
2377		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2378		entry->wiring_thread = NULL;
2379		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2380			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2381			need_wakeup = TRUE;
2382		}
2383		vm_map_simplify_entry(map, entry);
2384	}
2385	vm_map_unlock(map);
2386	if (need_wakeup)
2387		vm_map_wakeup(map);
2388	return (rv);
2389}
2390
2391/*
2392 *	vm_map_wire:
2393 *
2394 *	Implements both kernel and user wiring.
2395 */
2396int
2397vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2398    int flags)
2399{
2400	vm_map_entry_t entry, first_entry, tmp_entry;
2401	vm_offset_t saved_end, saved_start;
2402	unsigned int last_timestamp;
2403	int rv;
2404	boolean_t fictitious, need_wakeup, result, user_wire;
2405	vm_prot_t prot;
2406
2407	if (start == end)
2408		return (KERN_SUCCESS);
2409	prot = 0;
2410	if (flags & VM_MAP_WIRE_WRITE)
2411		prot |= VM_PROT_WRITE;
2412	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2413	vm_map_lock(map);
2414	VM_MAP_RANGE_CHECK(map, start, end);
2415	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2416		if (flags & VM_MAP_WIRE_HOLESOK)
2417			first_entry = first_entry->next;
2418		else {
2419			vm_map_unlock(map);
2420			return (KERN_INVALID_ADDRESS);
2421		}
2422	}
2423	last_timestamp = map->timestamp;
2424	entry = first_entry;
2425	while (entry != &map->header && entry->start < end) {
2426		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2427			/*
2428			 * We have not yet clipped the entry.
2429			 */
2430			saved_start = (start >= entry->start) ? start :
2431			    entry->start;
2432			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2433			if (vm_map_unlock_and_wait(map, 0)) {
2434				/*
2435				 * Allow interruption of user wiring?
2436				 */
2437			}
2438			vm_map_lock(map);
2439			if (last_timestamp + 1 != map->timestamp) {
2440				/*
2441				 * Look again for the entry because the map was
2442				 * modified while it was unlocked.
2443				 * Specifically, the entry may have been
2444				 * clipped, merged, or deleted.
2445				 */
2446				if (!vm_map_lookup_entry(map, saved_start,
2447				    &tmp_entry)) {
2448					if (flags & VM_MAP_WIRE_HOLESOK)
2449						tmp_entry = tmp_entry->next;
2450					else {
2451						if (saved_start == start) {
2452							/*
2453							 * first_entry has been deleted.
2454							 */
2455							vm_map_unlock(map);
2456							return (KERN_INVALID_ADDRESS);
2457						}
2458						end = saved_start;
2459						rv = KERN_INVALID_ADDRESS;
2460						goto done;
2461					}
2462				}
2463				if (entry == first_entry)
2464					first_entry = tmp_entry;
2465				else
2466					first_entry = NULL;
2467				entry = tmp_entry;
2468			}
2469			last_timestamp = map->timestamp;
2470			continue;
2471		}
2472		vm_map_clip_start(map, entry, start);
2473		vm_map_clip_end(map, entry, end);
2474		/*
2475		 * Mark the entry in case the map lock is released.  (See
2476		 * above.)
2477		 */
2478		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2479		    entry->wiring_thread == NULL,
2480		    ("owned map entry %p", entry));
2481		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2482		entry->wiring_thread = curthread;
2483		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2484		    || (entry->protection & prot) != prot) {
2485			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2486			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2487				end = entry->end;
2488				rv = KERN_INVALID_ADDRESS;
2489				goto done;
2490			}
2491			goto next_entry;
2492		}
2493		if (entry->wired_count == 0) {
2494			entry->wired_count++;
2495			saved_start = entry->start;
2496			saved_end = entry->end;
2497			fictitious = entry->object.vm_object != NULL &&
2498			    (entry->object.vm_object->flags &
2499			    OBJ_FICTITIOUS) != 0;
2500			/*
2501			 * Release the map lock, relying on the in-transition
2502			 * mark.  Mark the map busy for fork.
2503			 */
2504			vm_map_busy(map);
2505			vm_map_unlock(map);
2506			rv = vm_fault_wire(map, saved_start, saved_end,
2507			    fictitious);
2508			vm_map_lock(map);
2509			vm_map_unbusy(map);
2510			if (last_timestamp + 1 != map->timestamp) {
2511				/*
2512				 * Look again for the entry because the map was
2513				 * modified while it was unlocked.  The entry
2514				 * may have been clipped, but NOT merged or
2515				 * deleted.
2516				 */
2517				result = vm_map_lookup_entry(map, saved_start,
2518				    &tmp_entry);
2519				KASSERT(result, ("vm_map_wire: lookup failed"));
2520				if (entry == first_entry)
2521					first_entry = tmp_entry;
2522				else
2523					first_entry = NULL;
2524				entry = tmp_entry;
2525				while (entry->end < saved_end) {
2526					if (rv != KERN_SUCCESS) {
2527						KASSERT(entry->wired_count == 1,
2528						    ("vm_map_wire: bad count"));
2529						entry->wired_count = -1;
2530					}
2531					entry = entry->next;
2532				}
2533			}
2534			last_timestamp = map->timestamp;
2535			if (rv != KERN_SUCCESS) {
2536				KASSERT(entry->wired_count == 1,
2537				    ("vm_map_wire: bad count"));
2538				/*
2539				 * Assign an out-of-range value to represent
2540				 * the failure to wire this entry.
2541				 */
2542				entry->wired_count = -1;
2543				end = entry->end;
2544				goto done;
2545			}
2546		} else if (!user_wire ||
2547			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2548			entry->wired_count++;
2549		}
2550		/*
2551		 * Check the map for holes in the specified region.
2552		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2553		 */
2554	next_entry:
2555		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2556		    (entry->end < end && (entry->next == &map->header ||
2557		    entry->next->start > entry->end))) {
2558			end = entry->end;
2559			rv = KERN_INVALID_ADDRESS;
2560			goto done;
2561		}
2562		entry = entry->next;
2563	}
2564	rv = KERN_SUCCESS;
2565done:
2566	need_wakeup = FALSE;
2567	if (first_entry == NULL) {
2568		result = vm_map_lookup_entry(map, start, &first_entry);
2569		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2570			first_entry = first_entry->next;
2571		else
2572			KASSERT(result, ("vm_map_wire: lookup failed"));
2573	}
2574	for (entry = first_entry; entry != &map->header && entry->start < end;
2575	    entry = entry->next) {
2576		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2577			goto next_entry_done;
2578
2579		/*
2580		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2581		 * space in the unwired region could have been mapped
2582		 * while the map lock was dropped for faulting in the
2583		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2584		 * Moreover, another thread could be simultaneously
2585		 * wiring this new mapping entry.  Detect these cases
2586		 * and skip any entries marked as in transition by us.
2587		 */
2588		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2589		    entry->wiring_thread != curthread) {
2590			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2591			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2592			continue;
2593		}
2594
2595		if (rv == KERN_SUCCESS) {
2596			if (user_wire)
2597				entry->eflags |= MAP_ENTRY_USER_WIRED;
2598		} else if (entry->wired_count == -1) {
2599			/*
2600			 * Wiring failed on this entry.  Thus, unwiring is
2601			 * unnecessary.
2602			 */
2603			entry->wired_count = 0;
2604		} else {
2605			if (!user_wire ||
2606			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2607				entry->wired_count--;
2608			if (entry->wired_count == 0) {
2609				/*
2610				 * Retain the map lock.
2611				 */
2612				vm_fault_unwire(map, entry->start, entry->end,
2613				    entry->object.vm_object != NULL &&
2614				    (entry->object.vm_object->flags &
2615				    OBJ_FICTITIOUS) != 0);
2616			}
2617		}
2618	next_entry_done:
2619		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2620		    ("vm_map_wire: in-transition flag missing %p", entry));
2621		KASSERT(entry->wiring_thread == curthread,
2622		    ("vm_map_wire: alien wire %p", entry));
2623		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2624		    MAP_ENTRY_WIRE_SKIPPED);
2625		entry->wiring_thread = NULL;
2626		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2627			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2628			need_wakeup = TRUE;
2629		}
2630		vm_map_simplify_entry(map, entry);
2631	}
2632	vm_map_unlock(map);
2633	if (need_wakeup)
2634		vm_map_wakeup(map);
2635	return (rv);
2636}
2637
2638/*
2639 * vm_map_sync
2640 *
2641 * Push any dirty cached pages in the address range to their pager.
2642 * If syncio is TRUE, dirty pages are written synchronously.
2643 * If invalidate is TRUE, any cached pages are freed as well.
2644 *
2645 * If the size of the region from start to end is zero, we are
2646 * supposed to flush all modified pages within the region containing
2647 * start.  Unfortunately, a region can be split or coalesced with
2648 * neighboring regions, making it difficult to determine what the
2649 * original region was.  Therefore, we approximate this requirement by
2650 * flushing the current region containing start.
2651 *
2652 * Returns an error if any part of the specified range is not mapped.
2653 */
2654int
2655vm_map_sync(
2656	vm_map_t map,
2657	vm_offset_t start,
2658	vm_offset_t end,
2659	boolean_t syncio,
2660	boolean_t invalidate)
2661{
2662	vm_map_entry_t current;
2663	vm_map_entry_t entry;
2664	vm_size_t size;
2665	vm_object_t object;
2666	vm_ooffset_t offset;
2667	unsigned int last_timestamp;
2668	boolean_t failed;
2669
2670	vm_map_lock_read(map);
2671	VM_MAP_RANGE_CHECK(map, start, end);
2672	if (!vm_map_lookup_entry(map, start, &entry)) {
2673		vm_map_unlock_read(map);
2674		return (KERN_INVALID_ADDRESS);
2675	} else if (start == end) {
2676		start = entry->start;
2677		end = entry->end;
2678	}
2679	/*
2680	 * Make a first pass to check for user-wired memory and holes.
2681	 */
2682	for (current = entry; current != &map->header && current->start < end;
2683	    current = current->next) {
2684		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2685			vm_map_unlock_read(map);
2686			return (KERN_INVALID_ARGUMENT);
2687		}
2688		if (end > current->end &&
2689		    (current->next == &map->header ||
2690			current->end != current->next->start)) {
2691			vm_map_unlock_read(map);
2692			return (KERN_INVALID_ADDRESS);
2693		}
2694	}
2695
2696	if (invalidate)
2697		pmap_remove(map->pmap, start, end);
2698	failed = FALSE;
2699
2700	/*
2701	 * Make a second pass, cleaning/uncaching pages from the indicated
2702	 * objects as we go.
2703	 */
2704	for (current = entry; current != &map->header && current->start < end;) {
2705		offset = current->offset + (start - current->start);
2706		size = (end <= current->end ? end : current->end) - start;
2707		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2708			vm_map_t smap;
2709			vm_map_entry_t tentry;
2710			vm_size_t tsize;
2711
2712			smap = current->object.sub_map;
2713			vm_map_lock_read(smap);
2714			(void) vm_map_lookup_entry(smap, offset, &tentry);
2715			tsize = tentry->end - offset;
2716			if (tsize < size)
2717				size = tsize;
2718			object = tentry->object.vm_object;
2719			offset = tentry->offset + (offset - tentry->start);
2720			vm_map_unlock_read(smap);
2721		} else {
2722			object = current->object.vm_object;
2723		}
2724		vm_object_reference(object);
2725		last_timestamp = map->timestamp;
2726		vm_map_unlock_read(map);
2727		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2728			failed = TRUE;
2729		start += size;
2730		vm_object_deallocate(object);
2731		vm_map_lock_read(map);
2732		if (last_timestamp == map->timestamp ||
2733		    !vm_map_lookup_entry(map, start, &current))
2734			current = current->next;
2735	}
2736
2737	vm_map_unlock_read(map);
2738	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2739}
2740
2741/*
2742 *	vm_map_entry_unwire:	[ internal use only ]
2743 *
2744 *	Make the region specified by this entry pageable.
2745 *
2746 *	The map in question should be locked.
2747 *	[This is the reason for this routine's existence.]
2748 */
2749static void
2750vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2751{
2752	vm_fault_unwire(map, entry->start, entry->end,
2753	    entry->object.vm_object != NULL &&
2754	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2755	entry->wired_count = 0;
2756}
2757
2758static void
2759vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2760{
2761
2762	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2763		vm_object_deallocate(entry->object.vm_object);
2764	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2765}
2766
2767/*
2768 *	vm_map_entry_delete:	[ internal use only ]
2769 *
2770 *	Deallocate the given entry from the target map.
2771 */
2772static void
2773vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2774{
2775	vm_object_t object;
2776	vm_pindex_t offidxstart, offidxend, count, size1;
2777	vm_ooffset_t size;
2778
2779	vm_map_entry_unlink(map, entry);
2780	object = entry->object.vm_object;
2781	size = entry->end - entry->start;
2782	map->size -= size;
2783
2784	if (entry->cred != NULL) {
2785		swap_release_by_cred(size, entry->cred);
2786		crfree(entry->cred);
2787	}
2788
2789	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2790	    (object != NULL)) {
2791		KASSERT(entry->cred == NULL || object->cred == NULL ||
2792		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2793		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2794		count = OFF_TO_IDX(size);
2795		offidxstart = OFF_TO_IDX(entry->offset);
2796		offidxend = offidxstart + count;
2797		VM_OBJECT_WLOCK(object);
2798		if (object->ref_count != 1 &&
2799		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2800		    object == kernel_object || object == kmem_object)) {
2801			vm_object_collapse(object);
2802
2803			/*
2804			 * The option OBJPR_NOTMAPPED can be passed here
2805			 * because vm_map_delete() already performed
2806			 * pmap_remove() on the only mapping to this range
2807			 * of pages.
2808			 */
2809			vm_object_page_remove(object, offidxstart, offidxend,
2810			    OBJPR_NOTMAPPED);
2811			if (object->type == OBJT_SWAP)
2812				swap_pager_freespace(object, offidxstart, count);
2813			if (offidxend >= object->size &&
2814			    offidxstart < object->size) {
2815				size1 = object->size;
2816				object->size = offidxstart;
2817				if (object->cred != NULL) {
2818					size1 -= object->size;
2819					KASSERT(object->charge >= ptoa(size1),
2820					    ("vm_map_entry_delete: object->charge < 0"));
2821					swap_release_by_cred(ptoa(size1), object->cred);
2822					object->charge -= ptoa(size1);
2823				}
2824			}
2825		}
2826		VM_OBJECT_WUNLOCK(object);
2827	} else
2828		entry->object.vm_object = NULL;
2829	if (map->system_map)
2830		vm_map_entry_deallocate(entry, TRUE);
2831	else {
2832		entry->next = curthread->td_map_def_user;
2833		curthread->td_map_def_user = entry;
2834	}
2835}
2836
2837/*
2838 *	vm_map_delete:	[ internal use only ]
2839 *
2840 *	Deallocates the given address range from the target
2841 *	map.
2842 */
2843int
2844vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2845{
2846	vm_map_entry_t entry;
2847	vm_map_entry_t first_entry;
2848
2849	VM_MAP_ASSERT_LOCKED(map);
2850	if (start == end)
2851		return (KERN_SUCCESS);
2852
2853	/*
2854	 * Find the start of the region, and clip it
2855	 */
2856	if (!vm_map_lookup_entry(map, start, &first_entry))
2857		entry = first_entry->next;
2858	else {
2859		entry = first_entry;
2860		vm_map_clip_start(map, entry, start);
2861	}
2862
2863	/*
2864	 * Step through all entries in this region
2865	 */
2866	while ((entry != &map->header) && (entry->start < end)) {
2867		vm_map_entry_t next;
2868
2869		/*
2870		 * Wait for wiring or unwiring of an entry to complete.
2871		 * Also wait for any system wirings to disappear on
2872		 * user maps.
2873		 */
2874		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2875		    (vm_map_pmap(map) != kernel_pmap &&
2876		    vm_map_entry_system_wired_count(entry) != 0)) {
2877			unsigned int last_timestamp;
2878			vm_offset_t saved_start;
2879			vm_map_entry_t tmp_entry;
2880
2881			saved_start = entry->start;
2882			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2883			last_timestamp = map->timestamp;
2884			(void) vm_map_unlock_and_wait(map, 0);
2885			vm_map_lock(map);
2886			if (last_timestamp + 1 != map->timestamp) {
2887				/*
2888				 * Look again for the entry because the map was
2889				 * modified while it was unlocked.
2890				 * Specifically, the entry may have been
2891				 * clipped, merged, or deleted.
2892				 */
2893				if (!vm_map_lookup_entry(map, saved_start,
2894							 &tmp_entry))
2895					entry = tmp_entry->next;
2896				else {
2897					entry = tmp_entry;
2898					vm_map_clip_start(map, entry,
2899							  saved_start);
2900				}
2901			}
2902			continue;
2903		}
2904		vm_map_clip_end(map, entry, end);
2905
2906		next = entry->next;
2907
2908		/*
2909		 * Unwire before removing addresses from the pmap; otherwise,
2910		 * unwiring will put the entries back in the pmap.
2911		 */
2912		if (entry->wired_count != 0) {
2913			vm_map_entry_unwire(map, entry);
2914		}
2915
2916		pmap_remove(map->pmap, entry->start, entry->end);
2917
2918		/*
2919		 * Delete the entry only after removing all pmap
2920		 * entries pointing to its pages.  (Otherwise, its
2921		 * page frames may be reallocated, and any modify bits
2922		 * will be set in the wrong object!)
2923		 */
2924		vm_map_entry_delete(map, entry);
2925		entry = next;
2926	}
2927	return (KERN_SUCCESS);
2928}
2929
2930/*
2931 *	vm_map_remove:
2932 *
2933 *	Remove the given address range from the target map.
2934 *	This is the exported form of vm_map_delete.
2935 */
2936int
2937vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2938{
2939	int result;
2940
2941	vm_map_lock(map);
2942	VM_MAP_RANGE_CHECK(map, start, end);
2943	result = vm_map_delete(map, start, end);
2944	vm_map_unlock(map);
2945	return (result);
2946}
2947
2948/*
2949 *	vm_map_check_protection:
2950 *
2951 *	Assert that the target map allows the specified privilege on the
2952 *	entire address region given.  The entire region must be allocated.
2953 *
2954 *	WARNING!  This code does not and should not check whether the
2955 *	contents of the region is accessible.  For example a smaller file
2956 *	might be mapped into a larger address space.
2957 *
2958 *	NOTE!  This code is also called by munmap().
2959 *
2960 *	The map must be locked.  A read lock is sufficient.
2961 */
2962boolean_t
2963vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2964			vm_prot_t protection)
2965{
2966	vm_map_entry_t entry;
2967	vm_map_entry_t tmp_entry;
2968
2969	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2970		return (FALSE);
2971	entry = tmp_entry;
2972
2973	while (start < end) {
2974		if (entry == &map->header)
2975			return (FALSE);
2976		/*
2977		 * No holes allowed!
2978		 */
2979		if (start < entry->start)
2980			return (FALSE);
2981		/*
2982		 * Check protection associated with entry.
2983		 */
2984		if ((entry->protection & protection) != protection)
2985			return (FALSE);
2986		/* go to next entry */
2987		start = entry->end;
2988		entry = entry->next;
2989	}
2990	return (TRUE);
2991}
2992
2993/*
2994 *	vm_map_copy_entry:
2995 *
2996 *	Copies the contents of the source entry to the destination
2997 *	entry.  The entries *must* be aligned properly.
2998 */
2999static void
3000vm_map_copy_entry(
3001	vm_map_t src_map,
3002	vm_map_t dst_map,
3003	vm_map_entry_t src_entry,
3004	vm_map_entry_t dst_entry,
3005	vm_ooffset_t *fork_charge)
3006{
3007	vm_object_t src_object;
3008	vm_map_entry_t fake_entry;
3009	vm_offset_t size;
3010	struct ucred *cred;
3011	int charged;
3012
3013	VM_MAP_ASSERT_LOCKED(dst_map);
3014
3015	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3016		return;
3017
3018	if (src_entry->wired_count == 0) {
3019
3020		/*
3021		 * If the source entry is marked needs_copy, it is already
3022		 * write-protected.
3023		 */
3024		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3025			pmap_protect(src_map->pmap,
3026			    src_entry->start,
3027			    src_entry->end,
3028			    src_entry->protection & ~VM_PROT_WRITE);
3029		}
3030
3031		/*
3032		 * Make a copy of the object.
3033		 */
3034		size = src_entry->end - src_entry->start;
3035		if ((src_object = src_entry->object.vm_object) != NULL) {
3036			VM_OBJECT_WLOCK(src_object);
3037			charged = ENTRY_CHARGED(src_entry);
3038			if ((src_object->handle == NULL) &&
3039				(src_object->type == OBJT_DEFAULT ||
3040				 src_object->type == OBJT_SWAP)) {
3041				vm_object_collapse(src_object);
3042				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3043					vm_object_split(src_entry);
3044					src_object = src_entry->object.vm_object;
3045				}
3046			}
3047			vm_object_reference_locked(src_object);
3048			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3049			if (src_entry->cred != NULL &&
3050			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3051				KASSERT(src_object->cred == NULL,
3052				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3053				     src_object));
3054				src_object->cred = src_entry->cred;
3055				src_object->charge = size;
3056			}
3057			VM_OBJECT_WUNLOCK(src_object);
3058			dst_entry->object.vm_object = src_object;
3059			if (charged) {
3060				cred = curthread->td_ucred;
3061				crhold(cred);
3062				dst_entry->cred = cred;
3063				*fork_charge += size;
3064				if (!(src_entry->eflags &
3065				      MAP_ENTRY_NEEDS_COPY)) {
3066					crhold(cred);
3067					src_entry->cred = cred;
3068					*fork_charge += size;
3069				}
3070			}
3071			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3072			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3073			dst_entry->offset = src_entry->offset;
3074			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3075				/*
3076				 * MAP_ENTRY_VN_WRITECNT cannot
3077				 * indicate write reference from
3078				 * src_entry, since the entry is
3079				 * marked as needs copy.  Allocate a
3080				 * fake entry that is used to
3081				 * decrement object->un_pager.vnp.writecount
3082				 * at the appropriate time.  Attach
3083				 * fake_entry to the deferred list.
3084				 */
3085				fake_entry = vm_map_entry_create(dst_map);
3086				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3087				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3088				vm_object_reference(src_object);
3089				fake_entry->object.vm_object = src_object;
3090				fake_entry->start = src_entry->start;
3091				fake_entry->end = src_entry->end;
3092				fake_entry->next = curthread->td_map_def_user;
3093				curthread->td_map_def_user = fake_entry;
3094			}
3095		} else {
3096			dst_entry->object.vm_object = NULL;
3097			dst_entry->offset = 0;
3098			if (src_entry->cred != NULL) {
3099				dst_entry->cred = curthread->td_ucred;
3100				crhold(dst_entry->cred);
3101				*fork_charge += size;
3102			}
3103		}
3104
3105		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3106		    dst_entry->end - dst_entry->start, src_entry->start);
3107	} else {
3108		/*
3109		 * Of course, wired down pages can't be set copy-on-write.
3110		 * Cause wired pages to be copied into the new map by
3111		 * simulating faults (the new pages are pageable)
3112		 */
3113		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3114		    fork_charge);
3115	}
3116}
3117
3118/*
3119 * vmspace_map_entry_forked:
3120 * Update the newly-forked vmspace each time a map entry is inherited
3121 * or copied.  The values for vm_dsize and vm_tsize are approximate
3122 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3123 */
3124static void
3125vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3126    vm_map_entry_t entry)
3127{
3128	vm_size_t entrysize;
3129	vm_offset_t newend;
3130
3131	entrysize = entry->end - entry->start;
3132	vm2->vm_map.size += entrysize;
3133	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3134		vm2->vm_ssize += btoc(entrysize);
3135	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3136	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3137		newend = MIN(entry->end,
3138		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3139		vm2->vm_dsize += btoc(newend - entry->start);
3140	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3141	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3142		newend = MIN(entry->end,
3143		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3144		vm2->vm_tsize += btoc(newend - entry->start);
3145	}
3146}
3147
3148/*
3149 * vmspace_fork:
3150 * Create a new process vmspace structure and vm_map
3151 * based on those of an existing process.  The new map
3152 * is based on the old map, according to the inheritance
3153 * values on the regions in that map.
3154 *
3155 * XXX It might be worth coalescing the entries added to the new vmspace.
3156 *
3157 * The source map must not be locked.
3158 */
3159struct vmspace *
3160vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3161{
3162	struct vmspace *vm2;
3163	vm_map_t new_map, old_map;
3164	vm_map_entry_t new_entry, old_entry;
3165	vm_object_t object;
3166	int locked;
3167
3168	old_map = &vm1->vm_map;
3169	/* Copy immutable fields of vm1 to vm2. */
3170	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3171	if (vm2 == NULL)
3172		return (NULL);
3173	vm2->vm_taddr = vm1->vm_taddr;
3174	vm2->vm_daddr = vm1->vm_daddr;
3175	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3176	vm_map_lock(old_map);
3177	if (old_map->busy)
3178		vm_map_wait_busy(old_map);
3179	new_map = &vm2->vm_map;
3180	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3181	KASSERT(locked, ("vmspace_fork: lock failed"));
3182
3183	old_entry = old_map->header.next;
3184
3185	while (old_entry != &old_map->header) {
3186		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3187			panic("vm_map_fork: encountered a submap");
3188
3189		switch (old_entry->inheritance) {
3190		case VM_INHERIT_NONE:
3191			break;
3192
3193		case VM_INHERIT_SHARE:
3194			/*
3195			 * Clone the entry, creating the shared object if necessary.
3196			 */
3197			object = old_entry->object.vm_object;
3198			if (object == NULL) {
3199				object = vm_object_allocate(OBJT_DEFAULT,
3200					atop(old_entry->end - old_entry->start));
3201				old_entry->object.vm_object = object;
3202				old_entry->offset = 0;
3203				if (old_entry->cred != NULL) {
3204					object->cred = old_entry->cred;
3205					object->charge = old_entry->end -
3206					    old_entry->start;
3207					old_entry->cred = NULL;
3208				}
3209			}
3210
3211			/*
3212			 * Add the reference before calling vm_object_shadow
3213			 * to insure that a shadow object is created.
3214			 */
3215			vm_object_reference(object);
3216			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3217				vm_object_shadow(&old_entry->object.vm_object,
3218				    &old_entry->offset,
3219				    old_entry->end - old_entry->start);
3220				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3221				/* Transfer the second reference too. */
3222				vm_object_reference(
3223				    old_entry->object.vm_object);
3224
3225				/*
3226				 * As in vm_map_simplify_entry(), the
3227				 * vnode lock will not be acquired in
3228				 * this call to vm_object_deallocate().
3229				 */
3230				vm_object_deallocate(object);
3231				object = old_entry->object.vm_object;
3232			}
3233			VM_OBJECT_WLOCK(object);
3234			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3235			if (old_entry->cred != NULL) {
3236				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3237				object->cred = old_entry->cred;
3238				object->charge = old_entry->end - old_entry->start;
3239				old_entry->cred = NULL;
3240			}
3241
3242			/*
3243			 * Assert the correct state of the vnode
3244			 * v_writecount while the object is locked, to
3245			 * not relock it later for the assertion
3246			 * correctness.
3247			 */
3248			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3249			    object->type == OBJT_VNODE) {
3250				KASSERT(((struct vnode *)object->handle)->
3251				    v_writecount > 0,
3252				    ("vmspace_fork: v_writecount %p", object));
3253				KASSERT(object->un_pager.vnp.writemappings > 0,
3254				    ("vmspace_fork: vnp.writecount %p",
3255				    object));
3256			}
3257			VM_OBJECT_WUNLOCK(object);
3258
3259			/*
3260			 * Clone the entry, referencing the shared object.
3261			 */
3262			new_entry = vm_map_entry_create(new_map);
3263			*new_entry = *old_entry;
3264			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3265			    MAP_ENTRY_IN_TRANSITION);
3266			new_entry->wiring_thread = NULL;
3267			new_entry->wired_count = 0;
3268			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3269				vnode_pager_update_writecount(object,
3270				    new_entry->start, new_entry->end);
3271			}
3272
3273			/*
3274			 * Insert the entry into the new map -- we know we're
3275			 * inserting at the end of the new map.
3276			 */
3277			vm_map_entry_link(new_map, new_map->header.prev,
3278			    new_entry);
3279			vmspace_map_entry_forked(vm1, vm2, new_entry);
3280
3281			/*
3282			 * Update the physical map
3283			 */
3284			pmap_copy(new_map->pmap, old_map->pmap,
3285			    new_entry->start,
3286			    (old_entry->end - old_entry->start),
3287			    old_entry->start);
3288			break;
3289
3290		case VM_INHERIT_COPY:
3291			/*
3292			 * Clone the entry and link into the map.
3293			 */
3294			new_entry = vm_map_entry_create(new_map);
3295			*new_entry = *old_entry;
3296			/*
3297			 * Copied entry is COW over the old object.
3298			 */
3299			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3300			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3301			new_entry->wiring_thread = NULL;
3302			new_entry->wired_count = 0;
3303			new_entry->object.vm_object = NULL;
3304			new_entry->cred = NULL;
3305			vm_map_entry_link(new_map, new_map->header.prev,
3306			    new_entry);
3307			vmspace_map_entry_forked(vm1, vm2, new_entry);
3308			vm_map_copy_entry(old_map, new_map, old_entry,
3309			    new_entry, fork_charge);
3310			break;
3311		}
3312		old_entry = old_entry->next;
3313	}
3314	/*
3315	 * Use inlined vm_map_unlock() to postpone handling the deferred
3316	 * map entries, which cannot be done until both old_map and
3317	 * new_map locks are released.
3318	 */
3319	sx_xunlock(&old_map->lock);
3320	sx_xunlock(&new_map->lock);
3321	vm_map_process_deferred();
3322
3323	return (vm2);
3324}
3325
3326int
3327vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3328    vm_prot_t prot, vm_prot_t max, int cow)
3329{
3330	vm_map_entry_t new_entry, prev_entry;
3331	vm_offset_t bot, top;
3332	vm_size_t growsize, init_ssize;
3333	int orient, rv;
3334	rlim_t lmemlim, vmemlim;
3335
3336	/*
3337	 * The stack orientation is piggybacked with the cow argument.
3338	 * Extract it into orient and mask the cow argument so that we
3339	 * don't pass it around further.
3340	 * NOTE: We explicitly allow bi-directional stacks.
3341	 */
3342	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3343	KASSERT(orient != 0, ("No stack grow direction"));
3344
3345	if (addrbos < vm_map_min(map) ||
3346	    addrbos > vm_map_max(map) ||
3347	    addrbos + max_ssize < addrbos)
3348		return (KERN_NO_SPACE);
3349
3350	growsize = sgrowsiz;
3351	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3352
3353	PROC_LOCK(curproc);
3354	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3355	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3356	PROC_UNLOCK(curproc);
3357
3358	vm_map_lock(map);
3359
3360	/* If addr is already mapped, no go */
3361	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3362		vm_map_unlock(map);
3363		return (KERN_NO_SPACE);
3364	}
3365
3366	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3367		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3368			vm_map_unlock(map);
3369			return (KERN_NO_SPACE);
3370		}
3371	}
3372
3373	/* If we would blow our VMEM resource limit, no go */
3374	if (map->size + init_ssize > vmemlim) {
3375		vm_map_unlock(map);
3376		return (KERN_NO_SPACE);
3377	}
3378
3379	/*
3380	 * If we can't accomodate max_ssize in the current mapping, no go.
3381	 * However, we need to be aware that subsequent user mappings might
3382	 * map into the space we have reserved for stack, and currently this
3383	 * space is not protected.
3384	 *
3385	 * Hopefully we will at least detect this condition when we try to
3386	 * grow the stack.
3387	 */
3388	if ((prev_entry->next != &map->header) &&
3389	    (prev_entry->next->start < addrbos + max_ssize)) {
3390		vm_map_unlock(map);
3391		return (KERN_NO_SPACE);
3392	}
3393
3394	/*
3395	 * We initially map a stack of only init_ssize.  We will grow as
3396	 * needed later.  Depending on the orientation of the stack (i.e.
3397	 * the grow direction) we either map at the top of the range, the
3398	 * bottom of the range or in the middle.
3399	 *
3400	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3401	 * and cow to be 0.  Possibly we should eliminate these as input
3402	 * parameters, and just pass these values here in the insert call.
3403	 */
3404	if (orient == MAP_STACK_GROWS_DOWN)
3405		bot = addrbos + max_ssize - init_ssize;
3406	else if (orient == MAP_STACK_GROWS_UP)
3407		bot = addrbos;
3408	else
3409		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3410	top = bot + init_ssize;
3411	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3412
3413	/* Now set the avail_ssize amount. */
3414	if (rv == KERN_SUCCESS) {
3415		if (prev_entry != &map->header)
3416			vm_map_clip_end(map, prev_entry, bot);
3417		new_entry = prev_entry->next;
3418		if (new_entry->end != top || new_entry->start != bot)
3419			panic("Bad entry start/end for new stack entry");
3420
3421		new_entry->avail_ssize = max_ssize - init_ssize;
3422		if (orient & MAP_STACK_GROWS_DOWN)
3423			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3424		if (orient & MAP_STACK_GROWS_UP)
3425			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3426	}
3427
3428	vm_map_unlock(map);
3429	return (rv);
3430}
3431
3432static int stack_guard_page = 0;
3433TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3434SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3435    &stack_guard_page, 0,
3436    "Insert stack guard page ahead of the growable segments.");
3437
3438/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3439 * desired address is already mapped, or if we successfully grow
3440 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3441 * stack range (this is strange, but preserves compatibility with
3442 * the grow function in vm_machdep.c).
3443 */
3444int
3445vm_map_growstack(struct proc *p, vm_offset_t addr)
3446{
3447	vm_map_entry_t next_entry, prev_entry;
3448	vm_map_entry_t new_entry, stack_entry;
3449	struct vmspace *vm = p->p_vmspace;
3450	vm_map_t map = &vm->vm_map;
3451	vm_offset_t end;
3452	vm_size_t growsize;
3453	size_t grow_amount, max_grow;
3454	rlim_t lmemlim, stacklim, vmemlim;
3455	int is_procstack, rv;
3456	struct ucred *cred;
3457#ifdef notyet
3458	uint64_t limit;
3459#endif
3460#ifdef RACCT
3461	int error;
3462#endif
3463
3464Retry:
3465	PROC_LOCK(p);
3466	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3467	stacklim = lim_cur(p, RLIMIT_STACK);
3468	vmemlim = lim_cur(p, RLIMIT_VMEM);
3469	PROC_UNLOCK(p);
3470
3471	vm_map_lock_read(map);
3472
3473	/* If addr is already in the entry range, no need to grow.*/
3474	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3475		vm_map_unlock_read(map);
3476		return (KERN_SUCCESS);
3477	}
3478
3479	next_entry = prev_entry->next;
3480	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3481		/*
3482		 * This entry does not grow upwards. Since the address lies
3483		 * beyond this entry, the next entry (if one exists) has to
3484		 * be a downward growable entry. The entry list header is
3485		 * never a growable entry, so it suffices to check the flags.
3486		 */
3487		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3488			vm_map_unlock_read(map);
3489			return (KERN_SUCCESS);
3490		}
3491		stack_entry = next_entry;
3492	} else {
3493		/*
3494		 * This entry grows upward. If the next entry does not at
3495		 * least grow downwards, this is the entry we need to grow.
3496		 * otherwise we have two possible choices and we have to
3497		 * select one.
3498		 */
3499		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3500			/*
3501			 * We have two choices; grow the entry closest to
3502			 * the address to minimize the amount of growth.
3503			 */
3504			if (addr - prev_entry->end <= next_entry->start - addr)
3505				stack_entry = prev_entry;
3506			else
3507				stack_entry = next_entry;
3508		} else
3509			stack_entry = prev_entry;
3510	}
3511
3512	if (stack_entry == next_entry) {
3513		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3514		KASSERT(addr < stack_entry->start, ("foo"));
3515		end = (prev_entry != &map->header) ? prev_entry->end :
3516		    stack_entry->start - stack_entry->avail_ssize;
3517		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3518		max_grow = stack_entry->start - end;
3519	} else {
3520		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3521		KASSERT(addr >= stack_entry->end, ("foo"));
3522		end = (next_entry != &map->header) ? next_entry->start :
3523		    stack_entry->end + stack_entry->avail_ssize;
3524		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3525		max_grow = end - stack_entry->end;
3526	}
3527
3528	if (grow_amount > stack_entry->avail_ssize) {
3529		vm_map_unlock_read(map);
3530		return (KERN_NO_SPACE);
3531	}
3532
3533	/*
3534	 * If there is no longer enough space between the entries nogo, and
3535	 * adjust the available space.  Note: this  should only happen if the
3536	 * user has mapped into the stack area after the stack was created,
3537	 * and is probably an error.
3538	 *
3539	 * This also effectively destroys any guard page the user might have
3540	 * intended by limiting the stack size.
3541	 */
3542	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3543		if (vm_map_lock_upgrade(map))
3544			goto Retry;
3545
3546		stack_entry->avail_ssize = max_grow;
3547
3548		vm_map_unlock(map);
3549		return (KERN_NO_SPACE);
3550	}
3551
3552	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3553
3554	/*
3555	 * If this is the main process stack, see if we're over the stack
3556	 * limit.
3557	 */
3558	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3559		vm_map_unlock_read(map);
3560		return (KERN_NO_SPACE);
3561	}
3562#ifdef RACCT
3563	PROC_LOCK(p);
3564	if (is_procstack &&
3565	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3566		PROC_UNLOCK(p);
3567		vm_map_unlock_read(map);
3568		return (KERN_NO_SPACE);
3569	}
3570	PROC_UNLOCK(p);
3571#endif
3572
3573	/* Round up the grow amount modulo sgrowsiz */
3574	growsize = sgrowsiz;
3575	grow_amount = roundup(grow_amount, growsize);
3576	if (grow_amount > stack_entry->avail_ssize)
3577		grow_amount = stack_entry->avail_ssize;
3578	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3579		grow_amount = trunc_page((vm_size_t)stacklim) -
3580		    ctob(vm->vm_ssize);
3581	}
3582#ifdef notyet
3583	PROC_LOCK(p);
3584	limit = racct_get_available(p, RACCT_STACK);
3585	PROC_UNLOCK(p);
3586	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3587		grow_amount = limit - ctob(vm->vm_ssize);
3588#endif
3589	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3590		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3591			vm_map_unlock_read(map);
3592			rv = KERN_NO_SPACE;
3593			goto out;
3594		}
3595#ifdef RACCT
3596		PROC_LOCK(p);
3597		if (racct_set(p, RACCT_MEMLOCK,
3598		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3599			PROC_UNLOCK(p);
3600			vm_map_unlock_read(map);
3601			rv = KERN_NO_SPACE;
3602			goto out;
3603		}
3604		PROC_UNLOCK(p);
3605#endif
3606	}
3607	/* If we would blow our VMEM resource limit, no go */
3608	if (map->size + grow_amount > vmemlim) {
3609		vm_map_unlock_read(map);
3610		rv = KERN_NO_SPACE;
3611		goto out;
3612	}
3613#ifdef RACCT
3614	PROC_LOCK(p);
3615	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3616		PROC_UNLOCK(p);
3617		vm_map_unlock_read(map);
3618		rv = KERN_NO_SPACE;
3619		goto out;
3620	}
3621	PROC_UNLOCK(p);
3622#endif
3623
3624	if (vm_map_lock_upgrade(map))
3625		goto Retry;
3626
3627	if (stack_entry == next_entry) {
3628		/*
3629		 * Growing downward.
3630		 */
3631		/* Get the preliminary new entry start value */
3632		addr = stack_entry->start - grow_amount;
3633
3634		/*
3635		 * If this puts us into the previous entry, cut back our
3636		 * growth to the available space. Also, see the note above.
3637		 */
3638		if (addr < end) {
3639			stack_entry->avail_ssize = max_grow;
3640			addr = end;
3641			if (stack_guard_page)
3642				addr += PAGE_SIZE;
3643		}
3644
3645		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3646		    next_entry->protection, next_entry->max_protection, 0);
3647
3648		/* Adjust the available stack space by the amount we grew. */
3649		if (rv == KERN_SUCCESS) {
3650			if (prev_entry != &map->header)
3651				vm_map_clip_end(map, prev_entry, addr);
3652			new_entry = prev_entry->next;
3653			KASSERT(new_entry == stack_entry->prev, ("foo"));
3654			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3655			KASSERT(new_entry->start == addr, ("foo"));
3656			grow_amount = new_entry->end - new_entry->start;
3657			new_entry->avail_ssize = stack_entry->avail_ssize -
3658			    grow_amount;
3659			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3660			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3661		}
3662	} else {
3663		/*
3664		 * Growing upward.
3665		 */
3666		addr = stack_entry->end + grow_amount;
3667
3668		/*
3669		 * If this puts us into the next entry, cut back our growth
3670		 * to the available space. Also, see the note above.
3671		 */
3672		if (addr > end) {
3673			stack_entry->avail_ssize = end - stack_entry->end;
3674			addr = end;
3675			if (stack_guard_page)
3676				addr -= PAGE_SIZE;
3677		}
3678
3679		grow_amount = addr - stack_entry->end;
3680		cred = stack_entry->cred;
3681		if (cred == NULL && stack_entry->object.vm_object != NULL)
3682			cred = stack_entry->object.vm_object->cred;
3683		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3684			rv = KERN_NO_SPACE;
3685		/* Grow the underlying object if applicable. */
3686		else if (stack_entry->object.vm_object == NULL ||
3687			 vm_object_coalesce(stack_entry->object.vm_object,
3688			 stack_entry->offset,
3689			 (vm_size_t)(stack_entry->end - stack_entry->start),
3690			 (vm_size_t)grow_amount, cred != NULL)) {
3691			map->size += (addr - stack_entry->end);
3692			/* Update the current entry. */
3693			stack_entry->end = addr;
3694			stack_entry->avail_ssize -= grow_amount;
3695			vm_map_entry_resize_free(map, stack_entry);
3696			rv = KERN_SUCCESS;
3697
3698			if (next_entry != &map->header)
3699				vm_map_clip_start(map, next_entry, addr);
3700		} else
3701			rv = KERN_FAILURE;
3702	}
3703
3704	if (rv == KERN_SUCCESS && is_procstack)
3705		vm->vm_ssize += btoc(grow_amount);
3706
3707	vm_map_unlock(map);
3708
3709	/*
3710	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3711	 */
3712	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3713		vm_map_wire(map,
3714		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3715		    (stack_entry == next_entry) ? stack_entry->start : addr,
3716		    (p->p_flag & P_SYSTEM)
3717		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3718		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3719	}
3720
3721out:
3722#ifdef RACCT
3723	if (rv != KERN_SUCCESS) {
3724		PROC_LOCK(p);
3725		error = racct_set(p, RACCT_VMEM, map->size);
3726		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3727		if (!old_mlock) {
3728			error = racct_set(p, RACCT_MEMLOCK,
3729			    ptoa(pmap_wired_count(map->pmap)));
3730			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3731		}
3732	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3733		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3734		PROC_UNLOCK(p);
3735	}
3736#endif
3737
3738	return (rv);
3739}
3740
3741/*
3742 * Unshare the specified VM space for exec.  If other processes are
3743 * mapped to it, then create a new one.  The new vmspace is null.
3744 */
3745int
3746vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3747{
3748	struct vmspace *oldvmspace = p->p_vmspace;
3749	struct vmspace *newvmspace;
3750
3751	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3752	if (newvmspace == NULL)
3753		return (ENOMEM);
3754	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3755	/*
3756	 * This code is written like this for prototype purposes.  The
3757	 * goal is to avoid running down the vmspace here, but let the
3758	 * other process's that are still using the vmspace to finally
3759	 * run it down.  Even though there is little or no chance of blocking
3760	 * here, it is a good idea to keep this form for future mods.
3761	 */
3762	PROC_VMSPACE_LOCK(p);
3763	p->p_vmspace = newvmspace;
3764	PROC_VMSPACE_UNLOCK(p);
3765	if (p == curthread->td_proc)
3766		pmap_activate(curthread);
3767	vmspace_free(oldvmspace);
3768	return (0);
3769}
3770
3771/*
3772 * Unshare the specified VM space for forcing COW.  This
3773 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3774 */
3775int
3776vmspace_unshare(struct proc *p)
3777{
3778	struct vmspace *oldvmspace = p->p_vmspace;
3779	struct vmspace *newvmspace;
3780	vm_ooffset_t fork_charge;
3781
3782	if (oldvmspace->vm_refcnt == 1)
3783		return (0);
3784	fork_charge = 0;
3785	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3786	if (newvmspace == NULL)
3787		return (ENOMEM);
3788	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3789		vmspace_free(newvmspace);
3790		return (ENOMEM);
3791	}
3792	PROC_VMSPACE_LOCK(p);
3793	p->p_vmspace = newvmspace;
3794	PROC_VMSPACE_UNLOCK(p);
3795	if (p == curthread->td_proc)
3796		pmap_activate(curthread);
3797	vmspace_free(oldvmspace);
3798	return (0);
3799}
3800
3801/*
3802 *	vm_map_lookup:
3803 *
3804 *	Finds the VM object, offset, and
3805 *	protection for a given virtual address in the
3806 *	specified map, assuming a page fault of the
3807 *	type specified.
3808 *
3809 *	Leaves the map in question locked for read; return
3810 *	values are guaranteed until a vm_map_lookup_done
3811 *	call is performed.  Note that the map argument
3812 *	is in/out; the returned map must be used in
3813 *	the call to vm_map_lookup_done.
3814 *
3815 *	A handle (out_entry) is returned for use in
3816 *	vm_map_lookup_done, to make that fast.
3817 *
3818 *	If a lookup is requested with "write protection"
3819 *	specified, the map may be changed to perform virtual
3820 *	copying operations, although the data referenced will
3821 *	remain the same.
3822 */
3823int
3824vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3825	      vm_offset_t vaddr,
3826	      vm_prot_t fault_typea,
3827	      vm_map_entry_t *out_entry,	/* OUT */
3828	      vm_object_t *object,		/* OUT */
3829	      vm_pindex_t *pindex,		/* OUT */
3830	      vm_prot_t *out_prot,		/* OUT */
3831	      boolean_t *wired)			/* OUT */
3832{
3833	vm_map_entry_t entry;
3834	vm_map_t map = *var_map;
3835	vm_prot_t prot;
3836	vm_prot_t fault_type = fault_typea;
3837	vm_object_t eobject;
3838	vm_size_t size;
3839	struct ucred *cred;
3840
3841RetryLookup:;
3842
3843	vm_map_lock_read(map);
3844
3845	/*
3846	 * Lookup the faulting address.
3847	 */
3848	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3849		vm_map_unlock_read(map);
3850		return (KERN_INVALID_ADDRESS);
3851	}
3852
3853	entry = *out_entry;
3854
3855	/*
3856	 * Handle submaps.
3857	 */
3858	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3859		vm_map_t old_map = map;
3860
3861		*var_map = map = entry->object.sub_map;
3862		vm_map_unlock_read(old_map);
3863		goto RetryLookup;
3864	}
3865
3866	/*
3867	 * Check whether this task is allowed to have this page.
3868	 */
3869	prot = entry->protection;
3870	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3871	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3872		vm_map_unlock_read(map);
3873		return (KERN_PROTECTION_FAILURE);
3874	}
3875	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3876	    (entry->eflags & MAP_ENTRY_COW) &&
3877	    (fault_type & VM_PROT_WRITE)) {
3878		vm_map_unlock_read(map);
3879		return (KERN_PROTECTION_FAILURE);
3880	}
3881	if ((fault_typea & VM_PROT_COPY) != 0 &&
3882	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3883	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3884		vm_map_unlock_read(map);
3885		return (KERN_PROTECTION_FAILURE);
3886	}
3887
3888	/*
3889	 * If this page is not pageable, we have to get it for all possible
3890	 * accesses.
3891	 */
3892	*wired = (entry->wired_count != 0);
3893	if (*wired)
3894		fault_type = entry->protection;
3895	size = entry->end - entry->start;
3896	/*
3897	 * If the entry was copy-on-write, we either ...
3898	 */
3899	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3900		/*
3901		 * If we want to write the page, we may as well handle that
3902		 * now since we've got the map locked.
3903		 *
3904		 * If we don't need to write the page, we just demote the
3905		 * permissions allowed.
3906		 */
3907		if ((fault_type & VM_PROT_WRITE) != 0 ||
3908		    (fault_typea & VM_PROT_COPY) != 0) {
3909			/*
3910			 * Make a new object, and place it in the object
3911			 * chain.  Note that no new references have appeared
3912			 * -- one just moved from the map to the new
3913			 * object.
3914			 */
3915			if (vm_map_lock_upgrade(map))
3916				goto RetryLookup;
3917
3918			if (entry->cred == NULL) {
3919				/*
3920				 * The debugger owner is charged for
3921				 * the memory.
3922				 */
3923				cred = curthread->td_ucred;
3924				crhold(cred);
3925				if (!swap_reserve_by_cred(size, cred)) {
3926					crfree(cred);
3927					vm_map_unlock(map);
3928					return (KERN_RESOURCE_SHORTAGE);
3929				}
3930				entry->cred = cred;
3931			}
3932			vm_object_shadow(&entry->object.vm_object,
3933			    &entry->offset, size);
3934			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3935			eobject = entry->object.vm_object;
3936			if (eobject->cred != NULL) {
3937				/*
3938				 * The object was not shadowed.
3939				 */
3940				swap_release_by_cred(size, entry->cred);
3941				crfree(entry->cred);
3942				entry->cred = NULL;
3943			} else if (entry->cred != NULL) {
3944				VM_OBJECT_WLOCK(eobject);
3945				eobject->cred = entry->cred;
3946				eobject->charge = size;
3947				VM_OBJECT_WUNLOCK(eobject);
3948				entry->cred = NULL;
3949			}
3950
3951			vm_map_lock_downgrade(map);
3952		} else {
3953			/*
3954			 * We're attempting to read a copy-on-write page --
3955			 * don't allow writes.
3956			 */
3957			prot &= ~VM_PROT_WRITE;
3958		}
3959	}
3960
3961	/*
3962	 * Create an object if necessary.
3963	 */
3964	if (entry->object.vm_object == NULL &&
3965	    !map->system_map) {
3966		if (vm_map_lock_upgrade(map))
3967			goto RetryLookup;
3968		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3969		    atop(size));
3970		entry->offset = 0;
3971		if (entry->cred != NULL) {
3972			VM_OBJECT_WLOCK(entry->object.vm_object);
3973			entry->object.vm_object->cred = entry->cred;
3974			entry->object.vm_object->charge = size;
3975			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3976			entry->cred = NULL;
3977		}
3978		vm_map_lock_downgrade(map);
3979	}
3980
3981	/*
3982	 * Return the object/offset from this entry.  If the entry was
3983	 * copy-on-write or empty, it has been fixed up.
3984	 */
3985	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3986	*object = entry->object.vm_object;
3987
3988	*out_prot = prot;
3989	return (KERN_SUCCESS);
3990}
3991
3992/*
3993 *	vm_map_lookup_locked:
3994 *
3995 *	Lookup the faulting address.  A version of vm_map_lookup that returns
3996 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3997 */
3998int
3999vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4000		     vm_offset_t vaddr,
4001		     vm_prot_t fault_typea,
4002		     vm_map_entry_t *out_entry,	/* OUT */
4003		     vm_object_t *object,	/* OUT */
4004		     vm_pindex_t *pindex,	/* OUT */
4005		     vm_prot_t *out_prot,	/* OUT */
4006		     boolean_t *wired)		/* OUT */
4007{
4008	vm_map_entry_t entry;
4009	vm_map_t map = *var_map;
4010	vm_prot_t prot;
4011	vm_prot_t fault_type = fault_typea;
4012
4013	/*
4014	 * Lookup the faulting address.
4015	 */
4016	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4017		return (KERN_INVALID_ADDRESS);
4018
4019	entry = *out_entry;
4020
4021	/*
4022	 * Fail if the entry refers to a submap.
4023	 */
4024	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4025		return (KERN_FAILURE);
4026
4027	/*
4028	 * Check whether this task is allowed to have this page.
4029	 */
4030	prot = entry->protection;
4031	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4032	if ((fault_type & prot) != fault_type)
4033		return (KERN_PROTECTION_FAILURE);
4034	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4035	    (entry->eflags & MAP_ENTRY_COW) &&
4036	    (fault_type & VM_PROT_WRITE))
4037		return (KERN_PROTECTION_FAILURE);
4038
4039	/*
4040	 * If this page is not pageable, we have to get it for all possible
4041	 * accesses.
4042	 */
4043	*wired = (entry->wired_count != 0);
4044	if (*wired)
4045		fault_type = entry->protection;
4046
4047	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4048		/*
4049		 * Fail if the entry was copy-on-write for a write fault.
4050		 */
4051		if (fault_type & VM_PROT_WRITE)
4052			return (KERN_FAILURE);
4053		/*
4054		 * We're attempting to read a copy-on-write page --
4055		 * don't allow writes.
4056		 */
4057		prot &= ~VM_PROT_WRITE;
4058	}
4059
4060	/*
4061	 * Fail if an object should be created.
4062	 */
4063	if (entry->object.vm_object == NULL && !map->system_map)
4064		return (KERN_FAILURE);
4065
4066	/*
4067	 * Return the object/offset from this entry.  If the entry was
4068	 * copy-on-write or empty, it has been fixed up.
4069	 */
4070	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4071	*object = entry->object.vm_object;
4072
4073	*out_prot = prot;
4074	return (KERN_SUCCESS);
4075}
4076
4077/*
4078 *	vm_map_lookup_done:
4079 *
4080 *	Releases locks acquired by a vm_map_lookup
4081 *	(according to the handle returned by that lookup).
4082 */
4083void
4084vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4085{
4086	/*
4087	 * Unlock the main-level map
4088	 */
4089	vm_map_unlock_read(map);
4090}
4091
4092#include "opt_ddb.h"
4093#ifdef DDB
4094#include <sys/kernel.h>
4095
4096#include <ddb/ddb.h>
4097
4098static void
4099vm_map_print(vm_map_t map)
4100{
4101	vm_map_entry_t entry;
4102
4103	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4104	    (void *)map,
4105	    (void *)map->pmap, map->nentries, map->timestamp);
4106
4107	db_indent += 2;
4108	for (entry = map->header.next; entry != &map->header;
4109	    entry = entry->next) {
4110		db_iprintf("map entry %p: start=%p, end=%p\n",
4111		    (void *)entry, (void *)entry->start, (void *)entry->end);
4112		{
4113			static char *inheritance_name[4] =
4114			{"share", "copy", "none", "donate_copy"};
4115
4116			db_iprintf(" prot=%x/%x/%s",
4117			    entry->protection,
4118			    entry->max_protection,
4119			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4120			if (entry->wired_count != 0)
4121				db_printf(", wired");
4122		}
4123		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4124			db_printf(", share=%p, offset=0x%jx\n",
4125			    (void *)entry->object.sub_map,
4126			    (uintmax_t)entry->offset);
4127			if ((entry->prev == &map->header) ||
4128			    (entry->prev->object.sub_map !=
4129				entry->object.sub_map)) {
4130				db_indent += 2;
4131				vm_map_print((vm_map_t)entry->object.sub_map);
4132				db_indent -= 2;
4133			}
4134		} else {
4135			if (entry->cred != NULL)
4136				db_printf(", ruid %d", entry->cred->cr_ruid);
4137			db_printf(", object=%p, offset=0x%jx",
4138			    (void *)entry->object.vm_object,
4139			    (uintmax_t)entry->offset);
4140			if (entry->object.vm_object && entry->object.vm_object->cred)
4141				db_printf(", obj ruid %d charge %jx",
4142				    entry->object.vm_object->cred->cr_ruid,
4143				    (uintmax_t)entry->object.vm_object->charge);
4144			if (entry->eflags & MAP_ENTRY_COW)
4145				db_printf(", copy (%s)",
4146				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4147			db_printf("\n");
4148
4149			if ((entry->prev == &map->header) ||
4150			    (entry->prev->object.vm_object !=
4151				entry->object.vm_object)) {
4152				db_indent += 2;
4153				vm_object_print((db_expr_t)(intptr_t)
4154						entry->object.vm_object,
4155						1, 0, (char *)0);
4156				db_indent -= 2;
4157			}
4158		}
4159	}
4160	db_indent -= 2;
4161}
4162
4163DB_SHOW_COMMAND(map, map)
4164{
4165
4166	if (!have_addr) {
4167		db_printf("usage: show map <addr>\n");
4168		return;
4169	}
4170	vm_map_print((vm_map_t)addr);
4171}
4172
4173DB_SHOW_COMMAND(procvm, procvm)
4174{
4175	struct proc *p;
4176
4177	if (have_addr) {
4178		p = (struct proc *) addr;
4179	} else {
4180		p = curproc;
4181	}
4182
4183	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4184	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4185	    (void *)vmspace_pmap(p->p_vmspace));
4186
4187	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4188}
4189
4190#endif /* DDB */
4191