vm_map.c revision 259299
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_map.c 259299 2013-12-13 06:28:18Z kib $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135#ifdef INVARIANTS
136static void vm_map_zdtor(void *mem, int size, void *arg);
137static void vmspace_zdtor(void *mem, int size, void *arg);
138#endif
139
140#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
141    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
142     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
143
144/*
145 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
146 * stable.
147 */
148#define PROC_VMSPACE_LOCK(p) do { } while (0)
149#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
150
151/*
152 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
153 *
154 *	Asserts that the starting and ending region
155 *	addresses fall within the valid range of the map.
156 */
157#define	VM_MAP_RANGE_CHECK(map, start, end)		\
158		{					\
159		if (start < vm_map_min(map))		\
160			start = vm_map_min(map);	\
161		if (end > vm_map_max(map))		\
162			end = vm_map_max(map);		\
163		if (start > end)			\
164			start = end;			\
165		}
166
167/*
168 *	vm_map_startup:
169 *
170 *	Initialize the vm_map module.  Must be called before
171 *	any other vm_map routines.
172 *
173 *	Map and entry structures are allocated from the general
174 *	purpose memory pool with some exceptions:
175 *
176 *	- The kernel map and kmem submap are allocated statically.
177 *	- Kernel map entries are allocated out of a static pool.
178 *
179 *	These restrictions are necessary since malloc() uses the
180 *	maps and requires map entries.
181 */
182
183void
184vm_map_startup(void)
185{
186	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
187	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
188#ifdef INVARIANTS
189	    vm_map_zdtor,
190#else
191	    NULL,
192#endif
193	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194	uma_prealloc(mapzone, MAX_KMAP);
195	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
196	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
197	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
198	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
201#ifdef INVARIANTS
202	    vmspace_zdtor,
203#else
204	    NULL,
205#endif
206	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207}
208
209static int
210vmspace_zinit(void *mem, int size, int flags)
211{
212	struct vmspace *vm;
213
214	vm = (struct vmspace *)mem;
215
216	vm->vm_map.pmap = NULL;
217	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
218	PMAP_LOCK_INIT(vmspace_pmap(vm));
219	return (0);
220}
221
222static int
223vm_map_zinit(void *mem, int size, int flags)
224{
225	vm_map_t map;
226
227	map = (vm_map_t)mem;
228	memset(map, 0, sizeof(*map));
229	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
230	sx_init(&map->lock, "vm map (user)");
231	return (0);
232}
233
234#ifdef INVARIANTS
235static void
236vmspace_zdtor(void *mem, int size, void *arg)
237{
238	struct vmspace *vm;
239
240	vm = (struct vmspace *)mem;
241
242	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
243}
244static void
245vm_map_zdtor(void *mem, int size, void *arg)
246{
247	vm_map_t map;
248
249	map = (vm_map_t)mem;
250	KASSERT(map->nentries == 0,
251	    ("map %p nentries == %d on free.",
252	    map, map->nentries));
253	KASSERT(map->size == 0,
254	    ("map %p size == %lu on free.",
255	    map, (unsigned long)map->size));
256}
257#endif	/* INVARIANTS */
258
259/*
260 * Allocate a vmspace structure, including a vm_map and pmap,
261 * and initialize those structures.  The refcnt is set to 1.
262 *
263 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
264 */
265struct vmspace *
266vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
267{
268	struct vmspace *vm;
269
270	vm = uma_zalloc(vmspace_zone, M_WAITOK);
271
272	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
273
274	if (pinit == NULL)
275		pinit = &pmap_pinit;
276
277	if (!pinit(vmspace_pmap(vm))) {
278		uma_zfree(vmspace_zone, vm);
279		return (NULL);
280	}
281	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
282	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
283	vm->vm_refcnt = 1;
284	vm->vm_shm = NULL;
285	vm->vm_swrss = 0;
286	vm->vm_tsize = 0;
287	vm->vm_dsize = 0;
288	vm->vm_ssize = 0;
289	vm->vm_taddr = 0;
290	vm->vm_daddr = 0;
291	vm->vm_maxsaddr = 0;
292	return (vm);
293}
294
295static void
296vmspace_container_reset(struct proc *p)
297{
298
299#ifdef RACCT
300	PROC_LOCK(p);
301	racct_set(p, RACCT_DATA, 0);
302	racct_set(p, RACCT_STACK, 0);
303	racct_set(p, RACCT_RSS, 0);
304	racct_set(p, RACCT_MEMLOCK, 0);
305	racct_set(p, RACCT_VMEM, 0);
306	PROC_UNLOCK(p);
307#endif
308}
309
310static inline void
311vmspace_dofree(struct vmspace *vm)
312{
313
314	CTR1(KTR_VM, "vmspace_free: %p", vm);
315
316	/*
317	 * Make sure any SysV shm is freed, it might not have been in
318	 * exit1().
319	 */
320	shmexit(vm);
321
322	/*
323	 * Lock the map, to wait out all other references to it.
324	 * Delete all of the mappings and pages they hold, then call
325	 * the pmap module to reclaim anything left.
326	 */
327	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
328	    vm->vm_map.max_offset);
329
330	pmap_release(vmspace_pmap(vm));
331	vm->vm_map.pmap = NULL;
332	uma_zfree(vmspace_zone, vm);
333}
334
335void
336vmspace_free(struct vmspace *vm)
337{
338
339	if (vm->vm_refcnt == 0)
340		panic("vmspace_free: attempt to free already freed vmspace");
341
342	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
343		vmspace_dofree(vm);
344}
345
346void
347vmspace_exitfree(struct proc *p)
348{
349	struct vmspace *vm;
350
351	PROC_VMSPACE_LOCK(p);
352	vm = p->p_vmspace;
353	p->p_vmspace = NULL;
354	PROC_VMSPACE_UNLOCK(p);
355	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
356	vmspace_free(vm);
357}
358
359void
360vmspace_exit(struct thread *td)
361{
362	int refcnt;
363	struct vmspace *vm;
364	struct proc *p;
365
366	/*
367	 * Release user portion of address space.
368	 * This releases references to vnodes,
369	 * which could cause I/O if the file has been unlinked.
370	 * Need to do this early enough that we can still sleep.
371	 *
372	 * The last exiting process to reach this point releases as
373	 * much of the environment as it can. vmspace_dofree() is the
374	 * slower fallback in case another process had a temporary
375	 * reference to the vmspace.
376	 */
377
378	p = td->td_proc;
379	vm = p->p_vmspace;
380	atomic_add_int(&vmspace0.vm_refcnt, 1);
381	do {
382		refcnt = vm->vm_refcnt;
383		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
384			/* Switch now since other proc might free vmspace */
385			PROC_VMSPACE_LOCK(p);
386			p->p_vmspace = &vmspace0;
387			PROC_VMSPACE_UNLOCK(p);
388			pmap_activate(td);
389		}
390	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
391	if (refcnt == 1) {
392		if (p->p_vmspace != vm) {
393			/* vmspace not yet freed, switch back */
394			PROC_VMSPACE_LOCK(p);
395			p->p_vmspace = vm;
396			PROC_VMSPACE_UNLOCK(p);
397			pmap_activate(td);
398		}
399		pmap_remove_pages(vmspace_pmap(vm));
400		/* Switch now since this proc will free vmspace */
401		PROC_VMSPACE_LOCK(p);
402		p->p_vmspace = &vmspace0;
403		PROC_VMSPACE_UNLOCK(p);
404		pmap_activate(td);
405		vmspace_dofree(vm);
406	}
407	vmspace_container_reset(p);
408}
409
410/* Acquire reference to vmspace owned by another process. */
411
412struct vmspace *
413vmspace_acquire_ref(struct proc *p)
414{
415	struct vmspace *vm;
416	int refcnt;
417
418	PROC_VMSPACE_LOCK(p);
419	vm = p->p_vmspace;
420	if (vm == NULL) {
421		PROC_VMSPACE_UNLOCK(p);
422		return (NULL);
423	}
424	do {
425		refcnt = vm->vm_refcnt;
426		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
427			PROC_VMSPACE_UNLOCK(p);
428			return (NULL);
429		}
430	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
431	if (vm != p->p_vmspace) {
432		PROC_VMSPACE_UNLOCK(p);
433		vmspace_free(vm);
434		return (NULL);
435	}
436	PROC_VMSPACE_UNLOCK(p);
437	return (vm);
438}
439
440void
441_vm_map_lock(vm_map_t map, const char *file, int line)
442{
443
444	if (map->system_map)
445		mtx_lock_flags_(&map->system_mtx, 0, file, line);
446	else
447		sx_xlock_(&map->lock, file, line);
448	map->timestamp++;
449}
450
451static void
452vm_map_process_deferred(void)
453{
454	struct thread *td;
455	vm_map_entry_t entry, next;
456	vm_object_t object;
457
458	td = curthread;
459	entry = td->td_map_def_user;
460	td->td_map_def_user = NULL;
461	while (entry != NULL) {
462		next = entry->next;
463		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
464			/*
465			 * Decrement the object's writemappings and
466			 * possibly the vnode's v_writecount.
467			 */
468			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
469			    ("Submap with writecount"));
470			object = entry->object.vm_object;
471			KASSERT(object != NULL, ("No object for writecount"));
472			vnode_pager_release_writecount(object, entry->start,
473			    entry->end);
474		}
475		vm_map_entry_deallocate(entry, FALSE);
476		entry = next;
477	}
478}
479
480void
481_vm_map_unlock(vm_map_t map, const char *file, int line)
482{
483
484	if (map->system_map)
485		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
486	else {
487		sx_xunlock_(&map->lock, file, line);
488		vm_map_process_deferred();
489	}
490}
491
492void
493_vm_map_lock_read(vm_map_t map, const char *file, int line)
494{
495
496	if (map->system_map)
497		mtx_lock_flags_(&map->system_mtx, 0, file, line);
498	else
499		sx_slock_(&map->lock, file, line);
500}
501
502void
503_vm_map_unlock_read(vm_map_t map, const char *file, int line)
504{
505
506	if (map->system_map)
507		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508	else {
509		sx_sunlock_(&map->lock, file, line);
510		vm_map_process_deferred();
511	}
512}
513
514int
515_vm_map_trylock(vm_map_t map, const char *file, int line)
516{
517	int error;
518
519	error = map->system_map ?
520	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
521	    !sx_try_xlock_(&map->lock, file, line);
522	if (error == 0)
523		map->timestamp++;
524	return (error == 0);
525}
526
527int
528_vm_map_trylock_read(vm_map_t map, const char *file, int line)
529{
530	int error;
531
532	error = map->system_map ?
533	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
534	    !sx_try_slock_(&map->lock, file, line);
535	return (error == 0);
536}
537
538/*
539 *	_vm_map_lock_upgrade:	[ internal use only ]
540 *
541 *	Tries to upgrade a read (shared) lock on the specified map to a write
542 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
543 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
544 *	returned without a read or write lock held.
545 *
546 *	Requires that the map be read locked.
547 */
548int
549_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
550{
551	unsigned int last_timestamp;
552
553	if (map->system_map) {
554		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
555	} else {
556		if (!sx_try_upgrade_(&map->lock, file, line)) {
557			last_timestamp = map->timestamp;
558			sx_sunlock_(&map->lock, file, line);
559			vm_map_process_deferred();
560			/*
561			 * If the map's timestamp does not change while the
562			 * map is unlocked, then the upgrade succeeds.
563			 */
564			sx_xlock_(&map->lock, file, line);
565			if (last_timestamp != map->timestamp) {
566				sx_xunlock_(&map->lock, file, line);
567				return (1);
568			}
569		}
570	}
571	map->timestamp++;
572	return (0);
573}
574
575void
576_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
577{
578
579	if (map->system_map) {
580		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
581	} else
582		sx_downgrade_(&map->lock, file, line);
583}
584
585/*
586 *	vm_map_locked:
587 *
588 *	Returns a non-zero value if the caller holds a write (exclusive) lock
589 *	on the specified map and the value "0" otherwise.
590 */
591int
592vm_map_locked(vm_map_t map)
593{
594
595	if (map->system_map)
596		return (mtx_owned(&map->system_mtx));
597	else
598		return (sx_xlocked(&map->lock));
599}
600
601#ifdef INVARIANTS
602static void
603_vm_map_assert_locked(vm_map_t map, const char *file, int line)
604{
605
606	if (map->system_map)
607		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
608	else
609		sx_assert_(&map->lock, SA_XLOCKED, file, line);
610}
611
612#define	VM_MAP_ASSERT_LOCKED(map) \
613    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
614#else
615#define	VM_MAP_ASSERT_LOCKED(map)
616#endif
617
618/*
619 *	_vm_map_unlock_and_wait:
620 *
621 *	Atomically releases the lock on the specified map and puts the calling
622 *	thread to sleep.  The calling thread will remain asleep until either
623 *	vm_map_wakeup() is performed on the map or the specified timeout is
624 *	exceeded.
625 *
626 *	WARNING!  This function does not perform deferred deallocations of
627 *	objects and map	entries.  Therefore, the calling thread is expected to
628 *	reacquire the map lock after reawakening and later perform an ordinary
629 *	unlock operation, such as vm_map_unlock(), before completing its
630 *	operation on the map.
631 */
632int
633_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
634{
635
636	mtx_lock(&map_sleep_mtx);
637	if (map->system_map)
638		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
639	else
640		sx_xunlock_(&map->lock, file, line);
641	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
642	    timo));
643}
644
645/*
646 *	vm_map_wakeup:
647 *
648 *	Awaken any threads that have slept on the map using
649 *	vm_map_unlock_and_wait().
650 */
651void
652vm_map_wakeup(vm_map_t map)
653{
654
655	/*
656	 * Acquire and release map_sleep_mtx to prevent a wakeup()
657	 * from being performed (and lost) between the map unlock
658	 * and the msleep() in _vm_map_unlock_and_wait().
659	 */
660	mtx_lock(&map_sleep_mtx);
661	mtx_unlock(&map_sleep_mtx);
662	wakeup(&map->root);
663}
664
665void
666vm_map_busy(vm_map_t map)
667{
668
669	VM_MAP_ASSERT_LOCKED(map);
670	map->busy++;
671}
672
673void
674vm_map_unbusy(vm_map_t map)
675{
676
677	VM_MAP_ASSERT_LOCKED(map);
678	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
679	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
680		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
681		wakeup(&map->busy);
682	}
683}
684
685void
686vm_map_wait_busy(vm_map_t map)
687{
688
689	VM_MAP_ASSERT_LOCKED(map);
690	while (map->busy) {
691		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
692		if (map->system_map)
693			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
694		else
695			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
696	}
697	map->timestamp++;
698}
699
700long
701vmspace_resident_count(struct vmspace *vmspace)
702{
703	return pmap_resident_count(vmspace_pmap(vmspace));
704}
705
706/*
707 *	vm_map_create:
708 *
709 *	Creates and returns a new empty VM map with
710 *	the given physical map structure, and having
711 *	the given lower and upper address bounds.
712 */
713vm_map_t
714vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
715{
716	vm_map_t result;
717
718	result = uma_zalloc(mapzone, M_WAITOK);
719	CTR1(KTR_VM, "vm_map_create: %p", result);
720	_vm_map_init(result, pmap, min, max);
721	return (result);
722}
723
724/*
725 * Initialize an existing vm_map structure
726 * such as that in the vmspace structure.
727 */
728static void
729_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
730{
731
732	map->header.next = map->header.prev = &map->header;
733	map->needs_wakeup = FALSE;
734	map->system_map = 0;
735	map->pmap = pmap;
736	map->min_offset = min;
737	map->max_offset = max;
738	map->flags = 0;
739	map->root = NULL;
740	map->timestamp = 0;
741	map->busy = 0;
742}
743
744void
745vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
746{
747
748	_vm_map_init(map, pmap, min, max);
749	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
750	sx_init(&map->lock, "user map");
751}
752
753/*
754 *	vm_map_entry_dispose:	[ internal use only ]
755 *
756 *	Inverse of vm_map_entry_create.
757 */
758static void
759vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
760{
761	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
762}
763
764/*
765 *	vm_map_entry_create:	[ internal use only ]
766 *
767 *	Allocates a VM map entry for insertion.
768 *	No entry fields are filled in.
769 */
770static vm_map_entry_t
771vm_map_entry_create(vm_map_t map)
772{
773	vm_map_entry_t new_entry;
774
775	if (map->system_map)
776		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
777	else
778		new_entry = uma_zalloc(mapentzone, M_WAITOK);
779	if (new_entry == NULL)
780		panic("vm_map_entry_create: kernel resources exhausted");
781	return (new_entry);
782}
783
784/*
785 *	vm_map_entry_set_behavior:
786 *
787 *	Set the expected access behavior, either normal, random, or
788 *	sequential.
789 */
790static inline void
791vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
792{
793	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
794	    (behavior & MAP_ENTRY_BEHAV_MASK);
795}
796
797/*
798 *	vm_map_entry_set_max_free:
799 *
800 *	Set the max_free field in a vm_map_entry.
801 */
802static inline void
803vm_map_entry_set_max_free(vm_map_entry_t entry)
804{
805
806	entry->max_free = entry->adj_free;
807	if (entry->left != NULL && entry->left->max_free > entry->max_free)
808		entry->max_free = entry->left->max_free;
809	if (entry->right != NULL && entry->right->max_free > entry->max_free)
810		entry->max_free = entry->right->max_free;
811}
812
813/*
814 *	vm_map_entry_splay:
815 *
816 *	The Sleator and Tarjan top-down splay algorithm with the
817 *	following variation.  Max_free must be computed bottom-up, so
818 *	on the downward pass, maintain the left and right spines in
819 *	reverse order.  Then, make a second pass up each side to fix
820 *	the pointers and compute max_free.  The time bound is O(log n)
821 *	amortized.
822 *
823 *	The new root is the vm_map_entry containing "addr", or else an
824 *	adjacent entry (lower or higher) if addr is not in the tree.
825 *
826 *	The map must be locked, and leaves it so.
827 *
828 *	Returns: the new root.
829 */
830static vm_map_entry_t
831vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
832{
833	vm_map_entry_t llist, rlist;
834	vm_map_entry_t ltree, rtree;
835	vm_map_entry_t y;
836
837	/* Special case of empty tree. */
838	if (root == NULL)
839		return (root);
840
841	/*
842	 * Pass One: Splay down the tree until we find addr or a NULL
843	 * pointer where addr would go.  llist and rlist are the two
844	 * sides in reverse order (bottom-up), with llist linked by
845	 * the right pointer and rlist linked by the left pointer in
846	 * the vm_map_entry.  Wait until Pass Two to set max_free on
847	 * the two spines.
848	 */
849	llist = NULL;
850	rlist = NULL;
851	for (;;) {
852		/* root is never NULL in here. */
853		if (addr < root->start) {
854			y = root->left;
855			if (y == NULL)
856				break;
857			if (addr < y->start && y->left != NULL) {
858				/* Rotate right and put y on rlist. */
859				root->left = y->right;
860				y->right = root;
861				vm_map_entry_set_max_free(root);
862				root = y->left;
863				y->left = rlist;
864				rlist = y;
865			} else {
866				/* Put root on rlist. */
867				root->left = rlist;
868				rlist = root;
869				root = y;
870			}
871		} else if (addr >= root->end) {
872			y = root->right;
873			if (y == NULL)
874				break;
875			if (addr >= y->end && y->right != NULL) {
876				/* Rotate left and put y on llist. */
877				root->right = y->left;
878				y->left = root;
879				vm_map_entry_set_max_free(root);
880				root = y->right;
881				y->right = llist;
882				llist = y;
883			} else {
884				/* Put root on llist. */
885				root->right = llist;
886				llist = root;
887				root = y;
888			}
889		} else
890			break;
891	}
892
893	/*
894	 * Pass Two: Walk back up the two spines, flip the pointers
895	 * and set max_free.  The subtrees of the root go at the
896	 * bottom of llist and rlist.
897	 */
898	ltree = root->left;
899	while (llist != NULL) {
900		y = llist->right;
901		llist->right = ltree;
902		vm_map_entry_set_max_free(llist);
903		ltree = llist;
904		llist = y;
905	}
906	rtree = root->right;
907	while (rlist != NULL) {
908		y = rlist->left;
909		rlist->left = rtree;
910		vm_map_entry_set_max_free(rlist);
911		rtree = rlist;
912		rlist = y;
913	}
914
915	/*
916	 * Final assembly: add ltree and rtree as subtrees of root.
917	 */
918	root->left = ltree;
919	root->right = rtree;
920	vm_map_entry_set_max_free(root);
921
922	return (root);
923}
924
925/*
926 *	vm_map_entry_{un,}link:
927 *
928 *	Insert/remove entries from maps.
929 */
930static void
931vm_map_entry_link(vm_map_t map,
932		  vm_map_entry_t after_where,
933		  vm_map_entry_t entry)
934{
935
936	CTR4(KTR_VM,
937	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
938	    map->nentries, entry, after_where);
939	VM_MAP_ASSERT_LOCKED(map);
940	map->nentries++;
941	entry->prev = after_where;
942	entry->next = after_where->next;
943	entry->next->prev = entry;
944	after_where->next = entry;
945
946	if (after_where != &map->header) {
947		if (after_where != map->root)
948			vm_map_entry_splay(after_where->start, map->root);
949		entry->right = after_where->right;
950		entry->left = after_where;
951		after_where->right = NULL;
952		after_where->adj_free = entry->start - after_where->end;
953		vm_map_entry_set_max_free(after_where);
954	} else {
955		entry->right = map->root;
956		entry->left = NULL;
957	}
958	entry->adj_free = (entry->next == &map->header ? map->max_offset :
959	    entry->next->start) - entry->end;
960	vm_map_entry_set_max_free(entry);
961	map->root = entry;
962}
963
964static void
965vm_map_entry_unlink(vm_map_t map,
966		    vm_map_entry_t entry)
967{
968	vm_map_entry_t next, prev, root;
969
970	VM_MAP_ASSERT_LOCKED(map);
971	if (entry != map->root)
972		vm_map_entry_splay(entry->start, map->root);
973	if (entry->left == NULL)
974		root = entry->right;
975	else {
976		root = vm_map_entry_splay(entry->start, entry->left);
977		root->right = entry->right;
978		root->adj_free = (entry->next == &map->header ? map->max_offset :
979		    entry->next->start) - root->end;
980		vm_map_entry_set_max_free(root);
981	}
982	map->root = root;
983
984	prev = entry->prev;
985	next = entry->next;
986	next->prev = prev;
987	prev->next = next;
988	map->nentries--;
989	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
990	    map->nentries, entry);
991}
992
993/*
994 *	vm_map_entry_resize_free:
995 *
996 *	Recompute the amount of free space following a vm_map_entry
997 *	and propagate that value up the tree.  Call this function after
998 *	resizing a map entry in-place, that is, without a call to
999 *	vm_map_entry_link() or _unlink().
1000 *
1001 *	The map must be locked, and leaves it so.
1002 */
1003static void
1004vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1005{
1006
1007	/*
1008	 * Using splay trees without parent pointers, propagating
1009	 * max_free up the tree is done by moving the entry to the
1010	 * root and making the change there.
1011	 */
1012	if (entry != map->root)
1013		map->root = vm_map_entry_splay(entry->start, map->root);
1014
1015	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1016	    entry->next->start) - entry->end;
1017	vm_map_entry_set_max_free(entry);
1018}
1019
1020/*
1021 *	vm_map_lookup_entry:	[ internal use only ]
1022 *
1023 *	Finds the map entry containing (or
1024 *	immediately preceding) the specified address
1025 *	in the given map; the entry is returned
1026 *	in the "entry" parameter.  The boolean
1027 *	result indicates whether the address is
1028 *	actually contained in the map.
1029 */
1030boolean_t
1031vm_map_lookup_entry(
1032	vm_map_t map,
1033	vm_offset_t address,
1034	vm_map_entry_t *entry)	/* OUT */
1035{
1036	vm_map_entry_t cur;
1037	boolean_t locked;
1038
1039	/*
1040	 * If the map is empty, then the map entry immediately preceding
1041	 * "address" is the map's header.
1042	 */
1043	cur = map->root;
1044	if (cur == NULL)
1045		*entry = &map->header;
1046	else if (address >= cur->start && cur->end > address) {
1047		*entry = cur;
1048		return (TRUE);
1049	} else if ((locked = vm_map_locked(map)) ||
1050	    sx_try_upgrade(&map->lock)) {
1051		/*
1052		 * Splay requires a write lock on the map.  However, it only
1053		 * restructures the binary search tree; it does not otherwise
1054		 * change the map.  Thus, the map's timestamp need not change
1055		 * on a temporary upgrade.
1056		 */
1057		map->root = cur = vm_map_entry_splay(address, cur);
1058		if (!locked)
1059			sx_downgrade(&map->lock);
1060
1061		/*
1062		 * If "address" is contained within a map entry, the new root
1063		 * is that map entry.  Otherwise, the new root is a map entry
1064		 * immediately before or after "address".
1065		 */
1066		if (address >= cur->start) {
1067			*entry = cur;
1068			if (cur->end > address)
1069				return (TRUE);
1070		} else
1071			*entry = cur->prev;
1072	} else
1073		/*
1074		 * Since the map is only locked for read access, perform a
1075		 * standard binary search tree lookup for "address".
1076		 */
1077		for (;;) {
1078			if (address < cur->start) {
1079				if (cur->left == NULL) {
1080					*entry = cur->prev;
1081					break;
1082				}
1083				cur = cur->left;
1084			} else if (cur->end > address) {
1085				*entry = cur;
1086				return (TRUE);
1087			} else {
1088				if (cur->right == NULL) {
1089					*entry = cur;
1090					break;
1091				}
1092				cur = cur->right;
1093			}
1094		}
1095	return (FALSE);
1096}
1097
1098/*
1099 *	vm_map_insert:
1100 *
1101 *	Inserts the given whole VM object into the target
1102 *	map at the specified address range.  The object's
1103 *	size should match that of the address range.
1104 *
1105 *	Requires that the map be locked, and leaves it so.
1106 *
1107 *	If object is non-NULL, ref count must be bumped by caller
1108 *	prior to making call to account for the new entry.
1109 */
1110int
1111vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1112	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1113	      int cow)
1114{
1115	vm_map_entry_t new_entry;
1116	vm_map_entry_t prev_entry;
1117	vm_map_entry_t temp_entry;
1118	vm_eflags_t protoeflags;
1119	struct ucred *cred;
1120	vm_inherit_t inheritance;
1121	boolean_t charge_prev_obj;
1122
1123	VM_MAP_ASSERT_LOCKED(map);
1124
1125	/*
1126	 * Check that the start and end points are not bogus.
1127	 */
1128	if ((start < map->min_offset) || (end > map->max_offset) ||
1129	    (start >= end))
1130		return (KERN_INVALID_ADDRESS);
1131
1132	/*
1133	 * Find the entry prior to the proposed starting address; if it's part
1134	 * of an existing entry, this range is bogus.
1135	 */
1136	if (vm_map_lookup_entry(map, start, &temp_entry))
1137		return (KERN_NO_SPACE);
1138
1139	prev_entry = temp_entry;
1140
1141	/*
1142	 * Assert that the next entry doesn't overlap the end point.
1143	 */
1144	if ((prev_entry->next != &map->header) &&
1145	    (prev_entry->next->start < end))
1146		return (KERN_NO_SPACE);
1147
1148	protoeflags = 0;
1149	charge_prev_obj = FALSE;
1150
1151	if (cow & MAP_COPY_ON_WRITE)
1152		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1153
1154	if (cow & MAP_NOFAULT) {
1155		protoeflags |= MAP_ENTRY_NOFAULT;
1156
1157		KASSERT(object == NULL,
1158			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1159	}
1160	if (cow & MAP_DISABLE_SYNCER)
1161		protoeflags |= MAP_ENTRY_NOSYNC;
1162	if (cow & MAP_DISABLE_COREDUMP)
1163		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1164	if (cow & MAP_VN_WRITECOUNT)
1165		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1166	if (cow & MAP_INHERIT_SHARE)
1167		inheritance = VM_INHERIT_SHARE;
1168	else
1169		inheritance = VM_INHERIT_DEFAULT;
1170
1171	cred = NULL;
1172	KASSERT((object != kmem_object && object != kernel_object) ||
1173	    ((object == kmem_object || object == kernel_object) &&
1174		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1175	    ("kmem or kernel object and cow"));
1176	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1177		goto charged;
1178	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1179	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1180		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1181			return (KERN_RESOURCE_SHORTAGE);
1182		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1183		    object->cred == NULL,
1184		    ("OVERCOMMIT: vm_map_insert o %p", object));
1185		cred = curthread->td_ucred;
1186		crhold(cred);
1187		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1188			charge_prev_obj = TRUE;
1189	}
1190
1191charged:
1192	/* Expand the kernel pmap, if necessary. */
1193	if (map == kernel_map && end > kernel_vm_end)
1194		pmap_growkernel(end);
1195	if (object != NULL) {
1196		/*
1197		 * OBJ_ONEMAPPING must be cleared unless this mapping
1198		 * is trivially proven to be the only mapping for any
1199		 * of the object's pages.  (Object granularity
1200		 * reference counting is insufficient to recognize
1201		 * aliases with precision.)
1202		 */
1203		VM_OBJECT_WLOCK(object);
1204		if (object->ref_count > 1 || object->shadow_count != 0)
1205			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1206		VM_OBJECT_WUNLOCK(object);
1207	}
1208	else if ((prev_entry != &map->header) &&
1209		 (prev_entry->eflags == protoeflags) &&
1210		 (prev_entry->end == start) &&
1211		 (prev_entry->wired_count == 0) &&
1212		 (prev_entry->cred == cred ||
1213		  (prev_entry->object.vm_object != NULL &&
1214		   (prev_entry->object.vm_object->cred == cred))) &&
1215		   vm_object_coalesce(prev_entry->object.vm_object,
1216		       prev_entry->offset,
1217		       (vm_size_t)(prev_entry->end - prev_entry->start),
1218		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1219		/*
1220		 * We were able to extend the object.  Determine if we
1221		 * can extend the previous map entry to include the
1222		 * new range as well.
1223		 */
1224		if ((prev_entry->inheritance == inheritance) &&
1225		    (prev_entry->protection == prot) &&
1226		    (prev_entry->max_protection == max)) {
1227			map->size += (end - prev_entry->end);
1228			prev_entry->end = end;
1229			vm_map_entry_resize_free(map, prev_entry);
1230			vm_map_simplify_entry(map, prev_entry);
1231			if (cred != NULL)
1232				crfree(cred);
1233			return (KERN_SUCCESS);
1234		}
1235
1236		/*
1237		 * If we can extend the object but cannot extend the
1238		 * map entry, we have to create a new map entry.  We
1239		 * must bump the ref count on the extended object to
1240		 * account for it.  object may be NULL.
1241		 */
1242		object = prev_entry->object.vm_object;
1243		offset = prev_entry->offset +
1244			(prev_entry->end - prev_entry->start);
1245		vm_object_reference(object);
1246		if (cred != NULL && object != NULL && object->cred != NULL &&
1247		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1248			/* Object already accounts for this uid. */
1249			crfree(cred);
1250			cred = NULL;
1251		}
1252	}
1253
1254	/*
1255	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1256	 * in things like the buffer map where we manage kva but do not manage
1257	 * backing objects.
1258	 */
1259
1260	/*
1261	 * Create a new entry
1262	 */
1263	new_entry = vm_map_entry_create(map);
1264	new_entry->start = start;
1265	new_entry->end = end;
1266	new_entry->cred = NULL;
1267
1268	new_entry->eflags = protoeflags;
1269	new_entry->object.vm_object = object;
1270	new_entry->offset = offset;
1271	new_entry->avail_ssize = 0;
1272
1273	new_entry->inheritance = inheritance;
1274	new_entry->protection = prot;
1275	new_entry->max_protection = max;
1276	new_entry->wired_count = 0;
1277	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1278	new_entry->next_read = OFF_TO_IDX(offset);
1279
1280	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1281	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1282	new_entry->cred = cred;
1283
1284	/*
1285	 * Insert the new entry into the list
1286	 */
1287	vm_map_entry_link(map, prev_entry, new_entry);
1288	map->size += new_entry->end - new_entry->start;
1289
1290	/*
1291	 * It may be possible to merge the new entry with the next and/or
1292	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1293	 * panic can result from merging such entries.
1294	 */
1295	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1296		vm_map_simplify_entry(map, new_entry);
1297
1298	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1299		vm_map_pmap_enter(map, start, prot,
1300				    object, OFF_TO_IDX(offset), end - start,
1301				    cow & MAP_PREFAULT_PARTIAL);
1302	}
1303
1304	return (KERN_SUCCESS);
1305}
1306
1307/*
1308 *	vm_map_findspace:
1309 *
1310 *	Find the first fit (lowest VM address) for "length" free bytes
1311 *	beginning at address >= start in the given map.
1312 *
1313 *	In a vm_map_entry, "adj_free" is the amount of free space
1314 *	adjacent (higher address) to this entry, and "max_free" is the
1315 *	maximum amount of contiguous free space in its subtree.  This
1316 *	allows finding a free region in one path down the tree, so
1317 *	O(log n) amortized with splay trees.
1318 *
1319 *	The map must be locked, and leaves it so.
1320 *
1321 *	Returns: 0 on success, and starting address in *addr,
1322 *		 1 if insufficient space.
1323 */
1324int
1325vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1326    vm_offset_t *addr)	/* OUT */
1327{
1328	vm_map_entry_t entry;
1329	vm_offset_t st;
1330
1331	/*
1332	 * Request must fit within min/max VM address and must avoid
1333	 * address wrap.
1334	 */
1335	if (start < map->min_offset)
1336		start = map->min_offset;
1337	if (start + length > map->max_offset || start + length < start)
1338		return (1);
1339
1340	/* Empty tree means wide open address space. */
1341	if (map->root == NULL) {
1342		*addr = start;
1343		return (0);
1344	}
1345
1346	/*
1347	 * After splay, if start comes before root node, then there
1348	 * must be a gap from start to the root.
1349	 */
1350	map->root = vm_map_entry_splay(start, map->root);
1351	if (start + length <= map->root->start) {
1352		*addr = start;
1353		return (0);
1354	}
1355
1356	/*
1357	 * Root is the last node that might begin its gap before
1358	 * start, and this is the last comparison where address
1359	 * wrap might be a problem.
1360	 */
1361	st = (start > map->root->end) ? start : map->root->end;
1362	if (length <= map->root->end + map->root->adj_free - st) {
1363		*addr = st;
1364		return (0);
1365	}
1366
1367	/* With max_free, can immediately tell if no solution. */
1368	entry = map->root->right;
1369	if (entry == NULL || length > entry->max_free)
1370		return (1);
1371
1372	/*
1373	 * Search the right subtree in the order: left subtree, root,
1374	 * right subtree (first fit).  The previous splay implies that
1375	 * all regions in the right subtree have addresses > start.
1376	 */
1377	while (entry != NULL) {
1378		if (entry->left != NULL && entry->left->max_free >= length)
1379			entry = entry->left;
1380		else if (entry->adj_free >= length) {
1381			*addr = entry->end;
1382			return (0);
1383		} else
1384			entry = entry->right;
1385	}
1386
1387	/* Can't get here, so panic if we do. */
1388	panic("vm_map_findspace: max_free corrupt");
1389}
1390
1391int
1392vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1393    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1394    vm_prot_t max, int cow)
1395{
1396	vm_offset_t end;
1397	int result;
1398
1399	end = start + length;
1400	vm_map_lock(map);
1401	VM_MAP_RANGE_CHECK(map, start, end);
1402	(void) vm_map_delete(map, start, end);
1403	result = vm_map_insert(map, object, offset, start, end, prot,
1404	    max, cow);
1405	vm_map_unlock(map);
1406	return (result);
1407}
1408
1409/*
1410 *	vm_map_find finds an unallocated region in the target address
1411 *	map with the given length.  The search is defined to be
1412 *	first-fit from the specified address; the region found is
1413 *	returned in the same parameter.
1414 *
1415 *	If object is non-NULL, ref count must be bumped by caller
1416 *	prior to making call to account for the new entry.
1417 */
1418int
1419vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1420	    vm_offset_t *addr,	/* IN/OUT */
1421	    vm_size_t length, vm_offset_t max_addr, int find_space,
1422	    vm_prot_t prot, vm_prot_t max, int cow)
1423{
1424	vm_offset_t alignment, initial_addr, start;
1425	int result;
1426
1427	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1428	    (object->flags & OBJ_COLORED) == 0))
1429		find_space = VMFS_ANY_SPACE;
1430	if (find_space >> 8 != 0) {
1431		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1432		alignment = (vm_offset_t)1 << (find_space >> 8);
1433	} else
1434		alignment = 0;
1435	initial_addr = *addr;
1436again:
1437	start = initial_addr;
1438	vm_map_lock(map);
1439	do {
1440		if (find_space != VMFS_NO_SPACE) {
1441			if (vm_map_findspace(map, start, length, addr) ||
1442			    (max_addr != 0 && *addr + length > max_addr)) {
1443				vm_map_unlock(map);
1444				if (find_space == VMFS_OPTIMAL_SPACE) {
1445					find_space = VMFS_ANY_SPACE;
1446					goto again;
1447				}
1448				return (KERN_NO_SPACE);
1449			}
1450			switch (find_space) {
1451			case VMFS_SUPER_SPACE:
1452			case VMFS_OPTIMAL_SPACE:
1453				pmap_align_superpage(object, offset, addr,
1454				    length);
1455				break;
1456			case VMFS_ANY_SPACE:
1457				break;
1458			default:
1459				if ((*addr & (alignment - 1)) != 0) {
1460					*addr &= ~(alignment - 1);
1461					*addr += alignment;
1462				}
1463				break;
1464			}
1465
1466			start = *addr;
1467		}
1468		result = vm_map_insert(map, object, offset, start, start +
1469		    length, prot, max, cow);
1470	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1471	    find_space != VMFS_ANY_SPACE);
1472	vm_map_unlock(map);
1473	return (result);
1474}
1475
1476/*
1477 *	vm_map_simplify_entry:
1478 *
1479 *	Simplify the given map entry by merging with either neighbor.  This
1480 *	routine also has the ability to merge with both neighbors.
1481 *
1482 *	The map must be locked.
1483 *
1484 *	This routine guarentees that the passed entry remains valid (though
1485 *	possibly extended).  When merging, this routine may delete one or
1486 *	both neighbors.
1487 */
1488void
1489vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1490{
1491	vm_map_entry_t next, prev;
1492	vm_size_t prevsize, esize;
1493
1494	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1495		return;
1496
1497	prev = entry->prev;
1498	if (prev != &map->header) {
1499		prevsize = prev->end - prev->start;
1500		if ( (prev->end == entry->start) &&
1501		     (prev->object.vm_object == entry->object.vm_object) &&
1502		     (!prev->object.vm_object ||
1503			(prev->offset + prevsize == entry->offset)) &&
1504		     (prev->eflags == entry->eflags) &&
1505		     (prev->protection == entry->protection) &&
1506		     (prev->max_protection == entry->max_protection) &&
1507		     (prev->inheritance == entry->inheritance) &&
1508		     (prev->wired_count == entry->wired_count) &&
1509		     (prev->cred == entry->cred)) {
1510			vm_map_entry_unlink(map, prev);
1511			entry->start = prev->start;
1512			entry->offset = prev->offset;
1513			if (entry->prev != &map->header)
1514				vm_map_entry_resize_free(map, entry->prev);
1515
1516			/*
1517			 * If the backing object is a vnode object,
1518			 * vm_object_deallocate() calls vrele().
1519			 * However, vrele() does not lock the vnode
1520			 * because the vnode has additional
1521			 * references.  Thus, the map lock can be kept
1522			 * without causing a lock-order reversal with
1523			 * the vnode lock.
1524			 *
1525			 * Since we count the number of virtual page
1526			 * mappings in object->un_pager.vnp.writemappings,
1527			 * the writemappings value should not be adjusted
1528			 * when the entry is disposed of.
1529			 */
1530			if (prev->object.vm_object)
1531				vm_object_deallocate(prev->object.vm_object);
1532			if (prev->cred != NULL)
1533				crfree(prev->cred);
1534			vm_map_entry_dispose(map, prev);
1535		}
1536	}
1537
1538	next = entry->next;
1539	if (next != &map->header) {
1540		esize = entry->end - entry->start;
1541		if ((entry->end == next->start) &&
1542		    (next->object.vm_object == entry->object.vm_object) &&
1543		     (!entry->object.vm_object ||
1544			(entry->offset + esize == next->offset)) &&
1545		    (next->eflags == entry->eflags) &&
1546		    (next->protection == entry->protection) &&
1547		    (next->max_protection == entry->max_protection) &&
1548		    (next->inheritance == entry->inheritance) &&
1549		    (next->wired_count == entry->wired_count) &&
1550		    (next->cred == entry->cred)) {
1551			vm_map_entry_unlink(map, next);
1552			entry->end = next->end;
1553			vm_map_entry_resize_free(map, entry);
1554
1555			/*
1556			 * See comment above.
1557			 */
1558			if (next->object.vm_object)
1559				vm_object_deallocate(next->object.vm_object);
1560			if (next->cred != NULL)
1561				crfree(next->cred);
1562			vm_map_entry_dispose(map, next);
1563		}
1564	}
1565}
1566/*
1567 *	vm_map_clip_start:	[ internal use only ]
1568 *
1569 *	Asserts that the given entry begins at or after
1570 *	the specified address; if necessary,
1571 *	it splits the entry into two.
1572 */
1573#define vm_map_clip_start(map, entry, startaddr) \
1574{ \
1575	if (startaddr > entry->start) \
1576		_vm_map_clip_start(map, entry, startaddr); \
1577}
1578
1579/*
1580 *	This routine is called only when it is known that
1581 *	the entry must be split.
1582 */
1583static void
1584_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1585{
1586	vm_map_entry_t new_entry;
1587
1588	VM_MAP_ASSERT_LOCKED(map);
1589
1590	/*
1591	 * Split off the front portion -- note that we must insert the new
1592	 * entry BEFORE this one, so that this entry has the specified
1593	 * starting address.
1594	 */
1595	vm_map_simplify_entry(map, entry);
1596
1597	/*
1598	 * If there is no object backing this entry, we might as well create
1599	 * one now.  If we defer it, an object can get created after the map
1600	 * is clipped, and individual objects will be created for the split-up
1601	 * map.  This is a bit of a hack, but is also about the best place to
1602	 * put this improvement.
1603	 */
1604	if (entry->object.vm_object == NULL && !map->system_map) {
1605		vm_object_t object;
1606		object = vm_object_allocate(OBJT_DEFAULT,
1607				atop(entry->end - entry->start));
1608		entry->object.vm_object = object;
1609		entry->offset = 0;
1610		if (entry->cred != NULL) {
1611			object->cred = entry->cred;
1612			object->charge = entry->end - entry->start;
1613			entry->cred = NULL;
1614		}
1615	} else if (entry->object.vm_object != NULL &&
1616		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1617		   entry->cred != NULL) {
1618		VM_OBJECT_WLOCK(entry->object.vm_object);
1619		KASSERT(entry->object.vm_object->cred == NULL,
1620		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1621		entry->object.vm_object->cred = entry->cred;
1622		entry->object.vm_object->charge = entry->end - entry->start;
1623		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1624		entry->cred = NULL;
1625	}
1626
1627	new_entry = vm_map_entry_create(map);
1628	*new_entry = *entry;
1629
1630	new_entry->end = start;
1631	entry->offset += (start - entry->start);
1632	entry->start = start;
1633	if (new_entry->cred != NULL)
1634		crhold(entry->cred);
1635
1636	vm_map_entry_link(map, entry->prev, new_entry);
1637
1638	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1639		vm_object_reference(new_entry->object.vm_object);
1640		/*
1641		 * The object->un_pager.vnp.writemappings for the
1642		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1643		 * kept as is here.  The virtual pages are
1644		 * re-distributed among the clipped entries, so the sum is
1645		 * left the same.
1646		 */
1647	}
1648}
1649
1650/*
1651 *	vm_map_clip_end:	[ internal use only ]
1652 *
1653 *	Asserts that the given entry ends at or before
1654 *	the specified address; if necessary,
1655 *	it splits the entry into two.
1656 */
1657#define vm_map_clip_end(map, entry, endaddr) \
1658{ \
1659	if ((endaddr) < (entry->end)) \
1660		_vm_map_clip_end((map), (entry), (endaddr)); \
1661}
1662
1663/*
1664 *	This routine is called only when it is known that
1665 *	the entry must be split.
1666 */
1667static void
1668_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1669{
1670	vm_map_entry_t new_entry;
1671
1672	VM_MAP_ASSERT_LOCKED(map);
1673
1674	/*
1675	 * If there is no object backing this entry, we might as well create
1676	 * one now.  If we defer it, an object can get created after the map
1677	 * is clipped, and individual objects will be created for the split-up
1678	 * map.  This is a bit of a hack, but is also about the best place to
1679	 * put this improvement.
1680	 */
1681	if (entry->object.vm_object == NULL && !map->system_map) {
1682		vm_object_t object;
1683		object = vm_object_allocate(OBJT_DEFAULT,
1684				atop(entry->end - entry->start));
1685		entry->object.vm_object = object;
1686		entry->offset = 0;
1687		if (entry->cred != NULL) {
1688			object->cred = entry->cred;
1689			object->charge = entry->end - entry->start;
1690			entry->cred = NULL;
1691		}
1692	} else if (entry->object.vm_object != NULL &&
1693		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1694		   entry->cred != NULL) {
1695		VM_OBJECT_WLOCK(entry->object.vm_object);
1696		KASSERT(entry->object.vm_object->cred == NULL,
1697		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1698		entry->object.vm_object->cred = entry->cred;
1699		entry->object.vm_object->charge = entry->end - entry->start;
1700		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1701		entry->cred = NULL;
1702	}
1703
1704	/*
1705	 * Create a new entry and insert it AFTER the specified entry
1706	 */
1707	new_entry = vm_map_entry_create(map);
1708	*new_entry = *entry;
1709
1710	new_entry->start = entry->end = end;
1711	new_entry->offset += (end - entry->start);
1712	if (new_entry->cred != NULL)
1713		crhold(entry->cred);
1714
1715	vm_map_entry_link(map, entry, new_entry);
1716
1717	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1718		vm_object_reference(new_entry->object.vm_object);
1719	}
1720}
1721
1722/*
1723 *	vm_map_submap:		[ kernel use only ]
1724 *
1725 *	Mark the given range as handled by a subordinate map.
1726 *
1727 *	This range must have been created with vm_map_find,
1728 *	and no other operations may have been performed on this
1729 *	range prior to calling vm_map_submap.
1730 *
1731 *	Only a limited number of operations can be performed
1732 *	within this rage after calling vm_map_submap:
1733 *		vm_fault
1734 *	[Don't try vm_map_copy!]
1735 *
1736 *	To remove a submapping, one must first remove the
1737 *	range from the superior map, and then destroy the
1738 *	submap (if desired).  [Better yet, don't try it.]
1739 */
1740int
1741vm_map_submap(
1742	vm_map_t map,
1743	vm_offset_t start,
1744	vm_offset_t end,
1745	vm_map_t submap)
1746{
1747	vm_map_entry_t entry;
1748	int result = KERN_INVALID_ARGUMENT;
1749
1750	vm_map_lock(map);
1751
1752	VM_MAP_RANGE_CHECK(map, start, end);
1753
1754	if (vm_map_lookup_entry(map, start, &entry)) {
1755		vm_map_clip_start(map, entry, start);
1756	} else
1757		entry = entry->next;
1758
1759	vm_map_clip_end(map, entry, end);
1760
1761	if ((entry->start == start) && (entry->end == end) &&
1762	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1763	    (entry->object.vm_object == NULL)) {
1764		entry->object.sub_map = submap;
1765		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1766		result = KERN_SUCCESS;
1767	}
1768	vm_map_unlock(map);
1769
1770	return (result);
1771}
1772
1773/*
1774 * The maximum number of pages to map
1775 */
1776#define	MAX_INIT_PT	96
1777
1778/*
1779 *	vm_map_pmap_enter:
1780 *
1781 *	Preload read-only mappings for the specified object's resident pages
1782 *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1783 *	the resident pages within the address range [addr, addr + ulmin(size,
1784 *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1785 *	the specified address range are mapped.  This eliminates many soft
1786 *	faults on process startup and immediately after an mmap(2).  Because
1787 *	these are speculative mappings, cached pages are not reactivated and
1788 *	mapped.
1789 */
1790void
1791vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1792    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1793{
1794	vm_offset_t start;
1795	vm_page_t p, p_start;
1796	vm_pindex_t psize, tmpidx;
1797
1798	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1799		return;
1800	VM_OBJECT_RLOCK(object);
1801	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1802		VM_OBJECT_RUNLOCK(object);
1803		VM_OBJECT_WLOCK(object);
1804		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1805			pmap_object_init_pt(map->pmap, addr, object, pindex,
1806			    size);
1807			VM_OBJECT_WUNLOCK(object);
1808			return;
1809		}
1810		VM_OBJECT_LOCK_DOWNGRADE(object);
1811	}
1812
1813	psize = atop(size);
1814	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1815		psize = MAX_INIT_PT;
1816	if (psize + pindex > object->size) {
1817		if (object->size < pindex) {
1818			VM_OBJECT_RUNLOCK(object);
1819			return;
1820		}
1821		psize = object->size - pindex;
1822	}
1823
1824	start = 0;
1825	p_start = NULL;
1826
1827	p = vm_page_find_least(object, pindex);
1828	/*
1829	 * Assert: the variable p is either (1) the page with the
1830	 * least pindex greater than or equal to the parameter pindex
1831	 * or (2) NULL.
1832	 */
1833	for (;
1834	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1835	     p = TAILQ_NEXT(p, listq)) {
1836		/*
1837		 * don't allow an madvise to blow away our really
1838		 * free pages allocating pv entries.
1839		 */
1840		if ((flags & MAP_PREFAULT_MADVISE) &&
1841		    cnt.v_free_count < cnt.v_free_reserved) {
1842			psize = tmpidx;
1843			break;
1844		}
1845		if (p->valid == VM_PAGE_BITS_ALL) {
1846			if (p_start == NULL) {
1847				start = addr + ptoa(tmpidx);
1848				p_start = p;
1849			}
1850		} else if (p_start != NULL) {
1851			pmap_enter_object(map->pmap, start, addr +
1852			    ptoa(tmpidx), p_start, prot);
1853			p_start = NULL;
1854		}
1855	}
1856	if (p_start != NULL)
1857		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1858		    p_start, prot);
1859	VM_OBJECT_RUNLOCK(object);
1860}
1861
1862/*
1863 *	vm_map_protect:
1864 *
1865 *	Sets the protection of the specified address
1866 *	region in the target map.  If "set_max" is
1867 *	specified, the maximum protection is to be set;
1868 *	otherwise, only the current protection is affected.
1869 */
1870int
1871vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1872	       vm_prot_t new_prot, boolean_t set_max)
1873{
1874	vm_map_entry_t current, entry;
1875	vm_object_t obj;
1876	struct ucred *cred;
1877	vm_prot_t old_prot;
1878
1879	if (start == end)
1880		return (KERN_SUCCESS);
1881
1882	vm_map_lock(map);
1883
1884	VM_MAP_RANGE_CHECK(map, start, end);
1885
1886	if (vm_map_lookup_entry(map, start, &entry)) {
1887		vm_map_clip_start(map, entry, start);
1888	} else {
1889		entry = entry->next;
1890	}
1891
1892	/*
1893	 * Make a first pass to check for protection violations.
1894	 */
1895	current = entry;
1896	while ((current != &map->header) && (current->start < end)) {
1897		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1898			vm_map_unlock(map);
1899			return (KERN_INVALID_ARGUMENT);
1900		}
1901		if ((new_prot & current->max_protection) != new_prot) {
1902			vm_map_unlock(map);
1903			return (KERN_PROTECTION_FAILURE);
1904		}
1905		current = current->next;
1906	}
1907
1908
1909	/*
1910	 * Do an accounting pass for private read-only mappings that
1911	 * now will do cow due to allowed write (e.g. debugger sets
1912	 * breakpoint on text segment)
1913	 */
1914	for (current = entry; (current != &map->header) &&
1915	     (current->start < end); current = current->next) {
1916
1917		vm_map_clip_end(map, current, end);
1918
1919		if (set_max ||
1920		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1921		    ENTRY_CHARGED(current)) {
1922			continue;
1923		}
1924
1925		cred = curthread->td_ucred;
1926		obj = current->object.vm_object;
1927
1928		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1929			if (!swap_reserve(current->end - current->start)) {
1930				vm_map_unlock(map);
1931				return (KERN_RESOURCE_SHORTAGE);
1932			}
1933			crhold(cred);
1934			current->cred = cred;
1935			continue;
1936		}
1937
1938		VM_OBJECT_WLOCK(obj);
1939		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1940			VM_OBJECT_WUNLOCK(obj);
1941			continue;
1942		}
1943
1944		/*
1945		 * Charge for the whole object allocation now, since
1946		 * we cannot distinguish between non-charged and
1947		 * charged clipped mapping of the same object later.
1948		 */
1949		KASSERT(obj->charge == 0,
1950		    ("vm_map_protect: object %p overcharged\n", obj));
1951		if (!swap_reserve(ptoa(obj->size))) {
1952			VM_OBJECT_WUNLOCK(obj);
1953			vm_map_unlock(map);
1954			return (KERN_RESOURCE_SHORTAGE);
1955		}
1956
1957		crhold(cred);
1958		obj->cred = cred;
1959		obj->charge = ptoa(obj->size);
1960		VM_OBJECT_WUNLOCK(obj);
1961	}
1962
1963	/*
1964	 * Go back and fix up protections. [Note that clipping is not
1965	 * necessary the second time.]
1966	 */
1967	current = entry;
1968	while ((current != &map->header) && (current->start < end)) {
1969		old_prot = current->protection;
1970
1971		if (set_max)
1972			current->protection =
1973			    (current->max_protection = new_prot) &
1974			    old_prot;
1975		else
1976			current->protection = new_prot;
1977
1978		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1979		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1980		    (current->protection & VM_PROT_WRITE) != 0 &&
1981		    (old_prot & VM_PROT_WRITE) == 0) {
1982			vm_fault_copy_entry(map, map, current, current, NULL);
1983		}
1984
1985		/*
1986		 * When restricting access, update the physical map.  Worry
1987		 * about copy-on-write here.
1988		 */
1989		if ((old_prot & ~current->protection) != 0) {
1990#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1991							VM_PROT_ALL)
1992			pmap_protect(map->pmap, current->start,
1993			    current->end,
1994			    current->protection & MASK(current));
1995#undef	MASK
1996		}
1997		vm_map_simplify_entry(map, current);
1998		current = current->next;
1999	}
2000	vm_map_unlock(map);
2001	return (KERN_SUCCESS);
2002}
2003
2004/*
2005 *	vm_map_madvise:
2006 *
2007 *	This routine traverses a processes map handling the madvise
2008 *	system call.  Advisories are classified as either those effecting
2009 *	the vm_map_entry structure, or those effecting the underlying
2010 *	objects.
2011 */
2012int
2013vm_map_madvise(
2014	vm_map_t map,
2015	vm_offset_t start,
2016	vm_offset_t end,
2017	int behav)
2018{
2019	vm_map_entry_t current, entry;
2020	int modify_map = 0;
2021
2022	/*
2023	 * Some madvise calls directly modify the vm_map_entry, in which case
2024	 * we need to use an exclusive lock on the map and we need to perform
2025	 * various clipping operations.  Otherwise we only need a read-lock
2026	 * on the map.
2027	 */
2028	switch(behav) {
2029	case MADV_NORMAL:
2030	case MADV_SEQUENTIAL:
2031	case MADV_RANDOM:
2032	case MADV_NOSYNC:
2033	case MADV_AUTOSYNC:
2034	case MADV_NOCORE:
2035	case MADV_CORE:
2036		if (start == end)
2037			return (KERN_SUCCESS);
2038		modify_map = 1;
2039		vm_map_lock(map);
2040		break;
2041	case MADV_WILLNEED:
2042	case MADV_DONTNEED:
2043	case MADV_FREE:
2044		if (start == end)
2045			return (KERN_SUCCESS);
2046		vm_map_lock_read(map);
2047		break;
2048	default:
2049		return (KERN_INVALID_ARGUMENT);
2050	}
2051
2052	/*
2053	 * Locate starting entry and clip if necessary.
2054	 */
2055	VM_MAP_RANGE_CHECK(map, start, end);
2056
2057	if (vm_map_lookup_entry(map, start, &entry)) {
2058		if (modify_map)
2059			vm_map_clip_start(map, entry, start);
2060	} else {
2061		entry = entry->next;
2062	}
2063
2064	if (modify_map) {
2065		/*
2066		 * madvise behaviors that are implemented in the vm_map_entry.
2067		 *
2068		 * We clip the vm_map_entry so that behavioral changes are
2069		 * limited to the specified address range.
2070		 */
2071		for (current = entry;
2072		     (current != &map->header) && (current->start < end);
2073		     current = current->next
2074		) {
2075			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2076				continue;
2077
2078			vm_map_clip_end(map, current, end);
2079
2080			switch (behav) {
2081			case MADV_NORMAL:
2082				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2083				break;
2084			case MADV_SEQUENTIAL:
2085				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2086				break;
2087			case MADV_RANDOM:
2088				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2089				break;
2090			case MADV_NOSYNC:
2091				current->eflags |= MAP_ENTRY_NOSYNC;
2092				break;
2093			case MADV_AUTOSYNC:
2094				current->eflags &= ~MAP_ENTRY_NOSYNC;
2095				break;
2096			case MADV_NOCORE:
2097				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2098				break;
2099			case MADV_CORE:
2100				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2101				break;
2102			default:
2103				break;
2104			}
2105			vm_map_simplify_entry(map, current);
2106		}
2107		vm_map_unlock(map);
2108	} else {
2109		vm_pindex_t pstart, pend;
2110
2111		/*
2112		 * madvise behaviors that are implemented in the underlying
2113		 * vm_object.
2114		 *
2115		 * Since we don't clip the vm_map_entry, we have to clip
2116		 * the vm_object pindex and count.
2117		 */
2118		for (current = entry;
2119		     (current != &map->header) && (current->start < end);
2120		     current = current->next
2121		) {
2122			vm_offset_t useEnd, useStart;
2123
2124			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2125				continue;
2126
2127			pstart = OFF_TO_IDX(current->offset);
2128			pend = pstart + atop(current->end - current->start);
2129			useStart = current->start;
2130			useEnd = current->end;
2131
2132			if (current->start < start) {
2133				pstart += atop(start - current->start);
2134				useStart = start;
2135			}
2136			if (current->end > end) {
2137				pend -= atop(current->end - end);
2138				useEnd = end;
2139			}
2140
2141			if (pstart >= pend)
2142				continue;
2143
2144			/*
2145			 * Perform the pmap_advise() before clearing
2146			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2147			 * concurrent pmap operation, such as pmap_remove(),
2148			 * could clear a reference in the pmap and set
2149			 * PGA_REFERENCED on the page before the pmap_advise()
2150			 * had completed.  Consequently, the page would appear
2151			 * referenced based upon an old reference that
2152			 * occurred before this pmap_advise() ran.
2153			 */
2154			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2155				pmap_advise(map->pmap, useStart, useEnd,
2156				    behav);
2157
2158			vm_object_madvise(current->object.vm_object, pstart,
2159			    pend, behav);
2160			if (behav == MADV_WILLNEED) {
2161				vm_map_pmap_enter(map,
2162				    useStart,
2163				    current->protection,
2164				    current->object.vm_object,
2165				    pstart,
2166				    ptoa(pend - pstart),
2167				    MAP_PREFAULT_MADVISE
2168				);
2169			}
2170		}
2171		vm_map_unlock_read(map);
2172	}
2173	return (0);
2174}
2175
2176
2177/*
2178 *	vm_map_inherit:
2179 *
2180 *	Sets the inheritance of the specified address
2181 *	range in the target map.  Inheritance
2182 *	affects how the map will be shared with
2183 *	child maps at the time of vmspace_fork.
2184 */
2185int
2186vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2187	       vm_inherit_t new_inheritance)
2188{
2189	vm_map_entry_t entry;
2190	vm_map_entry_t temp_entry;
2191
2192	switch (new_inheritance) {
2193	case VM_INHERIT_NONE:
2194	case VM_INHERIT_COPY:
2195	case VM_INHERIT_SHARE:
2196		break;
2197	default:
2198		return (KERN_INVALID_ARGUMENT);
2199	}
2200	if (start == end)
2201		return (KERN_SUCCESS);
2202	vm_map_lock(map);
2203	VM_MAP_RANGE_CHECK(map, start, end);
2204	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2205		entry = temp_entry;
2206		vm_map_clip_start(map, entry, start);
2207	} else
2208		entry = temp_entry->next;
2209	while ((entry != &map->header) && (entry->start < end)) {
2210		vm_map_clip_end(map, entry, end);
2211		entry->inheritance = new_inheritance;
2212		vm_map_simplify_entry(map, entry);
2213		entry = entry->next;
2214	}
2215	vm_map_unlock(map);
2216	return (KERN_SUCCESS);
2217}
2218
2219/*
2220 *	vm_map_unwire:
2221 *
2222 *	Implements both kernel and user unwiring.
2223 */
2224int
2225vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2226    int flags)
2227{
2228	vm_map_entry_t entry, first_entry, tmp_entry;
2229	vm_offset_t saved_start;
2230	unsigned int last_timestamp;
2231	int rv;
2232	boolean_t need_wakeup, result, user_unwire;
2233
2234	if (start == end)
2235		return (KERN_SUCCESS);
2236	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2237	vm_map_lock(map);
2238	VM_MAP_RANGE_CHECK(map, start, end);
2239	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2240		if (flags & VM_MAP_WIRE_HOLESOK)
2241			first_entry = first_entry->next;
2242		else {
2243			vm_map_unlock(map);
2244			return (KERN_INVALID_ADDRESS);
2245		}
2246	}
2247	last_timestamp = map->timestamp;
2248	entry = first_entry;
2249	while (entry != &map->header && entry->start < end) {
2250		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2251			/*
2252			 * We have not yet clipped the entry.
2253			 */
2254			saved_start = (start >= entry->start) ? start :
2255			    entry->start;
2256			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2257			if (vm_map_unlock_and_wait(map, 0)) {
2258				/*
2259				 * Allow interruption of user unwiring?
2260				 */
2261			}
2262			vm_map_lock(map);
2263			if (last_timestamp+1 != map->timestamp) {
2264				/*
2265				 * Look again for the entry because the map was
2266				 * modified while it was unlocked.
2267				 * Specifically, the entry may have been
2268				 * clipped, merged, or deleted.
2269				 */
2270				if (!vm_map_lookup_entry(map, saved_start,
2271				    &tmp_entry)) {
2272					if (flags & VM_MAP_WIRE_HOLESOK)
2273						tmp_entry = tmp_entry->next;
2274					else {
2275						if (saved_start == start) {
2276							/*
2277							 * First_entry has been deleted.
2278							 */
2279							vm_map_unlock(map);
2280							return (KERN_INVALID_ADDRESS);
2281						}
2282						end = saved_start;
2283						rv = KERN_INVALID_ADDRESS;
2284						goto done;
2285					}
2286				}
2287				if (entry == first_entry)
2288					first_entry = tmp_entry;
2289				else
2290					first_entry = NULL;
2291				entry = tmp_entry;
2292			}
2293			last_timestamp = map->timestamp;
2294			continue;
2295		}
2296		vm_map_clip_start(map, entry, start);
2297		vm_map_clip_end(map, entry, end);
2298		/*
2299		 * Mark the entry in case the map lock is released.  (See
2300		 * above.)
2301		 */
2302		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2303		    entry->wiring_thread == NULL,
2304		    ("owned map entry %p", entry));
2305		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2306		entry->wiring_thread = curthread;
2307		/*
2308		 * Check the map for holes in the specified region.
2309		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2310		 */
2311		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2312		    (entry->end < end && (entry->next == &map->header ||
2313		    entry->next->start > entry->end))) {
2314			end = entry->end;
2315			rv = KERN_INVALID_ADDRESS;
2316			goto done;
2317		}
2318		/*
2319		 * If system unwiring, require that the entry is system wired.
2320		 */
2321		if (!user_unwire &&
2322		    vm_map_entry_system_wired_count(entry) == 0) {
2323			end = entry->end;
2324			rv = KERN_INVALID_ARGUMENT;
2325			goto done;
2326		}
2327		entry = entry->next;
2328	}
2329	rv = KERN_SUCCESS;
2330done:
2331	need_wakeup = FALSE;
2332	if (first_entry == NULL) {
2333		result = vm_map_lookup_entry(map, start, &first_entry);
2334		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2335			first_entry = first_entry->next;
2336		else
2337			KASSERT(result, ("vm_map_unwire: lookup failed"));
2338	}
2339	for (entry = first_entry; entry != &map->header && entry->start < end;
2340	    entry = entry->next) {
2341		/*
2342		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2343		 * space in the unwired region could have been mapped
2344		 * while the map lock was dropped for draining
2345		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2346		 * could be simultaneously wiring this new mapping
2347		 * entry.  Detect these cases and skip any entries
2348		 * marked as in transition by us.
2349		 */
2350		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2351		    entry->wiring_thread != curthread) {
2352			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2353			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2354			continue;
2355		}
2356
2357		if (rv == KERN_SUCCESS && (!user_unwire ||
2358		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2359			if (user_unwire)
2360				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2361			entry->wired_count--;
2362			if (entry->wired_count == 0) {
2363				/*
2364				 * Retain the map lock.
2365				 */
2366				vm_fault_unwire(map, entry->start, entry->end,
2367				    entry->object.vm_object != NULL &&
2368				    (entry->object.vm_object->flags &
2369				    OBJ_FICTITIOUS) != 0);
2370			}
2371		}
2372		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2373		    ("vm_map_unwire: in-transition flag missing %p", entry));
2374		KASSERT(entry->wiring_thread == curthread,
2375		    ("vm_map_unwire: alien wire %p", entry));
2376		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2377		entry->wiring_thread = NULL;
2378		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2379			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2380			need_wakeup = TRUE;
2381		}
2382		vm_map_simplify_entry(map, entry);
2383	}
2384	vm_map_unlock(map);
2385	if (need_wakeup)
2386		vm_map_wakeup(map);
2387	return (rv);
2388}
2389
2390/*
2391 *	vm_map_wire:
2392 *
2393 *	Implements both kernel and user wiring.
2394 */
2395int
2396vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2397    int flags)
2398{
2399	vm_map_entry_t entry, first_entry, tmp_entry;
2400	vm_offset_t saved_end, saved_start;
2401	unsigned int last_timestamp;
2402	int rv;
2403	boolean_t fictitious, need_wakeup, result, user_wire;
2404	vm_prot_t prot;
2405
2406	if (start == end)
2407		return (KERN_SUCCESS);
2408	prot = 0;
2409	if (flags & VM_MAP_WIRE_WRITE)
2410		prot |= VM_PROT_WRITE;
2411	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2412	vm_map_lock(map);
2413	VM_MAP_RANGE_CHECK(map, start, end);
2414	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2415		if (flags & VM_MAP_WIRE_HOLESOK)
2416			first_entry = first_entry->next;
2417		else {
2418			vm_map_unlock(map);
2419			return (KERN_INVALID_ADDRESS);
2420		}
2421	}
2422	last_timestamp = map->timestamp;
2423	entry = first_entry;
2424	while (entry != &map->header && entry->start < end) {
2425		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2426			/*
2427			 * We have not yet clipped the entry.
2428			 */
2429			saved_start = (start >= entry->start) ? start :
2430			    entry->start;
2431			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2432			if (vm_map_unlock_and_wait(map, 0)) {
2433				/*
2434				 * Allow interruption of user wiring?
2435				 */
2436			}
2437			vm_map_lock(map);
2438			if (last_timestamp + 1 != map->timestamp) {
2439				/*
2440				 * Look again for the entry because the map was
2441				 * modified while it was unlocked.
2442				 * Specifically, the entry may have been
2443				 * clipped, merged, or deleted.
2444				 */
2445				if (!vm_map_lookup_entry(map, saved_start,
2446				    &tmp_entry)) {
2447					if (flags & VM_MAP_WIRE_HOLESOK)
2448						tmp_entry = tmp_entry->next;
2449					else {
2450						if (saved_start == start) {
2451							/*
2452							 * first_entry has been deleted.
2453							 */
2454							vm_map_unlock(map);
2455							return (KERN_INVALID_ADDRESS);
2456						}
2457						end = saved_start;
2458						rv = KERN_INVALID_ADDRESS;
2459						goto done;
2460					}
2461				}
2462				if (entry == first_entry)
2463					first_entry = tmp_entry;
2464				else
2465					first_entry = NULL;
2466				entry = tmp_entry;
2467			}
2468			last_timestamp = map->timestamp;
2469			continue;
2470		}
2471		vm_map_clip_start(map, entry, start);
2472		vm_map_clip_end(map, entry, end);
2473		/*
2474		 * Mark the entry in case the map lock is released.  (See
2475		 * above.)
2476		 */
2477		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2478		    entry->wiring_thread == NULL,
2479		    ("owned map entry %p", entry));
2480		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2481		entry->wiring_thread = curthread;
2482		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2483		    || (entry->protection & prot) != prot) {
2484			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2485			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2486				end = entry->end;
2487				rv = KERN_INVALID_ADDRESS;
2488				goto done;
2489			}
2490			goto next_entry;
2491		}
2492		if (entry->wired_count == 0) {
2493			entry->wired_count++;
2494			saved_start = entry->start;
2495			saved_end = entry->end;
2496			fictitious = entry->object.vm_object != NULL &&
2497			    (entry->object.vm_object->flags &
2498			    OBJ_FICTITIOUS) != 0;
2499			/*
2500			 * Release the map lock, relying on the in-transition
2501			 * mark.  Mark the map busy for fork.
2502			 */
2503			vm_map_busy(map);
2504			vm_map_unlock(map);
2505			rv = vm_fault_wire(map, saved_start, saved_end,
2506			    fictitious);
2507			vm_map_lock(map);
2508			vm_map_unbusy(map);
2509			if (last_timestamp + 1 != map->timestamp) {
2510				/*
2511				 * Look again for the entry because the map was
2512				 * modified while it was unlocked.  The entry
2513				 * may have been clipped, but NOT merged or
2514				 * deleted.
2515				 */
2516				result = vm_map_lookup_entry(map, saved_start,
2517				    &tmp_entry);
2518				KASSERT(result, ("vm_map_wire: lookup failed"));
2519				if (entry == first_entry)
2520					first_entry = tmp_entry;
2521				else
2522					first_entry = NULL;
2523				entry = tmp_entry;
2524				while (entry->end < saved_end) {
2525					if (rv != KERN_SUCCESS) {
2526						KASSERT(entry->wired_count == 1,
2527						    ("vm_map_wire: bad count"));
2528						entry->wired_count = -1;
2529					}
2530					entry = entry->next;
2531				}
2532			}
2533			last_timestamp = map->timestamp;
2534			if (rv != KERN_SUCCESS) {
2535				KASSERT(entry->wired_count == 1,
2536				    ("vm_map_wire: bad count"));
2537				/*
2538				 * Assign an out-of-range value to represent
2539				 * the failure to wire this entry.
2540				 */
2541				entry->wired_count = -1;
2542				end = entry->end;
2543				goto done;
2544			}
2545		} else if (!user_wire ||
2546			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2547			entry->wired_count++;
2548		}
2549		/*
2550		 * Check the map for holes in the specified region.
2551		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2552		 */
2553	next_entry:
2554		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2555		    (entry->end < end && (entry->next == &map->header ||
2556		    entry->next->start > entry->end))) {
2557			end = entry->end;
2558			rv = KERN_INVALID_ADDRESS;
2559			goto done;
2560		}
2561		entry = entry->next;
2562	}
2563	rv = KERN_SUCCESS;
2564done:
2565	need_wakeup = FALSE;
2566	if (first_entry == NULL) {
2567		result = vm_map_lookup_entry(map, start, &first_entry);
2568		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2569			first_entry = first_entry->next;
2570		else
2571			KASSERT(result, ("vm_map_wire: lookup failed"));
2572	}
2573	for (entry = first_entry; entry != &map->header && entry->start < end;
2574	    entry = entry->next) {
2575		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2576			goto next_entry_done;
2577
2578		/*
2579		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2580		 * space in the unwired region could have been mapped
2581		 * while the map lock was dropped for faulting in the
2582		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2583		 * Moreover, another thread could be simultaneously
2584		 * wiring this new mapping entry.  Detect these cases
2585		 * and skip any entries marked as in transition by us.
2586		 */
2587		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2588		    entry->wiring_thread != curthread) {
2589			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2590			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2591			continue;
2592		}
2593
2594		if (rv == KERN_SUCCESS) {
2595			if (user_wire)
2596				entry->eflags |= MAP_ENTRY_USER_WIRED;
2597		} else if (entry->wired_count == -1) {
2598			/*
2599			 * Wiring failed on this entry.  Thus, unwiring is
2600			 * unnecessary.
2601			 */
2602			entry->wired_count = 0;
2603		} else {
2604			if (!user_wire ||
2605			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2606				entry->wired_count--;
2607			if (entry->wired_count == 0) {
2608				/*
2609				 * Retain the map lock.
2610				 */
2611				vm_fault_unwire(map, entry->start, entry->end,
2612				    entry->object.vm_object != NULL &&
2613				    (entry->object.vm_object->flags &
2614				    OBJ_FICTITIOUS) != 0);
2615			}
2616		}
2617	next_entry_done:
2618		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2619		    ("vm_map_wire: in-transition flag missing %p", entry));
2620		KASSERT(entry->wiring_thread == curthread,
2621		    ("vm_map_wire: alien wire %p", entry));
2622		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2623		    MAP_ENTRY_WIRE_SKIPPED);
2624		entry->wiring_thread = NULL;
2625		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2626			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2627			need_wakeup = TRUE;
2628		}
2629		vm_map_simplify_entry(map, entry);
2630	}
2631	vm_map_unlock(map);
2632	if (need_wakeup)
2633		vm_map_wakeup(map);
2634	return (rv);
2635}
2636
2637/*
2638 * vm_map_sync
2639 *
2640 * Push any dirty cached pages in the address range to their pager.
2641 * If syncio is TRUE, dirty pages are written synchronously.
2642 * If invalidate is TRUE, any cached pages are freed as well.
2643 *
2644 * If the size of the region from start to end is zero, we are
2645 * supposed to flush all modified pages within the region containing
2646 * start.  Unfortunately, a region can be split or coalesced with
2647 * neighboring regions, making it difficult to determine what the
2648 * original region was.  Therefore, we approximate this requirement by
2649 * flushing the current region containing start.
2650 *
2651 * Returns an error if any part of the specified range is not mapped.
2652 */
2653int
2654vm_map_sync(
2655	vm_map_t map,
2656	vm_offset_t start,
2657	vm_offset_t end,
2658	boolean_t syncio,
2659	boolean_t invalidate)
2660{
2661	vm_map_entry_t current;
2662	vm_map_entry_t entry;
2663	vm_size_t size;
2664	vm_object_t object;
2665	vm_ooffset_t offset;
2666	unsigned int last_timestamp;
2667	boolean_t failed;
2668
2669	vm_map_lock_read(map);
2670	VM_MAP_RANGE_CHECK(map, start, end);
2671	if (!vm_map_lookup_entry(map, start, &entry)) {
2672		vm_map_unlock_read(map);
2673		return (KERN_INVALID_ADDRESS);
2674	} else if (start == end) {
2675		start = entry->start;
2676		end = entry->end;
2677	}
2678	/*
2679	 * Make a first pass to check for user-wired memory and holes.
2680	 */
2681	for (current = entry; current != &map->header && current->start < end;
2682	    current = current->next) {
2683		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2684			vm_map_unlock_read(map);
2685			return (KERN_INVALID_ARGUMENT);
2686		}
2687		if (end > current->end &&
2688		    (current->next == &map->header ||
2689			current->end != current->next->start)) {
2690			vm_map_unlock_read(map);
2691			return (KERN_INVALID_ADDRESS);
2692		}
2693	}
2694
2695	if (invalidate)
2696		pmap_remove(map->pmap, start, end);
2697	failed = FALSE;
2698
2699	/*
2700	 * Make a second pass, cleaning/uncaching pages from the indicated
2701	 * objects as we go.
2702	 */
2703	for (current = entry; current != &map->header && current->start < end;) {
2704		offset = current->offset + (start - current->start);
2705		size = (end <= current->end ? end : current->end) - start;
2706		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2707			vm_map_t smap;
2708			vm_map_entry_t tentry;
2709			vm_size_t tsize;
2710
2711			smap = current->object.sub_map;
2712			vm_map_lock_read(smap);
2713			(void) vm_map_lookup_entry(smap, offset, &tentry);
2714			tsize = tentry->end - offset;
2715			if (tsize < size)
2716				size = tsize;
2717			object = tentry->object.vm_object;
2718			offset = tentry->offset + (offset - tentry->start);
2719			vm_map_unlock_read(smap);
2720		} else {
2721			object = current->object.vm_object;
2722		}
2723		vm_object_reference(object);
2724		last_timestamp = map->timestamp;
2725		vm_map_unlock_read(map);
2726		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2727			failed = TRUE;
2728		start += size;
2729		vm_object_deallocate(object);
2730		vm_map_lock_read(map);
2731		if (last_timestamp == map->timestamp ||
2732		    !vm_map_lookup_entry(map, start, &current))
2733			current = current->next;
2734	}
2735
2736	vm_map_unlock_read(map);
2737	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2738}
2739
2740/*
2741 *	vm_map_entry_unwire:	[ internal use only ]
2742 *
2743 *	Make the region specified by this entry pageable.
2744 *
2745 *	The map in question should be locked.
2746 *	[This is the reason for this routine's existence.]
2747 */
2748static void
2749vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2750{
2751	vm_fault_unwire(map, entry->start, entry->end,
2752	    entry->object.vm_object != NULL &&
2753	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2754	entry->wired_count = 0;
2755}
2756
2757static void
2758vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2759{
2760
2761	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2762		vm_object_deallocate(entry->object.vm_object);
2763	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2764}
2765
2766/*
2767 *	vm_map_entry_delete:	[ internal use only ]
2768 *
2769 *	Deallocate the given entry from the target map.
2770 */
2771static void
2772vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2773{
2774	vm_object_t object;
2775	vm_pindex_t offidxstart, offidxend, count, size1;
2776	vm_ooffset_t size;
2777
2778	vm_map_entry_unlink(map, entry);
2779	object = entry->object.vm_object;
2780	size = entry->end - entry->start;
2781	map->size -= size;
2782
2783	if (entry->cred != NULL) {
2784		swap_release_by_cred(size, entry->cred);
2785		crfree(entry->cred);
2786	}
2787
2788	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2789	    (object != NULL)) {
2790		KASSERT(entry->cred == NULL || object->cred == NULL ||
2791		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2792		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2793		count = OFF_TO_IDX(size);
2794		offidxstart = OFF_TO_IDX(entry->offset);
2795		offidxend = offidxstart + count;
2796		VM_OBJECT_WLOCK(object);
2797		if (object->ref_count != 1 &&
2798		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2799		    object == kernel_object || object == kmem_object)) {
2800			vm_object_collapse(object);
2801
2802			/*
2803			 * The option OBJPR_NOTMAPPED can be passed here
2804			 * because vm_map_delete() already performed
2805			 * pmap_remove() on the only mapping to this range
2806			 * of pages.
2807			 */
2808			vm_object_page_remove(object, offidxstart, offidxend,
2809			    OBJPR_NOTMAPPED);
2810			if (object->type == OBJT_SWAP)
2811				swap_pager_freespace(object, offidxstart, count);
2812			if (offidxend >= object->size &&
2813			    offidxstart < object->size) {
2814				size1 = object->size;
2815				object->size = offidxstart;
2816				if (object->cred != NULL) {
2817					size1 -= object->size;
2818					KASSERT(object->charge >= ptoa(size1),
2819					    ("vm_map_entry_delete: object->charge < 0"));
2820					swap_release_by_cred(ptoa(size1), object->cred);
2821					object->charge -= ptoa(size1);
2822				}
2823			}
2824		}
2825		VM_OBJECT_WUNLOCK(object);
2826	} else
2827		entry->object.vm_object = NULL;
2828	if (map->system_map)
2829		vm_map_entry_deallocate(entry, TRUE);
2830	else {
2831		entry->next = curthread->td_map_def_user;
2832		curthread->td_map_def_user = entry;
2833	}
2834}
2835
2836/*
2837 *	vm_map_delete:	[ internal use only ]
2838 *
2839 *	Deallocates the given address range from the target
2840 *	map.
2841 */
2842int
2843vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2844{
2845	vm_map_entry_t entry;
2846	vm_map_entry_t first_entry;
2847
2848	VM_MAP_ASSERT_LOCKED(map);
2849	if (start == end)
2850		return (KERN_SUCCESS);
2851
2852	/*
2853	 * Find the start of the region, and clip it
2854	 */
2855	if (!vm_map_lookup_entry(map, start, &first_entry))
2856		entry = first_entry->next;
2857	else {
2858		entry = first_entry;
2859		vm_map_clip_start(map, entry, start);
2860	}
2861
2862	/*
2863	 * Step through all entries in this region
2864	 */
2865	while ((entry != &map->header) && (entry->start < end)) {
2866		vm_map_entry_t next;
2867
2868		/*
2869		 * Wait for wiring or unwiring of an entry to complete.
2870		 * Also wait for any system wirings to disappear on
2871		 * user maps.
2872		 */
2873		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2874		    (vm_map_pmap(map) != kernel_pmap &&
2875		    vm_map_entry_system_wired_count(entry) != 0)) {
2876			unsigned int last_timestamp;
2877			vm_offset_t saved_start;
2878			vm_map_entry_t tmp_entry;
2879
2880			saved_start = entry->start;
2881			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2882			last_timestamp = map->timestamp;
2883			(void) vm_map_unlock_and_wait(map, 0);
2884			vm_map_lock(map);
2885			if (last_timestamp + 1 != map->timestamp) {
2886				/*
2887				 * Look again for the entry because the map was
2888				 * modified while it was unlocked.
2889				 * Specifically, the entry may have been
2890				 * clipped, merged, or deleted.
2891				 */
2892				if (!vm_map_lookup_entry(map, saved_start,
2893							 &tmp_entry))
2894					entry = tmp_entry->next;
2895				else {
2896					entry = tmp_entry;
2897					vm_map_clip_start(map, entry,
2898							  saved_start);
2899				}
2900			}
2901			continue;
2902		}
2903		vm_map_clip_end(map, entry, end);
2904
2905		next = entry->next;
2906
2907		/*
2908		 * Unwire before removing addresses from the pmap; otherwise,
2909		 * unwiring will put the entries back in the pmap.
2910		 */
2911		if (entry->wired_count != 0) {
2912			vm_map_entry_unwire(map, entry);
2913		}
2914
2915		pmap_remove(map->pmap, entry->start, entry->end);
2916
2917		/*
2918		 * Delete the entry only after removing all pmap
2919		 * entries pointing to its pages.  (Otherwise, its
2920		 * page frames may be reallocated, and any modify bits
2921		 * will be set in the wrong object!)
2922		 */
2923		vm_map_entry_delete(map, entry);
2924		entry = next;
2925	}
2926	return (KERN_SUCCESS);
2927}
2928
2929/*
2930 *	vm_map_remove:
2931 *
2932 *	Remove the given address range from the target map.
2933 *	This is the exported form of vm_map_delete.
2934 */
2935int
2936vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2937{
2938	int result;
2939
2940	vm_map_lock(map);
2941	VM_MAP_RANGE_CHECK(map, start, end);
2942	result = vm_map_delete(map, start, end);
2943	vm_map_unlock(map);
2944	return (result);
2945}
2946
2947/*
2948 *	vm_map_check_protection:
2949 *
2950 *	Assert that the target map allows the specified privilege on the
2951 *	entire address region given.  The entire region must be allocated.
2952 *
2953 *	WARNING!  This code does not and should not check whether the
2954 *	contents of the region is accessible.  For example a smaller file
2955 *	might be mapped into a larger address space.
2956 *
2957 *	NOTE!  This code is also called by munmap().
2958 *
2959 *	The map must be locked.  A read lock is sufficient.
2960 */
2961boolean_t
2962vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2963			vm_prot_t protection)
2964{
2965	vm_map_entry_t entry;
2966	vm_map_entry_t tmp_entry;
2967
2968	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2969		return (FALSE);
2970	entry = tmp_entry;
2971
2972	while (start < end) {
2973		if (entry == &map->header)
2974			return (FALSE);
2975		/*
2976		 * No holes allowed!
2977		 */
2978		if (start < entry->start)
2979			return (FALSE);
2980		/*
2981		 * Check protection associated with entry.
2982		 */
2983		if ((entry->protection & protection) != protection)
2984			return (FALSE);
2985		/* go to next entry */
2986		start = entry->end;
2987		entry = entry->next;
2988	}
2989	return (TRUE);
2990}
2991
2992/*
2993 *	vm_map_copy_entry:
2994 *
2995 *	Copies the contents of the source entry to the destination
2996 *	entry.  The entries *must* be aligned properly.
2997 */
2998static void
2999vm_map_copy_entry(
3000	vm_map_t src_map,
3001	vm_map_t dst_map,
3002	vm_map_entry_t src_entry,
3003	vm_map_entry_t dst_entry,
3004	vm_ooffset_t *fork_charge)
3005{
3006	vm_object_t src_object;
3007	vm_map_entry_t fake_entry;
3008	vm_offset_t size;
3009	struct ucred *cred;
3010	int charged;
3011
3012	VM_MAP_ASSERT_LOCKED(dst_map);
3013
3014	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3015		return;
3016
3017	if (src_entry->wired_count == 0) {
3018
3019		/*
3020		 * If the source entry is marked needs_copy, it is already
3021		 * write-protected.
3022		 */
3023		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3024			pmap_protect(src_map->pmap,
3025			    src_entry->start,
3026			    src_entry->end,
3027			    src_entry->protection & ~VM_PROT_WRITE);
3028		}
3029
3030		/*
3031		 * Make a copy of the object.
3032		 */
3033		size = src_entry->end - src_entry->start;
3034		if ((src_object = src_entry->object.vm_object) != NULL) {
3035			VM_OBJECT_WLOCK(src_object);
3036			charged = ENTRY_CHARGED(src_entry);
3037			if ((src_object->handle == NULL) &&
3038				(src_object->type == OBJT_DEFAULT ||
3039				 src_object->type == OBJT_SWAP)) {
3040				vm_object_collapse(src_object);
3041				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3042					vm_object_split(src_entry);
3043					src_object = src_entry->object.vm_object;
3044				}
3045			}
3046			vm_object_reference_locked(src_object);
3047			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3048			if (src_entry->cred != NULL &&
3049			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3050				KASSERT(src_object->cred == NULL,
3051				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3052				     src_object));
3053				src_object->cred = src_entry->cred;
3054				src_object->charge = size;
3055			}
3056			VM_OBJECT_WUNLOCK(src_object);
3057			dst_entry->object.vm_object = src_object;
3058			if (charged) {
3059				cred = curthread->td_ucred;
3060				crhold(cred);
3061				dst_entry->cred = cred;
3062				*fork_charge += size;
3063				if (!(src_entry->eflags &
3064				      MAP_ENTRY_NEEDS_COPY)) {
3065					crhold(cred);
3066					src_entry->cred = cred;
3067					*fork_charge += size;
3068				}
3069			}
3070			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3071			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3072			dst_entry->offset = src_entry->offset;
3073			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3074				/*
3075				 * MAP_ENTRY_VN_WRITECNT cannot
3076				 * indicate write reference from
3077				 * src_entry, since the entry is
3078				 * marked as needs copy.  Allocate a
3079				 * fake entry that is used to
3080				 * decrement object->un_pager.vnp.writecount
3081				 * at the appropriate time.  Attach
3082				 * fake_entry to the deferred list.
3083				 */
3084				fake_entry = vm_map_entry_create(dst_map);
3085				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3086				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3087				vm_object_reference(src_object);
3088				fake_entry->object.vm_object = src_object;
3089				fake_entry->start = src_entry->start;
3090				fake_entry->end = src_entry->end;
3091				fake_entry->next = curthread->td_map_def_user;
3092				curthread->td_map_def_user = fake_entry;
3093			}
3094		} else {
3095			dst_entry->object.vm_object = NULL;
3096			dst_entry->offset = 0;
3097			if (src_entry->cred != NULL) {
3098				dst_entry->cred = curthread->td_ucred;
3099				crhold(dst_entry->cred);
3100				*fork_charge += size;
3101			}
3102		}
3103
3104		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3105		    dst_entry->end - dst_entry->start, src_entry->start);
3106	} else {
3107		/*
3108		 * Of course, wired down pages can't be set copy-on-write.
3109		 * Cause wired pages to be copied into the new map by
3110		 * simulating faults (the new pages are pageable)
3111		 */
3112		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3113		    fork_charge);
3114	}
3115}
3116
3117/*
3118 * vmspace_map_entry_forked:
3119 * Update the newly-forked vmspace each time a map entry is inherited
3120 * or copied.  The values for vm_dsize and vm_tsize are approximate
3121 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3122 */
3123static void
3124vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3125    vm_map_entry_t entry)
3126{
3127	vm_size_t entrysize;
3128	vm_offset_t newend;
3129
3130	entrysize = entry->end - entry->start;
3131	vm2->vm_map.size += entrysize;
3132	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3133		vm2->vm_ssize += btoc(entrysize);
3134	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3135	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3136		newend = MIN(entry->end,
3137		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3138		vm2->vm_dsize += btoc(newend - entry->start);
3139	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3140	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3141		newend = MIN(entry->end,
3142		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3143		vm2->vm_tsize += btoc(newend - entry->start);
3144	}
3145}
3146
3147/*
3148 * vmspace_fork:
3149 * Create a new process vmspace structure and vm_map
3150 * based on those of an existing process.  The new map
3151 * is based on the old map, according to the inheritance
3152 * values on the regions in that map.
3153 *
3154 * XXX It might be worth coalescing the entries added to the new vmspace.
3155 *
3156 * The source map must not be locked.
3157 */
3158struct vmspace *
3159vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3160{
3161	struct vmspace *vm2;
3162	vm_map_t new_map, old_map;
3163	vm_map_entry_t new_entry, old_entry;
3164	vm_object_t object;
3165	int locked;
3166
3167	old_map = &vm1->vm_map;
3168	/* Copy immutable fields of vm1 to vm2. */
3169	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3170	if (vm2 == NULL)
3171		return (NULL);
3172	vm2->vm_taddr = vm1->vm_taddr;
3173	vm2->vm_daddr = vm1->vm_daddr;
3174	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3175	vm_map_lock(old_map);
3176	if (old_map->busy)
3177		vm_map_wait_busy(old_map);
3178	new_map = &vm2->vm_map;
3179	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3180	KASSERT(locked, ("vmspace_fork: lock failed"));
3181
3182	old_entry = old_map->header.next;
3183
3184	while (old_entry != &old_map->header) {
3185		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3186			panic("vm_map_fork: encountered a submap");
3187
3188		switch (old_entry->inheritance) {
3189		case VM_INHERIT_NONE:
3190			break;
3191
3192		case VM_INHERIT_SHARE:
3193			/*
3194			 * Clone the entry, creating the shared object if necessary.
3195			 */
3196			object = old_entry->object.vm_object;
3197			if (object == NULL) {
3198				object = vm_object_allocate(OBJT_DEFAULT,
3199					atop(old_entry->end - old_entry->start));
3200				old_entry->object.vm_object = object;
3201				old_entry->offset = 0;
3202				if (old_entry->cred != NULL) {
3203					object->cred = old_entry->cred;
3204					object->charge = old_entry->end -
3205					    old_entry->start;
3206					old_entry->cred = NULL;
3207				}
3208			}
3209
3210			/*
3211			 * Add the reference before calling vm_object_shadow
3212			 * to insure that a shadow object is created.
3213			 */
3214			vm_object_reference(object);
3215			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3216				vm_object_shadow(&old_entry->object.vm_object,
3217				    &old_entry->offset,
3218				    old_entry->end - old_entry->start);
3219				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3220				/* Transfer the second reference too. */
3221				vm_object_reference(
3222				    old_entry->object.vm_object);
3223
3224				/*
3225				 * As in vm_map_simplify_entry(), the
3226				 * vnode lock will not be acquired in
3227				 * this call to vm_object_deallocate().
3228				 */
3229				vm_object_deallocate(object);
3230				object = old_entry->object.vm_object;
3231			}
3232			VM_OBJECT_WLOCK(object);
3233			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3234			if (old_entry->cred != NULL) {
3235				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3236				object->cred = old_entry->cred;
3237				object->charge = old_entry->end - old_entry->start;
3238				old_entry->cred = NULL;
3239			}
3240
3241			/*
3242			 * Assert the correct state of the vnode
3243			 * v_writecount while the object is locked, to
3244			 * not relock it later for the assertion
3245			 * correctness.
3246			 */
3247			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3248			    object->type == OBJT_VNODE) {
3249				KASSERT(((struct vnode *)object->handle)->
3250				    v_writecount > 0,
3251				    ("vmspace_fork: v_writecount %p", object));
3252				KASSERT(object->un_pager.vnp.writemappings > 0,
3253				    ("vmspace_fork: vnp.writecount %p",
3254				    object));
3255			}
3256			VM_OBJECT_WUNLOCK(object);
3257
3258			/*
3259			 * Clone the entry, referencing the shared object.
3260			 */
3261			new_entry = vm_map_entry_create(new_map);
3262			*new_entry = *old_entry;
3263			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3264			    MAP_ENTRY_IN_TRANSITION);
3265			new_entry->wiring_thread = NULL;
3266			new_entry->wired_count = 0;
3267			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3268				vnode_pager_update_writecount(object,
3269				    new_entry->start, new_entry->end);
3270			}
3271
3272			/*
3273			 * Insert the entry into the new map -- we know we're
3274			 * inserting at the end of the new map.
3275			 */
3276			vm_map_entry_link(new_map, new_map->header.prev,
3277			    new_entry);
3278			vmspace_map_entry_forked(vm1, vm2, new_entry);
3279
3280			/*
3281			 * Update the physical map
3282			 */
3283			pmap_copy(new_map->pmap, old_map->pmap,
3284			    new_entry->start,
3285			    (old_entry->end - old_entry->start),
3286			    old_entry->start);
3287			break;
3288
3289		case VM_INHERIT_COPY:
3290			/*
3291			 * Clone the entry and link into the map.
3292			 */
3293			new_entry = vm_map_entry_create(new_map);
3294			*new_entry = *old_entry;
3295			/*
3296			 * Copied entry is COW over the old object.
3297			 */
3298			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3299			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3300			new_entry->wiring_thread = NULL;
3301			new_entry->wired_count = 0;
3302			new_entry->object.vm_object = NULL;
3303			new_entry->cred = NULL;
3304			vm_map_entry_link(new_map, new_map->header.prev,
3305			    new_entry);
3306			vmspace_map_entry_forked(vm1, vm2, new_entry);
3307			vm_map_copy_entry(old_map, new_map, old_entry,
3308			    new_entry, fork_charge);
3309			break;
3310		}
3311		old_entry = old_entry->next;
3312	}
3313	/*
3314	 * Use inlined vm_map_unlock() to postpone handling the deferred
3315	 * map entries, which cannot be done until both old_map and
3316	 * new_map locks are released.
3317	 */
3318	sx_xunlock(&old_map->lock);
3319	sx_xunlock(&new_map->lock);
3320	vm_map_process_deferred();
3321
3322	return (vm2);
3323}
3324
3325int
3326vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3327    vm_prot_t prot, vm_prot_t max, int cow)
3328{
3329	vm_map_entry_t new_entry, prev_entry;
3330	vm_offset_t bot, top;
3331	vm_size_t growsize, init_ssize;
3332	int orient, rv;
3333	rlim_t lmemlim, vmemlim;
3334
3335	/*
3336	 * The stack orientation is piggybacked with the cow argument.
3337	 * Extract it into orient and mask the cow argument so that we
3338	 * don't pass it around further.
3339	 * NOTE: We explicitly allow bi-directional stacks.
3340	 */
3341	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3342	cow &= ~orient;
3343	KASSERT(orient != 0, ("No stack grow direction"));
3344
3345	if (addrbos < vm_map_min(map) ||
3346	    addrbos > vm_map_max(map) ||
3347	    addrbos + max_ssize < addrbos)
3348		return (KERN_NO_SPACE);
3349
3350	growsize = sgrowsiz;
3351	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3352
3353	PROC_LOCK(curproc);
3354	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3355	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3356	PROC_UNLOCK(curproc);
3357
3358	vm_map_lock(map);
3359
3360	/* If addr is already mapped, no go */
3361	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3362		vm_map_unlock(map);
3363		return (KERN_NO_SPACE);
3364	}
3365
3366	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3367		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3368			vm_map_unlock(map);
3369			return (KERN_NO_SPACE);
3370		}
3371	}
3372
3373	/* If we would blow our VMEM resource limit, no go */
3374	if (map->size + init_ssize > vmemlim) {
3375		vm_map_unlock(map);
3376		return (KERN_NO_SPACE);
3377	}
3378
3379	/*
3380	 * If we can't accomodate max_ssize in the current mapping, no go.
3381	 * However, we need to be aware that subsequent user mappings might
3382	 * map into the space we have reserved for stack, and currently this
3383	 * space is not protected.
3384	 *
3385	 * Hopefully we will at least detect this condition when we try to
3386	 * grow the stack.
3387	 */
3388	if ((prev_entry->next != &map->header) &&
3389	    (prev_entry->next->start < addrbos + max_ssize)) {
3390		vm_map_unlock(map);
3391		return (KERN_NO_SPACE);
3392	}
3393
3394	/*
3395	 * We initially map a stack of only init_ssize.  We will grow as
3396	 * needed later.  Depending on the orientation of the stack (i.e.
3397	 * the grow direction) we either map at the top of the range, the
3398	 * bottom of the range or in the middle.
3399	 *
3400	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3401	 * and cow to be 0.  Possibly we should eliminate these as input
3402	 * parameters, and just pass these values here in the insert call.
3403	 */
3404	if (orient == MAP_STACK_GROWS_DOWN)
3405		bot = addrbos + max_ssize - init_ssize;
3406	else if (orient == MAP_STACK_GROWS_UP)
3407		bot = addrbos;
3408	else
3409		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3410	top = bot + init_ssize;
3411	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3412
3413	/* Now set the avail_ssize amount. */
3414	if (rv == KERN_SUCCESS) {
3415		if (prev_entry != &map->header)
3416			vm_map_clip_end(map, prev_entry, bot);
3417		new_entry = prev_entry->next;
3418		if (new_entry->end != top || new_entry->start != bot)
3419			panic("Bad entry start/end for new stack entry");
3420
3421		new_entry->avail_ssize = max_ssize - init_ssize;
3422		if (orient & MAP_STACK_GROWS_DOWN)
3423			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3424		if (orient & MAP_STACK_GROWS_UP)
3425			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3426	}
3427
3428	vm_map_unlock(map);
3429	return (rv);
3430}
3431
3432static int stack_guard_page = 0;
3433TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3434SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3435    &stack_guard_page, 0,
3436    "Insert stack guard page ahead of the growable segments.");
3437
3438/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3439 * desired address is already mapped, or if we successfully grow
3440 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3441 * stack range (this is strange, but preserves compatibility with
3442 * the grow function in vm_machdep.c).
3443 */
3444int
3445vm_map_growstack(struct proc *p, vm_offset_t addr)
3446{
3447	vm_map_entry_t next_entry, prev_entry;
3448	vm_map_entry_t new_entry, stack_entry;
3449	struct vmspace *vm = p->p_vmspace;
3450	vm_map_t map = &vm->vm_map;
3451	vm_offset_t end;
3452	vm_size_t growsize;
3453	size_t grow_amount, max_grow;
3454	rlim_t lmemlim, stacklim, vmemlim;
3455	int is_procstack, rv;
3456	struct ucred *cred;
3457#ifdef notyet
3458	uint64_t limit;
3459#endif
3460#ifdef RACCT
3461	int error;
3462#endif
3463
3464Retry:
3465	PROC_LOCK(p);
3466	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3467	stacklim = lim_cur(p, RLIMIT_STACK);
3468	vmemlim = lim_cur(p, RLIMIT_VMEM);
3469	PROC_UNLOCK(p);
3470
3471	vm_map_lock_read(map);
3472
3473	/* If addr is already in the entry range, no need to grow.*/
3474	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3475		vm_map_unlock_read(map);
3476		return (KERN_SUCCESS);
3477	}
3478
3479	next_entry = prev_entry->next;
3480	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3481		/*
3482		 * This entry does not grow upwards. Since the address lies
3483		 * beyond this entry, the next entry (if one exists) has to
3484		 * be a downward growable entry. The entry list header is
3485		 * never a growable entry, so it suffices to check the flags.
3486		 */
3487		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3488			vm_map_unlock_read(map);
3489			return (KERN_SUCCESS);
3490		}
3491		stack_entry = next_entry;
3492	} else {
3493		/*
3494		 * This entry grows upward. If the next entry does not at
3495		 * least grow downwards, this is the entry we need to grow.
3496		 * otherwise we have two possible choices and we have to
3497		 * select one.
3498		 */
3499		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3500			/*
3501			 * We have two choices; grow the entry closest to
3502			 * the address to minimize the amount of growth.
3503			 */
3504			if (addr - prev_entry->end <= next_entry->start - addr)
3505				stack_entry = prev_entry;
3506			else
3507				stack_entry = next_entry;
3508		} else
3509			stack_entry = prev_entry;
3510	}
3511
3512	if (stack_entry == next_entry) {
3513		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3514		KASSERT(addr < stack_entry->start, ("foo"));
3515		end = (prev_entry != &map->header) ? prev_entry->end :
3516		    stack_entry->start - stack_entry->avail_ssize;
3517		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3518		max_grow = stack_entry->start - end;
3519	} else {
3520		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3521		KASSERT(addr >= stack_entry->end, ("foo"));
3522		end = (next_entry != &map->header) ? next_entry->start :
3523		    stack_entry->end + stack_entry->avail_ssize;
3524		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3525		max_grow = end - stack_entry->end;
3526	}
3527
3528	if (grow_amount > stack_entry->avail_ssize) {
3529		vm_map_unlock_read(map);
3530		return (KERN_NO_SPACE);
3531	}
3532
3533	/*
3534	 * If there is no longer enough space between the entries nogo, and
3535	 * adjust the available space.  Note: this  should only happen if the
3536	 * user has mapped into the stack area after the stack was created,
3537	 * and is probably an error.
3538	 *
3539	 * This also effectively destroys any guard page the user might have
3540	 * intended by limiting the stack size.
3541	 */
3542	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3543		if (vm_map_lock_upgrade(map))
3544			goto Retry;
3545
3546		stack_entry->avail_ssize = max_grow;
3547
3548		vm_map_unlock(map);
3549		return (KERN_NO_SPACE);
3550	}
3551
3552	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3553
3554	/*
3555	 * If this is the main process stack, see if we're over the stack
3556	 * limit.
3557	 */
3558	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3559		vm_map_unlock_read(map);
3560		return (KERN_NO_SPACE);
3561	}
3562#ifdef RACCT
3563	PROC_LOCK(p);
3564	if (is_procstack &&
3565	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3566		PROC_UNLOCK(p);
3567		vm_map_unlock_read(map);
3568		return (KERN_NO_SPACE);
3569	}
3570	PROC_UNLOCK(p);
3571#endif
3572
3573	/* Round up the grow amount modulo sgrowsiz */
3574	growsize = sgrowsiz;
3575	grow_amount = roundup(grow_amount, growsize);
3576	if (grow_amount > stack_entry->avail_ssize)
3577		grow_amount = stack_entry->avail_ssize;
3578	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3579		grow_amount = trunc_page((vm_size_t)stacklim) -
3580		    ctob(vm->vm_ssize);
3581	}
3582#ifdef notyet
3583	PROC_LOCK(p);
3584	limit = racct_get_available(p, RACCT_STACK);
3585	PROC_UNLOCK(p);
3586	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3587		grow_amount = limit - ctob(vm->vm_ssize);
3588#endif
3589	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3590		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3591			vm_map_unlock_read(map);
3592			rv = KERN_NO_SPACE;
3593			goto out;
3594		}
3595#ifdef RACCT
3596		PROC_LOCK(p);
3597		if (racct_set(p, RACCT_MEMLOCK,
3598		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3599			PROC_UNLOCK(p);
3600			vm_map_unlock_read(map);
3601			rv = KERN_NO_SPACE;
3602			goto out;
3603		}
3604		PROC_UNLOCK(p);
3605#endif
3606	}
3607	/* If we would blow our VMEM resource limit, no go */
3608	if (map->size + grow_amount > vmemlim) {
3609		vm_map_unlock_read(map);
3610		rv = KERN_NO_SPACE;
3611		goto out;
3612	}
3613#ifdef RACCT
3614	PROC_LOCK(p);
3615	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3616		PROC_UNLOCK(p);
3617		vm_map_unlock_read(map);
3618		rv = KERN_NO_SPACE;
3619		goto out;
3620	}
3621	PROC_UNLOCK(p);
3622#endif
3623
3624	if (vm_map_lock_upgrade(map))
3625		goto Retry;
3626
3627	if (stack_entry == next_entry) {
3628		/*
3629		 * Growing downward.
3630		 */
3631		/* Get the preliminary new entry start value */
3632		addr = stack_entry->start - grow_amount;
3633
3634		/*
3635		 * If this puts us into the previous entry, cut back our
3636		 * growth to the available space. Also, see the note above.
3637		 */
3638		if (addr < end) {
3639			stack_entry->avail_ssize = max_grow;
3640			addr = end;
3641			if (stack_guard_page)
3642				addr += PAGE_SIZE;
3643		}
3644
3645		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3646		    next_entry->protection, next_entry->max_protection, 0);
3647
3648		/* Adjust the available stack space by the amount we grew. */
3649		if (rv == KERN_SUCCESS) {
3650			if (prev_entry != &map->header)
3651				vm_map_clip_end(map, prev_entry, addr);
3652			new_entry = prev_entry->next;
3653			KASSERT(new_entry == stack_entry->prev, ("foo"));
3654			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3655			KASSERT(new_entry->start == addr, ("foo"));
3656			grow_amount = new_entry->end - new_entry->start;
3657			new_entry->avail_ssize = stack_entry->avail_ssize -
3658			    grow_amount;
3659			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3660			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3661		}
3662	} else {
3663		/*
3664		 * Growing upward.
3665		 */
3666		addr = stack_entry->end + grow_amount;
3667
3668		/*
3669		 * If this puts us into the next entry, cut back our growth
3670		 * to the available space. Also, see the note above.
3671		 */
3672		if (addr > end) {
3673			stack_entry->avail_ssize = end - stack_entry->end;
3674			addr = end;
3675			if (stack_guard_page)
3676				addr -= PAGE_SIZE;
3677		}
3678
3679		grow_amount = addr - stack_entry->end;
3680		cred = stack_entry->cred;
3681		if (cred == NULL && stack_entry->object.vm_object != NULL)
3682			cred = stack_entry->object.vm_object->cred;
3683		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3684			rv = KERN_NO_SPACE;
3685		/* Grow the underlying object if applicable. */
3686		else if (stack_entry->object.vm_object == NULL ||
3687			 vm_object_coalesce(stack_entry->object.vm_object,
3688			 stack_entry->offset,
3689			 (vm_size_t)(stack_entry->end - stack_entry->start),
3690			 (vm_size_t)grow_amount, cred != NULL)) {
3691			map->size += (addr - stack_entry->end);
3692			/* Update the current entry. */
3693			stack_entry->end = addr;
3694			stack_entry->avail_ssize -= grow_amount;
3695			vm_map_entry_resize_free(map, stack_entry);
3696			rv = KERN_SUCCESS;
3697
3698			if (next_entry != &map->header)
3699				vm_map_clip_start(map, next_entry, addr);
3700		} else
3701			rv = KERN_FAILURE;
3702	}
3703
3704	if (rv == KERN_SUCCESS && is_procstack)
3705		vm->vm_ssize += btoc(grow_amount);
3706
3707	vm_map_unlock(map);
3708
3709	/*
3710	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3711	 */
3712	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3713		vm_map_wire(map,
3714		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3715		    (stack_entry == next_entry) ? stack_entry->start : addr,
3716		    (p->p_flag & P_SYSTEM)
3717		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3718		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3719	}
3720
3721out:
3722#ifdef RACCT
3723	if (rv != KERN_SUCCESS) {
3724		PROC_LOCK(p);
3725		error = racct_set(p, RACCT_VMEM, map->size);
3726		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3727		if (!old_mlock) {
3728			error = racct_set(p, RACCT_MEMLOCK,
3729			    ptoa(pmap_wired_count(map->pmap)));
3730			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3731		}
3732	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3733		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3734		PROC_UNLOCK(p);
3735	}
3736#endif
3737
3738	return (rv);
3739}
3740
3741/*
3742 * Unshare the specified VM space for exec.  If other processes are
3743 * mapped to it, then create a new one.  The new vmspace is null.
3744 */
3745int
3746vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3747{
3748	struct vmspace *oldvmspace = p->p_vmspace;
3749	struct vmspace *newvmspace;
3750
3751	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3752	if (newvmspace == NULL)
3753		return (ENOMEM);
3754	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3755	/*
3756	 * This code is written like this for prototype purposes.  The
3757	 * goal is to avoid running down the vmspace here, but let the
3758	 * other process's that are still using the vmspace to finally
3759	 * run it down.  Even though there is little or no chance of blocking
3760	 * here, it is a good idea to keep this form for future mods.
3761	 */
3762	PROC_VMSPACE_LOCK(p);
3763	p->p_vmspace = newvmspace;
3764	PROC_VMSPACE_UNLOCK(p);
3765	if (p == curthread->td_proc)
3766		pmap_activate(curthread);
3767	vmspace_free(oldvmspace);
3768	return (0);
3769}
3770
3771/*
3772 * Unshare the specified VM space for forcing COW.  This
3773 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3774 */
3775int
3776vmspace_unshare(struct proc *p)
3777{
3778	struct vmspace *oldvmspace = p->p_vmspace;
3779	struct vmspace *newvmspace;
3780	vm_ooffset_t fork_charge;
3781
3782	if (oldvmspace->vm_refcnt == 1)
3783		return (0);
3784	fork_charge = 0;
3785	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3786	if (newvmspace == NULL)
3787		return (ENOMEM);
3788	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3789		vmspace_free(newvmspace);
3790		return (ENOMEM);
3791	}
3792	PROC_VMSPACE_LOCK(p);
3793	p->p_vmspace = newvmspace;
3794	PROC_VMSPACE_UNLOCK(p);
3795	if (p == curthread->td_proc)
3796		pmap_activate(curthread);
3797	vmspace_free(oldvmspace);
3798	return (0);
3799}
3800
3801/*
3802 *	vm_map_lookup:
3803 *
3804 *	Finds the VM object, offset, and
3805 *	protection for a given virtual address in the
3806 *	specified map, assuming a page fault of the
3807 *	type specified.
3808 *
3809 *	Leaves the map in question locked for read; return
3810 *	values are guaranteed until a vm_map_lookup_done
3811 *	call is performed.  Note that the map argument
3812 *	is in/out; the returned map must be used in
3813 *	the call to vm_map_lookup_done.
3814 *
3815 *	A handle (out_entry) is returned for use in
3816 *	vm_map_lookup_done, to make that fast.
3817 *
3818 *	If a lookup is requested with "write protection"
3819 *	specified, the map may be changed to perform virtual
3820 *	copying operations, although the data referenced will
3821 *	remain the same.
3822 */
3823int
3824vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3825	      vm_offset_t vaddr,
3826	      vm_prot_t fault_typea,
3827	      vm_map_entry_t *out_entry,	/* OUT */
3828	      vm_object_t *object,		/* OUT */
3829	      vm_pindex_t *pindex,		/* OUT */
3830	      vm_prot_t *out_prot,		/* OUT */
3831	      boolean_t *wired)			/* OUT */
3832{
3833	vm_map_entry_t entry;
3834	vm_map_t map = *var_map;
3835	vm_prot_t prot;
3836	vm_prot_t fault_type = fault_typea;
3837	vm_object_t eobject;
3838	vm_size_t size;
3839	struct ucred *cred;
3840
3841RetryLookup:;
3842
3843	vm_map_lock_read(map);
3844
3845	/*
3846	 * Lookup the faulting address.
3847	 */
3848	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3849		vm_map_unlock_read(map);
3850		return (KERN_INVALID_ADDRESS);
3851	}
3852
3853	entry = *out_entry;
3854
3855	/*
3856	 * Handle submaps.
3857	 */
3858	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3859		vm_map_t old_map = map;
3860
3861		*var_map = map = entry->object.sub_map;
3862		vm_map_unlock_read(old_map);
3863		goto RetryLookup;
3864	}
3865
3866	/*
3867	 * Check whether this task is allowed to have this page.
3868	 */
3869	prot = entry->protection;
3870	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3871	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3872		vm_map_unlock_read(map);
3873		return (KERN_PROTECTION_FAILURE);
3874	}
3875	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3876	    (entry->eflags & MAP_ENTRY_COW) &&
3877	    (fault_type & VM_PROT_WRITE)) {
3878		vm_map_unlock_read(map);
3879		return (KERN_PROTECTION_FAILURE);
3880	}
3881	if ((fault_typea & VM_PROT_COPY) != 0 &&
3882	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3883	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3884		vm_map_unlock_read(map);
3885		return (KERN_PROTECTION_FAILURE);
3886	}
3887
3888	/*
3889	 * If this page is not pageable, we have to get it for all possible
3890	 * accesses.
3891	 */
3892	*wired = (entry->wired_count != 0);
3893	if (*wired)
3894		fault_type = entry->protection;
3895	size = entry->end - entry->start;
3896	/*
3897	 * If the entry was copy-on-write, we either ...
3898	 */
3899	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3900		/*
3901		 * If we want to write the page, we may as well handle that
3902		 * now since we've got the map locked.
3903		 *
3904		 * If we don't need to write the page, we just demote the
3905		 * permissions allowed.
3906		 */
3907		if ((fault_type & VM_PROT_WRITE) != 0 ||
3908		    (fault_typea & VM_PROT_COPY) != 0) {
3909			/*
3910			 * Make a new object, and place it in the object
3911			 * chain.  Note that no new references have appeared
3912			 * -- one just moved from the map to the new
3913			 * object.
3914			 */
3915			if (vm_map_lock_upgrade(map))
3916				goto RetryLookup;
3917
3918			if (entry->cred == NULL) {
3919				/*
3920				 * The debugger owner is charged for
3921				 * the memory.
3922				 */
3923				cred = curthread->td_ucred;
3924				crhold(cred);
3925				if (!swap_reserve_by_cred(size, cred)) {
3926					crfree(cred);
3927					vm_map_unlock(map);
3928					return (KERN_RESOURCE_SHORTAGE);
3929				}
3930				entry->cred = cred;
3931			}
3932			vm_object_shadow(&entry->object.vm_object,
3933			    &entry->offset, size);
3934			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3935			eobject = entry->object.vm_object;
3936			if (eobject->cred != NULL) {
3937				/*
3938				 * The object was not shadowed.
3939				 */
3940				swap_release_by_cred(size, entry->cred);
3941				crfree(entry->cred);
3942				entry->cred = NULL;
3943			} else if (entry->cred != NULL) {
3944				VM_OBJECT_WLOCK(eobject);
3945				eobject->cred = entry->cred;
3946				eobject->charge = size;
3947				VM_OBJECT_WUNLOCK(eobject);
3948				entry->cred = NULL;
3949			}
3950
3951			vm_map_lock_downgrade(map);
3952		} else {
3953			/*
3954			 * We're attempting to read a copy-on-write page --
3955			 * don't allow writes.
3956			 */
3957			prot &= ~VM_PROT_WRITE;
3958		}
3959	}
3960
3961	/*
3962	 * Create an object if necessary.
3963	 */
3964	if (entry->object.vm_object == NULL &&
3965	    !map->system_map) {
3966		if (vm_map_lock_upgrade(map))
3967			goto RetryLookup;
3968		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3969		    atop(size));
3970		entry->offset = 0;
3971		if (entry->cred != NULL) {
3972			VM_OBJECT_WLOCK(entry->object.vm_object);
3973			entry->object.vm_object->cred = entry->cred;
3974			entry->object.vm_object->charge = size;
3975			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3976			entry->cred = NULL;
3977		}
3978		vm_map_lock_downgrade(map);
3979	}
3980
3981	/*
3982	 * Return the object/offset from this entry.  If the entry was
3983	 * copy-on-write or empty, it has been fixed up.
3984	 */
3985	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3986	*object = entry->object.vm_object;
3987
3988	*out_prot = prot;
3989	return (KERN_SUCCESS);
3990}
3991
3992/*
3993 *	vm_map_lookup_locked:
3994 *
3995 *	Lookup the faulting address.  A version of vm_map_lookup that returns
3996 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3997 */
3998int
3999vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4000		     vm_offset_t vaddr,
4001		     vm_prot_t fault_typea,
4002		     vm_map_entry_t *out_entry,	/* OUT */
4003		     vm_object_t *object,	/* OUT */
4004		     vm_pindex_t *pindex,	/* OUT */
4005		     vm_prot_t *out_prot,	/* OUT */
4006		     boolean_t *wired)		/* OUT */
4007{
4008	vm_map_entry_t entry;
4009	vm_map_t map = *var_map;
4010	vm_prot_t prot;
4011	vm_prot_t fault_type = fault_typea;
4012
4013	/*
4014	 * Lookup the faulting address.
4015	 */
4016	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4017		return (KERN_INVALID_ADDRESS);
4018
4019	entry = *out_entry;
4020
4021	/*
4022	 * Fail if the entry refers to a submap.
4023	 */
4024	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4025		return (KERN_FAILURE);
4026
4027	/*
4028	 * Check whether this task is allowed to have this page.
4029	 */
4030	prot = entry->protection;
4031	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4032	if ((fault_type & prot) != fault_type)
4033		return (KERN_PROTECTION_FAILURE);
4034	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4035	    (entry->eflags & MAP_ENTRY_COW) &&
4036	    (fault_type & VM_PROT_WRITE))
4037		return (KERN_PROTECTION_FAILURE);
4038
4039	/*
4040	 * If this page is not pageable, we have to get it for all possible
4041	 * accesses.
4042	 */
4043	*wired = (entry->wired_count != 0);
4044	if (*wired)
4045		fault_type = entry->protection;
4046
4047	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4048		/*
4049		 * Fail if the entry was copy-on-write for a write fault.
4050		 */
4051		if (fault_type & VM_PROT_WRITE)
4052			return (KERN_FAILURE);
4053		/*
4054		 * We're attempting to read a copy-on-write page --
4055		 * don't allow writes.
4056		 */
4057		prot &= ~VM_PROT_WRITE;
4058	}
4059
4060	/*
4061	 * Fail if an object should be created.
4062	 */
4063	if (entry->object.vm_object == NULL && !map->system_map)
4064		return (KERN_FAILURE);
4065
4066	/*
4067	 * Return the object/offset from this entry.  If the entry was
4068	 * copy-on-write or empty, it has been fixed up.
4069	 */
4070	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4071	*object = entry->object.vm_object;
4072
4073	*out_prot = prot;
4074	return (KERN_SUCCESS);
4075}
4076
4077/*
4078 *	vm_map_lookup_done:
4079 *
4080 *	Releases locks acquired by a vm_map_lookup
4081 *	(according to the handle returned by that lookup).
4082 */
4083void
4084vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4085{
4086	/*
4087	 * Unlock the main-level map
4088	 */
4089	vm_map_unlock_read(map);
4090}
4091
4092#include "opt_ddb.h"
4093#ifdef DDB
4094#include <sys/kernel.h>
4095
4096#include <ddb/ddb.h>
4097
4098static void
4099vm_map_print(vm_map_t map)
4100{
4101	vm_map_entry_t entry;
4102
4103	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4104	    (void *)map,
4105	    (void *)map->pmap, map->nentries, map->timestamp);
4106
4107	db_indent += 2;
4108	for (entry = map->header.next; entry != &map->header;
4109	    entry = entry->next) {
4110		db_iprintf("map entry %p: start=%p, end=%p\n",
4111		    (void *)entry, (void *)entry->start, (void *)entry->end);
4112		{
4113			static char *inheritance_name[4] =
4114			{"share", "copy", "none", "donate_copy"};
4115
4116			db_iprintf(" prot=%x/%x/%s",
4117			    entry->protection,
4118			    entry->max_protection,
4119			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4120			if (entry->wired_count != 0)
4121				db_printf(", wired");
4122		}
4123		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4124			db_printf(", share=%p, offset=0x%jx\n",
4125			    (void *)entry->object.sub_map,
4126			    (uintmax_t)entry->offset);
4127			if ((entry->prev == &map->header) ||
4128			    (entry->prev->object.sub_map !=
4129				entry->object.sub_map)) {
4130				db_indent += 2;
4131				vm_map_print((vm_map_t)entry->object.sub_map);
4132				db_indent -= 2;
4133			}
4134		} else {
4135			if (entry->cred != NULL)
4136				db_printf(", ruid %d", entry->cred->cr_ruid);
4137			db_printf(", object=%p, offset=0x%jx",
4138			    (void *)entry->object.vm_object,
4139			    (uintmax_t)entry->offset);
4140			if (entry->object.vm_object && entry->object.vm_object->cred)
4141				db_printf(", obj ruid %d charge %jx",
4142				    entry->object.vm_object->cred->cr_ruid,
4143				    (uintmax_t)entry->object.vm_object->charge);
4144			if (entry->eflags & MAP_ENTRY_COW)
4145				db_printf(", copy (%s)",
4146				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4147			db_printf("\n");
4148
4149			if ((entry->prev == &map->header) ||
4150			    (entry->prev->object.vm_object !=
4151				entry->object.vm_object)) {
4152				db_indent += 2;
4153				vm_object_print((db_expr_t)(intptr_t)
4154						entry->object.vm_object,
4155						1, 0, (char *)0);
4156				db_indent -= 2;
4157			}
4158		}
4159	}
4160	db_indent -= 2;
4161}
4162
4163DB_SHOW_COMMAND(map, map)
4164{
4165
4166	if (!have_addr) {
4167		db_printf("usage: show map <addr>\n");
4168		return;
4169	}
4170	vm_map_print((vm_map_t)addr);
4171}
4172
4173DB_SHOW_COMMAND(procvm, procvm)
4174{
4175	struct proc *p;
4176
4177	if (have_addr) {
4178		p = (struct proc *) addr;
4179	} else {
4180		p = curproc;
4181	}
4182
4183	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4184	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4185	    (void *)vmspace_pmap(p->p_vmspace));
4186
4187	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4188}
4189
4190#endif /* DDB */
4191