vm_map.c revision 259297
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Virtual memory mapping module.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_map.c 259297 2013-12-13 06:25:08Z kib $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/mutex.h>
74#include <sys/proc.h>
75#include <sys/vmmeter.h>
76#include <sys/mman.h>
77#include <sys/vnode.h>
78#include <sys/racct.h>
79#include <sys/resourcevar.h>
80#include <sys/rwlock.h>
81#include <sys/file.h>
82#include <sys/sysctl.h>
83#include <sys/sysent.h>
84#include <sys/shm.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_object.h>
92#include <vm/vm_pager.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vnode_pager.h>
96#include <vm/swap_pager.h>
97#include <vm/uma.h>
98
99/*
100 *	Virtual memory maps provide for the mapping, protection,
101 *	and sharing of virtual memory objects.  In addition,
102 *	this module provides for an efficient virtual copy of
103 *	memory from one map to another.
104 *
105 *	Synchronization is required prior to most operations.
106 *
107 *	Maps consist of an ordered doubly-linked list of simple
108 *	entries; a self-adjusting binary search tree of these
109 *	entries is used to speed up lookups.
110 *
111 *	Since portions of maps are specified by start/end addresses,
112 *	which may not align with existing map entries, all
113 *	routines merely "clip" entries to these start/end values.
114 *	[That is, an entry is split into two, bordering at a
115 *	start or end value.]  Note that these clippings may not
116 *	always be necessary (as the two resulting entries are then
117 *	not changed); however, the clipping is done for convenience.
118 *
119 *	As mentioned above, virtual copy operations are performed
120 *	by copying VM object references from one map to
121 *	another, and then marking both regions as copy-on-write.
122 */
123
124static struct mtx map_sleep_mtx;
125static uma_zone_t mapentzone;
126static uma_zone_t kmapentzone;
127static uma_zone_t mapzone;
128static uma_zone_t vmspace_zone;
129static int vmspace_zinit(void *mem, int size, int flags);
130static int vm_map_zinit(void *mem, int ize, int flags);
131static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132    vm_offset_t max);
133static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135#ifdef INVARIANTS
136static void vm_map_zdtor(void *mem, int size, void *arg);
137static void vmspace_zdtor(void *mem, int size, void *arg);
138#endif
139
140#define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
141    ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
142     !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
143
144/*
145 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
146 * stable.
147 */
148#define PROC_VMSPACE_LOCK(p) do { } while (0)
149#define PROC_VMSPACE_UNLOCK(p) do { } while (0)
150
151/*
152 *	VM_MAP_RANGE_CHECK:	[ internal use only ]
153 *
154 *	Asserts that the starting and ending region
155 *	addresses fall within the valid range of the map.
156 */
157#define	VM_MAP_RANGE_CHECK(map, start, end)		\
158		{					\
159		if (start < vm_map_min(map))		\
160			start = vm_map_min(map);	\
161		if (end > vm_map_max(map))		\
162			end = vm_map_max(map);		\
163		if (start > end)			\
164			start = end;			\
165		}
166
167/*
168 *	vm_map_startup:
169 *
170 *	Initialize the vm_map module.  Must be called before
171 *	any other vm_map routines.
172 *
173 *	Map and entry structures are allocated from the general
174 *	purpose memory pool with some exceptions:
175 *
176 *	- The kernel map and kmem submap are allocated statically.
177 *	- Kernel map entries are allocated out of a static pool.
178 *
179 *	These restrictions are necessary since malloc() uses the
180 *	maps and requires map entries.
181 */
182
183void
184vm_map_startup(void)
185{
186	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
187	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
188#ifdef INVARIANTS
189	    vm_map_zdtor,
190#else
191	    NULL,
192#endif
193	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194	uma_prealloc(mapzone, MAX_KMAP);
195	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
196	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
197	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
198	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
201#ifdef INVARIANTS
202	    vmspace_zdtor,
203#else
204	    NULL,
205#endif
206	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207}
208
209static int
210vmspace_zinit(void *mem, int size, int flags)
211{
212	struct vmspace *vm;
213
214	vm = (struct vmspace *)mem;
215
216	vm->vm_map.pmap = NULL;
217	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
218	PMAP_LOCK_INIT(vmspace_pmap(vm));
219	return (0);
220}
221
222static int
223vm_map_zinit(void *mem, int size, int flags)
224{
225	vm_map_t map;
226
227	map = (vm_map_t)mem;
228	memset(map, 0, sizeof(*map));
229	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
230	sx_init(&map->lock, "vm map (user)");
231	return (0);
232}
233
234#ifdef INVARIANTS
235static void
236vmspace_zdtor(void *mem, int size, void *arg)
237{
238	struct vmspace *vm;
239
240	vm = (struct vmspace *)mem;
241
242	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
243}
244static void
245vm_map_zdtor(void *mem, int size, void *arg)
246{
247	vm_map_t map;
248
249	map = (vm_map_t)mem;
250	KASSERT(map->nentries == 0,
251	    ("map %p nentries == %d on free.",
252	    map, map->nentries));
253	KASSERT(map->size == 0,
254	    ("map %p size == %lu on free.",
255	    map, (unsigned long)map->size));
256}
257#endif	/* INVARIANTS */
258
259/*
260 * Allocate a vmspace structure, including a vm_map and pmap,
261 * and initialize those structures.  The refcnt is set to 1.
262 *
263 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
264 */
265struct vmspace *
266vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
267{
268	struct vmspace *vm;
269
270	vm = uma_zalloc(vmspace_zone, M_WAITOK);
271
272	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
273
274	if (pinit == NULL)
275		pinit = &pmap_pinit;
276
277	if (!pinit(vmspace_pmap(vm))) {
278		uma_zfree(vmspace_zone, vm);
279		return (NULL);
280	}
281	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
282	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
283	vm->vm_refcnt = 1;
284	vm->vm_shm = NULL;
285	vm->vm_swrss = 0;
286	vm->vm_tsize = 0;
287	vm->vm_dsize = 0;
288	vm->vm_ssize = 0;
289	vm->vm_taddr = 0;
290	vm->vm_daddr = 0;
291	vm->vm_maxsaddr = 0;
292	return (vm);
293}
294
295static void
296vmspace_container_reset(struct proc *p)
297{
298
299#ifdef RACCT
300	PROC_LOCK(p);
301	racct_set(p, RACCT_DATA, 0);
302	racct_set(p, RACCT_STACK, 0);
303	racct_set(p, RACCT_RSS, 0);
304	racct_set(p, RACCT_MEMLOCK, 0);
305	racct_set(p, RACCT_VMEM, 0);
306	PROC_UNLOCK(p);
307#endif
308}
309
310static inline void
311vmspace_dofree(struct vmspace *vm)
312{
313
314	CTR1(KTR_VM, "vmspace_free: %p", vm);
315
316	/*
317	 * Make sure any SysV shm is freed, it might not have been in
318	 * exit1().
319	 */
320	shmexit(vm);
321
322	/*
323	 * Lock the map, to wait out all other references to it.
324	 * Delete all of the mappings and pages they hold, then call
325	 * the pmap module to reclaim anything left.
326	 */
327	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
328	    vm->vm_map.max_offset);
329
330	pmap_release(vmspace_pmap(vm));
331	vm->vm_map.pmap = NULL;
332	uma_zfree(vmspace_zone, vm);
333}
334
335void
336vmspace_free(struct vmspace *vm)
337{
338
339	if (vm->vm_refcnt == 0)
340		panic("vmspace_free: attempt to free already freed vmspace");
341
342	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
343		vmspace_dofree(vm);
344}
345
346void
347vmspace_exitfree(struct proc *p)
348{
349	struct vmspace *vm;
350
351	PROC_VMSPACE_LOCK(p);
352	vm = p->p_vmspace;
353	p->p_vmspace = NULL;
354	PROC_VMSPACE_UNLOCK(p);
355	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
356	vmspace_free(vm);
357}
358
359void
360vmspace_exit(struct thread *td)
361{
362	int refcnt;
363	struct vmspace *vm;
364	struct proc *p;
365
366	/*
367	 * Release user portion of address space.
368	 * This releases references to vnodes,
369	 * which could cause I/O if the file has been unlinked.
370	 * Need to do this early enough that we can still sleep.
371	 *
372	 * The last exiting process to reach this point releases as
373	 * much of the environment as it can. vmspace_dofree() is the
374	 * slower fallback in case another process had a temporary
375	 * reference to the vmspace.
376	 */
377
378	p = td->td_proc;
379	vm = p->p_vmspace;
380	atomic_add_int(&vmspace0.vm_refcnt, 1);
381	do {
382		refcnt = vm->vm_refcnt;
383		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
384			/* Switch now since other proc might free vmspace */
385			PROC_VMSPACE_LOCK(p);
386			p->p_vmspace = &vmspace0;
387			PROC_VMSPACE_UNLOCK(p);
388			pmap_activate(td);
389		}
390	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
391	if (refcnt == 1) {
392		if (p->p_vmspace != vm) {
393			/* vmspace not yet freed, switch back */
394			PROC_VMSPACE_LOCK(p);
395			p->p_vmspace = vm;
396			PROC_VMSPACE_UNLOCK(p);
397			pmap_activate(td);
398		}
399		pmap_remove_pages(vmspace_pmap(vm));
400		/* Switch now since this proc will free vmspace */
401		PROC_VMSPACE_LOCK(p);
402		p->p_vmspace = &vmspace0;
403		PROC_VMSPACE_UNLOCK(p);
404		pmap_activate(td);
405		vmspace_dofree(vm);
406	}
407	vmspace_container_reset(p);
408}
409
410/* Acquire reference to vmspace owned by another process. */
411
412struct vmspace *
413vmspace_acquire_ref(struct proc *p)
414{
415	struct vmspace *vm;
416	int refcnt;
417
418	PROC_VMSPACE_LOCK(p);
419	vm = p->p_vmspace;
420	if (vm == NULL) {
421		PROC_VMSPACE_UNLOCK(p);
422		return (NULL);
423	}
424	do {
425		refcnt = vm->vm_refcnt;
426		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
427			PROC_VMSPACE_UNLOCK(p);
428			return (NULL);
429		}
430	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
431	if (vm != p->p_vmspace) {
432		PROC_VMSPACE_UNLOCK(p);
433		vmspace_free(vm);
434		return (NULL);
435	}
436	PROC_VMSPACE_UNLOCK(p);
437	return (vm);
438}
439
440void
441_vm_map_lock(vm_map_t map, const char *file, int line)
442{
443
444	if (map->system_map)
445		mtx_lock_flags_(&map->system_mtx, 0, file, line);
446	else
447		sx_xlock_(&map->lock, file, line);
448	map->timestamp++;
449}
450
451static void
452vm_map_process_deferred(void)
453{
454	struct thread *td;
455	vm_map_entry_t entry, next;
456	vm_object_t object;
457
458	td = curthread;
459	entry = td->td_map_def_user;
460	td->td_map_def_user = NULL;
461	while (entry != NULL) {
462		next = entry->next;
463		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
464			/*
465			 * Decrement the object's writemappings and
466			 * possibly the vnode's v_writecount.
467			 */
468			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
469			    ("Submap with writecount"));
470			object = entry->object.vm_object;
471			KASSERT(object != NULL, ("No object for writecount"));
472			vnode_pager_release_writecount(object, entry->start,
473			    entry->end);
474		}
475		vm_map_entry_deallocate(entry, FALSE);
476		entry = next;
477	}
478}
479
480void
481_vm_map_unlock(vm_map_t map, const char *file, int line)
482{
483
484	if (map->system_map)
485		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
486	else {
487		sx_xunlock_(&map->lock, file, line);
488		vm_map_process_deferred();
489	}
490}
491
492void
493_vm_map_lock_read(vm_map_t map, const char *file, int line)
494{
495
496	if (map->system_map)
497		mtx_lock_flags_(&map->system_mtx, 0, file, line);
498	else
499		sx_slock_(&map->lock, file, line);
500}
501
502void
503_vm_map_unlock_read(vm_map_t map, const char *file, int line)
504{
505
506	if (map->system_map)
507		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508	else {
509		sx_sunlock_(&map->lock, file, line);
510		vm_map_process_deferred();
511	}
512}
513
514int
515_vm_map_trylock(vm_map_t map, const char *file, int line)
516{
517	int error;
518
519	error = map->system_map ?
520	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
521	    !sx_try_xlock_(&map->lock, file, line);
522	if (error == 0)
523		map->timestamp++;
524	return (error == 0);
525}
526
527int
528_vm_map_trylock_read(vm_map_t map, const char *file, int line)
529{
530	int error;
531
532	error = map->system_map ?
533	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
534	    !sx_try_slock_(&map->lock, file, line);
535	return (error == 0);
536}
537
538/*
539 *	_vm_map_lock_upgrade:	[ internal use only ]
540 *
541 *	Tries to upgrade a read (shared) lock on the specified map to a write
542 *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
543 *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
544 *	returned without a read or write lock held.
545 *
546 *	Requires that the map be read locked.
547 */
548int
549_vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
550{
551	unsigned int last_timestamp;
552
553	if (map->system_map) {
554		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
555	} else {
556		if (!sx_try_upgrade_(&map->lock, file, line)) {
557			last_timestamp = map->timestamp;
558			sx_sunlock_(&map->lock, file, line);
559			vm_map_process_deferred();
560			/*
561			 * If the map's timestamp does not change while the
562			 * map is unlocked, then the upgrade succeeds.
563			 */
564			sx_xlock_(&map->lock, file, line);
565			if (last_timestamp != map->timestamp) {
566				sx_xunlock_(&map->lock, file, line);
567				return (1);
568			}
569		}
570	}
571	map->timestamp++;
572	return (0);
573}
574
575void
576_vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
577{
578
579	if (map->system_map) {
580		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
581	} else
582		sx_downgrade_(&map->lock, file, line);
583}
584
585/*
586 *	vm_map_locked:
587 *
588 *	Returns a non-zero value if the caller holds a write (exclusive) lock
589 *	on the specified map and the value "0" otherwise.
590 */
591int
592vm_map_locked(vm_map_t map)
593{
594
595	if (map->system_map)
596		return (mtx_owned(&map->system_mtx));
597	else
598		return (sx_xlocked(&map->lock));
599}
600
601#ifdef INVARIANTS
602static void
603_vm_map_assert_locked(vm_map_t map, const char *file, int line)
604{
605
606	if (map->system_map)
607		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
608	else
609		sx_assert_(&map->lock, SA_XLOCKED, file, line);
610}
611
612#define	VM_MAP_ASSERT_LOCKED(map) \
613    _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
614#else
615#define	VM_MAP_ASSERT_LOCKED(map)
616#endif
617
618/*
619 *	_vm_map_unlock_and_wait:
620 *
621 *	Atomically releases the lock on the specified map and puts the calling
622 *	thread to sleep.  The calling thread will remain asleep until either
623 *	vm_map_wakeup() is performed on the map or the specified timeout is
624 *	exceeded.
625 *
626 *	WARNING!  This function does not perform deferred deallocations of
627 *	objects and map	entries.  Therefore, the calling thread is expected to
628 *	reacquire the map lock after reawakening and later perform an ordinary
629 *	unlock operation, such as vm_map_unlock(), before completing its
630 *	operation on the map.
631 */
632int
633_vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
634{
635
636	mtx_lock(&map_sleep_mtx);
637	if (map->system_map)
638		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
639	else
640		sx_xunlock_(&map->lock, file, line);
641	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
642	    timo));
643}
644
645/*
646 *	vm_map_wakeup:
647 *
648 *	Awaken any threads that have slept on the map using
649 *	vm_map_unlock_and_wait().
650 */
651void
652vm_map_wakeup(vm_map_t map)
653{
654
655	/*
656	 * Acquire and release map_sleep_mtx to prevent a wakeup()
657	 * from being performed (and lost) between the map unlock
658	 * and the msleep() in _vm_map_unlock_and_wait().
659	 */
660	mtx_lock(&map_sleep_mtx);
661	mtx_unlock(&map_sleep_mtx);
662	wakeup(&map->root);
663}
664
665void
666vm_map_busy(vm_map_t map)
667{
668
669	VM_MAP_ASSERT_LOCKED(map);
670	map->busy++;
671}
672
673void
674vm_map_unbusy(vm_map_t map)
675{
676
677	VM_MAP_ASSERT_LOCKED(map);
678	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
679	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
680		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
681		wakeup(&map->busy);
682	}
683}
684
685void
686vm_map_wait_busy(vm_map_t map)
687{
688
689	VM_MAP_ASSERT_LOCKED(map);
690	while (map->busy) {
691		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
692		if (map->system_map)
693			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
694		else
695			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
696	}
697	map->timestamp++;
698}
699
700long
701vmspace_resident_count(struct vmspace *vmspace)
702{
703	return pmap_resident_count(vmspace_pmap(vmspace));
704}
705
706/*
707 *	vm_map_create:
708 *
709 *	Creates and returns a new empty VM map with
710 *	the given physical map structure, and having
711 *	the given lower and upper address bounds.
712 */
713vm_map_t
714vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
715{
716	vm_map_t result;
717
718	result = uma_zalloc(mapzone, M_WAITOK);
719	CTR1(KTR_VM, "vm_map_create: %p", result);
720	_vm_map_init(result, pmap, min, max);
721	return (result);
722}
723
724/*
725 * Initialize an existing vm_map structure
726 * such as that in the vmspace structure.
727 */
728static void
729_vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
730{
731
732	map->header.next = map->header.prev = &map->header;
733	map->needs_wakeup = FALSE;
734	map->system_map = 0;
735	map->pmap = pmap;
736	map->min_offset = min;
737	map->max_offset = max;
738	map->flags = 0;
739	map->root = NULL;
740	map->timestamp = 0;
741	map->busy = 0;
742}
743
744void
745vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
746{
747
748	_vm_map_init(map, pmap, min, max);
749	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
750	sx_init(&map->lock, "user map");
751}
752
753/*
754 *	vm_map_entry_dispose:	[ internal use only ]
755 *
756 *	Inverse of vm_map_entry_create.
757 */
758static void
759vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
760{
761	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
762}
763
764/*
765 *	vm_map_entry_create:	[ internal use only ]
766 *
767 *	Allocates a VM map entry for insertion.
768 *	No entry fields are filled in.
769 */
770static vm_map_entry_t
771vm_map_entry_create(vm_map_t map)
772{
773	vm_map_entry_t new_entry;
774
775	if (map->system_map)
776		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
777	else
778		new_entry = uma_zalloc(mapentzone, M_WAITOK);
779	if (new_entry == NULL)
780		panic("vm_map_entry_create: kernel resources exhausted");
781	return (new_entry);
782}
783
784/*
785 *	vm_map_entry_set_behavior:
786 *
787 *	Set the expected access behavior, either normal, random, or
788 *	sequential.
789 */
790static inline void
791vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
792{
793	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
794	    (behavior & MAP_ENTRY_BEHAV_MASK);
795}
796
797/*
798 *	vm_map_entry_set_max_free:
799 *
800 *	Set the max_free field in a vm_map_entry.
801 */
802static inline void
803vm_map_entry_set_max_free(vm_map_entry_t entry)
804{
805
806	entry->max_free = entry->adj_free;
807	if (entry->left != NULL && entry->left->max_free > entry->max_free)
808		entry->max_free = entry->left->max_free;
809	if (entry->right != NULL && entry->right->max_free > entry->max_free)
810		entry->max_free = entry->right->max_free;
811}
812
813/*
814 *	vm_map_entry_splay:
815 *
816 *	The Sleator and Tarjan top-down splay algorithm with the
817 *	following variation.  Max_free must be computed bottom-up, so
818 *	on the downward pass, maintain the left and right spines in
819 *	reverse order.  Then, make a second pass up each side to fix
820 *	the pointers and compute max_free.  The time bound is O(log n)
821 *	amortized.
822 *
823 *	The new root is the vm_map_entry containing "addr", or else an
824 *	adjacent entry (lower or higher) if addr is not in the tree.
825 *
826 *	The map must be locked, and leaves it so.
827 *
828 *	Returns: the new root.
829 */
830static vm_map_entry_t
831vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
832{
833	vm_map_entry_t llist, rlist;
834	vm_map_entry_t ltree, rtree;
835	vm_map_entry_t y;
836
837	/* Special case of empty tree. */
838	if (root == NULL)
839		return (root);
840
841	/*
842	 * Pass One: Splay down the tree until we find addr or a NULL
843	 * pointer where addr would go.  llist and rlist are the two
844	 * sides in reverse order (bottom-up), with llist linked by
845	 * the right pointer and rlist linked by the left pointer in
846	 * the vm_map_entry.  Wait until Pass Two to set max_free on
847	 * the two spines.
848	 */
849	llist = NULL;
850	rlist = NULL;
851	for (;;) {
852		/* root is never NULL in here. */
853		if (addr < root->start) {
854			y = root->left;
855			if (y == NULL)
856				break;
857			if (addr < y->start && y->left != NULL) {
858				/* Rotate right and put y on rlist. */
859				root->left = y->right;
860				y->right = root;
861				vm_map_entry_set_max_free(root);
862				root = y->left;
863				y->left = rlist;
864				rlist = y;
865			} else {
866				/* Put root on rlist. */
867				root->left = rlist;
868				rlist = root;
869				root = y;
870			}
871		} else if (addr >= root->end) {
872			y = root->right;
873			if (y == NULL)
874				break;
875			if (addr >= y->end && y->right != NULL) {
876				/* Rotate left and put y on llist. */
877				root->right = y->left;
878				y->left = root;
879				vm_map_entry_set_max_free(root);
880				root = y->right;
881				y->right = llist;
882				llist = y;
883			} else {
884				/* Put root on llist. */
885				root->right = llist;
886				llist = root;
887				root = y;
888			}
889		} else
890			break;
891	}
892
893	/*
894	 * Pass Two: Walk back up the two spines, flip the pointers
895	 * and set max_free.  The subtrees of the root go at the
896	 * bottom of llist and rlist.
897	 */
898	ltree = root->left;
899	while (llist != NULL) {
900		y = llist->right;
901		llist->right = ltree;
902		vm_map_entry_set_max_free(llist);
903		ltree = llist;
904		llist = y;
905	}
906	rtree = root->right;
907	while (rlist != NULL) {
908		y = rlist->left;
909		rlist->left = rtree;
910		vm_map_entry_set_max_free(rlist);
911		rtree = rlist;
912		rlist = y;
913	}
914
915	/*
916	 * Final assembly: add ltree and rtree as subtrees of root.
917	 */
918	root->left = ltree;
919	root->right = rtree;
920	vm_map_entry_set_max_free(root);
921
922	return (root);
923}
924
925/*
926 *	vm_map_entry_{un,}link:
927 *
928 *	Insert/remove entries from maps.
929 */
930static void
931vm_map_entry_link(vm_map_t map,
932		  vm_map_entry_t after_where,
933		  vm_map_entry_t entry)
934{
935
936	CTR4(KTR_VM,
937	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
938	    map->nentries, entry, after_where);
939	VM_MAP_ASSERT_LOCKED(map);
940	map->nentries++;
941	entry->prev = after_where;
942	entry->next = after_where->next;
943	entry->next->prev = entry;
944	after_where->next = entry;
945
946	if (after_where != &map->header) {
947		if (after_where != map->root)
948			vm_map_entry_splay(after_where->start, map->root);
949		entry->right = after_where->right;
950		entry->left = after_where;
951		after_where->right = NULL;
952		after_where->adj_free = entry->start - after_where->end;
953		vm_map_entry_set_max_free(after_where);
954	} else {
955		entry->right = map->root;
956		entry->left = NULL;
957	}
958	entry->adj_free = (entry->next == &map->header ? map->max_offset :
959	    entry->next->start) - entry->end;
960	vm_map_entry_set_max_free(entry);
961	map->root = entry;
962}
963
964static void
965vm_map_entry_unlink(vm_map_t map,
966		    vm_map_entry_t entry)
967{
968	vm_map_entry_t next, prev, root;
969
970	VM_MAP_ASSERT_LOCKED(map);
971	if (entry != map->root)
972		vm_map_entry_splay(entry->start, map->root);
973	if (entry->left == NULL)
974		root = entry->right;
975	else {
976		root = vm_map_entry_splay(entry->start, entry->left);
977		root->right = entry->right;
978		root->adj_free = (entry->next == &map->header ? map->max_offset :
979		    entry->next->start) - root->end;
980		vm_map_entry_set_max_free(root);
981	}
982	map->root = root;
983
984	prev = entry->prev;
985	next = entry->next;
986	next->prev = prev;
987	prev->next = next;
988	map->nentries--;
989	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
990	    map->nentries, entry);
991}
992
993/*
994 *	vm_map_entry_resize_free:
995 *
996 *	Recompute the amount of free space following a vm_map_entry
997 *	and propagate that value up the tree.  Call this function after
998 *	resizing a map entry in-place, that is, without a call to
999 *	vm_map_entry_link() or _unlink().
1000 *
1001 *	The map must be locked, and leaves it so.
1002 */
1003static void
1004vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1005{
1006
1007	/*
1008	 * Using splay trees without parent pointers, propagating
1009	 * max_free up the tree is done by moving the entry to the
1010	 * root and making the change there.
1011	 */
1012	if (entry != map->root)
1013		map->root = vm_map_entry_splay(entry->start, map->root);
1014
1015	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1016	    entry->next->start) - entry->end;
1017	vm_map_entry_set_max_free(entry);
1018}
1019
1020/*
1021 *	vm_map_lookup_entry:	[ internal use only ]
1022 *
1023 *	Finds the map entry containing (or
1024 *	immediately preceding) the specified address
1025 *	in the given map; the entry is returned
1026 *	in the "entry" parameter.  The boolean
1027 *	result indicates whether the address is
1028 *	actually contained in the map.
1029 */
1030boolean_t
1031vm_map_lookup_entry(
1032	vm_map_t map,
1033	vm_offset_t address,
1034	vm_map_entry_t *entry)	/* OUT */
1035{
1036	vm_map_entry_t cur;
1037	boolean_t locked;
1038
1039	/*
1040	 * If the map is empty, then the map entry immediately preceding
1041	 * "address" is the map's header.
1042	 */
1043	cur = map->root;
1044	if (cur == NULL)
1045		*entry = &map->header;
1046	else if (address >= cur->start && cur->end > address) {
1047		*entry = cur;
1048		return (TRUE);
1049	} else if ((locked = vm_map_locked(map)) ||
1050	    sx_try_upgrade(&map->lock)) {
1051		/*
1052		 * Splay requires a write lock on the map.  However, it only
1053		 * restructures the binary search tree; it does not otherwise
1054		 * change the map.  Thus, the map's timestamp need not change
1055		 * on a temporary upgrade.
1056		 */
1057		map->root = cur = vm_map_entry_splay(address, cur);
1058		if (!locked)
1059			sx_downgrade(&map->lock);
1060
1061		/*
1062		 * If "address" is contained within a map entry, the new root
1063		 * is that map entry.  Otherwise, the new root is a map entry
1064		 * immediately before or after "address".
1065		 */
1066		if (address >= cur->start) {
1067			*entry = cur;
1068			if (cur->end > address)
1069				return (TRUE);
1070		} else
1071			*entry = cur->prev;
1072	} else
1073		/*
1074		 * Since the map is only locked for read access, perform a
1075		 * standard binary search tree lookup for "address".
1076		 */
1077		for (;;) {
1078			if (address < cur->start) {
1079				if (cur->left == NULL) {
1080					*entry = cur->prev;
1081					break;
1082				}
1083				cur = cur->left;
1084			} else if (cur->end > address) {
1085				*entry = cur;
1086				return (TRUE);
1087			} else {
1088				if (cur->right == NULL) {
1089					*entry = cur;
1090					break;
1091				}
1092				cur = cur->right;
1093			}
1094		}
1095	return (FALSE);
1096}
1097
1098/*
1099 *	vm_map_insert:
1100 *
1101 *	Inserts the given whole VM object into the target
1102 *	map at the specified address range.  The object's
1103 *	size should match that of the address range.
1104 *
1105 *	Requires that the map be locked, and leaves it so.
1106 *
1107 *	If object is non-NULL, ref count must be bumped by caller
1108 *	prior to making call to account for the new entry.
1109 */
1110int
1111vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1112	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1113	      int cow)
1114{
1115	vm_map_entry_t new_entry;
1116	vm_map_entry_t prev_entry;
1117	vm_map_entry_t temp_entry;
1118	vm_eflags_t protoeflags;
1119	struct ucred *cred;
1120	vm_inherit_t inheritance;
1121	boolean_t charge_prev_obj;
1122
1123	VM_MAP_ASSERT_LOCKED(map);
1124
1125	/*
1126	 * Check that the start and end points are not bogus.
1127	 */
1128	if ((start < map->min_offset) || (end > map->max_offset) ||
1129	    (start >= end))
1130		return (KERN_INVALID_ADDRESS);
1131
1132	/*
1133	 * Find the entry prior to the proposed starting address; if it's part
1134	 * of an existing entry, this range is bogus.
1135	 */
1136	if (vm_map_lookup_entry(map, start, &temp_entry))
1137		return (KERN_NO_SPACE);
1138
1139	prev_entry = temp_entry;
1140
1141	/*
1142	 * Assert that the next entry doesn't overlap the end point.
1143	 */
1144	if ((prev_entry->next != &map->header) &&
1145	    (prev_entry->next->start < end))
1146		return (KERN_NO_SPACE);
1147
1148	protoeflags = 0;
1149	charge_prev_obj = FALSE;
1150
1151	if (cow & MAP_COPY_ON_WRITE)
1152		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1153
1154	if (cow & MAP_NOFAULT) {
1155		protoeflags |= MAP_ENTRY_NOFAULT;
1156
1157		KASSERT(object == NULL,
1158			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1159	}
1160	if (cow & MAP_DISABLE_SYNCER)
1161		protoeflags |= MAP_ENTRY_NOSYNC;
1162	if (cow & MAP_DISABLE_COREDUMP)
1163		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1164	if (cow & MAP_VN_WRITECOUNT)
1165		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1166	if (cow & MAP_INHERIT_SHARE)
1167		inheritance = VM_INHERIT_SHARE;
1168	else
1169		inheritance = VM_INHERIT_DEFAULT;
1170
1171	cred = NULL;
1172	KASSERT((object != kmem_object && object != kernel_object) ||
1173	    ((object == kmem_object || object == kernel_object) &&
1174		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1175	    ("kmem or kernel object and cow"));
1176	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1177		goto charged;
1178	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1179	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1180		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1181			return (KERN_RESOURCE_SHORTAGE);
1182		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1183		    object->cred == NULL,
1184		    ("OVERCOMMIT: vm_map_insert o %p", object));
1185		cred = curthread->td_ucred;
1186		crhold(cred);
1187		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1188			charge_prev_obj = TRUE;
1189	}
1190
1191charged:
1192	/* Expand the kernel pmap, if necessary. */
1193	if (map == kernel_map && end > kernel_vm_end)
1194		pmap_growkernel(end);
1195	if (object != NULL) {
1196		/*
1197		 * OBJ_ONEMAPPING must be cleared unless this mapping
1198		 * is trivially proven to be the only mapping for any
1199		 * of the object's pages.  (Object granularity
1200		 * reference counting is insufficient to recognize
1201		 * aliases with precision.)
1202		 */
1203		VM_OBJECT_WLOCK(object);
1204		if (object->ref_count > 1 || object->shadow_count != 0)
1205			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1206		VM_OBJECT_WUNLOCK(object);
1207	}
1208	else if ((prev_entry != &map->header) &&
1209		 (prev_entry->eflags == protoeflags) &&
1210		 (prev_entry->end == start) &&
1211		 (prev_entry->wired_count == 0) &&
1212		 (prev_entry->cred == cred ||
1213		  (prev_entry->object.vm_object != NULL &&
1214		   (prev_entry->object.vm_object->cred == cred))) &&
1215		   vm_object_coalesce(prev_entry->object.vm_object,
1216		       prev_entry->offset,
1217		       (vm_size_t)(prev_entry->end - prev_entry->start),
1218		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1219		/*
1220		 * We were able to extend the object.  Determine if we
1221		 * can extend the previous map entry to include the
1222		 * new range as well.
1223		 */
1224		if ((prev_entry->inheritance == inheritance) &&
1225		    (prev_entry->protection == prot) &&
1226		    (prev_entry->max_protection == max)) {
1227			map->size += (end - prev_entry->end);
1228			prev_entry->end = end;
1229			vm_map_entry_resize_free(map, prev_entry);
1230			vm_map_simplify_entry(map, prev_entry);
1231			if (cred != NULL)
1232				crfree(cred);
1233			return (KERN_SUCCESS);
1234		}
1235
1236		/*
1237		 * If we can extend the object but cannot extend the
1238		 * map entry, we have to create a new map entry.  We
1239		 * must bump the ref count on the extended object to
1240		 * account for it.  object may be NULL.
1241		 */
1242		object = prev_entry->object.vm_object;
1243		offset = prev_entry->offset +
1244			(prev_entry->end - prev_entry->start);
1245		vm_object_reference(object);
1246		if (cred != NULL && object != NULL && object->cred != NULL &&
1247		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1248			/* Object already accounts for this uid. */
1249			crfree(cred);
1250			cred = NULL;
1251		}
1252	}
1253
1254	/*
1255	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1256	 * in things like the buffer map where we manage kva but do not manage
1257	 * backing objects.
1258	 */
1259
1260	/*
1261	 * Create a new entry
1262	 */
1263	new_entry = vm_map_entry_create(map);
1264	new_entry->start = start;
1265	new_entry->end = end;
1266	new_entry->cred = NULL;
1267
1268	new_entry->eflags = protoeflags;
1269	new_entry->object.vm_object = object;
1270	new_entry->offset = offset;
1271	new_entry->avail_ssize = 0;
1272
1273	new_entry->inheritance = inheritance;
1274	new_entry->protection = prot;
1275	new_entry->max_protection = max;
1276	new_entry->wired_count = 0;
1277	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1278	new_entry->next_read = OFF_TO_IDX(offset);
1279
1280	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1281	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1282	new_entry->cred = cred;
1283
1284	/*
1285	 * Insert the new entry into the list
1286	 */
1287	vm_map_entry_link(map, prev_entry, new_entry);
1288	map->size += new_entry->end - new_entry->start;
1289
1290	/*
1291	 * It may be possible to merge the new entry with the next and/or
1292	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1293	 * panic can result from merging such entries.
1294	 */
1295	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1296		vm_map_simplify_entry(map, new_entry);
1297
1298	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1299		vm_map_pmap_enter(map, start, prot,
1300				    object, OFF_TO_IDX(offset), end - start,
1301				    cow & MAP_PREFAULT_PARTIAL);
1302	}
1303
1304	return (KERN_SUCCESS);
1305}
1306
1307/*
1308 *	vm_map_findspace:
1309 *
1310 *	Find the first fit (lowest VM address) for "length" free bytes
1311 *	beginning at address >= start in the given map.
1312 *
1313 *	In a vm_map_entry, "adj_free" is the amount of free space
1314 *	adjacent (higher address) to this entry, and "max_free" is the
1315 *	maximum amount of contiguous free space in its subtree.  This
1316 *	allows finding a free region in one path down the tree, so
1317 *	O(log n) amortized with splay trees.
1318 *
1319 *	The map must be locked, and leaves it so.
1320 *
1321 *	Returns: 0 on success, and starting address in *addr,
1322 *		 1 if insufficient space.
1323 */
1324int
1325vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1326    vm_offset_t *addr)	/* OUT */
1327{
1328	vm_map_entry_t entry;
1329	vm_offset_t st;
1330
1331	/*
1332	 * Request must fit within min/max VM address and must avoid
1333	 * address wrap.
1334	 */
1335	if (start < map->min_offset)
1336		start = map->min_offset;
1337	if (start + length > map->max_offset || start + length < start)
1338		return (1);
1339
1340	/* Empty tree means wide open address space. */
1341	if (map->root == NULL) {
1342		*addr = start;
1343		return (0);
1344	}
1345
1346	/*
1347	 * After splay, if start comes before root node, then there
1348	 * must be a gap from start to the root.
1349	 */
1350	map->root = vm_map_entry_splay(start, map->root);
1351	if (start + length <= map->root->start) {
1352		*addr = start;
1353		return (0);
1354	}
1355
1356	/*
1357	 * Root is the last node that might begin its gap before
1358	 * start, and this is the last comparison where address
1359	 * wrap might be a problem.
1360	 */
1361	st = (start > map->root->end) ? start : map->root->end;
1362	if (length <= map->root->end + map->root->adj_free - st) {
1363		*addr = st;
1364		return (0);
1365	}
1366
1367	/* With max_free, can immediately tell if no solution. */
1368	entry = map->root->right;
1369	if (entry == NULL || length > entry->max_free)
1370		return (1);
1371
1372	/*
1373	 * Search the right subtree in the order: left subtree, root,
1374	 * right subtree (first fit).  The previous splay implies that
1375	 * all regions in the right subtree have addresses > start.
1376	 */
1377	while (entry != NULL) {
1378		if (entry->left != NULL && entry->left->max_free >= length)
1379			entry = entry->left;
1380		else if (entry->adj_free >= length) {
1381			*addr = entry->end;
1382			return (0);
1383		} else
1384			entry = entry->right;
1385	}
1386
1387	/* Can't get here, so panic if we do. */
1388	panic("vm_map_findspace: max_free corrupt");
1389}
1390
1391int
1392vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1393    vm_offset_t start, vm_size_t length, vm_prot_t prot,
1394    vm_prot_t max, int cow)
1395{
1396	vm_offset_t end;
1397	int result;
1398
1399	end = start + length;
1400	vm_map_lock(map);
1401	VM_MAP_RANGE_CHECK(map, start, end);
1402	(void) vm_map_delete(map, start, end);
1403	result = vm_map_insert(map, object, offset, start, end, prot,
1404	    max, cow);
1405	vm_map_unlock(map);
1406	return (result);
1407}
1408
1409/*
1410 *	vm_map_find finds an unallocated region in the target address
1411 *	map with the given length.  The search is defined to be
1412 *	first-fit from the specified address; the region found is
1413 *	returned in the same parameter.
1414 *
1415 *	If object is non-NULL, ref count must be bumped by caller
1416 *	prior to making call to account for the new entry.
1417 */
1418int
1419vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1420	    vm_offset_t *addr,	/* IN/OUT */
1421	    vm_size_t length, vm_offset_t max_addr, int find_space,
1422	    vm_prot_t prot, vm_prot_t max, int cow)
1423{
1424	vm_offset_t alignment, initial_addr, start;
1425	int result;
1426
1427	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1428	    (object->flags & OBJ_COLORED) == 0))
1429		find_space = VMFS_ANY_SPACE;
1430	if (find_space >> 8 != 0) {
1431		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1432		alignment = (vm_offset_t)1 << (find_space >> 8);
1433	} else
1434		alignment = 0;
1435	initial_addr = *addr;
1436again:
1437	start = initial_addr;
1438	vm_map_lock(map);
1439	do {
1440		if (find_space != VMFS_NO_SPACE) {
1441			if (vm_map_findspace(map, start, length, addr) ||
1442			    (max_addr != 0 && *addr + length > max_addr)) {
1443				vm_map_unlock(map);
1444				if (find_space == VMFS_OPTIMAL_SPACE) {
1445					find_space = VMFS_ANY_SPACE;
1446					goto again;
1447				}
1448				return (KERN_NO_SPACE);
1449			}
1450			switch (find_space) {
1451			case VMFS_SUPER_SPACE:
1452			case VMFS_OPTIMAL_SPACE:
1453				pmap_align_superpage(object, offset, addr,
1454				    length);
1455				break;
1456			case VMFS_ANY_SPACE:
1457				break;
1458			default:
1459				if ((*addr & (alignment - 1)) != 0) {
1460					*addr &= ~(alignment - 1);
1461					*addr += alignment;
1462				}
1463				break;
1464			}
1465
1466			start = *addr;
1467		}
1468		result = vm_map_insert(map, object, offset, start, start +
1469		    length, prot, max, cow);
1470	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1471	    find_space != VMFS_ANY_SPACE);
1472	vm_map_unlock(map);
1473	return (result);
1474}
1475
1476/*
1477 *	vm_map_simplify_entry:
1478 *
1479 *	Simplify the given map entry by merging with either neighbor.  This
1480 *	routine also has the ability to merge with both neighbors.
1481 *
1482 *	The map must be locked.
1483 *
1484 *	This routine guarentees that the passed entry remains valid (though
1485 *	possibly extended).  When merging, this routine may delete one or
1486 *	both neighbors.
1487 */
1488void
1489vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1490{
1491	vm_map_entry_t next, prev;
1492	vm_size_t prevsize, esize;
1493
1494	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1495		return;
1496
1497	prev = entry->prev;
1498	if (prev != &map->header) {
1499		prevsize = prev->end - prev->start;
1500		if ( (prev->end == entry->start) &&
1501		     (prev->object.vm_object == entry->object.vm_object) &&
1502		     (!prev->object.vm_object ||
1503			(prev->offset + prevsize == entry->offset)) &&
1504		     (prev->eflags == entry->eflags) &&
1505		     (prev->protection == entry->protection) &&
1506		     (prev->max_protection == entry->max_protection) &&
1507		     (prev->inheritance == entry->inheritance) &&
1508		     (prev->wired_count == entry->wired_count) &&
1509		     (prev->cred == entry->cred)) {
1510			vm_map_entry_unlink(map, prev);
1511			entry->start = prev->start;
1512			entry->offset = prev->offset;
1513			if (entry->prev != &map->header)
1514				vm_map_entry_resize_free(map, entry->prev);
1515
1516			/*
1517			 * If the backing object is a vnode object,
1518			 * vm_object_deallocate() calls vrele().
1519			 * However, vrele() does not lock the vnode
1520			 * because the vnode has additional
1521			 * references.  Thus, the map lock can be kept
1522			 * without causing a lock-order reversal with
1523			 * the vnode lock.
1524			 *
1525			 * Since we count the number of virtual page
1526			 * mappings in object->un_pager.vnp.writemappings,
1527			 * the writemappings value should not be adjusted
1528			 * when the entry is disposed of.
1529			 */
1530			if (prev->object.vm_object)
1531				vm_object_deallocate(prev->object.vm_object);
1532			if (prev->cred != NULL)
1533				crfree(prev->cred);
1534			vm_map_entry_dispose(map, prev);
1535		}
1536	}
1537
1538	next = entry->next;
1539	if (next != &map->header) {
1540		esize = entry->end - entry->start;
1541		if ((entry->end == next->start) &&
1542		    (next->object.vm_object == entry->object.vm_object) &&
1543		     (!entry->object.vm_object ||
1544			(entry->offset + esize == next->offset)) &&
1545		    (next->eflags == entry->eflags) &&
1546		    (next->protection == entry->protection) &&
1547		    (next->max_protection == entry->max_protection) &&
1548		    (next->inheritance == entry->inheritance) &&
1549		    (next->wired_count == entry->wired_count) &&
1550		    (next->cred == entry->cred)) {
1551			vm_map_entry_unlink(map, next);
1552			entry->end = next->end;
1553			vm_map_entry_resize_free(map, entry);
1554
1555			/*
1556			 * See comment above.
1557			 */
1558			if (next->object.vm_object)
1559				vm_object_deallocate(next->object.vm_object);
1560			if (next->cred != NULL)
1561				crfree(next->cred);
1562			vm_map_entry_dispose(map, next);
1563		}
1564	}
1565}
1566/*
1567 *	vm_map_clip_start:	[ internal use only ]
1568 *
1569 *	Asserts that the given entry begins at or after
1570 *	the specified address; if necessary,
1571 *	it splits the entry into two.
1572 */
1573#define vm_map_clip_start(map, entry, startaddr) \
1574{ \
1575	if (startaddr > entry->start) \
1576		_vm_map_clip_start(map, entry, startaddr); \
1577}
1578
1579/*
1580 *	This routine is called only when it is known that
1581 *	the entry must be split.
1582 */
1583static void
1584_vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1585{
1586	vm_map_entry_t new_entry;
1587
1588	VM_MAP_ASSERT_LOCKED(map);
1589
1590	/*
1591	 * Split off the front portion -- note that we must insert the new
1592	 * entry BEFORE this one, so that this entry has the specified
1593	 * starting address.
1594	 */
1595	vm_map_simplify_entry(map, entry);
1596
1597	/*
1598	 * If there is no object backing this entry, we might as well create
1599	 * one now.  If we defer it, an object can get created after the map
1600	 * is clipped, and individual objects will be created for the split-up
1601	 * map.  This is a bit of a hack, but is also about the best place to
1602	 * put this improvement.
1603	 */
1604	if (entry->object.vm_object == NULL && !map->system_map) {
1605		vm_object_t object;
1606		object = vm_object_allocate(OBJT_DEFAULT,
1607				atop(entry->end - entry->start));
1608		entry->object.vm_object = object;
1609		entry->offset = 0;
1610		if (entry->cred != NULL) {
1611			object->cred = entry->cred;
1612			object->charge = entry->end - entry->start;
1613			entry->cred = NULL;
1614		}
1615	} else if (entry->object.vm_object != NULL &&
1616		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1617		   entry->cred != NULL) {
1618		VM_OBJECT_WLOCK(entry->object.vm_object);
1619		KASSERT(entry->object.vm_object->cred == NULL,
1620		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1621		entry->object.vm_object->cred = entry->cred;
1622		entry->object.vm_object->charge = entry->end - entry->start;
1623		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1624		entry->cred = NULL;
1625	}
1626
1627	new_entry = vm_map_entry_create(map);
1628	*new_entry = *entry;
1629
1630	new_entry->end = start;
1631	entry->offset += (start - entry->start);
1632	entry->start = start;
1633	if (new_entry->cred != NULL)
1634		crhold(entry->cred);
1635
1636	vm_map_entry_link(map, entry->prev, new_entry);
1637
1638	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1639		vm_object_reference(new_entry->object.vm_object);
1640		/*
1641		 * The object->un_pager.vnp.writemappings for the
1642		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1643		 * kept as is here.  The virtual pages are
1644		 * re-distributed among the clipped entries, so the sum is
1645		 * left the same.
1646		 */
1647	}
1648}
1649
1650/*
1651 *	vm_map_clip_end:	[ internal use only ]
1652 *
1653 *	Asserts that the given entry ends at or before
1654 *	the specified address; if necessary,
1655 *	it splits the entry into two.
1656 */
1657#define vm_map_clip_end(map, entry, endaddr) \
1658{ \
1659	if ((endaddr) < (entry->end)) \
1660		_vm_map_clip_end((map), (entry), (endaddr)); \
1661}
1662
1663/*
1664 *	This routine is called only when it is known that
1665 *	the entry must be split.
1666 */
1667static void
1668_vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1669{
1670	vm_map_entry_t new_entry;
1671
1672	VM_MAP_ASSERT_LOCKED(map);
1673
1674	/*
1675	 * If there is no object backing this entry, we might as well create
1676	 * one now.  If we defer it, an object can get created after the map
1677	 * is clipped, and individual objects will be created for the split-up
1678	 * map.  This is a bit of a hack, but is also about the best place to
1679	 * put this improvement.
1680	 */
1681	if (entry->object.vm_object == NULL && !map->system_map) {
1682		vm_object_t object;
1683		object = vm_object_allocate(OBJT_DEFAULT,
1684				atop(entry->end - entry->start));
1685		entry->object.vm_object = object;
1686		entry->offset = 0;
1687		if (entry->cred != NULL) {
1688			object->cred = entry->cred;
1689			object->charge = entry->end - entry->start;
1690			entry->cred = NULL;
1691		}
1692	} else if (entry->object.vm_object != NULL &&
1693		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1694		   entry->cred != NULL) {
1695		VM_OBJECT_WLOCK(entry->object.vm_object);
1696		KASSERT(entry->object.vm_object->cred == NULL,
1697		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1698		entry->object.vm_object->cred = entry->cred;
1699		entry->object.vm_object->charge = entry->end - entry->start;
1700		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1701		entry->cred = NULL;
1702	}
1703
1704	/*
1705	 * Create a new entry and insert it AFTER the specified entry
1706	 */
1707	new_entry = vm_map_entry_create(map);
1708	*new_entry = *entry;
1709
1710	new_entry->start = entry->end = end;
1711	new_entry->offset += (end - entry->start);
1712	if (new_entry->cred != NULL)
1713		crhold(entry->cred);
1714
1715	vm_map_entry_link(map, entry, new_entry);
1716
1717	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1718		vm_object_reference(new_entry->object.vm_object);
1719	}
1720}
1721
1722/*
1723 *	vm_map_submap:		[ kernel use only ]
1724 *
1725 *	Mark the given range as handled by a subordinate map.
1726 *
1727 *	This range must have been created with vm_map_find,
1728 *	and no other operations may have been performed on this
1729 *	range prior to calling vm_map_submap.
1730 *
1731 *	Only a limited number of operations can be performed
1732 *	within this rage after calling vm_map_submap:
1733 *		vm_fault
1734 *	[Don't try vm_map_copy!]
1735 *
1736 *	To remove a submapping, one must first remove the
1737 *	range from the superior map, and then destroy the
1738 *	submap (if desired).  [Better yet, don't try it.]
1739 */
1740int
1741vm_map_submap(
1742	vm_map_t map,
1743	vm_offset_t start,
1744	vm_offset_t end,
1745	vm_map_t submap)
1746{
1747	vm_map_entry_t entry;
1748	int result = KERN_INVALID_ARGUMENT;
1749
1750	vm_map_lock(map);
1751
1752	VM_MAP_RANGE_CHECK(map, start, end);
1753
1754	if (vm_map_lookup_entry(map, start, &entry)) {
1755		vm_map_clip_start(map, entry, start);
1756	} else
1757		entry = entry->next;
1758
1759	vm_map_clip_end(map, entry, end);
1760
1761	if ((entry->start == start) && (entry->end == end) &&
1762	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1763	    (entry->object.vm_object == NULL)) {
1764		entry->object.sub_map = submap;
1765		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1766		result = KERN_SUCCESS;
1767	}
1768	vm_map_unlock(map);
1769
1770	return (result);
1771}
1772
1773/*
1774 * The maximum number of pages to map
1775 */
1776#define	MAX_INIT_PT	96
1777
1778/*
1779 *	vm_map_pmap_enter:
1780 *
1781 *	Preload read-only mappings for the specified object's resident pages
1782 *	into the target map.  If "flags" is MAP_PREFAULT_PARTIAL, then only
1783 *	the resident pages within the address range [addr, addr + ulmin(size,
1784 *	ptoa(MAX_INIT_PT))) are mapped.  Otherwise, all resident pages within
1785 *	the specified address range are mapped.  This eliminates many soft
1786 *	faults on process startup and immediately after an mmap(2).  Because
1787 *	these are speculative mappings, cached pages are not reactivated and
1788 *	mapped.
1789 */
1790void
1791vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1792    vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1793{
1794	vm_offset_t start;
1795	vm_page_t p, p_start;
1796	vm_pindex_t psize, tmpidx;
1797
1798	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1799		return;
1800	VM_OBJECT_RLOCK(object);
1801	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1802		VM_OBJECT_RUNLOCK(object);
1803		VM_OBJECT_WLOCK(object);
1804		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1805			pmap_object_init_pt(map->pmap, addr, object, pindex,
1806			    size);
1807			VM_OBJECT_WUNLOCK(object);
1808			return;
1809		}
1810		VM_OBJECT_LOCK_DOWNGRADE(object);
1811	}
1812
1813	psize = atop(size);
1814	if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0)
1815		psize = MAX_INIT_PT;
1816	if (psize + pindex > object->size) {
1817		if (object->size < pindex) {
1818			VM_OBJECT_RUNLOCK(object);
1819			return;
1820		}
1821		psize = object->size - pindex;
1822	}
1823
1824	start = 0;
1825	p_start = NULL;
1826
1827	p = vm_page_find_least(object, pindex);
1828	/*
1829	 * Assert: the variable p is either (1) the page with the
1830	 * least pindex greater than or equal to the parameter pindex
1831	 * or (2) NULL.
1832	 */
1833	for (;
1834	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1835	     p = TAILQ_NEXT(p, listq)) {
1836		/*
1837		 * don't allow an madvise to blow away our really
1838		 * free pages allocating pv entries.
1839		 */
1840		if ((flags & MAP_PREFAULT_MADVISE) &&
1841		    cnt.v_free_count < cnt.v_free_reserved) {
1842			psize = tmpidx;
1843			break;
1844		}
1845		if (p->valid == VM_PAGE_BITS_ALL) {
1846			if (p_start == NULL) {
1847				start = addr + ptoa(tmpidx);
1848				p_start = p;
1849			}
1850		} else if (p_start != NULL) {
1851			pmap_enter_object(map->pmap, start, addr +
1852			    ptoa(tmpidx), p_start, prot);
1853			p_start = NULL;
1854		}
1855	}
1856	if (p_start != NULL)
1857		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1858		    p_start, prot);
1859	VM_OBJECT_RUNLOCK(object);
1860}
1861
1862/*
1863 *	vm_map_protect:
1864 *
1865 *	Sets the protection of the specified address
1866 *	region in the target map.  If "set_max" is
1867 *	specified, the maximum protection is to be set;
1868 *	otherwise, only the current protection is affected.
1869 */
1870int
1871vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1872	       vm_prot_t new_prot, boolean_t set_max)
1873{
1874	vm_map_entry_t current, entry;
1875	vm_object_t obj;
1876	struct ucred *cred;
1877	vm_prot_t old_prot;
1878
1879	vm_map_lock(map);
1880
1881	VM_MAP_RANGE_CHECK(map, start, end);
1882
1883	if (vm_map_lookup_entry(map, start, &entry)) {
1884		vm_map_clip_start(map, entry, start);
1885	} else {
1886		entry = entry->next;
1887	}
1888
1889	/*
1890	 * Make a first pass to check for protection violations.
1891	 */
1892	current = entry;
1893	while ((current != &map->header) && (current->start < end)) {
1894		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1895			vm_map_unlock(map);
1896			return (KERN_INVALID_ARGUMENT);
1897		}
1898		if ((new_prot & current->max_protection) != new_prot) {
1899			vm_map_unlock(map);
1900			return (KERN_PROTECTION_FAILURE);
1901		}
1902		current = current->next;
1903	}
1904
1905
1906	/*
1907	 * Do an accounting pass for private read-only mappings that
1908	 * now will do cow due to allowed write (e.g. debugger sets
1909	 * breakpoint on text segment)
1910	 */
1911	for (current = entry; (current != &map->header) &&
1912	     (current->start < end); current = current->next) {
1913
1914		vm_map_clip_end(map, current, end);
1915
1916		if (set_max ||
1917		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1918		    ENTRY_CHARGED(current)) {
1919			continue;
1920		}
1921
1922		cred = curthread->td_ucred;
1923		obj = current->object.vm_object;
1924
1925		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1926			if (!swap_reserve(current->end - current->start)) {
1927				vm_map_unlock(map);
1928				return (KERN_RESOURCE_SHORTAGE);
1929			}
1930			crhold(cred);
1931			current->cred = cred;
1932			continue;
1933		}
1934
1935		VM_OBJECT_WLOCK(obj);
1936		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1937			VM_OBJECT_WUNLOCK(obj);
1938			continue;
1939		}
1940
1941		/*
1942		 * Charge for the whole object allocation now, since
1943		 * we cannot distinguish between non-charged and
1944		 * charged clipped mapping of the same object later.
1945		 */
1946		KASSERT(obj->charge == 0,
1947		    ("vm_map_protect: object %p overcharged\n", obj));
1948		if (!swap_reserve(ptoa(obj->size))) {
1949			VM_OBJECT_WUNLOCK(obj);
1950			vm_map_unlock(map);
1951			return (KERN_RESOURCE_SHORTAGE);
1952		}
1953
1954		crhold(cred);
1955		obj->cred = cred;
1956		obj->charge = ptoa(obj->size);
1957		VM_OBJECT_WUNLOCK(obj);
1958	}
1959
1960	/*
1961	 * Go back and fix up protections. [Note that clipping is not
1962	 * necessary the second time.]
1963	 */
1964	current = entry;
1965	while ((current != &map->header) && (current->start < end)) {
1966		old_prot = current->protection;
1967
1968		if (set_max)
1969			current->protection =
1970			    (current->max_protection = new_prot) &
1971			    old_prot;
1972		else
1973			current->protection = new_prot;
1974
1975		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1976		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1977		    (current->protection & VM_PROT_WRITE) != 0 &&
1978		    (old_prot & VM_PROT_WRITE) == 0) {
1979			vm_fault_copy_entry(map, map, current, current, NULL);
1980		}
1981
1982		/*
1983		 * When restricting access, update the physical map.  Worry
1984		 * about copy-on-write here.
1985		 */
1986		if ((old_prot & ~current->protection) != 0) {
1987#define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1988							VM_PROT_ALL)
1989			pmap_protect(map->pmap, current->start,
1990			    current->end,
1991			    current->protection & MASK(current));
1992#undef	MASK
1993		}
1994		vm_map_simplify_entry(map, current);
1995		current = current->next;
1996	}
1997	vm_map_unlock(map);
1998	return (KERN_SUCCESS);
1999}
2000
2001/*
2002 *	vm_map_madvise:
2003 *
2004 *	This routine traverses a processes map handling the madvise
2005 *	system call.  Advisories are classified as either those effecting
2006 *	the vm_map_entry structure, or those effecting the underlying
2007 *	objects.
2008 */
2009int
2010vm_map_madvise(
2011	vm_map_t map,
2012	vm_offset_t start,
2013	vm_offset_t end,
2014	int behav)
2015{
2016	vm_map_entry_t current, entry;
2017	int modify_map = 0;
2018
2019	/*
2020	 * Some madvise calls directly modify the vm_map_entry, in which case
2021	 * we need to use an exclusive lock on the map and we need to perform
2022	 * various clipping operations.  Otherwise we only need a read-lock
2023	 * on the map.
2024	 */
2025	switch(behav) {
2026	case MADV_NORMAL:
2027	case MADV_SEQUENTIAL:
2028	case MADV_RANDOM:
2029	case MADV_NOSYNC:
2030	case MADV_AUTOSYNC:
2031	case MADV_NOCORE:
2032	case MADV_CORE:
2033		modify_map = 1;
2034		vm_map_lock(map);
2035		break;
2036	case MADV_WILLNEED:
2037	case MADV_DONTNEED:
2038	case MADV_FREE:
2039		vm_map_lock_read(map);
2040		break;
2041	default:
2042		return (KERN_INVALID_ARGUMENT);
2043	}
2044
2045	/*
2046	 * Locate starting entry and clip if necessary.
2047	 */
2048	VM_MAP_RANGE_CHECK(map, start, end);
2049
2050	if (vm_map_lookup_entry(map, start, &entry)) {
2051		if (modify_map)
2052			vm_map_clip_start(map, entry, start);
2053	} else {
2054		entry = entry->next;
2055	}
2056
2057	if (modify_map) {
2058		/*
2059		 * madvise behaviors that are implemented in the vm_map_entry.
2060		 *
2061		 * We clip the vm_map_entry so that behavioral changes are
2062		 * limited to the specified address range.
2063		 */
2064		for (current = entry;
2065		     (current != &map->header) && (current->start < end);
2066		     current = current->next
2067		) {
2068			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2069				continue;
2070
2071			vm_map_clip_end(map, current, end);
2072
2073			switch (behav) {
2074			case MADV_NORMAL:
2075				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2076				break;
2077			case MADV_SEQUENTIAL:
2078				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2079				break;
2080			case MADV_RANDOM:
2081				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2082				break;
2083			case MADV_NOSYNC:
2084				current->eflags |= MAP_ENTRY_NOSYNC;
2085				break;
2086			case MADV_AUTOSYNC:
2087				current->eflags &= ~MAP_ENTRY_NOSYNC;
2088				break;
2089			case MADV_NOCORE:
2090				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2091				break;
2092			case MADV_CORE:
2093				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2094				break;
2095			default:
2096				break;
2097			}
2098			vm_map_simplify_entry(map, current);
2099		}
2100		vm_map_unlock(map);
2101	} else {
2102		vm_pindex_t pstart, pend;
2103
2104		/*
2105		 * madvise behaviors that are implemented in the underlying
2106		 * vm_object.
2107		 *
2108		 * Since we don't clip the vm_map_entry, we have to clip
2109		 * the vm_object pindex and count.
2110		 */
2111		for (current = entry;
2112		     (current != &map->header) && (current->start < end);
2113		     current = current->next
2114		) {
2115			vm_offset_t useEnd, useStart;
2116
2117			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2118				continue;
2119
2120			pstart = OFF_TO_IDX(current->offset);
2121			pend = pstart + atop(current->end - current->start);
2122			useStart = current->start;
2123			useEnd = current->end;
2124
2125			if (current->start < start) {
2126				pstart += atop(start - current->start);
2127				useStart = start;
2128			}
2129			if (current->end > end) {
2130				pend -= atop(current->end - end);
2131				useEnd = end;
2132			}
2133
2134			if (pstart >= pend)
2135				continue;
2136
2137			/*
2138			 * Perform the pmap_advise() before clearing
2139			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2140			 * concurrent pmap operation, such as pmap_remove(),
2141			 * could clear a reference in the pmap and set
2142			 * PGA_REFERENCED on the page before the pmap_advise()
2143			 * had completed.  Consequently, the page would appear
2144			 * referenced based upon an old reference that
2145			 * occurred before this pmap_advise() ran.
2146			 */
2147			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2148				pmap_advise(map->pmap, useStart, useEnd,
2149				    behav);
2150
2151			vm_object_madvise(current->object.vm_object, pstart,
2152			    pend, behav);
2153			if (behav == MADV_WILLNEED) {
2154				vm_map_pmap_enter(map,
2155				    useStart,
2156				    current->protection,
2157				    current->object.vm_object,
2158				    pstart,
2159				    ptoa(pend - pstart),
2160				    MAP_PREFAULT_MADVISE
2161				);
2162			}
2163		}
2164		vm_map_unlock_read(map);
2165	}
2166	return (0);
2167}
2168
2169
2170/*
2171 *	vm_map_inherit:
2172 *
2173 *	Sets the inheritance of the specified address
2174 *	range in the target map.  Inheritance
2175 *	affects how the map will be shared with
2176 *	child maps at the time of vmspace_fork.
2177 */
2178int
2179vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2180	       vm_inherit_t new_inheritance)
2181{
2182	vm_map_entry_t entry;
2183	vm_map_entry_t temp_entry;
2184
2185	switch (new_inheritance) {
2186	case VM_INHERIT_NONE:
2187	case VM_INHERIT_COPY:
2188	case VM_INHERIT_SHARE:
2189		break;
2190	default:
2191		return (KERN_INVALID_ARGUMENT);
2192	}
2193	vm_map_lock(map);
2194	VM_MAP_RANGE_CHECK(map, start, end);
2195	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2196		entry = temp_entry;
2197		vm_map_clip_start(map, entry, start);
2198	} else
2199		entry = temp_entry->next;
2200	while ((entry != &map->header) && (entry->start < end)) {
2201		vm_map_clip_end(map, entry, end);
2202		entry->inheritance = new_inheritance;
2203		vm_map_simplify_entry(map, entry);
2204		entry = entry->next;
2205	}
2206	vm_map_unlock(map);
2207	return (KERN_SUCCESS);
2208}
2209
2210/*
2211 *	vm_map_unwire:
2212 *
2213 *	Implements both kernel and user unwiring.
2214 */
2215int
2216vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2217    int flags)
2218{
2219	vm_map_entry_t entry, first_entry, tmp_entry;
2220	vm_offset_t saved_start;
2221	unsigned int last_timestamp;
2222	int rv;
2223	boolean_t need_wakeup, result, user_unwire;
2224
2225	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2226	vm_map_lock(map);
2227	VM_MAP_RANGE_CHECK(map, start, end);
2228	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2229		if (flags & VM_MAP_WIRE_HOLESOK)
2230			first_entry = first_entry->next;
2231		else {
2232			vm_map_unlock(map);
2233			return (KERN_INVALID_ADDRESS);
2234		}
2235	}
2236	last_timestamp = map->timestamp;
2237	entry = first_entry;
2238	while (entry != &map->header && entry->start < end) {
2239		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2240			/*
2241			 * We have not yet clipped the entry.
2242			 */
2243			saved_start = (start >= entry->start) ? start :
2244			    entry->start;
2245			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2246			if (vm_map_unlock_and_wait(map, 0)) {
2247				/*
2248				 * Allow interruption of user unwiring?
2249				 */
2250			}
2251			vm_map_lock(map);
2252			if (last_timestamp+1 != map->timestamp) {
2253				/*
2254				 * Look again for the entry because the map was
2255				 * modified while it was unlocked.
2256				 * Specifically, the entry may have been
2257				 * clipped, merged, or deleted.
2258				 */
2259				if (!vm_map_lookup_entry(map, saved_start,
2260				    &tmp_entry)) {
2261					if (flags & VM_MAP_WIRE_HOLESOK)
2262						tmp_entry = tmp_entry->next;
2263					else {
2264						if (saved_start == start) {
2265							/*
2266							 * First_entry has been deleted.
2267							 */
2268							vm_map_unlock(map);
2269							return (KERN_INVALID_ADDRESS);
2270						}
2271						end = saved_start;
2272						rv = KERN_INVALID_ADDRESS;
2273						goto done;
2274					}
2275				}
2276				if (entry == first_entry)
2277					first_entry = tmp_entry;
2278				else
2279					first_entry = NULL;
2280				entry = tmp_entry;
2281			}
2282			last_timestamp = map->timestamp;
2283			continue;
2284		}
2285		vm_map_clip_start(map, entry, start);
2286		vm_map_clip_end(map, entry, end);
2287		/*
2288		 * Mark the entry in case the map lock is released.  (See
2289		 * above.)
2290		 */
2291		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2292		    entry->wiring_thread == NULL,
2293		    ("owned map entry %p", entry));
2294		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2295		entry->wiring_thread = curthread;
2296		/*
2297		 * Check the map for holes in the specified region.
2298		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2299		 */
2300		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2301		    (entry->end < end && (entry->next == &map->header ||
2302		    entry->next->start > entry->end))) {
2303			end = entry->end;
2304			rv = KERN_INVALID_ADDRESS;
2305			goto done;
2306		}
2307		/*
2308		 * If system unwiring, require that the entry is system wired.
2309		 */
2310		if (!user_unwire &&
2311		    vm_map_entry_system_wired_count(entry) == 0) {
2312			end = entry->end;
2313			rv = KERN_INVALID_ARGUMENT;
2314			goto done;
2315		}
2316		entry = entry->next;
2317	}
2318	rv = KERN_SUCCESS;
2319done:
2320	need_wakeup = FALSE;
2321	if (first_entry == NULL) {
2322		result = vm_map_lookup_entry(map, start, &first_entry);
2323		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2324			first_entry = first_entry->next;
2325		else
2326			KASSERT(result, ("vm_map_unwire: lookup failed"));
2327	}
2328	for (entry = first_entry; entry != &map->header && entry->start < end;
2329	    entry = entry->next) {
2330		/*
2331		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2332		 * space in the unwired region could have been mapped
2333		 * while the map lock was dropped for draining
2334		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2335		 * could be simultaneously wiring this new mapping
2336		 * entry.  Detect these cases and skip any entries
2337		 * marked as in transition by us.
2338		 */
2339		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2340		    entry->wiring_thread != curthread) {
2341			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2342			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2343			continue;
2344		}
2345
2346		if (rv == KERN_SUCCESS && (!user_unwire ||
2347		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2348			if (user_unwire)
2349				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2350			entry->wired_count--;
2351			if (entry->wired_count == 0) {
2352				/*
2353				 * Retain the map lock.
2354				 */
2355				vm_fault_unwire(map, entry->start, entry->end,
2356				    entry->object.vm_object != NULL &&
2357				    (entry->object.vm_object->flags &
2358				    OBJ_FICTITIOUS) != 0);
2359			}
2360		}
2361		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2362		    ("vm_map_unwire: in-transition flag missing %p", entry));
2363		KASSERT(entry->wiring_thread == curthread,
2364		    ("vm_map_unwire: alien wire %p", entry));
2365		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2366		entry->wiring_thread = NULL;
2367		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2368			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2369			need_wakeup = TRUE;
2370		}
2371		vm_map_simplify_entry(map, entry);
2372	}
2373	vm_map_unlock(map);
2374	if (need_wakeup)
2375		vm_map_wakeup(map);
2376	return (rv);
2377}
2378
2379/*
2380 *	vm_map_wire:
2381 *
2382 *	Implements both kernel and user wiring.
2383 */
2384int
2385vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2386    int flags)
2387{
2388	vm_map_entry_t entry, first_entry, tmp_entry;
2389	vm_offset_t saved_end, saved_start;
2390	unsigned int last_timestamp;
2391	int rv;
2392	boolean_t fictitious, need_wakeup, result, user_wire;
2393	vm_prot_t prot;
2394
2395	prot = 0;
2396	if (flags & VM_MAP_WIRE_WRITE)
2397		prot |= VM_PROT_WRITE;
2398	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2399	vm_map_lock(map);
2400	VM_MAP_RANGE_CHECK(map, start, end);
2401	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2402		if (flags & VM_MAP_WIRE_HOLESOK)
2403			first_entry = first_entry->next;
2404		else {
2405			vm_map_unlock(map);
2406			return (KERN_INVALID_ADDRESS);
2407		}
2408	}
2409	last_timestamp = map->timestamp;
2410	entry = first_entry;
2411	while (entry != &map->header && entry->start < end) {
2412		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2413			/*
2414			 * We have not yet clipped the entry.
2415			 */
2416			saved_start = (start >= entry->start) ? start :
2417			    entry->start;
2418			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2419			if (vm_map_unlock_and_wait(map, 0)) {
2420				/*
2421				 * Allow interruption of user wiring?
2422				 */
2423			}
2424			vm_map_lock(map);
2425			if (last_timestamp + 1 != map->timestamp) {
2426				/*
2427				 * Look again for the entry because the map was
2428				 * modified while it was unlocked.
2429				 * Specifically, the entry may have been
2430				 * clipped, merged, or deleted.
2431				 */
2432				if (!vm_map_lookup_entry(map, saved_start,
2433				    &tmp_entry)) {
2434					if (flags & VM_MAP_WIRE_HOLESOK)
2435						tmp_entry = tmp_entry->next;
2436					else {
2437						if (saved_start == start) {
2438							/*
2439							 * first_entry has been deleted.
2440							 */
2441							vm_map_unlock(map);
2442							return (KERN_INVALID_ADDRESS);
2443						}
2444						end = saved_start;
2445						rv = KERN_INVALID_ADDRESS;
2446						goto done;
2447					}
2448				}
2449				if (entry == first_entry)
2450					first_entry = tmp_entry;
2451				else
2452					first_entry = NULL;
2453				entry = tmp_entry;
2454			}
2455			last_timestamp = map->timestamp;
2456			continue;
2457		}
2458		vm_map_clip_start(map, entry, start);
2459		vm_map_clip_end(map, entry, end);
2460		/*
2461		 * Mark the entry in case the map lock is released.  (See
2462		 * above.)
2463		 */
2464		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2465		    entry->wiring_thread == NULL,
2466		    ("owned map entry %p", entry));
2467		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2468		entry->wiring_thread = curthread;
2469		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2470		    || (entry->protection & prot) != prot) {
2471			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2472			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2473				end = entry->end;
2474				rv = KERN_INVALID_ADDRESS;
2475				goto done;
2476			}
2477			goto next_entry;
2478		}
2479		if (entry->wired_count == 0) {
2480			entry->wired_count++;
2481			saved_start = entry->start;
2482			saved_end = entry->end;
2483			fictitious = entry->object.vm_object != NULL &&
2484			    (entry->object.vm_object->flags &
2485			    OBJ_FICTITIOUS) != 0;
2486			/*
2487			 * Release the map lock, relying on the in-transition
2488			 * mark.  Mark the map busy for fork.
2489			 */
2490			vm_map_busy(map);
2491			vm_map_unlock(map);
2492			rv = vm_fault_wire(map, saved_start, saved_end,
2493			    fictitious);
2494			vm_map_lock(map);
2495			vm_map_unbusy(map);
2496			if (last_timestamp + 1 != map->timestamp) {
2497				/*
2498				 * Look again for the entry because the map was
2499				 * modified while it was unlocked.  The entry
2500				 * may have been clipped, but NOT merged or
2501				 * deleted.
2502				 */
2503				result = vm_map_lookup_entry(map, saved_start,
2504				    &tmp_entry);
2505				KASSERT(result, ("vm_map_wire: lookup failed"));
2506				if (entry == first_entry)
2507					first_entry = tmp_entry;
2508				else
2509					first_entry = NULL;
2510				entry = tmp_entry;
2511				while (entry->end < saved_end) {
2512					if (rv != KERN_SUCCESS) {
2513						KASSERT(entry->wired_count == 1,
2514						    ("vm_map_wire: bad count"));
2515						entry->wired_count = -1;
2516					}
2517					entry = entry->next;
2518				}
2519			}
2520			last_timestamp = map->timestamp;
2521			if (rv != KERN_SUCCESS) {
2522				KASSERT(entry->wired_count == 1,
2523				    ("vm_map_wire: bad count"));
2524				/*
2525				 * Assign an out-of-range value to represent
2526				 * the failure to wire this entry.
2527				 */
2528				entry->wired_count = -1;
2529				end = entry->end;
2530				goto done;
2531			}
2532		} else if (!user_wire ||
2533			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2534			entry->wired_count++;
2535		}
2536		/*
2537		 * Check the map for holes in the specified region.
2538		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2539		 */
2540	next_entry:
2541		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2542		    (entry->end < end && (entry->next == &map->header ||
2543		    entry->next->start > entry->end))) {
2544			end = entry->end;
2545			rv = KERN_INVALID_ADDRESS;
2546			goto done;
2547		}
2548		entry = entry->next;
2549	}
2550	rv = KERN_SUCCESS;
2551done:
2552	need_wakeup = FALSE;
2553	if (first_entry == NULL) {
2554		result = vm_map_lookup_entry(map, start, &first_entry);
2555		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2556			first_entry = first_entry->next;
2557		else
2558			KASSERT(result, ("vm_map_wire: lookup failed"));
2559	}
2560	for (entry = first_entry; entry != &map->header && entry->start < end;
2561	    entry = entry->next) {
2562		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2563			goto next_entry_done;
2564
2565		/*
2566		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2567		 * space in the unwired region could have been mapped
2568		 * while the map lock was dropped for faulting in the
2569		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2570		 * Moreover, another thread could be simultaneously
2571		 * wiring this new mapping entry.  Detect these cases
2572		 * and skip any entries marked as in transition by us.
2573		 */
2574		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2575		    entry->wiring_thread != curthread) {
2576			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2577			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2578			continue;
2579		}
2580
2581		if (rv == KERN_SUCCESS) {
2582			if (user_wire)
2583				entry->eflags |= MAP_ENTRY_USER_WIRED;
2584		} else if (entry->wired_count == -1) {
2585			/*
2586			 * Wiring failed on this entry.  Thus, unwiring is
2587			 * unnecessary.
2588			 */
2589			entry->wired_count = 0;
2590		} else {
2591			if (!user_wire ||
2592			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2593				entry->wired_count--;
2594			if (entry->wired_count == 0) {
2595				/*
2596				 * Retain the map lock.
2597				 */
2598				vm_fault_unwire(map, entry->start, entry->end,
2599				    entry->object.vm_object != NULL &&
2600				    (entry->object.vm_object->flags &
2601				    OBJ_FICTITIOUS) != 0);
2602			}
2603		}
2604	next_entry_done:
2605		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2606		    ("vm_map_wire: in-transition flag missing %p", entry));
2607		KASSERT(entry->wiring_thread == curthread,
2608		    ("vm_map_wire: alien wire %p", entry));
2609		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2610		    MAP_ENTRY_WIRE_SKIPPED);
2611		entry->wiring_thread = NULL;
2612		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2613			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2614			need_wakeup = TRUE;
2615		}
2616		vm_map_simplify_entry(map, entry);
2617	}
2618	vm_map_unlock(map);
2619	if (need_wakeup)
2620		vm_map_wakeup(map);
2621	return (rv);
2622}
2623
2624/*
2625 * vm_map_sync
2626 *
2627 * Push any dirty cached pages in the address range to their pager.
2628 * If syncio is TRUE, dirty pages are written synchronously.
2629 * If invalidate is TRUE, any cached pages are freed as well.
2630 *
2631 * If the size of the region from start to end is zero, we are
2632 * supposed to flush all modified pages within the region containing
2633 * start.  Unfortunately, a region can be split or coalesced with
2634 * neighboring regions, making it difficult to determine what the
2635 * original region was.  Therefore, we approximate this requirement by
2636 * flushing the current region containing start.
2637 *
2638 * Returns an error if any part of the specified range is not mapped.
2639 */
2640int
2641vm_map_sync(
2642	vm_map_t map,
2643	vm_offset_t start,
2644	vm_offset_t end,
2645	boolean_t syncio,
2646	boolean_t invalidate)
2647{
2648	vm_map_entry_t current;
2649	vm_map_entry_t entry;
2650	vm_size_t size;
2651	vm_object_t object;
2652	vm_ooffset_t offset;
2653	unsigned int last_timestamp;
2654	boolean_t failed;
2655
2656	vm_map_lock_read(map);
2657	VM_MAP_RANGE_CHECK(map, start, end);
2658	if (!vm_map_lookup_entry(map, start, &entry)) {
2659		vm_map_unlock_read(map);
2660		return (KERN_INVALID_ADDRESS);
2661	} else if (start == end) {
2662		start = entry->start;
2663		end = entry->end;
2664	}
2665	/*
2666	 * Make a first pass to check for user-wired memory and holes.
2667	 */
2668	for (current = entry; current != &map->header && current->start < end;
2669	    current = current->next) {
2670		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2671			vm_map_unlock_read(map);
2672			return (KERN_INVALID_ARGUMENT);
2673		}
2674		if (end > current->end &&
2675		    (current->next == &map->header ||
2676			current->end != current->next->start)) {
2677			vm_map_unlock_read(map);
2678			return (KERN_INVALID_ADDRESS);
2679		}
2680	}
2681
2682	if (invalidate)
2683		pmap_remove(map->pmap, start, end);
2684	failed = FALSE;
2685
2686	/*
2687	 * Make a second pass, cleaning/uncaching pages from the indicated
2688	 * objects as we go.
2689	 */
2690	for (current = entry; current != &map->header && current->start < end;) {
2691		offset = current->offset + (start - current->start);
2692		size = (end <= current->end ? end : current->end) - start;
2693		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2694			vm_map_t smap;
2695			vm_map_entry_t tentry;
2696			vm_size_t tsize;
2697
2698			smap = current->object.sub_map;
2699			vm_map_lock_read(smap);
2700			(void) vm_map_lookup_entry(smap, offset, &tentry);
2701			tsize = tentry->end - offset;
2702			if (tsize < size)
2703				size = tsize;
2704			object = tentry->object.vm_object;
2705			offset = tentry->offset + (offset - tentry->start);
2706			vm_map_unlock_read(smap);
2707		} else {
2708			object = current->object.vm_object;
2709		}
2710		vm_object_reference(object);
2711		last_timestamp = map->timestamp;
2712		vm_map_unlock_read(map);
2713		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2714			failed = TRUE;
2715		start += size;
2716		vm_object_deallocate(object);
2717		vm_map_lock_read(map);
2718		if (last_timestamp == map->timestamp ||
2719		    !vm_map_lookup_entry(map, start, &current))
2720			current = current->next;
2721	}
2722
2723	vm_map_unlock_read(map);
2724	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2725}
2726
2727/*
2728 *	vm_map_entry_unwire:	[ internal use only ]
2729 *
2730 *	Make the region specified by this entry pageable.
2731 *
2732 *	The map in question should be locked.
2733 *	[This is the reason for this routine's existence.]
2734 */
2735static void
2736vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2737{
2738	vm_fault_unwire(map, entry->start, entry->end,
2739	    entry->object.vm_object != NULL &&
2740	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2741	entry->wired_count = 0;
2742}
2743
2744static void
2745vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2746{
2747
2748	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2749		vm_object_deallocate(entry->object.vm_object);
2750	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2751}
2752
2753/*
2754 *	vm_map_entry_delete:	[ internal use only ]
2755 *
2756 *	Deallocate the given entry from the target map.
2757 */
2758static void
2759vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2760{
2761	vm_object_t object;
2762	vm_pindex_t offidxstart, offidxend, count, size1;
2763	vm_ooffset_t size;
2764
2765	vm_map_entry_unlink(map, entry);
2766	object = entry->object.vm_object;
2767	size = entry->end - entry->start;
2768	map->size -= size;
2769
2770	if (entry->cred != NULL) {
2771		swap_release_by_cred(size, entry->cred);
2772		crfree(entry->cred);
2773	}
2774
2775	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2776	    (object != NULL)) {
2777		KASSERT(entry->cred == NULL || object->cred == NULL ||
2778		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2779		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2780		count = OFF_TO_IDX(size);
2781		offidxstart = OFF_TO_IDX(entry->offset);
2782		offidxend = offidxstart + count;
2783		VM_OBJECT_WLOCK(object);
2784		if (object->ref_count != 1 &&
2785		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2786		    object == kernel_object || object == kmem_object)) {
2787			vm_object_collapse(object);
2788
2789			/*
2790			 * The option OBJPR_NOTMAPPED can be passed here
2791			 * because vm_map_delete() already performed
2792			 * pmap_remove() on the only mapping to this range
2793			 * of pages.
2794			 */
2795			vm_object_page_remove(object, offidxstart, offidxend,
2796			    OBJPR_NOTMAPPED);
2797			if (object->type == OBJT_SWAP)
2798				swap_pager_freespace(object, offidxstart, count);
2799			if (offidxend >= object->size &&
2800			    offidxstart < object->size) {
2801				size1 = object->size;
2802				object->size = offidxstart;
2803				if (object->cred != NULL) {
2804					size1 -= object->size;
2805					KASSERT(object->charge >= ptoa(size1),
2806					    ("vm_map_entry_delete: object->charge < 0"));
2807					swap_release_by_cred(ptoa(size1), object->cred);
2808					object->charge -= ptoa(size1);
2809				}
2810			}
2811		}
2812		VM_OBJECT_WUNLOCK(object);
2813	} else
2814		entry->object.vm_object = NULL;
2815	if (map->system_map)
2816		vm_map_entry_deallocate(entry, TRUE);
2817	else {
2818		entry->next = curthread->td_map_def_user;
2819		curthread->td_map_def_user = entry;
2820	}
2821}
2822
2823/*
2824 *	vm_map_delete:	[ internal use only ]
2825 *
2826 *	Deallocates the given address range from the target
2827 *	map.
2828 */
2829int
2830vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2831{
2832	vm_map_entry_t entry;
2833	vm_map_entry_t first_entry;
2834
2835	VM_MAP_ASSERT_LOCKED(map);
2836
2837	/*
2838	 * Find the start of the region, and clip it
2839	 */
2840	if (!vm_map_lookup_entry(map, start, &first_entry))
2841		entry = first_entry->next;
2842	else {
2843		entry = first_entry;
2844		vm_map_clip_start(map, entry, start);
2845	}
2846
2847	/*
2848	 * Step through all entries in this region
2849	 */
2850	while ((entry != &map->header) && (entry->start < end)) {
2851		vm_map_entry_t next;
2852
2853		/*
2854		 * Wait for wiring or unwiring of an entry to complete.
2855		 * Also wait for any system wirings to disappear on
2856		 * user maps.
2857		 */
2858		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2859		    (vm_map_pmap(map) != kernel_pmap &&
2860		    vm_map_entry_system_wired_count(entry) != 0)) {
2861			unsigned int last_timestamp;
2862			vm_offset_t saved_start;
2863			vm_map_entry_t tmp_entry;
2864
2865			saved_start = entry->start;
2866			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2867			last_timestamp = map->timestamp;
2868			(void) vm_map_unlock_and_wait(map, 0);
2869			vm_map_lock(map);
2870			if (last_timestamp + 1 != map->timestamp) {
2871				/*
2872				 * Look again for the entry because the map was
2873				 * modified while it was unlocked.
2874				 * Specifically, the entry may have been
2875				 * clipped, merged, or deleted.
2876				 */
2877				if (!vm_map_lookup_entry(map, saved_start,
2878							 &tmp_entry))
2879					entry = tmp_entry->next;
2880				else {
2881					entry = tmp_entry;
2882					vm_map_clip_start(map, entry,
2883							  saved_start);
2884				}
2885			}
2886			continue;
2887		}
2888		vm_map_clip_end(map, entry, end);
2889
2890		next = entry->next;
2891
2892		/*
2893		 * Unwire before removing addresses from the pmap; otherwise,
2894		 * unwiring will put the entries back in the pmap.
2895		 */
2896		if (entry->wired_count != 0) {
2897			vm_map_entry_unwire(map, entry);
2898		}
2899
2900		pmap_remove(map->pmap, entry->start, entry->end);
2901
2902		/*
2903		 * Delete the entry only after removing all pmap
2904		 * entries pointing to its pages.  (Otherwise, its
2905		 * page frames may be reallocated, and any modify bits
2906		 * will be set in the wrong object!)
2907		 */
2908		vm_map_entry_delete(map, entry);
2909		entry = next;
2910	}
2911	return (KERN_SUCCESS);
2912}
2913
2914/*
2915 *	vm_map_remove:
2916 *
2917 *	Remove the given address range from the target map.
2918 *	This is the exported form of vm_map_delete.
2919 */
2920int
2921vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2922{
2923	int result;
2924
2925	vm_map_lock(map);
2926	VM_MAP_RANGE_CHECK(map, start, end);
2927	result = vm_map_delete(map, start, end);
2928	vm_map_unlock(map);
2929	return (result);
2930}
2931
2932/*
2933 *	vm_map_check_protection:
2934 *
2935 *	Assert that the target map allows the specified privilege on the
2936 *	entire address region given.  The entire region must be allocated.
2937 *
2938 *	WARNING!  This code does not and should not check whether the
2939 *	contents of the region is accessible.  For example a smaller file
2940 *	might be mapped into a larger address space.
2941 *
2942 *	NOTE!  This code is also called by munmap().
2943 *
2944 *	The map must be locked.  A read lock is sufficient.
2945 */
2946boolean_t
2947vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2948			vm_prot_t protection)
2949{
2950	vm_map_entry_t entry;
2951	vm_map_entry_t tmp_entry;
2952
2953	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2954		return (FALSE);
2955	entry = tmp_entry;
2956
2957	while (start < end) {
2958		if (entry == &map->header)
2959			return (FALSE);
2960		/*
2961		 * No holes allowed!
2962		 */
2963		if (start < entry->start)
2964			return (FALSE);
2965		/*
2966		 * Check protection associated with entry.
2967		 */
2968		if ((entry->protection & protection) != protection)
2969			return (FALSE);
2970		/* go to next entry */
2971		start = entry->end;
2972		entry = entry->next;
2973	}
2974	return (TRUE);
2975}
2976
2977/*
2978 *	vm_map_copy_entry:
2979 *
2980 *	Copies the contents of the source entry to the destination
2981 *	entry.  The entries *must* be aligned properly.
2982 */
2983static void
2984vm_map_copy_entry(
2985	vm_map_t src_map,
2986	vm_map_t dst_map,
2987	vm_map_entry_t src_entry,
2988	vm_map_entry_t dst_entry,
2989	vm_ooffset_t *fork_charge)
2990{
2991	vm_object_t src_object;
2992	vm_map_entry_t fake_entry;
2993	vm_offset_t size;
2994	struct ucred *cred;
2995	int charged;
2996
2997	VM_MAP_ASSERT_LOCKED(dst_map);
2998
2999	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3000		return;
3001
3002	if (src_entry->wired_count == 0) {
3003
3004		/*
3005		 * If the source entry is marked needs_copy, it is already
3006		 * write-protected.
3007		 */
3008		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3009			pmap_protect(src_map->pmap,
3010			    src_entry->start,
3011			    src_entry->end,
3012			    src_entry->protection & ~VM_PROT_WRITE);
3013		}
3014
3015		/*
3016		 * Make a copy of the object.
3017		 */
3018		size = src_entry->end - src_entry->start;
3019		if ((src_object = src_entry->object.vm_object) != NULL) {
3020			VM_OBJECT_WLOCK(src_object);
3021			charged = ENTRY_CHARGED(src_entry);
3022			if ((src_object->handle == NULL) &&
3023				(src_object->type == OBJT_DEFAULT ||
3024				 src_object->type == OBJT_SWAP)) {
3025				vm_object_collapse(src_object);
3026				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3027					vm_object_split(src_entry);
3028					src_object = src_entry->object.vm_object;
3029				}
3030			}
3031			vm_object_reference_locked(src_object);
3032			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3033			if (src_entry->cred != NULL &&
3034			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3035				KASSERT(src_object->cred == NULL,
3036				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3037				     src_object));
3038				src_object->cred = src_entry->cred;
3039				src_object->charge = size;
3040			}
3041			VM_OBJECT_WUNLOCK(src_object);
3042			dst_entry->object.vm_object = src_object;
3043			if (charged) {
3044				cred = curthread->td_ucred;
3045				crhold(cred);
3046				dst_entry->cred = cred;
3047				*fork_charge += size;
3048				if (!(src_entry->eflags &
3049				      MAP_ENTRY_NEEDS_COPY)) {
3050					crhold(cred);
3051					src_entry->cred = cred;
3052					*fork_charge += size;
3053				}
3054			}
3055			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3056			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3057			dst_entry->offset = src_entry->offset;
3058			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3059				/*
3060				 * MAP_ENTRY_VN_WRITECNT cannot
3061				 * indicate write reference from
3062				 * src_entry, since the entry is
3063				 * marked as needs copy.  Allocate a
3064				 * fake entry that is used to
3065				 * decrement object->un_pager.vnp.writecount
3066				 * at the appropriate time.  Attach
3067				 * fake_entry to the deferred list.
3068				 */
3069				fake_entry = vm_map_entry_create(dst_map);
3070				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3071				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3072				vm_object_reference(src_object);
3073				fake_entry->object.vm_object = src_object;
3074				fake_entry->start = src_entry->start;
3075				fake_entry->end = src_entry->end;
3076				fake_entry->next = curthread->td_map_def_user;
3077				curthread->td_map_def_user = fake_entry;
3078			}
3079		} else {
3080			dst_entry->object.vm_object = NULL;
3081			dst_entry->offset = 0;
3082			if (src_entry->cred != NULL) {
3083				dst_entry->cred = curthread->td_ucred;
3084				crhold(dst_entry->cred);
3085				*fork_charge += size;
3086			}
3087		}
3088
3089		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3090		    dst_entry->end - dst_entry->start, src_entry->start);
3091	} else {
3092		/*
3093		 * Of course, wired down pages can't be set copy-on-write.
3094		 * Cause wired pages to be copied into the new map by
3095		 * simulating faults (the new pages are pageable)
3096		 */
3097		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3098		    fork_charge);
3099	}
3100}
3101
3102/*
3103 * vmspace_map_entry_forked:
3104 * Update the newly-forked vmspace each time a map entry is inherited
3105 * or copied.  The values for vm_dsize and vm_tsize are approximate
3106 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3107 */
3108static void
3109vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3110    vm_map_entry_t entry)
3111{
3112	vm_size_t entrysize;
3113	vm_offset_t newend;
3114
3115	entrysize = entry->end - entry->start;
3116	vm2->vm_map.size += entrysize;
3117	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3118		vm2->vm_ssize += btoc(entrysize);
3119	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3120	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3121		newend = MIN(entry->end,
3122		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3123		vm2->vm_dsize += btoc(newend - entry->start);
3124	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3125	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3126		newend = MIN(entry->end,
3127		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3128		vm2->vm_tsize += btoc(newend - entry->start);
3129	}
3130}
3131
3132/*
3133 * vmspace_fork:
3134 * Create a new process vmspace structure and vm_map
3135 * based on those of an existing process.  The new map
3136 * is based on the old map, according to the inheritance
3137 * values on the regions in that map.
3138 *
3139 * XXX It might be worth coalescing the entries added to the new vmspace.
3140 *
3141 * The source map must not be locked.
3142 */
3143struct vmspace *
3144vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3145{
3146	struct vmspace *vm2;
3147	vm_map_t new_map, old_map;
3148	vm_map_entry_t new_entry, old_entry;
3149	vm_object_t object;
3150	int locked;
3151
3152	old_map = &vm1->vm_map;
3153	/* Copy immutable fields of vm1 to vm2. */
3154	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3155	if (vm2 == NULL)
3156		return (NULL);
3157	vm2->vm_taddr = vm1->vm_taddr;
3158	vm2->vm_daddr = vm1->vm_daddr;
3159	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3160	vm_map_lock(old_map);
3161	if (old_map->busy)
3162		vm_map_wait_busy(old_map);
3163	new_map = &vm2->vm_map;
3164	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3165	KASSERT(locked, ("vmspace_fork: lock failed"));
3166
3167	old_entry = old_map->header.next;
3168
3169	while (old_entry != &old_map->header) {
3170		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3171			panic("vm_map_fork: encountered a submap");
3172
3173		switch (old_entry->inheritance) {
3174		case VM_INHERIT_NONE:
3175			break;
3176
3177		case VM_INHERIT_SHARE:
3178			/*
3179			 * Clone the entry, creating the shared object if necessary.
3180			 */
3181			object = old_entry->object.vm_object;
3182			if (object == NULL) {
3183				object = vm_object_allocate(OBJT_DEFAULT,
3184					atop(old_entry->end - old_entry->start));
3185				old_entry->object.vm_object = object;
3186				old_entry->offset = 0;
3187				if (old_entry->cred != NULL) {
3188					object->cred = old_entry->cred;
3189					object->charge = old_entry->end -
3190					    old_entry->start;
3191					old_entry->cred = NULL;
3192				}
3193			}
3194
3195			/*
3196			 * Add the reference before calling vm_object_shadow
3197			 * to insure that a shadow object is created.
3198			 */
3199			vm_object_reference(object);
3200			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3201				vm_object_shadow(&old_entry->object.vm_object,
3202				    &old_entry->offset,
3203				    old_entry->end - old_entry->start);
3204				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3205				/* Transfer the second reference too. */
3206				vm_object_reference(
3207				    old_entry->object.vm_object);
3208
3209				/*
3210				 * As in vm_map_simplify_entry(), the
3211				 * vnode lock will not be acquired in
3212				 * this call to vm_object_deallocate().
3213				 */
3214				vm_object_deallocate(object);
3215				object = old_entry->object.vm_object;
3216			}
3217			VM_OBJECT_WLOCK(object);
3218			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3219			if (old_entry->cred != NULL) {
3220				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3221				object->cred = old_entry->cred;
3222				object->charge = old_entry->end - old_entry->start;
3223				old_entry->cred = NULL;
3224			}
3225
3226			/*
3227			 * Assert the correct state of the vnode
3228			 * v_writecount while the object is locked, to
3229			 * not relock it later for the assertion
3230			 * correctness.
3231			 */
3232			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3233			    object->type == OBJT_VNODE) {
3234				KASSERT(((struct vnode *)object->handle)->
3235				    v_writecount > 0,
3236				    ("vmspace_fork: v_writecount %p", object));
3237				KASSERT(object->un_pager.vnp.writemappings > 0,
3238				    ("vmspace_fork: vnp.writecount %p",
3239				    object));
3240			}
3241			VM_OBJECT_WUNLOCK(object);
3242
3243			/*
3244			 * Clone the entry, referencing the shared object.
3245			 */
3246			new_entry = vm_map_entry_create(new_map);
3247			*new_entry = *old_entry;
3248			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3249			    MAP_ENTRY_IN_TRANSITION);
3250			new_entry->wiring_thread = NULL;
3251			new_entry->wired_count = 0;
3252			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3253				vnode_pager_update_writecount(object,
3254				    new_entry->start, new_entry->end);
3255			}
3256
3257			/*
3258			 * Insert the entry into the new map -- we know we're
3259			 * inserting at the end of the new map.
3260			 */
3261			vm_map_entry_link(new_map, new_map->header.prev,
3262			    new_entry);
3263			vmspace_map_entry_forked(vm1, vm2, new_entry);
3264
3265			/*
3266			 * Update the physical map
3267			 */
3268			pmap_copy(new_map->pmap, old_map->pmap,
3269			    new_entry->start,
3270			    (old_entry->end - old_entry->start),
3271			    old_entry->start);
3272			break;
3273
3274		case VM_INHERIT_COPY:
3275			/*
3276			 * Clone the entry and link into the map.
3277			 */
3278			new_entry = vm_map_entry_create(new_map);
3279			*new_entry = *old_entry;
3280			/*
3281			 * Copied entry is COW over the old object.
3282			 */
3283			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3284			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3285			new_entry->wiring_thread = NULL;
3286			new_entry->wired_count = 0;
3287			new_entry->object.vm_object = NULL;
3288			new_entry->cred = NULL;
3289			vm_map_entry_link(new_map, new_map->header.prev,
3290			    new_entry);
3291			vmspace_map_entry_forked(vm1, vm2, new_entry);
3292			vm_map_copy_entry(old_map, new_map, old_entry,
3293			    new_entry, fork_charge);
3294			break;
3295		}
3296		old_entry = old_entry->next;
3297	}
3298	/*
3299	 * Use inlined vm_map_unlock() to postpone handling the deferred
3300	 * map entries, which cannot be done until both old_map and
3301	 * new_map locks are released.
3302	 */
3303	sx_xunlock(&old_map->lock);
3304	sx_xunlock(&new_map->lock);
3305	vm_map_process_deferred();
3306
3307	return (vm2);
3308}
3309
3310int
3311vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3312    vm_prot_t prot, vm_prot_t max, int cow)
3313{
3314	vm_map_entry_t new_entry, prev_entry;
3315	vm_offset_t bot, top;
3316	vm_size_t growsize, init_ssize;
3317	int orient, rv;
3318	rlim_t lmemlim, vmemlim;
3319
3320	/*
3321	 * The stack orientation is piggybacked with the cow argument.
3322	 * Extract it into orient and mask the cow argument so that we
3323	 * don't pass it around further.
3324	 * NOTE: We explicitly allow bi-directional stacks.
3325	 */
3326	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3327	cow &= ~orient;
3328	KASSERT(orient != 0, ("No stack grow direction"));
3329
3330	if (addrbos < vm_map_min(map) ||
3331	    addrbos > vm_map_max(map) ||
3332	    addrbos + max_ssize < addrbos)
3333		return (KERN_NO_SPACE);
3334
3335	growsize = sgrowsiz;
3336	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3337
3338	PROC_LOCK(curproc);
3339	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3340	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3341	PROC_UNLOCK(curproc);
3342
3343	vm_map_lock(map);
3344
3345	/* If addr is already mapped, no go */
3346	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3347		vm_map_unlock(map);
3348		return (KERN_NO_SPACE);
3349	}
3350
3351	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3352		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3353			vm_map_unlock(map);
3354			return (KERN_NO_SPACE);
3355		}
3356	}
3357
3358	/* If we would blow our VMEM resource limit, no go */
3359	if (map->size + init_ssize > vmemlim) {
3360		vm_map_unlock(map);
3361		return (KERN_NO_SPACE);
3362	}
3363
3364	/*
3365	 * If we can't accomodate max_ssize in the current mapping, no go.
3366	 * However, we need to be aware that subsequent user mappings might
3367	 * map into the space we have reserved for stack, and currently this
3368	 * space is not protected.
3369	 *
3370	 * Hopefully we will at least detect this condition when we try to
3371	 * grow the stack.
3372	 */
3373	if ((prev_entry->next != &map->header) &&
3374	    (prev_entry->next->start < addrbos + max_ssize)) {
3375		vm_map_unlock(map);
3376		return (KERN_NO_SPACE);
3377	}
3378
3379	/*
3380	 * We initially map a stack of only init_ssize.  We will grow as
3381	 * needed later.  Depending on the orientation of the stack (i.e.
3382	 * the grow direction) we either map at the top of the range, the
3383	 * bottom of the range or in the middle.
3384	 *
3385	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3386	 * and cow to be 0.  Possibly we should eliminate these as input
3387	 * parameters, and just pass these values here in the insert call.
3388	 */
3389	if (orient == MAP_STACK_GROWS_DOWN)
3390		bot = addrbos + max_ssize - init_ssize;
3391	else if (orient == MAP_STACK_GROWS_UP)
3392		bot = addrbos;
3393	else
3394		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3395	top = bot + init_ssize;
3396	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3397
3398	/* Now set the avail_ssize amount. */
3399	if (rv == KERN_SUCCESS) {
3400		if (prev_entry != &map->header)
3401			vm_map_clip_end(map, prev_entry, bot);
3402		new_entry = prev_entry->next;
3403		if (new_entry->end != top || new_entry->start != bot)
3404			panic("Bad entry start/end for new stack entry");
3405
3406		new_entry->avail_ssize = max_ssize - init_ssize;
3407		if (orient & MAP_STACK_GROWS_DOWN)
3408			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3409		if (orient & MAP_STACK_GROWS_UP)
3410			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3411	}
3412
3413	vm_map_unlock(map);
3414	return (rv);
3415}
3416
3417static int stack_guard_page = 0;
3418TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3419SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3420    &stack_guard_page, 0,
3421    "Insert stack guard page ahead of the growable segments.");
3422
3423/* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3424 * desired address is already mapped, or if we successfully grow
3425 * the stack.  Also returns KERN_SUCCESS if addr is outside the
3426 * stack range (this is strange, but preserves compatibility with
3427 * the grow function in vm_machdep.c).
3428 */
3429int
3430vm_map_growstack(struct proc *p, vm_offset_t addr)
3431{
3432	vm_map_entry_t next_entry, prev_entry;
3433	vm_map_entry_t new_entry, stack_entry;
3434	struct vmspace *vm = p->p_vmspace;
3435	vm_map_t map = &vm->vm_map;
3436	vm_offset_t end;
3437	vm_size_t growsize;
3438	size_t grow_amount, max_grow;
3439	rlim_t lmemlim, stacklim, vmemlim;
3440	int is_procstack, rv;
3441	struct ucred *cred;
3442#ifdef notyet
3443	uint64_t limit;
3444#endif
3445#ifdef RACCT
3446	int error;
3447#endif
3448
3449Retry:
3450	PROC_LOCK(p);
3451	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3452	stacklim = lim_cur(p, RLIMIT_STACK);
3453	vmemlim = lim_cur(p, RLIMIT_VMEM);
3454	PROC_UNLOCK(p);
3455
3456	vm_map_lock_read(map);
3457
3458	/* If addr is already in the entry range, no need to grow.*/
3459	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3460		vm_map_unlock_read(map);
3461		return (KERN_SUCCESS);
3462	}
3463
3464	next_entry = prev_entry->next;
3465	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3466		/*
3467		 * This entry does not grow upwards. Since the address lies
3468		 * beyond this entry, the next entry (if one exists) has to
3469		 * be a downward growable entry. The entry list header is
3470		 * never a growable entry, so it suffices to check the flags.
3471		 */
3472		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3473			vm_map_unlock_read(map);
3474			return (KERN_SUCCESS);
3475		}
3476		stack_entry = next_entry;
3477	} else {
3478		/*
3479		 * This entry grows upward. If the next entry does not at
3480		 * least grow downwards, this is the entry we need to grow.
3481		 * otherwise we have two possible choices and we have to
3482		 * select one.
3483		 */
3484		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3485			/*
3486			 * We have two choices; grow the entry closest to
3487			 * the address to minimize the amount of growth.
3488			 */
3489			if (addr - prev_entry->end <= next_entry->start - addr)
3490				stack_entry = prev_entry;
3491			else
3492				stack_entry = next_entry;
3493		} else
3494			stack_entry = prev_entry;
3495	}
3496
3497	if (stack_entry == next_entry) {
3498		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3499		KASSERT(addr < stack_entry->start, ("foo"));
3500		end = (prev_entry != &map->header) ? prev_entry->end :
3501		    stack_entry->start - stack_entry->avail_ssize;
3502		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3503		max_grow = stack_entry->start - end;
3504	} else {
3505		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3506		KASSERT(addr >= stack_entry->end, ("foo"));
3507		end = (next_entry != &map->header) ? next_entry->start :
3508		    stack_entry->end + stack_entry->avail_ssize;
3509		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3510		max_grow = end - stack_entry->end;
3511	}
3512
3513	if (grow_amount > stack_entry->avail_ssize) {
3514		vm_map_unlock_read(map);
3515		return (KERN_NO_SPACE);
3516	}
3517
3518	/*
3519	 * If there is no longer enough space between the entries nogo, and
3520	 * adjust the available space.  Note: this  should only happen if the
3521	 * user has mapped into the stack area after the stack was created,
3522	 * and is probably an error.
3523	 *
3524	 * This also effectively destroys any guard page the user might have
3525	 * intended by limiting the stack size.
3526	 */
3527	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3528		if (vm_map_lock_upgrade(map))
3529			goto Retry;
3530
3531		stack_entry->avail_ssize = max_grow;
3532
3533		vm_map_unlock(map);
3534		return (KERN_NO_SPACE);
3535	}
3536
3537	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3538
3539	/*
3540	 * If this is the main process stack, see if we're over the stack
3541	 * limit.
3542	 */
3543	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3544		vm_map_unlock_read(map);
3545		return (KERN_NO_SPACE);
3546	}
3547#ifdef RACCT
3548	PROC_LOCK(p);
3549	if (is_procstack &&
3550	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3551		PROC_UNLOCK(p);
3552		vm_map_unlock_read(map);
3553		return (KERN_NO_SPACE);
3554	}
3555	PROC_UNLOCK(p);
3556#endif
3557
3558	/* Round up the grow amount modulo sgrowsiz */
3559	growsize = sgrowsiz;
3560	grow_amount = roundup(grow_amount, growsize);
3561	if (grow_amount > stack_entry->avail_ssize)
3562		grow_amount = stack_entry->avail_ssize;
3563	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3564		grow_amount = trunc_page((vm_size_t)stacklim) -
3565		    ctob(vm->vm_ssize);
3566	}
3567#ifdef notyet
3568	PROC_LOCK(p);
3569	limit = racct_get_available(p, RACCT_STACK);
3570	PROC_UNLOCK(p);
3571	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3572		grow_amount = limit - ctob(vm->vm_ssize);
3573#endif
3574	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3575		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3576			vm_map_unlock_read(map);
3577			rv = KERN_NO_SPACE;
3578			goto out;
3579		}
3580#ifdef RACCT
3581		PROC_LOCK(p);
3582		if (racct_set(p, RACCT_MEMLOCK,
3583		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3584			PROC_UNLOCK(p);
3585			vm_map_unlock_read(map);
3586			rv = KERN_NO_SPACE;
3587			goto out;
3588		}
3589		PROC_UNLOCK(p);
3590#endif
3591	}
3592	/* If we would blow our VMEM resource limit, no go */
3593	if (map->size + grow_amount > vmemlim) {
3594		vm_map_unlock_read(map);
3595		rv = KERN_NO_SPACE;
3596		goto out;
3597	}
3598#ifdef RACCT
3599	PROC_LOCK(p);
3600	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3601		PROC_UNLOCK(p);
3602		vm_map_unlock_read(map);
3603		rv = KERN_NO_SPACE;
3604		goto out;
3605	}
3606	PROC_UNLOCK(p);
3607#endif
3608
3609	if (vm_map_lock_upgrade(map))
3610		goto Retry;
3611
3612	if (stack_entry == next_entry) {
3613		/*
3614		 * Growing downward.
3615		 */
3616		/* Get the preliminary new entry start value */
3617		addr = stack_entry->start - grow_amount;
3618
3619		/*
3620		 * If this puts us into the previous entry, cut back our
3621		 * growth to the available space. Also, see the note above.
3622		 */
3623		if (addr < end) {
3624			stack_entry->avail_ssize = max_grow;
3625			addr = end;
3626			if (stack_guard_page)
3627				addr += PAGE_SIZE;
3628		}
3629
3630		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3631		    next_entry->protection, next_entry->max_protection, 0);
3632
3633		/* Adjust the available stack space by the amount we grew. */
3634		if (rv == KERN_SUCCESS) {
3635			if (prev_entry != &map->header)
3636				vm_map_clip_end(map, prev_entry, addr);
3637			new_entry = prev_entry->next;
3638			KASSERT(new_entry == stack_entry->prev, ("foo"));
3639			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3640			KASSERT(new_entry->start == addr, ("foo"));
3641			grow_amount = new_entry->end - new_entry->start;
3642			new_entry->avail_ssize = stack_entry->avail_ssize -
3643			    grow_amount;
3644			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3645			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3646		}
3647	} else {
3648		/*
3649		 * Growing upward.
3650		 */
3651		addr = stack_entry->end + grow_amount;
3652
3653		/*
3654		 * If this puts us into the next entry, cut back our growth
3655		 * to the available space. Also, see the note above.
3656		 */
3657		if (addr > end) {
3658			stack_entry->avail_ssize = end - stack_entry->end;
3659			addr = end;
3660			if (stack_guard_page)
3661				addr -= PAGE_SIZE;
3662		}
3663
3664		grow_amount = addr - stack_entry->end;
3665		cred = stack_entry->cred;
3666		if (cred == NULL && stack_entry->object.vm_object != NULL)
3667			cred = stack_entry->object.vm_object->cred;
3668		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3669			rv = KERN_NO_SPACE;
3670		/* Grow the underlying object if applicable. */
3671		else if (stack_entry->object.vm_object == NULL ||
3672			 vm_object_coalesce(stack_entry->object.vm_object,
3673			 stack_entry->offset,
3674			 (vm_size_t)(stack_entry->end - stack_entry->start),
3675			 (vm_size_t)grow_amount, cred != NULL)) {
3676			map->size += (addr - stack_entry->end);
3677			/* Update the current entry. */
3678			stack_entry->end = addr;
3679			stack_entry->avail_ssize -= grow_amount;
3680			vm_map_entry_resize_free(map, stack_entry);
3681			rv = KERN_SUCCESS;
3682
3683			if (next_entry != &map->header)
3684				vm_map_clip_start(map, next_entry, addr);
3685		} else
3686			rv = KERN_FAILURE;
3687	}
3688
3689	if (rv == KERN_SUCCESS && is_procstack)
3690		vm->vm_ssize += btoc(grow_amount);
3691
3692	vm_map_unlock(map);
3693
3694	/*
3695	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3696	 */
3697	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3698		vm_map_wire(map,
3699		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3700		    (stack_entry == next_entry) ? stack_entry->start : addr,
3701		    (p->p_flag & P_SYSTEM)
3702		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3703		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3704	}
3705
3706out:
3707#ifdef RACCT
3708	if (rv != KERN_SUCCESS) {
3709		PROC_LOCK(p);
3710		error = racct_set(p, RACCT_VMEM, map->size);
3711		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3712		if (!old_mlock) {
3713			error = racct_set(p, RACCT_MEMLOCK,
3714			    ptoa(pmap_wired_count(map->pmap)));
3715			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3716		}
3717	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3718		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3719		PROC_UNLOCK(p);
3720	}
3721#endif
3722
3723	return (rv);
3724}
3725
3726/*
3727 * Unshare the specified VM space for exec.  If other processes are
3728 * mapped to it, then create a new one.  The new vmspace is null.
3729 */
3730int
3731vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3732{
3733	struct vmspace *oldvmspace = p->p_vmspace;
3734	struct vmspace *newvmspace;
3735
3736	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3737	if (newvmspace == NULL)
3738		return (ENOMEM);
3739	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3740	/*
3741	 * This code is written like this for prototype purposes.  The
3742	 * goal is to avoid running down the vmspace here, but let the
3743	 * other process's that are still using the vmspace to finally
3744	 * run it down.  Even though there is little or no chance of blocking
3745	 * here, it is a good idea to keep this form for future mods.
3746	 */
3747	PROC_VMSPACE_LOCK(p);
3748	p->p_vmspace = newvmspace;
3749	PROC_VMSPACE_UNLOCK(p);
3750	if (p == curthread->td_proc)
3751		pmap_activate(curthread);
3752	vmspace_free(oldvmspace);
3753	return (0);
3754}
3755
3756/*
3757 * Unshare the specified VM space for forcing COW.  This
3758 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3759 */
3760int
3761vmspace_unshare(struct proc *p)
3762{
3763	struct vmspace *oldvmspace = p->p_vmspace;
3764	struct vmspace *newvmspace;
3765	vm_ooffset_t fork_charge;
3766
3767	if (oldvmspace->vm_refcnt == 1)
3768		return (0);
3769	fork_charge = 0;
3770	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3771	if (newvmspace == NULL)
3772		return (ENOMEM);
3773	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3774		vmspace_free(newvmspace);
3775		return (ENOMEM);
3776	}
3777	PROC_VMSPACE_LOCK(p);
3778	p->p_vmspace = newvmspace;
3779	PROC_VMSPACE_UNLOCK(p);
3780	if (p == curthread->td_proc)
3781		pmap_activate(curthread);
3782	vmspace_free(oldvmspace);
3783	return (0);
3784}
3785
3786/*
3787 *	vm_map_lookup:
3788 *
3789 *	Finds the VM object, offset, and
3790 *	protection for a given virtual address in the
3791 *	specified map, assuming a page fault of the
3792 *	type specified.
3793 *
3794 *	Leaves the map in question locked for read; return
3795 *	values are guaranteed until a vm_map_lookup_done
3796 *	call is performed.  Note that the map argument
3797 *	is in/out; the returned map must be used in
3798 *	the call to vm_map_lookup_done.
3799 *
3800 *	A handle (out_entry) is returned for use in
3801 *	vm_map_lookup_done, to make that fast.
3802 *
3803 *	If a lookup is requested with "write protection"
3804 *	specified, the map may be changed to perform virtual
3805 *	copying operations, although the data referenced will
3806 *	remain the same.
3807 */
3808int
3809vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3810	      vm_offset_t vaddr,
3811	      vm_prot_t fault_typea,
3812	      vm_map_entry_t *out_entry,	/* OUT */
3813	      vm_object_t *object,		/* OUT */
3814	      vm_pindex_t *pindex,		/* OUT */
3815	      vm_prot_t *out_prot,		/* OUT */
3816	      boolean_t *wired)			/* OUT */
3817{
3818	vm_map_entry_t entry;
3819	vm_map_t map = *var_map;
3820	vm_prot_t prot;
3821	vm_prot_t fault_type = fault_typea;
3822	vm_object_t eobject;
3823	vm_size_t size;
3824	struct ucred *cred;
3825
3826RetryLookup:;
3827
3828	vm_map_lock_read(map);
3829
3830	/*
3831	 * Lookup the faulting address.
3832	 */
3833	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3834		vm_map_unlock_read(map);
3835		return (KERN_INVALID_ADDRESS);
3836	}
3837
3838	entry = *out_entry;
3839
3840	/*
3841	 * Handle submaps.
3842	 */
3843	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3844		vm_map_t old_map = map;
3845
3846		*var_map = map = entry->object.sub_map;
3847		vm_map_unlock_read(old_map);
3848		goto RetryLookup;
3849	}
3850
3851	/*
3852	 * Check whether this task is allowed to have this page.
3853	 */
3854	prot = entry->protection;
3855	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3856	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3857		vm_map_unlock_read(map);
3858		return (KERN_PROTECTION_FAILURE);
3859	}
3860	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3861	    (entry->eflags & MAP_ENTRY_COW) &&
3862	    (fault_type & VM_PROT_WRITE)) {
3863		vm_map_unlock_read(map);
3864		return (KERN_PROTECTION_FAILURE);
3865	}
3866	if ((fault_typea & VM_PROT_COPY) != 0 &&
3867	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3868	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3869		vm_map_unlock_read(map);
3870		return (KERN_PROTECTION_FAILURE);
3871	}
3872
3873	/*
3874	 * If this page is not pageable, we have to get it for all possible
3875	 * accesses.
3876	 */
3877	*wired = (entry->wired_count != 0);
3878	if (*wired)
3879		fault_type = entry->protection;
3880	size = entry->end - entry->start;
3881	/*
3882	 * If the entry was copy-on-write, we either ...
3883	 */
3884	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3885		/*
3886		 * If we want to write the page, we may as well handle that
3887		 * now since we've got the map locked.
3888		 *
3889		 * If we don't need to write the page, we just demote the
3890		 * permissions allowed.
3891		 */
3892		if ((fault_type & VM_PROT_WRITE) != 0 ||
3893		    (fault_typea & VM_PROT_COPY) != 0) {
3894			/*
3895			 * Make a new object, and place it in the object
3896			 * chain.  Note that no new references have appeared
3897			 * -- one just moved from the map to the new
3898			 * object.
3899			 */
3900			if (vm_map_lock_upgrade(map))
3901				goto RetryLookup;
3902
3903			if (entry->cred == NULL) {
3904				/*
3905				 * The debugger owner is charged for
3906				 * the memory.
3907				 */
3908				cred = curthread->td_ucred;
3909				crhold(cred);
3910				if (!swap_reserve_by_cred(size, cred)) {
3911					crfree(cred);
3912					vm_map_unlock(map);
3913					return (KERN_RESOURCE_SHORTAGE);
3914				}
3915				entry->cred = cred;
3916			}
3917			vm_object_shadow(&entry->object.vm_object,
3918			    &entry->offset, size);
3919			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3920			eobject = entry->object.vm_object;
3921			if (eobject->cred != NULL) {
3922				/*
3923				 * The object was not shadowed.
3924				 */
3925				swap_release_by_cred(size, entry->cred);
3926				crfree(entry->cred);
3927				entry->cred = NULL;
3928			} else if (entry->cred != NULL) {
3929				VM_OBJECT_WLOCK(eobject);
3930				eobject->cred = entry->cred;
3931				eobject->charge = size;
3932				VM_OBJECT_WUNLOCK(eobject);
3933				entry->cred = NULL;
3934			}
3935
3936			vm_map_lock_downgrade(map);
3937		} else {
3938			/*
3939			 * We're attempting to read a copy-on-write page --
3940			 * don't allow writes.
3941			 */
3942			prot &= ~VM_PROT_WRITE;
3943		}
3944	}
3945
3946	/*
3947	 * Create an object if necessary.
3948	 */
3949	if (entry->object.vm_object == NULL &&
3950	    !map->system_map) {
3951		if (vm_map_lock_upgrade(map))
3952			goto RetryLookup;
3953		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3954		    atop(size));
3955		entry->offset = 0;
3956		if (entry->cred != NULL) {
3957			VM_OBJECT_WLOCK(entry->object.vm_object);
3958			entry->object.vm_object->cred = entry->cred;
3959			entry->object.vm_object->charge = size;
3960			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3961			entry->cred = NULL;
3962		}
3963		vm_map_lock_downgrade(map);
3964	}
3965
3966	/*
3967	 * Return the object/offset from this entry.  If the entry was
3968	 * copy-on-write or empty, it has been fixed up.
3969	 */
3970	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3971	*object = entry->object.vm_object;
3972
3973	*out_prot = prot;
3974	return (KERN_SUCCESS);
3975}
3976
3977/*
3978 *	vm_map_lookup_locked:
3979 *
3980 *	Lookup the faulting address.  A version of vm_map_lookup that returns
3981 *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3982 */
3983int
3984vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3985		     vm_offset_t vaddr,
3986		     vm_prot_t fault_typea,
3987		     vm_map_entry_t *out_entry,	/* OUT */
3988		     vm_object_t *object,	/* OUT */
3989		     vm_pindex_t *pindex,	/* OUT */
3990		     vm_prot_t *out_prot,	/* OUT */
3991		     boolean_t *wired)		/* OUT */
3992{
3993	vm_map_entry_t entry;
3994	vm_map_t map = *var_map;
3995	vm_prot_t prot;
3996	vm_prot_t fault_type = fault_typea;
3997
3998	/*
3999	 * Lookup the faulting address.
4000	 */
4001	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4002		return (KERN_INVALID_ADDRESS);
4003
4004	entry = *out_entry;
4005
4006	/*
4007	 * Fail if the entry refers to a submap.
4008	 */
4009	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4010		return (KERN_FAILURE);
4011
4012	/*
4013	 * Check whether this task is allowed to have this page.
4014	 */
4015	prot = entry->protection;
4016	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4017	if ((fault_type & prot) != fault_type)
4018		return (KERN_PROTECTION_FAILURE);
4019	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4020	    (entry->eflags & MAP_ENTRY_COW) &&
4021	    (fault_type & VM_PROT_WRITE))
4022		return (KERN_PROTECTION_FAILURE);
4023
4024	/*
4025	 * If this page is not pageable, we have to get it for all possible
4026	 * accesses.
4027	 */
4028	*wired = (entry->wired_count != 0);
4029	if (*wired)
4030		fault_type = entry->protection;
4031
4032	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4033		/*
4034		 * Fail if the entry was copy-on-write for a write fault.
4035		 */
4036		if (fault_type & VM_PROT_WRITE)
4037			return (KERN_FAILURE);
4038		/*
4039		 * We're attempting to read a copy-on-write page --
4040		 * don't allow writes.
4041		 */
4042		prot &= ~VM_PROT_WRITE;
4043	}
4044
4045	/*
4046	 * Fail if an object should be created.
4047	 */
4048	if (entry->object.vm_object == NULL && !map->system_map)
4049		return (KERN_FAILURE);
4050
4051	/*
4052	 * Return the object/offset from this entry.  If the entry was
4053	 * copy-on-write or empty, it has been fixed up.
4054	 */
4055	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4056	*object = entry->object.vm_object;
4057
4058	*out_prot = prot;
4059	return (KERN_SUCCESS);
4060}
4061
4062/*
4063 *	vm_map_lookup_done:
4064 *
4065 *	Releases locks acquired by a vm_map_lookup
4066 *	(according to the handle returned by that lookup).
4067 */
4068void
4069vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4070{
4071	/*
4072	 * Unlock the main-level map
4073	 */
4074	vm_map_unlock_read(map);
4075}
4076
4077#include "opt_ddb.h"
4078#ifdef DDB
4079#include <sys/kernel.h>
4080
4081#include <ddb/ddb.h>
4082
4083static void
4084vm_map_print(vm_map_t map)
4085{
4086	vm_map_entry_t entry;
4087
4088	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4089	    (void *)map,
4090	    (void *)map->pmap, map->nentries, map->timestamp);
4091
4092	db_indent += 2;
4093	for (entry = map->header.next; entry != &map->header;
4094	    entry = entry->next) {
4095		db_iprintf("map entry %p: start=%p, end=%p\n",
4096		    (void *)entry, (void *)entry->start, (void *)entry->end);
4097		{
4098			static char *inheritance_name[4] =
4099			{"share", "copy", "none", "donate_copy"};
4100
4101			db_iprintf(" prot=%x/%x/%s",
4102			    entry->protection,
4103			    entry->max_protection,
4104			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4105			if (entry->wired_count != 0)
4106				db_printf(", wired");
4107		}
4108		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4109			db_printf(", share=%p, offset=0x%jx\n",
4110			    (void *)entry->object.sub_map,
4111			    (uintmax_t)entry->offset);
4112			if ((entry->prev == &map->header) ||
4113			    (entry->prev->object.sub_map !=
4114				entry->object.sub_map)) {
4115				db_indent += 2;
4116				vm_map_print((vm_map_t)entry->object.sub_map);
4117				db_indent -= 2;
4118			}
4119		} else {
4120			if (entry->cred != NULL)
4121				db_printf(", ruid %d", entry->cred->cr_ruid);
4122			db_printf(", object=%p, offset=0x%jx",
4123			    (void *)entry->object.vm_object,
4124			    (uintmax_t)entry->offset);
4125			if (entry->object.vm_object && entry->object.vm_object->cred)
4126				db_printf(", obj ruid %d charge %jx",
4127				    entry->object.vm_object->cred->cr_ruid,
4128				    (uintmax_t)entry->object.vm_object->charge);
4129			if (entry->eflags & MAP_ENTRY_COW)
4130				db_printf(", copy (%s)",
4131				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4132			db_printf("\n");
4133
4134			if ((entry->prev == &map->header) ||
4135			    (entry->prev->object.vm_object !=
4136				entry->object.vm_object)) {
4137				db_indent += 2;
4138				vm_object_print((db_expr_t)(intptr_t)
4139						entry->object.vm_object,
4140						1, 0, (char *)0);
4141				db_indent -= 2;
4142			}
4143		}
4144	}
4145	db_indent -= 2;
4146}
4147
4148DB_SHOW_COMMAND(map, map)
4149{
4150
4151	if (!have_addr) {
4152		db_printf("usage: show map <addr>\n");
4153		return;
4154	}
4155	vm_map_print((vm_map_t)addr);
4156}
4157
4158DB_SHOW_COMMAND(procvm, procvm)
4159{
4160	struct proc *p;
4161
4162	if (have_addr) {
4163		p = (struct proc *) addr;
4164	} else {
4165		p = curproc;
4166	}
4167
4168	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4169	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4170	    (void *)vmspace_pmap(p->p_vmspace));
4171
4172	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4173}
4174
4175#endif /* DDB */
4176