vm_kern.c revision 294283
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_kern.c 294283 2016-01-18 18:27:21Z jhb $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/eventhandler.h>
72#include <sys/lock.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75#include <sys/rwlock.h>
76#include <sys/sysctl.h>
77#include <sys/vmem.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/vm_kern.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pageout.h>
87#include <vm/vm_extern.h>
88#include <vm/uma.h>
89
90vm_map_t kernel_map;
91vm_map_t exec_map;
92vm_map_t pipe_map;
93
94const void *zero_region;
95CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
96
97/* NB: Used by kernel debuggers. */
98const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
99
100SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
101    SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
102
103SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
104#if defined(__arm__) || defined(__sparc64__)
105    &vm_max_kernel_address, 0,
106#else
107    SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
108#endif
109    "Max kernel address");
110
111/*
112 *	kva_alloc:
113 *
114 *	Allocate a virtual address range with no underlying object and
115 *	no initial mapping to physical memory.  Any mapping from this
116 *	range to physical memory must be explicitly created prior to
117 *	its use, typically with pmap_qenter().  Any attempt to create
118 *	a mapping on demand through vm_fault() will result in a panic.
119 */
120vm_offset_t
121kva_alloc(size)
122	vm_size_t size;
123{
124	vm_offset_t addr;
125
126	size = round_page(size);
127	if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
128		return (0);
129
130	return (addr);
131}
132
133/*
134 *	kva_free:
135 *
136 *	Release a region of kernel virtual memory allocated
137 *	with kva_alloc, and return the physical pages
138 *	associated with that region.
139 *
140 *	This routine may not block on kernel maps.
141 */
142void
143kva_free(addr, size)
144	vm_offset_t addr;
145	vm_size_t size;
146{
147
148	size = round_page(size);
149	vmem_free(kernel_arena, addr, size);
150}
151
152/*
153 *	Allocates a region from the kernel address map and physical pages
154 *	within the specified address range to the kernel object.  Creates a
155 *	wired mapping from this region to these pages, and returns the
156 *	region's starting virtual address.  The allocated pages are not
157 *	necessarily physically contiguous.  If M_ZERO is specified through the
158 *	given flags, then the pages are zeroed before they are mapped.
159 */
160vm_offset_t
161kmem_alloc_attr(vmem_t *vmem, vm_size_t size, int flags, vm_paddr_t low,
162    vm_paddr_t high, vm_memattr_t memattr)
163{
164	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
165	vm_offset_t addr, i;
166	vm_ooffset_t offset;
167	vm_page_t m;
168	int pflags, tries;
169
170	size = round_page(size);
171	if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
172		return (0);
173	offset = addr - VM_MIN_KERNEL_ADDRESS;
174	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
175	VM_OBJECT_WLOCK(object);
176	for (i = 0; i < size; i += PAGE_SIZE) {
177		tries = 0;
178retry:
179		m = vm_page_alloc_contig(object, OFF_TO_IDX(offset + i),
180		    pflags, 1, low, high, PAGE_SIZE, 0, memattr);
181		if (m == NULL) {
182			VM_OBJECT_WUNLOCK(object);
183			if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
184				vm_pageout_grow_cache(tries, low, high);
185				VM_OBJECT_WLOCK(object);
186				tries++;
187				goto retry;
188			}
189			kmem_unback(object, addr, i);
190			vmem_free(vmem, addr, size);
191			return (0);
192		}
193		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
194			pmap_zero_page(m);
195		m->valid = VM_PAGE_BITS_ALL;
196		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
197		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
198	}
199	VM_OBJECT_WUNLOCK(object);
200	return (addr);
201}
202
203/*
204 *	Allocates a region from the kernel address map and physically
205 *	contiguous pages within the specified address range to the kernel
206 *	object.  Creates a wired mapping from this region to these pages, and
207 *	returns the region's starting virtual address.  If M_ZERO is specified
208 *	through the given flags, then the pages are zeroed before they are
209 *	mapped.
210 */
211vm_offset_t
212kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
213    vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
214    vm_memattr_t memattr)
215{
216	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
217	vm_offset_t addr, tmp;
218	vm_ooffset_t offset;
219	vm_page_t end_m, m;
220	int pflags, tries;
221
222	size = round_page(size);
223	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
224		return (0);
225	offset = addr - VM_MIN_KERNEL_ADDRESS;
226	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
227	VM_OBJECT_WLOCK(object);
228	tries = 0;
229retry:
230	m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags,
231	    atop(size), low, high, alignment, boundary, memattr);
232	if (m == NULL) {
233		VM_OBJECT_WUNLOCK(object);
234		if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
235			vm_pageout_grow_cache(tries, low, high);
236			VM_OBJECT_WLOCK(object);
237			tries++;
238			goto retry;
239		}
240		vmem_free(vmem, addr, size);
241		return (0);
242	}
243	end_m = m + atop(size);
244	tmp = addr;
245	for (; m < end_m; m++) {
246		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
247			pmap_zero_page(m);
248		m->valid = VM_PAGE_BITS_ALL;
249		pmap_enter(kernel_pmap, tmp, m, VM_PROT_ALL,
250		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
251		tmp += PAGE_SIZE;
252	}
253	VM_OBJECT_WUNLOCK(object);
254	return (addr);
255}
256
257/*
258 *	kmem_suballoc:
259 *
260 *	Allocates a map to manage a subrange
261 *	of the kernel virtual address space.
262 *
263 *	Arguments are as follows:
264 *
265 *	parent		Map to take range from
266 *	min, max	Returned endpoints of map
267 *	size		Size of range to find
268 *	superpage_align	Request that min is superpage aligned
269 */
270vm_map_t
271kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
272    vm_size_t size, boolean_t superpage_align)
273{
274	int ret;
275	vm_map_t result;
276
277	size = round_page(size);
278
279	*min = vm_map_min(parent);
280	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
281	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
282	    MAP_ACC_NO_CHARGE);
283	if (ret != KERN_SUCCESS)
284		panic("kmem_suballoc: bad status return of %d", ret);
285	*max = *min + size;
286	result = vm_map_create(vm_map_pmap(parent), *min, *max);
287	if (result == NULL)
288		panic("kmem_suballoc: cannot create submap");
289	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
290		panic("kmem_suballoc: unable to change range to submap");
291	return (result);
292}
293
294/*
295 *	kmem_malloc:
296 *
297 *	Allocate wired-down pages in the kernel's address space.
298 */
299vm_offset_t
300kmem_malloc(struct vmem *vmem, vm_size_t size, int flags)
301{
302	vm_offset_t addr;
303	int rv;
304
305	size = round_page(size);
306	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
307		return (0);
308
309	rv = kmem_back((vmem == kmem_arena) ? kmem_object : kernel_object,
310	    addr, size, flags);
311	if (rv != KERN_SUCCESS) {
312		vmem_free(vmem, addr, size);
313		return (0);
314	}
315	return (addr);
316}
317
318/*
319 *	kmem_back:
320 *
321 *	Allocate physical pages for the specified virtual address range.
322 */
323int
324kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
325{
326	vm_offset_t offset, i;
327	vm_page_t m;
328	int pflags;
329
330	KASSERT(object == kmem_object || object == kernel_object,
331	    ("kmem_back: only supports kernel objects."));
332
333	offset = addr - VM_MIN_KERNEL_ADDRESS;
334	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
335
336	VM_OBJECT_WLOCK(object);
337	for (i = 0; i < size; i += PAGE_SIZE) {
338retry:
339		m = vm_page_alloc(object, OFF_TO_IDX(offset + i), pflags);
340
341		/*
342		 * Ran out of space, free everything up and return. Don't need
343		 * to lock page queues here as we know that the pages we got
344		 * aren't on any queues.
345		 */
346		if (m == NULL) {
347			VM_OBJECT_WUNLOCK(object);
348			if ((flags & M_NOWAIT) == 0) {
349				VM_WAIT;
350				VM_OBJECT_WLOCK(object);
351				goto retry;
352			}
353			kmem_unback(object, addr, i);
354			return (KERN_NO_SPACE);
355		}
356		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
357			pmap_zero_page(m);
358		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
359		    ("kmem_malloc: page %p is managed", m));
360		m->valid = VM_PAGE_BITS_ALL;
361		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
362		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
363	}
364	VM_OBJECT_WUNLOCK(object);
365
366	return (KERN_SUCCESS);
367}
368
369/*
370 *	kmem_unback:
371 *
372 *	Unmap and free the physical pages underlying the specified virtual
373 *	address range.
374 *
375 *	A physical page must exist within the specified object at each index
376 *	that is being unmapped.
377 */
378void
379kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
380{
381	vm_page_t m;
382	vm_offset_t i, offset;
383
384	KASSERT(object == kmem_object || object == kernel_object,
385	    ("kmem_unback: only supports kernel objects."));
386
387	pmap_remove(kernel_pmap, addr, addr + size);
388	offset = addr - VM_MIN_KERNEL_ADDRESS;
389	VM_OBJECT_WLOCK(object);
390	for (i = 0; i < size; i += PAGE_SIZE) {
391		m = vm_page_lookup(object, OFF_TO_IDX(offset + i));
392		vm_page_unwire(m, 0);
393		vm_page_free(m);
394	}
395	VM_OBJECT_WUNLOCK(object);
396}
397
398/*
399 *	kmem_free:
400 *
401 *	Free memory allocated with kmem_malloc.  The size must match the
402 *	original allocation.
403 */
404void
405kmem_free(struct vmem *vmem, vm_offset_t addr, vm_size_t size)
406{
407
408	size = round_page(size);
409	kmem_unback((vmem == kmem_arena) ? kmem_object : kernel_object,
410	    addr, size);
411	vmem_free(vmem, addr, size);
412}
413
414/*
415 *	kmap_alloc_wait:
416 *
417 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
418 *	has no room, the caller sleeps waiting for more memory in the submap.
419 *
420 *	This routine may block.
421 */
422vm_offset_t
423kmap_alloc_wait(map, size)
424	vm_map_t map;
425	vm_size_t size;
426{
427	vm_offset_t addr;
428
429	size = round_page(size);
430	if (!swap_reserve(size))
431		return (0);
432
433	for (;;) {
434		/*
435		 * To make this work for more than one map, use the map's lock
436		 * to lock out sleepers/wakers.
437		 */
438		vm_map_lock(map);
439		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
440			break;
441		/* no space now; see if we can ever get space */
442		if (vm_map_max(map) - vm_map_min(map) < size) {
443			vm_map_unlock(map);
444			swap_release(size);
445			return (0);
446		}
447		map->needs_wakeup = TRUE;
448		vm_map_unlock_and_wait(map, 0);
449	}
450	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
451	    VM_PROT_ALL, MAP_ACC_CHARGED);
452	vm_map_unlock(map);
453	return (addr);
454}
455
456/*
457 *	kmap_free_wakeup:
458 *
459 *	Returns memory to a submap of the kernel, and wakes up any processes
460 *	waiting for memory in that map.
461 */
462void
463kmap_free_wakeup(map, addr, size)
464	vm_map_t map;
465	vm_offset_t addr;
466	vm_size_t size;
467{
468
469	vm_map_lock(map);
470	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
471	if (map->needs_wakeup) {
472		map->needs_wakeup = FALSE;
473		vm_map_wakeup(map);
474	}
475	vm_map_unlock(map);
476}
477
478void
479kmem_init_zero_region(void)
480{
481	vm_offset_t addr, i;
482	vm_page_t m;
483
484	/*
485	 * Map a single physical page of zeros to a larger virtual range.
486	 * This requires less looping in places that want large amounts of
487	 * zeros, while not using much more physical resources.
488	 */
489	addr = kva_alloc(ZERO_REGION_SIZE);
490	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
491	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
492	if ((m->flags & PG_ZERO) == 0)
493		pmap_zero_page(m);
494	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
495		pmap_qenter(addr + i, &m, 1);
496	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
497
498	zero_region = (const void *)addr;
499}
500
501/*
502 * 	kmem_init:
503 *
504 *	Create the kernel map; insert a mapping covering kernel text,
505 *	data, bss, and all space allocated thus far (`boostrap' data).  The
506 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
507 *	`start' as allocated, and the range between `start' and `end' as free.
508 */
509void
510kmem_init(start, end)
511	vm_offset_t start, end;
512{
513	vm_map_t m;
514
515	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
516	m->system_map = 1;
517	vm_map_lock(m);
518	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
519	kernel_map = m;
520	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
521#ifdef __amd64__
522	    KERNBASE,
523#else
524	    VM_MIN_KERNEL_ADDRESS,
525#endif
526	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
527	/* ... and ending with the completion of the above `insert' */
528	vm_map_unlock(m);
529}
530
531#ifdef DIAGNOSTIC
532/*
533 * Allow userspace to directly trigger the VM drain routine for testing
534 * purposes.
535 */
536static int
537debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
538{
539	int error, i;
540
541	i = 0;
542	error = sysctl_handle_int(oidp, &i, 0, req);
543	if (error)
544		return (error);
545	if (i)
546		EVENTHANDLER_INVOKE(vm_lowmem, 0);
547	return (0);
548}
549
550SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
551    debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
552#endif
553