vm_kern.c revision 288556
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53 *  School of Computer Science
54 *  Carnegie Mellon University
55 *  Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61/*
62 *	Kernel memory management.
63 */
64
65#include <sys/cdefs.h>
66__FBSDID("$FreeBSD: stable/10/sys/vm/vm_kern.c 288556 2015-10-03 07:43:33Z alc $");
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/kernel.h>		/* for ticks and hz */
71#include <sys/eventhandler.h>
72#include <sys/lock.h>
73#include <sys/proc.h>
74#include <sys/malloc.h>
75#include <sys/rwlock.h>
76#include <sys/sysctl.h>
77#include <sys/vmem.h>
78
79#include <vm/vm.h>
80#include <vm/vm_param.h>
81#include <vm/vm_kern.h>
82#include <vm/pmap.h>
83#include <vm/vm_map.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pageout.h>
87#include <vm/vm_extern.h>
88#include <vm/uma.h>
89
90vm_map_t kernel_map;
91vm_map_t exec_map;
92vm_map_t pipe_map;
93
94const void *zero_region;
95CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
96
97SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
98    SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
99
100SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
101#if defined(__arm__) || defined(__sparc64__)
102    &vm_max_kernel_address, 0,
103#else
104    SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
105#endif
106    "Max kernel address");
107
108/*
109 *	kva_alloc:
110 *
111 *	Allocate a virtual address range with no underlying object and
112 *	no initial mapping to physical memory.  Any mapping from this
113 *	range to physical memory must be explicitly created prior to
114 *	its use, typically with pmap_qenter().  Any attempt to create
115 *	a mapping on demand through vm_fault() will result in a panic.
116 */
117vm_offset_t
118kva_alloc(size)
119	vm_size_t size;
120{
121	vm_offset_t addr;
122
123	size = round_page(size);
124	if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
125		return (0);
126
127	return (addr);
128}
129
130/*
131 *	kva_free:
132 *
133 *	Release a region of kernel virtual memory allocated
134 *	with kva_alloc, and return the physical pages
135 *	associated with that region.
136 *
137 *	This routine may not block on kernel maps.
138 */
139void
140kva_free(addr, size)
141	vm_offset_t addr;
142	vm_size_t size;
143{
144
145	size = round_page(size);
146	vmem_free(kernel_arena, addr, size);
147}
148
149/*
150 *	Allocates a region from the kernel address map and physical pages
151 *	within the specified address range to the kernel object.  Creates a
152 *	wired mapping from this region to these pages, and returns the
153 *	region's starting virtual address.  The allocated pages are not
154 *	necessarily physically contiguous.  If M_ZERO is specified through the
155 *	given flags, then the pages are zeroed before they are mapped.
156 */
157vm_offset_t
158kmem_alloc_attr(vmem_t *vmem, vm_size_t size, int flags, vm_paddr_t low,
159    vm_paddr_t high, vm_memattr_t memattr)
160{
161	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
162	vm_offset_t addr, i;
163	vm_ooffset_t offset;
164	vm_page_t m;
165	int pflags, tries;
166
167	size = round_page(size);
168	if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
169		return (0);
170	offset = addr - VM_MIN_KERNEL_ADDRESS;
171	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
172	VM_OBJECT_WLOCK(object);
173	for (i = 0; i < size; i += PAGE_SIZE) {
174		tries = 0;
175retry:
176		m = vm_page_alloc_contig(object, OFF_TO_IDX(offset + i),
177		    pflags, 1, low, high, PAGE_SIZE, 0, memattr);
178		if (m == NULL) {
179			VM_OBJECT_WUNLOCK(object);
180			if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
181				vm_pageout_grow_cache(tries, low, high);
182				VM_OBJECT_WLOCK(object);
183				tries++;
184				goto retry;
185			}
186			kmem_unback(object, addr, i);
187			vmem_free(vmem, addr, size);
188			return (0);
189		}
190		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
191			pmap_zero_page(m);
192		m->valid = VM_PAGE_BITS_ALL;
193		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
194		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
195	}
196	VM_OBJECT_WUNLOCK(object);
197	return (addr);
198}
199
200/*
201 *	Allocates a region from the kernel address map and physically
202 *	contiguous pages within the specified address range to the kernel
203 *	object.  Creates a wired mapping from this region to these pages, and
204 *	returns the region's starting virtual address.  If M_ZERO is specified
205 *	through the given flags, then the pages are zeroed before they are
206 *	mapped.
207 */
208vm_offset_t
209kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
210    vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
211    vm_memattr_t memattr)
212{
213	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
214	vm_offset_t addr, tmp;
215	vm_ooffset_t offset;
216	vm_page_t end_m, m;
217	int pflags, tries;
218
219	size = round_page(size);
220	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
221		return (0);
222	offset = addr - VM_MIN_KERNEL_ADDRESS;
223	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
224	VM_OBJECT_WLOCK(object);
225	tries = 0;
226retry:
227	m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags,
228	    atop(size), low, high, alignment, boundary, memattr);
229	if (m == NULL) {
230		VM_OBJECT_WUNLOCK(object);
231		if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
232			vm_pageout_grow_cache(tries, low, high);
233			VM_OBJECT_WLOCK(object);
234			tries++;
235			goto retry;
236		}
237		vmem_free(vmem, addr, size);
238		return (0);
239	}
240	end_m = m + atop(size);
241	tmp = addr;
242	for (; m < end_m; m++) {
243		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
244			pmap_zero_page(m);
245		m->valid = VM_PAGE_BITS_ALL;
246		pmap_enter(kernel_pmap, tmp, m, VM_PROT_ALL,
247		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
248		tmp += PAGE_SIZE;
249	}
250	VM_OBJECT_WUNLOCK(object);
251	return (addr);
252}
253
254/*
255 *	kmem_suballoc:
256 *
257 *	Allocates a map to manage a subrange
258 *	of the kernel virtual address space.
259 *
260 *	Arguments are as follows:
261 *
262 *	parent		Map to take range from
263 *	min, max	Returned endpoints of map
264 *	size		Size of range to find
265 *	superpage_align	Request that min is superpage aligned
266 */
267vm_map_t
268kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
269    vm_size_t size, boolean_t superpage_align)
270{
271	int ret;
272	vm_map_t result;
273
274	size = round_page(size);
275
276	*min = vm_map_min(parent);
277	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
278	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
279	    MAP_ACC_NO_CHARGE);
280	if (ret != KERN_SUCCESS)
281		panic("kmem_suballoc: bad status return of %d", ret);
282	*max = *min + size;
283	result = vm_map_create(vm_map_pmap(parent), *min, *max);
284	if (result == NULL)
285		panic("kmem_suballoc: cannot create submap");
286	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
287		panic("kmem_suballoc: unable to change range to submap");
288	return (result);
289}
290
291/*
292 *	kmem_malloc:
293 *
294 *	Allocate wired-down pages in the kernel's address space.
295 */
296vm_offset_t
297kmem_malloc(struct vmem *vmem, vm_size_t size, int flags)
298{
299	vm_offset_t addr;
300	int rv;
301
302	size = round_page(size);
303	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
304		return (0);
305
306	rv = kmem_back((vmem == kmem_arena) ? kmem_object : kernel_object,
307	    addr, size, flags);
308	if (rv != KERN_SUCCESS) {
309		vmem_free(vmem, addr, size);
310		return (0);
311	}
312	return (addr);
313}
314
315/*
316 *	kmem_back:
317 *
318 *	Allocate physical pages for the specified virtual address range.
319 */
320int
321kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
322{
323	vm_offset_t offset, i;
324	vm_page_t m;
325	int pflags;
326
327	KASSERT(object == kmem_object || object == kernel_object,
328	    ("kmem_back: only supports kernel objects."));
329
330	offset = addr - VM_MIN_KERNEL_ADDRESS;
331	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
332
333	VM_OBJECT_WLOCK(object);
334	for (i = 0; i < size; i += PAGE_SIZE) {
335retry:
336		m = vm_page_alloc(object, OFF_TO_IDX(offset + i), pflags);
337
338		/*
339		 * Ran out of space, free everything up and return. Don't need
340		 * to lock page queues here as we know that the pages we got
341		 * aren't on any queues.
342		 */
343		if (m == NULL) {
344			VM_OBJECT_WUNLOCK(object);
345			if ((flags & M_NOWAIT) == 0) {
346				VM_WAIT;
347				VM_OBJECT_WLOCK(object);
348				goto retry;
349			}
350			kmem_unback(object, addr, i);
351			return (KERN_NO_SPACE);
352		}
353		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
354			pmap_zero_page(m);
355		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
356		    ("kmem_malloc: page %p is managed", m));
357		m->valid = VM_PAGE_BITS_ALL;
358		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
359		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
360	}
361	VM_OBJECT_WUNLOCK(object);
362
363	return (KERN_SUCCESS);
364}
365
366/*
367 *	kmem_unback:
368 *
369 *	Unmap and free the physical pages underlying the specified virtual
370 *	address range.
371 *
372 *	A physical page must exist within the specified object at each index
373 *	that is being unmapped.
374 */
375void
376kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
377{
378	vm_page_t m;
379	vm_offset_t i, offset;
380
381	KASSERT(object == kmem_object || object == kernel_object,
382	    ("kmem_unback: only supports kernel objects."));
383
384	pmap_remove(kernel_pmap, addr, addr + size);
385	offset = addr - VM_MIN_KERNEL_ADDRESS;
386	VM_OBJECT_WLOCK(object);
387	for (i = 0; i < size; i += PAGE_SIZE) {
388		m = vm_page_lookup(object, OFF_TO_IDX(offset + i));
389		vm_page_unwire(m, 0);
390		vm_page_free(m);
391	}
392	VM_OBJECT_WUNLOCK(object);
393}
394
395/*
396 *	kmem_free:
397 *
398 *	Free memory allocated with kmem_malloc.  The size must match the
399 *	original allocation.
400 */
401void
402kmem_free(struct vmem *vmem, vm_offset_t addr, vm_size_t size)
403{
404
405	size = round_page(size);
406	kmem_unback((vmem == kmem_arena) ? kmem_object : kernel_object,
407	    addr, size);
408	vmem_free(vmem, addr, size);
409}
410
411/*
412 *	kmap_alloc_wait:
413 *
414 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
415 *	has no room, the caller sleeps waiting for more memory in the submap.
416 *
417 *	This routine may block.
418 */
419vm_offset_t
420kmap_alloc_wait(map, size)
421	vm_map_t map;
422	vm_size_t size;
423{
424	vm_offset_t addr;
425
426	size = round_page(size);
427	if (!swap_reserve(size))
428		return (0);
429
430	for (;;) {
431		/*
432		 * To make this work for more than one map, use the map's lock
433		 * to lock out sleepers/wakers.
434		 */
435		vm_map_lock(map);
436		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
437			break;
438		/* no space now; see if we can ever get space */
439		if (vm_map_max(map) - vm_map_min(map) < size) {
440			vm_map_unlock(map);
441			swap_release(size);
442			return (0);
443		}
444		map->needs_wakeup = TRUE;
445		vm_map_unlock_and_wait(map, 0);
446	}
447	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
448	    VM_PROT_ALL, MAP_ACC_CHARGED);
449	vm_map_unlock(map);
450	return (addr);
451}
452
453/*
454 *	kmap_free_wakeup:
455 *
456 *	Returns memory to a submap of the kernel, and wakes up any processes
457 *	waiting for memory in that map.
458 */
459void
460kmap_free_wakeup(map, addr, size)
461	vm_map_t map;
462	vm_offset_t addr;
463	vm_size_t size;
464{
465
466	vm_map_lock(map);
467	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
468	if (map->needs_wakeup) {
469		map->needs_wakeup = FALSE;
470		vm_map_wakeup(map);
471	}
472	vm_map_unlock(map);
473}
474
475void
476kmem_init_zero_region(void)
477{
478	vm_offset_t addr, i;
479	vm_page_t m;
480
481	/*
482	 * Map a single physical page of zeros to a larger virtual range.
483	 * This requires less looping in places that want large amounts of
484	 * zeros, while not using much more physical resources.
485	 */
486	addr = kva_alloc(ZERO_REGION_SIZE);
487	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
488	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
489	if ((m->flags & PG_ZERO) == 0)
490		pmap_zero_page(m);
491	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
492		pmap_qenter(addr + i, &m, 1);
493	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
494
495	zero_region = (const void *)addr;
496}
497
498/*
499 * 	kmem_init:
500 *
501 *	Create the kernel map; insert a mapping covering kernel text,
502 *	data, bss, and all space allocated thus far (`boostrap' data).  The
503 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
504 *	`start' as allocated, and the range between `start' and `end' as free.
505 */
506void
507kmem_init(start, end)
508	vm_offset_t start, end;
509{
510	vm_map_t m;
511
512	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
513	m->system_map = 1;
514	vm_map_lock(m);
515	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
516	kernel_map = m;
517	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
518#ifdef __amd64__
519	    KERNBASE,
520#else
521	    VM_MIN_KERNEL_ADDRESS,
522#endif
523	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
524	/* ... and ending with the completion of the above `insert' */
525	vm_map_unlock(m);
526}
527
528#ifdef DIAGNOSTIC
529/*
530 * Allow userspace to directly trigger the VM drain routine for testing
531 * purposes.
532 */
533static int
534debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
535{
536	int error, i;
537
538	i = 0;
539	error = sysctl_handle_int(oidp, &i, 0, req);
540	if (error)
541		return (error);
542	if (i)
543		EVENTHANDLER_INVOKE(vm_lowmem, 0);
544	return (0);
545}
546
547SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
548    debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
549#endif
550