vm_glue.c revision 272946
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: stable/10/sys/vm/vm_glue.c 272946 2014-10-11 17:49:51Z kib $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65#include "opt_kstack_usage_prof.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/limits.h>
70#include <sys/lock.h>
71#include <sys/malloc.h>
72#include <sys/mutex.h>
73#include <sys/proc.h>
74#include <sys/racct.h>
75#include <sys/resourcevar.h>
76#include <sys/rwlock.h>
77#include <sys/sched.h>
78#include <sys/sf_buf.h>
79#include <sys/shm.h>
80#include <sys/vmmeter.h>
81#include <sys/vmem.h>
82#include <sys/sx.h>
83#include <sys/sysctl.h>
84#include <sys/_kstack_cache.h>
85#include <sys/eventhandler.h>
86#include <sys/kernel.h>
87#include <sys/ktr.h>
88#include <sys/unistd.h>
89
90#include <vm/vm.h>
91#include <vm/vm_param.h>
92#include <vm/pmap.h>
93#include <vm/vm_map.h>
94#include <vm/vm_page.h>
95#include <vm/vm_pageout.h>
96#include <vm/vm_object.h>
97#include <vm/vm_kern.h>
98#include <vm/vm_extern.h>
99#include <vm/vm_pager.h>
100#include <vm/swap_pager.h>
101
102#include <machine/cpu.h>
103
104#ifndef NO_SWAPPING
105static int swapout(struct proc *);
106static void swapclear(struct proc *);
107static void vm_thread_swapin(struct thread *td);
108static void vm_thread_swapout(struct thread *td);
109#endif
110
111/*
112 * MPSAFE
113 *
114 * WARNING!  This code calls vm_map_check_protection() which only checks
115 * the associated vm_map_entry range.  It does not determine whether the
116 * contents of the memory is actually readable or writable.  In most cases
117 * just checking the vm_map_entry is sufficient within the kernel's address
118 * space.
119 */
120int
121kernacc(addr, len, rw)
122	void *addr;
123	int len, rw;
124{
125	boolean_t rv;
126	vm_offset_t saddr, eaddr;
127	vm_prot_t prot;
128
129	KASSERT((rw & ~VM_PROT_ALL) == 0,
130	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
131
132	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
133	    (vm_offset_t)addr + len < (vm_offset_t)addr)
134		return (FALSE);
135
136	prot = rw;
137	saddr = trunc_page((vm_offset_t)addr);
138	eaddr = round_page((vm_offset_t)addr + len);
139	vm_map_lock_read(kernel_map);
140	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
141	vm_map_unlock_read(kernel_map);
142	return (rv == TRUE);
143}
144
145/*
146 * MPSAFE
147 *
148 * WARNING!  This code calls vm_map_check_protection() which only checks
149 * the associated vm_map_entry range.  It does not determine whether the
150 * contents of the memory is actually readable or writable.  vmapbuf(),
151 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
152 * used in conjuction with this call.
153 */
154int
155useracc(addr, len, rw)
156	void *addr;
157	int len, rw;
158{
159	boolean_t rv;
160	vm_prot_t prot;
161	vm_map_t map;
162
163	KASSERT((rw & ~VM_PROT_ALL) == 0,
164	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
165	prot = rw;
166	map = &curproc->p_vmspace->vm_map;
167	if ((vm_offset_t)addr + len > vm_map_max(map) ||
168	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
169		return (FALSE);
170	}
171	vm_map_lock_read(map);
172	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
173	    round_page((vm_offset_t)addr + len), prot);
174	vm_map_unlock_read(map);
175	return (rv == TRUE);
176}
177
178int
179vslock(void *addr, size_t len)
180{
181	vm_offset_t end, last, start;
182	vm_size_t npages;
183	int error;
184
185	last = (vm_offset_t)addr + len;
186	start = trunc_page((vm_offset_t)addr);
187	end = round_page(last);
188	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
189		return (EINVAL);
190	npages = atop(end - start);
191	if (npages > vm_page_max_wired)
192		return (ENOMEM);
193#if 0
194	/*
195	 * XXX - not yet
196	 *
197	 * The limit for transient usage of wired pages should be
198	 * larger than for "permanent" wired pages (mlock()).
199	 *
200	 * Also, the sysctl code, which is the only present user
201	 * of vslock(), does a hard loop on EAGAIN.
202	 */
203	if (npages + cnt.v_wire_count > vm_page_max_wired)
204		return (EAGAIN);
205#endif
206	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
207	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
208	/*
209	 * Return EFAULT on error to match copy{in,out}() behaviour
210	 * rather than returning ENOMEM like mlock() would.
211	 */
212	return (error == KERN_SUCCESS ? 0 : EFAULT);
213}
214
215void
216vsunlock(void *addr, size_t len)
217{
218
219	/* Rely on the parameter sanity checks performed by vslock(). */
220	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
221	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
222	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
223}
224
225/*
226 * Pin the page contained within the given object at the given offset.  If the
227 * page is not resident, allocate and load it using the given object's pager.
228 * Return the pinned page if successful; otherwise, return NULL.
229 */
230static vm_page_t
231vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
232{
233	vm_page_t m, ma[1];
234	vm_pindex_t pindex;
235	int rv;
236
237	VM_OBJECT_WLOCK(object);
238	pindex = OFF_TO_IDX(offset);
239	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
240	if (m->valid != VM_PAGE_BITS_ALL) {
241		ma[0] = m;
242		rv = vm_pager_get_pages(object, ma, 1, 0);
243		m = vm_page_lookup(object, pindex);
244		if (m == NULL)
245			goto out;
246		if (rv != VM_PAGER_OK) {
247			vm_page_lock(m);
248			vm_page_free(m);
249			vm_page_unlock(m);
250			m = NULL;
251			goto out;
252		}
253	}
254	vm_page_xunbusy(m);
255	vm_page_lock(m);
256	vm_page_hold(m);
257	vm_page_activate(m);
258	vm_page_unlock(m);
259out:
260	VM_OBJECT_WUNLOCK(object);
261	return (m);
262}
263
264/*
265 * Return a CPU private mapping to the page at the given offset within the
266 * given object.  The page is pinned before it is mapped.
267 */
268struct sf_buf *
269vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
270{
271	vm_page_t m;
272
273	m = vm_imgact_hold_page(object, offset);
274	if (m == NULL)
275		return (NULL);
276	sched_pin();
277	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
278}
279
280/*
281 * Destroy the given CPU private mapping and unpin the page that it mapped.
282 */
283void
284vm_imgact_unmap_page(struct sf_buf *sf)
285{
286	vm_page_t m;
287
288	m = sf_buf_page(sf);
289	sf_buf_free(sf);
290	sched_unpin();
291	vm_page_lock(m);
292	vm_page_unhold(m);
293	vm_page_unlock(m);
294}
295
296void
297vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
298{
299
300	pmap_sync_icache(map->pmap, va, sz);
301}
302
303struct kstack_cache_entry *kstack_cache;
304static int kstack_cache_size = 128;
305static int kstacks;
306static struct mtx kstack_cache_mtx;
307MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
308
309SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
310    "");
311SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
312    "");
313
314#ifndef KSTACK_MAX_PAGES
315#define KSTACK_MAX_PAGES 32
316#endif
317
318/*
319 * Create the kernel stack (including pcb for i386) for a new thread.
320 * This routine directly affects the fork perf for a process and
321 * create performance for a thread.
322 */
323int
324vm_thread_new(struct thread *td, int pages)
325{
326	vm_object_t ksobj;
327	vm_offset_t ks;
328	vm_page_t m, ma[KSTACK_MAX_PAGES];
329	struct kstack_cache_entry *ks_ce;
330	int i;
331
332	/* Bounds check */
333	if (pages <= 1)
334		pages = KSTACK_PAGES;
335	else if (pages > KSTACK_MAX_PAGES)
336		pages = KSTACK_MAX_PAGES;
337
338	if (pages == KSTACK_PAGES) {
339		mtx_lock(&kstack_cache_mtx);
340		if (kstack_cache != NULL) {
341			ks_ce = kstack_cache;
342			kstack_cache = ks_ce->next_ks_entry;
343			mtx_unlock(&kstack_cache_mtx);
344
345			td->td_kstack_obj = ks_ce->ksobj;
346			td->td_kstack = (vm_offset_t)ks_ce;
347			td->td_kstack_pages = KSTACK_PAGES;
348			return (1);
349		}
350		mtx_unlock(&kstack_cache_mtx);
351	}
352
353	/*
354	 * Allocate an object for the kstack.
355	 */
356	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
357
358	/*
359	 * Get a kernel virtual address for this thread's kstack.
360	 */
361#if defined(__mips__)
362	/*
363	 * We need to align the kstack's mapped address to fit within
364	 * a single TLB entry.
365	 */
366	if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
367	    PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
368	    M_BESTFIT | M_NOWAIT, &ks)) {
369		ks = 0;
370	}
371#else
372	ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
373#endif
374	if (ks == 0) {
375		printf("vm_thread_new: kstack allocation failed\n");
376		vm_object_deallocate(ksobj);
377		return (0);
378	}
379
380	atomic_add_int(&kstacks, 1);
381	if (KSTACK_GUARD_PAGES != 0) {
382		pmap_qremove(ks, KSTACK_GUARD_PAGES);
383		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
384	}
385	td->td_kstack_obj = ksobj;
386	td->td_kstack = ks;
387	/*
388	 * Knowing the number of pages allocated is useful when you
389	 * want to deallocate them.
390	 */
391	td->td_kstack_pages = pages;
392	/*
393	 * For the length of the stack, link in a real page of ram for each
394	 * page of stack.
395	 */
396	VM_OBJECT_WLOCK(ksobj);
397	for (i = 0; i < pages; i++) {
398		/*
399		 * Get a kernel stack page.
400		 */
401		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
402		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
403		ma[i] = m;
404		m->valid = VM_PAGE_BITS_ALL;
405	}
406	VM_OBJECT_WUNLOCK(ksobj);
407	pmap_qenter(ks, ma, pages);
408	return (1);
409}
410
411static void
412vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
413{
414	vm_page_t m;
415	int i;
416
417	atomic_add_int(&kstacks, -1);
418	pmap_qremove(ks, pages);
419	VM_OBJECT_WLOCK(ksobj);
420	for (i = 0; i < pages; i++) {
421		m = vm_page_lookup(ksobj, i);
422		if (m == NULL)
423			panic("vm_thread_dispose: kstack already missing?");
424		vm_page_lock(m);
425		vm_page_unwire(m, 0);
426		vm_page_free(m);
427		vm_page_unlock(m);
428	}
429	VM_OBJECT_WUNLOCK(ksobj);
430	vm_object_deallocate(ksobj);
431	kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
432	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
433}
434
435/*
436 * Dispose of a thread's kernel stack.
437 */
438void
439vm_thread_dispose(struct thread *td)
440{
441	vm_object_t ksobj;
442	vm_offset_t ks;
443	struct kstack_cache_entry *ks_ce;
444	int pages;
445
446	pages = td->td_kstack_pages;
447	ksobj = td->td_kstack_obj;
448	ks = td->td_kstack;
449	td->td_kstack = 0;
450	td->td_kstack_pages = 0;
451	if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
452		ks_ce = (struct kstack_cache_entry *)ks;
453		ks_ce->ksobj = ksobj;
454		mtx_lock(&kstack_cache_mtx);
455		ks_ce->next_ks_entry = kstack_cache;
456		kstack_cache = ks_ce;
457		mtx_unlock(&kstack_cache_mtx);
458		return;
459	}
460	vm_thread_stack_dispose(ksobj, ks, pages);
461}
462
463static void
464vm_thread_stack_lowmem(void *nulll)
465{
466	struct kstack_cache_entry *ks_ce, *ks_ce1;
467
468	mtx_lock(&kstack_cache_mtx);
469	ks_ce = kstack_cache;
470	kstack_cache = NULL;
471	mtx_unlock(&kstack_cache_mtx);
472
473	while (ks_ce != NULL) {
474		ks_ce1 = ks_ce;
475		ks_ce = ks_ce->next_ks_entry;
476
477		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
478		    KSTACK_PAGES);
479	}
480}
481
482static void
483kstack_cache_init(void *nulll)
484{
485
486	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
487	    EVENTHANDLER_PRI_ANY);
488}
489
490SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
491
492#ifdef KSTACK_USAGE_PROF
493/*
494 * Track maximum stack used by a thread in kernel.
495 */
496static int max_kstack_used;
497
498SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
499    &max_kstack_used, 0,
500    "Maxiumum stack depth used by a thread in kernel");
501
502void
503intr_prof_stack_use(struct thread *td, struct trapframe *frame)
504{
505	vm_offset_t stack_top;
506	vm_offset_t current;
507	int used, prev_used;
508
509	/*
510	 * Testing for interrupted kernel mode isn't strictly
511	 * needed. It optimizes the execution, since interrupts from
512	 * usermode will have only the trap frame on the stack.
513	 */
514	if (TRAPF_USERMODE(frame))
515		return;
516
517	stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
518	current = (vm_offset_t)(uintptr_t)&stack_top;
519
520	/*
521	 * Try to detect if interrupt is using kernel thread stack.
522	 * Hardware could use a dedicated stack for interrupt handling.
523	 */
524	if (stack_top <= current || current < td->td_kstack)
525		return;
526
527	used = stack_top - current;
528	for (;;) {
529		prev_used = max_kstack_used;
530		if (prev_used >= used)
531			break;
532		if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
533			break;
534	}
535}
536#endif /* KSTACK_USAGE_PROF */
537
538#ifndef NO_SWAPPING
539/*
540 * Allow a thread's kernel stack to be paged out.
541 */
542static void
543vm_thread_swapout(struct thread *td)
544{
545	vm_object_t ksobj;
546	vm_page_t m;
547	int i, pages;
548
549	cpu_thread_swapout(td);
550	pages = td->td_kstack_pages;
551	ksobj = td->td_kstack_obj;
552	pmap_qremove(td->td_kstack, pages);
553	VM_OBJECT_WLOCK(ksobj);
554	for (i = 0; i < pages; i++) {
555		m = vm_page_lookup(ksobj, i);
556		if (m == NULL)
557			panic("vm_thread_swapout: kstack already missing?");
558		vm_page_dirty(m);
559		vm_page_lock(m);
560		vm_page_unwire(m, 0);
561		vm_page_unlock(m);
562	}
563	VM_OBJECT_WUNLOCK(ksobj);
564}
565
566/*
567 * Bring the kernel stack for a specified thread back in.
568 */
569static void
570vm_thread_swapin(struct thread *td)
571{
572	vm_object_t ksobj;
573	vm_page_t ma[KSTACK_MAX_PAGES];
574	int i, j, k, pages, rv;
575
576	pages = td->td_kstack_pages;
577	ksobj = td->td_kstack_obj;
578	VM_OBJECT_WLOCK(ksobj);
579	for (i = 0; i < pages; i++)
580		ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL |
581		    VM_ALLOC_WIRED);
582	for (i = 0; i < pages; i++) {
583		if (ma[i]->valid != VM_PAGE_BITS_ALL) {
584			vm_page_assert_xbusied(ma[i]);
585			vm_object_pip_add(ksobj, 1);
586			for (j = i + 1; j < pages; j++) {
587				if (ma[j]->valid != VM_PAGE_BITS_ALL)
588					vm_page_assert_xbusied(ma[j]);
589				if (ma[j]->valid == VM_PAGE_BITS_ALL)
590					break;
591			}
592			rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
593			if (rv != VM_PAGER_OK)
594	panic("vm_thread_swapin: cannot get kstack for proc: %d",
595				    td->td_proc->p_pid);
596			vm_object_pip_wakeup(ksobj);
597			for (k = i; k < j; k++)
598				ma[k] = vm_page_lookup(ksobj, k);
599			vm_page_xunbusy(ma[i]);
600		} else if (vm_page_xbusied(ma[i]))
601			vm_page_xunbusy(ma[i]);
602	}
603	VM_OBJECT_WUNLOCK(ksobj);
604	pmap_qenter(td->td_kstack, ma, pages);
605	cpu_thread_swapin(td);
606}
607#endif /* !NO_SWAPPING */
608
609/*
610 * Implement fork's actions on an address space.
611 * Here we arrange for the address space to be copied or referenced,
612 * allocate a user struct (pcb and kernel stack), then call the
613 * machine-dependent layer to fill those in and make the new process
614 * ready to run.  The new process is set up so that it returns directly
615 * to user mode to avoid stack copying and relocation problems.
616 */
617int
618vm_forkproc(td, p2, td2, vm2, flags)
619	struct thread *td;
620	struct proc *p2;
621	struct thread *td2;
622	struct vmspace *vm2;
623	int flags;
624{
625	struct proc *p1 = td->td_proc;
626	int error;
627
628	if ((flags & RFPROC) == 0) {
629		/*
630		 * Divorce the memory, if it is shared, essentially
631		 * this changes shared memory amongst threads, into
632		 * COW locally.
633		 */
634		if ((flags & RFMEM) == 0) {
635			if (p1->p_vmspace->vm_refcnt > 1) {
636				error = vmspace_unshare(p1);
637				if (error)
638					return (error);
639			}
640		}
641		cpu_fork(td, p2, td2, flags);
642		return (0);
643	}
644
645	if (flags & RFMEM) {
646		p2->p_vmspace = p1->p_vmspace;
647		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
648	}
649
650	while (vm_page_count_severe()) {
651		VM_WAIT;
652	}
653
654	if ((flags & RFMEM) == 0) {
655		p2->p_vmspace = vm2;
656		if (p1->p_vmspace->vm_shm)
657			shmfork(p1, p2);
658	}
659
660	/*
661	 * cpu_fork will copy and update the pcb, set up the kernel stack,
662	 * and make the child ready to run.
663	 */
664	cpu_fork(td, p2, td2, flags);
665	return (0);
666}
667
668/*
669 * Called after process has been wait(2)'ed apon and is being reaped.
670 * The idea is to reclaim resources that we could not reclaim while
671 * the process was still executing.
672 */
673void
674vm_waitproc(p)
675	struct proc *p;
676{
677
678	vmspace_exitfree(p);		/* and clean-out the vmspace */
679}
680
681void
682faultin(p)
683	struct proc *p;
684{
685#ifdef NO_SWAPPING
686
687	PROC_LOCK_ASSERT(p, MA_OWNED);
688	if ((p->p_flag & P_INMEM) == 0)
689		panic("faultin: proc swapped out with NO_SWAPPING!");
690#else /* !NO_SWAPPING */
691	struct thread *td;
692
693	PROC_LOCK_ASSERT(p, MA_OWNED);
694	/*
695	 * If another process is swapping in this process,
696	 * just wait until it finishes.
697	 */
698	if (p->p_flag & P_SWAPPINGIN) {
699		while (p->p_flag & P_SWAPPINGIN)
700			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
701		return;
702	}
703	if ((p->p_flag & P_INMEM) == 0) {
704		/*
705		 * Don't let another thread swap process p out while we are
706		 * busy swapping it in.
707		 */
708		++p->p_lock;
709		p->p_flag |= P_SWAPPINGIN;
710		PROC_UNLOCK(p);
711
712		/*
713		 * We hold no lock here because the list of threads
714		 * can not change while all threads in the process are
715		 * swapped out.
716		 */
717		FOREACH_THREAD_IN_PROC(p, td)
718			vm_thread_swapin(td);
719		PROC_LOCK(p);
720		swapclear(p);
721		p->p_swtick = ticks;
722
723		wakeup(&p->p_flag);
724
725		/* Allow other threads to swap p out now. */
726		--p->p_lock;
727	}
728#endif /* NO_SWAPPING */
729}
730
731/*
732 * This swapin algorithm attempts to swap-in processes only if there
733 * is enough space for them.  Of course, if a process waits for a long
734 * time, it will be swapped in anyway.
735 *
736 * Giant is held on entry.
737 */
738void
739swapper(void)
740{
741	struct proc *p;
742	struct thread *td;
743	struct proc *pp;
744	int slptime;
745	int swtime;
746	int ppri;
747	int pri;
748
749loop:
750	if (vm_page_count_min()) {
751		VM_WAIT;
752		goto loop;
753	}
754
755	pp = NULL;
756	ppri = INT_MIN;
757	sx_slock(&allproc_lock);
758	FOREACH_PROC_IN_SYSTEM(p) {
759		PROC_LOCK(p);
760		if (p->p_state == PRS_NEW ||
761		    p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
762			PROC_UNLOCK(p);
763			continue;
764		}
765		swtime = (ticks - p->p_swtick) / hz;
766		FOREACH_THREAD_IN_PROC(p, td) {
767			/*
768			 * An otherwise runnable thread of a process
769			 * swapped out has only the TDI_SWAPPED bit set.
770			 *
771			 */
772			thread_lock(td);
773			if (td->td_inhibitors == TDI_SWAPPED) {
774				slptime = (ticks - td->td_slptick) / hz;
775				pri = swtime + slptime;
776				if ((td->td_flags & TDF_SWAPINREQ) == 0)
777					pri -= p->p_nice * 8;
778				/*
779				 * if this thread is higher priority
780				 * and there is enough space, then select
781				 * this process instead of the previous
782				 * selection.
783				 */
784				if (pri > ppri) {
785					pp = p;
786					ppri = pri;
787				}
788			}
789			thread_unlock(td);
790		}
791		PROC_UNLOCK(p);
792	}
793	sx_sunlock(&allproc_lock);
794
795	/*
796	 * Nothing to do, back to sleep.
797	 */
798	if ((p = pp) == NULL) {
799		tsleep(&proc0, PVM, "swapin", MAXSLP * hz / 2);
800		goto loop;
801	}
802	PROC_LOCK(p);
803
804	/*
805	 * Another process may be bringing or may have already
806	 * brought this process in while we traverse all threads.
807	 * Or, this process may even be being swapped out again.
808	 */
809	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
810		PROC_UNLOCK(p);
811		goto loop;
812	}
813
814	/*
815	 * We would like to bring someone in. (only if there is space).
816	 * [What checks the space? ]
817	 */
818	faultin(p);
819	PROC_UNLOCK(p);
820	goto loop;
821}
822
823void
824kick_proc0(void)
825{
826
827	wakeup(&proc0);
828}
829
830#ifndef NO_SWAPPING
831
832/*
833 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
834 */
835static int swap_idle_threshold1 = 2;
836SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
837    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
838
839/*
840 * Swap_idle_threshold2 is the time that a process can be idle before
841 * it will be swapped out, if idle swapping is enabled.
842 */
843static int swap_idle_threshold2 = 10;
844SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
845    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
846
847/*
848 * First, if any processes have been sleeping or stopped for at least
849 * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
850 * no such processes exist, then the longest-sleeping or stopped
851 * process is swapped out.  Finally, and only as a last resort, if
852 * there are no sleeping or stopped processes, the longest-resident
853 * process is swapped out.
854 */
855void
856swapout_procs(action)
857int action;
858{
859	struct proc *p;
860	struct thread *td;
861	int didswap = 0;
862
863retry:
864	sx_slock(&allproc_lock);
865	FOREACH_PROC_IN_SYSTEM(p) {
866		struct vmspace *vm;
867		int minslptime = 100000;
868		int slptime;
869
870		/*
871		 * Watch out for a process in
872		 * creation.  It may have no
873		 * address space or lock yet.
874		 */
875		if (p->p_state == PRS_NEW)
876			continue;
877		/*
878		 * An aio daemon switches its
879		 * address space while running.
880		 * Perform a quick check whether
881		 * a process has P_SYSTEM.
882		 */
883		if ((p->p_flag & P_SYSTEM) != 0)
884			continue;
885		/*
886		 * Do not swapout a process that
887		 * is waiting for VM data
888		 * structures as there is a possible
889		 * deadlock.  Test this first as
890		 * this may block.
891		 *
892		 * Lock the map until swapout
893		 * finishes, or a thread of this
894		 * process may attempt to alter
895		 * the map.
896		 */
897		vm = vmspace_acquire_ref(p);
898		if (vm == NULL)
899			continue;
900		if (!vm_map_trylock(&vm->vm_map))
901			goto nextproc1;
902
903		PROC_LOCK(p);
904		if (p->p_lock != 0 ||
905		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
906		    ) != 0) {
907			goto nextproc;
908		}
909		/*
910		 * only aiod changes vmspace, however it will be
911		 * skipped because of the if statement above checking
912		 * for P_SYSTEM
913		 */
914		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
915			goto nextproc;
916
917		switch (p->p_state) {
918		default:
919			/* Don't swap out processes in any sort
920			 * of 'special' state. */
921			break;
922
923		case PRS_NORMAL:
924			/*
925			 * do not swapout a realtime process
926			 * Check all the thread groups..
927			 */
928			FOREACH_THREAD_IN_PROC(p, td) {
929				thread_lock(td);
930				if (PRI_IS_REALTIME(td->td_pri_class)) {
931					thread_unlock(td);
932					goto nextproc;
933				}
934				slptime = (ticks - td->td_slptick) / hz;
935				/*
936				 * Guarantee swap_idle_threshold1
937				 * time in memory.
938				 */
939				if (slptime < swap_idle_threshold1) {
940					thread_unlock(td);
941					goto nextproc;
942				}
943
944				/*
945				 * Do not swapout a process if it is
946				 * waiting on a critical event of some
947				 * kind or there is a thread whose
948				 * pageable memory may be accessed.
949				 *
950				 * This could be refined to support
951				 * swapping out a thread.
952				 */
953				if (!thread_safetoswapout(td)) {
954					thread_unlock(td);
955					goto nextproc;
956				}
957				/*
958				 * If the system is under memory stress,
959				 * or if we are swapping
960				 * idle processes >= swap_idle_threshold2,
961				 * then swap the process out.
962				 */
963				if (((action & VM_SWAP_NORMAL) == 0) &&
964				    (((action & VM_SWAP_IDLE) == 0) ||
965				    (slptime < swap_idle_threshold2))) {
966					thread_unlock(td);
967					goto nextproc;
968				}
969
970				if (minslptime > slptime)
971					minslptime = slptime;
972				thread_unlock(td);
973			}
974
975			/*
976			 * If the pageout daemon didn't free enough pages,
977			 * or if this process is idle and the system is
978			 * configured to swap proactively, swap it out.
979			 */
980			if ((action & VM_SWAP_NORMAL) ||
981				((action & VM_SWAP_IDLE) &&
982				 (minslptime > swap_idle_threshold2))) {
983				if (swapout(p) == 0)
984					didswap++;
985				PROC_UNLOCK(p);
986				vm_map_unlock(&vm->vm_map);
987				vmspace_free(vm);
988				sx_sunlock(&allproc_lock);
989				goto retry;
990			}
991		}
992nextproc:
993		PROC_UNLOCK(p);
994		vm_map_unlock(&vm->vm_map);
995nextproc1:
996		vmspace_free(vm);
997		continue;
998	}
999	sx_sunlock(&allproc_lock);
1000	/*
1001	 * If we swapped something out, and another process needed memory,
1002	 * then wakeup the sched process.
1003	 */
1004	if (didswap)
1005		wakeup(&proc0);
1006}
1007
1008static void
1009swapclear(p)
1010	struct proc *p;
1011{
1012	struct thread *td;
1013
1014	PROC_LOCK_ASSERT(p, MA_OWNED);
1015
1016	FOREACH_THREAD_IN_PROC(p, td) {
1017		thread_lock(td);
1018		td->td_flags |= TDF_INMEM;
1019		td->td_flags &= ~TDF_SWAPINREQ;
1020		TD_CLR_SWAPPED(td);
1021		if (TD_CAN_RUN(td))
1022			if (setrunnable(td)) {
1023#ifdef INVARIANTS
1024				/*
1025				 * XXX: We just cleared TDI_SWAPPED
1026				 * above and set TDF_INMEM, so this
1027				 * should never happen.
1028				 */
1029				panic("not waking up swapper");
1030#endif
1031			}
1032		thread_unlock(td);
1033	}
1034	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1035	p->p_flag |= P_INMEM;
1036}
1037
1038static int
1039swapout(p)
1040	struct proc *p;
1041{
1042	struct thread *td;
1043
1044	PROC_LOCK_ASSERT(p, MA_OWNED);
1045#if defined(SWAP_DEBUG)
1046	printf("swapping out %d\n", p->p_pid);
1047#endif
1048
1049	/*
1050	 * The states of this process and its threads may have changed
1051	 * by now.  Assuming that there is only one pageout daemon thread,
1052	 * this process should still be in memory.
1053	 */
1054	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1055		("swapout: lost a swapout race?"));
1056
1057	/*
1058	 * remember the process resident count
1059	 */
1060	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1061	/*
1062	 * Check and mark all threads before we proceed.
1063	 */
1064	p->p_flag &= ~P_INMEM;
1065	p->p_flag |= P_SWAPPINGOUT;
1066	FOREACH_THREAD_IN_PROC(p, td) {
1067		thread_lock(td);
1068		if (!thread_safetoswapout(td)) {
1069			thread_unlock(td);
1070			swapclear(p);
1071			return (EBUSY);
1072		}
1073		td->td_flags &= ~TDF_INMEM;
1074		TD_SET_SWAPPED(td);
1075		thread_unlock(td);
1076	}
1077	td = FIRST_THREAD_IN_PROC(p);
1078	++td->td_ru.ru_nswap;
1079	PROC_UNLOCK(p);
1080
1081	/*
1082	 * This list is stable because all threads are now prevented from
1083	 * running.  The list is only modified in the context of a running
1084	 * thread in this process.
1085	 */
1086	FOREACH_THREAD_IN_PROC(p, td)
1087		vm_thread_swapout(td);
1088
1089	PROC_LOCK(p);
1090	p->p_flag &= ~P_SWAPPINGOUT;
1091	p->p_swtick = ticks;
1092	return (0);
1093}
1094#endif /* !NO_SWAPPING */
1095