vm_fault.c revision 329707
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD: stable/10/sys/vm/vm_fault.c 329707 2018-02-21 11:31:29Z kib $");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/proc.h>
85#include <sys/resourcevar.h>
86#include <sys/rwlock.h>
87#include <sys/sysctl.h>
88#include <sys/vmmeter.h>
89#include <sys/vnode.h>
90#ifdef KTRACE
91#include <sys/ktrace.h>
92#endif
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/pmap.h>
97#include <vm/vm_map.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_pageout.h>
101#include <vm/vm_kern.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_extern.h>
104#include <vm/vm_reserv.h>
105
106#define PFBAK 4
107#define PFFOR 4
108
109static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
110
111#define	VM_FAULT_READ_BEHIND	8
112#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116
117struct faultstate {
118	vm_page_t m;
119	vm_object_t object;
120	vm_pindex_t pindex;
121	vm_page_t first_m;
122	vm_object_t	first_object;
123	vm_pindex_t first_pindex;
124	vm_map_t map;
125	vm_map_entry_t entry;
126	int lookup_still_valid;
127	int map_generation;
128	struct vnode *vp;
129};
130
131static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
132static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
133	    int faultcount, int reqpage);
134
135static inline void
136release_page(struct faultstate *fs)
137{
138
139	vm_page_xunbusy(fs->m);
140	vm_page_lock(fs->m);
141	vm_page_deactivate(fs->m);
142	vm_page_unlock(fs->m);
143	fs->m = NULL;
144}
145
146static inline void
147unlock_map(struct faultstate *fs)
148{
149
150	if (fs->lookup_still_valid) {
151		vm_map_lookup_done(fs->map, fs->entry);
152		fs->lookup_still_valid = FALSE;
153	}
154}
155
156static void
157unlock_vp(struct faultstate *fs)
158{
159
160	if (fs->vp != NULL) {
161		vput(fs->vp);
162		fs->vp = NULL;
163	}
164}
165
166static void
167unlock_and_deallocate(struct faultstate *fs)
168{
169
170	vm_object_pip_wakeup(fs->object);
171	VM_OBJECT_WUNLOCK(fs->object);
172	if (fs->object != fs->first_object) {
173		VM_OBJECT_WLOCK(fs->first_object);
174		vm_page_lock(fs->first_m);
175		vm_page_free(fs->first_m);
176		vm_page_unlock(fs->first_m);
177		vm_object_pip_wakeup(fs->first_object);
178		VM_OBJECT_WUNLOCK(fs->first_object);
179		fs->first_m = NULL;
180	}
181	vm_object_deallocate(fs->first_object);
182	unlock_map(fs);
183	unlock_vp(fs);
184}
185
186static void
187vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
188    vm_prot_t fault_type, int fault_flags, bool set_wd)
189{
190	bool need_dirty;
191
192	if (((prot & VM_PROT_WRITE) == 0 &&
193	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
194	    (m->oflags & VPO_UNMANAGED) != 0)
195		return;
196
197	VM_OBJECT_ASSERT_LOCKED(m->object);
198
199	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
200	    (fault_flags & VM_FAULT_WIRE) == 0) ||
201	    (fault_flags & VM_FAULT_DIRTY) != 0;
202
203	if (set_wd)
204		vm_object_set_writeable_dirty(m->object);
205	else
206		/*
207		 * If two callers of vm_fault_dirty() with set_wd ==
208		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
209		 * flag set, other with flag clear, race, it is
210		 * possible for the no-NOSYNC thread to see m->dirty
211		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
212		 * around manipulation of VPO_NOSYNC and
213		 * vm_page_dirty() call, to avoid the race and keep
214		 * m->oflags consistent.
215		 */
216		vm_page_lock(m);
217
218	/*
219	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
220	 * if the page is already dirty to prevent data written with
221	 * the expectation of being synced from not being synced.
222	 * Likewise if this entry does not request NOSYNC then make
223	 * sure the page isn't marked NOSYNC.  Applications sharing
224	 * data should use the same flags to avoid ping ponging.
225	 */
226	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
227		if (m->dirty == 0) {
228			m->oflags |= VPO_NOSYNC;
229		}
230	} else {
231		m->oflags &= ~VPO_NOSYNC;
232	}
233
234	/*
235	 * If the fault is a write, we know that this page is being
236	 * written NOW so dirty it explicitly to save on
237	 * pmap_is_modified() calls later.
238	 *
239	 * Also tell the backing pager, if any, that it should remove
240	 * any swap backing since the page is now dirty.
241	 */
242	if (need_dirty)
243		vm_page_dirty(m);
244	if (!set_wd)
245		vm_page_unlock(m);
246	if (need_dirty)
247		vm_pager_page_unswapped(m);
248}
249
250static void
251vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
252{
253
254	if (m_hold != NULL) {
255		*m_hold = m;
256		vm_page_lock(m);
257		vm_page_hold(m);
258		vm_page_unlock(m);
259	}
260}
261
262/*
263 * Unlocks fs.first_object and fs.map on success.
264 */
265static int
266vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
267    int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
268{
269	vm_page_t m;
270	int rv;
271
272	MPASS(fs->vp == NULL);
273	m = vm_page_lookup(fs->first_object, fs->first_pindex);
274	/* A busy page can be mapped for read|execute access. */
275	if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
276	    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
277		return (KERN_FAILURE);
278	rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
279	    PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), 0);
280	if (rv != KERN_SUCCESS)
281		return (rv);
282	vm_fault_fill_hold(m_hold, m);
283	vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
284	VM_OBJECT_RUNLOCK(fs->first_object);
285	if (!wired)
286		vm_fault_prefault(fs, vaddr, 0, 0);
287	vm_map_lookup_done(fs->map, fs->entry);
288	curthread->td_ru.ru_minflt++;
289	return (KERN_SUCCESS);
290}
291
292/*
293 *	vm_fault:
294 *
295 *	Handle a page fault occurring at the given address,
296 *	requiring the given permissions, in the map specified.
297 *	If successful, the page is inserted into the
298 *	associated physical map.
299 *
300 *	NOTE: the given address should be truncated to the
301 *	proper page address.
302 *
303 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
304 *	a standard error specifying why the fault is fatal is returned.
305 *
306 *	The map in question must be referenced, and remains so.
307 *	Caller may hold no locks.
308 */
309int
310vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
311    int fault_flags)
312{
313	struct thread *td;
314	int result;
315
316	td = curthread;
317	if ((td->td_pflags & TDP_NOFAULTING) != 0)
318		return (KERN_PROTECTION_FAILURE);
319#ifdef KTRACE
320	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
321		ktrfault(vaddr, fault_type);
322#endif
323	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
324	    NULL);
325#ifdef KTRACE
326	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
327		ktrfaultend(result);
328#endif
329	return (result);
330}
331
332int
333vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
334    int fault_flags, vm_page_t *m_hold)
335{
336	vm_prot_t prot;
337	long ahead, behind;
338	int alloc_req, era, faultcount, nera, reqpage, result;
339	boolean_t dead, is_first_object_locked, wired;
340	vm_object_t next_object;
341	vm_page_t marray[VM_FAULT_READ_MAX];
342	int hardfault;
343	struct faultstate fs;
344	struct vnode *vp;
345	int locked, error;
346
347	hardfault = 0;
348	PCPU_INC(cnt.v_vm_faults);
349	fs.vp = NULL;
350	faultcount = reqpage = 0;
351
352RetryFault:;
353
354	/*
355	 * Find the backing store object and offset into it to begin the
356	 * search.
357	 */
358	fs.map = map;
359	result = vm_map_lookup(&fs.map, vaddr, fault_type |
360	    VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
361	    &fs.first_pindex, &prot, &wired);
362	if (result != KERN_SUCCESS) {
363		unlock_vp(&fs);
364		return (result);
365	}
366
367	fs.map_generation = fs.map->timestamp;
368
369	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
370		panic("vm_fault: fault on nofault entry, addr: %lx",
371		    (u_long)vaddr);
372	}
373
374	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
375	    fs.entry->wiring_thread != curthread) {
376		vm_map_unlock_read(fs.map);
377		vm_map_lock(fs.map);
378		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
379		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
380			unlock_vp(&fs);
381			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
382			vm_map_unlock_and_wait(fs.map, 0);
383		} else
384			vm_map_unlock(fs.map);
385		goto RetryFault;
386	}
387
388	MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
389
390	if (wired)
391		fault_type = prot | (fault_type & VM_PROT_COPY);
392	else
393		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
394		    ("!wired && VM_FAULT_WIRE"));
395
396	/*
397	 * Try to avoid lock contention on the top-level object through
398	 * special-case handling of some types of page faults, specifically,
399	 * those that are both (1) mapping an existing page from the top-
400	 * level object and (2) not having to mark that object as containing
401	 * dirty pages.  Under these conditions, a read lock on the top-level
402	 * object suffices, allowing multiple page faults of a similar type to
403	 * run in parallel on the same top-level object.
404	 */
405	if (fs.vp == NULL /* avoid locked vnode leak */ &&
406	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
407	    /* avoid calling vm_object_set_writeable_dirty() */
408	    ((prot & VM_PROT_WRITE) == 0 ||
409	    (fs.first_object->type != OBJT_VNODE &&
410	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
411	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
412		VM_OBJECT_RLOCK(fs.first_object);
413		if ((prot & VM_PROT_WRITE) == 0 ||
414		    (fs.first_object->type != OBJT_VNODE &&
415		    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
416		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
417			result = vm_fault_soft_fast(&fs, vaddr, prot,
418			    fault_type, fault_flags, wired, m_hold);
419			if (result == KERN_SUCCESS)
420				return (result);
421		}
422		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
423			VM_OBJECT_RUNLOCK(fs.first_object);
424			VM_OBJECT_WLOCK(fs.first_object);
425		}
426	} else {
427		VM_OBJECT_WLOCK(fs.first_object);
428	}
429
430	/*
431	 * Make a reference to this object to prevent its disposal while we
432	 * are messing with it.  Once we have the reference, the map is free
433	 * to be diddled.  Since objects reference their shadows (and copies),
434	 * they will stay around as well.
435	 *
436	 * Bump the paging-in-progress count to prevent size changes (e.g.
437	 * truncation operations) during I/O.  This must be done after
438	 * obtaining the vnode lock in order to avoid possible deadlocks.
439	 */
440	vm_object_reference_locked(fs.first_object);
441	vm_object_pip_add(fs.first_object, 1);
442
443	fs.lookup_still_valid = TRUE;
444
445	fs.first_m = NULL;
446
447	/*
448	 * Search for the page at object/offset.
449	 */
450	fs.object = fs.first_object;
451	fs.pindex = fs.first_pindex;
452	while (TRUE) {
453		/*
454		 * If the object is marked for imminent termination,
455		 * we retry here, since the collapse pass has raced
456		 * with us.  Otherwise, if we see terminally dead
457		 * object, return fail.
458		 */
459		if ((fs.object->flags & OBJ_DEAD) != 0) {
460			dead = fs.object->type == OBJT_DEAD;
461			unlock_and_deallocate(&fs);
462			if (dead)
463				return (KERN_PROTECTION_FAILURE);
464			pause("vmf_de", 1);
465			goto RetryFault;
466		}
467
468		/*
469		 * See if page is resident
470		 */
471		fs.m = vm_page_lookup(fs.object, fs.pindex);
472		if (fs.m != NULL) {
473			/*
474			 * Wait/Retry if the page is busy.  We have to do this
475			 * if the page is either exclusive or shared busy
476			 * because the vm_pager may be using read busy for
477			 * pageouts (and even pageins if it is the vnode
478			 * pager), and we could end up trying to pagein and
479			 * pageout the same page simultaneously.
480			 *
481			 * We can theoretically allow the busy case on a read
482			 * fault if the page is marked valid, but since such
483			 * pages are typically already pmap'd, putting that
484			 * special case in might be more effort then it is
485			 * worth.  We cannot under any circumstances mess
486			 * around with a shared busied page except, perhaps,
487			 * to pmap it.
488			 */
489			if (vm_page_busied(fs.m)) {
490				/*
491				 * Reference the page before unlocking and
492				 * sleeping so that the page daemon is less
493				 * likely to reclaim it.
494				 */
495				vm_page_aflag_set(fs.m, PGA_REFERENCED);
496				if (fs.object != fs.first_object) {
497					if (!VM_OBJECT_TRYWLOCK(
498					    fs.first_object)) {
499						VM_OBJECT_WUNLOCK(fs.object);
500						VM_OBJECT_WLOCK(fs.first_object);
501						VM_OBJECT_WLOCK(fs.object);
502					}
503					vm_page_lock(fs.first_m);
504					vm_page_free(fs.first_m);
505					vm_page_unlock(fs.first_m);
506					vm_object_pip_wakeup(fs.first_object);
507					VM_OBJECT_WUNLOCK(fs.first_object);
508					fs.first_m = NULL;
509				}
510				unlock_map(&fs);
511				if (fs.m == vm_page_lookup(fs.object,
512				    fs.pindex)) {
513					vm_page_sleep_if_busy(fs.m, "vmpfw");
514				}
515				vm_object_pip_wakeup(fs.object);
516				VM_OBJECT_WUNLOCK(fs.object);
517				PCPU_INC(cnt.v_intrans);
518				vm_object_deallocate(fs.first_object);
519				goto RetryFault;
520			}
521			vm_page_lock(fs.m);
522			vm_page_remque(fs.m);
523			vm_page_unlock(fs.m);
524
525			/*
526			 * Mark page busy for other processes, and the
527			 * pagedaemon.  If it still isn't completely valid
528			 * (readable), jump to readrest, else break-out ( we
529			 * found the page ).
530			 */
531			vm_page_xbusy(fs.m);
532			if (fs.m->valid != VM_PAGE_BITS_ALL)
533				goto readrest;
534			break;
535		}
536
537		/*
538		 * Page is not resident.  If this is the search termination
539		 * or the pager might contain the page, allocate a new page.
540		 * Default objects are zero-fill, there is no real pager.
541		 */
542		if (fs.object->type != OBJT_DEFAULT ||
543		    fs.object == fs.first_object) {
544			if (fs.pindex >= fs.object->size) {
545				unlock_and_deallocate(&fs);
546				return (KERN_PROTECTION_FAILURE);
547			}
548
549			/*
550			 * Allocate a new page for this object/offset pair.
551			 *
552			 * Unlocked read of the p_flag is harmless. At
553			 * worst, the P_KILLED might be not observed
554			 * there, and allocation can fail, causing
555			 * restart and new reading of the p_flag.
556			 */
557			fs.m = NULL;
558			if (!vm_page_count_severe() || P_KILLED(curproc)) {
559#if VM_NRESERVLEVEL > 0
560				if ((fs.object->flags & OBJ_COLORED) == 0) {
561					fs.object->flags |= OBJ_COLORED;
562					fs.object->pg_color = atop(vaddr) -
563					    fs.pindex;
564				}
565#endif
566				alloc_req = P_KILLED(curproc) ?
567				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
568				if (fs.object->type != OBJT_VNODE &&
569				    fs.object->backing_object == NULL)
570					alloc_req |= VM_ALLOC_ZERO;
571				fs.m = vm_page_alloc(fs.object, fs.pindex,
572				    alloc_req);
573			}
574			if (fs.m == NULL) {
575				unlock_and_deallocate(&fs);
576				VM_WAITPFAULT;
577				goto RetryFault;
578			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
579				break;
580		}
581
582readrest:
583		/*
584		 * We have found a valid page or we have allocated a new page.
585		 * The page thus may not be valid or may not be entirely
586		 * valid.
587		 *
588		 * Attempt to fault-in the page if there is a chance that the
589		 * pager has it, and potentially fault in additional pages
590		 * at the same time.  For default objects simply provide
591		 * zero-filled pages.
592		 */
593		if (fs.object->type != OBJT_DEFAULT) {
594			int rv;
595			u_char behavior = vm_map_entry_behavior(fs.entry);
596
597			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
598			    P_KILLED(curproc)) {
599				behind = 0;
600				ahead = 0;
601			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
602				behind = 0;
603				ahead = atop(fs.entry->end - vaddr) - 1;
604				if (ahead > VM_FAULT_READ_AHEAD_MAX)
605					ahead = VM_FAULT_READ_AHEAD_MAX;
606				if (fs.pindex == fs.entry->next_read)
607					vm_fault_cache_behind(&fs,
608					    VM_FAULT_READ_MAX);
609			} else {
610				/*
611				 * If this is a sequential page fault, then
612				 * arithmetically increase the number of pages
613				 * in the read-ahead window.  Otherwise, reset
614				 * the read-ahead window to its smallest size.
615				 */
616				behind = atop(vaddr - fs.entry->start);
617				if (behind > VM_FAULT_READ_BEHIND)
618					behind = VM_FAULT_READ_BEHIND;
619				ahead = atop(fs.entry->end - vaddr) - 1;
620				era = fs.entry->read_ahead;
621				if (fs.pindex == fs.entry->next_read) {
622					nera = era + behind;
623					if (nera > VM_FAULT_READ_AHEAD_MAX)
624						nera = VM_FAULT_READ_AHEAD_MAX;
625					behind = 0;
626					if (ahead > nera)
627						ahead = nera;
628					if (era == VM_FAULT_READ_AHEAD_MAX)
629						vm_fault_cache_behind(&fs,
630						    VM_FAULT_CACHE_BEHIND);
631				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
632					ahead = VM_FAULT_READ_AHEAD_MIN;
633				if (era != ahead)
634					fs.entry->read_ahead = ahead;
635			}
636
637			/*
638			 * Call the pager to retrieve the data, if any, after
639			 * releasing the lock on the map.  We hold a ref on
640			 * fs.object and the pages are exclusive busied.
641			 */
642			unlock_map(&fs);
643
644			if (fs.object->type == OBJT_VNODE &&
645			    (vp = fs.object->handle) != fs.vp) {
646				unlock_vp(&fs);
647				locked = VOP_ISLOCKED(vp);
648
649				if (locked != LK_EXCLUSIVE)
650					locked = LK_SHARED;
651				/* Do not sleep for vnode lock while fs.m is busy */
652				error = vget(vp, locked | LK_CANRECURSE |
653				    LK_NOWAIT, curthread);
654				if (error != 0) {
655					vhold(vp);
656					release_page(&fs);
657					unlock_and_deallocate(&fs);
658					error = vget(vp, locked | LK_RETRY |
659					    LK_CANRECURSE, curthread);
660					vdrop(vp);
661					fs.vp = vp;
662					KASSERT(error == 0,
663					    ("vm_fault: vget failed"));
664					goto RetryFault;
665				}
666				fs.vp = vp;
667			}
668			KASSERT(fs.vp == NULL || !fs.map->system_map,
669			    ("vm_fault: vnode-backed object mapped by system map"));
670
671			/*
672			 * now we find out if any other pages should be paged
673			 * in at this time this routine checks to see if the
674			 * pages surrounding this fault reside in the same
675			 * object as the page for this fault.  If they do,
676			 * then they are faulted in also into the object.  The
677			 * array "marray" returned contains an array of
678			 * vm_page_t structs where one of them is the
679			 * vm_page_t passed to the routine.  The reqpage
680			 * return value is the index into the marray for the
681			 * vm_page_t passed to the routine.
682			 *
683			 * fs.m plus the additional pages are exclusive busied.
684			 */
685			faultcount = vm_fault_additional_pages(
686			    fs.m, behind, ahead, marray, &reqpage);
687
688			rv = faultcount ?
689			    vm_pager_get_pages(fs.object, marray, faultcount,
690				reqpage) : VM_PAGER_FAIL;
691
692			if (rv == VM_PAGER_OK) {
693				/*
694				 * Found the page. Leave it busy while we play
695				 * with it.
696				 */
697
698				/*
699				 * Relookup in case pager changed page. Pager
700				 * is responsible for disposition of old page
701				 * if moved.
702				 */
703				fs.m = vm_page_lookup(fs.object, fs.pindex);
704				if (!fs.m) {
705					unlock_and_deallocate(&fs);
706					goto RetryFault;
707				}
708
709				hardfault++;
710				break; /* break to PAGE HAS BEEN FOUND */
711			}
712			/*
713			 * Remove the bogus page (which does not exist at this
714			 * object/offset); before doing so, we must get back
715			 * our object lock to preserve our invariant.
716			 *
717			 * Also wake up any other process that may want to bring
718			 * in this page.
719			 *
720			 * If this is the top-level object, we must leave the
721			 * busy page to prevent another process from rushing
722			 * past us, and inserting the page in that object at
723			 * the same time that we are.
724			 */
725			if (rv == VM_PAGER_ERROR)
726				printf("vm_fault: pager read error, pid %d (%s)\n",
727				    curproc->p_pid, curproc->p_comm);
728			/*
729			 * Data outside the range of the pager or an I/O error
730			 */
731			/*
732			 * XXX - the check for kernel_map is a kludge to work
733			 * around having the machine panic on a kernel space
734			 * fault w/ I/O error.
735			 */
736			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
737				(rv == VM_PAGER_BAD)) {
738				vm_page_lock(fs.m);
739				vm_page_free(fs.m);
740				vm_page_unlock(fs.m);
741				fs.m = NULL;
742				unlock_and_deallocate(&fs);
743				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
744			}
745			if (fs.object != fs.first_object) {
746				vm_page_lock(fs.m);
747				vm_page_free(fs.m);
748				vm_page_unlock(fs.m);
749				fs.m = NULL;
750				/*
751				 * XXX - we cannot just fall out at this
752				 * point, m has been freed and is invalid!
753				 */
754			}
755		}
756
757		/*
758		 * We get here if the object has default pager (or unwiring)
759		 * or the pager doesn't have the page.
760		 */
761		if (fs.object == fs.first_object)
762			fs.first_m = fs.m;
763
764		/*
765		 * Move on to the next object.  Lock the next object before
766		 * unlocking the current one.
767		 */
768		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
769		next_object = fs.object->backing_object;
770		if (next_object == NULL) {
771			/*
772			 * If there's no object left, fill the page in the top
773			 * object with zeros.
774			 */
775			if (fs.object != fs.first_object) {
776				vm_object_pip_wakeup(fs.object);
777				VM_OBJECT_WUNLOCK(fs.object);
778
779				fs.object = fs.first_object;
780				fs.pindex = fs.first_pindex;
781				fs.m = fs.first_m;
782				VM_OBJECT_WLOCK(fs.object);
783			}
784			fs.first_m = NULL;
785
786			/*
787			 * Zero the page if necessary and mark it valid.
788			 */
789			if ((fs.m->flags & PG_ZERO) == 0) {
790				pmap_zero_page(fs.m);
791			} else {
792				PCPU_INC(cnt.v_ozfod);
793			}
794			PCPU_INC(cnt.v_zfod);
795			fs.m->valid = VM_PAGE_BITS_ALL;
796			/* Don't try to prefault neighboring pages. */
797			faultcount = 1;
798			break;	/* break to PAGE HAS BEEN FOUND */
799		} else {
800			KASSERT(fs.object != next_object,
801			    ("object loop %p", next_object));
802			VM_OBJECT_WLOCK(next_object);
803			vm_object_pip_add(next_object, 1);
804			if (fs.object != fs.first_object)
805				vm_object_pip_wakeup(fs.object);
806			VM_OBJECT_WUNLOCK(fs.object);
807			fs.object = next_object;
808		}
809	}
810
811	vm_page_assert_xbusied(fs.m);
812
813	/*
814	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
815	 * is held.]
816	 */
817
818	/*
819	 * If the page is being written, but isn't already owned by the
820	 * top-level object, we have to copy it into a new page owned by the
821	 * top-level object.
822	 */
823	if (fs.object != fs.first_object) {
824		/*
825		 * We only really need to copy if we want to write it.
826		 */
827		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
828			/*
829			 * This allows pages to be virtually copied from a
830			 * backing_object into the first_object, where the
831			 * backing object has no other refs to it, and cannot
832			 * gain any more refs.  Instead of a bcopy, we just
833			 * move the page from the backing object to the
834			 * first object.  Note that we must mark the page
835			 * dirty in the first object so that it will go out
836			 * to swap when needed.
837			 */
838			is_first_object_locked = FALSE;
839			if (
840				/*
841				 * Only one shadow object
842				 */
843				(fs.object->shadow_count == 1) &&
844				/*
845				 * No COW refs, except us
846				 */
847				(fs.object->ref_count == 1) &&
848				/*
849				 * No one else can look this object up
850				 */
851				(fs.object->handle == NULL) &&
852				/*
853				 * No other ways to look the object up
854				 */
855				((fs.object->type == OBJT_DEFAULT) ||
856				 (fs.object->type == OBJT_SWAP)) &&
857			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
858				/*
859				 * We don't chase down the shadow chain
860				 */
861			    fs.object == fs.first_object->backing_object) {
862				/*
863				 * get rid of the unnecessary page
864				 */
865				vm_page_lock(fs.first_m);
866				vm_page_free(fs.first_m);
867				vm_page_unlock(fs.first_m);
868				/*
869				 * grab the page and put it into the
870				 * process'es object.  The page is
871				 * automatically made dirty.
872				 */
873				if (vm_page_rename(fs.m, fs.first_object,
874				    fs.first_pindex)) {
875					unlock_and_deallocate(&fs);
876					goto RetryFault;
877				}
878#if VM_NRESERVLEVEL > 0
879				/*
880				 * Rename the reservation.
881				 */
882				vm_reserv_rename(fs.m, fs.first_object,
883				    fs.object, OFF_TO_IDX(
884				    fs.first_object->backing_object_offset));
885#endif
886				vm_page_xbusy(fs.m);
887				fs.first_m = fs.m;
888				fs.m = NULL;
889				PCPU_INC(cnt.v_cow_optim);
890			} else {
891				/*
892				 * Oh, well, lets copy it.
893				 */
894				pmap_copy_page(fs.m, fs.first_m);
895				fs.first_m->valid = VM_PAGE_BITS_ALL;
896				if ((fault_flags & VM_FAULT_WIRE) == 0) {
897					prot &= ~VM_PROT_WRITE;
898					fault_type &= ~VM_PROT_WRITE;
899				}
900				if (wired && (fault_flags &
901				    VM_FAULT_WIRE) == 0) {
902					vm_page_lock(fs.first_m);
903					vm_page_wire(fs.first_m);
904					vm_page_unlock(fs.first_m);
905
906					vm_page_lock(fs.m);
907					vm_page_unwire(fs.m, FALSE);
908					vm_page_unlock(fs.m);
909				}
910				/*
911				 * We no longer need the old page or object.
912				 */
913				release_page(&fs);
914			}
915			/*
916			 * fs.object != fs.first_object due to above
917			 * conditional
918			 */
919			vm_object_pip_wakeup(fs.object);
920			VM_OBJECT_WUNLOCK(fs.object);
921			/*
922			 * Only use the new page below...
923			 */
924			fs.object = fs.first_object;
925			fs.pindex = fs.first_pindex;
926			fs.m = fs.first_m;
927			if (!is_first_object_locked)
928				VM_OBJECT_WLOCK(fs.object);
929			PCPU_INC(cnt.v_cow_faults);
930			curthread->td_cow++;
931		} else {
932			prot &= ~VM_PROT_WRITE;
933		}
934	}
935
936	/*
937	 * We must verify that the maps have not changed since our last
938	 * lookup.
939	 */
940	if (!fs.lookup_still_valid) {
941		vm_object_t retry_object;
942		vm_pindex_t retry_pindex;
943		vm_prot_t retry_prot;
944
945		if (!vm_map_trylock_read(fs.map)) {
946			release_page(&fs);
947			unlock_and_deallocate(&fs);
948			goto RetryFault;
949		}
950		fs.lookup_still_valid = TRUE;
951		if (fs.map->timestamp != fs.map_generation) {
952			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
953			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
954
955			/*
956			 * If we don't need the page any longer, put it on the inactive
957			 * list (the easiest thing to do here).  If no one needs it,
958			 * pageout will grab it eventually.
959			 */
960			if (result != KERN_SUCCESS) {
961				release_page(&fs);
962				unlock_and_deallocate(&fs);
963
964				/*
965				 * If retry of map lookup would have blocked then
966				 * retry fault from start.
967				 */
968				if (result == KERN_FAILURE)
969					goto RetryFault;
970				return (result);
971			}
972			if ((retry_object != fs.first_object) ||
973			    (retry_pindex != fs.first_pindex)) {
974				release_page(&fs);
975				unlock_and_deallocate(&fs);
976				goto RetryFault;
977			}
978
979			/*
980			 * Check whether the protection has changed or the object has
981			 * been copied while we left the map unlocked. Changing from
982			 * read to write permission is OK - we leave the page
983			 * write-protected, and catch the write fault. Changing from
984			 * write to read permission means that we can't mark the page
985			 * write-enabled after all.
986			 */
987			prot &= retry_prot;
988		}
989	}
990	/*
991	 * If the page was filled by a pager, update the map entry's
992	 * last read offset.  Since the pager does not return the
993	 * actual set of pages that it read, this update is based on
994	 * the requested set.  Typically, the requested and actual
995	 * sets are the same.
996	 *
997	 * XXX The following assignment modifies the map
998	 * without holding a write lock on it.
999	 */
1000	if (hardfault)
1001		fs.entry->next_read = fs.pindex + faultcount - reqpage;
1002
1003	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1004	vm_page_assert_xbusied(fs.m);
1005
1006	/*
1007	 * Page must be completely valid or it is not fit to
1008	 * map into user space.  vm_pager_get_pages() ensures this.
1009	 */
1010	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1011	    ("vm_fault: page %p partially invalid", fs.m));
1012	VM_OBJECT_WUNLOCK(fs.object);
1013
1014	/*
1015	 * Put this page into the physical map.  We had to do the unlock above
1016	 * because pmap_enter() may sleep.  We don't put the page
1017	 * back on the active queue until later so that the pageout daemon
1018	 * won't find it (yet).
1019	 */
1020	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1021	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1022	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1023	    wired == 0)
1024		vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
1025	VM_OBJECT_WLOCK(fs.object);
1026	vm_page_lock(fs.m);
1027
1028	/*
1029	 * If the page is not wired down, then put it where the pageout daemon
1030	 * can find it.
1031	 */
1032	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1033		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1034		vm_page_wire(fs.m);
1035	} else
1036		vm_page_activate(fs.m);
1037	if (m_hold != NULL) {
1038		*m_hold = fs.m;
1039		vm_page_hold(fs.m);
1040	}
1041	vm_page_unlock(fs.m);
1042	vm_page_xunbusy(fs.m);
1043
1044	/*
1045	 * Unlock everything, and return
1046	 */
1047	unlock_and_deallocate(&fs);
1048	if (hardfault) {
1049		PCPU_INC(cnt.v_io_faults);
1050		curthread->td_ru.ru_majflt++;
1051	} else
1052		curthread->td_ru.ru_minflt++;
1053
1054	return (KERN_SUCCESS);
1055}
1056
1057/*
1058 * Speed up the reclamation of up to "distance" pages that precede the
1059 * faulting pindex within the first object of the shadow chain.
1060 */
1061static void
1062vm_fault_cache_behind(const struct faultstate *fs, int distance)
1063{
1064	vm_object_t first_object, object;
1065	vm_page_t m, m_prev;
1066	vm_pindex_t pindex;
1067
1068	object = fs->object;
1069	VM_OBJECT_ASSERT_WLOCKED(object);
1070	first_object = fs->first_object;
1071	if (first_object != object) {
1072		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1073			VM_OBJECT_WUNLOCK(object);
1074			VM_OBJECT_WLOCK(first_object);
1075			VM_OBJECT_WLOCK(object);
1076		}
1077	}
1078	/* Neither fictitious nor unmanaged pages can be cached. */
1079	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1080		if (fs->first_pindex < distance)
1081			pindex = 0;
1082		else
1083			pindex = fs->first_pindex - distance;
1084		if (pindex < OFF_TO_IDX(fs->entry->offset))
1085			pindex = OFF_TO_IDX(fs->entry->offset);
1086		m = first_object != object ? fs->first_m : fs->m;
1087		vm_page_assert_xbusied(m);
1088		m_prev = vm_page_prev(m);
1089		while ((m = m_prev) != NULL && m->pindex >= pindex &&
1090		    m->valid == VM_PAGE_BITS_ALL) {
1091			m_prev = vm_page_prev(m);
1092			if (vm_page_busied(m))
1093				continue;
1094			vm_page_lock(m);
1095			if (m->hold_count == 0 && m->wire_count == 0) {
1096				pmap_remove_all(m);
1097				vm_page_aflag_clear(m, PGA_REFERENCED);
1098				if (m->dirty != 0)
1099					vm_page_deactivate(m);
1100				else
1101					vm_page_cache(m);
1102			}
1103			vm_page_unlock(m);
1104		}
1105	}
1106	if (first_object != object)
1107		VM_OBJECT_WUNLOCK(first_object);
1108}
1109
1110/*
1111 * vm_fault_prefault provides a quick way of clustering
1112 * pagefaults into a processes address space.  It is a "cousin"
1113 * of vm_map_pmap_enter, except it runs at page fault time instead
1114 * of mmap time.
1115 */
1116static void
1117vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1118    int faultcount, int reqpage)
1119{
1120	pmap_t pmap;
1121	vm_map_entry_t entry;
1122	vm_object_t backing_object, lobject;
1123	vm_offset_t addr, starta;
1124	vm_pindex_t pindex;
1125	vm_page_t m;
1126	int backward, forward, i;
1127
1128	pmap = fs->map->pmap;
1129	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1130		return;
1131
1132	if (faultcount > 0) {
1133		backward = reqpage;
1134		forward = faultcount - reqpage - 1;
1135	} else {
1136		backward = PFBAK;
1137		forward = PFFOR;
1138	}
1139	entry = fs->entry;
1140
1141	if (addra < backward * PAGE_SIZE) {
1142		starta = entry->start;
1143	} else {
1144		starta = addra - backward * PAGE_SIZE;
1145		if (starta < entry->start)
1146			starta = entry->start;
1147	}
1148
1149	/*
1150	 * Generate the sequence of virtual addresses that are candidates for
1151	 * prefaulting in an outward spiral from the faulting virtual address,
1152	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1153	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1154	 * If the candidate address doesn't have a backing physical page, then
1155	 * the loop immediately terminates.
1156	 */
1157	for (i = 0; i < 2 * imax(backward, forward); i++) {
1158		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1159		    PAGE_SIZE);
1160		if (addr > addra + forward * PAGE_SIZE)
1161			addr = 0;
1162
1163		if (addr < starta || addr >= entry->end)
1164			continue;
1165
1166		if (!pmap_is_prefaultable(pmap, addr))
1167			continue;
1168
1169		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1170		lobject = entry->object.vm_object;
1171		VM_OBJECT_RLOCK(lobject);
1172		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1173		    lobject->type == OBJT_DEFAULT &&
1174		    (backing_object = lobject->backing_object) != NULL) {
1175			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1176			    0, ("vm_fault_prefault: unaligned object offset"));
1177			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1178			VM_OBJECT_RLOCK(backing_object);
1179			VM_OBJECT_RUNLOCK(lobject);
1180			lobject = backing_object;
1181		}
1182		if (m == NULL) {
1183			VM_OBJECT_RUNLOCK(lobject);
1184			break;
1185		}
1186		if (m->valid == VM_PAGE_BITS_ALL &&
1187		    (m->flags & PG_FICTITIOUS) == 0)
1188			pmap_enter_quick(pmap, addr, m, entry->protection);
1189		VM_OBJECT_RUNLOCK(lobject);
1190	}
1191}
1192
1193/*
1194 * Hold each of the physical pages that are mapped by the specified range of
1195 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1196 * and allow the specified types of access, "prot".  If all of the implied
1197 * pages are successfully held, then the number of held pages is returned
1198 * together with pointers to those pages in the array "ma".  However, if any
1199 * of the pages cannot be held, -1 is returned.
1200 */
1201int
1202vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1203    vm_prot_t prot, vm_page_t *ma, int max_count)
1204{
1205	vm_offset_t end, va;
1206	vm_page_t *mp;
1207	int count;
1208	boolean_t pmap_failed;
1209
1210	if (len == 0)
1211		return (0);
1212	end = round_page(addr + len);
1213	addr = trunc_page(addr);
1214
1215	/*
1216	 * Check for illegal addresses.
1217	 */
1218	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1219		return (-1);
1220
1221	if (atop(end - addr) > max_count)
1222		panic("vm_fault_quick_hold_pages: count > max_count");
1223	count = atop(end - addr);
1224
1225	/*
1226	 * Most likely, the physical pages are resident in the pmap, so it is
1227	 * faster to try pmap_extract_and_hold() first.
1228	 */
1229	pmap_failed = FALSE;
1230	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1231		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1232		if (*mp == NULL)
1233			pmap_failed = TRUE;
1234		else if ((prot & VM_PROT_WRITE) != 0 &&
1235		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1236			/*
1237			 * Explicitly dirty the physical page.  Otherwise, the
1238			 * caller's changes may go unnoticed because they are
1239			 * performed through an unmanaged mapping or by a DMA
1240			 * operation.
1241			 *
1242			 * The object lock is not held here.
1243			 * See vm_page_clear_dirty_mask().
1244			 */
1245			vm_page_dirty(*mp);
1246		}
1247	}
1248	if (pmap_failed) {
1249		/*
1250		 * One or more pages could not be held by the pmap.  Either no
1251		 * page was mapped at the specified virtual address or that
1252		 * mapping had insufficient permissions.  Attempt to fault in
1253		 * and hold these pages.
1254		 */
1255		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1256			if (*mp == NULL && vm_fault_hold(map, va, prot,
1257			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1258				goto error;
1259	}
1260	return (count);
1261error:
1262	for (mp = ma; mp < ma + count; mp++)
1263		if (*mp != NULL) {
1264			vm_page_lock(*mp);
1265			vm_page_unhold(*mp);
1266			vm_page_unlock(*mp);
1267		}
1268	return (-1);
1269}
1270
1271/*
1272 *	Routine:
1273 *		vm_fault_copy_entry
1274 *	Function:
1275 *		Create new shadow object backing dst_entry with private copy of
1276 *		all underlying pages. When src_entry is equal to dst_entry,
1277 *		function implements COW for wired-down map entry. Otherwise,
1278 *		it forks wired entry into dst_map.
1279 *
1280 *	In/out conditions:
1281 *		The source and destination maps must be locked for write.
1282 *		The source map entry must be wired down (or be a sharing map
1283 *		entry corresponding to a main map entry that is wired down).
1284 */
1285void
1286vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1287    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1288    vm_ooffset_t *fork_charge)
1289{
1290	vm_object_t backing_object, dst_object, object, src_object;
1291	vm_pindex_t dst_pindex, pindex, src_pindex;
1292	vm_prot_t access, prot;
1293	vm_offset_t vaddr;
1294	vm_page_t dst_m;
1295	vm_page_t src_m;
1296	boolean_t upgrade;
1297
1298#ifdef	lint
1299	src_map++;
1300#endif	/* lint */
1301
1302	upgrade = src_entry == dst_entry;
1303	access = prot = dst_entry->protection;
1304
1305	src_object = src_entry->object.vm_object;
1306	src_pindex = OFF_TO_IDX(src_entry->offset);
1307
1308	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1309		dst_object = src_object;
1310		vm_object_reference(dst_object);
1311	} else {
1312		/*
1313		 * Create the top-level object for the destination entry. (Doesn't
1314		 * actually shadow anything - we copy the pages directly.)
1315		 */
1316		dst_object = vm_object_allocate(OBJT_DEFAULT,
1317		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1318#if VM_NRESERVLEVEL > 0
1319		dst_object->flags |= OBJ_COLORED;
1320		dst_object->pg_color = atop(dst_entry->start);
1321#endif
1322	}
1323
1324	VM_OBJECT_WLOCK(dst_object);
1325	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1326	    ("vm_fault_copy_entry: vm_object not NULL"));
1327	if (src_object != dst_object) {
1328		dst_entry->object.vm_object = dst_object;
1329		dst_entry->offset = 0;
1330		dst_object->charge = dst_entry->end - dst_entry->start;
1331	}
1332	if (fork_charge != NULL) {
1333		KASSERT(dst_entry->cred == NULL,
1334		    ("vm_fault_copy_entry: leaked swp charge"));
1335		dst_object->cred = curthread->td_ucred;
1336		crhold(dst_object->cred);
1337		*fork_charge += dst_object->charge;
1338	} else if (dst_object->cred == NULL) {
1339		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1340		    dst_entry));
1341		dst_object->cred = dst_entry->cred;
1342		dst_entry->cred = NULL;
1343	}
1344
1345	/*
1346	 * If not an upgrade, then enter the mappings in the pmap as
1347	 * read and/or execute accesses.  Otherwise, enter them as
1348	 * write accesses.
1349	 *
1350	 * A writeable large page mapping is only created if all of
1351	 * the constituent small page mappings are modified. Marking
1352	 * PTEs as modified on inception allows promotion to happen
1353	 * without taking potentially large number of soft faults.
1354	 */
1355	if (!upgrade)
1356		access &= ~VM_PROT_WRITE;
1357
1358	/*
1359	 * Loop through all of the virtual pages within the entry's
1360	 * range, copying each page from the source object to the
1361	 * destination object.  Since the source is wired, those pages
1362	 * must exist.  In contrast, the destination is pageable.
1363	 * Since the destination object does share any backing storage
1364	 * with the source object, all of its pages must be dirtied,
1365	 * regardless of whether they can be written.
1366	 */
1367	for (vaddr = dst_entry->start, dst_pindex = 0;
1368	    vaddr < dst_entry->end;
1369	    vaddr += PAGE_SIZE, dst_pindex++) {
1370again:
1371		/*
1372		 * Find the page in the source object, and copy it in.
1373		 * Because the source is wired down, the page will be
1374		 * in memory.
1375		 */
1376		if (src_object != dst_object)
1377			VM_OBJECT_RLOCK(src_object);
1378		object = src_object;
1379		pindex = src_pindex + dst_pindex;
1380		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1381		    (backing_object = object->backing_object) != NULL) {
1382			/*
1383			 * Unless the source mapping is read-only or
1384			 * it is presently being upgraded from
1385			 * read-only, the first object in the shadow
1386			 * chain should provide all of the pages.  In
1387			 * other words, this loop body should never be
1388			 * executed when the source mapping is already
1389			 * read/write.
1390			 */
1391			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1392			    upgrade,
1393			    ("vm_fault_copy_entry: main object missing page"));
1394
1395			VM_OBJECT_RLOCK(backing_object);
1396			pindex += OFF_TO_IDX(object->backing_object_offset);
1397			if (object != dst_object)
1398				VM_OBJECT_RUNLOCK(object);
1399			object = backing_object;
1400		}
1401		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1402
1403		if (object != dst_object) {
1404			/*
1405			 * Allocate a page in the destination object.
1406			 */
1407			dst_m = vm_page_alloc(dst_object, (src_object ==
1408			    dst_object ? src_pindex : 0) + dst_pindex,
1409			    VM_ALLOC_NORMAL);
1410			if (dst_m == NULL) {
1411				VM_OBJECT_WUNLOCK(dst_object);
1412				VM_OBJECT_RUNLOCK(object);
1413				VM_WAIT;
1414				VM_OBJECT_WLOCK(dst_object);
1415				goto again;
1416			}
1417			pmap_copy_page(src_m, dst_m);
1418			VM_OBJECT_RUNLOCK(object);
1419			dst_m->valid = VM_PAGE_BITS_ALL;
1420			dst_m->dirty = VM_PAGE_BITS_ALL;
1421		} else {
1422			dst_m = src_m;
1423			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1424				goto again;
1425			vm_page_xbusy(dst_m);
1426			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1427			    ("invalid dst page %p", dst_m));
1428		}
1429		VM_OBJECT_WUNLOCK(dst_object);
1430
1431		/*
1432		 * Enter it in the pmap. If a wired, copy-on-write
1433		 * mapping is being replaced by a write-enabled
1434		 * mapping, then wire that new mapping.
1435		 */
1436		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1437		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1438
1439		/*
1440		 * Mark it no longer busy, and put it on the active list.
1441		 */
1442		VM_OBJECT_WLOCK(dst_object);
1443
1444		if (upgrade) {
1445			if (src_m != dst_m) {
1446				vm_page_lock(src_m);
1447				vm_page_unwire(src_m, 0);
1448				vm_page_unlock(src_m);
1449				vm_page_lock(dst_m);
1450				vm_page_wire(dst_m);
1451				vm_page_unlock(dst_m);
1452			} else {
1453				KASSERT(dst_m->wire_count > 0,
1454				    ("dst_m %p is not wired", dst_m));
1455			}
1456		} else {
1457			vm_page_lock(dst_m);
1458			vm_page_activate(dst_m);
1459			vm_page_unlock(dst_m);
1460		}
1461		vm_page_xunbusy(dst_m);
1462	}
1463	VM_OBJECT_WUNLOCK(dst_object);
1464	if (upgrade) {
1465		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1466		vm_object_deallocate(src_object);
1467	}
1468}
1469
1470
1471/*
1472 * This routine checks around the requested page for other pages that
1473 * might be able to be faulted in.  This routine brackets the viable
1474 * pages for the pages to be paged in.
1475 *
1476 * Inputs:
1477 *	m, rbehind, rahead
1478 *
1479 * Outputs:
1480 *  marray (array of vm_page_t), reqpage (index of requested page)
1481 *
1482 * Return value:
1483 *  number of pages in marray
1484 */
1485static int
1486vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1487	vm_page_t m;
1488	int rbehind;
1489	int rahead;
1490	vm_page_t *marray;
1491	int *reqpage;
1492{
1493	int i,j;
1494	vm_object_t object;
1495	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1496	vm_page_t rtm;
1497	int cbehind, cahead;
1498
1499	VM_OBJECT_ASSERT_WLOCKED(m->object);
1500
1501	object = m->object;
1502	pindex = m->pindex;
1503	cbehind = cahead = 0;
1504
1505	/*
1506	 * if the requested page is not available, then give up now
1507	 */
1508	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1509		return 0;
1510	}
1511
1512	if ((cbehind == 0) && (cahead == 0)) {
1513		*reqpage = 0;
1514		marray[0] = m;
1515		return 1;
1516	}
1517
1518	if (rahead > cahead) {
1519		rahead = cahead;
1520	}
1521
1522	if (rbehind > cbehind) {
1523		rbehind = cbehind;
1524	}
1525
1526	/*
1527	 * scan backward for the read behind pages -- in memory
1528	 */
1529	if (pindex > 0) {
1530		if (rbehind > pindex) {
1531			rbehind = pindex;
1532			startpindex = 0;
1533		} else {
1534			startpindex = pindex - rbehind;
1535		}
1536
1537		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1538		    rtm->pindex >= startpindex)
1539			startpindex = rtm->pindex + 1;
1540
1541		/* tpindex is unsigned; beware of numeric underflow. */
1542		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1543		    tpindex < pindex; i++, tpindex--) {
1544
1545			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1546			    VM_ALLOC_IFNOTCACHED);
1547			if (rtm == NULL) {
1548				/*
1549				 * Shift the allocated pages to the
1550				 * beginning of the array.
1551				 */
1552				for (j = 0; j < i; j++) {
1553					marray[j] = marray[j + tpindex + 1 -
1554					    startpindex];
1555				}
1556				break;
1557			}
1558
1559			marray[tpindex - startpindex] = rtm;
1560		}
1561	} else {
1562		startpindex = 0;
1563		i = 0;
1564	}
1565
1566	marray[i] = m;
1567	/* page offset of the required page */
1568	*reqpage = i;
1569
1570	tpindex = pindex + 1;
1571	i++;
1572
1573	/*
1574	 * scan forward for the read ahead pages
1575	 */
1576	endpindex = tpindex + rahead;
1577	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1578		endpindex = rtm->pindex;
1579	if (endpindex > object->size)
1580		endpindex = object->size;
1581
1582	for (; tpindex < endpindex; i++, tpindex++) {
1583
1584		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1585		    VM_ALLOC_IFNOTCACHED);
1586		if (rtm == NULL) {
1587			break;
1588		}
1589
1590		marray[i] = rtm;
1591	}
1592
1593	/* return number of pages */
1594	return i;
1595}
1596
1597/*
1598 * Block entry into the machine-independent layer's page fault handler by
1599 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1600 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1601 * spurious page faults.
1602 */
1603int
1604vm_fault_disable_pagefaults(void)
1605{
1606
1607	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1608}
1609
1610void
1611vm_fault_enable_pagefaults(int save)
1612{
1613
1614	curthread_pflags_restore(save);
1615}
1616