vm_fault.c revision 314590
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD: stable/10/sys/vm/vm_fault.c 314590 2017-03-03 10:17:16Z kib $");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/proc.h>
85#include <sys/resourcevar.h>
86#include <sys/rwlock.h>
87#include <sys/sysctl.h>
88#include <sys/vmmeter.h>
89#include <sys/vnode.h>
90#ifdef KTRACE
91#include <sys/ktrace.h>
92#endif
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/pmap.h>
97#include <vm/vm_map.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_pageout.h>
101#include <vm/vm_kern.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_extern.h>
104#include <vm/vm_reserv.h>
105
106#define PFBAK 4
107#define PFFOR 4
108
109static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
110
111#define	VM_FAULT_READ_BEHIND	8
112#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116
117struct faultstate {
118	vm_page_t m;
119	vm_object_t object;
120	vm_pindex_t pindex;
121	vm_page_t first_m;
122	vm_object_t	first_object;
123	vm_pindex_t first_pindex;
124	vm_map_t map;
125	vm_map_entry_t entry;
126	int lookup_still_valid;
127	int map_generation;
128	struct vnode *vp;
129};
130
131static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
132static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
133	    int faultcount, int reqpage);
134
135static inline void
136release_page(struct faultstate *fs)
137{
138
139	vm_page_xunbusy(fs->m);
140	vm_page_lock(fs->m);
141	vm_page_deactivate(fs->m);
142	vm_page_unlock(fs->m);
143	fs->m = NULL;
144}
145
146static inline void
147unlock_map(struct faultstate *fs)
148{
149
150	if (fs->lookup_still_valid) {
151		vm_map_lookup_done(fs->map, fs->entry);
152		fs->lookup_still_valid = FALSE;
153	}
154}
155
156static void
157unlock_vp(struct faultstate *fs)
158{
159
160	if (fs->vp != NULL) {
161		vput(fs->vp);
162		fs->vp = NULL;
163	}
164}
165
166static void
167unlock_and_deallocate(struct faultstate *fs)
168{
169
170	vm_object_pip_wakeup(fs->object);
171	VM_OBJECT_WUNLOCK(fs->object);
172	if (fs->object != fs->first_object) {
173		VM_OBJECT_WLOCK(fs->first_object);
174		vm_page_lock(fs->first_m);
175		vm_page_free(fs->first_m);
176		vm_page_unlock(fs->first_m);
177		vm_object_pip_wakeup(fs->first_object);
178		VM_OBJECT_WUNLOCK(fs->first_object);
179		fs->first_m = NULL;
180	}
181	vm_object_deallocate(fs->first_object);
182	unlock_map(fs);
183	unlock_vp(fs);
184}
185
186static void
187vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
188    vm_prot_t fault_type, int fault_flags, bool set_wd)
189{
190	bool need_dirty;
191
192	if (((prot & VM_PROT_WRITE) == 0 &&
193	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
194	    (m->oflags & VPO_UNMANAGED) != 0)
195		return;
196
197	VM_OBJECT_ASSERT_LOCKED(m->object);
198
199	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
200	    (fault_flags & VM_FAULT_WIRE) == 0) ||
201	    (fault_flags & VM_FAULT_DIRTY) != 0;
202
203	if (set_wd)
204		vm_object_set_writeable_dirty(m->object);
205	else
206		/*
207		 * If two callers of vm_fault_dirty() with set_wd ==
208		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
209		 * flag set, other with flag clear, race, it is
210		 * possible for the no-NOSYNC thread to see m->dirty
211		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
212		 * around manipulation of VPO_NOSYNC and
213		 * vm_page_dirty() call, to avoid the race and keep
214		 * m->oflags consistent.
215		 */
216		vm_page_lock(m);
217
218	/*
219	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
220	 * if the page is already dirty to prevent data written with
221	 * the expectation of being synced from not being synced.
222	 * Likewise if this entry does not request NOSYNC then make
223	 * sure the page isn't marked NOSYNC.  Applications sharing
224	 * data should use the same flags to avoid ping ponging.
225	 */
226	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
227		if (m->dirty == 0) {
228			m->oflags |= VPO_NOSYNC;
229		}
230	} else {
231		m->oflags &= ~VPO_NOSYNC;
232	}
233
234	/*
235	 * If the fault is a write, we know that this page is being
236	 * written NOW so dirty it explicitly to save on
237	 * pmap_is_modified() calls later.
238	 *
239	 * Also tell the backing pager, if any, that it should remove
240	 * any swap backing since the page is now dirty.
241	 */
242	if (need_dirty)
243		vm_page_dirty(m);
244	if (!set_wd)
245		vm_page_unlock(m);
246	if (need_dirty)
247		vm_pager_page_unswapped(m);
248}
249
250static void
251vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
252{
253
254	if (m_hold != NULL) {
255		*m_hold = m;
256		vm_page_lock(m);
257		vm_page_hold(m);
258		vm_page_unlock(m);
259	}
260}
261
262/*
263 * Unlocks fs.first_object and fs.map on success.
264 */
265static int
266vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
267    int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
268{
269	vm_page_t m;
270	int rv;
271
272	MPASS(fs->vp == NULL);
273	m = vm_page_lookup(fs->first_object, fs->first_pindex);
274	/* A busy page can be mapped for read|execute access. */
275	if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
276	    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
277		return (KERN_FAILURE);
278	rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
279	    PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), 0);
280	if (rv != KERN_SUCCESS)
281		return (rv);
282	vm_fault_fill_hold(m_hold, m);
283	vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
284	VM_OBJECT_RUNLOCK(fs->first_object);
285	if (!wired)
286		vm_fault_prefault(fs, vaddr, 0, 0);
287	vm_map_lookup_done(fs->map, fs->entry);
288	curthread->td_ru.ru_minflt++;
289	return (KERN_SUCCESS);
290}
291
292/*
293 *	vm_fault:
294 *
295 *	Handle a page fault occurring at the given address,
296 *	requiring the given permissions, in the map specified.
297 *	If successful, the page is inserted into the
298 *	associated physical map.
299 *
300 *	NOTE: the given address should be truncated to the
301 *	proper page address.
302 *
303 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
304 *	a standard error specifying why the fault is fatal is returned.
305 *
306 *	The map in question must be referenced, and remains so.
307 *	Caller may hold no locks.
308 */
309int
310vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
311    int fault_flags)
312{
313	struct thread *td;
314	int result;
315
316	td = curthread;
317	if ((td->td_pflags & TDP_NOFAULTING) != 0)
318		return (KERN_PROTECTION_FAILURE);
319#ifdef KTRACE
320	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
321		ktrfault(vaddr, fault_type);
322#endif
323	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
324	    NULL);
325#ifdef KTRACE
326	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
327		ktrfaultend(result);
328#endif
329	return (result);
330}
331
332int
333vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
334    int fault_flags, vm_page_t *m_hold)
335{
336	vm_prot_t prot;
337	long ahead, behind;
338	int alloc_req, era, faultcount, nera, reqpage, result;
339	boolean_t dead, growstack, is_first_object_locked, wired;
340	vm_object_t next_object;
341	vm_page_t marray[VM_FAULT_READ_MAX];
342	int hardfault;
343	struct faultstate fs;
344	struct vnode *vp;
345	int locked, error;
346
347	hardfault = 0;
348	growstack = TRUE;
349	PCPU_INC(cnt.v_vm_faults);
350	fs.vp = NULL;
351	faultcount = reqpage = 0;
352
353RetryFault:;
354
355	/*
356	 * Find the backing store object and offset into it to begin the
357	 * search.
358	 */
359	fs.map = map;
360	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
361	    &fs.first_object, &fs.first_pindex, &prot, &wired);
362	if (result != KERN_SUCCESS) {
363		if (growstack && result == KERN_INVALID_ADDRESS &&
364		    map != kernel_map) {
365			result = vm_map_growstack(curproc, vaddr);
366			if (result != KERN_SUCCESS)
367				return (KERN_FAILURE);
368			growstack = FALSE;
369			goto RetryFault;
370		}
371		unlock_vp(&fs);
372		return (result);
373	}
374
375	fs.map_generation = fs.map->timestamp;
376
377	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
378		panic("vm_fault: fault on nofault entry, addr: %lx",
379		    (u_long)vaddr);
380	}
381
382	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
383	    fs.entry->wiring_thread != curthread) {
384		vm_map_unlock_read(fs.map);
385		vm_map_lock(fs.map);
386		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
387		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
388			unlock_vp(&fs);
389			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
390			vm_map_unlock_and_wait(fs.map, 0);
391		} else
392			vm_map_unlock(fs.map);
393		goto RetryFault;
394	}
395
396	if (wired)
397		fault_type = prot | (fault_type & VM_PROT_COPY);
398	else
399		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
400		    ("!wired && VM_FAULT_WIRE"));
401
402	/*
403	 * Try to avoid lock contention on the top-level object through
404	 * special-case handling of some types of page faults, specifically,
405	 * those that are both (1) mapping an existing page from the top-
406	 * level object and (2) not having to mark that object as containing
407	 * dirty pages.  Under these conditions, a read lock on the top-level
408	 * object suffices, allowing multiple page faults of a similar type to
409	 * run in parallel on the same top-level object.
410	 */
411	if (fs.vp == NULL /* avoid locked vnode leak */ &&
412	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
413	    /* avoid calling vm_object_set_writeable_dirty() */
414	    ((prot & VM_PROT_WRITE) == 0 ||
415	    (fs.first_object->type != OBJT_VNODE &&
416	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
417	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
418		VM_OBJECT_RLOCK(fs.first_object);
419		if ((prot & VM_PROT_WRITE) == 0 ||
420		    (fs.first_object->type != OBJT_VNODE &&
421		    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
422		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
423			result = vm_fault_soft_fast(&fs, vaddr, prot,
424			    fault_type, fault_flags, wired, m_hold);
425			if (result == KERN_SUCCESS)
426				return (result);
427		}
428		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
429			VM_OBJECT_RUNLOCK(fs.first_object);
430			VM_OBJECT_WLOCK(fs.first_object);
431		}
432	} else {
433		VM_OBJECT_WLOCK(fs.first_object);
434	}
435
436	/*
437	 * Make a reference to this object to prevent its disposal while we
438	 * are messing with it.  Once we have the reference, the map is free
439	 * to be diddled.  Since objects reference their shadows (and copies),
440	 * they will stay around as well.
441	 *
442	 * Bump the paging-in-progress count to prevent size changes (e.g.
443	 * truncation operations) during I/O.  This must be done after
444	 * obtaining the vnode lock in order to avoid possible deadlocks.
445	 */
446	vm_object_reference_locked(fs.first_object);
447	vm_object_pip_add(fs.first_object, 1);
448
449	fs.lookup_still_valid = TRUE;
450
451	fs.first_m = NULL;
452
453	/*
454	 * Search for the page at object/offset.
455	 */
456	fs.object = fs.first_object;
457	fs.pindex = fs.first_pindex;
458	while (TRUE) {
459		/*
460		 * If the object is marked for imminent termination,
461		 * we retry here, since the collapse pass has raced
462		 * with us.  Otherwise, if we see terminally dead
463		 * object, return fail.
464		 */
465		if ((fs.object->flags & OBJ_DEAD) != 0) {
466			dead = fs.object->type == OBJT_DEAD;
467			unlock_and_deallocate(&fs);
468			if (dead)
469				return (KERN_PROTECTION_FAILURE);
470			pause("vmf_de", 1);
471			goto RetryFault;
472		}
473
474		/*
475		 * See if page is resident
476		 */
477		fs.m = vm_page_lookup(fs.object, fs.pindex);
478		if (fs.m != NULL) {
479			/*
480			 * Wait/Retry if the page is busy.  We have to do this
481			 * if the page is either exclusive or shared busy
482			 * because the vm_pager may be using read busy for
483			 * pageouts (and even pageins if it is the vnode
484			 * pager), and we could end up trying to pagein and
485			 * pageout the same page simultaneously.
486			 *
487			 * We can theoretically allow the busy case on a read
488			 * fault if the page is marked valid, but since such
489			 * pages are typically already pmap'd, putting that
490			 * special case in might be more effort then it is
491			 * worth.  We cannot under any circumstances mess
492			 * around with a shared busied page except, perhaps,
493			 * to pmap it.
494			 */
495			if (vm_page_busied(fs.m)) {
496				/*
497				 * Reference the page before unlocking and
498				 * sleeping so that the page daemon is less
499				 * likely to reclaim it.
500				 */
501				vm_page_aflag_set(fs.m, PGA_REFERENCED);
502				if (fs.object != fs.first_object) {
503					if (!VM_OBJECT_TRYWLOCK(
504					    fs.first_object)) {
505						VM_OBJECT_WUNLOCK(fs.object);
506						VM_OBJECT_WLOCK(fs.first_object);
507						VM_OBJECT_WLOCK(fs.object);
508					}
509					vm_page_lock(fs.first_m);
510					vm_page_free(fs.first_m);
511					vm_page_unlock(fs.first_m);
512					vm_object_pip_wakeup(fs.first_object);
513					VM_OBJECT_WUNLOCK(fs.first_object);
514					fs.first_m = NULL;
515				}
516				unlock_map(&fs);
517				if (fs.m == vm_page_lookup(fs.object,
518				    fs.pindex)) {
519					vm_page_sleep_if_busy(fs.m, "vmpfw");
520				}
521				vm_object_pip_wakeup(fs.object);
522				VM_OBJECT_WUNLOCK(fs.object);
523				PCPU_INC(cnt.v_intrans);
524				vm_object_deallocate(fs.first_object);
525				goto RetryFault;
526			}
527			vm_page_lock(fs.m);
528			vm_page_remque(fs.m);
529			vm_page_unlock(fs.m);
530
531			/*
532			 * Mark page busy for other processes, and the
533			 * pagedaemon.  If it still isn't completely valid
534			 * (readable), jump to readrest, else break-out ( we
535			 * found the page ).
536			 */
537			vm_page_xbusy(fs.m);
538			if (fs.m->valid != VM_PAGE_BITS_ALL)
539				goto readrest;
540			break;
541		}
542
543		/*
544		 * Page is not resident.  If this is the search termination
545		 * or the pager might contain the page, allocate a new page.
546		 * Default objects are zero-fill, there is no real pager.
547		 */
548		if (fs.object->type != OBJT_DEFAULT ||
549		    fs.object == fs.first_object) {
550			if (fs.pindex >= fs.object->size) {
551				unlock_and_deallocate(&fs);
552				return (KERN_PROTECTION_FAILURE);
553			}
554
555			/*
556			 * Allocate a new page for this object/offset pair.
557			 *
558			 * Unlocked read of the p_flag is harmless. At
559			 * worst, the P_KILLED might be not observed
560			 * there, and allocation can fail, causing
561			 * restart and new reading of the p_flag.
562			 */
563			fs.m = NULL;
564			if (!vm_page_count_severe() || P_KILLED(curproc)) {
565#if VM_NRESERVLEVEL > 0
566				if ((fs.object->flags & OBJ_COLORED) == 0) {
567					fs.object->flags |= OBJ_COLORED;
568					fs.object->pg_color = atop(vaddr) -
569					    fs.pindex;
570				}
571#endif
572				alloc_req = P_KILLED(curproc) ?
573				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
574				if (fs.object->type != OBJT_VNODE &&
575				    fs.object->backing_object == NULL)
576					alloc_req |= VM_ALLOC_ZERO;
577				fs.m = vm_page_alloc(fs.object, fs.pindex,
578				    alloc_req);
579			}
580			if (fs.m == NULL) {
581				unlock_and_deallocate(&fs);
582				VM_WAITPFAULT;
583				goto RetryFault;
584			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
585				break;
586		}
587
588readrest:
589		/*
590		 * We have found a valid page or we have allocated a new page.
591		 * The page thus may not be valid or may not be entirely
592		 * valid.
593		 *
594		 * Attempt to fault-in the page if there is a chance that the
595		 * pager has it, and potentially fault in additional pages
596		 * at the same time.  For default objects simply provide
597		 * zero-filled pages.
598		 */
599		if (fs.object->type != OBJT_DEFAULT) {
600			int rv;
601			u_char behavior = vm_map_entry_behavior(fs.entry);
602
603			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
604			    P_KILLED(curproc)) {
605				behind = 0;
606				ahead = 0;
607			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
608				behind = 0;
609				ahead = atop(fs.entry->end - vaddr) - 1;
610				if (ahead > VM_FAULT_READ_AHEAD_MAX)
611					ahead = VM_FAULT_READ_AHEAD_MAX;
612				if (fs.pindex == fs.entry->next_read)
613					vm_fault_cache_behind(&fs,
614					    VM_FAULT_READ_MAX);
615			} else {
616				/*
617				 * If this is a sequential page fault, then
618				 * arithmetically increase the number of pages
619				 * in the read-ahead window.  Otherwise, reset
620				 * the read-ahead window to its smallest size.
621				 */
622				behind = atop(vaddr - fs.entry->start);
623				if (behind > VM_FAULT_READ_BEHIND)
624					behind = VM_FAULT_READ_BEHIND;
625				ahead = atop(fs.entry->end - vaddr) - 1;
626				era = fs.entry->read_ahead;
627				if (fs.pindex == fs.entry->next_read) {
628					nera = era + behind;
629					if (nera > VM_FAULT_READ_AHEAD_MAX)
630						nera = VM_FAULT_READ_AHEAD_MAX;
631					behind = 0;
632					if (ahead > nera)
633						ahead = nera;
634					if (era == VM_FAULT_READ_AHEAD_MAX)
635						vm_fault_cache_behind(&fs,
636						    VM_FAULT_CACHE_BEHIND);
637				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
638					ahead = VM_FAULT_READ_AHEAD_MIN;
639				if (era != ahead)
640					fs.entry->read_ahead = ahead;
641			}
642
643			/*
644			 * Call the pager to retrieve the data, if any, after
645			 * releasing the lock on the map.  We hold a ref on
646			 * fs.object and the pages are exclusive busied.
647			 */
648			unlock_map(&fs);
649
650			if (fs.object->type == OBJT_VNODE &&
651			    (vp = fs.object->handle) != fs.vp) {
652				unlock_vp(&fs);
653				locked = VOP_ISLOCKED(vp);
654
655				if (locked != LK_EXCLUSIVE)
656					locked = LK_SHARED;
657				/* Do not sleep for vnode lock while fs.m is busy */
658				error = vget(vp, locked | LK_CANRECURSE |
659				    LK_NOWAIT, curthread);
660				if (error != 0) {
661					vhold(vp);
662					release_page(&fs);
663					unlock_and_deallocate(&fs);
664					error = vget(vp, locked | LK_RETRY |
665					    LK_CANRECURSE, curthread);
666					vdrop(vp);
667					fs.vp = vp;
668					KASSERT(error == 0,
669					    ("vm_fault: vget failed"));
670					goto RetryFault;
671				}
672				fs.vp = vp;
673			}
674			KASSERT(fs.vp == NULL || !fs.map->system_map,
675			    ("vm_fault: vnode-backed object mapped by system map"));
676
677			/*
678			 * now we find out if any other pages should be paged
679			 * in at this time this routine checks to see if the
680			 * pages surrounding this fault reside in the same
681			 * object as the page for this fault.  If they do,
682			 * then they are faulted in also into the object.  The
683			 * array "marray" returned contains an array of
684			 * vm_page_t structs where one of them is the
685			 * vm_page_t passed to the routine.  The reqpage
686			 * return value is the index into the marray for the
687			 * vm_page_t passed to the routine.
688			 *
689			 * fs.m plus the additional pages are exclusive busied.
690			 */
691			faultcount = vm_fault_additional_pages(
692			    fs.m, behind, ahead, marray, &reqpage);
693
694			rv = faultcount ?
695			    vm_pager_get_pages(fs.object, marray, faultcount,
696				reqpage) : VM_PAGER_FAIL;
697
698			if (rv == VM_PAGER_OK) {
699				/*
700				 * Found the page. Leave it busy while we play
701				 * with it.
702				 */
703
704				/*
705				 * Relookup in case pager changed page. Pager
706				 * is responsible for disposition of old page
707				 * if moved.
708				 */
709				fs.m = vm_page_lookup(fs.object, fs.pindex);
710				if (!fs.m) {
711					unlock_and_deallocate(&fs);
712					goto RetryFault;
713				}
714
715				hardfault++;
716				break; /* break to PAGE HAS BEEN FOUND */
717			}
718			/*
719			 * Remove the bogus page (which does not exist at this
720			 * object/offset); before doing so, we must get back
721			 * our object lock to preserve our invariant.
722			 *
723			 * Also wake up any other process that may want to bring
724			 * in this page.
725			 *
726			 * If this is the top-level object, we must leave the
727			 * busy page to prevent another process from rushing
728			 * past us, and inserting the page in that object at
729			 * the same time that we are.
730			 */
731			if (rv == VM_PAGER_ERROR)
732				printf("vm_fault: pager read error, pid %d (%s)\n",
733				    curproc->p_pid, curproc->p_comm);
734			/*
735			 * Data outside the range of the pager or an I/O error
736			 */
737			/*
738			 * XXX - the check for kernel_map is a kludge to work
739			 * around having the machine panic on a kernel space
740			 * fault w/ I/O error.
741			 */
742			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
743				(rv == VM_PAGER_BAD)) {
744				vm_page_lock(fs.m);
745				vm_page_free(fs.m);
746				vm_page_unlock(fs.m);
747				fs.m = NULL;
748				unlock_and_deallocate(&fs);
749				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
750			}
751			if (fs.object != fs.first_object) {
752				vm_page_lock(fs.m);
753				vm_page_free(fs.m);
754				vm_page_unlock(fs.m);
755				fs.m = NULL;
756				/*
757				 * XXX - we cannot just fall out at this
758				 * point, m has been freed and is invalid!
759				 */
760			}
761		}
762
763		/*
764		 * We get here if the object has default pager (or unwiring)
765		 * or the pager doesn't have the page.
766		 */
767		if (fs.object == fs.first_object)
768			fs.first_m = fs.m;
769
770		/*
771		 * Move on to the next object.  Lock the next object before
772		 * unlocking the current one.
773		 */
774		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
775		next_object = fs.object->backing_object;
776		if (next_object == NULL) {
777			/*
778			 * If there's no object left, fill the page in the top
779			 * object with zeros.
780			 */
781			if (fs.object != fs.first_object) {
782				vm_object_pip_wakeup(fs.object);
783				VM_OBJECT_WUNLOCK(fs.object);
784
785				fs.object = fs.first_object;
786				fs.pindex = fs.first_pindex;
787				fs.m = fs.first_m;
788				VM_OBJECT_WLOCK(fs.object);
789			}
790			fs.first_m = NULL;
791
792			/*
793			 * Zero the page if necessary and mark it valid.
794			 */
795			if ((fs.m->flags & PG_ZERO) == 0) {
796				pmap_zero_page(fs.m);
797			} else {
798				PCPU_INC(cnt.v_ozfod);
799			}
800			PCPU_INC(cnt.v_zfod);
801			fs.m->valid = VM_PAGE_BITS_ALL;
802			/* Don't try to prefault neighboring pages. */
803			faultcount = 1;
804			break;	/* break to PAGE HAS BEEN FOUND */
805		} else {
806			KASSERT(fs.object != next_object,
807			    ("object loop %p", next_object));
808			VM_OBJECT_WLOCK(next_object);
809			vm_object_pip_add(next_object, 1);
810			if (fs.object != fs.first_object)
811				vm_object_pip_wakeup(fs.object);
812			VM_OBJECT_WUNLOCK(fs.object);
813			fs.object = next_object;
814		}
815	}
816
817	vm_page_assert_xbusied(fs.m);
818
819	/*
820	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
821	 * is held.]
822	 */
823
824	/*
825	 * If the page is being written, but isn't already owned by the
826	 * top-level object, we have to copy it into a new page owned by the
827	 * top-level object.
828	 */
829	if (fs.object != fs.first_object) {
830		/*
831		 * We only really need to copy if we want to write it.
832		 */
833		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
834			/*
835			 * This allows pages to be virtually copied from a
836			 * backing_object into the first_object, where the
837			 * backing object has no other refs to it, and cannot
838			 * gain any more refs.  Instead of a bcopy, we just
839			 * move the page from the backing object to the
840			 * first object.  Note that we must mark the page
841			 * dirty in the first object so that it will go out
842			 * to swap when needed.
843			 */
844			is_first_object_locked = FALSE;
845			if (
846				/*
847				 * Only one shadow object
848				 */
849				(fs.object->shadow_count == 1) &&
850				/*
851				 * No COW refs, except us
852				 */
853				(fs.object->ref_count == 1) &&
854				/*
855				 * No one else can look this object up
856				 */
857				(fs.object->handle == NULL) &&
858				/*
859				 * No other ways to look the object up
860				 */
861				((fs.object->type == OBJT_DEFAULT) ||
862				 (fs.object->type == OBJT_SWAP)) &&
863			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
864				/*
865				 * We don't chase down the shadow chain
866				 */
867			    fs.object == fs.first_object->backing_object) {
868				/*
869				 * get rid of the unnecessary page
870				 */
871				vm_page_lock(fs.first_m);
872				vm_page_free(fs.first_m);
873				vm_page_unlock(fs.first_m);
874				/*
875				 * grab the page and put it into the
876				 * process'es object.  The page is
877				 * automatically made dirty.
878				 */
879				if (vm_page_rename(fs.m, fs.first_object,
880				    fs.first_pindex)) {
881					unlock_and_deallocate(&fs);
882					goto RetryFault;
883				}
884#if VM_NRESERVLEVEL > 0
885				/*
886				 * Rename the reservation.
887				 */
888				vm_reserv_rename(fs.m, fs.first_object,
889				    fs.object, OFF_TO_IDX(
890				    fs.first_object->backing_object_offset));
891#endif
892				vm_page_xbusy(fs.m);
893				fs.first_m = fs.m;
894				fs.m = NULL;
895				PCPU_INC(cnt.v_cow_optim);
896			} else {
897				/*
898				 * Oh, well, lets copy it.
899				 */
900				pmap_copy_page(fs.m, fs.first_m);
901				fs.first_m->valid = VM_PAGE_BITS_ALL;
902				if (wired && (fault_flags &
903				    VM_FAULT_WIRE) == 0) {
904					vm_page_lock(fs.first_m);
905					vm_page_wire(fs.first_m);
906					vm_page_unlock(fs.first_m);
907
908					vm_page_lock(fs.m);
909					vm_page_unwire(fs.m, FALSE);
910					vm_page_unlock(fs.m);
911				}
912				/*
913				 * We no longer need the old page or object.
914				 */
915				release_page(&fs);
916			}
917			/*
918			 * fs.object != fs.first_object due to above
919			 * conditional
920			 */
921			vm_object_pip_wakeup(fs.object);
922			VM_OBJECT_WUNLOCK(fs.object);
923			/*
924			 * Only use the new page below...
925			 */
926			fs.object = fs.first_object;
927			fs.pindex = fs.first_pindex;
928			fs.m = fs.first_m;
929			if (!is_first_object_locked)
930				VM_OBJECT_WLOCK(fs.object);
931			PCPU_INC(cnt.v_cow_faults);
932			curthread->td_cow++;
933		} else {
934			prot &= ~VM_PROT_WRITE;
935		}
936	}
937
938	/*
939	 * We must verify that the maps have not changed since our last
940	 * lookup.
941	 */
942	if (!fs.lookup_still_valid) {
943		vm_object_t retry_object;
944		vm_pindex_t retry_pindex;
945		vm_prot_t retry_prot;
946
947		if (!vm_map_trylock_read(fs.map)) {
948			release_page(&fs);
949			unlock_and_deallocate(&fs);
950			goto RetryFault;
951		}
952		fs.lookup_still_valid = TRUE;
953		if (fs.map->timestamp != fs.map_generation) {
954			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
955			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
956
957			/*
958			 * If we don't need the page any longer, put it on the inactive
959			 * list (the easiest thing to do here).  If no one needs it,
960			 * pageout will grab it eventually.
961			 */
962			if (result != KERN_SUCCESS) {
963				release_page(&fs);
964				unlock_and_deallocate(&fs);
965
966				/*
967				 * If retry of map lookup would have blocked then
968				 * retry fault from start.
969				 */
970				if (result == KERN_FAILURE)
971					goto RetryFault;
972				return (result);
973			}
974			if ((retry_object != fs.first_object) ||
975			    (retry_pindex != fs.first_pindex)) {
976				release_page(&fs);
977				unlock_and_deallocate(&fs);
978				goto RetryFault;
979			}
980
981			/*
982			 * Check whether the protection has changed or the object has
983			 * been copied while we left the map unlocked. Changing from
984			 * read to write permission is OK - we leave the page
985			 * write-protected, and catch the write fault. Changing from
986			 * write to read permission means that we can't mark the page
987			 * write-enabled after all.
988			 */
989			prot &= retry_prot;
990		}
991	}
992	/*
993	 * If the page was filled by a pager, update the map entry's
994	 * last read offset.  Since the pager does not return the
995	 * actual set of pages that it read, this update is based on
996	 * the requested set.  Typically, the requested and actual
997	 * sets are the same.
998	 *
999	 * XXX The following assignment modifies the map
1000	 * without holding a write lock on it.
1001	 */
1002	if (hardfault)
1003		fs.entry->next_read = fs.pindex + faultcount - reqpage;
1004
1005	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1006	vm_page_assert_xbusied(fs.m);
1007
1008	/*
1009	 * Page must be completely valid or it is not fit to
1010	 * map into user space.  vm_pager_get_pages() ensures this.
1011	 */
1012	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1013	    ("vm_fault: page %p partially invalid", fs.m));
1014	VM_OBJECT_WUNLOCK(fs.object);
1015
1016	/*
1017	 * Put this page into the physical map.  We had to do the unlock above
1018	 * because pmap_enter() may sleep.  We don't put the page
1019	 * back on the active queue until later so that the pageout daemon
1020	 * won't find it (yet).
1021	 */
1022	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1023	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1024	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1025	    wired == 0)
1026		vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
1027	VM_OBJECT_WLOCK(fs.object);
1028	vm_page_lock(fs.m);
1029
1030	/*
1031	 * If the page is not wired down, then put it where the pageout daemon
1032	 * can find it.
1033	 */
1034	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1035		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1036		vm_page_wire(fs.m);
1037	} else
1038		vm_page_activate(fs.m);
1039	if (m_hold != NULL) {
1040		*m_hold = fs.m;
1041		vm_page_hold(fs.m);
1042	}
1043	vm_page_unlock(fs.m);
1044	vm_page_xunbusy(fs.m);
1045
1046	/*
1047	 * Unlock everything, and return
1048	 */
1049	unlock_and_deallocate(&fs);
1050	if (hardfault) {
1051		PCPU_INC(cnt.v_io_faults);
1052		curthread->td_ru.ru_majflt++;
1053	} else
1054		curthread->td_ru.ru_minflt++;
1055
1056	return (KERN_SUCCESS);
1057}
1058
1059/*
1060 * Speed up the reclamation of up to "distance" pages that precede the
1061 * faulting pindex within the first object of the shadow chain.
1062 */
1063static void
1064vm_fault_cache_behind(const struct faultstate *fs, int distance)
1065{
1066	vm_object_t first_object, object;
1067	vm_page_t m, m_prev;
1068	vm_pindex_t pindex;
1069
1070	object = fs->object;
1071	VM_OBJECT_ASSERT_WLOCKED(object);
1072	first_object = fs->first_object;
1073	if (first_object != object) {
1074		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1075			VM_OBJECT_WUNLOCK(object);
1076			VM_OBJECT_WLOCK(first_object);
1077			VM_OBJECT_WLOCK(object);
1078		}
1079	}
1080	/* Neither fictitious nor unmanaged pages can be cached. */
1081	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1082		if (fs->first_pindex < distance)
1083			pindex = 0;
1084		else
1085			pindex = fs->first_pindex - distance;
1086		if (pindex < OFF_TO_IDX(fs->entry->offset))
1087			pindex = OFF_TO_IDX(fs->entry->offset);
1088		m = first_object != object ? fs->first_m : fs->m;
1089		vm_page_assert_xbusied(m);
1090		m_prev = vm_page_prev(m);
1091		while ((m = m_prev) != NULL && m->pindex >= pindex &&
1092		    m->valid == VM_PAGE_BITS_ALL) {
1093			m_prev = vm_page_prev(m);
1094			if (vm_page_busied(m))
1095				continue;
1096			vm_page_lock(m);
1097			if (m->hold_count == 0 && m->wire_count == 0) {
1098				pmap_remove_all(m);
1099				vm_page_aflag_clear(m, PGA_REFERENCED);
1100				if (m->dirty != 0)
1101					vm_page_deactivate(m);
1102				else
1103					vm_page_cache(m);
1104			}
1105			vm_page_unlock(m);
1106		}
1107	}
1108	if (first_object != object)
1109		VM_OBJECT_WUNLOCK(first_object);
1110}
1111
1112/*
1113 * vm_fault_prefault provides a quick way of clustering
1114 * pagefaults into a processes address space.  It is a "cousin"
1115 * of vm_map_pmap_enter, except it runs at page fault time instead
1116 * of mmap time.
1117 */
1118static void
1119vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1120    int faultcount, int reqpage)
1121{
1122	pmap_t pmap;
1123	vm_map_entry_t entry;
1124	vm_object_t backing_object, lobject;
1125	vm_offset_t addr, starta;
1126	vm_pindex_t pindex;
1127	vm_page_t m;
1128	int backward, forward, i;
1129
1130	pmap = fs->map->pmap;
1131	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1132		return;
1133
1134	if (faultcount > 0) {
1135		backward = reqpage;
1136		forward = faultcount - reqpage - 1;
1137	} else {
1138		backward = PFBAK;
1139		forward = PFFOR;
1140	}
1141	entry = fs->entry;
1142
1143	if (addra < backward * PAGE_SIZE) {
1144		starta = entry->start;
1145	} else {
1146		starta = addra - backward * PAGE_SIZE;
1147		if (starta < entry->start)
1148			starta = entry->start;
1149	}
1150
1151	/*
1152	 * Generate the sequence of virtual addresses that are candidates for
1153	 * prefaulting in an outward spiral from the faulting virtual address,
1154	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1155	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1156	 * If the candidate address doesn't have a backing physical page, then
1157	 * the loop immediately terminates.
1158	 */
1159	for (i = 0; i < 2 * imax(backward, forward); i++) {
1160		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1161		    PAGE_SIZE);
1162		if (addr > addra + forward * PAGE_SIZE)
1163			addr = 0;
1164
1165		if (addr < starta || addr >= entry->end)
1166			continue;
1167
1168		if (!pmap_is_prefaultable(pmap, addr))
1169			continue;
1170
1171		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1172		lobject = entry->object.vm_object;
1173		VM_OBJECT_RLOCK(lobject);
1174		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1175		    lobject->type == OBJT_DEFAULT &&
1176		    (backing_object = lobject->backing_object) != NULL) {
1177			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1178			    0, ("vm_fault_prefault: unaligned object offset"));
1179			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1180			VM_OBJECT_RLOCK(backing_object);
1181			VM_OBJECT_RUNLOCK(lobject);
1182			lobject = backing_object;
1183		}
1184		if (m == NULL) {
1185			VM_OBJECT_RUNLOCK(lobject);
1186			break;
1187		}
1188		if (m->valid == VM_PAGE_BITS_ALL &&
1189		    (m->flags & PG_FICTITIOUS) == 0)
1190			pmap_enter_quick(pmap, addr, m, entry->protection);
1191		VM_OBJECT_RUNLOCK(lobject);
1192	}
1193}
1194
1195/*
1196 * Hold each of the physical pages that are mapped by the specified range of
1197 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1198 * and allow the specified types of access, "prot".  If all of the implied
1199 * pages are successfully held, then the number of held pages is returned
1200 * together with pointers to those pages in the array "ma".  However, if any
1201 * of the pages cannot be held, -1 is returned.
1202 */
1203int
1204vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1205    vm_prot_t prot, vm_page_t *ma, int max_count)
1206{
1207	vm_offset_t end, va;
1208	vm_page_t *mp;
1209	int count;
1210	boolean_t pmap_failed;
1211
1212	if (len == 0)
1213		return (0);
1214	end = round_page(addr + len);
1215	addr = trunc_page(addr);
1216
1217	/*
1218	 * Check for illegal addresses.
1219	 */
1220	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1221		return (-1);
1222
1223	if (atop(end - addr) > max_count)
1224		panic("vm_fault_quick_hold_pages: count > max_count");
1225	count = atop(end - addr);
1226
1227	/*
1228	 * Most likely, the physical pages are resident in the pmap, so it is
1229	 * faster to try pmap_extract_and_hold() first.
1230	 */
1231	pmap_failed = FALSE;
1232	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1233		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1234		if (*mp == NULL)
1235			pmap_failed = TRUE;
1236		else if ((prot & VM_PROT_WRITE) != 0 &&
1237		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1238			/*
1239			 * Explicitly dirty the physical page.  Otherwise, the
1240			 * caller's changes may go unnoticed because they are
1241			 * performed through an unmanaged mapping or by a DMA
1242			 * operation.
1243			 *
1244			 * The object lock is not held here.
1245			 * See vm_page_clear_dirty_mask().
1246			 */
1247			vm_page_dirty(*mp);
1248		}
1249	}
1250	if (pmap_failed) {
1251		/*
1252		 * One or more pages could not be held by the pmap.  Either no
1253		 * page was mapped at the specified virtual address or that
1254		 * mapping had insufficient permissions.  Attempt to fault in
1255		 * and hold these pages.
1256		 */
1257		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1258			if (*mp == NULL && vm_fault_hold(map, va, prot,
1259			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1260				goto error;
1261	}
1262	return (count);
1263error:
1264	for (mp = ma; mp < ma + count; mp++)
1265		if (*mp != NULL) {
1266			vm_page_lock(*mp);
1267			vm_page_unhold(*mp);
1268			vm_page_unlock(*mp);
1269		}
1270	return (-1);
1271}
1272
1273/*
1274 *	Routine:
1275 *		vm_fault_copy_entry
1276 *	Function:
1277 *		Create new shadow object backing dst_entry with private copy of
1278 *		all underlying pages. When src_entry is equal to dst_entry,
1279 *		function implements COW for wired-down map entry. Otherwise,
1280 *		it forks wired entry into dst_map.
1281 *
1282 *	In/out conditions:
1283 *		The source and destination maps must be locked for write.
1284 *		The source map entry must be wired down (or be a sharing map
1285 *		entry corresponding to a main map entry that is wired down).
1286 */
1287void
1288vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1289    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1290    vm_ooffset_t *fork_charge)
1291{
1292	vm_object_t backing_object, dst_object, object, src_object;
1293	vm_pindex_t dst_pindex, pindex, src_pindex;
1294	vm_prot_t access, prot;
1295	vm_offset_t vaddr;
1296	vm_page_t dst_m;
1297	vm_page_t src_m;
1298	boolean_t upgrade;
1299
1300#ifdef	lint
1301	src_map++;
1302#endif	/* lint */
1303
1304	upgrade = src_entry == dst_entry;
1305	access = prot = dst_entry->protection;
1306
1307	src_object = src_entry->object.vm_object;
1308	src_pindex = OFF_TO_IDX(src_entry->offset);
1309
1310	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1311		dst_object = src_object;
1312		vm_object_reference(dst_object);
1313	} else {
1314		/*
1315		 * Create the top-level object for the destination entry. (Doesn't
1316		 * actually shadow anything - we copy the pages directly.)
1317		 */
1318		dst_object = vm_object_allocate(OBJT_DEFAULT,
1319		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1320#if VM_NRESERVLEVEL > 0
1321		dst_object->flags |= OBJ_COLORED;
1322		dst_object->pg_color = atop(dst_entry->start);
1323#endif
1324	}
1325
1326	VM_OBJECT_WLOCK(dst_object);
1327	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1328	    ("vm_fault_copy_entry: vm_object not NULL"));
1329	if (src_object != dst_object) {
1330		dst_entry->object.vm_object = dst_object;
1331		dst_entry->offset = 0;
1332		dst_object->charge = dst_entry->end - dst_entry->start;
1333	}
1334	if (fork_charge != NULL) {
1335		KASSERT(dst_entry->cred == NULL,
1336		    ("vm_fault_copy_entry: leaked swp charge"));
1337		dst_object->cred = curthread->td_ucred;
1338		crhold(dst_object->cred);
1339		*fork_charge += dst_object->charge;
1340	} else if (dst_object->cred == NULL) {
1341		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1342		    dst_entry));
1343		dst_object->cred = dst_entry->cred;
1344		dst_entry->cred = NULL;
1345	}
1346
1347	/*
1348	 * If not an upgrade, then enter the mappings in the pmap as
1349	 * read and/or execute accesses.  Otherwise, enter them as
1350	 * write accesses.
1351	 *
1352	 * A writeable large page mapping is only created if all of
1353	 * the constituent small page mappings are modified. Marking
1354	 * PTEs as modified on inception allows promotion to happen
1355	 * without taking potentially large number of soft faults.
1356	 */
1357	if (!upgrade)
1358		access &= ~VM_PROT_WRITE;
1359
1360	/*
1361	 * Loop through all of the virtual pages within the entry's
1362	 * range, copying each page from the source object to the
1363	 * destination object.  Since the source is wired, those pages
1364	 * must exist.  In contrast, the destination is pageable.
1365	 * Since the destination object does share any backing storage
1366	 * with the source object, all of its pages must be dirtied,
1367	 * regardless of whether they can be written.
1368	 */
1369	for (vaddr = dst_entry->start, dst_pindex = 0;
1370	    vaddr < dst_entry->end;
1371	    vaddr += PAGE_SIZE, dst_pindex++) {
1372again:
1373		/*
1374		 * Find the page in the source object, and copy it in.
1375		 * Because the source is wired down, the page will be
1376		 * in memory.
1377		 */
1378		if (src_object != dst_object)
1379			VM_OBJECT_RLOCK(src_object);
1380		object = src_object;
1381		pindex = src_pindex + dst_pindex;
1382		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1383		    (backing_object = object->backing_object) != NULL) {
1384			/*
1385			 * Unless the source mapping is read-only or
1386			 * it is presently being upgraded from
1387			 * read-only, the first object in the shadow
1388			 * chain should provide all of the pages.  In
1389			 * other words, this loop body should never be
1390			 * executed when the source mapping is already
1391			 * read/write.
1392			 */
1393			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1394			    upgrade,
1395			    ("vm_fault_copy_entry: main object missing page"));
1396
1397			VM_OBJECT_RLOCK(backing_object);
1398			pindex += OFF_TO_IDX(object->backing_object_offset);
1399			if (object != dst_object)
1400				VM_OBJECT_RUNLOCK(object);
1401			object = backing_object;
1402		}
1403		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1404
1405		if (object != dst_object) {
1406			/*
1407			 * Allocate a page in the destination object.
1408			 */
1409			dst_m = vm_page_alloc(dst_object, (src_object ==
1410			    dst_object ? src_pindex : 0) + dst_pindex,
1411			    VM_ALLOC_NORMAL);
1412			if (dst_m == NULL) {
1413				VM_OBJECT_WUNLOCK(dst_object);
1414				VM_OBJECT_RUNLOCK(object);
1415				VM_WAIT;
1416				VM_OBJECT_WLOCK(dst_object);
1417				goto again;
1418			}
1419			pmap_copy_page(src_m, dst_m);
1420			VM_OBJECT_RUNLOCK(object);
1421			dst_m->valid = VM_PAGE_BITS_ALL;
1422			dst_m->dirty = VM_PAGE_BITS_ALL;
1423		} else {
1424			dst_m = src_m;
1425			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1426				goto again;
1427			vm_page_xbusy(dst_m);
1428			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1429			    ("invalid dst page %p", dst_m));
1430		}
1431		VM_OBJECT_WUNLOCK(dst_object);
1432
1433		/*
1434		 * Enter it in the pmap. If a wired, copy-on-write
1435		 * mapping is being replaced by a write-enabled
1436		 * mapping, then wire that new mapping.
1437		 */
1438		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1439		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1440
1441		/*
1442		 * Mark it no longer busy, and put it on the active list.
1443		 */
1444		VM_OBJECT_WLOCK(dst_object);
1445
1446		if (upgrade) {
1447			if (src_m != dst_m) {
1448				vm_page_lock(src_m);
1449				vm_page_unwire(src_m, 0);
1450				vm_page_unlock(src_m);
1451				vm_page_lock(dst_m);
1452				vm_page_wire(dst_m);
1453				vm_page_unlock(dst_m);
1454			} else {
1455				KASSERT(dst_m->wire_count > 0,
1456				    ("dst_m %p is not wired", dst_m));
1457			}
1458		} else {
1459			vm_page_lock(dst_m);
1460			vm_page_activate(dst_m);
1461			vm_page_unlock(dst_m);
1462		}
1463		vm_page_xunbusy(dst_m);
1464	}
1465	VM_OBJECT_WUNLOCK(dst_object);
1466	if (upgrade) {
1467		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1468		vm_object_deallocate(src_object);
1469	}
1470}
1471
1472
1473/*
1474 * This routine checks around the requested page for other pages that
1475 * might be able to be faulted in.  This routine brackets the viable
1476 * pages for the pages to be paged in.
1477 *
1478 * Inputs:
1479 *	m, rbehind, rahead
1480 *
1481 * Outputs:
1482 *  marray (array of vm_page_t), reqpage (index of requested page)
1483 *
1484 * Return value:
1485 *  number of pages in marray
1486 */
1487static int
1488vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1489	vm_page_t m;
1490	int rbehind;
1491	int rahead;
1492	vm_page_t *marray;
1493	int *reqpage;
1494{
1495	int i,j;
1496	vm_object_t object;
1497	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1498	vm_page_t rtm;
1499	int cbehind, cahead;
1500
1501	VM_OBJECT_ASSERT_WLOCKED(m->object);
1502
1503	object = m->object;
1504	pindex = m->pindex;
1505	cbehind = cahead = 0;
1506
1507	/*
1508	 * if the requested page is not available, then give up now
1509	 */
1510	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1511		return 0;
1512	}
1513
1514	if ((cbehind == 0) && (cahead == 0)) {
1515		*reqpage = 0;
1516		marray[0] = m;
1517		return 1;
1518	}
1519
1520	if (rahead > cahead) {
1521		rahead = cahead;
1522	}
1523
1524	if (rbehind > cbehind) {
1525		rbehind = cbehind;
1526	}
1527
1528	/*
1529	 * scan backward for the read behind pages -- in memory
1530	 */
1531	if (pindex > 0) {
1532		if (rbehind > pindex) {
1533			rbehind = pindex;
1534			startpindex = 0;
1535		} else {
1536			startpindex = pindex - rbehind;
1537		}
1538
1539		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1540		    rtm->pindex >= startpindex)
1541			startpindex = rtm->pindex + 1;
1542
1543		/* tpindex is unsigned; beware of numeric underflow. */
1544		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1545		    tpindex < pindex; i++, tpindex--) {
1546
1547			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1548			    VM_ALLOC_IFNOTCACHED);
1549			if (rtm == NULL) {
1550				/*
1551				 * Shift the allocated pages to the
1552				 * beginning of the array.
1553				 */
1554				for (j = 0; j < i; j++) {
1555					marray[j] = marray[j + tpindex + 1 -
1556					    startpindex];
1557				}
1558				break;
1559			}
1560
1561			marray[tpindex - startpindex] = rtm;
1562		}
1563	} else {
1564		startpindex = 0;
1565		i = 0;
1566	}
1567
1568	marray[i] = m;
1569	/* page offset of the required page */
1570	*reqpage = i;
1571
1572	tpindex = pindex + 1;
1573	i++;
1574
1575	/*
1576	 * scan forward for the read ahead pages
1577	 */
1578	endpindex = tpindex + rahead;
1579	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1580		endpindex = rtm->pindex;
1581	if (endpindex > object->size)
1582		endpindex = object->size;
1583
1584	for (; tpindex < endpindex; i++, tpindex++) {
1585
1586		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1587		    VM_ALLOC_IFNOTCACHED);
1588		if (rtm == NULL) {
1589			break;
1590		}
1591
1592		marray[i] = rtm;
1593	}
1594
1595	/* return number of pages */
1596	return i;
1597}
1598
1599/*
1600 * Block entry into the machine-independent layer's page fault handler by
1601 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1602 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1603 * spurious page faults.
1604 */
1605int
1606vm_fault_disable_pagefaults(void)
1607{
1608
1609	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1610}
1611
1612void
1613vm_fault_enable_pagefaults(int save)
1614{
1615
1616	curthread_pflags_restore(save);
1617}
1618