vm_fault.c revision 308366
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD: stable/10/sys/vm/vm_fault.c 308366 2016-11-06 13:40:03Z kib $");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/proc.h>
85#include <sys/resourcevar.h>
86#include <sys/rwlock.h>
87#include <sys/sysctl.h>
88#include <sys/vmmeter.h>
89#include <sys/vnode.h>
90#ifdef KTRACE
91#include <sys/ktrace.h>
92#endif
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/pmap.h>
97#include <vm/vm_map.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_pageout.h>
101#include <vm/vm_kern.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_extern.h>
104#include <vm/vm_reserv.h>
105
106#define PFBAK 4
107#define PFFOR 4
108
109static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
110
111#define	VM_FAULT_READ_BEHIND	8
112#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116
117struct faultstate {
118	vm_page_t m;
119	vm_object_t object;
120	vm_pindex_t pindex;
121	vm_page_t first_m;
122	vm_object_t	first_object;
123	vm_pindex_t first_pindex;
124	vm_map_t map;
125	vm_map_entry_t entry;
126	int lookup_still_valid;
127	struct vnode *vp;
128};
129
130static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
131static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132	    int faultcount, int reqpage);
133
134static inline void
135release_page(struct faultstate *fs)
136{
137
138	vm_page_xunbusy(fs->m);
139	vm_page_lock(fs->m);
140	vm_page_deactivate(fs->m);
141	vm_page_unlock(fs->m);
142	fs->m = NULL;
143}
144
145static inline void
146unlock_map(struct faultstate *fs)
147{
148
149	if (fs->lookup_still_valid) {
150		vm_map_lookup_done(fs->map, fs->entry);
151		fs->lookup_still_valid = FALSE;
152	}
153}
154
155static void
156unlock_vp(struct faultstate *fs)
157{
158
159	if (fs->vp != NULL) {
160		vput(fs->vp);
161		fs->vp = NULL;
162	}
163}
164
165static void
166unlock_and_deallocate(struct faultstate *fs)
167{
168
169	vm_object_pip_wakeup(fs->object);
170	VM_OBJECT_WUNLOCK(fs->object);
171	if (fs->object != fs->first_object) {
172		VM_OBJECT_WLOCK(fs->first_object);
173		vm_page_lock(fs->first_m);
174		vm_page_free(fs->first_m);
175		vm_page_unlock(fs->first_m);
176		vm_object_pip_wakeup(fs->first_object);
177		VM_OBJECT_WUNLOCK(fs->first_object);
178		fs->first_m = NULL;
179	}
180	vm_object_deallocate(fs->first_object);
181	unlock_map(fs);
182	unlock_vp(fs);
183}
184
185static void
186vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
187    vm_prot_t fault_type, int fault_flags, bool set_wd)
188{
189	bool need_dirty;
190
191	if (((prot & VM_PROT_WRITE) == 0 &&
192	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
193	    (m->oflags & VPO_UNMANAGED) != 0)
194		return;
195
196	VM_OBJECT_ASSERT_LOCKED(m->object);
197
198	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
199	    (fault_flags & VM_FAULT_WIRE) == 0) ||
200	    (fault_flags & VM_FAULT_DIRTY) != 0;
201
202	if (set_wd)
203		vm_object_set_writeable_dirty(m->object);
204	else
205		/*
206		 * If two callers of vm_fault_dirty() with set_wd ==
207		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
208		 * flag set, other with flag clear, race, it is
209		 * possible for the no-NOSYNC thread to see m->dirty
210		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
211		 * around manipulation of VPO_NOSYNC and
212		 * vm_page_dirty() call, to avoid the race and keep
213		 * m->oflags consistent.
214		 */
215		vm_page_lock(m);
216
217	/*
218	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
219	 * if the page is already dirty to prevent data written with
220	 * the expectation of being synced from not being synced.
221	 * Likewise if this entry does not request NOSYNC then make
222	 * sure the page isn't marked NOSYNC.  Applications sharing
223	 * data should use the same flags to avoid ping ponging.
224	 */
225	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
226		if (m->dirty == 0) {
227			m->oflags |= VPO_NOSYNC;
228		}
229	} else {
230		m->oflags &= ~VPO_NOSYNC;
231	}
232
233	/*
234	 * If the fault is a write, we know that this page is being
235	 * written NOW so dirty it explicitly to save on
236	 * pmap_is_modified() calls later.
237	 *
238	 * Also tell the backing pager, if any, that it should remove
239	 * any swap backing since the page is now dirty.
240	 */
241	if (need_dirty)
242		vm_page_dirty(m);
243	if (!set_wd)
244		vm_page_unlock(m);
245	if (need_dirty)
246		vm_pager_page_unswapped(m);
247}
248
249/*
250 *	vm_fault:
251 *
252 *	Handle a page fault occurring at the given address,
253 *	requiring the given permissions, in the map specified.
254 *	If successful, the page is inserted into the
255 *	associated physical map.
256 *
257 *	NOTE: the given address should be truncated to the
258 *	proper page address.
259 *
260 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
261 *	a standard error specifying why the fault is fatal is returned.
262 *
263 *	The map in question must be referenced, and remains so.
264 *	Caller may hold no locks.
265 */
266int
267vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
268    int fault_flags)
269{
270	struct thread *td;
271	int result;
272
273	td = curthread;
274	if ((td->td_pflags & TDP_NOFAULTING) != 0)
275		return (KERN_PROTECTION_FAILURE);
276#ifdef KTRACE
277	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
278		ktrfault(vaddr, fault_type);
279#endif
280	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
281	    NULL);
282#ifdef KTRACE
283	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
284		ktrfaultend(result);
285#endif
286	return (result);
287}
288
289int
290vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
291    int fault_flags, vm_page_t *m_hold)
292{
293	vm_prot_t prot;
294	long ahead, behind;
295	int alloc_req, era, faultcount, nera, reqpage, result;
296	boolean_t dead, growstack, is_first_object_locked, wired;
297	int map_generation;
298	vm_object_t next_object;
299	vm_page_t marray[VM_FAULT_READ_MAX];
300	int hardfault;
301	struct faultstate fs;
302	struct vnode *vp;
303	vm_page_t m;
304	int locked, error;
305
306	hardfault = 0;
307	growstack = TRUE;
308	PCPU_INC(cnt.v_vm_faults);
309	fs.vp = NULL;
310	faultcount = reqpage = 0;
311
312RetryFault:;
313
314	/*
315	 * Find the backing store object and offset into it to begin the
316	 * search.
317	 */
318	fs.map = map;
319	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
320	    &fs.first_object, &fs.first_pindex, &prot, &wired);
321	if (result != KERN_SUCCESS) {
322		if (growstack && result == KERN_INVALID_ADDRESS &&
323		    map != kernel_map) {
324			result = vm_map_growstack(curproc, vaddr);
325			if (result != KERN_SUCCESS)
326				return (KERN_FAILURE);
327			growstack = FALSE;
328			goto RetryFault;
329		}
330		unlock_vp(&fs);
331		return (result);
332	}
333
334	map_generation = fs.map->timestamp;
335
336	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
337		panic("vm_fault: fault on nofault entry, addr: %lx",
338		    (u_long)vaddr);
339	}
340
341	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
342	    fs.entry->wiring_thread != curthread) {
343		vm_map_unlock_read(fs.map);
344		vm_map_lock(fs.map);
345		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
346		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
347			unlock_vp(&fs);
348			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
349			vm_map_unlock_and_wait(fs.map, 0);
350		} else
351			vm_map_unlock(fs.map);
352		goto RetryFault;
353	}
354
355	if (wired)
356		fault_type = prot | (fault_type & VM_PROT_COPY);
357	else
358		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
359		    ("!wired && VM_FAULT_WIRE"));
360
361	/*
362	 * Try to avoid lock contention on the top-level object through
363	 * special-case handling of some types of page faults, specifically,
364	 * those that are both (1) mapping an existing page from the top-
365	 * level object and (2) not having to mark that object as containing
366	 * dirty pages.  Under these conditions, a read lock on the top-level
367	 * object suffices, allowing multiple page faults of a similar type to
368	 * run in parallel on the same top-level object.
369	 */
370	if (fs.vp == NULL /* avoid locked vnode leak */ &&
371	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
372	    /* avoid calling vm_object_set_writeable_dirty() */
373	    ((prot & VM_PROT_WRITE) == 0 ||
374	    (fs.first_object->type != OBJT_VNODE &&
375	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
376	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
377		VM_OBJECT_RLOCK(fs.first_object);
378		if ((prot & VM_PROT_WRITE) != 0 &&
379		    (fs.first_object->type == OBJT_VNODE ||
380		    (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
381		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
382			goto fast_failed;
383		m = vm_page_lookup(fs.first_object, fs.first_pindex);
384		/* A busy page can be mapped for read|execute access. */
385		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
386		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
387			goto fast_failed;
388		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
389		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
390		   0), 0);
391		if (result != KERN_SUCCESS)
392			goto fast_failed;
393		if (m_hold != NULL) {
394			*m_hold = m;
395			vm_page_lock(m);
396			vm_page_hold(m);
397			vm_page_unlock(m);
398		}
399		vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
400		    false);
401		VM_OBJECT_RUNLOCK(fs.first_object);
402		if (!wired)
403			vm_fault_prefault(&fs, vaddr, 0, 0);
404		vm_map_lookup_done(fs.map, fs.entry);
405		curthread->td_ru.ru_minflt++;
406		return (KERN_SUCCESS);
407fast_failed:
408		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
409			VM_OBJECT_RUNLOCK(fs.first_object);
410			VM_OBJECT_WLOCK(fs.first_object);
411		}
412	} else {
413		VM_OBJECT_WLOCK(fs.first_object);
414	}
415
416	/*
417	 * Make a reference to this object to prevent its disposal while we
418	 * are messing with it.  Once we have the reference, the map is free
419	 * to be diddled.  Since objects reference their shadows (and copies),
420	 * they will stay around as well.
421	 *
422	 * Bump the paging-in-progress count to prevent size changes (e.g.
423	 * truncation operations) during I/O.  This must be done after
424	 * obtaining the vnode lock in order to avoid possible deadlocks.
425	 */
426	vm_object_reference_locked(fs.first_object);
427	vm_object_pip_add(fs.first_object, 1);
428
429	fs.lookup_still_valid = TRUE;
430
431	fs.first_m = NULL;
432
433	/*
434	 * Search for the page at object/offset.
435	 */
436	fs.object = fs.first_object;
437	fs.pindex = fs.first_pindex;
438	while (TRUE) {
439		/*
440		 * If the object is marked for imminent termination,
441		 * we retry here, since the collapse pass has raced
442		 * with us.  Otherwise, if we see terminally dead
443		 * object, return fail.
444		 */
445		if ((fs.object->flags & OBJ_DEAD) != 0) {
446			dead = fs.object->type == OBJT_DEAD;
447			unlock_and_deallocate(&fs);
448			if (dead)
449				return (KERN_PROTECTION_FAILURE);
450			pause("vmf_de", 1);
451			goto RetryFault;
452		}
453
454		/*
455		 * See if page is resident
456		 */
457		fs.m = vm_page_lookup(fs.object, fs.pindex);
458		if (fs.m != NULL) {
459			/*
460			 * Wait/Retry if the page is busy.  We have to do this
461			 * if the page is either exclusive or shared busy
462			 * because the vm_pager may be using read busy for
463			 * pageouts (and even pageins if it is the vnode
464			 * pager), and we could end up trying to pagein and
465			 * pageout the same page simultaneously.
466			 *
467			 * We can theoretically allow the busy case on a read
468			 * fault if the page is marked valid, but since such
469			 * pages are typically already pmap'd, putting that
470			 * special case in might be more effort then it is
471			 * worth.  We cannot under any circumstances mess
472			 * around with a shared busied page except, perhaps,
473			 * to pmap it.
474			 */
475			if (vm_page_busied(fs.m)) {
476				/*
477				 * Reference the page before unlocking and
478				 * sleeping so that the page daemon is less
479				 * likely to reclaim it.
480				 */
481				vm_page_aflag_set(fs.m, PGA_REFERENCED);
482				if (fs.object != fs.first_object) {
483					if (!VM_OBJECT_TRYWLOCK(
484					    fs.first_object)) {
485						VM_OBJECT_WUNLOCK(fs.object);
486						VM_OBJECT_WLOCK(fs.first_object);
487						VM_OBJECT_WLOCK(fs.object);
488					}
489					vm_page_lock(fs.first_m);
490					vm_page_free(fs.first_m);
491					vm_page_unlock(fs.first_m);
492					vm_object_pip_wakeup(fs.first_object);
493					VM_OBJECT_WUNLOCK(fs.first_object);
494					fs.first_m = NULL;
495				}
496				unlock_map(&fs);
497				if (fs.m == vm_page_lookup(fs.object,
498				    fs.pindex)) {
499					vm_page_sleep_if_busy(fs.m, "vmpfw");
500				}
501				vm_object_pip_wakeup(fs.object);
502				VM_OBJECT_WUNLOCK(fs.object);
503				PCPU_INC(cnt.v_intrans);
504				vm_object_deallocate(fs.first_object);
505				goto RetryFault;
506			}
507			vm_page_lock(fs.m);
508			vm_page_remque(fs.m);
509			vm_page_unlock(fs.m);
510
511			/*
512			 * Mark page busy for other processes, and the
513			 * pagedaemon.  If it still isn't completely valid
514			 * (readable), jump to readrest, else break-out ( we
515			 * found the page ).
516			 */
517			vm_page_xbusy(fs.m);
518			if (fs.m->valid != VM_PAGE_BITS_ALL)
519				goto readrest;
520			break;
521		}
522
523		/*
524		 * Page is not resident.  If this is the search termination
525		 * or the pager might contain the page, allocate a new page.
526		 * Default objects are zero-fill, there is no real pager.
527		 */
528		if (fs.object->type != OBJT_DEFAULT ||
529		    fs.object == fs.first_object) {
530			if (fs.pindex >= fs.object->size) {
531				unlock_and_deallocate(&fs);
532				return (KERN_PROTECTION_FAILURE);
533			}
534
535			/*
536			 * Allocate a new page for this object/offset pair.
537			 *
538			 * Unlocked read of the p_flag is harmless. At
539			 * worst, the P_KILLED might be not observed
540			 * there, and allocation can fail, causing
541			 * restart and new reading of the p_flag.
542			 */
543			fs.m = NULL;
544			if (!vm_page_count_severe() || P_KILLED(curproc)) {
545#if VM_NRESERVLEVEL > 0
546				if ((fs.object->flags & OBJ_COLORED) == 0) {
547					fs.object->flags |= OBJ_COLORED;
548					fs.object->pg_color = atop(vaddr) -
549					    fs.pindex;
550				}
551#endif
552				alloc_req = P_KILLED(curproc) ?
553				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
554				if (fs.object->type != OBJT_VNODE &&
555				    fs.object->backing_object == NULL)
556					alloc_req |= VM_ALLOC_ZERO;
557				fs.m = vm_page_alloc(fs.object, fs.pindex,
558				    alloc_req);
559			}
560			if (fs.m == NULL) {
561				unlock_and_deallocate(&fs);
562				VM_WAITPFAULT;
563				goto RetryFault;
564			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
565				break;
566		}
567
568readrest:
569		/*
570		 * We have found a valid page or we have allocated a new page.
571		 * The page thus may not be valid or may not be entirely
572		 * valid.
573		 *
574		 * Attempt to fault-in the page if there is a chance that the
575		 * pager has it, and potentially fault in additional pages
576		 * at the same time.  For default objects simply provide
577		 * zero-filled pages.
578		 */
579		if (fs.object->type != OBJT_DEFAULT) {
580			int rv;
581			u_char behavior = vm_map_entry_behavior(fs.entry);
582
583			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
584			    P_KILLED(curproc)) {
585				behind = 0;
586				ahead = 0;
587			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
588				behind = 0;
589				ahead = atop(fs.entry->end - vaddr) - 1;
590				if (ahead > VM_FAULT_READ_AHEAD_MAX)
591					ahead = VM_FAULT_READ_AHEAD_MAX;
592				if (fs.pindex == fs.entry->next_read)
593					vm_fault_cache_behind(&fs,
594					    VM_FAULT_READ_MAX);
595			} else {
596				/*
597				 * If this is a sequential page fault, then
598				 * arithmetically increase the number of pages
599				 * in the read-ahead window.  Otherwise, reset
600				 * the read-ahead window to its smallest size.
601				 */
602				behind = atop(vaddr - fs.entry->start);
603				if (behind > VM_FAULT_READ_BEHIND)
604					behind = VM_FAULT_READ_BEHIND;
605				ahead = atop(fs.entry->end - vaddr) - 1;
606				era = fs.entry->read_ahead;
607				if (fs.pindex == fs.entry->next_read) {
608					nera = era + behind;
609					if (nera > VM_FAULT_READ_AHEAD_MAX)
610						nera = VM_FAULT_READ_AHEAD_MAX;
611					behind = 0;
612					if (ahead > nera)
613						ahead = nera;
614					if (era == VM_FAULT_READ_AHEAD_MAX)
615						vm_fault_cache_behind(&fs,
616						    VM_FAULT_CACHE_BEHIND);
617				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
618					ahead = VM_FAULT_READ_AHEAD_MIN;
619				if (era != ahead)
620					fs.entry->read_ahead = ahead;
621			}
622
623			/*
624			 * Call the pager to retrieve the data, if any, after
625			 * releasing the lock on the map.  We hold a ref on
626			 * fs.object and the pages are exclusive busied.
627			 */
628			unlock_map(&fs);
629
630			if (fs.object->type == OBJT_VNODE &&
631			    (vp = fs.object->handle) != fs.vp) {
632				unlock_vp(&fs);
633				locked = VOP_ISLOCKED(vp);
634
635				if (locked != LK_EXCLUSIVE)
636					locked = LK_SHARED;
637				/* Do not sleep for vnode lock while fs.m is busy */
638				error = vget(vp, locked | LK_CANRECURSE |
639				    LK_NOWAIT, curthread);
640				if (error != 0) {
641					vhold(vp);
642					release_page(&fs);
643					unlock_and_deallocate(&fs);
644					error = vget(vp, locked | LK_RETRY |
645					    LK_CANRECURSE, curthread);
646					vdrop(vp);
647					fs.vp = vp;
648					KASSERT(error == 0,
649					    ("vm_fault: vget failed"));
650					goto RetryFault;
651				}
652				fs.vp = vp;
653			}
654			KASSERT(fs.vp == NULL || !fs.map->system_map,
655			    ("vm_fault: vnode-backed object mapped by system map"));
656
657			/*
658			 * now we find out if any other pages should be paged
659			 * in at this time this routine checks to see if the
660			 * pages surrounding this fault reside in the same
661			 * object as the page for this fault.  If they do,
662			 * then they are faulted in also into the object.  The
663			 * array "marray" returned contains an array of
664			 * vm_page_t structs where one of them is the
665			 * vm_page_t passed to the routine.  The reqpage
666			 * return value is the index into the marray for the
667			 * vm_page_t passed to the routine.
668			 *
669			 * fs.m plus the additional pages are exclusive busied.
670			 */
671			faultcount = vm_fault_additional_pages(
672			    fs.m, behind, ahead, marray, &reqpage);
673
674			rv = faultcount ?
675			    vm_pager_get_pages(fs.object, marray, faultcount,
676				reqpage) : VM_PAGER_FAIL;
677
678			if (rv == VM_PAGER_OK) {
679				/*
680				 * Found the page. Leave it busy while we play
681				 * with it.
682				 */
683
684				/*
685				 * Relookup in case pager changed page. Pager
686				 * is responsible for disposition of old page
687				 * if moved.
688				 */
689				fs.m = vm_page_lookup(fs.object, fs.pindex);
690				if (!fs.m) {
691					unlock_and_deallocate(&fs);
692					goto RetryFault;
693				}
694
695				hardfault++;
696				break; /* break to PAGE HAS BEEN FOUND */
697			}
698			/*
699			 * Remove the bogus page (which does not exist at this
700			 * object/offset); before doing so, we must get back
701			 * our object lock to preserve our invariant.
702			 *
703			 * Also wake up any other process that may want to bring
704			 * in this page.
705			 *
706			 * If this is the top-level object, we must leave the
707			 * busy page to prevent another process from rushing
708			 * past us, and inserting the page in that object at
709			 * the same time that we are.
710			 */
711			if (rv == VM_PAGER_ERROR)
712				printf("vm_fault: pager read error, pid %d (%s)\n",
713				    curproc->p_pid, curproc->p_comm);
714			/*
715			 * Data outside the range of the pager or an I/O error
716			 */
717			/*
718			 * XXX - the check for kernel_map is a kludge to work
719			 * around having the machine panic on a kernel space
720			 * fault w/ I/O error.
721			 */
722			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
723				(rv == VM_PAGER_BAD)) {
724				vm_page_lock(fs.m);
725				vm_page_free(fs.m);
726				vm_page_unlock(fs.m);
727				fs.m = NULL;
728				unlock_and_deallocate(&fs);
729				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
730			}
731			if (fs.object != fs.first_object) {
732				vm_page_lock(fs.m);
733				vm_page_free(fs.m);
734				vm_page_unlock(fs.m);
735				fs.m = NULL;
736				/*
737				 * XXX - we cannot just fall out at this
738				 * point, m has been freed and is invalid!
739				 */
740			}
741		}
742
743		/*
744		 * We get here if the object has default pager (or unwiring)
745		 * or the pager doesn't have the page.
746		 */
747		if (fs.object == fs.first_object)
748			fs.first_m = fs.m;
749
750		/*
751		 * Move on to the next object.  Lock the next object before
752		 * unlocking the current one.
753		 */
754		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
755		next_object = fs.object->backing_object;
756		if (next_object == NULL) {
757			/*
758			 * If there's no object left, fill the page in the top
759			 * object with zeros.
760			 */
761			if (fs.object != fs.first_object) {
762				vm_object_pip_wakeup(fs.object);
763				VM_OBJECT_WUNLOCK(fs.object);
764
765				fs.object = fs.first_object;
766				fs.pindex = fs.first_pindex;
767				fs.m = fs.first_m;
768				VM_OBJECT_WLOCK(fs.object);
769			}
770			fs.first_m = NULL;
771
772			/*
773			 * Zero the page if necessary and mark it valid.
774			 */
775			if ((fs.m->flags & PG_ZERO) == 0) {
776				pmap_zero_page(fs.m);
777			} else {
778				PCPU_INC(cnt.v_ozfod);
779			}
780			PCPU_INC(cnt.v_zfod);
781			fs.m->valid = VM_PAGE_BITS_ALL;
782			/* Don't try to prefault neighboring pages. */
783			faultcount = 1;
784			break;	/* break to PAGE HAS BEEN FOUND */
785		} else {
786			KASSERT(fs.object != next_object,
787			    ("object loop %p", next_object));
788			VM_OBJECT_WLOCK(next_object);
789			vm_object_pip_add(next_object, 1);
790			if (fs.object != fs.first_object)
791				vm_object_pip_wakeup(fs.object);
792			VM_OBJECT_WUNLOCK(fs.object);
793			fs.object = next_object;
794		}
795	}
796
797	vm_page_assert_xbusied(fs.m);
798
799	/*
800	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
801	 * is held.]
802	 */
803
804	/*
805	 * If the page is being written, but isn't already owned by the
806	 * top-level object, we have to copy it into a new page owned by the
807	 * top-level object.
808	 */
809	if (fs.object != fs.first_object) {
810		/*
811		 * We only really need to copy if we want to write it.
812		 */
813		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
814			/*
815			 * This allows pages to be virtually copied from a
816			 * backing_object into the first_object, where the
817			 * backing object has no other refs to it, and cannot
818			 * gain any more refs.  Instead of a bcopy, we just
819			 * move the page from the backing object to the
820			 * first object.  Note that we must mark the page
821			 * dirty in the first object so that it will go out
822			 * to swap when needed.
823			 */
824			is_first_object_locked = FALSE;
825			if (
826				/*
827				 * Only one shadow object
828				 */
829				(fs.object->shadow_count == 1) &&
830				/*
831				 * No COW refs, except us
832				 */
833				(fs.object->ref_count == 1) &&
834				/*
835				 * No one else can look this object up
836				 */
837				(fs.object->handle == NULL) &&
838				/*
839				 * No other ways to look the object up
840				 */
841				((fs.object->type == OBJT_DEFAULT) ||
842				 (fs.object->type == OBJT_SWAP)) &&
843			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
844				/*
845				 * We don't chase down the shadow chain
846				 */
847			    fs.object == fs.first_object->backing_object) {
848				/*
849				 * get rid of the unnecessary page
850				 */
851				vm_page_lock(fs.first_m);
852				vm_page_free(fs.first_m);
853				vm_page_unlock(fs.first_m);
854				/*
855				 * grab the page and put it into the
856				 * process'es object.  The page is
857				 * automatically made dirty.
858				 */
859				if (vm_page_rename(fs.m, fs.first_object,
860				    fs.first_pindex)) {
861					unlock_and_deallocate(&fs);
862					goto RetryFault;
863				}
864#if VM_NRESERVLEVEL > 0
865				/*
866				 * Rename the reservation.
867				 */
868				vm_reserv_rename(fs.m, fs.first_object,
869				    fs.object, OFF_TO_IDX(
870				    fs.first_object->backing_object_offset));
871#endif
872				vm_page_xbusy(fs.m);
873				fs.first_m = fs.m;
874				fs.m = NULL;
875				PCPU_INC(cnt.v_cow_optim);
876			} else {
877				/*
878				 * Oh, well, lets copy it.
879				 */
880				pmap_copy_page(fs.m, fs.first_m);
881				fs.first_m->valid = VM_PAGE_BITS_ALL;
882				if (wired && (fault_flags &
883				    VM_FAULT_WIRE) == 0) {
884					vm_page_lock(fs.first_m);
885					vm_page_wire(fs.first_m);
886					vm_page_unlock(fs.first_m);
887
888					vm_page_lock(fs.m);
889					vm_page_unwire(fs.m, FALSE);
890					vm_page_unlock(fs.m);
891				}
892				/*
893				 * We no longer need the old page or object.
894				 */
895				release_page(&fs);
896			}
897			/*
898			 * fs.object != fs.first_object due to above
899			 * conditional
900			 */
901			vm_object_pip_wakeup(fs.object);
902			VM_OBJECT_WUNLOCK(fs.object);
903			/*
904			 * Only use the new page below...
905			 */
906			fs.object = fs.first_object;
907			fs.pindex = fs.first_pindex;
908			fs.m = fs.first_m;
909			if (!is_first_object_locked)
910				VM_OBJECT_WLOCK(fs.object);
911			PCPU_INC(cnt.v_cow_faults);
912			curthread->td_cow++;
913		} else {
914			prot &= ~VM_PROT_WRITE;
915		}
916	}
917
918	/*
919	 * We must verify that the maps have not changed since our last
920	 * lookup.
921	 */
922	if (!fs.lookup_still_valid) {
923		vm_object_t retry_object;
924		vm_pindex_t retry_pindex;
925		vm_prot_t retry_prot;
926
927		if (!vm_map_trylock_read(fs.map)) {
928			release_page(&fs);
929			unlock_and_deallocate(&fs);
930			goto RetryFault;
931		}
932		fs.lookup_still_valid = TRUE;
933		if (fs.map->timestamp != map_generation) {
934			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
935			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
936
937			/*
938			 * If we don't need the page any longer, put it on the inactive
939			 * list (the easiest thing to do here).  If no one needs it,
940			 * pageout will grab it eventually.
941			 */
942			if (result != KERN_SUCCESS) {
943				release_page(&fs);
944				unlock_and_deallocate(&fs);
945
946				/*
947				 * If retry of map lookup would have blocked then
948				 * retry fault from start.
949				 */
950				if (result == KERN_FAILURE)
951					goto RetryFault;
952				return (result);
953			}
954			if ((retry_object != fs.first_object) ||
955			    (retry_pindex != fs.first_pindex)) {
956				release_page(&fs);
957				unlock_and_deallocate(&fs);
958				goto RetryFault;
959			}
960
961			/*
962			 * Check whether the protection has changed or the object has
963			 * been copied while we left the map unlocked. Changing from
964			 * read to write permission is OK - we leave the page
965			 * write-protected, and catch the write fault. Changing from
966			 * write to read permission means that we can't mark the page
967			 * write-enabled after all.
968			 */
969			prot &= retry_prot;
970		}
971	}
972	/*
973	 * If the page was filled by a pager, update the map entry's
974	 * last read offset.  Since the pager does not return the
975	 * actual set of pages that it read, this update is based on
976	 * the requested set.  Typically, the requested and actual
977	 * sets are the same.
978	 *
979	 * XXX The following assignment modifies the map
980	 * without holding a write lock on it.
981	 */
982	if (hardfault)
983		fs.entry->next_read = fs.pindex + faultcount - reqpage;
984
985	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
986	vm_page_assert_xbusied(fs.m);
987
988	/*
989	 * Page must be completely valid or it is not fit to
990	 * map into user space.  vm_pager_get_pages() ensures this.
991	 */
992	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
993	    ("vm_fault: page %p partially invalid", fs.m));
994	VM_OBJECT_WUNLOCK(fs.object);
995
996	/*
997	 * Put this page into the physical map.  We had to do the unlock above
998	 * because pmap_enter() may sleep.  We don't put the page
999	 * back on the active queue until later so that the pageout daemon
1000	 * won't find it (yet).
1001	 */
1002	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1003	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1004	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1005	    wired == 0)
1006		vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
1007	VM_OBJECT_WLOCK(fs.object);
1008	vm_page_lock(fs.m);
1009
1010	/*
1011	 * If the page is not wired down, then put it where the pageout daemon
1012	 * can find it.
1013	 */
1014	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1015		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1016		vm_page_wire(fs.m);
1017	} else
1018		vm_page_activate(fs.m);
1019	if (m_hold != NULL) {
1020		*m_hold = fs.m;
1021		vm_page_hold(fs.m);
1022	}
1023	vm_page_unlock(fs.m);
1024	vm_page_xunbusy(fs.m);
1025
1026	/*
1027	 * Unlock everything, and return
1028	 */
1029	unlock_and_deallocate(&fs);
1030	if (hardfault) {
1031		PCPU_INC(cnt.v_io_faults);
1032		curthread->td_ru.ru_majflt++;
1033	} else
1034		curthread->td_ru.ru_minflt++;
1035
1036	return (KERN_SUCCESS);
1037}
1038
1039/*
1040 * Speed up the reclamation of up to "distance" pages that precede the
1041 * faulting pindex within the first object of the shadow chain.
1042 */
1043static void
1044vm_fault_cache_behind(const struct faultstate *fs, int distance)
1045{
1046	vm_object_t first_object, object;
1047	vm_page_t m, m_prev;
1048	vm_pindex_t pindex;
1049
1050	object = fs->object;
1051	VM_OBJECT_ASSERT_WLOCKED(object);
1052	first_object = fs->first_object;
1053	if (first_object != object) {
1054		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1055			VM_OBJECT_WUNLOCK(object);
1056			VM_OBJECT_WLOCK(first_object);
1057			VM_OBJECT_WLOCK(object);
1058		}
1059	}
1060	/* Neither fictitious nor unmanaged pages can be cached. */
1061	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1062		if (fs->first_pindex < distance)
1063			pindex = 0;
1064		else
1065			pindex = fs->first_pindex - distance;
1066		if (pindex < OFF_TO_IDX(fs->entry->offset))
1067			pindex = OFF_TO_IDX(fs->entry->offset);
1068		m = first_object != object ? fs->first_m : fs->m;
1069		vm_page_assert_xbusied(m);
1070		m_prev = vm_page_prev(m);
1071		while ((m = m_prev) != NULL && m->pindex >= pindex &&
1072		    m->valid == VM_PAGE_BITS_ALL) {
1073			m_prev = vm_page_prev(m);
1074			if (vm_page_busied(m))
1075				continue;
1076			vm_page_lock(m);
1077			if (m->hold_count == 0 && m->wire_count == 0) {
1078				pmap_remove_all(m);
1079				vm_page_aflag_clear(m, PGA_REFERENCED);
1080				if (m->dirty != 0)
1081					vm_page_deactivate(m);
1082				else
1083					vm_page_cache(m);
1084			}
1085			vm_page_unlock(m);
1086		}
1087	}
1088	if (first_object != object)
1089		VM_OBJECT_WUNLOCK(first_object);
1090}
1091
1092/*
1093 * vm_fault_prefault provides a quick way of clustering
1094 * pagefaults into a processes address space.  It is a "cousin"
1095 * of vm_map_pmap_enter, except it runs at page fault time instead
1096 * of mmap time.
1097 */
1098static void
1099vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1100    int faultcount, int reqpage)
1101{
1102	pmap_t pmap;
1103	vm_map_entry_t entry;
1104	vm_object_t backing_object, lobject;
1105	vm_offset_t addr, starta;
1106	vm_pindex_t pindex;
1107	vm_page_t m;
1108	int backward, forward, i;
1109
1110	pmap = fs->map->pmap;
1111	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1112		return;
1113
1114	if (faultcount > 0) {
1115		backward = reqpage;
1116		forward = faultcount - reqpage - 1;
1117	} else {
1118		backward = PFBAK;
1119		forward = PFFOR;
1120	}
1121	entry = fs->entry;
1122
1123	starta = addra - backward * PAGE_SIZE;
1124	if (starta < entry->start) {
1125		starta = entry->start;
1126	} else if (starta > addra) {
1127		starta = 0;
1128	}
1129
1130	/*
1131	 * Generate the sequence of virtual addresses that are candidates for
1132	 * prefaulting in an outward spiral from the faulting virtual address,
1133	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1134	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1135	 * If the candidate address doesn't have a backing physical page, then
1136	 * the loop immediately terminates.
1137	 */
1138	for (i = 0; i < 2 * imax(backward, forward); i++) {
1139		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1140		    PAGE_SIZE);
1141		if (addr > addra + forward * PAGE_SIZE)
1142			addr = 0;
1143
1144		if (addr < starta || addr >= entry->end)
1145			continue;
1146
1147		if (!pmap_is_prefaultable(pmap, addr))
1148			continue;
1149
1150		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1151		lobject = entry->object.vm_object;
1152		VM_OBJECT_RLOCK(lobject);
1153		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1154		    lobject->type == OBJT_DEFAULT &&
1155		    (backing_object = lobject->backing_object) != NULL) {
1156			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1157			    0, ("vm_fault_prefault: unaligned object offset"));
1158			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1159			VM_OBJECT_RLOCK(backing_object);
1160			VM_OBJECT_RUNLOCK(lobject);
1161			lobject = backing_object;
1162		}
1163		if (m == NULL) {
1164			VM_OBJECT_RUNLOCK(lobject);
1165			break;
1166		}
1167		if (m->valid == VM_PAGE_BITS_ALL &&
1168		    (m->flags & PG_FICTITIOUS) == 0)
1169			pmap_enter_quick(pmap, addr, m, entry->protection);
1170		VM_OBJECT_RUNLOCK(lobject);
1171	}
1172}
1173
1174/*
1175 * Hold each of the physical pages that are mapped by the specified range of
1176 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1177 * and allow the specified types of access, "prot".  If all of the implied
1178 * pages are successfully held, then the number of held pages is returned
1179 * together with pointers to those pages in the array "ma".  However, if any
1180 * of the pages cannot be held, -1 is returned.
1181 */
1182int
1183vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1184    vm_prot_t prot, vm_page_t *ma, int max_count)
1185{
1186	vm_offset_t end, va;
1187	vm_page_t *mp;
1188	int count;
1189	boolean_t pmap_failed;
1190
1191	if (len == 0)
1192		return (0);
1193	end = round_page(addr + len);
1194	addr = trunc_page(addr);
1195
1196	/*
1197	 * Check for illegal addresses.
1198	 */
1199	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1200		return (-1);
1201
1202	if (atop(end - addr) > max_count)
1203		panic("vm_fault_quick_hold_pages: count > max_count");
1204	count = atop(end - addr);
1205
1206	/*
1207	 * Most likely, the physical pages are resident in the pmap, so it is
1208	 * faster to try pmap_extract_and_hold() first.
1209	 */
1210	pmap_failed = FALSE;
1211	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1212		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1213		if (*mp == NULL)
1214			pmap_failed = TRUE;
1215		else if ((prot & VM_PROT_WRITE) != 0 &&
1216		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1217			/*
1218			 * Explicitly dirty the physical page.  Otherwise, the
1219			 * caller's changes may go unnoticed because they are
1220			 * performed through an unmanaged mapping or by a DMA
1221			 * operation.
1222			 *
1223			 * The object lock is not held here.
1224			 * See vm_page_clear_dirty_mask().
1225			 */
1226			vm_page_dirty(*mp);
1227		}
1228	}
1229	if (pmap_failed) {
1230		/*
1231		 * One or more pages could not be held by the pmap.  Either no
1232		 * page was mapped at the specified virtual address or that
1233		 * mapping had insufficient permissions.  Attempt to fault in
1234		 * and hold these pages.
1235		 */
1236		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1237			if (*mp == NULL && vm_fault_hold(map, va, prot,
1238			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1239				goto error;
1240	}
1241	return (count);
1242error:
1243	for (mp = ma; mp < ma + count; mp++)
1244		if (*mp != NULL) {
1245			vm_page_lock(*mp);
1246			vm_page_unhold(*mp);
1247			vm_page_unlock(*mp);
1248		}
1249	return (-1);
1250}
1251
1252/*
1253 *	Routine:
1254 *		vm_fault_copy_entry
1255 *	Function:
1256 *		Create new shadow object backing dst_entry with private copy of
1257 *		all underlying pages. When src_entry is equal to dst_entry,
1258 *		function implements COW for wired-down map entry. Otherwise,
1259 *		it forks wired entry into dst_map.
1260 *
1261 *	In/out conditions:
1262 *		The source and destination maps must be locked for write.
1263 *		The source map entry must be wired down (or be a sharing map
1264 *		entry corresponding to a main map entry that is wired down).
1265 */
1266void
1267vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1268    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1269    vm_ooffset_t *fork_charge)
1270{
1271	vm_object_t backing_object, dst_object, object, src_object;
1272	vm_pindex_t dst_pindex, pindex, src_pindex;
1273	vm_prot_t access, prot;
1274	vm_offset_t vaddr;
1275	vm_page_t dst_m;
1276	vm_page_t src_m;
1277	boolean_t upgrade;
1278
1279#ifdef	lint
1280	src_map++;
1281#endif	/* lint */
1282
1283	upgrade = src_entry == dst_entry;
1284	access = prot = dst_entry->protection;
1285
1286	src_object = src_entry->object.vm_object;
1287	src_pindex = OFF_TO_IDX(src_entry->offset);
1288
1289	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1290		dst_object = src_object;
1291		vm_object_reference(dst_object);
1292	} else {
1293		/*
1294		 * Create the top-level object for the destination entry. (Doesn't
1295		 * actually shadow anything - we copy the pages directly.)
1296		 */
1297		dst_object = vm_object_allocate(OBJT_DEFAULT,
1298		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1299#if VM_NRESERVLEVEL > 0
1300		dst_object->flags |= OBJ_COLORED;
1301		dst_object->pg_color = atop(dst_entry->start);
1302#endif
1303	}
1304
1305	VM_OBJECT_WLOCK(dst_object);
1306	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1307	    ("vm_fault_copy_entry: vm_object not NULL"));
1308	if (src_object != dst_object) {
1309		dst_entry->object.vm_object = dst_object;
1310		dst_entry->offset = 0;
1311		dst_object->charge = dst_entry->end - dst_entry->start;
1312	}
1313	if (fork_charge != NULL) {
1314		KASSERT(dst_entry->cred == NULL,
1315		    ("vm_fault_copy_entry: leaked swp charge"));
1316		dst_object->cred = curthread->td_ucred;
1317		crhold(dst_object->cred);
1318		*fork_charge += dst_object->charge;
1319	} else if (dst_object->cred == NULL) {
1320		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1321		    dst_entry));
1322		dst_object->cred = dst_entry->cred;
1323		dst_entry->cred = NULL;
1324	}
1325
1326	/*
1327	 * If not an upgrade, then enter the mappings in the pmap as
1328	 * read and/or execute accesses.  Otherwise, enter them as
1329	 * write accesses.
1330	 *
1331	 * A writeable large page mapping is only created if all of
1332	 * the constituent small page mappings are modified. Marking
1333	 * PTEs as modified on inception allows promotion to happen
1334	 * without taking potentially large number of soft faults.
1335	 */
1336	if (!upgrade)
1337		access &= ~VM_PROT_WRITE;
1338
1339	/*
1340	 * Loop through all of the virtual pages within the entry's
1341	 * range, copying each page from the source object to the
1342	 * destination object.  Since the source is wired, those pages
1343	 * must exist.  In contrast, the destination is pageable.
1344	 * Since the destination object does share any backing storage
1345	 * with the source object, all of its pages must be dirtied,
1346	 * regardless of whether they can be written.
1347	 */
1348	for (vaddr = dst_entry->start, dst_pindex = 0;
1349	    vaddr < dst_entry->end;
1350	    vaddr += PAGE_SIZE, dst_pindex++) {
1351again:
1352		/*
1353		 * Find the page in the source object, and copy it in.
1354		 * Because the source is wired down, the page will be
1355		 * in memory.
1356		 */
1357		if (src_object != dst_object)
1358			VM_OBJECT_RLOCK(src_object);
1359		object = src_object;
1360		pindex = src_pindex + dst_pindex;
1361		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1362		    (backing_object = object->backing_object) != NULL) {
1363			/*
1364			 * Unless the source mapping is read-only or
1365			 * it is presently being upgraded from
1366			 * read-only, the first object in the shadow
1367			 * chain should provide all of the pages.  In
1368			 * other words, this loop body should never be
1369			 * executed when the source mapping is already
1370			 * read/write.
1371			 */
1372			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1373			    upgrade,
1374			    ("vm_fault_copy_entry: main object missing page"));
1375
1376			VM_OBJECT_RLOCK(backing_object);
1377			pindex += OFF_TO_IDX(object->backing_object_offset);
1378			if (object != dst_object)
1379				VM_OBJECT_RUNLOCK(object);
1380			object = backing_object;
1381		}
1382		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1383
1384		if (object != dst_object) {
1385			/*
1386			 * Allocate a page in the destination object.
1387			 */
1388			dst_m = vm_page_alloc(dst_object, (src_object ==
1389			    dst_object ? src_pindex : 0) + dst_pindex,
1390			    VM_ALLOC_NORMAL);
1391			if (dst_m == NULL) {
1392				VM_OBJECT_WUNLOCK(dst_object);
1393				VM_OBJECT_RUNLOCK(object);
1394				VM_WAIT;
1395				VM_OBJECT_WLOCK(dst_object);
1396				goto again;
1397			}
1398			pmap_copy_page(src_m, dst_m);
1399			VM_OBJECT_RUNLOCK(object);
1400			dst_m->valid = VM_PAGE_BITS_ALL;
1401			dst_m->dirty = VM_PAGE_BITS_ALL;
1402		} else {
1403			dst_m = src_m;
1404			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1405				goto again;
1406			vm_page_xbusy(dst_m);
1407			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1408			    ("invalid dst page %p", dst_m));
1409		}
1410		VM_OBJECT_WUNLOCK(dst_object);
1411
1412		/*
1413		 * Enter it in the pmap. If a wired, copy-on-write
1414		 * mapping is being replaced by a write-enabled
1415		 * mapping, then wire that new mapping.
1416		 */
1417		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1418		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1419
1420		/*
1421		 * Mark it no longer busy, and put it on the active list.
1422		 */
1423		VM_OBJECT_WLOCK(dst_object);
1424
1425		if (upgrade) {
1426			if (src_m != dst_m) {
1427				vm_page_lock(src_m);
1428				vm_page_unwire(src_m, 0);
1429				vm_page_unlock(src_m);
1430				vm_page_lock(dst_m);
1431				vm_page_wire(dst_m);
1432				vm_page_unlock(dst_m);
1433			} else {
1434				KASSERT(dst_m->wire_count > 0,
1435				    ("dst_m %p is not wired", dst_m));
1436			}
1437		} else {
1438			vm_page_lock(dst_m);
1439			vm_page_activate(dst_m);
1440			vm_page_unlock(dst_m);
1441		}
1442		vm_page_xunbusy(dst_m);
1443	}
1444	VM_OBJECT_WUNLOCK(dst_object);
1445	if (upgrade) {
1446		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1447		vm_object_deallocate(src_object);
1448	}
1449}
1450
1451
1452/*
1453 * This routine checks around the requested page for other pages that
1454 * might be able to be faulted in.  This routine brackets the viable
1455 * pages for the pages to be paged in.
1456 *
1457 * Inputs:
1458 *	m, rbehind, rahead
1459 *
1460 * Outputs:
1461 *  marray (array of vm_page_t), reqpage (index of requested page)
1462 *
1463 * Return value:
1464 *  number of pages in marray
1465 */
1466static int
1467vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1468	vm_page_t m;
1469	int rbehind;
1470	int rahead;
1471	vm_page_t *marray;
1472	int *reqpage;
1473{
1474	int i,j;
1475	vm_object_t object;
1476	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1477	vm_page_t rtm;
1478	int cbehind, cahead;
1479
1480	VM_OBJECT_ASSERT_WLOCKED(m->object);
1481
1482	object = m->object;
1483	pindex = m->pindex;
1484	cbehind = cahead = 0;
1485
1486	/*
1487	 * if the requested page is not available, then give up now
1488	 */
1489	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1490		return 0;
1491	}
1492
1493	if ((cbehind == 0) && (cahead == 0)) {
1494		*reqpage = 0;
1495		marray[0] = m;
1496		return 1;
1497	}
1498
1499	if (rahead > cahead) {
1500		rahead = cahead;
1501	}
1502
1503	if (rbehind > cbehind) {
1504		rbehind = cbehind;
1505	}
1506
1507	/*
1508	 * scan backward for the read behind pages -- in memory
1509	 */
1510	if (pindex > 0) {
1511		if (rbehind > pindex) {
1512			rbehind = pindex;
1513			startpindex = 0;
1514		} else {
1515			startpindex = pindex - rbehind;
1516		}
1517
1518		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1519		    rtm->pindex >= startpindex)
1520			startpindex = rtm->pindex + 1;
1521
1522		/* tpindex is unsigned; beware of numeric underflow. */
1523		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1524		    tpindex < pindex; i++, tpindex--) {
1525
1526			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1527			    VM_ALLOC_IFNOTCACHED);
1528			if (rtm == NULL) {
1529				/*
1530				 * Shift the allocated pages to the
1531				 * beginning of the array.
1532				 */
1533				for (j = 0; j < i; j++) {
1534					marray[j] = marray[j + tpindex + 1 -
1535					    startpindex];
1536				}
1537				break;
1538			}
1539
1540			marray[tpindex - startpindex] = rtm;
1541		}
1542	} else {
1543		startpindex = 0;
1544		i = 0;
1545	}
1546
1547	marray[i] = m;
1548	/* page offset of the required page */
1549	*reqpage = i;
1550
1551	tpindex = pindex + 1;
1552	i++;
1553
1554	/*
1555	 * scan forward for the read ahead pages
1556	 */
1557	endpindex = tpindex + rahead;
1558	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1559		endpindex = rtm->pindex;
1560	if (endpindex > object->size)
1561		endpindex = object->size;
1562
1563	for (; tpindex < endpindex; i++, tpindex++) {
1564
1565		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1566		    VM_ALLOC_IFNOTCACHED);
1567		if (rtm == NULL) {
1568			break;
1569		}
1570
1571		marray[i] = rtm;
1572	}
1573
1574	/* return number of pages */
1575	return i;
1576}
1577
1578/*
1579 * Block entry into the machine-independent layer's page fault handler by
1580 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1581 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1582 * spurious page faults.
1583 */
1584int
1585vm_fault_disable_pagefaults(void)
1586{
1587
1588	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1589}
1590
1591void
1592vm_fault_enable_pagefaults(int save)
1593{
1594
1595	curthread_pflags_restore(save);
1596}
1597