vm_fault.c revision 308364
192108Sphk/*-
292108Sphk * Copyright (c) 1991, 1993
392108Sphk *	The Regents of the University of California.  All rights reserved.
492108Sphk * Copyright (c) 1994 John S. Dyson
592108Sphk * All rights reserved.
692108Sphk * Copyright (c) 1994 David Greenman
792108Sphk * All rights reserved.
892108Sphk *
992108Sphk *
1092108Sphk * This code is derived from software contributed to Berkeley by
1192108Sphk * The Mach Operating System project at Carnegie-Mellon University.
1292108Sphk *
1392108Sphk * Redistribution and use in source and binary forms, with or without
1492108Sphk * modification, are permitted provided that the following conditions
1592108Sphk * are met:
1692108Sphk * 1. Redistributions of source code must retain the above copyright
1792108Sphk *    notice, this list of conditions and the following disclaimer.
1892108Sphk * 2. Redistributions in binary form must reproduce the above copyright
1992108Sphk *    notice, this list of conditions and the following disclaimer in the
2092108Sphk *    documentation and/or other materials provided with the distribution.
2192108Sphk * 3. All advertising materials mentioning features or use of this software
2292108Sphk *    must display the following acknowledgement:
2392108Sphk *	This product includes software developed by the University of
2492108Sphk *	California, Berkeley and its contributors.
2592108Sphk * 4. Neither the name of the University nor the names of its contributors
2692108Sphk *    may be used to endorse or promote products derived from this software
2792108Sphk *    without specific prior written permission.
2892108Sphk *
2992108Sphk * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3092108Sphk * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3192108Sphk * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3292108Sphk * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3392108Sphk * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3492108Sphk * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3592108Sphk * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36116196Sobrien * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37116196Sobrien * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3892108Sphk * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39162326Spjd * SUCH DAMAGE.
40162326Spjd *
4192108Sphk *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
4292108Sphk *
43112370Sphk *
4492108Sphk * Copyright (c) 1987, 1990 Carnegie-Mellon University.
4592108Sphk * All rights reserved.
4692108Sphk *
4792108Sphk * Authors: Avadis Tevanian, Jr., Michael Wayne Young
4892108Sphk *
4992108Sphk * Permission to use, copy, modify and distribute this software and
5092108Sphk * its documentation is hereby granted, provided that both the copyright
5192108Sphk * notice and this permission notice appear in all copies of the
5292108Sphk * software, derivative works or modified versions, and any portions
5392108Sphk * thereof, and that both notices appear in supporting documentation.
5492108Sphk *
5593250Sphk * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
5692108Sphk * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
5792108Sphk * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58162326Spjd *
59162326Spjd * Carnegie Mellon requests users of this software to return to
60162326Spjd *
61162326Spjd *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62206859Sjh *  School of Computer Science
63206859Sjh *  Carnegie Mellon University
64206859Sjh *  Pittsburgh PA 15213-3890
65206859Sjh *
6693774Sphk * any improvements or extensions that they make and grant Carnegie the
6792108Sphk * rights to redistribute these changes.
6892108Sphk */
6992108Sphk
70115473Sphk/*
71238213Strasz *	Page fault handling module.
72238213Strasz */
73238213Strasz
74238213Strasz#include <sys/cdefs.h>
75238213Strasz__FBSDID("$FreeBSD: stable/10/sys/vm/vm_fault.c 308364 2016-11-06 13:35:20Z kib $");
76115473Sphk
77113927Sphk#include "opt_ktrace.h"
78113927Sphk#include "opt_vm.h"
79113927Sphk
80113927Sphk#include <sys/param.h>
81113927Sphk#include <sys/systm.h>
82115473Sphk#include <sys/kernel.h>
83113927Sphk#include <sys/lock.h>
84115473Sphk#include <sys/proc.h>
85113927Sphk#include <sys/resourcevar.h>
86113927Sphk#include <sys/rwlock.h>
87113927Sphk#include <sys/sysctl.h>
88113927Sphk#include <sys/vmmeter.h>
89113927Sphk#include <sys/vnode.h>
90115473Sphk#ifdef KTRACE
91113927Sphk#include <sys/ktrace.h>
92113927Sphk#endif
93113927Sphk
94115473Sphk#include <vm/vm.h>
95115473Sphk#include <vm/vm_param.h>
96115473Sphk#include <vm/pmap.h>
97144157Sphk#include <vm/vm_map.h>
98144157Sphk#include <vm/vm_object.h>
99136797Sarr#include <vm/vm_page.h>
100144157Sphk#include <vm/vm_pageout.h>
101144157Sphk#include <vm/vm_kern.h>
102115473Sphk#include <vm/vm_pager.h>
103124883Sphk#include <vm/vm_extern.h>
104124883Sphk#include <vm/vm_reserv.h>
105115845Sphk
106136797Sarr#define PFBAK 4
107136797Sarr#define PFFOR 4
108136797Sarr
109144157Sphkstatic int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
110144157Sphk
111136797Sarr#define	VM_FAULT_READ_BEHIND	8
112136797Sarr#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113136797Sarr#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114136797Sarr#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115144157Sphk#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116144157Sphk
117136797Sarrstruct faultstate {
118136797Sarr	vm_page_t m;
119115845Sphk	vm_object_t object;
120115473Sphk	vm_pindex_t pindex;
121122888Sphk	vm_page_t first_m;
122122888Sphk	vm_object_t	first_object;
123115473Sphk	vm_pindex_t first_pindex;
124115473Sphk	vm_map_t map;
125115473Sphk	vm_map_entry_t entry;
126113927Sphk	int lookup_still_valid;
127115473Sphk	struct vnode *vp;
128115473Sphk};
129113927Sphk
130115473Sphkstatic void vm_fault_cache_behind(const struct faultstate *fs, int distance);
131113927Sphkstatic void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132115473Sphk	    int faultcount, int reqpage);
133113927Sphk
134113927Sphkstatic inline void
135113927Sphkrelease_page(struct faultstate *fs)
136113927Sphk{
137113927Sphk
138113927Sphk	vm_page_xunbusy(fs->m);
139207671Sjh	vm_page_lock(fs->m);
140207671Sjh	vm_page_deactivate(fs->m);
14192108Sphk	vm_page_unlock(fs->m);
142115473Sphk	fs->m = NULL;
143115473Sphk}
144115473Sphk
145115473Sphkstatic inline void
14692108Sphkunlock_map(struct faultstate *fs)
147207671Sjh{
148207671Sjh
149207671Sjh	if (fs->lookup_still_valid) {
150126798Sphk		vm_map_lookup_done(fs->map, fs->entry);
151115473Sphk		fs->lookup_still_valid = FALSE;
152207671Sjh	}
153115473Sphk}
154115473Sphk
155207671Sjhstatic void
156207671Sjhunlock_vp(struct faultstate *fs)
157115473Sphk{
158115473Sphk
159115473Sphk	if (fs->vp != NULL) {
160207671Sjh		vput(fs->vp);
161207671Sjh		fs->vp = NULL;
162115473Sphk	}
163207671Sjh}
164207671Sjh
165207671Sjhstatic void
166207671Sjhunlock_and_deallocate(struct faultstate *fs)
167207671Sjh{
168115473Sphk
169115473Sphk	vm_object_pip_wakeup(fs->object);
170207671Sjh	VM_OBJECT_WUNLOCK(fs->object);
171207671Sjh	if (fs->object != fs->first_object) {
172207671Sjh		VM_OBJECT_WLOCK(fs->first_object);
173207671Sjh		vm_page_lock(fs->first_m);
174207671Sjh		vm_page_free(fs->first_m);
175207671Sjh		vm_page_unlock(fs->first_m);
176207671Sjh		vm_object_pip_wakeup(fs->first_object);
177207671Sjh		VM_OBJECT_WUNLOCK(fs->first_object);
178207671Sjh		fs->first_m = NULL;
179115473Sphk	}
180115473Sphk	vm_object_deallocate(fs->first_object);
181115473Sphk	unlock_map(fs);
182115473Sphk	unlock_vp(fs);
183207671Sjh}
184207671Sjh
185207671Sjhstatic void
186207671Sjhvm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
187207671Sjh    vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
188207671Sjh{
189207671Sjh	boolean_t need_dirty;
190207671Sjh
191126832Sphk	if (((prot & VM_PROT_WRITE) == 0 &&
192126832Sphk	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
193126832Sphk	    (m->oflags & VPO_UNMANAGED) != 0)
194126832Sphk		return;
195207671Sjh
196207671Sjh	VM_OBJECT_ASSERT_LOCKED(m->object);
197207671Sjh
198115473Sphk	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
199207671Sjh	    (fault_flags & VM_FAULT_WIRE) == 0) ||
200207671Sjh	    (fault_flags & VM_FAULT_DIRTY) != 0;
201207671Sjh
202207671Sjh	if (set_wd)
203207671Sjh		vm_object_set_writeable_dirty(m->object);
204207671Sjh	else
205207671Sjh		/*
206115473Sphk		 * If two callers of vm_fault_dirty() with set_wd ==
207115473Sphk		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
208115473Sphk		 * flag set, other with flag clear, race, it is
209115473Sphk		 * possible for the no-NOSYNC thread to see m->dirty
210115473Sphk		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
211115473Sphk		 * around manipulation of VPO_NOSYNC and
212115473Sphk		 * vm_page_dirty() call, to avoid the race and keep
213115473Sphk		 * m->oflags consistent.
214133312Sphk		 */
215115473Sphk		vm_page_lock(m);
216133312Sphk
217133319Sphk	/*
218133312Sphk	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
219133312Sphk	 * if the page is already dirty to prevent data written with
220133312Sphk	 * the expectation of being synced from not being synced.
221133312Sphk	 * Likewise if this entry does not request NOSYNC then make
22292108Sphk	 * sure the page isn't marked NOSYNC.  Applications sharing
22392108Sphk	 * data should use the same flags to avoid ping ponging.
22492108Sphk	 */
22592108Sphk	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
226115473Sphk		if (m->dirty == 0) {
227115473Sphk			m->oflags |= VPO_NOSYNC;
228115473Sphk		}
229207671Sjh	} else {
230207671Sjh		m->oflags &= ~VPO_NOSYNC;
231207671Sjh	}
232136414Sgreen
233136414Sgreen	/*
234136414Sgreen	 * If the fault is a write, we know that this page is being
235136414Sgreen	 * written NOW so dirty it explicitly to save on
236136414Sgreen	 * pmap_is_modified() calls later.
237136797Sarr	 *
238136797Sarr	 * Also tell the backing pager, if any, that it should remove
239136797Sarr	 * any swap backing since the page is now dirty.
240136797Sarr	 */
241136797Sarr	if (need_dirty)
242136797Sarr		vm_page_dirty(m);
243136797Sarr	if (!set_wd)
244136797Sarr		vm_page_unlock(m);
245136797Sarr	if (need_dirty)
246136797Sarr		vm_pager_page_unswapped(m);
247115473Sphk}
248115473Sphk
249207671Sjh/*
250207671Sjh *	vm_fault:
251207671Sjh *
252207671Sjh *	Handle a page fault occurring at the given address,
253119298Sphk *	requiring the given permissions, in the map specified.
254207671Sjh *	If successful, the page is inserted into the
255207671Sjh *	associated physical map.
256119298Sphk *
257115473Sphk *	NOTE: the given address should be truncated to the
258115473Sphk *	proper page address.
259115473Sphk *
26092108Sphk *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
26192108Sphk *	a standard error specifying why the fault is fatal is returned.
262177509Smarcel *
263177509Smarcel *	The map in question must be referenced, and remains so.
264177509Smarcel *	Caller may hold no locks.
265238886Smav */
266238886Smavint
267177509Smarcelvm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
268177509Smarcel    int fault_flags)
269238886Smav{
270177509Smarcel	struct thread *td;
271177509Smarcel	int result;
272177509Smarcel
273177509Smarcel	td = curthread;
274255860Sdes	if ((td->td_pflags & TDP_NOFAULTING) != 0)
275177509Smarcel		return (KERN_PROTECTION_FAILURE);
276177509Smarcel#ifdef KTRACE
277177509Smarcel	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
278177509Smarcel		ktrfault(vaddr, fault_type);
279177509Smarcel#endif
280177509Smarcel	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
281177509Smarcel	    NULL);
282177509Smarcel#ifdef KTRACE
283177509Smarcel	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
284177509Smarcel		ktrfaultend(result);
285177509Smarcel#endif
286238886Smav	return (result);
287238886Smav}
288177509Smarcel
289177509Smarcelint
290177509Smarcelvm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
291238886Smav    int fault_flags, vm_page_t *m_hold)
292238886Smav{
293238886Smav	vm_prot_t prot;
294177681Smarcel	long ahead, behind;
295177681Smarcel	int alloc_req, era, faultcount, nera, reqpage, result;
296238886Smav	boolean_t dead, growstack, is_first_object_locked, wired;
297238886Smav	int map_generation;
298238886Smav	vm_object_t next_object;
299238886Smav	vm_page_t marray[VM_FAULT_READ_MAX];
300177509Smarcel	int hardfault;
301177509Smarcel	struct faultstate fs;
302177509Smarcel	struct vnode *vp;
303177509Smarcel	vm_page_t m;
304177509Smarcel	int locked, error;
305177509Smarcel
306177509Smarcel	hardfault = 0;
307177509Smarcel	growstack = TRUE;
308177509Smarcel	PCPU_INC(cnt.v_vm_faults);
309177509Smarcel	fs.vp = NULL;
310177509Smarcel	faultcount = reqpage = 0;
311177509Smarcel
312177509SmarcelRetryFault:;
313177509Smarcel
314177509Smarcel	/*
315177509Smarcel	 * Find the backing store object and offset into it to begin the
316177509Smarcel	 * search.
317177509Smarcel	 */
318177509Smarcel	fs.map = map;
319177509Smarcel	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
320177509Smarcel	    &fs.first_object, &fs.first_pindex, &prot, &wired);
321177509Smarcel	if (result != KERN_SUCCESS) {
322177509Smarcel		if (growstack && result == KERN_INVALID_ADDRESS &&
323177509Smarcel		    map != kernel_map) {
324177509Smarcel			result = vm_map_growstack(curproc, vaddr);
325177509Smarcel			if (result != KERN_SUCCESS)
326177509Smarcel				return (KERN_FAILURE);
327177509Smarcel			growstack = FALSE;
328177509Smarcel			goto RetryFault;
329177509Smarcel		}
330177509Smarcel		unlock_vp(&fs);
331177509Smarcel		return (result);
33292108Sphk	}
333107953Sphk
33492108Sphk	map_generation = fs.map->timestamp;
33592108Sphk
33692108Sphk	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
33792108Sphk		panic("vm_fault: fault on nofault entry, addr: %lx",
33892108Sphk		    (u_long)vaddr);
33992108Sphk	}
340126798Sphk
341181463Sdes	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
34292108Sphk	    fs.entry->wiring_thread != curthread) {
34392108Sphk		vm_map_unlock_read(fs.map);
344115949Sphk		vm_map_lock(fs.map);
34592108Sphk		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
346111119Simp		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
347111119Simp			unlock_vp(&fs);
34893248Sphk			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
34992108Sphk			vm_map_unlock_and_wait(fs.map, 0);
35092108Sphk		} else
35192108Sphk			vm_map_unlock(fs.map);
35292108Sphk		goto RetryFault;
35392108Sphk	}
35492108Sphk
35592108Sphk	if (wired)
356133312Sphk		fault_type = prot | (fault_type & VM_PROT_COPY);
357133312Sphk	else
358133312Sphk		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
359223089Sgibbs		    ("!wired && VM_FAULT_WIRE"));
360237518Sken
361133312Sphk	/*
362133312Sphk	 * Try to avoid lock contention on the top-level object through
363133312Sphk	 * special-case handling of some types of page faults, specifically,
364133312Sphk	 * those that are both (1) mapping an existing page from the top-
365238213Strasz	 * level object and (2) not having to mark that object as containing
36692108Sphk	 * dirty pages.  Under these conditions, a read lock on the top-level
36792108Sphk	 * object suffices, allowing multiple page faults of a similar type to
36892108Sphk	 * run in parallel on the same top-level object.
36992108Sphk	 */
37092108Sphk	if (fs.vp == NULL /* avoid locked vnode leak */ &&
37192108Sphk	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
37292108Sphk	    /* avoid calling vm_object_set_writeable_dirty() */
373126798Sphk	    ((prot & VM_PROT_WRITE) == 0 ||
374126798Sphk	    (fs.first_object->type != OBJT_VNODE &&
37592108Sphk	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
37692108Sphk	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
37792108Sphk		VM_OBJECT_RLOCK(fs.first_object);
37892108Sphk		if ((prot & VM_PROT_WRITE) != 0 &&
37992108Sphk		    (fs.first_object->type == OBJT_VNODE ||
38092108Sphk		    (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
381124371Sphk		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
382112988Sphk			goto fast_failed;
38392108Sphk		m = vm_page_lookup(fs.first_object, fs.first_pindex);
38492108Sphk		/* A busy page can be mapped for read|execute access. */
38595310Sphk		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
38692108Sphk		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
38792108Sphk			goto fast_failed;
38892108Sphk		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
389114495Sphk		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
390185768Slulf		   0), 0);
391114495Sphk		if (result != KERN_SUCCESS)
392114495Sphk			goto fast_failed;
393114495Sphk		if (m_hold != NULL) {
394114495Sphk			*m_hold = m;
395131820Sphk			vm_page_lock(m);
396114495Sphk			vm_page_hold(m);
397126798Sphk			vm_page_unlock(m);
398126798Sphk		}
399114495Sphk		vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
400114495Sphk		    FALSE);
401114495Sphk		VM_OBJECT_RUNLOCK(fs.first_object);
402114495Sphk		if (!wired)
403126726Sphk			vm_fault_prefault(&fs, vaddr, 0, 0);
404126726Sphk		vm_map_lookup_done(fs.map, fs.entry);
405114495Sphk		curthread->td_ru.ru_minflt++;
406131820Sphk		return (KERN_SUCCESS);
407131820Sphkfast_failed:
408131820Sphk		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
409131820Sphk			VM_OBJECT_RUNLOCK(fs.first_object);
410157619Smarcel			VM_OBJECT_WLOCK(fs.first_object);
411157619Smarcel		}
412157619Smarcel	} else {
413157619Smarcel		VM_OBJECT_WLOCK(fs.first_object);
414157619Smarcel	}
415157619Smarcel
416157619Smarcel	/*
417157619Smarcel	 * Make a reference to this object to prevent its disposal while we
418157619Smarcel	 * are messing with it.  Once we have the reference, the map is free
419157619Smarcel	 * to be diddled.  Since objects reference their shadows (and copies),
420157619Smarcel	 * they will stay around as well.
421157619Smarcel	 *
422137032Sphk	 * Bump the paging-in-progress count to prevent size changes (e.g.
423137032Sphk	 * truncation operations) during I/O.  This must be done after
424137032Sphk	 * obtaining the vnode lock in order to avoid possible deadlocks.
425137032Sphk	 */
426137032Sphk	vm_object_reference_locked(fs.first_object);
427137032Sphk	vm_object_pip_add(fs.first_object, 1);
428137032Sphk
429137032Sphk	fs.lookup_still_valid = TRUE;
430137032Sphk
431137032Sphk	fs.first_m = NULL;
432137032Sphk
433137032Sphk	/*
434137032Sphk	 * Search for the page at object/offset.
435137032Sphk	 */
436137032Sphk	fs.object = fs.first_object;
437137032Sphk	fs.pindex = fs.first_pindex;
438137032Sphk	while (TRUE) {
439131820Sphk		/*
440248674Smav		 * If the object is marked for imminent termination,
441131820Sphk		 * we retry here, since the collapse pass has raced
442248674Smav		 * with us.  Otherwise, if we see terminally dead
443131820Sphk		 * object, return fail.
444131820Sphk		 */
445131820Sphk		if ((fs.object->flags & OBJ_DEAD) != 0) {
446131820Sphk			dead = fs.object->type == OBJT_DEAD;
447131820Sphk			unlock_and_deallocate(&fs);
448131820Sphk			if (dead)
449131820Sphk				return (KERN_PROTECTION_FAILURE);
450131820Sphk			pause("vmf_de", 1);
451131820Sphk			goto RetryFault;
452131820Sphk		}
453131820Sphk
454131820Sphk		/*
455131820Sphk		 * See if page is resident
456131820Sphk		 */
457131820Sphk		fs.m = vm_page_lookup(fs.object, fs.pindex);
458131820Sphk		if (fs.m != NULL) {
459131820Sphk			/*
460131820Sphk			 * Wait/Retry if the page is busy.  We have to do this
461131820Sphk			 * if the page is either exclusive or shared busy
462131820Sphk			 * because the vm_pager may be using read busy for
463131820Sphk			 * pageouts (and even pageins if it is the vnode
464131820Sphk			 * pager), and we could end up trying to pagein and
465131820Sphk			 * pageout the same page simultaneously.
466248674Smav			 *
467131820Sphk			 * We can theoretically allow the busy case on a read
468131877Sphk			 * fault if the page is marked valid, but since such
469131877Sphk			 * pages are typically already pmap'd, putting that
470131820Sphk			 * special case in might be more effort then it is
471131820Sphk			 * worth.  We cannot under any circumstances mess
472131820Sphk			 * around with a shared busied page except, perhaps,
473131820Sphk			 * to pmap it.
474131820Sphk			 */
475131820Sphk			if (vm_page_busied(fs.m)) {
476114495Sphk				/*
477114495Sphk				 * Reference the page before unlocking and
478114495Sphk				 * sleeping so that the page daemon is less
47992108Sphk				 * likely to reclaim it.
48092108Sphk				 */
48192108Sphk				vm_page_aflag_set(fs.m, PGA_REFERENCED);
48292108Sphk				if (fs.object != fs.first_object) {
48392108Sphk					if (!VM_OBJECT_TRYWLOCK(
48492108Sphk					    fs.first_object)) {
485126798Sphk						VM_OBJECT_WUNLOCK(fs.object);
486124883Sphk						VM_OBJECT_WLOCK(fs.first_object);
487124883Sphk						VM_OBJECT_WLOCK(fs.object);
488124883Sphk					}
48993776Sphk					vm_page_lock(fs.first_m);
49093776Sphk					vm_page_free(fs.first_m);
49193776Sphk					vm_page_unlock(fs.first_m);
49292108Sphk					vm_object_pip_wakeup(fs.first_object);
493111119Simp					VM_OBJECT_WUNLOCK(fs.first_object);
49492108Sphk					fs.first_m = NULL;
495112370Sphk				}
496112370Sphk				unlock_map(&fs);
49792108Sphk				if (fs.m == vm_page_lookup(fs.object,
49892108Sphk				    fs.pindex)) {
49992108Sphk					vm_page_sleep_if_busy(fs.m, "vmpfw");
50092108Sphk				}
50192108Sphk				vm_object_pip_wakeup(fs.object);
50292108Sphk				VM_OBJECT_WUNLOCK(fs.object);
50392108Sphk				PCPU_INC(cnt.v_intrans);
504114495Sphk				vm_object_deallocate(fs.first_object);
50592108Sphk				goto RetryFault;
506126798Sphk			}
507126798Sphk			vm_page_lock(fs.m);
50892108Sphk			vm_page_remque(fs.m);
50992108Sphk			vm_page_unlock(fs.m);
51092108Sphk
51192108Sphk			/*
51292108Sphk			 * Mark page busy for other processes, and the
513112988Sphk			 * pagedaemon.  If it still isn't completely valid
514114495Sphk			 * (readable), jump to readrest, else break-out ( we
51592108Sphk			 * found the page ).
516112370Sphk			 */
51792108Sphk			vm_page_xbusy(fs.m);
518114495Sphk			if (fs.m->valid != VM_PAGE_BITS_ALL)
519131820Sphk				goto readrest;
52092108Sphk			break;
52192108Sphk		}
522113930Sphk
523113930Sphk		/*
524113930Sphk		 * Page is not resident.  If this is the search termination
525113930Sphk		 * or the pager might contain the page, allocate a new page.
526113930Sphk		 * Default objects are zero-fill, there is no real pager.
527238886Smav		 */
528113930Sphk		if (fs.object->type != OBJT_DEFAULT ||
529113930Sphk		    fs.object == fs.first_object) {
530113930Sphk			if (fs.pindex >= fs.object->size) {
531113930Sphk				unlock_and_deallocate(&fs);
532113930Sphk				return (KERN_PROTECTION_FAILURE);
533113930Sphk			}
534113930Sphk
535126798Sphk			/*
536179097Spjd			 * Allocate a new page for this object/offset pair.
537179097Spjd			 *
538238886Smav			 * Unlocked read of the p_flag is harmless. At
539238886Smav			 * worst, the P_KILLED might be not observed
540238886Smav			 * there, and allocation can fail, causing
541238886Smav			 * restart and new reading of the p_flag.
542238886Smav			 */
543255860Sdes			fs.m = NULL;
544255860Sdes			if (!vm_page_count_severe() || P_KILLED(curproc)) {
545113930Sphk#if VM_NRESERVLEVEL > 0
546113930Sphk				if ((fs.object->flags & OBJ_COLORED) == 0) {
547113930Sphk					fs.object->flags |= OBJ_COLORED;
548113930Sphk					fs.object->pg_color = atop(vaddr) -
549238886Smav					    fs.pindex;
550238886Smav				}
551193547Spjd#endif
552193547Spjd				alloc_req = P_KILLED(curproc) ?
553113930Sphk				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
554114511Sphk				if (fs.object->type != OBJT_VNODE &&
555113930Sphk				    fs.object->backing_object == NULL)
556113930Sphk					alloc_req |= VM_ALLOC_ZERO;
557113930Sphk				fs.m = vm_page_alloc(fs.object, fs.pindex,
558113930Sphk				    alloc_req);
559113930Sphk			}
56092108Sphk			if (fs.m == NULL) {
561107953Sphk				unlock_and_deallocate(&fs);
56292108Sphk				VM_WAITPFAULT;
56392108Sphk				goto RetryFault;
56492108Sphk			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
56592108Sphk				break;
56692108Sphk		}
56792108Sphk
568126798Sphkreadrest:
569126832Sphk		/*
570126832Sphk		 * We have found a valid page or we have allocated a new page.
571126832Sphk		 * The page thus may not be valid or may not be entirely
572124883Sphk		 * valid.
573125332Spjd		 *
574125332Spjd		 * Attempt to fault-in the page if there is a chance that the
575124883Sphk		 * pager has it, and potentially fault in additional pages
576125332Spjd		 * at the same time.  For default objects simply provide
577125332Spjd		 * zero-filled pages.
578181463Sdes		 */
57992108Sphk		if (fs.object->type != OBJT_DEFAULT) {
58092108Sphk			int rv;
581115949Sphk			u_char behavior = vm_map_entry_behavior(fs.entry);
58292108Sphk
583111119Simp			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
58492108Sphk			    P_KILLED(curproc)) {
58592108Sphk				behind = 0;
58692108Sphk				ahead = 0;
58792108Sphk			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
58892108Sphk				behind = 0;
58992108Sphk				ahead = atop(fs.entry->end - vaddr) - 1;
590112370Sphk				if (ahead > VM_FAULT_READ_AHEAD_MAX)
591112370Sphk					ahead = VM_FAULT_READ_AHEAD_MAX;
59292108Sphk				if (fs.pindex == fs.entry->next_read)
593126832Sphk					vm_fault_cache_behind(&fs,
59492108Sphk					    VM_FAULT_READ_MAX);
59592108Sphk			} else {
59692108Sphk				/*
59792108Sphk				 * If this is a sequential page fault, then
59892108Sphk				 * arithmetically increase the number of pages
59992108Sphk				 * in the read-ahead window.  Otherwise, reset
60092108Sphk				 * the read-ahead window to its smallest size.
601126798Sphk				 */
60292108Sphk				behind = atop(vaddr - fs.entry->start);
60392108Sphk				if (behind > VM_FAULT_READ_BEHIND)
60492108Sphk					behind = VM_FAULT_READ_BEHIND;
605238213Strasz				ahead = atop(fs.entry->end - vaddr) - 1;
606238213Strasz				era = fs.entry->read_ahead;
607238213Strasz				if (fs.pindex == fs.entry->next_read) {
608238213Strasz					nera = era + behind;
609238213Strasz					if (nera > VM_FAULT_READ_AHEAD_MAX)
610238213Strasz						nera = VM_FAULT_READ_AHEAD_MAX;
611238213Strasz					behind = 0;
612238213Strasz					if (ahead > nera)
613238213Strasz						ahead = nera;
614238213Strasz					if (era == VM_FAULT_READ_AHEAD_MAX)
615238213Strasz						vm_fault_cache_behind(&fs,
616238213Strasz						    VM_FAULT_CACHE_BEHIND);
617238213Strasz				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
618238213Strasz					ahead = VM_FAULT_READ_AHEAD_MIN;
619238213Strasz				if (era != ahead)
620238213Strasz					fs.entry->read_ahead = ahead;
621238213Strasz			}
622238565Strasz
623238213Strasz			/*
624238213Strasz			 * Call the pager to retrieve the data, if any, after
625238213Strasz			 * releasing the lock on the map.  We hold a ref on
626238213Strasz			 * fs.object and the pages are exclusive busied.
627238213Strasz			 */
628238213Strasz			unlock_map(&fs);
629238886Smav
630238886Smav			if (fs.object->type == OBJT_VNODE &&
631238213Strasz			    (vp = fs.object->handle) != fs.vp) {
632238886Smav				unlock_vp(&fs);
633238213Strasz				locked = VOP_ISLOCKED(vp);
634238213Strasz
635238213Strasz				if (locked != LK_EXCLUSIVE)
636238213Strasz					locked = LK_SHARED;
637238213Strasz				/* Do not sleep for vnode lock while fs.m is busy */
638238213Strasz				error = vget(vp, locked | LK_CANRECURSE |
639238213Strasz				    LK_NOWAIT, curthread);
640238213Strasz				if (error != 0) {
641238213Strasz					vhold(vp);
642238213Strasz					release_page(&fs);
643238213Strasz					unlock_and_deallocate(&fs);
644238213Strasz					error = vget(vp, locked | LK_RETRY |
645238213Strasz					    LK_CANRECURSE, curthread);
646238213Strasz					vdrop(vp);
647238213Strasz					fs.vp = vp;
648238213Strasz					KASSERT(error == 0,
649238213Strasz					    ("vm_fault: vget failed"));
650238213Strasz					goto RetryFault;
651238886Smav				}
652238886Smav				fs.vp = vp;
653238213Strasz			}
654238213Strasz			KASSERT(fs.vp == NULL || !fs.map->system_map,
655238213Strasz			    ("vm_fault: vnode-backed object mapped by system map"));
656238213Strasz
657238213Strasz			/*
658238213Strasz			 * now we find out if any other pages should be paged
659238213Strasz			 * in at this time this routine checks to see if the
660238213Strasz			 * pages surrounding this fault reside in the same
661238213Strasz			 * object as the page for this fault.  If they do,
662238213Strasz			 * then they are faulted in also into the object.  The
663238213Strasz			 * array "marray" returned contains an array of
664238213Strasz			 * vm_page_t structs where one of them is the
665238213Strasz			 * vm_page_t passed to the routine.  The reqpage
666238213Strasz			 * return value is the index into the marray for the
667238213Strasz			 * vm_page_t passed to the routine.
668238213Strasz			 *
669238213Strasz			 * fs.m plus the additional pages are exclusive busied.
670238213Strasz			 */
671238213Strasz			faultcount = vm_fault_additional_pages(
672238213Strasz			    fs.m, behind, ahead, marray, &reqpage);
673238213Strasz
674238213Strasz			rv = faultcount ?
675238213Strasz			    vm_pager_get_pages(fs.object, marray, faultcount,
676238213Strasz				reqpage) : VM_PAGER_FAIL;
677239987Spjd
678239987Spjd			if (rv == VM_PAGER_OK) {
679239987Spjd				/*
680239987Spjd				 * Found the page. Leave it busy while we play
681115850Sphk				 * with it.
682115850Sphk				 */
683115850Sphk
684115850Sphk				/*
685115850Sphk				 * Relookup in case pager changed page. Pager
686281298Smav				 * is responsible for disposition of old page
68792108Sphk				 * if moved.
688239987Spjd				 */
689239987Spjd				fs.m = vm_page_lookup(fs.object, fs.pindex);
690239987Spjd				if (!fs.m) {
691281298Smav					unlock_and_deallocate(&fs);
692115850Sphk					goto RetryFault;
693115850Sphk				}
694115850Sphk
695281298Smav				hardfault++;
696281298Smav				break; /* break to PAGE HAS BEEN FOUND */
697281298Smav			}
698281298Smav			/*
699115850Sphk			 * Remove the bogus page (which does not exist at this
700281298Smav			 * object/offset); before doing so, we must get back
701281298Smav			 * our object lock to preserve our invariant.
702115850Sphk			 *
703115850Sphk			 * Also wake up any other process that may want to bring
704115850Sphk			 * in this page.
705239987Spjd			 *
706281298Smav			 * If this is the top-level object, we must leave the
707115850Sphk			 * busy page to prevent another process from rushing
708115850Sphk			 * past us, and inserting the page in that object at
70992108Sphk			 * the same time that we are.
71092108Sphk			 */
71192108Sphk			if (rv == VM_PAGER_ERROR)
71292108Sphk				printf("vm_fault: pager read error, pid %d (%s)\n",
71392108Sphk				    curproc->p_pid, curproc->p_comm);
71492108Sphk			/*
715126798Sphk			 * Data outside the range of the pager or an I/O error
71692108Sphk			 */
71792108Sphk			/*
71892108Sphk			 * XXX - the check for kernel_map is a kludge to work
71992108Sphk			 * around having the machine panic on a kernel space
720179097Spjd			 * fault w/ I/O error.
721112988Sphk			 */
72292108Sphk			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
72392108Sphk				(rv == VM_PAGER_BAD)) {
724112370Sphk				vm_page_lock(fs.m);
725237518Sken				vm_page_free(fs.m);
726237518Sken				vm_page_unlock(fs.m);
727237518Sken				fs.m = NULL;
728237518Sken				unlock_and_deallocate(&fs);
729237518Sken				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
730237518Sken			}
731237518Sken			if (fs.object != fs.first_object) {
73292108Sphk				vm_page_lock(fs.m);
733114495Sphk				vm_page_free(fs.m);
734131820Sphk				vm_page_unlock(fs.m);
73592108Sphk				fs.m = NULL;
73692108Sphk				/*
73792108Sphk				 * XXX - we cannot just fall out at this
73892108Sphk				 * point, m has been freed and is invalid!
73992108Sphk				 */
74092108Sphk			}
74192108Sphk		}
74292108Sphk
74392108Sphk		/*
74492108Sphk		 * We get here if the object has default pager (or unwiring)
74592108Sphk		 * or the pager doesn't have the page.
74692108Sphk		 */
74792108Sphk		if (fs.object == fs.first_object)
74898066Sphk			fs.first_m = fs.m;
74992108Sphk
75092108Sphk		/*
75192108Sphk		 * Move on to the next object.  Lock the next object before
75292108Sphk		 * unlocking the current one.
75392108Sphk		 */
75492108Sphk		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
75592108Sphk		next_object = fs.object->backing_object;
75692108Sphk		if (next_object == NULL) {
75792108Sphk			/*
75892108Sphk			 * If there's no object left, fill the page in the top
75992108Sphk			 * object with zeros.
76092108Sphk			 */
76192108Sphk			if (fs.object != fs.first_object) {
762126798Sphk				vm_object_pip_wakeup(fs.object);
76392108Sphk				VM_OBJECT_WUNLOCK(fs.object);
76492108Sphk
76592108Sphk				fs.object = fs.first_object;
76692108Sphk				fs.pindex = fs.first_pindex;
76792108Sphk				fs.m = fs.first_m;
76892108Sphk				VM_OBJECT_WLOCK(fs.object);
76992108Sphk			}
77092108Sphk			fs.first_m = NULL;
77192108Sphk
77292108Sphk			/*
77392108Sphk			 * Zero the page if necessary and mark it valid.
77492108Sphk			 */
77592108Sphk			if ((fs.m->flags & PG_ZERO) == 0) {
77692108Sphk				pmap_zero_page(fs.m);
77792108Sphk			} else {
77892108Sphk				PCPU_INC(cnt.v_ozfod);
77992108Sphk			}
78092108Sphk			PCPU_INC(cnt.v_zfod);
78192108Sphk			fs.m->valid = VM_PAGE_BITS_ALL;
78292108Sphk			/* Don't try to prefault neighboring pages. */
78392108Sphk			faultcount = 1;
78492108Sphk			break;	/* break to PAGE HAS BEEN FOUND */
78592108Sphk		} else {
78692108Sphk			KASSERT(fs.object != next_object,
78792108Sphk			    ("object loop %p", next_object));
78892108Sphk			VM_OBJECT_WLOCK(next_object);
78992108Sphk			vm_object_pip_add(next_object, 1);
79092108Sphk			if (fs.object != fs.first_object)
79192108Sphk				vm_object_pip_wakeup(fs.object);
79292108Sphk			VM_OBJECT_WUNLOCK(fs.object);
79392108Sphk			fs.object = next_object;
79492108Sphk		}
79592108Sphk	}
79695550Sphk
79792108Sphk	vm_page_assert_xbusied(fs.m);
79892108Sphk
79992108Sphk	/*
80092108Sphk	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
80192108Sphk	 * is held.]
80292108Sphk	 */
80392108Sphk
80492108Sphk	/*
80592108Sphk	 * If the page is being written, but isn't already owned by the
80692108Sphk	 * top-level object, we have to copy it into a new page owned by the
80792108Sphk	 * top-level object.
80892108Sphk	 */
80992108Sphk	if (fs.object != fs.first_object) {
81092108Sphk		/*
81192108Sphk		 * We only really need to copy if we want to write it.
812126798Sphk		 */
813126798Sphk		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
814204069Spjd			/*
81592108Sphk			 * This allows pages to be virtually copied from a
81692108Sphk			 * backing_object into the first_object, where the
81792108Sphk			 * backing object has no other refs to it, and cannot
81892108Sphk			 * gain any more refs.  Instead of a bcopy, we just
81992108Sphk			 * move the page from the backing object to the
82092108Sphk			 * first object.  Note that we must mark the page
82192108Sphk			 * dirty in the first object so that it will go out
82292108Sphk			 * to swap when needed.
82392108Sphk			 */
82492108Sphk			is_first_object_locked = FALSE;
82592108Sphk			if (
82692108Sphk				/*
82792108Sphk				 * Only one shadow object
82898066Sphk				 */
82992108Sphk				(fs.object->shadow_count == 1) &&
83092108Sphk				/*
83192108Sphk				 * No COW refs, except us
832126798Sphk				 */
833126798Sphk				(fs.object->ref_count == 1) &&
83498066Sphk				/*
83598066Sphk				 * No one else can look this object up
83698066Sphk				 */
83798066Sphk				(fs.object->handle == NULL) &&
83898066Sphk				/*
839112028Sphk				 * No other ways to look the object up
840110541Sphk				 */
84192108Sphk				((fs.object->type == OBJT_DEFAULT) ||
84292108Sphk				 (fs.object->type == OBJT_SWAP)) &&
84392108Sphk			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
844248674Smav				/*
845248674Smav				 * We don't chase down the shadow chain
846248674Smav				 */
847131820Sphk			    fs.object == fs.first_object->backing_object) {
84892108Sphk				/*
84992108Sphk				 * get rid of the unnecessary page
85092108Sphk				 */
85192108Sphk				vm_page_lock(fs.first_m);
852125755Sphk				vm_page_free(fs.first_m);
85392108Sphk				vm_page_unlock(fs.first_m);
85492108Sphk				/*
85592108Sphk				 * grab the page and put it into the
85692108Sphk				 * process'es object.  The page is
85792108Sphk				 * automatically made dirty.
85892108Sphk				 */
859125755Sphk				if (vm_page_rename(fs.m, fs.first_object,
86092108Sphk				    fs.first_pindex)) {
86192108Sphk					unlock_and_deallocate(&fs);
862332096Savg					goto RetryFault;
863332096Savg				}
864332096Savg#if VM_NRESERVLEVEL > 0
865332096Savg				/*
866332096Savg				 * Rename the reservation.
86792108Sphk				 */
86892108Sphk				vm_reserv_rename(fs.m, fs.first_object,
869126798Sphk				    fs.object, OFF_TO_IDX(
870126798Sphk				    fs.first_object->backing_object_offset));
87192108Sphk#endif
872127162Spjd				vm_page_xbusy(fs.m);
873126798Sphk				fs.first_m = fs.m;
874332096Savg				fs.m = NULL;
87592108Sphk				PCPU_INC(cnt.v_cow_optim);
876125755Sphk			} else {
87792108Sphk				/*
87892108Sphk				 * Oh, well, lets copy it.
87992108Sphk				 */
88092108Sphk				pmap_copy_page(fs.m, fs.first_m);
88192108Sphk				fs.first_m->valid = VM_PAGE_BITS_ALL;
882124294Sphk				if (wired && (fault_flags &
883332096Savg				    VM_FAULT_WIRE) == 0) {
88492108Sphk					vm_page_lock(fs.first_m);
88592108Sphk					vm_page_wire(fs.first_m);
88693248Sphk					vm_page_unlock(fs.first_m);
88792108Sphk
88892108Sphk					vm_page_lock(fs.m);
88992108Sphk					vm_page_unwire(fs.m, FALSE);
890238886Smav					vm_page_unlock(fs.m);
891131798Sphk				}
892131798Sphk				/*
89392108Sphk				 * We no longer need the old page or object.
89492108Sphk				 */
895332096Savg				release_page(&fs);
896332096Savg			}
897332096Savg			/*
898332096Savg			 * fs.object != fs.first_object due to above
899332096Savg			 * conditional
900332096Savg			 */
901332096Savg			vm_object_pip_wakeup(fs.object);
902332096Savg			VM_OBJECT_WUNLOCK(fs.object);
903332096Savg			/*
904332096Savg			 * Only use the new page below...
905332096Savg			 */
906332096Savg			fs.object = fs.first_object;
907332096Savg			fs.pindex = fs.first_pindex;
908332096Savg			fs.m = fs.first_m;
909332096Savg			if (!is_first_object_locked)
910332096Savg				VM_OBJECT_WLOCK(fs.object);
911332096Savg			PCPU_INC(cnt.v_cow_faults);
912332096Savg			curthread->td_cow++;
913332096Savg		} else {
914332096Savg			prot &= ~VM_PROT_WRITE;
915332096Savg		}
91692108Sphk	}
91792108Sphk
91892108Sphk	/*
91992108Sphk	 * We must verify that the maps have not changed since our last
92092108Sphk	 * lookup.
92192108Sphk	 */
92292108Sphk	if (!fs.lookup_still_valid) {
92392108Sphk		vm_object_t retry_object;
92492108Sphk		vm_pindex_t retry_pindex;
92592108Sphk		vm_prot_t retry_prot;
92692108Sphk
92792108Sphk		if (!vm_map_trylock_read(fs.map)) {
92892108Sphk			release_page(&fs);
929110759Sphk			unlock_and_deallocate(&fs);
930332096Savg			goto RetryFault;
931110759Sphk		}
93292108Sphk		fs.lookup_still_valid = TRUE;
933110759Sphk		if (fs.map->timestamp != map_generation) {
93492108Sphk			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
93592108Sphk			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
936110759Sphk
93792108Sphk			/*
93892108Sphk			 * If we don't need the page any longer, put it on the inactive
939110759Sphk			 * list (the easiest thing to do here).  If no one needs it,
94092108Sphk			 * pageout will grab it eventually.
94192108Sphk			 */
94292108Sphk			if (result != KERN_SUCCESS) {
94392108Sphk				release_page(&fs);
944332096Savg				unlock_and_deallocate(&fs);
945332096Savg
946332096Savg				/*
947332096Savg				 * If retry of map lookup would have blocked then
948332096Savg				 * retry fault from start.
949332096Savg				 */
950332096Savg				if (result == KERN_FAILURE)
951125802Sphk					goto RetryFault;
952266031Sbdrewery				return (result);
953332096Savg			}
954266031Sbdrewery			if ((retry_object != fs.first_object) ||
955332096Savg			    (retry_pindex != fs.first_pindex)) {
956332096Savg				release_page(&fs);
957332096Savg				unlock_and_deallocate(&fs);
958332096Savg				goto RetryFault;
959332096Savg			}
960332096Savg
961332096Savg			/*
962332096Savg			 * Check whether the protection has changed or the object has
963332096Savg			 * been copied while we left the map unlocked. Changing from
964332096Savg			 * read to write permission is OK - we leave the page
96592108Sphk			 * write-protected, and catch the write fault. Changing from
966112979Sphk			 * write to read permission means that we can't mark the page
967112979Sphk			 * write-enabled after all.
968152565Sjdp			 */
969152565Sjdp			prot &= retry_prot;
970112979Sphk		}
971112979Sphk	}
972112979Sphk	/*
973152565Sjdp	 * If the page was filled by a pager, update the map entry's
974332096Savg	 * last read offset.  Since the pager does not return the
975113937Sphk	 * actual set of pages that it read, this update is based on
976113937Sphk	 * the requested set.  Typically, the requested and actual
977112979Sphk	 * sets are the same.
97892108Sphk	 *
97992108Sphk	 * XXX The following assignment modifies the map
98092108Sphk	 * without holding a write lock on it.
98192108Sphk	 */
98292108Sphk	if (hardfault)
98392108Sphk		fs.entry->next_read = fs.pindex + faultcount - reqpage;
984134824Sphk
985134824Sphk	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
986134824Sphk	vm_page_assert_xbusied(fs.m);
987248674Smav
988248674Smav	/*
989248674Smav	 * Page must be completely valid or it is not fit to
99092108Sphk	 * map into user space.  vm_pager_get_pages() ensures this.
99192108Sphk	 */
99292108Sphk	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
99392108Sphk	    ("vm_fault: page %p partially invalid", fs.m));
99492108Sphk	VM_OBJECT_WUNLOCK(fs.object);
995107953Sphk
99692108Sphk	/*
99792108Sphk	 * Put this page into the physical map.  We had to do the unlock above
99898066Sphk	 * because pmap_enter() may sleep.  We don't put the page
99992108Sphk	 * back on the active queue until later so that the pageout daemon
100092108Sphk	 * won't find it (yet).
100192108Sphk	 */
1002271238Ssmh	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1003271238Ssmh	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1004271238Ssmh	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1005271238Ssmh	    wired == 0)
1006271238Ssmh		vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
1007271238Ssmh	VM_OBJECT_WLOCK(fs.object);
1008271238Ssmh	vm_page_lock(fs.m);
1009107953Sphk
101092108Sphk	/*
101192108Sphk	 * If the page is not wired down, then put it where the pageout daemon
101298066Sphk	 * can find it.
101392108Sphk	 */
101492108Sphk	if ((fault_flags & VM_FAULT_WIRE) != 0) {
101592108Sphk		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1016187973Smarcel		vm_page_wire(fs.m);
1017169282Spjd	} else
1018169282Spjd		vm_page_activate(fs.m);
1019169282Spjd	if (m_hold != NULL) {
1020169282Spjd		*m_hold = fs.m;
1021169282Spjd		vm_page_hold(fs.m);
1022169282Spjd	}
1023187973Smarcel	vm_page_unlock(fs.m);
102492108Sphk	vm_page_xunbusy(fs.m);
1025169282Spjd
102692108Sphk	/*
102792108Sphk	 * Unlock everything, and return
102892108Sphk	 */
1029169282Spjd	unlock_and_deallocate(&fs);
1030169282Spjd	if (hardfault) {
1031169282Spjd		PCPU_INC(cnt.v_io_faults);
1032169282Spjd		curthread->td_ru.ru_majflt++;
1033169282Spjd	} else
1034169282Spjd		curthread->td_ru.ru_minflt++;
1035169282Spjd
1036169282Spjd	return (KERN_SUCCESS);
1037169282Spjd}
1038169282Spjd
103992108Sphk/*
1040169282Spjd * Speed up the reclamation of up to "distance" pages that precede the
1041169282Spjd * faulting pindex within the first object of the shadow chain.
1042169282Spjd */
1043169282Spjdstatic void
104492108Sphkvm_fault_cache_behind(const struct faultstate *fs, int distance)
1045188054Smarcel{
1046188054Smarcel	vm_object_t first_object, object;
1047104195Sphk	vm_page_t m, m_prev;
104892108Sphk	vm_pindex_t pindex;
104992108Sphk
105092108Sphk	object = fs->object;
105192108Sphk	VM_OBJECT_ASSERT_WLOCKED(object);
1052126798Sphk	first_object = fs->first_object;
105392108Sphk	if (first_object != object) {
105492108Sphk		if (!VM_OBJECT_TRYWLOCK(first_object)) {
105592108Sphk			VM_OBJECT_WUNLOCK(object);
1056126798Sphk			VM_OBJECT_WLOCK(first_object);
1057126798Sphk			VM_OBJECT_WLOCK(object);
105892108Sphk		}
105992108Sphk	}
106092108Sphk	/* Neither fictitious nor unmanaged pages can be cached. */
106192108Sphk	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
106292108Sphk		if (fs->first_pindex < distance)
106392108Sphk			pindex = 0;
106492108Sphk		else
106592108Sphk			pindex = fs->first_pindex - distance;
1066110517Sphk		if (pindex < OFF_TO_IDX(fs->entry->offset))
1067104701Sphk			pindex = OFF_TO_IDX(fs->entry->offset);
1068104701Sphk		m = first_object != object ? fs->first_m : fs->m;
1069104701Sphk		vm_page_assert_xbusied(m);
107092108Sphk		m_prev = vm_page_prev(m);
1071110523Sphk		while ((m = m_prev) != NULL && m->pindex >= pindex &&
1072110523Sphk		    m->valid == VM_PAGE_BITS_ALL) {
1073104701Sphk			m_prev = vm_page_prev(m);
107492108Sphk			if (vm_page_busied(m))
107592108Sphk				continue;
107692108Sphk			vm_page_lock(m);
107792108Sphk			if (m->hold_count == 0 && m->wire_count == 0) {
107892108Sphk				pmap_remove_all(m);
107992108Sphk				vm_page_aflag_clear(m, PGA_REFERENCED);
108092108Sphk				if (m->dirty != 0)
1081114511Sphk					vm_page_deactivate(m);
1082114511Sphk				else
108392108Sphk					vm_page_cache(m);
1084126798Sphk			}
1085126798Sphk			vm_page_unlock(m);
108692108Sphk		}
1087238886Smav	}
1088114511Sphk	if (first_object != object)
1089114511Sphk		VM_OBJECT_WUNLOCK(first_object);
1090114511Sphk}
1091114511Sphk
1092114511Sphk/*
1093114511Sphk * vm_fault_prefault provides a quick way of clustering
1094114511Sphk * pagefaults into a processes address space.  It is a "cousin"
1095114511Sphk * of vm_map_pmap_enter, except it runs at page fault time instead
1096114511Sphk * of mmap time.
109792108Sphk */
109892108Sphkstatic void
109992108Sphkvm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
110092108Sphk    int faultcount, int reqpage)
110192108Sphk{
110292108Sphk	pmap_t pmap;
110392108Sphk	vm_map_entry_t entry;
110492108Sphk	vm_object_t backing_object, lobject;
110592108Sphk	vm_offset_t addr, starta;
110692108Sphk	vm_pindex_t pindex;
110792108Sphk	vm_page_t m;
110892108Sphk	int backward, forward, i;
110992108Sphk
1110113929Sphk	pmap = fs->map->pmap;
1111113929Sphk	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1112113929Sphk		return;
1113113929Sphk
1114113929Sphk	if (faultcount > 0) {
1115113929Sphk		backward = reqpage;
1116113929Sphk		forward = faultcount - reqpage - 1;
1117113929Sphk	} else {
1118113929Sphk		backward = PFBAK;
1119113929Sphk		forward = PFFOR;
1120126798Sphk	}
1121266679Sae	entry = fs->entry;
1122266679Sae
1123113929Sphk	starta = addra - backward * PAGE_SIZE;
1124113929Sphk	if (starta < entry->start) {
1125238886Smav		starta = entry->start;
1126113929Sphk	} else if (starta > addra) {
1127238886Smav		starta = 0;
1128113929Sphk	}
1129113929Sphk
1130113929Sphk	/*
1131113929Sphk	 * Generate the sequence of virtual addresses that are candidates for
1132113929Sphk	 * prefaulting in an outward spiral from the faulting virtual address,
1133113929Sphk	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1134113929Sphk	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
113592108Sphk	 * If the candidate address doesn't have a backing physical page, then
113692108Sphk	 * the loop immediately terminates.
113792108Sphk	 */
113892108Sphk	for (i = 0; i < 2 * imax(backward, forward); i++) {
113992108Sphk		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
114092108Sphk		    PAGE_SIZE);
1141126798Sphk		if (addr > addra + forward * PAGE_SIZE)
1142126798Sphk			addr = 0;
114392108Sphk
114492108Sphk		if (addr < starta || addr >= entry->end)
114592108Sphk			continue;
114692108Sphk
114792108Sphk		if (!pmap_is_prefaultable(pmap, addr))
114892108Sphk			continue;
114992108Sphk
115092108Sphk		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
115192108Sphk		lobject = entry->object.vm_object;
1152238886Smav		VM_OBJECT_RLOCK(lobject);
115392108Sphk		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1154113937Sphk		    lobject->type == OBJT_DEFAULT &&
115592108Sphk		    (backing_object = lobject->backing_object) != NULL) {
115692108Sphk			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1157238886Smav			    0, ("vm_fault_prefault: unaligned object offset"));
1158238886Smav			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1159238886Smav			VM_OBJECT_RLOCK(backing_object);
1160238886Smav			VM_OBJECT_RUNLOCK(lobject);
1161238886Smav			lobject = backing_object;
1162238886Smav		}
1163238886Smav		if (m == NULL) {
1164238886Smav			VM_OBJECT_RUNLOCK(lobject);
1165238886Smav			break;
1166238886Smav		}
1167238886Smav		if (m->valid == VM_PAGE_BITS_ALL &&
1168238886Smav		    (m->flags & PG_FICTITIOUS) == 0)
1169238886Smav			pmap_enter_quick(pmap, addr, m, entry->protection);
1170238886Smav		VM_OBJECT_RUNLOCK(lobject);
1171238886Smav	}
1172238886Smav}
1173238886Smav
1174238886Smav/*
1175238886Smav * Hold each of the physical pages that are mapped by the specified range of
1176238886Smav * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1177238886Smav * and allow the specified types of access, "prot".  If all of the implied
1178238886Smav * pages are successfully held, then the number of held pages is returned
1179238886Smav * together with pointers to those pages in the array "ma".  However, if any
118094284Sphk * of the pages cannot be held, -1 is returned.
1181238886Smav */
1182238886Smavint
1183238886Smavvm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1184238886Smav    vm_prot_t prot, vm_page_t *ma, int max_count)
1185238886Smav{
1186238886Smav	vm_offset_t end, va;
1187238886Smav	vm_page_t *mp;
1188238886Smav	int count;
1189238886Smav	boolean_t pmap_failed;
1190238886Smav
1191238886Smav	if (len == 0)
1192238886Smav		return (0);
1193238886Smav	end = round_page(addr + len);
1194238886Smav	addr = trunc_page(addr);
1195238886Smav
1196238886Smav	/*
1197238886Smav	 * Check for illegal addresses.
1198238886Smav	 */
1199238886Smav	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1200238886Smav		return (-1);
120194284Sphk
120294284Sphk	if (atop(end - addr) > max_count)
120394284Sphk		panic("vm_fault_quick_hold_pages: count > max_count");
120494284Sphk	count = atop(end - addr);
120594284Sphk
120694284Sphk	/*
120794284Sphk	 * Most likely, the physical pages are resident in the pmap, so it is
120894284Sphk	 * faster to try pmap_extract_and_hold() first.
120994284Sphk	 */
121094284Sphk	pmap_failed = FALSE;
121194284Sphk	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
121294284Sphk		*mp = pmap_extract_and_hold(map->pmap, va, prot);
121395310Sphk		if (*mp == NULL)
1214221101Smav			pmap_failed = TRUE;
1215221101Smav		else if ((prot & VM_PROT_WRITE) != 0 &&
1216221101Smav		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1217221101Smav			/*
1218221101Smav			 * Explicitly dirty the physical page.  Otherwise, the
1219221101Smav			 * caller's changes may go unnoticed because they are
1220221101Smav			 * performed through an unmanaged mapping or by a DMA
1221221101Smav			 * operation.
1222221101Smav			 *
1223221101Smav			 * The object lock is not held here.
1224221101Smav			 * See vm_page_clear_dirty_mask().
1225221101Smav			 */
1226221101Smav			vm_page_dirty(*mp);
1227221101Smav		}
1228221101Smav	}
1229221101Smav	if (pmap_failed) {
1230221101Smav		/*
1231221101Smav		 * One or more pages could not be held by the pmap.  Either no
1232221101Smav		 * page was mapped at the specified virtual address or that
1233221101Smav		 * mapping had insufficient permissions.  Attempt to fault in
1234221101Smav		 * and hold these pages.
1235221101Smav		 */
1236221101Smav		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1237221101Smav			if (*mp == NULL && vm_fault_hold(map, va, prot,
1238221101Smav			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1239221101Smav				goto error;
1240221101Smav	}
1241221101Smav	return (count);
1242221101Smaverror:
1243221101Smav	for (mp = ma; mp < ma + count; mp++)
1244221101Smav		if (*mp != NULL) {
1245221101Smav			vm_page_lock(*mp);
1246221101Smav			vm_page_unhold(*mp);
1247221101Smav			vm_page_unlock(*mp);
1248221101Smav		}
1249221101Smav	return (-1);
1250221101Smav}
1251162326Spjd
125295310Sphk/*
1253206859Sjh *	Routine:
1254206859Sjh *		vm_fault_copy_entry
1255206859Sjh *	Function:
1256206859Sjh *		Create new shadow object backing dst_entry with private copy of
1257206859Sjh *		all underlying pages. When src_entry is equal to dst_entry,
1258122762Sphk *		function implements COW for wired-down map entry. Otherwise,
1259126798Sphk *		it forks wired entry into dst_map.
1260122762Sphk *
1261122762Sphk *	In/out conditions:
1262122762Sphk *		The source and destination maps must be locked for write.
1263122762Sphk *		The source map entry must be wired down (or be a sharing map
1264122762Sphk *		entry corresponding to a main map entry that is wired down).
1265122762Sphk */
1266122762Sphkvoid
1267206859Sjhvm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1268206859Sjh    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1269206859Sjh    vm_ooffset_t *fork_charge)
1270206859Sjh{
1271195257Strasz	vm_object_t backing_object, dst_object, object, src_object;
1272122762Sphk	vm_pindex_t dst_pindex, pindex, src_pindex;
1273122762Sphk	vm_prot_t access, prot;
1274122762Sphk	vm_offset_t vaddr;
1275122762Sphk	vm_page_t dst_m;
1276122762Sphk	vm_page_t src_m;
1277126798Sphk	boolean_t upgrade;
1278122762Sphk
1279122762Sphk#ifdef	lint
1280126798Sphk	src_map++;
1281122762Sphk#endif	/* lint */
1282122762Sphk
1283126798Sphk	upgrade = src_entry == dst_entry;
1284122762Sphk	access = prot = dst_entry->protection;
1285122762Sphk
1286122762Sphk	src_object = src_entry->object.vm_object;
1287122762Sphk	src_pindex = OFF_TO_IDX(src_entry->offset);
1288126798Sphk
1289162326Spjd	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1290162326Spjd		dst_object = src_object;
1291162326Spjd		vm_object_reference(dst_object);
1292162326Spjd	} else {
1293192803Slulf		/*
1294192803Slulf		 * Create the top-level object for the destination entry. (Doesn't
1295162326Spjd		 * actually shadow anything - we copy the pages directly.)
1296162326Spjd		 */
1297162326Spjd		dst_object = vm_object_allocate(OBJT_DEFAULT,
1298192803Slulf		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1299162326Spjd#if VM_NRESERVLEVEL > 0
1300162326Spjd		dst_object->flags |= OBJ_COLORED;
1301162326Spjd		dst_object->pg_color = atop(dst_entry->start);
1302162326Spjd#endif
1303162326Spjd	}
1304162326Spjd
1305162326Spjd	VM_OBJECT_WLOCK(dst_object);
1306162326Spjd	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1307162326Spjd	    ("vm_fault_copy_entry: vm_object not NULL"));
1308162326Spjd	if (src_object != dst_object) {
1309162326Spjd		dst_entry->object.vm_object = dst_object;
1310162326Spjd		dst_entry->offset = 0;
1311162326Spjd		dst_object->charge = dst_entry->end - dst_entry->start;
1312162326Spjd	}
1313162326Spjd	if (fork_charge != NULL) {
1314162326Spjd		KASSERT(dst_entry->cred == NULL,
1315162326Spjd		    ("vm_fault_copy_entry: leaked swp charge"));
1316162326Spjd		dst_object->cred = curthread->td_ucred;
1317162326Spjd		crhold(dst_object->cred);
1318162326Spjd		*fork_charge += dst_object->charge;
1319162326Spjd	} else if (dst_object->cred == NULL) {
1320162326Spjd		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1321162326Spjd		    dst_entry));
1322162326Spjd		dst_object->cred = dst_entry->cred;
1323162326Spjd		dst_entry->cred = NULL;
1324162326Spjd	}
1325162326Spjd
1326162326Spjd	/*
1327162326Spjd	 * If not an upgrade, then enter the mappings in the pmap as
1328162326Spjd	 * read and/or execute accesses.  Otherwise, enter them as
1329162326Spjd	 * write accesses.
1330162326Spjd	 *
1331162326Spjd	 * A writeable large page mapping is only created if all of
1332162326Spjd	 * the constituent small page mappings are modified. Marking
1333162326Spjd	 * PTEs as modified on inception allows promotion to happen
1334162326Spjd	 * without taking potentially large number of soft faults.
1335162326Spjd	 */
1336162326Spjd	if (!upgrade)
1337162326Spjd		access &= ~VM_PROT_WRITE;
1338162326Spjd
1339162326Spjd	/*
1340162326Spjd	 * Loop through all of the virtual pages within the entry's
1341162326Spjd	 * range, copying each page from the source object to the
1342162326Spjd	 * destination object.  Since the source is wired, those pages
1343162326Spjd	 * must exist.  In contrast, the destination is pageable.
1344162326Spjd	 * Since the destination object does share any backing storage
1345162326Spjd	 * with the source object, all of its pages must be dirtied,
1346162326Spjd	 * regardless of whether they can be written.
1347162326Spjd	 */
1348162326Spjd	for (vaddr = dst_entry->start, dst_pindex = 0;
1349162326Spjd	    vaddr < dst_entry->end;
1350162326Spjd	    vaddr += PAGE_SIZE, dst_pindex++) {
1351162326Spjdagain:
1352162326Spjd		/*
1353162326Spjd		 * Find the page in the source object, and copy it in.
1354238886Smav		 * Because the source is wired down, the page will be
1355162326Spjd		 * in memory.
1356162326Spjd		 */
1357162326Spjd		if (src_object != dst_object)
1358162326Spjd			VM_OBJECT_RLOCK(src_object);
1359162326Spjd		object = src_object;
1360162326Spjd		pindex = src_pindex + dst_pindex;
1361238886Smav		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1362238886Smav		    (backing_object = object->backing_object) != NULL) {
1363192803Slulf			/*
1364162326Spjd			 * Unless the source mapping is read-only or
1365162326Spjd			 * it is presently being upgraded from
1366162326Spjd			 * read-only, the first object in the shadow
1367162326Spjd			 * chain should provide all of the pages.  In
1368162326Spjd			 * other words, this loop body should never be
1369162326Spjd			 * executed when the source mapping is already
1370162326Spjd			 * read/write.
1371162326Spjd			 */
1372162326Spjd			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1373162326Spjd			    upgrade,
1374162326Spjd			    ("vm_fault_copy_entry: main object missing page"));
1375162326Spjd
1376162326Spjd			VM_OBJECT_RLOCK(backing_object);
1377162326Spjd			pindex += OFF_TO_IDX(object->backing_object_offset);
1378162326Spjd			if (object != dst_object)
1379162326Spjd				VM_OBJECT_RUNLOCK(object);
1380162326Spjd			object = backing_object;
1381162326Spjd		}
1382162326Spjd		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1383162326Spjd
1384162326Spjd		if (object != dst_object) {
1385162326Spjd			/*
1386162326Spjd			 * Allocate a page in the destination object.
1387162326Spjd			 */
1388162326Spjd			dst_m = vm_page_alloc(dst_object, (src_object ==
1389162326Spjd			    dst_object ? src_pindex : 0) + dst_pindex,
1390162326Spjd			    VM_ALLOC_NORMAL);
1391162326Spjd			if (dst_m == NULL) {
1392162326Spjd				VM_OBJECT_WUNLOCK(dst_object);
1393162326Spjd				VM_OBJECT_RUNLOCK(object);
1394162326Spjd				VM_WAIT;
1395162326Spjd				VM_OBJECT_WLOCK(dst_object);
1396192803Slulf				goto again;
1397162326Spjd			}
1398162326Spjd			pmap_copy_page(src_m, dst_m);
1399162326Spjd			VM_OBJECT_RUNLOCK(object);
1400192803Slulf			dst_m->valid = VM_PAGE_BITS_ALL;
1401162326Spjd			dst_m->dirty = VM_PAGE_BITS_ALL;
1402162326Spjd		} else {
1403179094Spjd			dst_m = src_m;
1404162326Spjd			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1405179094Spjd				goto again;
1406179094Spjd			vm_page_xbusy(dst_m);
1407179094Spjd			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1408162326Spjd			    ("invalid dst page %p", dst_m));
1409162326Spjd		}
1410162326Spjd		VM_OBJECT_WUNLOCK(dst_object);
1411162326Spjd
1412162326Spjd		/*
1413162326Spjd		 * Enter it in the pmap. If a wired, copy-on-write
1414162326Spjd		 * mapping is being replaced by a write-enabled
1415162326Spjd		 * mapping, then wire that new mapping.
1416162326Spjd		 */
1417162326Spjd		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1418162326Spjd		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1419162326Spjd
1420162326Spjd		/*
1421162326Spjd		 * Mark it no longer busy, and put it on the active list.
1422162326Spjd		 */
1423162326Spjd		VM_OBJECT_WLOCK(dst_object);
1424162326Spjd
1425162326Spjd		if (upgrade) {
1426162326Spjd			if (src_m != dst_m) {
1427162326Spjd				vm_page_lock(src_m);
1428162326Spjd				vm_page_unwire(src_m, 0);
1429162326Spjd				vm_page_unlock(src_m);
1430162326Spjd				vm_page_lock(dst_m);
1431192803Slulf				vm_page_wire(dst_m);
1432162326Spjd				vm_page_unlock(dst_m);
1433162326Spjd			} else {
1434162326Spjd				KASSERT(dst_m->wire_count > 0,
1435192803Slulf				    ("dst_m %p is not wired", dst_m));
1436162326Spjd			}
1437162326Spjd		} else {
1438179094Spjd			vm_page_lock(dst_m);
1439162326Spjd			vm_page_activate(dst_m);
1440179094Spjd			vm_page_unlock(dst_m);
1441179094Spjd		}
1442179094Spjd		vm_page_xunbusy(dst_m);
1443162326Spjd	}
1444162326Spjd	VM_OBJECT_WUNLOCK(dst_object);
1445179094Spjd	if (upgrade) {
1446162326Spjd		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1447179094Spjd		vm_object_deallocate(src_object);
1448179094Spjd	}
1449179094Spjd}
1450162326Spjd
1451162326Spjd
1452162326Spjd/*
1453162326Spjd * This routine checks around the requested page for other pages that
1454162326Spjd * might be able to be faulted in.  This routine brackets the viable
1455162326Spjd * pages for the pages to be paged in.
1456162326Spjd *
1457162326Spjd * Inputs:
1458192803Slulf *	m, rbehind, rahead
1459179094Spjd *
1460162326Spjd * Outputs:
1461179094Spjd *  marray (array of vm_page_t), reqpage (index of requested page)
1462179094Spjd *
1463179094Spjd * Return value:
1464162326Spjd *  number of pages in marray
1465162326Spjd */
1466162326Spjdstatic int
1467162326Spjdvm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1468162326Spjd	vm_page_t m;
1469162326Spjd	int rbehind;
1470162326Spjd	int rahead;
1471162326Spjd	vm_page_t *marray;
1472162326Spjd	int *reqpage;
1473162326Spjd{
1474162326Spjd	int i,j;
1475162326Spjd	vm_object_t object;
1476162326Spjd	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1477192803Slulf	vm_page_t rtm;
1478179094Spjd	int cbehind, cahead;
1479179094Spjd
1480162326Spjd	VM_OBJECT_ASSERT_WLOCKED(m->object);
1481162326Spjd
1482162326Spjd	object = m->object;
1483162326Spjd	pindex = m->pindex;
1484162326Spjd	cbehind = cahead = 0;
1485162326Spjd
1486162326Spjd	/*
1487162326Spjd	 * if the requested page is not available, then give up now
1488162326Spjd	 */
1489162326Spjd	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1490162326Spjd		return 0;
1491162326Spjd	}
1492162326Spjd
1493162326Spjd	if ((cbehind == 0) && (cahead == 0)) {
1494162326Spjd		*reqpage = 0;
1495162326Spjd		marray[0] = m;
1496192803Slulf		return 1;
1497162326Spjd	}
1498162326Spjd
1499162326Spjd	if (rahead > cahead) {
1500162326Spjd		rahead = cahead;
1501162326Spjd	}
1502192797Slulf
1503192797Slulf	if (rbehind > cbehind) {
1504192797Slulf		rbehind = cbehind;
1505192803Slulf	}
1506192797Slulf
1507192803Slulf	/*
1508192803Slulf	 * scan backward for the read behind pages -- in memory
1509192803Slulf	 */
1510192803Slulf	if (pindex > 0) {
1511192803Slulf		if (rbehind > pindex) {
1512192803Slulf			rbehind = pindex;
1513192803Slulf			startpindex = 0;
1514192803Slulf		} else {
1515192803Slulf			startpindex = pindex - rbehind;
1516192797Slulf		}
1517192803Slulf
1518192797Slulf		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1519192797Slulf		    rtm->pindex >= startpindex)
1520192797Slulf			startpindex = rtm->pindex + 1;
1521192797Slulf
1522192797Slulf		/* tpindex is unsigned; beware of numeric underflow. */
1523192797Slulf		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1524192797Slulf		    tpindex < pindex; i++, tpindex--) {
1525192797Slulf
1526192803Slulf			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1527192797Slulf			    VM_ALLOC_IFNOTCACHED);
1528192803Slulf			if (rtm == NULL) {
1529192797Slulf				/*
1530192797Slulf				 * Shift the allocated pages to the
1531192797Slulf				 * beginning of the array.
1532192803Slulf				 */
1533192797Slulf				for (j = 0; j < i; j++) {
1534192797Slulf					marray[j] = marray[j + tpindex + 1 -
1535192797Slulf					    startpindex];
1536192803Slulf				}
1537192803Slulf				break;
1538192797Slulf			}
1539192797Slulf
1540192797Slulf			marray[tpindex - startpindex] = rtm;
1541192797Slulf		}
1542192797Slulf	} else {
1543192797Slulf		startpindex = 0;
1544192797Slulf		i = 0;
1545192797Slulf	}
1546192797Slulf
1547192797Slulf	marray[i] = m;
1548192797Slulf	/* page offset of the required page */
1549192803Slulf	*reqpage = i;
1550192797Slulf
1551192797Slulf	tpindex = pindex + 1;
1552192803Slulf	i++;
1553192803Slulf
1554192808Slulf	/*
1555192808Slulf	 * scan forward for the read ahead pages
1556192803Slulf	 */
1557192803Slulf	endpindex = tpindex + rahead;
1558192808Slulf	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1559192803Slulf		endpindex = rtm->pindex;
1560192803Slulf	if (endpindex > object->size)
1561192803Slulf		endpindex = object->size;
1562192803Slulf
1563192803Slulf	for (; tpindex < endpindex; i++, tpindex++) {
1564192803Slulf
1565192803Slulf		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1566192803Slulf		    VM_ALLOC_IFNOTCACHED);
1567192803Slulf		if (rtm == NULL) {
1568192803Slulf			break;
1569192797Slulf		}
1570192797Slulf
1571192797Slulf		marray[i] = rtm;
1572162326Spjd	}
1573162326Spjd
1574162326Spjd	/* return number of pages */
1575162326Spjd	return i;
1576162326Spjd}
1577
1578/*
1579 * Block entry into the machine-independent layer's page fault handler by
1580 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1581 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1582 * spurious page faults.
1583 */
1584int
1585vm_fault_disable_pagefaults(void)
1586{
1587
1588	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1589}
1590
1591void
1592vm_fault_enable_pagefaults(int save)
1593{
1594
1595	curthread_pflags_restore(save);
1596}
1597