vm_fault.c revision 308332
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD: stable/10/sys/vm/vm_fault.c 308332 2016-11-05 10:22:51Z kib $");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/proc.h>
85#include <sys/resourcevar.h>
86#include <sys/rwlock.h>
87#include <sys/sysctl.h>
88#include <sys/vmmeter.h>
89#include <sys/vnode.h>
90#ifdef KTRACE
91#include <sys/ktrace.h>
92#endif
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/pmap.h>
97#include <vm/vm_map.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_pageout.h>
101#include <vm/vm_kern.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_extern.h>
104#include <vm/vm_reserv.h>
105
106#define PFBAK 4
107#define PFFOR 4
108
109static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
110
111#define	VM_FAULT_READ_BEHIND	8
112#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116
117struct faultstate {
118	vm_page_t m;
119	vm_object_t object;
120	vm_pindex_t pindex;
121	vm_page_t first_m;
122	vm_object_t	first_object;
123	vm_pindex_t first_pindex;
124	vm_map_t map;
125	vm_map_entry_t entry;
126	int lookup_still_valid;
127	struct vnode *vp;
128};
129
130static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
131static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132	    int faultcount, int reqpage);
133
134static inline void
135release_page(struct faultstate *fs)
136{
137
138	vm_page_xunbusy(fs->m);
139	vm_page_lock(fs->m);
140	vm_page_deactivate(fs->m);
141	vm_page_unlock(fs->m);
142	fs->m = NULL;
143}
144
145static inline void
146unlock_map(struct faultstate *fs)
147{
148
149	if (fs->lookup_still_valid) {
150		vm_map_lookup_done(fs->map, fs->entry);
151		fs->lookup_still_valid = FALSE;
152	}
153}
154
155static void
156unlock_vp(struct faultstate *fs)
157{
158
159	if (fs->vp != NULL) {
160		vput(fs->vp);
161		fs->vp = NULL;
162	}
163}
164
165static void
166unlock_and_deallocate(struct faultstate *fs)
167{
168
169	vm_object_pip_wakeup(fs->object);
170	VM_OBJECT_WUNLOCK(fs->object);
171	if (fs->object != fs->first_object) {
172		VM_OBJECT_WLOCK(fs->first_object);
173		vm_page_lock(fs->first_m);
174		vm_page_free(fs->first_m);
175		vm_page_unlock(fs->first_m);
176		vm_object_pip_wakeup(fs->first_object);
177		VM_OBJECT_WUNLOCK(fs->first_object);
178		fs->first_m = NULL;
179	}
180	vm_object_deallocate(fs->first_object);
181	unlock_map(fs);
182	unlock_vp(fs);
183}
184
185static void
186vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
187    vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
188{
189	boolean_t need_dirty;
190
191	if (((prot & VM_PROT_WRITE) == 0 &&
192	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
193	    (m->oflags & VPO_UNMANAGED) != 0)
194		return;
195
196	VM_OBJECT_ASSERT_LOCKED(m->object);
197
198	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
199	    (fault_flags & VM_FAULT_WIRE) == 0) ||
200	    (fault_flags & VM_FAULT_DIRTY) != 0;
201
202	if (set_wd)
203		vm_object_set_writeable_dirty(m->object);
204	else
205		/*
206		 * If two callers of vm_fault_dirty() with set_wd ==
207		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
208		 * flag set, other with flag clear, race, it is
209		 * possible for the no-NOSYNC thread to see m->dirty
210		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
211		 * around manipulation of VPO_NOSYNC and
212		 * vm_page_dirty() call, to avoid the race and keep
213		 * m->oflags consistent.
214		 */
215		vm_page_lock(m);
216
217	/*
218	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
219	 * if the page is already dirty to prevent data written with
220	 * the expectation of being synced from not being synced.
221	 * Likewise if this entry does not request NOSYNC then make
222	 * sure the page isn't marked NOSYNC.  Applications sharing
223	 * data should use the same flags to avoid ping ponging.
224	 */
225	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
226		if (m->dirty == 0) {
227			m->oflags |= VPO_NOSYNC;
228		}
229	} else {
230		m->oflags &= ~VPO_NOSYNC;
231	}
232
233	/*
234	 * If the fault is a write, we know that this page is being
235	 * written NOW so dirty it explicitly to save on
236	 * pmap_is_modified() calls later.
237	 *
238	 * Also tell the backing pager, if any, that it should remove
239	 * any swap backing since the page is now dirty.
240	 */
241	if (need_dirty)
242		vm_page_dirty(m);
243	if (!set_wd)
244		vm_page_unlock(m);
245	if (need_dirty)
246		vm_pager_page_unswapped(m);
247}
248
249/*
250 *	vm_fault:
251 *
252 *	Handle a page fault occurring at the given address,
253 *	requiring the given permissions, in the map specified.
254 *	If successful, the page is inserted into the
255 *	associated physical map.
256 *
257 *	NOTE: the given address should be truncated to the
258 *	proper page address.
259 *
260 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
261 *	a standard error specifying why the fault is fatal is returned.
262 *
263 *	The map in question must be referenced, and remains so.
264 *	Caller may hold no locks.
265 */
266int
267vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
268    int fault_flags)
269{
270	struct thread *td;
271	int result;
272
273	td = curthread;
274	if ((td->td_pflags & TDP_NOFAULTING) != 0)
275		return (KERN_PROTECTION_FAILURE);
276#ifdef KTRACE
277	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
278		ktrfault(vaddr, fault_type);
279#endif
280	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
281	    NULL);
282#ifdef KTRACE
283	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
284		ktrfaultend(result);
285#endif
286	return (result);
287}
288
289int
290vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
291    int fault_flags, vm_page_t *m_hold)
292{
293	vm_prot_t prot;
294	long ahead, behind;
295	int alloc_req, era, faultcount, nera, reqpage, result;
296	boolean_t dead, growstack, is_first_object_locked, wired;
297	int map_generation;
298	vm_object_t next_object;
299	vm_page_t marray[VM_FAULT_READ_MAX];
300	int hardfault;
301	struct faultstate fs;
302	struct vnode *vp;
303	vm_page_t m;
304	int locked, error;
305
306	hardfault = 0;
307	growstack = TRUE;
308	PCPU_INC(cnt.v_vm_faults);
309	fs.vp = NULL;
310	faultcount = reqpage = 0;
311
312RetryFault:;
313
314	/*
315	 * Find the backing store object and offset into it to begin the
316	 * search.
317	 */
318	fs.map = map;
319	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
320	    &fs.first_object, &fs.first_pindex, &prot, &wired);
321	if (result != KERN_SUCCESS) {
322		if (growstack && result == KERN_INVALID_ADDRESS &&
323		    map != kernel_map) {
324			result = vm_map_growstack(curproc, vaddr);
325			if (result != KERN_SUCCESS)
326				return (KERN_FAILURE);
327			growstack = FALSE;
328			goto RetryFault;
329		}
330		unlock_vp(&fs);
331		return (result);
332	}
333
334	map_generation = fs.map->timestamp;
335
336	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
337		panic("vm_fault: fault on nofault entry, addr: %lx",
338		    (u_long)vaddr);
339	}
340
341	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
342	    fs.entry->wiring_thread != curthread) {
343		vm_map_unlock_read(fs.map);
344		vm_map_lock(fs.map);
345		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
346		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
347			unlock_vp(&fs);
348			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
349			vm_map_unlock_and_wait(fs.map, 0);
350		} else
351			vm_map_unlock(fs.map);
352		goto RetryFault;
353	}
354
355	if (wired)
356		fault_type = prot | (fault_type & VM_PROT_COPY);
357	else
358		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
359		    ("!wired && VM_FAULT_WIRE"));
360
361	/*
362	 * Try to avoid lock contention on the top-level object through
363	 * special-case handling of some types of page faults, specifically,
364	 * those that are both (1) mapping an existing page from the top-
365	 * level object and (2) not having to mark that object as containing
366	 * dirty pages.  Under these conditions, a read lock on the top-level
367	 * object suffices, allowing multiple page faults of a similar type to
368	 * run in parallel on the same top-level object.
369	 */
370	if (fs.vp == NULL /* avoid locked vnode leak */ &&
371	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
372	    /* avoid calling vm_object_set_writeable_dirty() */
373	    ((prot & VM_PROT_WRITE) == 0 ||
374	    (fs.first_object->type != OBJT_VNODE &&
375	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
376	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
377		VM_OBJECT_RLOCK(fs.first_object);
378		if ((prot & VM_PROT_WRITE) != 0 &&
379		    (fs.first_object->type == OBJT_VNODE ||
380		    (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
381		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
382			goto fast_failed;
383		m = vm_page_lookup(fs.first_object, fs.first_pindex);
384		/* A busy page can be mapped for read|execute access. */
385		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
386		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
387			goto fast_failed;
388		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
389		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
390		   0), 0);
391		if (result != KERN_SUCCESS)
392			goto fast_failed;
393		if (m_hold != NULL) {
394			*m_hold = m;
395			vm_page_lock(m);
396			vm_page_hold(m);
397			vm_page_unlock(m);
398		}
399		vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
400		    FALSE);
401		VM_OBJECT_RUNLOCK(fs.first_object);
402		if (!wired)
403			vm_fault_prefault(&fs, vaddr, 0, 0);
404		vm_map_lookup_done(fs.map, fs.entry);
405		curthread->td_ru.ru_minflt++;
406		return (KERN_SUCCESS);
407fast_failed:
408		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
409			VM_OBJECT_RUNLOCK(fs.first_object);
410			VM_OBJECT_WLOCK(fs.first_object);
411		}
412	} else {
413		VM_OBJECT_WLOCK(fs.first_object);
414	}
415
416	/*
417	 * Make a reference to this object to prevent its disposal while we
418	 * are messing with it.  Once we have the reference, the map is free
419	 * to be diddled.  Since objects reference their shadows (and copies),
420	 * they will stay around as well.
421	 *
422	 * Bump the paging-in-progress count to prevent size changes (e.g.
423	 * truncation operations) during I/O.  This must be done after
424	 * obtaining the vnode lock in order to avoid possible deadlocks.
425	 */
426	vm_object_reference_locked(fs.first_object);
427	vm_object_pip_add(fs.first_object, 1);
428
429	fs.lookup_still_valid = TRUE;
430
431	fs.first_m = NULL;
432
433	/*
434	 * Search for the page at object/offset.
435	 */
436	fs.object = fs.first_object;
437	fs.pindex = fs.first_pindex;
438	while (TRUE) {
439		/*
440		 * If the object is marked for imminent termination,
441		 * we retry here, since the collapse pass has raced
442		 * with us.  Otherwise, if we see terminally dead
443		 * object, return fail.
444		 */
445		if ((fs.object->flags & OBJ_DEAD) != 0) {
446			dead = fs.object->type == OBJT_DEAD;
447			unlock_and_deallocate(&fs);
448			if (dead)
449				return (KERN_PROTECTION_FAILURE);
450			pause("vmf_de", 1);
451			goto RetryFault;
452		}
453
454		/*
455		 * See if page is resident
456		 */
457		fs.m = vm_page_lookup(fs.object, fs.pindex);
458		if (fs.m != NULL) {
459			/*
460			 * Wait/Retry if the page is busy.  We have to do this
461			 * if the page is either exclusive or shared busy
462			 * because the vm_pager may be using read busy for
463			 * pageouts (and even pageins if it is the vnode
464			 * pager), and we could end up trying to pagein and
465			 * pageout the same page simultaneously.
466			 *
467			 * We can theoretically allow the busy case on a read
468			 * fault if the page is marked valid, but since such
469			 * pages are typically already pmap'd, putting that
470			 * special case in might be more effort then it is
471			 * worth.  We cannot under any circumstances mess
472			 * around with a shared busied page except, perhaps,
473			 * to pmap it.
474			 */
475			if (vm_page_busied(fs.m)) {
476				/*
477				 * Reference the page before unlocking and
478				 * sleeping so that the page daemon is less
479				 * likely to reclaim it.
480				 */
481				vm_page_aflag_set(fs.m, PGA_REFERENCED);
482				if (fs.object != fs.first_object) {
483					if (!VM_OBJECT_TRYWLOCK(
484					    fs.first_object)) {
485						VM_OBJECT_WUNLOCK(fs.object);
486						VM_OBJECT_WLOCK(fs.first_object);
487						VM_OBJECT_WLOCK(fs.object);
488					}
489					vm_page_lock(fs.first_m);
490					vm_page_free(fs.first_m);
491					vm_page_unlock(fs.first_m);
492					vm_object_pip_wakeup(fs.first_object);
493					VM_OBJECT_WUNLOCK(fs.first_object);
494					fs.first_m = NULL;
495				}
496				unlock_map(&fs);
497				if (fs.m == vm_page_lookup(fs.object,
498				    fs.pindex)) {
499					vm_page_sleep_if_busy(fs.m, "vmpfw");
500				}
501				vm_object_pip_wakeup(fs.object);
502				VM_OBJECT_WUNLOCK(fs.object);
503				PCPU_INC(cnt.v_intrans);
504				vm_object_deallocate(fs.first_object);
505				goto RetryFault;
506			}
507			vm_page_lock(fs.m);
508			vm_page_remque(fs.m);
509			vm_page_unlock(fs.m);
510
511			/*
512			 * Mark page busy for other processes, and the
513			 * pagedaemon.  If it still isn't completely valid
514			 * (readable), jump to readrest, else break-out ( we
515			 * found the page ).
516			 */
517			vm_page_xbusy(fs.m);
518			if (fs.m->valid != VM_PAGE_BITS_ALL)
519				goto readrest;
520			break;
521		}
522
523		/*
524		 * Page is not resident.  If this is the search termination
525		 * or the pager might contain the page, allocate a new page.
526		 * Default objects are zero-fill, there is no real pager.
527		 */
528		if (fs.object->type != OBJT_DEFAULT ||
529		    fs.object == fs.first_object) {
530			if (fs.pindex >= fs.object->size) {
531				unlock_and_deallocate(&fs);
532				return (KERN_PROTECTION_FAILURE);
533			}
534
535			/*
536			 * Allocate a new page for this object/offset pair.
537			 *
538			 * Unlocked read of the p_flag is harmless. At
539			 * worst, the P_KILLED might be not observed
540			 * there, and allocation can fail, causing
541			 * restart and new reading of the p_flag.
542			 */
543			fs.m = NULL;
544			if (!vm_page_count_severe() || P_KILLED(curproc)) {
545#if VM_NRESERVLEVEL > 0
546				if ((fs.object->flags & OBJ_COLORED) == 0) {
547					fs.object->flags |= OBJ_COLORED;
548					fs.object->pg_color = atop(vaddr) -
549					    fs.pindex;
550				}
551#endif
552				alloc_req = P_KILLED(curproc) ?
553				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
554				if (fs.object->type != OBJT_VNODE &&
555				    fs.object->backing_object == NULL)
556					alloc_req |= VM_ALLOC_ZERO;
557				fs.m = vm_page_alloc(fs.object, fs.pindex,
558				    alloc_req);
559			}
560			if (fs.m == NULL) {
561				unlock_and_deallocate(&fs);
562				VM_WAITPFAULT;
563				goto RetryFault;
564			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
565				break;
566		}
567
568readrest:
569		/*
570		 * We have found a valid page or we have allocated a new page.
571		 * The page thus may not be valid or may not be entirely
572		 * valid.
573		 *
574		 * Attempt to fault-in the page if there is a chance that the
575		 * pager has it, and potentially fault in additional pages
576		 * at the same time.  For default objects simply provide
577		 * zero-filled pages.
578		 */
579		if (fs.object->type != OBJT_DEFAULT) {
580			int rv;
581			u_char behavior = vm_map_entry_behavior(fs.entry);
582
583			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
584			    P_KILLED(curproc)) {
585				behind = 0;
586				ahead = 0;
587			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
588				behind = 0;
589				ahead = atop(fs.entry->end - vaddr) - 1;
590				if (ahead > VM_FAULT_READ_AHEAD_MAX)
591					ahead = VM_FAULT_READ_AHEAD_MAX;
592				if (fs.pindex == fs.entry->next_read)
593					vm_fault_cache_behind(&fs,
594					    VM_FAULT_READ_MAX);
595			} else {
596				/*
597				 * If this is a sequential page fault, then
598				 * arithmetically increase the number of pages
599				 * in the read-ahead window.  Otherwise, reset
600				 * the read-ahead window to its smallest size.
601				 */
602				behind = atop(vaddr - fs.entry->start);
603				if (behind > VM_FAULT_READ_BEHIND)
604					behind = VM_FAULT_READ_BEHIND;
605				ahead = atop(fs.entry->end - vaddr) - 1;
606				era = fs.entry->read_ahead;
607				if (fs.pindex == fs.entry->next_read) {
608					nera = era + behind;
609					if (nera > VM_FAULT_READ_AHEAD_MAX)
610						nera = VM_FAULT_READ_AHEAD_MAX;
611					behind = 0;
612					if (ahead > nera)
613						ahead = nera;
614					if (era == VM_FAULT_READ_AHEAD_MAX)
615						vm_fault_cache_behind(&fs,
616						    VM_FAULT_CACHE_BEHIND);
617				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
618					ahead = VM_FAULT_READ_AHEAD_MIN;
619				if (era != ahead)
620					fs.entry->read_ahead = ahead;
621			}
622
623			/*
624			 * Call the pager to retrieve the data, if any, after
625			 * releasing the lock on the map.  We hold a ref on
626			 * fs.object and the pages are exclusive busied.
627			 */
628			unlock_map(&fs);
629
630			if (fs.object->type == OBJT_VNODE) {
631				vp = fs.object->handle;
632				if (vp == fs.vp)
633					goto vnode_locked;
634				unlock_vp(&fs);
635				locked = VOP_ISLOCKED(vp);
636
637				if (locked != LK_EXCLUSIVE)
638					locked = LK_SHARED;
639				/* Do not sleep for vnode lock while fs.m is busy */
640				error = vget(vp, locked | LK_CANRECURSE |
641				    LK_NOWAIT, curthread);
642				if (error != 0) {
643					vhold(vp);
644					release_page(&fs);
645					unlock_and_deallocate(&fs);
646					error = vget(vp, locked | LK_RETRY |
647					    LK_CANRECURSE, curthread);
648					vdrop(vp);
649					fs.vp = vp;
650					KASSERT(error == 0,
651					    ("vm_fault: vget failed"));
652					goto RetryFault;
653				}
654				fs.vp = vp;
655			}
656vnode_locked:
657			KASSERT(fs.vp == NULL || !fs.map->system_map,
658			    ("vm_fault: vnode-backed object mapped by system map"));
659
660			/*
661			 * now we find out if any other pages should be paged
662			 * in at this time this routine checks to see if the
663			 * pages surrounding this fault reside in the same
664			 * object as the page for this fault.  If they do,
665			 * then they are faulted in also into the object.  The
666			 * array "marray" returned contains an array of
667			 * vm_page_t structs where one of them is the
668			 * vm_page_t passed to the routine.  The reqpage
669			 * return value is the index into the marray for the
670			 * vm_page_t passed to the routine.
671			 *
672			 * fs.m plus the additional pages are exclusive busied.
673			 */
674			faultcount = vm_fault_additional_pages(
675			    fs.m, behind, ahead, marray, &reqpage);
676
677			rv = faultcount ?
678			    vm_pager_get_pages(fs.object, marray, faultcount,
679				reqpage) : VM_PAGER_FAIL;
680
681			if (rv == VM_PAGER_OK) {
682				/*
683				 * Found the page. Leave it busy while we play
684				 * with it.
685				 */
686
687				/*
688				 * Relookup in case pager changed page. Pager
689				 * is responsible for disposition of old page
690				 * if moved.
691				 */
692				fs.m = vm_page_lookup(fs.object, fs.pindex);
693				if (!fs.m) {
694					unlock_and_deallocate(&fs);
695					goto RetryFault;
696				}
697
698				hardfault++;
699				break; /* break to PAGE HAS BEEN FOUND */
700			}
701			/*
702			 * Remove the bogus page (which does not exist at this
703			 * object/offset); before doing so, we must get back
704			 * our object lock to preserve our invariant.
705			 *
706			 * Also wake up any other process that may want to bring
707			 * in this page.
708			 *
709			 * If this is the top-level object, we must leave the
710			 * busy page to prevent another process from rushing
711			 * past us, and inserting the page in that object at
712			 * the same time that we are.
713			 */
714			if (rv == VM_PAGER_ERROR)
715				printf("vm_fault: pager read error, pid %d (%s)\n",
716				    curproc->p_pid, curproc->p_comm);
717			/*
718			 * Data outside the range of the pager or an I/O error
719			 */
720			/*
721			 * XXX - the check for kernel_map is a kludge to work
722			 * around having the machine panic on a kernel space
723			 * fault w/ I/O error.
724			 */
725			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
726				(rv == VM_PAGER_BAD)) {
727				vm_page_lock(fs.m);
728				vm_page_free(fs.m);
729				vm_page_unlock(fs.m);
730				fs.m = NULL;
731				unlock_and_deallocate(&fs);
732				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
733			}
734			if (fs.object != fs.first_object) {
735				vm_page_lock(fs.m);
736				vm_page_free(fs.m);
737				vm_page_unlock(fs.m);
738				fs.m = NULL;
739				/*
740				 * XXX - we cannot just fall out at this
741				 * point, m has been freed and is invalid!
742				 */
743			}
744		}
745
746		/*
747		 * We get here if the object has default pager (or unwiring)
748		 * or the pager doesn't have the page.
749		 */
750		if (fs.object == fs.first_object)
751			fs.first_m = fs.m;
752
753		/*
754		 * Move on to the next object.  Lock the next object before
755		 * unlocking the current one.
756		 */
757		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
758		next_object = fs.object->backing_object;
759		if (next_object == NULL) {
760			/*
761			 * If there's no object left, fill the page in the top
762			 * object with zeros.
763			 */
764			if (fs.object != fs.first_object) {
765				vm_object_pip_wakeup(fs.object);
766				VM_OBJECT_WUNLOCK(fs.object);
767
768				fs.object = fs.first_object;
769				fs.pindex = fs.first_pindex;
770				fs.m = fs.first_m;
771				VM_OBJECT_WLOCK(fs.object);
772			}
773			fs.first_m = NULL;
774
775			/*
776			 * Zero the page if necessary and mark it valid.
777			 */
778			if ((fs.m->flags & PG_ZERO) == 0) {
779				pmap_zero_page(fs.m);
780			} else {
781				PCPU_INC(cnt.v_ozfod);
782			}
783			PCPU_INC(cnt.v_zfod);
784			fs.m->valid = VM_PAGE_BITS_ALL;
785			/* Don't try to prefault neighboring pages. */
786			faultcount = 1;
787			break;	/* break to PAGE HAS BEEN FOUND */
788		} else {
789			KASSERT(fs.object != next_object,
790			    ("object loop %p", next_object));
791			VM_OBJECT_WLOCK(next_object);
792			vm_object_pip_add(next_object, 1);
793			if (fs.object != fs.first_object)
794				vm_object_pip_wakeup(fs.object);
795			VM_OBJECT_WUNLOCK(fs.object);
796			fs.object = next_object;
797		}
798	}
799
800	vm_page_assert_xbusied(fs.m);
801
802	/*
803	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
804	 * is held.]
805	 */
806
807	/*
808	 * If the page is being written, but isn't already owned by the
809	 * top-level object, we have to copy it into a new page owned by the
810	 * top-level object.
811	 */
812	if (fs.object != fs.first_object) {
813		/*
814		 * We only really need to copy if we want to write it.
815		 */
816		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
817			/*
818			 * This allows pages to be virtually copied from a
819			 * backing_object into the first_object, where the
820			 * backing object has no other refs to it, and cannot
821			 * gain any more refs.  Instead of a bcopy, we just
822			 * move the page from the backing object to the
823			 * first object.  Note that we must mark the page
824			 * dirty in the first object so that it will go out
825			 * to swap when needed.
826			 */
827			is_first_object_locked = FALSE;
828			if (
829				/*
830				 * Only one shadow object
831				 */
832				(fs.object->shadow_count == 1) &&
833				/*
834				 * No COW refs, except us
835				 */
836				(fs.object->ref_count == 1) &&
837				/*
838				 * No one else can look this object up
839				 */
840				(fs.object->handle == NULL) &&
841				/*
842				 * No other ways to look the object up
843				 */
844				((fs.object->type == OBJT_DEFAULT) ||
845				 (fs.object->type == OBJT_SWAP)) &&
846			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
847				/*
848				 * We don't chase down the shadow chain
849				 */
850			    fs.object == fs.first_object->backing_object) {
851				/*
852				 * get rid of the unnecessary page
853				 */
854				vm_page_lock(fs.first_m);
855				vm_page_free(fs.first_m);
856				vm_page_unlock(fs.first_m);
857				/*
858				 * grab the page and put it into the
859				 * process'es object.  The page is
860				 * automatically made dirty.
861				 */
862				if (vm_page_rename(fs.m, fs.first_object,
863				    fs.first_pindex)) {
864					unlock_and_deallocate(&fs);
865					goto RetryFault;
866				}
867#if VM_NRESERVLEVEL > 0
868				/*
869				 * Rename the reservation.
870				 */
871				vm_reserv_rename(fs.m, fs.first_object,
872				    fs.object, OFF_TO_IDX(
873				    fs.first_object->backing_object_offset));
874#endif
875				vm_page_xbusy(fs.m);
876				fs.first_m = fs.m;
877				fs.m = NULL;
878				PCPU_INC(cnt.v_cow_optim);
879			} else {
880				/*
881				 * Oh, well, lets copy it.
882				 */
883				pmap_copy_page(fs.m, fs.first_m);
884				fs.first_m->valid = VM_PAGE_BITS_ALL;
885				if (wired && (fault_flags &
886				    VM_FAULT_WIRE) == 0) {
887					vm_page_lock(fs.first_m);
888					vm_page_wire(fs.first_m);
889					vm_page_unlock(fs.first_m);
890
891					vm_page_lock(fs.m);
892					vm_page_unwire(fs.m, FALSE);
893					vm_page_unlock(fs.m);
894				}
895				/*
896				 * We no longer need the old page or object.
897				 */
898				release_page(&fs);
899			}
900			/*
901			 * fs.object != fs.first_object due to above
902			 * conditional
903			 */
904			vm_object_pip_wakeup(fs.object);
905			VM_OBJECT_WUNLOCK(fs.object);
906			/*
907			 * Only use the new page below...
908			 */
909			fs.object = fs.first_object;
910			fs.pindex = fs.first_pindex;
911			fs.m = fs.first_m;
912			if (!is_first_object_locked)
913				VM_OBJECT_WLOCK(fs.object);
914			PCPU_INC(cnt.v_cow_faults);
915			curthread->td_cow++;
916		} else {
917			prot &= ~VM_PROT_WRITE;
918		}
919	}
920
921	/*
922	 * We must verify that the maps have not changed since our last
923	 * lookup.
924	 */
925	if (!fs.lookup_still_valid) {
926		vm_object_t retry_object;
927		vm_pindex_t retry_pindex;
928		vm_prot_t retry_prot;
929
930		if (!vm_map_trylock_read(fs.map)) {
931			release_page(&fs);
932			unlock_and_deallocate(&fs);
933			goto RetryFault;
934		}
935		fs.lookup_still_valid = TRUE;
936		if (fs.map->timestamp != map_generation) {
937			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
938			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
939
940			/*
941			 * If we don't need the page any longer, put it on the inactive
942			 * list (the easiest thing to do here).  If no one needs it,
943			 * pageout will grab it eventually.
944			 */
945			if (result != KERN_SUCCESS) {
946				release_page(&fs);
947				unlock_and_deallocate(&fs);
948
949				/*
950				 * If retry of map lookup would have blocked then
951				 * retry fault from start.
952				 */
953				if (result == KERN_FAILURE)
954					goto RetryFault;
955				return (result);
956			}
957			if ((retry_object != fs.first_object) ||
958			    (retry_pindex != fs.first_pindex)) {
959				release_page(&fs);
960				unlock_and_deallocate(&fs);
961				goto RetryFault;
962			}
963
964			/*
965			 * Check whether the protection has changed or the object has
966			 * been copied while we left the map unlocked. Changing from
967			 * read to write permission is OK - we leave the page
968			 * write-protected, and catch the write fault. Changing from
969			 * write to read permission means that we can't mark the page
970			 * write-enabled after all.
971			 */
972			prot &= retry_prot;
973		}
974	}
975	/*
976	 * If the page was filled by a pager, update the map entry's
977	 * last read offset.  Since the pager does not return the
978	 * actual set of pages that it read, this update is based on
979	 * the requested set.  Typically, the requested and actual
980	 * sets are the same.
981	 *
982	 * XXX The following assignment modifies the map
983	 * without holding a write lock on it.
984	 */
985	if (hardfault)
986		fs.entry->next_read = fs.pindex + faultcount - reqpage;
987
988	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
989	vm_page_assert_xbusied(fs.m);
990
991	/*
992	 * Page must be completely valid or it is not fit to
993	 * map into user space.  vm_pager_get_pages() ensures this.
994	 */
995	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
996	    ("vm_fault: page %p partially invalid", fs.m));
997	VM_OBJECT_WUNLOCK(fs.object);
998
999	/*
1000	 * Put this page into the physical map.  We had to do the unlock above
1001	 * because pmap_enter() may sleep.  We don't put the page
1002	 * back on the active queue until later so that the pageout daemon
1003	 * won't find it (yet).
1004	 */
1005	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1006	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1007	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1008	    wired == 0)
1009		vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
1010	VM_OBJECT_WLOCK(fs.object);
1011	vm_page_lock(fs.m);
1012
1013	/*
1014	 * If the page is not wired down, then put it where the pageout daemon
1015	 * can find it.
1016	 */
1017	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1018		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1019		vm_page_wire(fs.m);
1020	} else
1021		vm_page_activate(fs.m);
1022	if (m_hold != NULL) {
1023		*m_hold = fs.m;
1024		vm_page_hold(fs.m);
1025	}
1026	vm_page_unlock(fs.m);
1027	vm_page_xunbusy(fs.m);
1028
1029	/*
1030	 * Unlock everything, and return
1031	 */
1032	unlock_and_deallocate(&fs);
1033	if (hardfault) {
1034		PCPU_INC(cnt.v_io_faults);
1035		curthread->td_ru.ru_majflt++;
1036	} else
1037		curthread->td_ru.ru_minflt++;
1038
1039	return (KERN_SUCCESS);
1040}
1041
1042/*
1043 * Speed up the reclamation of up to "distance" pages that precede the
1044 * faulting pindex within the first object of the shadow chain.
1045 */
1046static void
1047vm_fault_cache_behind(const struct faultstate *fs, int distance)
1048{
1049	vm_object_t first_object, object;
1050	vm_page_t m, m_prev;
1051	vm_pindex_t pindex;
1052
1053	object = fs->object;
1054	VM_OBJECT_ASSERT_WLOCKED(object);
1055	first_object = fs->first_object;
1056	if (first_object != object) {
1057		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1058			VM_OBJECT_WUNLOCK(object);
1059			VM_OBJECT_WLOCK(first_object);
1060			VM_OBJECT_WLOCK(object);
1061		}
1062	}
1063	/* Neither fictitious nor unmanaged pages can be cached. */
1064	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1065		if (fs->first_pindex < distance)
1066			pindex = 0;
1067		else
1068			pindex = fs->first_pindex - distance;
1069		if (pindex < OFF_TO_IDX(fs->entry->offset))
1070			pindex = OFF_TO_IDX(fs->entry->offset);
1071		m = first_object != object ? fs->first_m : fs->m;
1072		vm_page_assert_xbusied(m);
1073		m_prev = vm_page_prev(m);
1074		while ((m = m_prev) != NULL && m->pindex >= pindex &&
1075		    m->valid == VM_PAGE_BITS_ALL) {
1076			m_prev = vm_page_prev(m);
1077			if (vm_page_busied(m))
1078				continue;
1079			vm_page_lock(m);
1080			if (m->hold_count == 0 && m->wire_count == 0) {
1081				pmap_remove_all(m);
1082				vm_page_aflag_clear(m, PGA_REFERENCED);
1083				if (m->dirty != 0)
1084					vm_page_deactivate(m);
1085				else
1086					vm_page_cache(m);
1087			}
1088			vm_page_unlock(m);
1089		}
1090	}
1091	if (first_object != object)
1092		VM_OBJECT_WUNLOCK(first_object);
1093}
1094
1095/*
1096 * vm_fault_prefault provides a quick way of clustering
1097 * pagefaults into a processes address space.  It is a "cousin"
1098 * of vm_map_pmap_enter, except it runs at page fault time instead
1099 * of mmap time.
1100 */
1101static void
1102vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1103    int faultcount, int reqpage)
1104{
1105	pmap_t pmap;
1106	vm_map_entry_t entry;
1107	vm_object_t backing_object, lobject;
1108	vm_offset_t addr, starta;
1109	vm_pindex_t pindex;
1110	vm_page_t m;
1111	int backward, forward, i;
1112
1113	pmap = fs->map->pmap;
1114	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1115		return;
1116
1117	if (faultcount > 0) {
1118		backward = reqpage;
1119		forward = faultcount - reqpage - 1;
1120	} else {
1121		backward = PFBAK;
1122		forward = PFFOR;
1123	}
1124	entry = fs->entry;
1125
1126	starta = addra - backward * PAGE_SIZE;
1127	if (starta < entry->start) {
1128		starta = entry->start;
1129	} else if (starta > addra) {
1130		starta = 0;
1131	}
1132
1133	/*
1134	 * Generate the sequence of virtual addresses that are candidates for
1135	 * prefaulting in an outward spiral from the faulting virtual address,
1136	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1137	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1138	 * If the candidate address doesn't have a backing physical page, then
1139	 * the loop immediately terminates.
1140	 */
1141	for (i = 0; i < 2 * imax(backward, forward); i++) {
1142		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1143		    PAGE_SIZE);
1144		if (addr > addra + forward * PAGE_SIZE)
1145			addr = 0;
1146
1147		if (addr < starta || addr >= entry->end)
1148			continue;
1149
1150		if (!pmap_is_prefaultable(pmap, addr))
1151			continue;
1152
1153		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1154		lobject = entry->object.vm_object;
1155		VM_OBJECT_RLOCK(lobject);
1156		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1157		    lobject->type == OBJT_DEFAULT &&
1158		    (backing_object = lobject->backing_object) != NULL) {
1159			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1160			    0, ("vm_fault_prefault: unaligned object offset"));
1161			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1162			VM_OBJECT_RLOCK(backing_object);
1163			VM_OBJECT_RUNLOCK(lobject);
1164			lobject = backing_object;
1165		}
1166		if (m == NULL) {
1167			VM_OBJECT_RUNLOCK(lobject);
1168			break;
1169		}
1170		if (m->valid == VM_PAGE_BITS_ALL &&
1171		    (m->flags & PG_FICTITIOUS) == 0)
1172			pmap_enter_quick(pmap, addr, m, entry->protection);
1173		VM_OBJECT_RUNLOCK(lobject);
1174	}
1175}
1176
1177/*
1178 * Hold each of the physical pages that are mapped by the specified range of
1179 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1180 * and allow the specified types of access, "prot".  If all of the implied
1181 * pages are successfully held, then the number of held pages is returned
1182 * together with pointers to those pages in the array "ma".  However, if any
1183 * of the pages cannot be held, -1 is returned.
1184 */
1185int
1186vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1187    vm_prot_t prot, vm_page_t *ma, int max_count)
1188{
1189	vm_offset_t end, va;
1190	vm_page_t *mp;
1191	int count;
1192	boolean_t pmap_failed;
1193
1194	if (len == 0)
1195		return (0);
1196	end = round_page(addr + len);
1197	addr = trunc_page(addr);
1198
1199	/*
1200	 * Check for illegal addresses.
1201	 */
1202	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1203		return (-1);
1204
1205	if (atop(end - addr) > max_count)
1206		panic("vm_fault_quick_hold_pages: count > max_count");
1207	count = atop(end - addr);
1208
1209	/*
1210	 * Most likely, the physical pages are resident in the pmap, so it is
1211	 * faster to try pmap_extract_and_hold() first.
1212	 */
1213	pmap_failed = FALSE;
1214	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1215		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1216		if (*mp == NULL)
1217			pmap_failed = TRUE;
1218		else if ((prot & VM_PROT_WRITE) != 0 &&
1219		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1220			/*
1221			 * Explicitly dirty the physical page.  Otherwise, the
1222			 * caller's changes may go unnoticed because they are
1223			 * performed through an unmanaged mapping or by a DMA
1224			 * operation.
1225			 *
1226			 * The object lock is not held here.
1227			 * See vm_page_clear_dirty_mask().
1228			 */
1229			vm_page_dirty(*mp);
1230		}
1231	}
1232	if (pmap_failed) {
1233		/*
1234		 * One or more pages could not be held by the pmap.  Either no
1235		 * page was mapped at the specified virtual address or that
1236		 * mapping had insufficient permissions.  Attempt to fault in
1237		 * and hold these pages.
1238		 */
1239		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1240			if (*mp == NULL && vm_fault_hold(map, va, prot,
1241			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1242				goto error;
1243	}
1244	return (count);
1245error:
1246	for (mp = ma; mp < ma + count; mp++)
1247		if (*mp != NULL) {
1248			vm_page_lock(*mp);
1249			vm_page_unhold(*mp);
1250			vm_page_unlock(*mp);
1251		}
1252	return (-1);
1253}
1254
1255/*
1256 *	Routine:
1257 *		vm_fault_copy_entry
1258 *	Function:
1259 *		Create new shadow object backing dst_entry with private copy of
1260 *		all underlying pages. When src_entry is equal to dst_entry,
1261 *		function implements COW for wired-down map entry. Otherwise,
1262 *		it forks wired entry into dst_map.
1263 *
1264 *	In/out conditions:
1265 *		The source and destination maps must be locked for write.
1266 *		The source map entry must be wired down (or be a sharing map
1267 *		entry corresponding to a main map entry that is wired down).
1268 */
1269void
1270vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1271    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1272    vm_ooffset_t *fork_charge)
1273{
1274	vm_object_t backing_object, dst_object, object, src_object;
1275	vm_pindex_t dst_pindex, pindex, src_pindex;
1276	vm_prot_t access, prot;
1277	vm_offset_t vaddr;
1278	vm_page_t dst_m;
1279	vm_page_t src_m;
1280	boolean_t upgrade;
1281
1282#ifdef	lint
1283	src_map++;
1284#endif	/* lint */
1285
1286	upgrade = src_entry == dst_entry;
1287	access = prot = dst_entry->protection;
1288
1289	src_object = src_entry->object.vm_object;
1290	src_pindex = OFF_TO_IDX(src_entry->offset);
1291
1292	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1293		dst_object = src_object;
1294		vm_object_reference(dst_object);
1295	} else {
1296		/*
1297		 * Create the top-level object for the destination entry. (Doesn't
1298		 * actually shadow anything - we copy the pages directly.)
1299		 */
1300		dst_object = vm_object_allocate(OBJT_DEFAULT,
1301		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1302#if VM_NRESERVLEVEL > 0
1303		dst_object->flags |= OBJ_COLORED;
1304		dst_object->pg_color = atop(dst_entry->start);
1305#endif
1306	}
1307
1308	VM_OBJECT_WLOCK(dst_object);
1309	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1310	    ("vm_fault_copy_entry: vm_object not NULL"));
1311	if (src_object != dst_object) {
1312		dst_entry->object.vm_object = dst_object;
1313		dst_entry->offset = 0;
1314		dst_object->charge = dst_entry->end - dst_entry->start;
1315	}
1316	if (fork_charge != NULL) {
1317		KASSERT(dst_entry->cred == NULL,
1318		    ("vm_fault_copy_entry: leaked swp charge"));
1319		dst_object->cred = curthread->td_ucred;
1320		crhold(dst_object->cred);
1321		*fork_charge += dst_object->charge;
1322	} else if (dst_object->cred == NULL) {
1323		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1324		    dst_entry));
1325		dst_object->cred = dst_entry->cred;
1326		dst_entry->cred = NULL;
1327	}
1328
1329	/*
1330	 * If not an upgrade, then enter the mappings in the pmap as
1331	 * read and/or execute accesses.  Otherwise, enter them as
1332	 * write accesses.
1333	 *
1334	 * A writeable large page mapping is only created if all of
1335	 * the constituent small page mappings are modified. Marking
1336	 * PTEs as modified on inception allows promotion to happen
1337	 * without taking potentially large number of soft faults.
1338	 */
1339	if (!upgrade)
1340		access &= ~VM_PROT_WRITE;
1341
1342	/*
1343	 * Loop through all of the virtual pages within the entry's
1344	 * range, copying each page from the source object to the
1345	 * destination object.  Since the source is wired, those pages
1346	 * must exist.  In contrast, the destination is pageable.
1347	 * Since the destination object does share any backing storage
1348	 * with the source object, all of its pages must be dirtied,
1349	 * regardless of whether they can be written.
1350	 */
1351	for (vaddr = dst_entry->start, dst_pindex = 0;
1352	    vaddr < dst_entry->end;
1353	    vaddr += PAGE_SIZE, dst_pindex++) {
1354again:
1355		/*
1356		 * Find the page in the source object, and copy it in.
1357		 * Because the source is wired down, the page will be
1358		 * in memory.
1359		 */
1360		if (src_object != dst_object)
1361			VM_OBJECT_RLOCK(src_object);
1362		object = src_object;
1363		pindex = src_pindex + dst_pindex;
1364		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1365		    (backing_object = object->backing_object) != NULL) {
1366			/*
1367			 * Unless the source mapping is read-only or
1368			 * it is presently being upgraded from
1369			 * read-only, the first object in the shadow
1370			 * chain should provide all of the pages.  In
1371			 * other words, this loop body should never be
1372			 * executed when the source mapping is already
1373			 * read/write.
1374			 */
1375			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1376			    upgrade,
1377			    ("vm_fault_copy_entry: main object missing page"));
1378
1379			VM_OBJECT_RLOCK(backing_object);
1380			pindex += OFF_TO_IDX(object->backing_object_offset);
1381			if (object != dst_object)
1382				VM_OBJECT_RUNLOCK(object);
1383			object = backing_object;
1384		}
1385		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1386
1387		if (object != dst_object) {
1388			/*
1389			 * Allocate a page in the destination object.
1390			 */
1391			dst_m = vm_page_alloc(dst_object, (src_object ==
1392			    dst_object ? src_pindex : 0) + dst_pindex,
1393			    VM_ALLOC_NORMAL);
1394			if (dst_m == NULL) {
1395				VM_OBJECT_WUNLOCK(dst_object);
1396				VM_OBJECT_RUNLOCK(object);
1397				VM_WAIT;
1398				VM_OBJECT_WLOCK(dst_object);
1399				goto again;
1400			}
1401			pmap_copy_page(src_m, dst_m);
1402			VM_OBJECT_RUNLOCK(object);
1403			dst_m->valid = VM_PAGE_BITS_ALL;
1404			dst_m->dirty = VM_PAGE_BITS_ALL;
1405		} else {
1406			dst_m = src_m;
1407			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1408				goto again;
1409			vm_page_xbusy(dst_m);
1410			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1411			    ("invalid dst page %p", dst_m));
1412		}
1413		VM_OBJECT_WUNLOCK(dst_object);
1414
1415		/*
1416		 * Enter it in the pmap. If a wired, copy-on-write
1417		 * mapping is being replaced by a write-enabled
1418		 * mapping, then wire that new mapping.
1419		 */
1420		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1421		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1422
1423		/*
1424		 * Mark it no longer busy, and put it on the active list.
1425		 */
1426		VM_OBJECT_WLOCK(dst_object);
1427
1428		if (upgrade) {
1429			if (src_m != dst_m) {
1430				vm_page_lock(src_m);
1431				vm_page_unwire(src_m, 0);
1432				vm_page_unlock(src_m);
1433				vm_page_lock(dst_m);
1434				vm_page_wire(dst_m);
1435				vm_page_unlock(dst_m);
1436			} else {
1437				KASSERT(dst_m->wire_count > 0,
1438				    ("dst_m %p is not wired", dst_m));
1439			}
1440		} else {
1441			vm_page_lock(dst_m);
1442			vm_page_activate(dst_m);
1443			vm_page_unlock(dst_m);
1444		}
1445		vm_page_xunbusy(dst_m);
1446	}
1447	VM_OBJECT_WUNLOCK(dst_object);
1448	if (upgrade) {
1449		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1450		vm_object_deallocate(src_object);
1451	}
1452}
1453
1454
1455/*
1456 * This routine checks around the requested page for other pages that
1457 * might be able to be faulted in.  This routine brackets the viable
1458 * pages for the pages to be paged in.
1459 *
1460 * Inputs:
1461 *	m, rbehind, rahead
1462 *
1463 * Outputs:
1464 *  marray (array of vm_page_t), reqpage (index of requested page)
1465 *
1466 * Return value:
1467 *  number of pages in marray
1468 */
1469static int
1470vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1471	vm_page_t m;
1472	int rbehind;
1473	int rahead;
1474	vm_page_t *marray;
1475	int *reqpage;
1476{
1477	int i,j;
1478	vm_object_t object;
1479	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1480	vm_page_t rtm;
1481	int cbehind, cahead;
1482
1483	VM_OBJECT_ASSERT_WLOCKED(m->object);
1484
1485	object = m->object;
1486	pindex = m->pindex;
1487	cbehind = cahead = 0;
1488
1489	/*
1490	 * if the requested page is not available, then give up now
1491	 */
1492	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1493		return 0;
1494	}
1495
1496	if ((cbehind == 0) && (cahead == 0)) {
1497		*reqpage = 0;
1498		marray[0] = m;
1499		return 1;
1500	}
1501
1502	if (rahead > cahead) {
1503		rahead = cahead;
1504	}
1505
1506	if (rbehind > cbehind) {
1507		rbehind = cbehind;
1508	}
1509
1510	/*
1511	 * scan backward for the read behind pages -- in memory
1512	 */
1513	if (pindex > 0) {
1514		if (rbehind > pindex) {
1515			rbehind = pindex;
1516			startpindex = 0;
1517		} else {
1518			startpindex = pindex - rbehind;
1519		}
1520
1521		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1522		    rtm->pindex >= startpindex)
1523			startpindex = rtm->pindex + 1;
1524
1525		/* tpindex is unsigned; beware of numeric underflow. */
1526		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1527		    tpindex < pindex; i++, tpindex--) {
1528
1529			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1530			    VM_ALLOC_IFNOTCACHED);
1531			if (rtm == NULL) {
1532				/*
1533				 * Shift the allocated pages to the
1534				 * beginning of the array.
1535				 */
1536				for (j = 0; j < i; j++) {
1537					marray[j] = marray[j + tpindex + 1 -
1538					    startpindex];
1539				}
1540				break;
1541			}
1542
1543			marray[tpindex - startpindex] = rtm;
1544		}
1545	} else {
1546		startpindex = 0;
1547		i = 0;
1548	}
1549
1550	marray[i] = m;
1551	/* page offset of the required page */
1552	*reqpage = i;
1553
1554	tpindex = pindex + 1;
1555	i++;
1556
1557	/*
1558	 * scan forward for the read ahead pages
1559	 */
1560	endpindex = tpindex + rahead;
1561	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1562		endpindex = rtm->pindex;
1563	if (endpindex > object->size)
1564		endpindex = object->size;
1565
1566	for (; tpindex < endpindex; i++, tpindex++) {
1567
1568		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1569		    VM_ALLOC_IFNOTCACHED);
1570		if (rtm == NULL) {
1571			break;
1572		}
1573
1574		marray[i] = rtm;
1575	}
1576
1577	/* return number of pages */
1578	return i;
1579}
1580
1581/*
1582 * Block entry into the machine-independent layer's page fault handler by
1583 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1584 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1585 * spurious page faults.
1586 */
1587int
1588vm_fault_disable_pagefaults(void)
1589{
1590
1591	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1592}
1593
1594void
1595vm_fault_enable_pagefaults(int save)
1596{
1597
1598	curthread_pflags_restore(save);
1599}
1600