vm_fault.c revision 302513
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD: stable/10/sys/vm/vm_fault.c 302513 2016-07-10 04:33:16Z kib $");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/proc.h>
85#include <sys/resourcevar.h>
86#include <sys/rwlock.h>
87#include <sys/sysctl.h>
88#include <sys/vmmeter.h>
89#include <sys/vnode.h>
90#ifdef KTRACE
91#include <sys/ktrace.h>
92#endif
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/pmap.h>
97#include <vm/vm_map.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_pageout.h>
101#include <vm/vm_kern.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_extern.h>
104#include <vm/vm_reserv.h>
105
106#define PFBAK 4
107#define PFFOR 4
108
109static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
110
111#define	VM_FAULT_READ_BEHIND	8
112#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116
117struct faultstate {
118	vm_page_t m;
119	vm_object_t object;
120	vm_pindex_t pindex;
121	vm_page_t first_m;
122	vm_object_t	first_object;
123	vm_pindex_t first_pindex;
124	vm_map_t map;
125	vm_map_entry_t entry;
126	int lookup_still_valid;
127	struct vnode *vp;
128};
129
130static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
131static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132	    int faultcount, int reqpage);
133
134static inline void
135release_page(struct faultstate *fs)
136{
137
138	vm_page_xunbusy(fs->m);
139	vm_page_lock(fs->m);
140	vm_page_deactivate(fs->m);
141	vm_page_unlock(fs->m);
142	fs->m = NULL;
143}
144
145static inline void
146unlock_map(struct faultstate *fs)
147{
148
149	if (fs->lookup_still_valid) {
150		vm_map_lookup_done(fs->map, fs->entry);
151		fs->lookup_still_valid = FALSE;
152	}
153}
154
155static void
156unlock_and_deallocate(struct faultstate *fs)
157{
158
159	vm_object_pip_wakeup(fs->object);
160	VM_OBJECT_WUNLOCK(fs->object);
161	if (fs->object != fs->first_object) {
162		VM_OBJECT_WLOCK(fs->first_object);
163		vm_page_lock(fs->first_m);
164		vm_page_free(fs->first_m);
165		vm_page_unlock(fs->first_m);
166		vm_object_pip_wakeup(fs->first_object);
167		VM_OBJECT_WUNLOCK(fs->first_object);
168		fs->first_m = NULL;
169	}
170	vm_object_deallocate(fs->first_object);
171	unlock_map(fs);
172	if (fs->vp != NULL) {
173		vput(fs->vp);
174		fs->vp = NULL;
175	}
176}
177
178static void
179vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
180    vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
181{
182	boolean_t need_dirty;
183
184	if (((prot & VM_PROT_WRITE) == 0 &&
185	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
186	    (m->oflags & VPO_UNMANAGED) != 0)
187		return;
188
189	VM_OBJECT_ASSERT_LOCKED(m->object);
190
191	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
192	    (fault_flags & VM_FAULT_WIRE) == 0) ||
193	    (fault_flags & VM_FAULT_DIRTY) != 0;
194
195	if (set_wd)
196		vm_object_set_writeable_dirty(m->object);
197	else
198		/*
199		 * If two callers of vm_fault_dirty() with set_wd ==
200		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
201		 * flag set, other with flag clear, race, it is
202		 * possible for the no-NOSYNC thread to see m->dirty
203		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
204		 * around manipulation of VPO_NOSYNC and
205		 * vm_page_dirty() call, to avoid the race and keep
206		 * m->oflags consistent.
207		 */
208		vm_page_lock(m);
209
210	/*
211	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
212	 * if the page is already dirty to prevent data written with
213	 * the expectation of being synced from not being synced.
214	 * Likewise if this entry does not request NOSYNC then make
215	 * sure the page isn't marked NOSYNC.  Applications sharing
216	 * data should use the same flags to avoid ping ponging.
217	 */
218	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
219		if (m->dirty == 0) {
220			m->oflags |= VPO_NOSYNC;
221		}
222	} else {
223		m->oflags &= ~VPO_NOSYNC;
224	}
225
226	/*
227	 * If the fault is a write, we know that this page is being
228	 * written NOW so dirty it explicitly to save on
229	 * pmap_is_modified() calls later.
230	 *
231	 * Also tell the backing pager, if any, that it should remove
232	 * any swap backing since the page is now dirty.
233	 */
234	if (need_dirty)
235		vm_page_dirty(m);
236	if (!set_wd)
237		vm_page_unlock(m);
238	if (need_dirty)
239		vm_pager_page_unswapped(m);
240}
241
242/*
243 *	vm_fault:
244 *
245 *	Handle a page fault occurring at the given address,
246 *	requiring the given permissions, in the map specified.
247 *	If successful, the page is inserted into the
248 *	associated physical map.
249 *
250 *	NOTE: the given address should be truncated to the
251 *	proper page address.
252 *
253 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
254 *	a standard error specifying why the fault is fatal is returned.
255 *
256 *	The map in question must be referenced, and remains so.
257 *	Caller may hold no locks.
258 */
259int
260vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
261    int fault_flags)
262{
263	struct thread *td;
264	int result;
265
266	td = curthread;
267	if ((td->td_pflags & TDP_NOFAULTING) != 0)
268		return (KERN_PROTECTION_FAILURE);
269#ifdef KTRACE
270	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
271		ktrfault(vaddr, fault_type);
272#endif
273	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
274	    NULL);
275#ifdef KTRACE
276	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
277		ktrfaultend(result);
278#endif
279	return (result);
280}
281
282int
283vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
284    int fault_flags, vm_page_t *m_hold)
285{
286	vm_prot_t prot;
287	long ahead, behind;
288	int alloc_req, era, faultcount, nera, reqpage, result;
289	boolean_t dead, growstack, is_first_object_locked, wired;
290	int map_generation;
291	vm_object_t next_object;
292	vm_page_t marray[VM_FAULT_READ_MAX];
293	int hardfault;
294	struct faultstate fs;
295	struct vnode *vp;
296	vm_page_t m;
297	int locked, error;
298
299	hardfault = 0;
300	growstack = TRUE;
301	PCPU_INC(cnt.v_vm_faults);
302	fs.vp = NULL;
303	faultcount = reqpage = 0;
304
305RetryFault:;
306
307	/*
308	 * Find the backing store object and offset into it to begin the
309	 * search.
310	 */
311	fs.map = map;
312	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
313	    &fs.first_object, &fs.first_pindex, &prot, &wired);
314	if (result != KERN_SUCCESS) {
315		if (growstack && result == KERN_INVALID_ADDRESS &&
316		    map != kernel_map) {
317			result = vm_map_growstack(curproc, vaddr);
318			if (result != KERN_SUCCESS)
319				return (KERN_FAILURE);
320			growstack = FALSE;
321			goto RetryFault;
322		}
323		return (result);
324	}
325
326	map_generation = fs.map->timestamp;
327
328	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
329		panic("vm_fault: fault on nofault entry, addr: %lx",
330		    (u_long)vaddr);
331	}
332
333	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
334	    fs.entry->wiring_thread != curthread) {
335		vm_map_unlock_read(fs.map);
336		vm_map_lock(fs.map);
337		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
338		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
339			if (fs.vp != NULL) {
340				vput(fs.vp);
341				fs.vp = NULL;
342			}
343			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
344			vm_map_unlock_and_wait(fs.map, 0);
345		} else
346			vm_map_unlock(fs.map);
347		goto RetryFault;
348	}
349
350	if (wired)
351		fault_type = prot | (fault_type & VM_PROT_COPY);
352	else
353		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
354		    ("!wired && VM_FAULT_WIRE"));
355
356	if (fs.vp == NULL /* avoid locked vnode leak */ &&
357	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
358	    /* avoid calling vm_object_set_writeable_dirty() */
359	    ((prot & VM_PROT_WRITE) == 0 ||
360	    (fs.first_object->type != OBJT_VNODE &&
361	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
362	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
363		VM_OBJECT_RLOCK(fs.first_object);
364		if ((prot & VM_PROT_WRITE) != 0 &&
365		    (fs.first_object->type == OBJT_VNODE ||
366		    (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
367		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
368			goto fast_failed;
369		m = vm_page_lookup(fs.first_object, fs.first_pindex);
370		/* A busy page can be mapped for read|execute access. */
371		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
372		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
373			goto fast_failed;
374		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
375		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
376		   0), 0);
377		if (result != KERN_SUCCESS)
378			goto fast_failed;
379		if (m_hold != NULL) {
380			*m_hold = m;
381			vm_page_lock(m);
382			vm_page_hold(m);
383			vm_page_unlock(m);
384		}
385		vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
386		    FALSE);
387		VM_OBJECT_RUNLOCK(fs.first_object);
388		if (!wired)
389			vm_fault_prefault(&fs, vaddr, 0, 0);
390		vm_map_lookup_done(fs.map, fs.entry);
391		curthread->td_ru.ru_minflt++;
392		return (KERN_SUCCESS);
393fast_failed:
394		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
395			VM_OBJECT_RUNLOCK(fs.first_object);
396			VM_OBJECT_WLOCK(fs.first_object);
397		}
398	} else {
399		VM_OBJECT_WLOCK(fs.first_object);
400	}
401
402	/*
403	 * Make a reference to this object to prevent its disposal while we
404	 * are messing with it.  Once we have the reference, the map is free
405	 * to be diddled.  Since objects reference their shadows (and copies),
406	 * they will stay around as well.
407	 *
408	 * Bump the paging-in-progress count to prevent size changes (e.g.
409	 * truncation operations) during I/O.  This must be done after
410	 * obtaining the vnode lock in order to avoid possible deadlocks.
411	 */
412	vm_object_reference_locked(fs.first_object);
413	vm_object_pip_add(fs.first_object, 1);
414
415	fs.lookup_still_valid = TRUE;
416
417	fs.first_m = NULL;
418
419	/*
420	 * Search for the page at object/offset.
421	 */
422	fs.object = fs.first_object;
423	fs.pindex = fs.first_pindex;
424	while (TRUE) {
425		/*
426		 * If the object is marked for imminent termination,
427		 * we retry here, since the collapse pass has raced
428		 * with us.  Otherwise, if we see terminally dead
429		 * object, return fail.
430		 */
431		if ((fs.object->flags & OBJ_DEAD) != 0) {
432			dead = fs.object->type == OBJT_DEAD;
433			unlock_and_deallocate(&fs);
434			if (dead)
435				return (KERN_PROTECTION_FAILURE);
436			pause("vmf_de", 1);
437			goto RetryFault;
438		}
439
440		/*
441		 * See if page is resident
442		 */
443		fs.m = vm_page_lookup(fs.object, fs.pindex);
444		if (fs.m != NULL) {
445			/*
446			 * Wait/Retry if the page is busy.  We have to do this
447			 * if the page is either exclusive or shared busy
448			 * because the vm_pager may be using read busy for
449			 * pageouts (and even pageins if it is the vnode
450			 * pager), and we could end up trying to pagein and
451			 * pageout the same page simultaneously.
452			 *
453			 * We can theoretically allow the busy case on a read
454			 * fault if the page is marked valid, but since such
455			 * pages are typically already pmap'd, putting that
456			 * special case in might be more effort then it is
457			 * worth.  We cannot under any circumstances mess
458			 * around with a shared busied page except, perhaps,
459			 * to pmap it.
460			 */
461			if (vm_page_busied(fs.m)) {
462				/*
463				 * Reference the page before unlocking and
464				 * sleeping so that the page daemon is less
465				 * likely to reclaim it.
466				 */
467				vm_page_aflag_set(fs.m, PGA_REFERENCED);
468				if (fs.object != fs.first_object) {
469					if (!VM_OBJECT_TRYWLOCK(
470					    fs.first_object)) {
471						VM_OBJECT_WUNLOCK(fs.object);
472						VM_OBJECT_WLOCK(fs.first_object);
473						VM_OBJECT_WLOCK(fs.object);
474					}
475					vm_page_lock(fs.first_m);
476					vm_page_free(fs.first_m);
477					vm_page_unlock(fs.first_m);
478					vm_object_pip_wakeup(fs.first_object);
479					VM_OBJECT_WUNLOCK(fs.first_object);
480					fs.first_m = NULL;
481				}
482				unlock_map(&fs);
483				if (fs.m == vm_page_lookup(fs.object,
484				    fs.pindex)) {
485					vm_page_sleep_if_busy(fs.m, "vmpfw");
486				}
487				vm_object_pip_wakeup(fs.object);
488				VM_OBJECT_WUNLOCK(fs.object);
489				PCPU_INC(cnt.v_intrans);
490				vm_object_deallocate(fs.first_object);
491				goto RetryFault;
492			}
493			vm_page_lock(fs.m);
494			vm_page_remque(fs.m);
495			vm_page_unlock(fs.m);
496
497			/*
498			 * Mark page busy for other processes, and the
499			 * pagedaemon.  If it still isn't completely valid
500			 * (readable), jump to readrest, else break-out ( we
501			 * found the page ).
502			 */
503			vm_page_xbusy(fs.m);
504			if (fs.m->valid != VM_PAGE_BITS_ALL)
505				goto readrest;
506			break;
507		}
508
509		/*
510		 * Page is not resident.  If this is the search termination
511		 * or the pager might contain the page, allocate a new page.
512		 * Default objects are zero-fill, there is no real pager.
513		 */
514		if (fs.object->type != OBJT_DEFAULT ||
515		    fs.object == fs.first_object) {
516			if (fs.pindex >= fs.object->size) {
517				unlock_and_deallocate(&fs);
518				return (KERN_PROTECTION_FAILURE);
519			}
520
521			/*
522			 * Allocate a new page for this object/offset pair.
523			 *
524			 * Unlocked read of the p_flag is harmless. At
525			 * worst, the P_KILLED might be not observed
526			 * there, and allocation can fail, causing
527			 * restart and new reading of the p_flag.
528			 */
529			fs.m = NULL;
530			if (!vm_page_count_severe() || P_KILLED(curproc)) {
531#if VM_NRESERVLEVEL > 0
532				if ((fs.object->flags & OBJ_COLORED) == 0) {
533					fs.object->flags |= OBJ_COLORED;
534					fs.object->pg_color = atop(vaddr) -
535					    fs.pindex;
536				}
537#endif
538				alloc_req = P_KILLED(curproc) ?
539				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
540				if (fs.object->type != OBJT_VNODE &&
541				    fs.object->backing_object == NULL)
542					alloc_req |= VM_ALLOC_ZERO;
543				fs.m = vm_page_alloc(fs.object, fs.pindex,
544				    alloc_req);
545			}
546			if (fs.m == NULL) {
547				unlock_and_deallocate(&fs);
548				VM_WAITPFAULT;
549				goto RetryFault;
550			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
551				break;
552		}
553
554readrest:
555		/*
556		 * We have found a valid page or we have allocated a new page.
557		 * The page thus may not be valid or may not be entirely
558		 * valid.
559		 *
560		 * Attempt to fault-in the page if there is a chance that the
561		 * pager has it, and potentially fault in additional pages
562		 * at the same time.  For default objects simply provide
563		 * zero-filled pages.
564		 */
565		if (fs.object->type != OBJT_DEFAULT) {
566			int rv;
567			u_char behavior = vm_map_entry_behavior(fs.entry);
568
569			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
570			    P_KILLED(curproc)) {
571				behind = 0;
572				ahead = 0;
573			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
574				behind = 0;
575				ahead = atop(fs.entry->end - vaddr) - 1;
576				if (ahead > VM_FAULT_READ_AHEAD_MAX)
577					ahead = VM_FAULT_READ_AHEAD_MAX;
578				if (fs.pindex == fs.entry->next_read)
579					vm_fault_cache_behind(&fs,
580					    VM_FAULT_READ_MAX);
581			} else {
582				/*
583				 * If this is a sequential page fault, then
584				 * arithmetically increase the number of pages
585				 * in the read-ahead window.  Otherwise, reset
586				 * the read-ahead window to its smallest size.
587				 */
588				behind = atop(vaddr - fs.entry->start);
589				if (behind > VM_FAULT_READ_BEHIND)
590					behind = VM_FAULT_READ_BEHIND;
591				ahead = atop(fs.entry->end - vaddr) - 1;
592				era = fs.entry->read_ahead;
593				if (fs.pindex == fs.entry->next_read) {
594					nera = era + behind;
595					if (nera > VM_FAULT_READ_AHEAD_MAX)
596						nera = VM_FAULT_READ_AHEAD_MAX;
597					behind = 0;
598					if (ahead > nera)
599						ahead = nera;
600					if (era == VM_FAULT_READ_AHEAD_MAX)
601						vm_fault_cache_behind(&fs,
602						    VM_FAULT_CACHE_BEHIND);
603				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
604					ahead = VM_FAULT_READ_AHEAD_MIN;
605				if (era != ahead)
606					fs.entry->read_ahead = ahead;
607			}
608
609			/*
610			 * Call the pager to retrieve the data, if any, after
611			 * releasing the lock on the map.  We hold a ref on
612			 * fs.object and the pages are exclusive busied.
613			 */
614			unlock_map(&fs);
615
616			if (fs.object->type == OBJT_VNODE) {
617				vp = fs.object->handle;
618				if (vp == fs.vp)
619					goto vnode_locked;
620				else if (fs.vp != NULL) {
621					vput(fs.vp);
622					fs.vp = NULL;
623				}
624				locked = VOP_ISLOCKED(vp);
625
626				if (locked != LK_EXCLUSIVE)
627					locked = LK_SHARED;
628				/* Do not sleep for vnode lock while fs.m is busy */
629				error = vget(vp, locked | LK_CANRECURSE |
630				    LK_NOWAIT, curthread);
631				if (error != 0) {
632					vhold(vp);
633					release_page(&fs);
634					unlock_and_deallocate(&fs);
635					error = vget(vp, locked | LK_RETRY |
636					    LK_CANRECURSE, curthread);
637					vdrop(vp);
638					fs.vp = vp;
639					KASSERT(error == 0,
640					    ("vm_fault: vget failed"));
641					goto RetryFault;
642				}
643				fs.vp = vp;
644			}
645vnode_locked:
646			KASSERT(fs.vp == NULL || !fs.map->system_map,
647			    ("vm_fault: vnode-backed object mapped by system map"));
648
649			/*
650			 * now we find out if any other pages should be paged
651			 * in at this time this routine checks to see if the
652			 * pages surrounding this fault reside in the same
653			 * object as the page for this fault.  If they do,
654			 * then they are faulted in also into the object.  The
655			 * array "marray" returned contains an array of
656			 * vm_page_t structs where one of them is the
657			 * vm_page_t passed to the routine.  The reqpage
658			 * return value is the index into the marray for the
659			 * vm_page_t passed to the routine.
660			 *
661			 * fs.m plus the additional pages are exclusive busied.
662			 */
663			faultcount = vm_fault_additional_pages(
664			    fs.m, behind, ahead, marray, &reqpage);
665
666			rv = faultcount ?
667			    vm_pager_get_pages(fs.object, marray, faultcount,
668				reqpage) : VM_PAGER_FAIL;
669
670			if (rv == VM_PAGER_OK) {
671				/*
672				 * Found the page. Leave it busy while we play
673				 * with it.
674				 */
675
676				/*
677				 * Relookup in case pager changed page. Pager
678				 * is responsible for disposition of old page
679				 * if moved.
680				 */
681				fs.m = vm_page_lookup(fs.object, fs.pindex);
682				if (!fs.m) {
683					unlock_and_deallocate(&fs);
684					goto RetryFault;
685				}
686
687				hardfault++;
688				break; /* break to PAGE HAS BEEN FOUND */
689			}
690			/*
691			 * Remove the bogus page (which does not exist at this
692			 * object/offset); before doing so, we must get back
693			 * our object lock to preserve our invariant.
694			 *
695			 * Also wake up any other process that may want to bring
696			 * in this page.
697			 *
698			 * If this is the top-level object, we must leave the
699			 * busy page to prevent another process from rushing
700			 * past us, and inserting the page in that object at
701			 * the same time that we are.
702			 */
703			if (rv == VM_PAGER_ERROR)
704				printf("vm_fault: pager read error, pid %d (%s)\n",
705				    curproc->p_pid, curproc->p_comm);
706			/*
707			 * Data outside the range of the pager or an I/O error
708			 */
709			/*
710			 * XXX - the check for kernel_map is a kludge to work
711			 * around having the machine panic on a kernel space
712			 * fault w/ I/O error.
713			 */
714			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
715				(rv == VM_PAGER_BAD)) {
716				vm_page_lock(fs.m);
717				vm_page_free(fs.m);
718				vm_page_unlock(fs.m);
719				fs.m = NULL;
720				unlock_and_deallocate(&fs);
721				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
722			}
723			if (fs.object != fs.first_object) {
724				vm_page_lock(fs.m);
725				vm_page_free(fs.m);
726				vm_page_unlock(fs.m);
727				fs.m = NULL;
728				/*
729				 * XXX - we cannot just fall out at this
730				 * point, m has been freed and is invalid!
731				 */
732			}
733		}
734
735		/*
736		 * We get here if the object has default pager (or unwiring)
737		 * or the pager doesn't have the page.
738		 */
739		if (fs.object == fs.first_object)
740			fs.first_m = fs.m;
741
742		/*
743		 * Move on to the next object.  Lock the next object before
744		 * unlocking the current one.
745		 */
746		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
747		next_object = fs.object->backing_object;
748		if (next_object == NULL) {
749			/*
750			 * If there's no object left, fill the page in the top
751			 * object with zeros.
752			 */
753			if (fs.object != fs.first_object) {
754				vm_object_pip_wakeup(fs.object);
755				VM_OBJECT_WUNLOCK(fs.object);
756
757				fs.object = fs.first_object;
758				fs.pindex = fs.first_pindex;
759				fs.m = fs.first_m;
760				VM_OBJECT_WLOCK(fs.object);
761			}
762			fs.first_m = NULL;
763
764			/*
765			 * Zero the page if necessary and mark it valid.
766			 */
767			if ((fs.m->flags & PG_ZERO) == 0) {
768				pmap_zero_page(fs.m);
769			} else {
770				PCPU_INC(cnt.v_ozfod);
771			}
772			PCPU_INC(cnt.v_zfod);
773			fs.m->valid = VM_PAGE_BITS_ALL;
774			/* Don't try to prefault neighboring pages. */
775			faultcount = 1;
776			break;	/* break to PAGE HAS BEEN FOUND */
777		} else {
778			KASSERT(fs.object != next_object,
779			    ("object loop %p", next_object));
780			VM_OBJECT_WLOCK(next_object);
781			vm_object_pip_add(next_object, 1);
782			if (fs.object != fs.first_object)
783				vm_object_pip_wakeup(fs.object);
784			VM_OBJECT_WUNLOCK(fs.object);
785			fs.object = next_object;
786		}
787	}
788
789	vm_page_assert_xbusied(fs.m);
790
791	/*
792	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
793	 * is held.]
794	 */
795
796	/*
797	 * If the page is being written, but isn't already owned by the
798	 * top-level object, we have to copy it into a new page owned by the
799	 * top-level object.
800	 */
801	if (fs.object != fs.first_object) {
802		/*
803		 * We only really need to copy if we want to write it.
804		 */
805		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
806			/*
807			 * This allows pages to be virtually copied from a
808			 * backing_object into the first_object, where the
809			 * backing object has no other refs to it, and cannot
810			 * gain any more refs.  Instead of a bcopy, we just
811			 * move the page from the backing object to the
812			 * first object.  Note that we must mark the page
813			 * dirty in the first object so that it will go out
814			 * to swap when needed.
815			 */
816			is_first_object_locked = FALSE;
817			if (
818				/*
819				 * Only one shadow object
820				 */
821				(fs.object->shadow_count == 1) &&
822				/*
823				 * No COW refs, except us
824				 */
825				(fs.object->ref_count == 1) &&
826				/*
827				 * No one else can look this object up
828				 */
829				(fs.object->handle == NULL) &&
830				/*
831				 * No other ways to look the object up
832				 */
833				((fs.object->type == OBJT_DEFAULT) ||
834				 (fs.object->type == OBJT_SWAP)) &&
835			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
836				/*
837				 * We don't chase down the shadow chain
838				 */
839			    fs.object == fs.first_object->backing_object) {
840				/*
841				 * get rid of the unnecessary page
842				 */
843				vm_page_lock(fs.first_m);
844				vm_page_free(fs.first_m);
845				vm_page_unlock(fs.first_m);
846				/*
847				 * grab the page and put it into the
848				 * process'es object.  The page is
849				 * automatically made dirty.
850				 */
851				if (vm_page_rename(fs.m, fs.first_object,
852				    fs.first_pindex)) {
853					unlock_and_deallocate(&fs);
854					goto RetryFault;
855				}
856#if VM_NRESERVLEVEL > 0
857				/*
858				 * Rename the reservation.
859				 */
860				vm_reserv_rename(fs.m, fs.first_object,
861				    fs.object, OFF_TO_IDX(
862				    fs.first_object->backing_object_offset));
863#endif
864				vm_page_xbusy(fs.m);
865				fs.first_m = fs.m;
866				fs.m = NULL;
867				PCPU_INC(cnt.v_cow_optim);
868			} else {
869				/*
870				 * Oh, well, lets copy it.
871				 */
872				pmap_copy_page(fs.m, fs.first_m);
873				fs.first_m->valid = VM_PAGE_BITS_ALL;
874				if (wired && (fault_flags &
875				    VM_FAULT_WIRE) == 0) {
876					vm_page_lock(fs.first_m);
877					vm_page_wire(fs.first_m);
878					vm_page_unlock(fs.first_m);
879
880					vm_page_lock(fs.m);
881					vm_page_unwire(fs.m, FALSE);
882					vm_page_unlock(fs.m);
883				}
884				/*
885				 * We no longer need the old page or object.
886				 */
887				release_page(&fs);
888			}
889			/*
890			 * fs.object != fs.first_object due to above
891			 * conditional
892			 */
893			vm_object_pip_wakeup(fs.object);
894			VM_OBJECT_WUNLOCK(fs.object);
895			/*
896			 * Only use the new page below...
897			 */
898			fs.object = fs.first_object;
899			fs.pindex = fs.first_pindex;
900			fs.m = fs.first_m;
901			if (!is_first_object_locked)
902				VM_OBJECT_WLOCK(fs.object);
903			PCPU_INC(cnt.v_cow_faults);
904			curthread->td_cow++;
905		} else {
906			prot &= ~VM_PROT_WRITE;
907		}
908	}
909
910	/*
911	 * We must verify that the maps have not changed since our last
912	 * lookup.
913	 */
914	if (!fs.lookup_still_valid) {
915		vm_object_t retry_object;
916		vm_pindex_t retry_pindex;
917		vm_prot_t retry_prot;
918
919		if (!vm_map_trylock_read(fs.map)) {
920			release_page(&fs);
921			unlock_and_deallocate(&fs);
922			goto RetryFault;
923		}
924		fs.lookup_still_valid = TRUE;
925		if (fs.map->timestamp != map_generation) {
926			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
927			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
928
929			/*
930			 * If we don't need the page any longer, put it on the inactive
931			 * list (the easiest thing to do here).  If no one needs it,
932			 * pageout will grab it eventually.
933			 */
934			if (result != KERN_SUCCESS) {
935				release_page(&fs);
936				unlock_and_deallocate(&fs);
937
938				/*
939				 * If retry of map lookup would have blocked then
940				 * retry fault from start.
941				 */
942				if (result == KERN_FAILURE)
943					goto RetryFault;
944				return (result);
945			}
946			if ((retry_object != fs.first_object) ||
947			    (retry_pindex != fs.first_pindex)) {
948				release_page(&fs);
949				unlock_and_deallocate(&fs);
950				goto RetryFault;
951			}
952
953			/*
954			 * Check whether the protection has changed or the object has
955			 * been copied while we left the map unlocked. Changing from
956			 * read to write permission is OK - we leave the page
957			 * write-protected, and catch the write fault. Changing from
958			 * write to read permission means that we can't mark the page
959			 * write-enabled after all.
960			 */
961			prot &= retry_prot;
962		}
963	}
964	/*
965	 * If the page was filled by a pager, update the map entry's
966	 * last read offset.  Since the pager does not return the
967	 * actual set of pages that it read, this update is based on
968	 * the requested set.  Typically, the requested and actual
969	 * sets are the same.
970	 *
971	 * XXX The following assignment modifies the map
972	 * without holding a write lock on it.
973	 */
974	if (hardfault)
975		fs.entry->next_read = fs.pindex + faultcount - reqpage;
976
977	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
978	vm_page_assert_xbusied(fs.m);
979
980	/*
981	 * Page must be completely valid or it is not fit to
982	 * map into user space.  vm_pager_get_pages() ensures this.
983	 */
984	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
985	    ("vm_fault: page %p partially invalid", fs.m));
986	VM_OBJECT_WUNLOCK(fs.object);
987
988	/*
989	 * Put this page into the physical map.  We had to do the unlock above
990	 * because pmap_enter() may sleep.  We don't put the page
991	 * back on the active queue until later so that the pageout daemon
992	 * won't find it (yet).
993	 */
994	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
995	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
996	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
997	    wired == 0)
998		vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
999	VM_OBJECT_WLOCK(fs.object);
1000	vm_page_lock(fs.m);
1001
1002	/*
1003	 * If the page is not wired down, then put it where the pageout daemon
1004	 * can find it.
1005	 */
1006	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1007		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1008		vm_page_wire(fs.m);
1009	} else
1010		vm_page_activate(fs.m);
1011	if (m_hold != NULL) {
1012		*m_hold = fs.m;
1013		vm_page_hold(fs.m);
1014	}
1015	vm_page_unlock(fs.m);
1016	vm_page_xunbusy(fs.m);
1017
1018	/*
1019	 * Unlock everything, and return
1020	 */
1021	unlock_and_deallocate(&fs);
1022	if (hardfault) {
1023		PCPU_INC(cnt.v_io_faults);
1024		curthread->td_ru.ru_majflt++;
1025	} else
1026		curthread->td_ru.ru_minflt++;
1027
1028	return (KERN_SUCCESS);
1029}
1030
1031/*
1032 * Speed up the reclamation of up to "distance" pages that precede the
1033 * faulting pindex within the first object of the shadow chain.
1034 */
1035static void
1036vm_fault_cache_behind(const struct faultstate *fs, int distance)
1037{
1038	vm_object_t first_object, object;
1039	vm_page_t m, m_prev;
1040	vm_pindex_t pindex;
1041
1042	object = fs->object;
1043	VM_OBJECT_ASSERT_WLOCKED(object);
1044	first_object = fs->first_object;
1045	if (first_object != object) {
1046		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1047			VM_OBJECT_WUNLOCK(object);
1048			VM_OBJECT_WLOCK(first_object);
1049			VM_OBJECT_WLOCK(object);
1050		}
1051	}
1052	/* Neither fictitious nor unmanaged pages can be cached. */
1053	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1054		if (fs->first_pindex < distance)
1055			pindex = 0;
1056		else
1057			pindex = fs->first_pindex - distance;
1058		if (pindex < OFF_TO_IDX(fs->entry->offset))
1059			pindex = OFF_TO_IDX(fs->entry->offset);
1060		m = first_object != object ? fs->first_m : fs->m;
1061		vm_page_assert_xbusied(m);
1062		m_prev = vm_page_prev(m);
1063		while ((m = m_prev) != NULL && m->pindex >= pindex &&
1064		    m->valid == VM_PAGE_BITS_ALL) {
1065			m_prev = vm_page_prev(m);
1066			if (vm_page_busied(m))
1067				continue;
1068			vm_page_lock(m);
1069			if (m->hold_count == 0 && m->wire_count == 0) {
1070				pmap_remove_all(m);
1071				vm_page_aflag_clear(m, PGA_REFERENCED);
1072				if (m->dirty != 0)
1073					vm_page_deactivate(m);
1074				else
1075					vm_page_cache(m);
1076			}
1077			vm_page_unlock(m);
1078		}
1079	}
1080	if (first_object != object)
1081		VM_OBJECT_WUNLOCK(first_object);
1082}
1083
1084/*
1085 * vm_fault_prefault provides a quick way of clustering
1086 * pagefaults into a processes address space.  It is a "cousin"
1087 * of vm_map_pmap_enter, except it runs at page fault time instead
1088 * of mmap time.
1089 */
1090static void
1091vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1092    int faultcount, int reqpage)
1093{
1094	pmap_t pmap;
1095	vm_map_entry_t entry;
1096	vm_object_t backing_object, lobject;
1097	vm_offset_t addr, starta;
1098	vm_pindex_t pindex;
1099	vm_page_t m;
1100	int backward, forward, i;
1101
1102	pmap = fs->map->pmap;
1103	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1104		return;
1105
1106	if (faultcount > 0) {
1107		backward = reqpage;
1108		forward = faultcount - reqpage - 1;
1109	} else {
1110		backward = PFBAK;
1111		forward = PFFOR;
1112	}
1113	entry = fs->entry;
1114
1115	starta = addra - backward * PAGE_SIZE;
1116	if (starta < entry->start) {
1117		starta = entry->start;
1118	} else if (starta > addra) {
1119		starta = 0;
1120	}
1121
1122	/*
1123	 * Generate the sequence of virtual addresses that are candidates for
1124	 * prefaulting in an outward spiral from the faulting virtual address,
1125	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1126	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1127	 * If the candidate address doesn't have a backing physical page, then
1128	 * the loop immediately terminates.
1129	 */
1130	for (i = 0; i < 2 * imax(backward, forward); i++) {
1131		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1132		    PAGE_SIZE);
1133		if (addr > addra + forward * PAGE_SIZE)
1134			addr = 0;
1135
1136		if (addr < starta || addr >= entry->end)
1137			continue;
1138
1139		if (!pmap_is_prefaultable(pmap, addr))
1140			continue;
1141
1142		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1143		lobject = entry->object.vm_object;
1144		VM_OBJECT_RLOCK(lobject);
1145		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1146		    lobject->type == OBJT_DEFAULT &&
1147		    (backing_object = lobject->backing_object) != NULL) {
1148			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1149			    0, ("vm_fault_prefault: unaligned object offset"));
1150			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1151			VM_OBJECT_RLOCK(backing_object);
1152			VM_OBJECT_RUNLOCK(lobject);
1153			lobject = backing_object;
1154		}
1155		if (m == NULL) {
1156			VM_OBJECT_RUNLOCK(lobject);
1157			break;
1158		}
1159		if (m->valid == VM_PAGE_BITS_ALL &&
1160		    (m->flags & PG_FICTITIOUS) == 0)
1161			pmap_enter_quick(pmap, addr, m, entry->protection);
1162		VM_OBJECT_RUNLOCK(lobject);
1163	}
1164}
1165
1166/*
1167 * Hold each of the physical pages that are mapped by the specified range of
1168 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1169 * and allow the specified types of access, "prot".  If all of the implied
1170 * pages are successfully held, then the number of held pages is returned
1171 * together with pointers to those pages in the array "ma".  However, if any
1172 * of the pages cannot be held, -1 is returned.
1173 */
1174int
1175vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1176    vm_prot_t prot, vm_page_t *ma, int max_count)
1177{
1178	vm_offset_t end, va;
1179	vm_page_t *mp;
1180	int count;
1181	boolean_t pmap_failed;
1182
1183	if (len == 0)
1184		return (0);
1185	end = round_page(addr + len);
1186	addr = trunc_page(addr);
1187
1188	/*
1189	 * Check for illegal addresses.
1190	 */
1191	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1192		return (-1);
1193
1194	if (atop(end - addr) > max_count)
1195		panic("vm_fault_quick_hold_pages: count > max_count");
1196	count = atop(end - addr);
1197
1198	/*
1199	 * Most likely, the physical pages are resident in the pmap, so it is
1200	 * faster to try pmap_extract_and_hold() first.
1201	 */
1202	pmap_failed = FALSE;
1203	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1204		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1205		if (*mp == NULL)
1206			pmap_failed = TRUE;
1207		else if ((prot & VM_PROT_WRITE) != 0 &&
1208		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1209			/*
1210			 * Explicitly dirty the physical page.  Otherwise, the
1211			 * caller's changes may go unnoticed because they are
1212			 * performed through an unmanaged mapping or by a DMA
1213			 * operation.
1214			 *
1215			 * The object lock is not held here.
1216			 * See vm_page_clear_dirty_mask().
1217			 */
1218			vm_page_dirty(*mp);
1219		}
1220	}
1221	if (pmap_failed) {
1222		/*
1223		 * One or more pages could not be held by the pmap.  Either no
1224		 * page was mapped at the specified virtual address or that
1225		 * mapping had insufficient permissions.  Attempt to fault in
1226		 * and hold these pages.
1227		 */
1228		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1229			if (*mp == NULL && vm_fault_hold(map, va, prot,
1230			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1231				goto error;
1232	}
1233	return (count);
1234error:
1235	for (mp = ma; mp < ma + count; mp++)
1236		if (*mp != NULL) {
1237			vm_page_lock(*mp);
1238			vm_page_unhold(*mp);
1239			vm_page_unlock(*mp);
1240		}
1241	return (-1);
1242}
1243
1244/*
1245 *	Routine:
1246 *		vm_fault_copy_entry
1247 *	Function:
1248 *		Create new shadow object backing dst_entry with private copy of
1249 *		all underlying pages. When src_entry is equal to dst_entry,
1250 *		function implements COW for wired-down map entry. Otherwise,
1251 *		it forks wired entry into dst_map.
1252 *
1253 *	In/out conditions:
1254 *		The source and destination maps must be locked for write.
1255 *		The source map entry must be wired down (or be a sharing map
1256 *		entry corresponding to a main map entry that is wired down).
1257 */
1258void
1259vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1260    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1261    vm_ooffset_t *fork_charge)
1262{
1263	vm_object_t backing_object, dst_object, object, src_object;
1264	vm_pindex_t dst_pindex, pindex, src_pindex;
1265	vm_prot_t access, prot;
1266	vm_offset_t vaddr;
1267	vm_page_t dst_m;
1268	vm_page_t src_m;
1269	boolean_t upgrade;
1270
1271#ifdef	lint
1272	src_map++;
1273#endif	/* lint */
1274
1275	upgrade = src_entry == dst_entry;
1276	access = prot = dst_entry->protection;
1277
1278	src_object = src_entry->object.vm_object;
1279	src_pindex = OFF_TO_IDX(src_entry->offset);
1280
1281	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1282		dst_object = src_object;
1283		vm_object_reference(dst_object);
1284	} else {
1285		/*
1286		 * Create the top-level object for the destination entry. (Doesn't
1287		 * actually shadow anything - we copy the pages directly.)
1288		 */
1289		dst_object = vm_object_allocate(OBJT_DEFAULT,
1290		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1291#if VM_NRESERVLEVEL > 0
1292		dst_object->flags |= OBJ_COLORED;
1293		dst_object->pg_color = atop(dst_entry->start);
1294#endif
1295	}
1296
1297	VM_OBJECT_WLOCK(dst_object);
1298	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1299	    ("vm_fault_copy_entry: vm_object not NULL"));
1300	if (src_object != dst_object) {
1301		dst_entry->object.vm_object = dst_object;
1302		dst_entry->offset = 0;
1303		dst_object->charge = dst_entry->end - dst_entry->start;
1304	}
1305	if (fork_charge != NULL) {
1306		KASSERT(dst_entry->cred == NULL,
1307		    ("vm_fault_copy_entry: leaked swp charge"));
1308		dst_object->cred = curthread->td_ucred;
1309		crhold(dst_object->cred);
1310		*fork_charge += dst_object->charge;
1311	} else if (dst_object->cred == NULL) {
1312		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1313		    dst_entry));
1314		dst_object->cred = dst_entry->cred;
1315		dst_entry->cred = NULL;
1316	}
1317
1318	/*
1319	 * If not an upgrade, then enter the mappings in the pmap as
1320	 * read and/or execute accesses.  Otherwise, enter them as
1321	 * write accesses.
1322	 *
1323	 * A writeable large page mapping is only created if all of
1324	 * the constituent small page mappings are modified. Marking
1325	 * PTEs as modified on inception allows promotion to happen
1326	 * without taking potentially large number of soft faults.
1327	 */
1328	if (!upgrade)
1329		access &= ~VM_PROT_WRITE;
1330
1331	/*
1332	 * Loop through all of the virtual pages within the entry's
1333	 * range, copying each page from the source object to the
1334	 * destination object.  Since the source is wired, those pages
1335	 * must exist.  In contrast, the destination is pageable.
1336	 * Since the destination object does share any backing storage
1337	 * with the source object, all of its pages must be dirtied,
1338	 * regardless of whether they can be written.
1339	 */
1340	for (vaddr = dst_entry->start, dst_pindex = 0;
1341	    vaddr < dst_entry->end;
1342	    vaddr += PAGE_SIZE, dst_pindex++) {
1343again:
1344		/*
1345		 * Find the page in the source object, and copy it in.
1346		 * Because the source is wired down, the page will be
1347		 * in memory.
1348		 */
1349		if (src_object != dst_object)
1350			VM_OBJECT_RLOCK(src_object);
1351		object = src_object;
1352		pindex = src_pindex + dst_pindex;
1353		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1354		    (backing_object = object->backing_object) != NULL) {
1355			/*
1356			 * Unless the source mapping is read-only or
1357			 * it is presently being upgraded from
1358			 * read-only, the first object in the shadow
1359			 * chain should provide all of the pages.  In
1360			 * other words, this loop body should never be
1361			 * executed when the source mapping is already
1362			 * read/write.
1363			 */
1364			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1365			    upgrade,
1366			    ("vm_fault_copy_entry: main object missing page"));
1367
1368			VM_OBJECT_RLOCK(backing_object);
1369			pindex += OFF_TO_IDX(object->backing_object_offset);
1370			if (object != dst_object)
1371				VM_OBJECT_RUNLOCK(object);
1372			object = backing_object;
1373		}
1374		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1375
1376		if (object != dst_object) {
1377			/*
1378			 * Allocate a page in the destination object.
1379			 */
1380			dst_m = vm_page_alloc(dst_object, (src_object ==
1381			    dst_object ? src_pindex : 0) + dst_pindex,
1382			    VM_ALLOC_NORMAL);
1383			if (dst_m == NULL) {
1384				VM_OBJECT_WUNLOCK(dst_object);
1385				VM_OBJECT_RUNLOCK(object);
1386				VM_WAIT;
1387				VM_OBJECT_WLOCK(dst_object);
1388				goto again;
1389			}
1390			pmap_copy_page(src_m, dst_m);
1391			VM_OBJECT_RUNLOCK(object);
1392			dst_m->valid = VM_PAGE_BITS_ALL;
1393			dst_m->dirty = VM_PAGE_BITS_ALL;
1394		} else {
1395			dst_m = src_m;
1396			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1397				goto again;
1398			vm_page_xbusy(dst_m);
1399			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1400			    ("invalid dst page %p", dst_m));
1401		}
1402		VM_OBJECT_WUNLOCK(dst_object);
1403
1404		/*
1405		 * Enter it in the pmap. If a wired, copy-on-write
1406		 * mapping is being replaced by a write-enabled
1407		 * mapping, then wire that new mapping.
1408		 */
1409		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1410		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1411
1412		/*
1413		 * Mark it no longer busy, and put it on the active list.
1414		 */
1415		VM_OBJECT_WLOCK(dst_object);
1416
1417		if (upgrade) {
1418			if (src_m != dst_m) {
1419				vm_page_lock(src_m);
1420				vm_page_unwire(src_m, 0);
1421				vm_page_unlock(src_m);
1422				vm_page_lock(dst_m);
1423				vm_page_wire(dst_m);
1424				vm_page_unlock(dst_m);
1425			} else {
1426				KASSERT(dst_m->wire_count > 0,
1427				    ("dst_m %p is not wired", dst_m));
1428			}
1429		} else {
1430			vm_page_lock(dst_m);
1431			vm_page_activate(dst_m);
1432			vm_page_unlock(dst_m);
1433		}
1434		vm_page_xunbusy(dst_m);
1435	}
1436	VM_OBJECT_WUNLOCK(dst_object);
1437	if (upgrade) {
1438		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1439		vm_object_deallocate(src_object);
1440	}
1441}
1442
1443
1444/*
1445 * This routine checks around the requested page for other pages that
1446 * might be able to be faulted in.  This routine brackets the viable
1447 * pages for the pages to be paged in.
1448 *
1449 * Inputs:
1450 *	m, rbehind, rahead
1451 *
1452 * Outputs:
1453 *  marray (array of vm_page_t), reqpage (index of requested page)
1454 *
1455 * Return value:
1456 *  number of pages in marray
1457 */
1458static int
1459vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1460	vm_page_t m;
1461	int rbehind;
1462	int rahead;
1463	vm_page_t *marray;
1464	int *reqpage;
1465{
1466	int i,j;
1467	vm_object_t object;
1468	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1469	vm_page_t rtm;
1470	int cbehind, cahead;
1471
1472	VM_OBJECT_ASSERT_WLOCKED(m->object);
1473
1474	object = m->object;
1475	pindex = m->pindex;
1476	cbehind = cahead = 0;
1477
1478	/*
1479	 * if the requested page is not available, then give up now
1480	 */
1481	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1482		return 0;
1483	}
1484
1485	if ((cbehind == 0) && (cahead == 0)) {
1486		*reqpage = 0;
1487		marray[0] = m;
1488		return 1;
1489	}
1490
1491	if (rahead > cahead) {
1492		rahead = cahead;
1493	}
1494
1495	if (rbehind > cbehind) {
1496		rbehind = cbehind;
1497	}
1498
1499	/*
1500	 * scan backward for the read behind pages -- in memory
1501	 */
1502	if (pindex > 0) {
1503		if (rbehind > pindex) {
1504			rbehind = pindex;
1505			startpindex = 0;
1506		} else {
1507			startpindex = pindex - rbehind;
1508		}
1509
1510		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1511		    rtm->pindex >= startpindex)
1512			startpindex = rtm->pindex + 1;
1513
1514		/* tpindex is unsigned; beware of numeric underflow. */
1515		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1516		    tpindex < pindex; i++, tpindex--) {
1517
1518			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1519			    VM_ALLOC_IFNOTCACHED);
1520			if (rtm == NULL) {
1521				/*
1522				 * Shift the allocated pages to the
1523				 * beginning of the array.
1524				 */
1525				for (j = 0; j < i; j++) {
1526					marray[j] = marray[j + tpindex + 1 -
1527					    startpindex];
1528				}
1529				break;
1530			}
1531
1532			marray[tpindex - startpindex] = rtm;
1533		}
1534	} else {
1535		startpindex = 0;
1536		i = 0;
1537	}
1538
1539	marray[i] = m;
1540	/* page offset of the required page */
1541	*reqpage = i;
1542
1543	tpindex = pindex + 1;
1544	i++;
1545
1546	/*
1547	 * scan forward for the read ahead pages
1548	 */
1549	endpindex = tpindex + rahead;
1550	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1551		endpindex = rtm->pindex;
1552	if (endpindex > object->size)
1553		endpindex = object->size;
1554
1555	for (; tpindex < endpindex; i++, tpindex++) {
1556
1557		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1558		    VM_ALLOC_IFNOTCACHED);
1559		if (rtm == NULL) {
1560			break;
1561		}
1562
1563		marray[i] = rtm;
1564	}
1565
1566	/* return number of pages */
1567	return i;
1568}
1569
1570/*
1571 * Block entry into the machine-independent layer's page fault handler by
1572 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1573 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1574 * spurious page faults.
1575 */
1576int
1577vm_fault_disable_pagefaults(void)
1578{
1579
1580	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1581}
1582
1583void
1584vm_fault_enable_pagefaults(int save)
1585{
1586
1587	curthread_pflags_restore(save);
1588}
1589