vm_fault.c revision 281001
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD: stable/10/sys/vm/vm_fault.c 281001 2015-04-02 19:10:33Z alc $");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/proc.h>
85#include <sys/resourcevar.h>
86#include <sys/rwlock.h>
87#include <sys/sysctl.h>
88#include <sys/vmmeter.h>
89#include <sys/vnode.h>
90#ifdef KTRACE
91#include <sys/ktrace.h>
92#endif
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/pmap.h>
97#include <vm/vm_map.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_pageout.h>
101#include <vm/vm_kern.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_extern.h>
104#include <vm/vm_reserv.h>
105
106#define PFBAK 4
107#define PFFOR 4
108
109static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
110
111#define	VM_FAULT_READ_BEHIND	8
112#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116
117struct faultstate {
118	vm_page_t m;
119	vm_object_t object;
120	vm_pindex_t pindex;
121	vm_page_t first_m;
122	vm_object_t	first_object;
123	vm_pindex_t first_pindex;
124	vm_map_t map;
125	vm_map_entry_t entry;
126	int lookup_still_valid;
127	struct vnode *vp;
128};
129
130static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
131static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132	    int faultcount, int reqpage);
133
134static inline void
135release_page(struct faultstate *fs)
136{
137
138	vm_page_xunbusy(fs->m);
139	vm_page_lock(fs->m);
140	vm_page_deactivate(fs->m);
141	vm_page_unlock(fs->m);
142	fs->m = NULL;
143}
144
145static inline void
146unlock_map(struct faultstate *fs)
147{
148
149	if (fs->lookup_still_valid) {
150		vm_map_lookup_done(fs->map, fs->entry);
151		fs->lookup_still_valid = FALSE;
152	}
153}
154
155static void
156unlock_and_deallocate(struct faultstate *fs)
157{
158
159	vm_object_pip_wakeup(fs->object);
160	VM_OBJECT_WUNLOCK(fs->object);
161	if (fs->object != fs->first_object) {
162		VM_OBJECT_WLOCK(fs->first_object);
163		vm_page_lock(fs->first_m);
164		vm_page_free(fs->first_m);
165		vm_page_unlock(fs->first_m);
166		vm_object_pip_wakeup(fs->first_object);
167		VM_OBJECT_WUNLOCK(fs->first_object);
168		fs->first_m = NULL;
169	}
170	vm_object_deallocate(fs->first_object);
171	unlock_map(fs);
172	if (fs->vp != NULL) {
173		vput(fs->vp);
174		fs->vp = NULL;
175	}
176}
177
178static void
179vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
180    vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
181{
182	boolean_t need_dirty;
183
184	if (((prot & VM_PROT_WRITE) == 0 &&
185	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
186	    (m->oflags & VPO_UNMANAGED) != 0)
187		return;
188
189	VM_OBJECT_ASSERT_LOCKED(m->object);
190
191	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
192	    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
193	    (fault_flags & VM_FAULT_DIRTY) != 0;
194
195	if (set_wd)
196		vm_object_set_writeable_dirty(m->object);
197	else
198		/*
199		 * If two callers of vm_fault_dirty() with set_wd ==
200		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
201		 * flag set, other with flag clear, race, it is
202		 * possible for the no-NOSYNC thread to see m->dirty
203		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
204		 * around manipulation of VPO_NOSYNC and
205		 * vm_page_dirty() call, to avoid the race and keep
206		 * m->oflags consistent.
207		 */
208		vm_page_lock(m);
209
210	/*
211	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
212	 * if the page is already dirty to prevent data written with
213	 * the expectation of being synced from not being synced.
214	 * Likewise if this entry does not request NOSYNC then make
215	 * sure the page isn't marked NOSYNC.  Applications sharing
216	 * data should use the same flags to avoid ping ponging.
217	 */
218	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
219		if (m->dirty == 0) {
220			m->oflags |= VPO_NOSYNC;
221		}
222	} else {
223		m->oflags &= ~VPO_NOSYNC;
224	}
225
226	/*
227	 * If the fault is a write, we know that this page is being
228	 * written NOW so dirty it explicitly to save on
229	 * pmap_is_modified() calls later.
230	 *
231	 * Also tell the backing pager, if any, that it should remove
232	 * any swap backing since the page is now dirty.
233	 */
234	if (need_dirty)
235		vm_page_dirty(m);
236	if (!set_wd)
237		vm_page_unlock(m);
238	if (need_dirty)
239		vm_pager_page_unswapped(m);
240}
241
242/*
243 * TRYPAGER - used by vm_fault to calculate whether the pager for the
244 *	      current object *might* contain the page.
245 *
246 *	      default objects are zero-fill, there is no real pager.
247 */
248#define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
249			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
250
251/*
252 *	vm_fault:
253 *
254 *	Handle a page fault occurring at the given address,
255 *	requiring the given permissions, in the map specified.
256 *	If successful, the page is inserted into the
257 *	associated physical map.
258 *
259 *	NOTE: the given address should be truncated to the
260 *	proper page address.
261 *
262 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
263 *	a standard error specifying why the fault is fatal is returned.
264 *
265 *	The map in question must be referenced, and remains so.
266 *	Caller may hold no locks.
267 */
268int
269vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
270    int fault_flags)
271{
272	struct thread *td;
273	int result;
274
275	td = curthread;
276	if ((td->td_pflags & TDP_NOFAULTING) != 0)
277		return (KERN_PROTECTION_FAILURE);
278#ifdef KTRACE
279	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
280		ktrfault(vaddr, fault_type);
281#endif
282	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
283	    NULL);
284#ifdef KTRACE
285	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
286		ktrfaultend(result);
287#endif
288	return (result);
289}
290
291int
292vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
293    int fault_flags, vm_page_t *m_hold)
294{
295	vm_prot_t prot;
296	long ahead, behind;
297	int alloc_req, era, faultcount, nera, reqpage, result;
298	boolean_t growstack, is_first_object_locked, wired;
299	int map_generation;
300	vm_object_t next_object;
301	vm_page_t marray[VM_FAULT_READ_MAX];
302	int hardfault;
303	struct faultstate fs;
304	struct vnode *vp;
305	vm_page_t m;
306	int locked, error;
307
308	hardfault = 0;
309	growstack = TRUE;
310	PCPU_INC(cnt.v_vm_faults);
311	fs.vp = NULL;
312	faultcount = reqpage = 0;
313
314RetryFault:;
315
316	/*
317	 * Find the backing store object and offset into it to begin the
318	 * search.
319	 */
320	fs.map = map;
321	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
322	    &fs.first_object, &fs.first_pindex, &prot, &wired);
323	if (result != KERN_SUCCESS) {
324		if (growstack && result == KERN_INVALID_ADDRESS &&
325		    map != kernel_map) {
326			result = vm_map_growstack(curproc, vaddr);
327			if (result != KERN_SUCCESS)
328				return (KERN_FAILURE);
329			growstack = FALSE;
330			goto RetryFault;
331		}
332		return (result);
333	}
334
335	map_generation = fs.map->timestamp;
336
337	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
338		panic("vm_fault: fault on nofault entry, addr: %lx",
339		    (u_long)vaddr);
340	}
341
342	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
343	    fs.entry->wiring_thread != curthread) {
344		vm_map_unlock_read(fs.map);
345		vm_map_lock(fs.map);
346		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
347		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
348			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
349			vm_map_unlock_and_wait(fs.map, 0);
350		} else
351			vm_map_unlock(fs.map);
352		goto RetryFault;
353	}
354
355	if (wired)
356		fault_type = prot | (fault_type & VM_PROT_COPY);
357
358	if (fs.vp == NULL /* avoid locked vnode leak */ &&
359	    (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 &&
360	    /* avoid calling vm_object_set_writeable_dirty() */
361	    ((prot & VM_PROT_WRITE) == 0 ||
362	    (fs.first_object->type != OBJT_VNODE &&
363	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
364	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
365		VM_OBJECT_RLOCK(fs.first_object);
366		if ((prot & VM_PROT_WRITE) != 0 &&
367		    (fs.first_object->type == OBJT_VNODE ||
368		    (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
369		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
370			goto fast_failed;
371		m = vm_page_lookup(fs.first_object, fs.first_pindex);
372		/* A busy page can be mapped for read|execute access. */
373		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
374		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
375			goto fast_failed;
376		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
377		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
378		   0), 0);
379		if (result != KERN_SUCCESS)
380			goto fast_failed;
381		if (m_hold != NULL) {
382			*m_hold = m;
383			vm_page_lock(m);
384			vm_page_hold(m);
385			vm_page_unlock(m);
386		}
387		vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
388		    FALSE);
389		VM_OBJECT_RUNLOCK(fs.first_object);
390		if (!wired)
391			vm_fault_prefault(&fs, vaddr, 0, 0);
392		vm_map_lookup_done(fs.map, fs.entry);
393		curthread->td_ru.ru_minflt++;
394		return (KERN_SUCCESS);
395fast_failed:
396		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
397			VM_OBJECT_RUNLOCK(fs.first_object);
398			VM_OBJECT_WLOCK(fs.first_object);
399		}
400	} else {
401		VM_OBJECT_WLOCK(fs.first_object);
402	}
403
404	/*
405	 * Make a reference to this object to prevent its disposal while we
406	 * are messing with it.  Once we have the reference, the map is free
407	 * to be diddled.  Since objects reference their shadows (and copies),
408	 * they will stay around as well.
409	 *
410	 * Bump the paging-in-progress count to prevent size changes (e.g.
411	 * truncation operations) during I/O.  This must be done after
412	 * obtaining the vnode lock in order to avoid possible deadlocks.
413	 */
414	vm_object_reference_locked(fs.first_object);
415	vm_object_pip_add(fs.first_object, 1);
416
417	fs.lookup_still_valid = TRUE;
418
419	fs.first_m = NULL;
420
421	/*
422	 * Search for the page at object/offset.
423	 */
424	fs.object = fs.first_object;
425	fs.pindex = fs.first_pindex;
426	while (TRUE) {
427		/*
428		 * If the object is dead, we stop here
429		 */
430		if (fs.object->flags & OBJ_DEAD) {
431			unlock_and_deallocate(&fs);
432			return (KERN_PROTECTION_FAILURE);
433		}
434
435		/*
436		 * See if page is resident
437		 */
438		fs.m = vm_page_lookup(fs.object, fs.pindex);
439		if (fs.m != NULL) {
440			/*
441			 * Wait/Retry if the page is busy.  We have to do this
442			 * if the page is either exclusive or shared busy
443			 * because the vm_pager may be using read busy for
444			 * pageouts (and even pageins if it is the vnode
445			 * pager), and we could end up trying to pagein and
446			 * pageout the same page simultaneously.
447			 *
448			 * We can theoretically allow the busy case on a read
449			 * fault if the page is marked valid, but since such
450			 * pages are typically already pmap'd, putting that
451			 * special case in might be more effort then it is
452			 * worth.  We cannot under any circumstances mess
453			 * around with a shared busied page except, perhaps,
454			 * to pmap it.
455			 */
456			if (vm_page_busied(fs.m)) {
457				/*
458				 * Reference the page before unlocking and
459				 * sleeping so that the page daemon is less
460				 * likely to reclaim it.
461				 */
462				vm_page_aflag_set(fs.m, PGA_REFERENCED);
463				if (fs.object != fs.first_object) {
464					if (!VM_OBJECT_TRYWLOCK(
465					    fs.first_object)) {
466						VM_OBJECT_WUNLOCK(fs.object);
467						VM_OBJECT_WLOCK(fs.first_object);
468						VM_OBJECT_WLOCK(fs.object);
469					}
470					vm_page_lock(fs.first_m);
471					vm_page_free(fs.first_m);
472					vm_page_unlock(fs.first_m);
473					vm_object_pip_wakeup(fs.first_object);
474					VM_OBJECT_WUNLOCK(fs.first_object);
475					fs.first_m = NULL;
476				}
477				unlock_map(&fs);
478				if (fs.m == vm_page_lookup(fs.object,
479				    fs.pindex)) {
480					vm_page_sleep_if_busy(fs.m, "vmpfw");
481				}
482				vm_object_pip_wakeup(fs.object);
483				VM_OBJECT_WUNLOCK(fs.object);
484				PCPU_INC(cnt.v_intrans);
485				vm_object_deallocate(fs.first_object);
486				goto RetryFault;
487			}
488			vm_page_lock(fs.m);
489			vm_page_remque(fs.m);
490			vm_page_unlock(fs.m);
491
492			/*
493			 * Mark page busy for other processes, and the
494			 * pagedaemon.  If it still isn't completely valid
495			 * (readable), jump to readrest, else break-out ( we
496			 * found the page ).
497			 */
498			vm_page_xbusy(fs.m);
499			if (fs.m->valid != VM_PAGE_BITS_ALL)
500				goto readrest;
501			break;
502		}
503
504		/*
505		 * Page is not resident, If this is the search termination
506		 * or the pager might contain the page, allocate a new page.
507		 */
508		if (TRYPAGER || fs.object == fs.first_object) {
509			if (fs.pindex >= fs.object->size) {
510				unlock_and_deallocate(&fs);
511				return (KERN_PROTECTION_FAILURE);
512			}
513
514			/*
515			 * Allocate a new page for this object/offset pair.
516			 *
517			 * Unlocked read of the p_flag is harmless. At
518			 * worst, the P_KILLED might be not observed
519			 * there, and allocation can fail, causing
520			 * restart and new reading of the p_flag.
521			 */
522			fs.m = NULL;
523			if (!vm_page_count_severe() || P_KILLED(curproc)) {
524#if VM_NRESERVLEVEL > 0
525				if ((fs.object->flags & OBJ_COLORED) == 0) {
526					fs.object->flags |= OBJ_COLORED;
527					fs.object->pg_color = atop(vaddr) -
528					    fs.pindex;
529				}
530#endif
531				alloc_req = P_KILLED(curproc) ?
532				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
533				if (fs.object->type != OBJT_VNODE &&
534				    fs.object->backing_object == NULL)
535					alloc_req |= VM_ALLOC_ZERO;
536				fs.m = vm_page_alloc(fs.object, fs.pindex,
537				    alloc_req);
538			}
539			if (fs.m == NULL) {
540				unlock_and_deallocate(&fs);
541				VM_WAITPFAULT;
542				goto RetryFault;
543			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
544				break;
545		}
546
547readrest:
548		/*
549		 * We have found a valid page or we have allocated a new page.
550		 * The page thus may not be valid or may not be entirely
551		 * valid.
552		 *
553		 * Attempt to fault-in the page if there is a chance that the
554		 * pager has it, and potentially fault in additional pages
555		 * at the same time.
556		 */
557		if (TRYPAGER) {
558			int rv;
559			u_char behavior = vm_map_entry_behavior(fs.entry);
560
561			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
562			    P_KILLED(curproc)) {
563				behind = 0;
564				ahead = 0;
565			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
566				behind = 0;
567				ahead = atop(fs.entry->end - vaddr) - 1;
568				if (ahead > VM_FAULT_READ_AHEAD_MAX)
569					ahead = VM_FAULT_READ_AHEAD_MAX;
570				if (fs.pindex == fs.entry->next_read)
571					vm_fault_cache_behind(&fs,
572					    VM_FAULT_READ_MAX);
573			} else {
574				/*
575				 * If this is a sequential page fault, then
576				 * arithmetically increase the number of pages
577				 * in the read-ahead window.  Otherwise, reset
578				 * the read-ahead window to its smallest size.
579				 */
580				behind = atop(vaddr - fs.entry->start);
581				if (behind > VM_FAULT_READ_BEHIND)
582					behind = VM_FAULT_READ_BEHIND;
583				ahead = atop(fs.entry->end - vaddr) - 1;
584				era = fs.entry->read_ahead;
585				if (fs.pindex == fs.entry->next_read) {
586					nera = era + behind;
587					if (nera > VM_FAULT_READ_AHEAD_MAX)
588						nera = VM_FAULT_READ_AHEAD_MAX;
589					behind = 0;
590					if (ahead > nera)
591						ahead = nera;
592					if (era == VM_FAULT_READ_AHEAD_MAX)
593						vm_fault_cache_behind(&fs,
594						    VM_FAULT_CACHE_BEHIND);
595				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
596					ahead = VM_FAULT_READ_AHEAD_MIN;
597				if (era != ahead)
598					fs.entry->read_ahead = ahead;
599			}
600
601			/*
602			 * Call the pager to retrieve the data, if any, after
603			 * releasing the lock on the map.  We hold a ref on
604			 * fs.object and the pages are exclusive busied.
605			 */
606			unlock_map(&fs);
607
608			if (fs.object->type == OBJT_VNODE) {
609				vp = fs.object->handle;
610				if (vp == fs.vp)
611					goto vnode_locked;
612				else if (fs.vp != NULL) {
613					vput(fs.vp);
614					fs.vp = NULL;
615				}
616				locked = VOP_ISLOCKED(vp);
617
618				if (locked != LK_EXCLUSIVE)
619					locked = LK_SHARED;
620				/* Do not sleep for vnode lock while fs.m is busy */
621				error = vget(vp, locked | LK_CANRECURSE |
622				    LK_NOWAIT, curthread);
623				if (error != 0) {
624					vhold(vp);
625					release_page(&fs);
626					unlock_and_deallocate(&fs);
627					error = vget(vp, locked | LK_RETRY |
628					    LK_CANRECURSE, curthread);
629					vdrop(vp);
630					fs.vp = vp;
631					KASSERT(error == 0,
632					    ("vm_fault: vget failed"));
633					goto RetryFault;
634				}
635				fs.vp = vp;
636			}
637vnode_locked:
638			KASSERT(fs.vp == NULL || !fs.map->system_map,
639			    ("vm_fault: vnode-backed object mapped by system map"));
640
641			/*
642			 * now we find out if any other pages should be paged
643			 * in at this time this routine checks to see if the
644			 * pages surrounding this fault reside in the same
645			 * object as the page for this fault.  If they do,
646			 * then they are faulted in also into the object.  The
647			 * array "marray" returned contains an array of
648			 * vm_page_t structs where one of them is the
649			 * vm_page_t passed to the routine.  The reqpage
650			 * return value is the index into the marray for the
651			 * vm_page_t passed to the routine.
652			 *
653			 * fs.m plus the additional pages are exclusive busied.
654			 */
655			faultcount = vm_fault_additional_pages(
656			    fs.m, behind, ahead, marray, &reqpage);
657
658			rv = faultcount ?
659			    vm_pager_get_pages(fs.object, marray, faultcount,
660				reqpage) : VM_PAGER_FAIL;
661
662			if (rv == VM_PAGER_OK) {
663				/*
664				 * Found the page. Leave it busy while we play
665				 * with it.
666				 */
667
668				/*
669				 * Relookup in case pager changed page. Pager
670				 * is responsible for disposition of old page
671				 * if moved.
672				 */
673				fs.m = vm_page_lookup(fs.object, fs.pindex);
674				if (!fs.m) {
675					unlock_and_deallocate(&fs);
676					goto RetryFault;
677				}
678
679				hardfault++;
680				break; /* break to PAGE HAS BEEN FOUND */
681			}
682			/*
683			 * Remove the bogus page (which does not exist at this
684			 * object/offset); before doing so, we must get back
685			 * our object lock to preserve our invariant.
686			 *
687			 * Also wake up any other process that may want to bring
688			 * in this page.
689			 *
690			 * If this is the top-level object, we must leave the
691			 * busy page to prevent another process from rushing
692			 * past us, and inserting the page in that object at
693			 * the same time that we are.
694			 */
695			if (rv == VM_PAGER_ERROR)
696				printf("vm_fault: pager read error, pid %d (%s)\n",
697				    curproc->p_pid, curproc->p_comm);
698			/*
699			 * Data outside the range of the pager or an I/O error
700			 */
701			/*
702			 * XXX - the check for kernel_map is a kludge to work
703			 * around having the machine panic on a kernel space
704			 * fault w/ I/O error.
705			 */
706			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
707				(rv == VM_PAGER_BAD)) {
708				vm_page_lock(fs.m);
709				vm_page_free(fs.m);
710				vm_page_unlock(fs.m);
711				fs.m = NULL;
712				unlock_and_deallocate(&fs);
713				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
714			}
715			if (fs.object != fs.first_object) {
716				vm_page_lock(fs.m);
717				vm_page_free(fs.m);
718				vm_page_unlock(fs.m);
719				fs.m = NULL;
720				/*
721				 * XXX - we cannot just fall out at this
722				 * point, m has been freed and is invalid!
723				 */
724			}
725		}
726
727		/*
728		 * We get here if the object has default pager (or unwiring)
729		 * or the pager doesn't have the page.
730		 */
731		if (fs.object == fs.first_object)
732			fs.first_m = fs.m;
733
734		/*
735		 * Move on to the next object.  Lock the next object before
736		 * unlocking the current one.
737		 */
738		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
739		next_object = fs.object->backing_object;
740		if (next_object == NULL) {
741			/*
742			 * If there's no object left, fill the page in the top
743			 * object with zeros.
744			 */
745			if (fs.object != fs.first_object) {
746				vm_object_pip_wakeup(fs.object);
747				VM_OBJECT_WUNLOCK(fs.object);
748
749				fs.object = fs.first_object;
750				fs.pindex = fs.first_pindex;
751				fs.m = fs.first_m;
752				VM_OBJECT_WLOCK(fs.object);
753			}
754			fs.first_m = NULL;
755
756			/*
757			 * Zero the page if necessary and mark it valid.
758			 */
759			if ((fs.m->flags & PG_ZERO) == 0) {
760				pmap_zero_page(fs.m);
761			} else {
762				PCPU_INC(cnt.v_ozfod);
763			}
764			PCPU_INC(cnt.v_zfod);
765			fs.m->valid = VM_PAGE_BITS_ALL;
766			/* Don't try to prefault neighboring pages. */
767			faultcount = 1;
768			break;	/* break to PAGE HAS BEEN FOUND */
769		} else {
770			KASSERT(fs.object != next_object,
771			    ("object loop %p", next_object));
772			VM_OBJECT_WLOCK(next_object);
773			vm_object_pip_add(next_object, 1);
774			if (fs.object != fs.first_object)
775				vm_object_pip_wakeup(fs.object);
776			VM_OBJECT_WUNLOCK(fs.object);
777			fs.object = next_object;
778		}
779	}
780
781	vm_page_assert_xbusied(fs.m);
782
783	/*
784	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
785	 * is held.]
786	 */
787
788	/*
789	 * If the page is being written, but isn't already owned by the
790	 * top-level object, we have to copy it into a new page owned by the
791	 * top-level object.
792	 */
793	if (fs.object != fs.first_object) {
794		/*
795		 * We only really need to copy if we want to write it.
796		 */
797		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
798			/*
799			 * This allows pages to be virtually copied from a
800			 * backing_object into the first_object, where the
801			 * backing object has no other refs to it, and cannot
802			 * gain any more refs.  Instead of a bcopy, we just
803			 * move the page from the backing object to the
804			 * first object.  Note that we must mark the page
805			 * dirty in the first object so that it will go out
806			 * to swap when needed.
807			 */
808			is_first_object_locked = FALSE;
809			if (
810				/*
811				 * Only one shadow object
812				 */
813				(fs.object->shadow_count == 1) &&
814				/*
815				 * No COW refs, except us
816				 */
817				(fs.object->ref_count == 1) &&
818				/*
819				 * No one else can look this object up
820				 */
821				(fs.object->handle == NULL) &&
822				/*
823				 * No other ways to look the object up
824				 */
825				((fs.object->type == OBJT_DEFAULT) ||
826				 (fs.object->type == OBJT_SWAP)) &&
827			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
828				/*
829				 * We don't chase down the shadow chain
830				 */
831			    fs.object == fs.first_object->backing_object) {
832				/*
833				 * get rid of the unnecessary page
834				 */
835				vm_page_lock(fs.first_m);
836				vm_page_free(fs.first_m);
837				vm_page_unlock(fs.first_m);
838				/*
839				 * grab the page and put it into the
840				 * process'es object.  The page is
841				 * automatically made dirty.
842				 */
843				if (vm_page_rename(fs.m, fs.first_object,
844				    fs.first_pindex)) {
845					unlock_and_deallocate(&fs);
846					goto RetryFault;
847				}
848#if VM_NRESERVLEVEL > 0
849				/*
850				 * Rename the reservation.
851				 */
852				vm_reserv_rename(fs.m, fs.first_object,
853				    fs.object, OFF_TO_IDX(
854				    fs.first_object->backing_object_offset));
855#endif
856				vm_page_xbusy(fs.m);
857				fs.first_m = fs.m;
858				fs.m = NULL;
859				PCPU_INC(cnt.v_cow_optim);
860			} else {
861				/*
862				 * Oh, well, lets copy it.
863				 */
864				pmap_copy_page(fs.m, fs.first_m);
865				fs.first_m->valid = VM_PAGE_BITS_ALL;
866				if (wired && (fault_flags &
867				    VM_FAULT_CHANGE_WIRING) == 0) {
868					vm_page_lock(fs.first_m);
869					vm_page_wire(fs.first_m);
870					vm_page_unlock(fs.first_m);
871
872					vm_page_lock(fs.m);
873					vm_page_unwire(fs.m, FALSE);
874					vm_page_unlock(fs.m);
875				}
876				/*
877				 * We no longer need the old page or object.
878				 */
879				release_page(&fs);
880			}
881			/*
882			 * fs.object != fs.first_object due to above
883			 * conditional
884			 */
885			vm_object_pip_wakeup(fs.object);
886			VM_OBJECT_WUNLOCK(fs.object);
887			/*
888			 * Only use the new page below...
889			 */
890			fs.object = fs.first_object;
891			fs.pindex = fs.first_pindex;
892			fs.m = fs.first_m;
893			if (!is_first_object_locked)
894				VM_OBJECT_WLOCK(fs.object);
895			PCPU_INC(cnt.v_cow_faults);
896			curthread->td_cow++;
897		} else {
898			prot &= ~VM_PROT_WRITE;
899		}
900	}
901
902	/*
903	 * We must verify that the maps have not changed since our last
904	 * lookup.
905	 */
906	if (!fs.lookup_still_valid) {
907		vm_object_t retry_object;
908		vm_pindex_t retry_pindex;
909		vm_prot_t retry_prot;
910
911		if (!vm_map_trylock_read(fs.map)) {
912			release_page(&fs);
913			unlock_and_deallocate(&fs);
914			goto RetryFault;
915		}
916		fs.lookup_still_valid = TRUE;
917		if (fs.map->timestamp != map_generation) {
918			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
919			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
920
921			/*
922			 * If we don't need the page any longer, put it on the inactive
923			 * list (the easiest thing to do here).  If no one needs it,
924			 * pageout will grab it eventually.
925			 */
926			if (result != KERN_SUCCESS) {
927				release_page(&fs);
928				unlock_and_deallocate(&fs);
929
930				/*
931				 * If retry of map lookup would have blocked then
932				 * retry fault from start.
933				 */
934				if (result == KERN_FAILURE)
935					goto RetryFault;
936				return (result);
937			}
938			if ((retry_object != fs.first_object) ||
939			    (retry_pindex != fs.first_pindex)) {
940				release_page(&fs);
941				unlock_and_deallocate(&fs);
942				goto RetryFault;
943			}
944
945			/*
946			 * Check whether the protection has changed or the object has
947			 * been copied while we left the map unlocked. Changing from
948			 * read to write permission is OK - we leave the page
949			 * write-protected, and catch the write fault. Changing from
950			 * write to read permission means that we can't mark the page
951			 * write-enabled after all.
952			 */
953			prot &= retry_prot;
954		}
955	}
956	/*
957	 * If the page was filled by a pager, update the map entry's
958	 * last read offset.  Since the pager does not return the
959	 * actual set of pages that it read, this update is based on
960	 * the requested set.  Typically, the requested and actual
961	 * sets are the same.
962	 *
963	 * XXX The following assignment modifies the map
964	 * without holding a write lock on it.
965	 */
966	if (hardfault)
967		fs.entry->next_read = fs.pindex + faultcount - reqpage;
968
969	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
970	vm_page_assert_xbusied(fs.m);
971
972	/*
973	 * Page must be completely valid or it is not fit to
974	 * map into user space.  vm_pager_get_pages() ensures this.
975	 */
976	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
977	    ("vm_fault: page %p partially invalid", fs.m));
978	VM_OBJECT_WUNLOCK(fs.object);
979
980	/*
981	 * Put this page into the physical map.  We had to do the unlock above
982	 * because pmap_enter() may sleep.  We don't put the page
983	 * back on the active queue until later so that the pageout daemon
984	 * won't find it (yet).
985	 */
986	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
987	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
988	if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 &&
989	    wired == 0)
990		vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
991	VM_OBJECT_WLOCK(fs.object);
992	vm_page_lock(fs.m);
993
994	/*
995	 * If the page is not wired down, then put it where the pageout daemon
996	 * can find it.
997	 */
998	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
999		if (wired)
1000			vm_page_wire(fs.m);
1001		else
1002			vm_page_unwire(fs.m, 1);
1003	} else
1004		vm_page_activate(fs.m);
1005	if (m_hold != NULL) {
1006		*m_hold = fs.m;
1007		vm_page_hold(fs.m);
1008	}
1009	vm_page_unlock(fs.m);
1010	vm_page_xunbusy(fs.m);
1011
1012	/*
1013	 * Unlock everything, and return
1014	 */
1015	unlock_and_deallocate(&fs);
1016	if (hardfault) {
1017		PCPU_INC(cnt.v_io_faults);
1018		curthread->td_ru.ru_majflt++;
1019	} else
1020		curthread->td_ru.ru_minflt++;
1021
1022	return (KERN_SUCCESS);
1023}
1024
1025/*
1026 * Speed up the reclamation of up to "distance" pages that precede the
1027 * faulting pindex within the first object of the shadow chain.
1028 */
1029static void
1030vm_fault_cache_behind(const struct faultstate *fs, int distance)
1031{
1032	vm_object_t first_object, object;
1033	vm_page_t m, m_prev;
1034	vm_pindex_t pindex;
1035
1036	object = fs->object;
1037	VM_OBJECT_ASSERT_WLOCKED(object);
1038	first_object = fs->first_object;
1039	if (first_object != object) {
1040		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1041			VM_OBJECT_WUNLOCK(object);
1042			VM_OBJECT_WLOCK(first_object);
1043			VM_OBJECT_WLOCK(object);
1044		}
1045	}
1046	/* Neither fictitious nor unmanaged pages can be cached. */
1047	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1048		if (fs->first_pindex < distance)
1049			pindex = 0;
1050		else
1051			pindex = fs->first_pindex - distance;
1052		if (pindex < OFF_TO_IDX(fs->entry->offset))
1053			pindex = OFF_TO_IDX(fs->entry->offset);
1054		m = first_object != object ? fs->first_m : fs->m;
1055		vm_page_assert_xbusied(m);
1056		m_prev = vm_page_prev(m);
1057		while ((m = m_prev) != NULL && m->pindex >= pindex &&
1058		    m->valid == VM_PAGE_BITS_ALL) {
1059			m_prev = vm_page_prev(m);
1060			if (vm_page_busied(m))
1061				continue;
1062			vm_page_lock(m);
1063			if (m->hold_count == 0 && m->wire_count == 0) {
1064				pmap_remove_all(m);
1065				vm_page_aflag_clear(m, PGA_REFERENCED);
1066				if (m->dirty != 0)
1067					vm_page_deactivate(m);
1068				else
1069					vm_page_cache(m);
1070			}
1071			vm_page_unlock(m);
1072		}
1073	}
1074	if (first_object != object)
1075		VM_OBJECT_WUNLOCK(first_object);
1076}
1077
1078/*
1079 * vm_fault_prefault provides a quick way of clustering
1080 * pagefaults into a processes address space.  It is a "cousin"
1081 * of vm_map_pmap_enter, except it runs at page fault time instead
1082 * of mmap time.
1083 */
1084static void
1085vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1086    int faultcount, int reqpage)
1087{
1088	pmap_t pmap;
1089	vm_map_entry_t entry;
1090	vm_object_t backing_object, lobject;
1091	vm_offset_t addr, starta;
1092	vm_pindex_t pindex;
1093	vm_page_t m;
1094	int backward, forward, i;
1095
1096	pmap = fs->map->pmap;
1097	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1098		return;
1099
1100	if (faultcount > 0) {
1101		backward = reqpage;
1102		forward = faultcount - reqpage - 1;
1103	} else {
1104		backward = PFBAK;
1105		forward = PFFOR;
1106	}
1107	entry = fs->entry;
1108
1109	starta = addra - backward * PAGE_SIZE;
1110	if (starta < entry->start) {
1111		starta = entry->start;
1112	} else if (starta > addra) {
1113		starta = 0;
1114	}
1115
1116	/*
1117	 * Generate the sequence of virtual addresses that are candidates for
1118	 * prefaulting in an outward spiral from the faulting virtual address,
1119	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1120	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1121	 * If the candidate address doesn't have a backing physical page, then
1122	 * the loop immediately terminates.
1123	 */
1124	for (i = 0; i < 2 * imax(backward, forward); i++) {
1125		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1126		    PAGE_SIZE);
1127		if (addr > addra + forward * PAGE_SIZE)
1128			addr = 0;
1129
1130		if (addr < starta || addr >= entry->end)
1131			continue;
1132
1133		if (!pmap_is_prefaultable(pmap, addr))
1134			continue;
1135
1136		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1137		lobject = entry->object.vm_object;
1138		VM_OBJECT_RLOCK(lobject);
1139		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1140		    lobject->type == OBJT_DEFAULT &&
1141		    (backing_object = lobject->backing_object) != NULL) {
1142			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1143			    0, ("vm_fault_prefault: unaligned object offset"));
1144			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1145			VM_OBJECT_RLOCK(backing_object);
1146			VM_OBJECT_RUNLOCK(lobject);
1147			lobject = backing_object;
1148		}
1149		if (m == NULL) {
1150			VM_OBJECT_RUNLOCK(lobject);
1151			break;
1152		}
1153		if (m->valid == VM_PAGE_BITS_ALL &&
1154		    (m->flags & PG_FICTITIOUS) == 0)
1155			pmap_enter_quick(pmap, addr, m, entry->protection);
1156		VM_OBJECT_RUNLOCK(lobject);
1157	}
1158}
1159
1160/*
1161 * Hold each of the physical pages that are mapped by the specified range of
1162 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1163 * and allow the specified types of access, "prot".  If all of the implied
1164 * pages are successfully held, then the number of held pages is returned
1165 * together with pointers to those pages in the array "ma".  However, if any
1166 * of the pages cannot be held, -1 is returned.
1167 */
1168int
1169vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1170    vm_prot_t prot, vm_page_t *ma, int max_count)
1171{
1172	vm_offset_t end, va;
1173	vm_page_t *mp;
1174	int count;
1175	boolean_t pmap_failed;
1176
1177	if (len == 0)
1178		return (0);
1179	end = round_page(addr + len);
1180	addr = trunc_page(addr);
1181
1182	/*
1183	 * Check for illegal addresses.
1184	 */
1185	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1186		return (-1);
1187
1188	if (atop(end - addr) > max_count)
1189		panic("vm_fault_quick_hold_pages: count > max_count");
1190	count = atop(end - addr);
1191
1192	/*
1193	 * Most likely, the physical pages are resident in the pmap, so it is
1194	 * faster to try pmap_extract_and_hold() first.
1195	 */
1196	pmap_failed = FALSE;
1197	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1198		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1199		if (*mp == NULL)
1200			pmap_failed = TRUE;
1201		else if ((prot & VM_PROT_WRITE) != 0 &&
1202		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1203			/*
1204			 * Explicitly dirty the physical page.  Otherwise, the
1205			 * caller's changes may go unnoticed because they are
1206			 * performed through an unmanaged mapping or by a DMA
1207			 * operation.
1208			 *
1209			 * The object lock is not held here.
1210			 * See vm_page_clear_dirty_mask().
1211			 */
1212			vm_page_dirty(*mp);
1213		}
1214	}
1215	if (pmap_failed) {
1216		/*
1217		 * One or more pages could not be held by the pmap.  Either no
1218		 * page was mapped at the specified virtual address or that
1219		 * mapping had insufficient permissions.  Attempt to fault in
1220		 * and hold these pages.
1221		 */
1222		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1223			if (*mp == NULL && vm_fault_hold(map, va, prot,
1224			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1225				goto error;
1226	}
1227	return (count);
1228error:
1229	for (mp = ma; mp < ma + count; mp++)
1230		if (*mp != NULL) {
1231			vm_page_lock(*mp);
1232			vm_page_unhold(*mp);
1233			vm_page_unlock(*mp);
1234		}
1235	return (-1);
1236}
1237
1238/*
1239 *	Routine:
1240 *		vm_fault_copy_entry
1241 *	Function:
1242 *		Create new shadow object backing dst_entry with private copy of
1243 *		all underlying pages. When src_entry is equal to dst_entry,
1244 *		function implements COW for wired-down map entry. Otherwise,
1245 *		it forks wired entry into dst_map.
1246 *
1247 *	In/out conditions:
1248 *		The source and destination maps must be locked for write.
1249 *		The source map entry must be wired down (or be a sharing map
1250 *		entry corresponding to a main map entry that is wired down).
1251 */
1252void
1253vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1254    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1255    vm_ooffset_t *fork_charge)
1256{
1257	vm_object_t backing_object, dst_object, object, src_object;
1258	vm_pindex_t dst_pindex, pindex, src_pindex;
1259	vm_prot_t access, prot;
1260	vm_offset_t vaddr;
1261	vm_page_t dst_m;
1262	vm_page_t src_m;
1263	boolean_t upgrade;
1264
1265#ifdef	lint
1266	src_map++;
1267#endif	/* lint */
1268
1269	upgrade = src_entry == dst_entry;
1270	access = prot = dst_entry->protection;
1271
1272	src_object = src_entry->object.vm_object;
1273	src_pindex = OFF_TO_IDX(src_entry->offset);
1274
1275	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1276		dst_object = src_object;
1277		vm_object_reference(dst_object);
1278	} else {
1279		/*
1280		 * Create the top-level object for the destination entry. (Doesn't
1281		 * actually shadow anything - we copy the pages directly.)
1282		 */
1283		dst_object = vm_object_allocate(OBJT_DEFAULT,
1284		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1285#if VM_NRESERVLEVEL > 0
1286		dst_object->flags |= OBJ_COLORED;
1287		dst_object->pg_color = atop(dst_entry->start);
1288#endif
1289	}
1290
1291	VM_OBJECT_WLOCK(dst_object);
1292	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1293	    ("vm_fault_copy_entry: vm_object not NULL"));
1294	if (src_object != dst_object) {
1295		dst_entry->object.vm_object = dst_object;
1296		dst_entry->offset = 0;
1297		dst_object->charge = dst_entry->end - dst_entry->start;
1298	}
1299	if (fork_charge != NULL) {
1300		KASSERT(dst_entry->cred == NULL,
1301		    ("vm_fault_copy_entry: leaked swp charge"));
1302		dst_object->cred = curthread->td_ucred;
1303		crhold(dst_object->cred);
1304		*fork_charge += dst_object->charge;
1305	} else if (dst_object->cred == NULL) {
1306		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1307		    dst_entry));
1308		dst_object->cred = dst_entry->cred;
1309		dst_entry->cred = NULL;
1310	}
1311
1312	/*
1313	 * If not an upgrade, then enter the mappings in the pmap as
1314	 * read and/or execute accesses.  Otherwise, enter them as
1315	 * write accesses.
1316	 *
1317	 * A writeable large page mapping is only created if all of
1318	 * the constituent small page mappings are modified. Marking
1319	 * PTEs as modified on inception allows promotion to happen
1320	 * without taking potentially large number of soft faults.
1321	 */
1322	if (!upgrade)
1323		access &= ~VM_PROT_WRITE;
1324
1325	/*
1326	 * Loop through all of the virtual pages within the entry's
1327	 * range, copying each page from the source object to the
1328	 * destination object.  Since the source is wired, those pages
1329	 * must exist.  In contrast, the destination is pageable.
1330	 * Since the destination object does share any backing storage
1331	 * with the source object, all of its pages must be dirtied,
1332	 * regardless of whether they can be written.
1333	 */
1334	for (vaddr = dst_entry->start, dst_pindex = 0;
1335	    vaddr < dst_entry->end;
1336	    vaddr += PAGE_SIZE, dst_pindex++) {
1337again:
1338		/*
1339		 * Find the page in the source object, and copy it in.
1340		 * Because the source is wired down, the page will be
1341		 * in memory.
1342		 */
1343		if (src_object != dst_object)
1344			VM_OBJECT_RLOCK(src_object);
1345		object = src_object;
1346		pindex = src_pindex + dst_pindex;
1347		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1348		    (backing_object = object->backing_object) != NULL) {
1349			/*
1350			 * Unless the source mapping is read-only or
1351			 * it is presently being upgraded from
1352			 * read-only, the first object in the shadow
1353			 * chain should provide all of the pages.  In
1354			 * other words, this loop body should never be
1355			 * executed when the source mapping is already
1356			 * read/write.
1357			 */
1358			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1359			    upgrade,
1360			    ("vm_fault_copy_entry: main object missing page"));
1361
1362			VM_OBJECT_RLOCK(backing_object);
1363			pindex += OFF_TO_IDX(object->backing_object_offset);
1364			if (object != dst_object)
1365				VM_OBJECT_RUNLOCK(object);
1366			object = backing_object;
1367		}
1368		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1369
1370		if (object != dst_object) {
1371			/*
1372			 * Allocate a page in the destination object.
1373			 */
1374			dst_m = vm_page_alloc(dst_object, (src_object ==
1375			    dst_object ? src_pindex : 0) + dst_pindex,
1376			    VM_ALLOC_NORMAL);
1377			if (dst_m == NULL) {
1378				VM_OBJECT_WUNLOCK(dst_object);
1379				VM_OBJECT_RUNLOCK(object);
1380				VM_WAIT;
1381				VM_OBJECT_WLOCK(dst_object);
1382				goto again;
1383			}
1384			pmap_copy_page(src_m, dst_m);
1385			VM_OBJECT_RUNLOCK(object);
1386			dst_m->valid = VM_PAGE_BITS_ALL;
1387			dst_m->dirty = VM_PAGE_BITS_ALL;
1388		} else {
1389			dst_m = src_m;
1390			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1391				goto again;
1392			vm_page_xbusy(dst_m);
1393			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1394			    ("invalid dst page %p", dst_m));
1395		}
1396		VM_OBJECT_WUNLOCK(dst_object);
1397
1398		/*
1399		 * Enter it in the pmap. If a wired, copy-on-write
1400		 * mapping is being replaced by a write-enabled
1401		 * mapping, then wire that new mapping.
1402		 */
1403		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1404		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1405
1406		/*
1407		 * Mark it no longer busy, and put it on the active list.
1408		 */
1409		VM_OBJECT_WLOCK(dst_object);
1410
1411		if (upgrade) {
1412			if (src_m != dst_m) {
1413				vm_page_lock(src_m);
1414				vm_page_unwire(src_m, 0);
1415				vm_page_unlock(src_m);
1416				vm_page_lock(dst_m);
1417				vm_page_wire(dst_m);
1418				vm_page_unlock(dst_m);
1419			} else {
1420				KASSERT(dst_m->wire_count > 0,
1421				    ("dst_m %p is not wired", dst_m));
1422			}
1423		} else {
1424			vm_page_lock(dst_m);
1425			vm_page_activate(dst_m);
1426			vm_page_unlock(dst_m);
1427		}
1428		vm_page_xunbusy(dst_m);
1429	}
1430	VM_OBJECT_WUNLOCK(dst_object);
1431	if (upgrade) {
1432		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1433		vm_object_deallocate(src_object);
1434	}
1435}
1436
1437
1438/*
1439 * This routine checks around the requested page for other pages that
1440 * might be able to be faulted in.  This routine brackets the viable
1441 * pages for the pages to be paged in.
1442 *
1443 * Inputs:
1444 *	m, rbehind, rahead
1445 *
1446 * Outputs:
1447 *  marray (array of vm_page_t), reqpage (index of requested page)
1448 *
1449 * Return value:
1450 *  number of pages in marray
1451 */
1452static int
1453vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1454	vm_page_t m;
1455	int rbehind;
1456	int rahead;
1457	vm_page_t *marray;
1458	int *reqpage;
1459{
1460	int i,j;
1461	vm_object_t object;
1462	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1463	vm_page_t rtm;
1464	int cbehind, cahead;
1465
1466	VM_OBJECT_ASSERT_WLOCKED(m->object);
1467
1468	object = m->object;
1469	pindex = m->pindex;
1470	cbehind = cahead = 0;
1471
1472	/*
1473	 * if the requested page is not available, then give up now
1474	 */
1475	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1476		return 0;
1477	}
1478
1479	if ((cbehind == 0) && (cahead == 0)) {
1480		*reqpage = 0;
1481		marray[0] = m;
1482		return 1;
1483	}
1484
1485	if (rahead > cahead) {
1486		rahead = cahead;
1487	}
1488
1489	if (rbehind > cbehind) {
1490		rbehind = cbehind;
1491	}
1492
1493	/*
1494	 * scan backward for the read behind pages -- in memory
1495	 */
1496	if (pindex > 0) {
1497		if (rbehind > pindex) {
1498			rbehind = pindex;
1499			startpindex = 0;
1500		} else {
1501			startpindex = pindex - rbehind;
1502		}
1503
1504		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1505		    rtm->pindex >= startpindex)
1506			startpindex = rtm->pindex + 1;
1507
1508		/* tpindex is unsigned; beware of numeric underflow. */
1509		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1510		    tpindex < pindex; i++, tpindex--) {
1511
1512			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1513			    VM_ALLOC_IFNOTCACHED);
1514			if (rtm == NULL) {
1515				/*
1516				 * Shift the allocated pages to the
1517				 * beginning of the array.
1518				 */
1519				for (j = 0; j < i; j++) {
1520					marray[j] = marray[j + tpindex + 1 -
1521					    startpindex];
1522				}
1523				break;
1524			}
1525
1526			marray[tpindex - startpindex] = rtm;
1527		}
1528	} else {
1529		startpindex = 0;
1530		i = 0;
1531	}
1532
1533	marray[i] = m;
1534	/* page offset of the required page */
1535	*reqpage = i;
1536
1537	tpindex = pindex + 1;
1538	i++;
1539
1540	/*
1541	 * scan forward for the read ahead pages
1542	 */
1543	endpindex = tpindex + rahead;
1544	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1545		endpindex = rtm->pindex;
1546	if (endpindex > object->size)
1547		endpindex = object->size;
1548
1549	for (; tpindex < endpindex; i++, tpindex++) {
1550
1551		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1552		    VM_ALLOC_IFNOTCACHED);
1553		if (rtm == NULL) {
1554			break;
1555		}
1556
1557		marray[i] = rtm;
1558	}
1559
1560	/* return number of pages */
1561	return i;
1562}
1563
1564/*
1565 * Block entry into the machine-independent layer's page fault handler by
1566 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1567 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1568 * spurious page faults.
1569 */
1570int
1571vm_fault_disable_pagefaults(void)
1572{
1573
1574	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1575}
1576
1577void
1578vm_fault_enable_pagefaults(int save)
1579{
1580
1581	curthread_pflags_restore(save);
1582}
1583