vm_fault.c revision 270920
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD: stable/10/sys/vm/vm_fault.c 270920 2014-09-01 07:58:15Z kib $");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/proc.h>
85#include <sys/resourcevar.h>
86#include <sys/rwlock.h>
87#include <sys/sysctl.h>
88#include <sys/vmmeter.h>
89#include <sys/vnode.h>
90#ifdef KTRACE
91#include <sys/ktrace.h>
92#endif
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/pmap.h>
97#include <vm/vm_map.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_pageout.h>
101#include <vm/vm_kern.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_extern.h>
104
105#define PFBAK 4
106#define PFFOR 4
107
108static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
109
110#define	VM_FAULT_READ_BEHIND	8
111#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
112#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
113#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
114#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
115
116struct faultstate {
117	vm_page_t m;
118	vm_object_t object;
119	vm_pindex_t pindex;
120	vm_page_t first_m;
121	vm_object_t	first_object;
122	vm_pindex_t first_pindex;
123	vm_map_t map;
124	vm_map_entry_t entry;
125	int lookup_still_valid;
126	struct vnode *vp;
127};
128
129static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
130static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
131	    int faultcount, int reqpage);
132
133static inline void
134release_page(struct faultstate *fs)
135{
136
137	vm_page_xunbusy(fs->m);
138	vm_page_lock(fs->m);
139	vm_page_deactivate(fs->m);
140	vm_page_unlock(fs->m);
141	fs->m = NULL;
142}
143
144static inline void
145unlock_map(struct faultstate *fs)
146{
147
148	if (fs->lookup_still_valid) {
149		vm_map_lookup_done(fs->map, fs->entry);
150		fs->lookup_still_valid = FALSE;
151	}
152}
153
154static void
155unlock_and_deallocate(struct faultstate *fs)
156{
157
158	vm_object_pip_wakeup(fs->object);
159	VM_OBJECT_WUNLOCK(fs->object);
160	if (fs->object != fs->first_object) {
161		VM_OBJECT_WLOCK(fs->first_object);
162		vm_page_lock(fs->first_m);
163		vm_page_free(fs->first_m);
164		vm_page_unlock(fs->first_m);
165		vm_object_pip_wakeup(fs->first_object);
166		VM_OBJECT_WUNLOCK(fs->first_object);
167		fs->first_m = NULL;
168	}
169	vm_object_deallocate(fs->first_object);
170	unlock_map(fs);
171	if (fs->vp != NULL) {
172		vput(fs->vp);
173		fs->vp = NULL;
174	}
175}
176
177/*
178 * TRYPAGER - used by vm_fault to calculate whether the pager for the
179 *	      current object *might* contain the page.
180 *
181 *	      default objects are zero-fill, there is no real pager.
182 */
183#define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
184			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
185
186/*
187 *	vm_fault:
188 *
189 *	Handle a page fault occurring at the given address,
190 *	requiring the given permissions, in the map specified.
191 *	If successful, the page is inserted into the
192 *	associated physical map.
193 *
194 *	NOTE: the given address should be truncated to the
195 *	proper page address.
196 *
197 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
198 *	a standard error specifying why the fault is fatal is returned.
199 *
200 *	The map in question must be referenced, and remains so.
201 *	Caller may hold no locks.
202 */
203int
204vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
205    int fault_flags)
206{
207	struct thread *td;
208	int result;
209
210	td = curthread;
211	if ((td->td_pflags & TDP_NOFAULTING) != 0)
212		return (KERN_PROTECTION_FAILURE);
213#ifdef KTRACE
214	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
215		ktrfault(vaddr, fault_type);
216#endif
217	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
218	    NULL);
219#ifdef KTRACE
220	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
221		ktrfaultend(result);
222#endif
223	return (result);
224}
225
226int
227vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
228    int fault_flags, vm_page_t *m_hold)
229{
230	vm_prot_t prot;
231	long ahead, behind;
232	int alloc_req, era, faultcount, nera, reqpage, result;
233	boolean_t growstack, is_first_object_locked, wired;
234	int map_generation;
235	vm_object_t next_object;
236	vm_page_t marray[VM_FAULT_READ_MAX];
237	int hardfault;
238	struct faultstate fs;
239	struct vnode *vp;
240	vm_page_t m;
241	int locked, error;
242
243	hardfault = 0;
244	growstack = TRUE;
245	PCPU_INC(cnt.v_vm_faults);
246	fs.vp = NULL;
247	faultcount = reqpage = 0;
248
249RetryFault:;
250
251	/*
252	 * Find the backing store object and offset into it to begin the
253	 * search.
254	 */
255	fs.map = map;
256	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
257	    &fs.first_object, &fs.first_pindex, &prot, &wired);
258	if (result != KERN_SUCCESS) {
259		if (growstack && result == KERN_INVALID_ADDRESS &&
260		    map != kernel_map) {
261			result = vm_map_growstack(curproc, vaddr);
262			if (result != KERN_SUCCESS)
263				return (KERN_FAILURE);
264			growstack = FALSE;
265			goto RetryFault;
266		}
267		return (result);
268	}
269
270	map_generation = fs.map->timestamp;
271
272	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
273		if ((curthread->td_pflags & TDP_DEVMEMIO) != 0) {
274			vm_map_unlock_read(fs.map);
275			return (KERN_FAILURE);
276		}
277		panic("vm_fault: fault on nofault entry, addr: %lx",
278		    (u_long)vaddr);
279	}
280
281	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
282	    fs.entry->wiring_thread != curthread) {
283		vm_map_unlock_read(fs.map);
284		vm_map_lock(fs.map);
285		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
286		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
287			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
288			vm_map_unlock_and_wait(fs.map, 0);
289		} else
290			vm_map_unlock(fs.map);
291		goto RetryFault;
292	}
293
294	if (wired)
295		fault_type = prot | (fault_type & VM_PROT_COPY);
296
297	if (fs.vp == NULL /* avoid locked vnode leak */ &&
298	    (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 &&
299	    /* avoid calling vm_object_set_writeable_dirty() */
300	    ((prot & VM_PROT_WRITE) == 0 ||
301	    fs.first_object->type != OBJT_VNODE ||
302	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
303		VM_OBJECT_RLOCK(fs.first_object);
304		if ((prot & VM_PROT_WRITE) != 0 &&
305		    fs.first_object->type == OBJT_VNODE &&
306		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
307			goto fast_failed;
308		m = vm_page_lookup(fs.first_object, fs.first_pindex);
309		/* A busy page can be mapped for read|execute access. */
310		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
311		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
312			goto fast_failed;
313		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
314		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
315		   0), 0);
316		if (result != KERN_SUCCESS)
317			goto fast_failed;
318		if (m_hold != NULL) {
319			*m_hold = m;
320			vm_page_lock(m);
321			vm_page_hold(m);
322			vm_page_unlock(m);
323		}
324		if ((fault_type & VM_PROT_WRITE) != 0 &&
325		    (m->oflags & VPO_UNMANAGED) == 0) {
326			vm_page_dirty(m);
327			vm_pager_page_unswapped(m);
328		}
329		VM_OBJECT_RUNLOCK(fs.first_object);
330		if (!wired)
331			vm_fault_prefault(&fs, vaddr, 0, 0);
332		vm_map_lookup_done(fs.map, fs.entry);
333		curthread->td_ru.ru_minflt++;
334		return (KERN_SUCCESS);
335fast_failed:
336		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
337			VM_OBJECT_RUNLOCK(fs.first_object);
338			VM_OBJECT_WLOCK(fs.first_object);
339		}
340	} else {
341		VM_OBJECT_WLOCK(fs.first_object);
342	}
343
344	/*
345	 * Make a reference to this object to prevent its disposal while we
346	 * are messing with it.  Once we have the reference, the map is free
347	 * to be diddled.  Since objects reference their shadows (and copies),
348	 * they will stay around as well.
349	 *
350	 * Bump the paging-in-progress count to prevent size changes (e.g.
351	 * truncation operations) during I/O.  This must be done after
352	 * obtaining the vnode lock in order to avoid possible deadlocks.
353	 */
354	vm_object_reference_locked(fs.first_object);
355	vm_object_pip_add(fs.first_object, 1);
356
357	fs.lookup_still_valid = TRUE;
358
359	fs.first_m = NULL;
360
361	/*
362	 * Search for the page at object/offset.
363	 */
364	fs.object = fs.first_object;
365	fs.pindex = fs.first_pindex;
366	while (TRUE) {
367		/*
368		 * If the object is dead, we stop here
369		 */
370		if (fs.object->flags & OBJ_DEAD) {
371			unlock_and_deallocate(&fs);
372			return (KERN_PROTECTION_FAILURE);
373		}
374
375		/*
376		 * See if page is resident
377		 */
378		fs.m = vm_page_lookup(fs.object, fs.pindex);
379		if (fs.m != NULL) {
380			/*
381			 * Wait/Retry if the page is busy.  We have to do this
382			 * if the page is either exclusive or shared busy
383			 * because the vm_pager may be using read busy for
384			 * pageouts (and even pageins if it is the vnode
385			 * pager), and we could end up trying to pagein and
386			 * pageout the same page simultaneously.
387			 *
388			 * We can theoretically allow the busy case on a read
389			 * fault if the page is marked valid, but since such
390			 * pages are typically already pmap'd, putting that
391			 * special case in might be more effort then it is
392			 * worth.  We cannot under any circumstances mess
393			 * around with a shared busied page except, perhaps,
394			 * to pmap it.
395			 */
396			if (vm_page_busied(fs.m)) {
397				/*
398				 * Reference the page before unlocking and
399				 * sleeping so that the page daemon is less
400				 * likely to reclaim it.
401				 */
402				vm_page_aflag_set(fs.m, PGA_REFERENCED);
403				if (fs.object != fs.first_object) {
404					if (!VM_OBJECT_TRYWLOCK(
405					    fs.first_object)) {
406						VM_OBJECT_WUNLOCK(fs.object);
407						VM_OBJECT_WLOCK(fs.first_object);
408						VM_OBJECT_WLOCK(fs.object);
409					}
410					vm_page_lock(fs.first_m);
411					vm_page_free(fs.first_m);
412					vm_page_unlock(fs.first_m);
413					vm_object_pip_wakeup(fs.first_object);
414					VM_OBJECT_WUNLOCK(fs.first_object);
415					fs.first_m = NULL;
416				}
417				unlock_map(&fs);
418				if (fs.m == vm_page_lookup(fs.object,
419				    fs.pindex)) {
420					vm_page_sleep_if_busy(fs.m, "vmpfw");
421				}
422				vm_object_pip_wakeup(fs.object);
423				VM_OBJECT_WUNLOCK(fs.object);
424				PCPU_INC(cnt.v_intrans);
425				vm_object_deallocate(fs.first_object);
426				goto RetryFault;
427			}
428			vm_page_lock(fs.m);
429			vm_page_remque(fs.m);
430			vm_page_unlock(fs.m);
431
432			/*
433			 * Mark page busy for other processes, and the
434			 * pagedaemon.  If it still isn't completely valid
435			 * (readable), jump to readrest, else break-out ( we
436			 * found the page ).
437			 */
438			vm_page_xbusy(fs.m);
439			if (fs.m->valid != VM_PAGE_BITS_ALL)
440				goto readrest;
441			break;
442		}
443
444		/*
445		 * Page is not resident, If this is the search termination
446		 * or the pager might contain the page, allocate a new page.
447		 */
448		if (TRYPAGER || fs.object == fs.first_object) {
449			if (fs.pindex >= fs.object->size) {
450				unlock_and_deallocate(&fs);
451				return (KERN_PROTECTION_FAILURE);
452			}
453
454			/*
455			 * Allocate a new page for this object/offset pair.
456			 *
457			 * Unlocked read of the p_flag is harmless. At
458			 * worst, the P_KILLED might be not observed
459			 * there, and allocation can fail, causing
460			 * restart and new reading of the p_flag.
461			 */
462			fs.m = NULL;
463			if (!vm_page_count_severe() || P_KILLED(curproc)) {
464#if VM_NRESERVLEVEL > 0
465				if ((fs.object->flags & OBJ_COLORED) == 0) {
466					fs.object->flags |= OBJ_COLORED;
467					fs.object->pg_color = atop(vaddr) -
468					    fs.pindex;
469				}
470#endif
471				alloc_req = P_KILLED(curproc) ?
472				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
473				if (fs.object->type != OBJT_VNODE &&
474				    fs.object->backing_object == NULL)
475					alloc_req |= VM_ALLOC_ZERO;
476				fs.m = vm_page_alloc(fs.object, fs.pindex,
477				    alloc_req);
478			}
479			if (fs.m == NULL) {
480				unlock_and_deallocate(&fs);
481				VM_WAITPFAULT;
482				goto RetryFault;
483			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
484				break;
485		}
486
487readrest:
488		/*
489		 * We have found a valid page or we have allocated a new page.
490		 * The page thus may not be valid or may not be entirely
491		 * valid.
492		 *
493		 * Attempt to fault-in the page if there is a chance that the
494		 * pager has it, and potentially fault in additional pages
495		 * at the same time.
496		 */
497		if (TRYPAGER) {
498			int rv;
499			u_char behavior = vm_map_entry_behavior(fs.entry);
500
501			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
502			    P_KILLED(curproc)) {
503				behind = 0;
504				ahead = 0;
505			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
506				behind = 0;
507				ahead = atop(fs.entry->end - vaddr) - 1;
508				if (ahead > VM_FAULT_READ_AHEAD_MAX)
509					ahead = VM_FAULT_READ_AHEAD_MAX;
510				if (fs.pindex == fs.entry->next_read)
511					vm_fault_cache_behind(&fs,
512					    VM_FAULT_READ_MAX);
513			} else {
514				/*
515				 * If this is a sequential page fault, then
516				 * arithmetically increase the number of pages
517				 * in the read-ahead window.  Otherwise, reset
518				 * the read-ahead window to its smallest size.
519				 */
520				behind = atop(vaddr - fs.entry->start);
521				if (behind > VM_FAULT_READ_BEHIND)
522					behind = VM_FAULT_READ_BEHIND;
523				ahead = atop(fs.entry->end - vaddr) - 1;
524				era = fs.entry->read_ahead;
525				if (fs.pindex == fs.entry->next_read) {
526					nera = era + behind;
527					if (nera > VM_FAULT_READ_AHEAD_MAX)
528						nera = VM_FAULT_READ_AHEAD_MAX;
529					behind = 0;
530					if (ahead > nera)
531						ahead = nera;
532					if (era == VM_FAULT_READ_AHEAD_MAX)
533						vm_fault_cache_behind(&fs,
534						    VM_FAULT_CACHE_BEHIND);
535				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
536					ahead = VM_FAULT_READ_AHEAD_MIN;
537				if (era != ahead)
538					fs.entry->read_ahead = ahead;
539			}
540
541			/*
542			 * Call the pager to retrieve the data, if any, after
543			 * releasing the lock on the map.  We hold a ref on
544			 * fs.object and the pages are exclusive busied.
545			 */
546			unlock_map(&fs);
547
548			if (fs.object->type == OBJT_VNODE) {
549				vp = fs.object->handle;
550				if (vp == fs.vp)
551					goto vnode_locked;
552				else if (fs.vp != NULL) {
553					vput(fs.vp);
554					fs.vp = NULL;
555				}
556				locked = VOP_ISLOCKED(vp);
557
558				if (locked != LK_EXCLUSIVE)
559					locked = LK_SHARED;
560				/* Do not sleep for vnode lock while fs.m is busy */
561				error = vget(vp, locked | LK_CANRECURSE |
562				    LK_NOWAIT, curthread);
563				if (error != 0) {
564					vhold(vp);
565					release_page(&fs);
566					unlock_and_deallocate(&fs);
567					error = vget(vp, locked | LK_RETRY |
568					    LK_CANRECURSE, curthread);
569					vdrop(vp);
570					fs.vp = vp;
571					KASSERT(error == 0,
572					    ("vm_fault: vget failed"));
573					goto RetryFault;
574				}
575				fs.vp = vp;
576			}
577vnode_locked:
578			KASSERT(fs.vp == NULL || !fs.map->system_map,
579			    ("vm_fault: vnode-backed object mapped by system map"));
580
581			/*
582			 * now we find out if any other pages should be paged
583			 * in at this time this routine checks to see if the
584			 * pages surrounding this fault reside in the same
585			 * object as the page for this fault.  If they do,
586			 * then they are faulted in also into the object.  The
587			 * array "marray" returned contains an array of
588			 * vm_page_t structs where one of them is the
589			 * vm_page_t passed to the routine.  The reqpage
590			 * return value is the index into the marray for the
591			 * vm_page_t passed to the routine.
592			 *
593			 * fs.m plus the additional pages are exclusive busied.
594			 */
595			faultcount = vm_fault_additional_pages(
596			    fs.m, behind, ahead, marray, &reqpage);
597
598			rv = faultcount ?
599			    vm_pager_get_pages(fs.object, marray, faultcount,
600				reqpage) : VM_PAGER_FAIL;
601
602			if (rv == VM_PAGER_OK) {
603				/*
604				 * Found the page. Leave it busy while we play
605				 * with it.
606				 */
607
608				/*
609				 * Relookup in case pager changed page. Pager
610				 * is responsible for disposition of old page
611				 * if moved.
612				 */
613				fs.m = vm_page_lookup(fs.object, fs.pindex);
614				if (!fs.m) {
615					unlock_and_deallocate(&fs);
616					goto RetryFault;
617				}
618
619				hardfault++;
620				break; /* break to PAGE HAS BEEN FOUND */
621			}
622			/*
623			 * Remove the bogus page (which does not exist at this
624			 * object/offset); before doing so, we must get back
625			 * our object lock to preserve our invariant.
626			 *
627			 * Also wake up any other process that may want to bring
628			 * in this page.
629			 *
630			 * If this is the top-level object, we must leave the
631			 * busy page to prevent another process from rushing
632			 * past us, and inserting the page in that object at
633			 * the same time that we are.
634			 */
635			if (rv == VM_PAGER_ERROR)
636				printf("vm_fault: pager read error, pid %d (%s)\n",
637				    curproc->p_pid, curproc->p_comm);
638			/*
639			 * Data outside the range of the pager or an I/O error
640			 */
641			/*
642			 * XXX - the check for kernel_map is a kludge to work
643			 * around having the machine panic on a kernel space
644			 * fault w/ I/O error.
645			 */
646			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
647				(rv == VM_PAGER_BAD)) {
648				vm_page_lock(fs.m);
649				vm_page_free(fs.m);
650				vm_page_unlock(fs.m);
651				fs.m = NULL;
652				unlock_and_deallocate(&fs);
653				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
654			}
655			if (fs.object != fs.first_object) {
656				vm_page_lock(fs.m);
657				vm_page_free(fs.m);
658				vm_page_unlock(fs.m);
659				fs.m = NULL;
660				/*
661				 * XXX - we cannot just fall out at this
662				 * point, m has been freed and is invalid!
663				 */
664			}
665		}
666
667		/*
668		 * We get here if the object has default pager (or unwiring)
669		 * or the pager doesn't have the page.
670		 */
671		if (fs.object == fs.first_object)
672			fs.first_m = fs.m;
673
674		/*
675		 * Move on to the next object.  Lock the next object before
676		 * unlocking the current one.
677		 */
678		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
679		next_object = fs.object->backing_object;
680		if (next_object == NULL) {
681			/*
682			 * If there's no object left, fill the page in the top
683			 * object with zeros.
684			 */
685			if (fs.object != fs.first_object) {
686				vm_object_pip_wakeup(fs.object);
687				VM_OBJECT_WUNLOCK(fs.object);
688
689				fs.object = fs.first_object;
690				fs.pindex = fs.first_pindex;
691				fs.m = fs.first_m;
692				VM_OBJECT_WLOCK(fs.object);
693			}
694			fs.first_m = NULL;
695
696			/*
697			 * Zero the page if necessary and mark it valid.
698			 */
699			if ((fs.m->flags & PG_ZERO) == 0) {
700				pmap_zero_page(fs.m);
701			} else {
702				PCPU_INC(cnt.v_ozfod);
703			}
704			PCPU_INC(cnt.v_zfod);
705			fs.m->valid = VM_PAGE_BITS_ALL;
706			/* Don't try to prefault neighboring pages. */
707			faultcount = 1;
708			break;	/* break to PAGE HAS BEEN FOUND */
709		} else {
710			KASSERT(fs.object != next_object,
711			    ("object loop %p", next_object));
712			VM_OBJECT_WLOCK(next_object);
713			vm_object_pip_add(next_object, 1);
714			if (fs.object != fs.first_object)
715				vm_object_pip_wakeup(fs.object);
716			VM_OBJECT_WUNLOCK(fs.object);
717			fs.object = next_object;
718		}
719	}
720
721	vm_page_assert_xbusied(fs.m);
722
723	/*
724	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
725	 * is held.]
726	 */
727
728	/*
729	 * If the page is being written, but isn't already owned by the
730	 * top-level object, we have to copy it into a new page owned by the
731	 * top-level object.
732	 */
733	if (fs.object != fs.first_object) {
734		/*
735		 * We only really need to copy if we want to write it.
736		 */
737		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
738			/*
739			 * This allows pages to be virtually copied from a
740			 * backing_object into the first_object, where the
741			 * backing object has no other refs to it, and cannot
742			 * gain any more refs.  Instead of a bcopy, we just
743			 * move the page from the backing object to the
744			 * first object.  Note that we must mark the page
745			 * dirty in the first object so that it will go out
746			 * to swap when needed.
747			 */
748			is_first_object_locked = FALSE;
749			if (
750				/*
751				 * Only one shadow object
752				 */
753				(fs.object->shadow_count == 1) &&
754				/*
755				 * No COW refs, except us
756				 */
757				(fs.object->ref_count == 1) &&
758				/*
759				 * No one else can look this object up
760				 */
761				(fs.object->handle == NULL) &&
762				/*
763				 * No other ways to look the object up
764				 */
765				((fs.object->type == OBJT_DEFAULT) ||
766				 (fs.object->type == OBJT_SWAP)) &&
767			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
768				/*
769				 * We don't chase down the shadow chain
770				 */
771			    fs.object == fs.first_object->backing_object) {
772				/*
773				 * get rid of the unnecessary page
774				 */
775				vm_page_lock(fs.first_m);
776				vm_page_free(fs.first_m);
777				vm_page_unlock(fs.first_m);
778				/*
779				 * grab the page and put it into the
780				 * process'es object.  The page is
781				 * automatically made dirty.
782				 */
783				if (vm_page_rename(fs.m, fs.first_object,
784				    fs.first_pindex)) {
785					unlock_and_deallocate(&fs);
786					goto RetryFault;
787				}
788				vm_page_xbusy(fs.m);
789				fs.first_m = fs.m;
790				fs.m = NULL;
791				PCPU_INC(cnt.v_cow_optim);
792			} else {
793				/*
794				 * Oh, well, lets copy it.
795				 */
796				pmap_copy_page(fs.m, fs.first_m);
797				fs.first_m->valid = VM_PAGE_BITS_ALL;
798				if (wired && (fault_flags &
799				    VM_FAULT_CHANGE_WIRING) == 0) {
800					vm_page_lock(fs.first_m);
801					vm_page_wire(fs.first_m);
802					vm_page_unlock(fs.first_m);
803
804					vm_page_lock(fs.m);
805					vm_page_unwire(fs.m, FALSE);
806					vm_page_unlock(fs.m);
807				}
808				/*
809				 * We no longer need the old page or object.
810				 */
811				release_page(&fs);
812			}
813			/*
814			 * fs.object != fs.first_object due to above
815			 * conditional
816			 */
817			vm_object_pip_wakeup(fs.object);
818			VM_OBJECT_WUNLOCK(fs.object);
819			/*
820			 * Only use the new page below...
821			 */
822			fs.object = fs.first_object;
823			fs.pindex = fs.first_pindex;
824			fs.m = fs.first_m;
825			if (!is_first_object_locked)
826				VM_OBJECT_WLOCK(fs.object);
827			PCPU_INC(cnt.v_cow_faults);
828			curthread->td_cow++;
829		} else {
830			prot &= ~VM_PROT_WRITE;
831		}
832	}
833
834	/*
835	 * We must verify that the maps have not changed since our last
836	 * lookup.
837	 */
838	if (!fs.lookup_still_valid) {
839		vm_object_t retry_object;
840		vm_pindex_t retry_pindex;
841		vm_prot_t retry_prot;
842
843		if (!vm_map_trylock_read(fs.map)) {
844			release_page(&fs);
845			unlock_and_deallocate(&fs);
846			goto RetryFault;
847		}
848		fs.lookup_still_valid = TRUE;
849		if (fs.map->timestamp != map_generation) {
850			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
851			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
852
853			/*
854			 * If we don't need the page any longer, put it on the inactive
855			 * list (the easiest thing to do here).  If no one needs it,
856			 * pageout will grab it eventually.
857			 */
858			if (result != KERN_SUCCESS) {
859				release_page(&fs);
860				unlock_and_deallocate(&fs);
861
862				/*
863				 * If retry of map lookup would have blocked then
864				 * retry fault from start.
865				 */
866				if (result == KERN_FAILURE)
867					goto RetryFault;
868				return (result);
869			}
870			if ((retry_object != fs.first_object) ||
871			    (retry_pindex != fs.first_pindex)) {
872				release_page(&fs);
873				unlock_and_deallocate(&fs);
874				goto RetryFault;
875			}
876
877			/*
878			 * Check whether the protection has changed or the object has
879			 * been copied while we left the map unlocked. Changing from
880			 * read to write permission is OK - we leave the page
881			 * write-protected, and catch the write fault. Changing from
882			 * write to read permission means that we can't mark the page
883			 * write-enabled after all.
884			 */
885			prot &= retry_prot;
886		}
887	}
888	/*
889	 * If the page was filled by a pager, update the map entry's
890	 * last read offset.  Since the pager does not return the
891	 * actual set of pages that it read, this update is based on
892	 * the requested set.  Typically, the requested and actual
893	 * sets are the same.
894	 *
895	 * XXX The following assignment modifies the map
896	 * without holding a write lock on it.
897	 */
898	if (hardfault)
899		fs.entry->next_read = fs.pindex + faultcount - reqpage;
900
901	if (((prot & VM_PROT_WRITE) != 0 ||
902	    (fault_flags & VM_FAULT_DIRTY) != 0) &&
903	    (fs.m->oflags & VPO_UNMANAGED) == 0) {
904		vm_object_set_writeable_dirty(fs.object);
905
906		/*
907		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
908		 * if the page is already dirty to prevent data written with
909		 * the expectation of being synced from not being synced.
910		 * Likewise if this entry does not request NOSYNC then make
911		 * sure the page isn't marked NOSYNC.  Applications sharing
912		 * data should use the same flags to avoid ping ponging.
913		 */
914		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
915			if (fs.m->dirty == 0)
916				fs.m->oflags |= VPO_NOSYNC;
917		} else {
918			fs.m->oflags &= ~VPO_NOSYNC;
919		}
920
921		/*
922		 * If the fault is a write, we know that this page is being
923		 * written NOW so dirty it explicitly to save on
924		 * pmap_is_modified() calls later.
925		 *
926		 * Also tell the backing pager, if any, that it should remove
927		 * any swap backing since the page is now dirty.
928		 */
929		if (((fault_type & VM_PROT_WRITE) != 0 &&
930		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
931		    (fault_flags & VM_FAULT_DIRTY) != 0) {
932			vm_page_dirty(fs.m);
933			vm_pager_page_unswapped(fs.m);
934		}
935	}
936
937	vm_page_assert_xbusied(fs.m);
938
939	/*
940	 * Page must be completely valid or it is not fit to
941	 * map into user space.  vm_pager_get_pages() ensures this.
942	 */
943	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
944	    ("vm_fault: page %p partially invalid", fs.m));
945	VM_OBJECT_WUNLOCK(fs.object);
946
947	/*
948	 * Put this page into the physical map.  We had to do the unlock above
949	 * because pmap_enter() may sleep.  We don't put the page
950	 * back on the active queue until later so that the pageout daemon
951	 * won't find it (yet).
952	 */
953	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
954	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
955	if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 &&
956	    wired == 0)
957		vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
958	VM_OBJECT_WLOCK(fs.object);
959	vm_page_lock(fs.m);
960
961	/*
962	 * If the page is not wired down, then put it where the pageout daemon
963	 * can find it.
964	 */
965	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
966		if (wired)
967			vm_page_wire(fs.m);
968		else
969			vm_page_unwire(fs.m, 1);
970	} else
971		vm_page_activate(fs.m);
972	if (m_hold != NULL) {
973		*m_hold = fs.m;
974		vm_page_hold(fs.m);
975	}
976	vm_page_unlock(fs.m);
977	vm_page_xunbusy(fs.m);
978
979	/*
980	 * Unlock everything, and return
981	 */
982	unlock_and_deallocate(&fs);
983	if (hardfault) {
984		PCPU_INC(cnt.v_io_faults);
985		curthread->td_ru.ru_majflt++;
986	} else
987		curthread->td_ru.ru_minflt++;
988
989	return (KERN_SUCCESS);
990}
991
992/*
993 * Speed up the reclamation of up to "distance" pages that precede the
994 * faulting pindex within the first object of the shadow chain.
995 */
996static void
997vm_fault_cache_behind(const struct faultstate *fs, int distance)
998{
999	vm_object_t first_object, object;
1000	vm_page_t m, m_prev;
1001	vm_pindex_t pindex;
1002
1003	object = fs->object;
1004	VM_OBJECT_ASSERT_WLOCKED(object);
1005	first_object = fs->first_object;
1006	if (first_object != object) {
1007		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1008			VM_OBJECT_WUNLOCK(object);
1009			VM_OBJECT_WLOCK(first_object);
1010			VM_OBJECT_WLOCK(object);
1011		}
1012	}
1013	/* Neither fictitious nor unmanaged pages can be cached. */
1014	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1015		if (fs->first_pindex < distance)
1016			pindex = 0;
1017		else
1018			pindex = fs->first_pindex - distance;
1019		if (pindex < OFF_TO_IDX(fs->entry->offset))
1020			pindex = OFF_TO_IDX(fs->entry->offset);
1021		m = first_object != object ? fs->first_m : fs->m;
1022		vm_page_assert_xbusied(m);
1023		m_prev = vm_page_prev(m);
1024		while ((m = m_prev) != NULL && m->pindex >= pindex &&
1025		    m->valid == VM_PAGE_BITS_ALL) {
1026			m_prev = vm_page_prev(m);
1027			if (vm_page_busied(m))
1028				continue;
1029			vm_page_lock(m);
1030			if (m->hold_count == 0 && m->wire_count == 0) {
1031				pmap_remove_all(m);
1032				vm_page_aflag_clear(m, PGA_REFERENCED);
1033				if (m->dirty != 0)
1034					vm_page_deactivate(m);
1035				else
1036					vm_page_cache(m);
1037			}
1038			vm_page_unlock(m);
1039		}
1040	}
1041	if (first_object != object)
1042		VM_OBJECT_WUNLOCK(first_object);
1043}
1044
1045/*
1046 * vm_fault_prefault provides a quick way of clustering
1047 * pagefaults into a processes address space.  It is a "cousin"
1048 * of vm_map_pmap_enter, except it runs at page fault time instead
1049 * of mmap time.
1050 */
1051static void
1052vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1053    int faultcount, int reqpage)
1054{
1055	pmap_t pmap;
1056	vm_map_entry_t entry;
1057	vm_object_t backing_object, lobject;
1058	vm_offset_t addr, starta;
1059	vm_pindex_t pindex;
1060	vm_page_t m;
1061	int backward, forward, i;
1062
1063	pmap = fs->map->pmap;
1064	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1065		return;
1066
1067	if (faultcount > 0) {
1068		backward = reqpage;
1069		forward = faultcount - reqpage - 1;
1070	} else {
1071		backward = PFBAK;
1072		forward = PFFOR;
1073	}
1074	entry = fs->entry;
1075
1076	starta = addra - backward * PAGE_SIZE;
1077	if (starta < entry->start) {
1078		starta = entry->start;
1079	} else if (starta > addra) {
1080		starta = 0;
1081	}
1082
1083	/*
1084	 * Generate the sequence of virtual addresses that are candidates for
1085	 * prefaulting in an outward spiral from the faulting virtual address,
1086	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1087	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1088	 * If the candidate address doesn't have a backing physical page, then
1089	 * the loop immediately terminates.
1090	 */
1091	for (i = 0; i < 2 * imax(backward, forward); i++) {
1092		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1093		    PAGE_SIZE);
1094		if (addr > addra + forward * PAGE_SIZE)
1095			addr = 0;
1096
1097		if (addr < starta || addr >= entry->end)
1098			continue;
1099
1100		if (!pmap_is_prefaultable(pmap, addr))
1101			continue;
1102
1103		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1104		lobject = entry->object.vm_object;
1105		VM_OBJECT_RLOCK(lobject);
1106		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1107		    lobject->type == OBJT_DEFAULT &&
1108		    (backing_object = lobject->backing_object) != NULL) {
1109			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1110			    0, ("vm_fault_prefault: unaligned object offset"));
1111			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1112			VM_OBJECT_RLOCK(backing_object);
1113			VM_OBJECT_RUNLOCK(lobject);
1114			lobject = backing_object;
1115		}
1116		if (m == NULL) {
1117			VM_OBJECT_RUNLOCK(lobject);
1118			break;
1119		}
1120		if (m->valid == VM_PAGE_BITS_ALL &&
1121		    (m->flags & PG_FICTITIOUS) == 0)
1122			pmap_enter_quick(pmap, addr, m, entry->protection);
1123		VM_OBJECT_RUNLOCK(lobject);
1124	}
1125}
1126
1127/*
1128 * Hold each of the physical pages that are mapped by the specified range of
1129 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1130 * and allow the specified types of access, "prot".  If all of the implied
1131 * pages are successfully held, then the number of held pages is returned
1132 * together with pointers to those pages in the array "ma".  However, if any
1133 * of the pages cannot be held, -1 is returned.
1134 */
1135int
1136vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1137    vm_prot_t prot, vm_page_t *ma, int max_count)
1138{
1139	vm_offset_t end, va;
1140	vm_page_t *mp;
1141	int count;
1142	boolean_t pmap_failed;
1143
1144	if (len == 0)
1145		return (0);
1146	end = round_page(addr + len);
1147	addr = trunc_page(addr);
1148
1149	/*
1150	 * Check for illegal addresses.
1151	 */
1152	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1153		return (-1);
1154
1155	if (atop(end - addr) > max_count)
1156		panic("vm_fault_quick_hold_pages: count > max_count");
1157	count = atop(end - addr);
1158
1159	/*
1160	 * Most likely, the physical pages are resident in the pmap, so it is
1161	 * faster to try pmap_extract_and_hold() first.
1162	 */
1163	pmap_failed = FALSE;
1164	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1165		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1166		if (*mp == NULL)
1167			pmap_failed = TRUE;
1168		else if ((prot & VM_PROT_WRITE) != 0 &&
1169		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1170			/*
1171			 * Explicitly dirty the physical page.  Otherwise, the
1172			 * caller's changes may go unnoticed because they are
1173			 * performed through an unmanaged mapping or by a DMA
1174			 * operation.
1175			 *
1176			 * The object lock is not held here.
1177			 * See vm_page_clear_dirty_mask().
1178			 */
1179			vm_page_dirty(*mp);
1180		}
1181	}
1182	if (pmap_failed) {
1183		/*
1184		 * One or more pages could not be held by the pmap.  Either no
1185		 * page was mapped at the specified virtual address or that
1186		 * mapping had insufficient permissions.  Attempt to fault in
1187		 * and hold these pages.
1188		 */
1189		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1190			if (*mp == NULL && vm_fault_hold(map, va, prot,
1191			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1192				goto error;
1193	}
1194	return (count);
1195error:
1196	for (mp = ma; mp < ma + count; mp++)
1197		if (*mp != NULL) {
1198			vm_page_lock(*mp);
1199			vm_page_unhold(*mp);
1200			vm_page_unlock(*mp);
1201		}
1202	return (-1);
1203}
1204
1205/*
1206 *	Routine:
1207 *		vm_fault_copy_entry
1208 *	Function:
1209 *		Create new shadow object backing dst_entry with private copy of
1210 *		all underlying pages. When src_entry is equal to dst_entry,
1211 *		function implements COW for wired-down map entry. Otherwise,
1212 *		it forks wired entry into dst_map.
1213 *
1214 *	In/out conditions:
1215 *		The source and destination maps must be locked for write.
1216 *		The source map entry must be wired down (or be a sharing map
1217 *		entry corresponding to a main map entry that is wired down).
1218 */
1219void
1220vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1221    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1222    vm_ooffset_t *fork_charge)
1223{
1224	vm_object_t backing_object, dst_object, object, src_object;
1225	vm_pindex_t dst_pindex, pindex, src_pindex;
1226	vm_prot_t access, prot;
1227	vm_offset_t vaddr;
1228	vm_page_t dst_m;
1229	vm_page_t src_m;
1230	boolean_t upgrade;
1231
1232#ifdef	lint
1233	src_map++;
1234#endif	/* lint */
1235
1236	upgrade = src_entry == dst_entry;
1237	access = prot = dst_entry->protection;
1238
1239	src_object = src_entry->object.vm_object;
1240	src_pindex = OFF_TO_IDX(src_entry->offset);
1241
1242	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1243		dst_object = src_object;
1244		vm_object_reference(dst_object);
1245	} else {
1246		/*
1247		 * Create the top-level object for the destination entry. (Doesn't
1248		 * actually shadow anything - we copy the pages directly.)
1249		 */
1250		dst_object = vm_object_allocate(OBJT_DEFAULT,
1251		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1252#if VM_NRESERVLEVEL > 0
1253		dst_object->flags |= OBJ_COLORED;
1254		dst_object->pg_color = atop(dst_entry->start);
1255#endif
1256	}
1257
1258	VM_OBJECT_WLOCK(dst_object);
1259	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1260	    ("vm_fault_copy_entry: vm_object not NULL"));
1261	if (src_object != dst_object) {
1262		dst_entry->object.vm_object = dst_object;
1263		dst_entry->offset = 0;
1264		dst_object->charge = dst_entry->end - dst_entry->start;
1265	}
1266	if (fork_charge != NULL) {
1267		KASSERT(dst_entry->cred == NULL,
1268		    ("vm_fault_copy_entry: leaked swp charge"));
1269		dst_object->cred = curthread->td_ucred;
1270		crhold(dst_object->cred);
1271		*fork_charge += dst_object->charge;
1272	} else if (dst_object->cred == NULL) {
1273		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1274		    dst_entry));
1275		dst_object->cred = dst_entry->cred;
1276		dst_entry->cred = NULL;
1277	}
1278
1279	/*
1280	 * If not an upgrade, then enter the mappings in the pmap as
1281	 * read and/or execute accesses.  Otherwise, enter them as
1282	 * write accesses.
1283	 *
1284	 * A writeable large page mapping is only created if all of
1285	 * the constituent small page mappings are modified. Marking
1286	 * PTEs as modified on inception allows promotion to happen
1287	 * without taking potentially large number of soft faults.
1288	 */
1289	if (!upgrade)
1290		access &= ~VM_PROT_WRITE;
1291
1292	/*
1293	 * Loop through all of the virtual pages within the entry's
1294	 * range, copying each page from the source object to the
1295	 * destination object.  Since the source is wired, those pages
1296	 * must exist.  In contrast, the destination is pageable.
1297	 * Since the destination object does share any backing storage
1298	 * with the source object, all of its pages must be dirtied,
1299	 * regardless of whether they can be written.
1300	 */
1301	for (vaddr = dst_entry->start, dst_pindex = 0;
1302	    vaddr < dst_entry->end;
1303	    vaddr += PAGE_SIZE, dst_pindex++) {
1304again:
1305		/*
1306		 * Find the page in the source object, and copy it in.
1307		 * Because the source is wired down, the page will be
1308		 * in memory.
1309		 */
1310		if (src_object != dst_object)
1311			VM_OBJECT_RLOCK(src_object);
1312		object = src_object;
1313		pindex = src_pindex + dst_pindex;
1314		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1315		    (backing_object = object->backing_object) != NULL) {
1316			/*
1317			 * Unless the source mapping is read-only or
1318			 * it is presently being upgraded from
1319			 * read-only, the first object in the shadow
1320			 * chain should provide all of the pages.  In
1321			 * other words, this loop body should never be
1322			 * executed when the source mapping is already
1323			 * read/write.
1324			 */
1325			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1326			    upgrade,
1327			    ("vm_fault_copy_entry: main object missing page"));
1328
1329			VM_OBJECT_RLOCK(backing_object);
1330			pindex += OFF_TO_IDX(object->backing_object_offset);
1331			if (object != dst_object)
1332				VM_OBJECT_RUNLOCK(object);
1333			object = backing_object;
1334		}
1335		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1336
1337		if (object != dst_object) {
1338			/*
1339			 * Allocate a page in the destination object.
1340			 */
1341			dst_m = vm_page_alloc(dst_object, (src_object ==
1342			    dst_object ? src_pindex : 0) + dst_pindex,
1343			    VM_ALLOC_NORMAL);
1344			if (dst_m == NULL) {
1345				VM_OBJECT_WUNLOCK(dst_object);
1346				VM_OBJECT_RUNLOCK(object);
1347				VM_WAIT;
1348				VM_OBJECT_WLOCK(dst_object);
1349				goto again;
1350			}
1351			pmap_copy_page(src_m, dst_m);
1352			VM_OBJECT_RUNLOCK(object);
1353			dst_m->valid = VM_PAGE_BITS_ALL;
1354			dst_m->dirty = VM_PAGE_BITS_ALL;
1355		} else {
1356			dst_m = src_m;
1357			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1358				goto again;
1359			vm_page_xbusy(dst_m);
1360			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1361			    ("invalid dst page %p", dst_m));
1362		}
1363		VM_OBJECT_WUNLOCK(dst_object);
1364
1365		/*
1366		 * Enter it in the pmap. If a wired, copy-on-write
1367		 * mapping is being replaced by a write-enabled
1368		 * mapping, then wire that new mapping.
1369		 */
1370		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1371		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1372
1373		/*
1374		 * Mark it no longer busy, and put it on the active list.
1375		 */
1376		VM_OBJECT_WLOCK(dst_object);
1377
1378		if (upgrade) {
1379			if (src_m != dst_m) {
1380				vm_page_lock(src_m);
1381				vm_page_unwire(src_m, 0);
1382				vm_page_unlock(src_m);
1383				vm_page_lock(dst_m);
1384				vm_page_wire(dst_m);
1385				vm_page_unlock(dst_m);
1386			} else {
1387				KASSERT(dst_m->wire_count > 0,
1388				    ("dst_m %p is not wired", dst_m));
1389			}
1390		} else {
1391			vm_page_lock(dst_m);
1392			vm_page_activate(dst_m);
1393			vm_page_unlock(dst_m);
1394		}
1395		vm_page_xunbusy(dst_m);
1396	}
1397	VM_OBJECT_WUNLOCK(dst_object);
1398	if (upgrade) {
1399		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1400		vm_object_deallocate(src_object);
1401	}
1402}
1403
1404
1405/*
1406 * This routine checks around the requested page for other pages that
1407 * might be able to be faulted in.  This routine brackets the viable
1408 * pages for the pages to be paged in.
1409 *
1410 * Inputs:
1411 *	m, rbehind, rahead
1412 *
1413 * Outputs:
1414 *  marray (array of vm_page_t), reqpage (index of requested page)
1415 *
1416 * Return value:
1417 *  number of pages in marray
1418 */
1419static int
1420vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1421	vm_page_t m;
1422	int rbehind;
1423	int rahead;
1424	vm_page_t *marray;
1425	int *reqpage;
1426{
1427	int i,j;
1428	vm_object_t object;
1429	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1430	vm_page_t rtm;
1431	int cbehind, cahead;
1432
1433	VM_OBJECT_ASSERT_WLOCKED(m->object);
1434
1435	object = m->object;
1436	pindex = m->pindex;
1437	cbehind = cahead = 0;
1438
1439	/*
1440	 * if the requested page is not available, then give up now
1441	 */
1442	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1443		return 0;
1444	}
1445
1446	if ((cbehind == 0) && (cahead == 0)) {
1447		*reqpage = 0;
1448		marray[0] = m;
1449		return 1;
1450	}
1451
1452	if (rahead > cahead) {
1453		rahead = cahead;
1454	}
1455
1456	if (rbehind > cbehind) {
1457		rbehind = cbehind;
1458	}
1459
1460	/*
1461	 * scan backward for the read behind pages -- in memory
1462	 */
1463	if (pindex > 0) {
1464		if (rbehind > pindex) {
1465			rbehind = pindex;
1466			startpindex = 0;
1467		} else {
1468			startpindex = pindex - rbehind;
1469		}
1470
1471		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1472		    rtm->pindex >= startpindex)
1473			startpindex = rtm->pindex + 1;
1474
1475		/* tpindex is unsigned; beware of numeric underflow. */
1476		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1477		    tpindex < pindex; i++, tpindex--) {
1478
1479			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1480			    VM_ALLOC_IFNOTCACHED);
1481			if (rtm == NULL) {
1482				/*
1483				 * Shift the allocated pages to the
1484				 * beginning of the array.
1485				 */
1486				for (j = 0; j < i; j++) {
1487					marray[j] = marray[j + tpindex + 1 -
1488					    startpindex];
1489				}
1490				break;
1491			}
1492
1493			marray[tpindex - startpindex] = rtm;
1494		}
1495	} else {
1496		startpindex = 0;
1497		i = 0;
1498	}
1499
1500	marray[i] = m;
1501	/* page offset of the required page */
1502	*reqpage = i;
1503
1504	tpindex = pindex + 1;
1505	i++;
1506
1507	/*
1508	 * scan forward for the read ahead pages
1509	 */
1510	endpindex = tpindex + rahead;
1511	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1512		endpindex = rtm->pindex;
1513	if (endpindex > object->size)
1514		endpindex = object->size;
1515
1516	for (; tpindex < endpindex; i++, tpindex++) {
1517
1518		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1519		    VM_ALLOC_IFNOTCACHED);
1520		if (rtm == NULL) {
1521			break;
1522		}
1523
1524		marray[i] = rtm;
1525	}
1526
1527	/* return number of pages */
1528	return i;
1529}
1530
1531/*
1532 * Block entry into the machine-independent layer's page fault handler by
1533 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1534 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1535 * spurious page faults.
1536 */
1537int
1538vm_fault_disable_pagefaults(void)
1539{
1540
1541	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1542}
1543
1544void
1545vm_fault_enable_pagefaults(int save)
1546{
1547
1548	curthread_pflags_restore(save);
1549}
1550