vm_fault.c revision 265311
11638Srgrimes/*-
21638Srgrimes * Copyright (c) 1991, 1993
31638Srgrimes *	The Regents of the University of California.  All rights reserved.
41638Srgrimes * Copyright (c) 1994 John S. Dyson
51638Srgrimes * All rights reserved.
61638Srgrimes * Copyright (c) 1994 David Greenman
71638Srgrimes * All rights reserved.
81638Srgrimes *
91638Srgrimes *
101638Srgrimes * This code is derived from software contributed to Berkeley by
111638Srgrimes * The Mach Operating System project at Carnegie-Mellon University.
121638Srgrimes *
131638Srgrimes * Redistribution and use in source and binary forms, with or without
141638Srgrimes * modification, are permitted provided that the following conditions
151638Srgrimes * are met:
161638Srgrimes * 1. Redistributions of source code must retain the above copyright
171638Srgrimes *    notice, this list of conditions and the following disclaimer.
181638Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
191638Srgrimes *    notice, this list of conditions and the following disclaimer in the
201638Srgrimes *    documentation and/or other materials provided with the distribution.
211638Srgrimes * 3. All advertising materials mentioning features or use of this software
221638Srgrimes *    must display the following acknowledgement:
231638Srgrimes *	This product includes software developed by the University of
241638Srgrimes *	California, Berkeley and its contributors.
251638Srgrimes * 4. Neither the name of the University nor the names of its contributors
261638Srgrimes *    may be used to endorse or promote products derived from this software
271638Srgrimes *    without specific prior written permission.
281638Srgrimes *
291638Srgrimes * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
301638Srgrimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
311638Srgrimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
321638Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3350476Speter * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
341638Srgrimes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35163353Sru * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
361638Srgrimes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3779538Sru * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
381638Srgrimes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
391638Srgrimes * SUCH DAMAGE.
401638Srgrimes *
411638Srgrimes *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
4293575Sphk *
431638Srgrimes *
441638Srgrimes * Copyright (c) 1987, 1990 Carnegie-Mellon University.
451638Srgrimes * All rights reserved.
461638Srgrimes *
471638Srgrimes * Authors: Avadis Tevanian, Jr., Michael Wayne Young
481638Srgrimes *
491638Srgrimes * Permission to use, copy, modify and distribute this software and
501638Srgrimes * its documentation is hereby granted, provided that both the copyright
511638Srgrimes * notice and this permission notice appear in all copies of the
521638Srgrimes * software, derivative works or modified versions, and any portions
531638Srgrimes * thereof, and that both notices appear in supporting documentation.
541638Srgrimes *
55131530Sru * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56131530Sru * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
5768962Sru * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58131530Sru *
59131530Sru * Carnegie Mellon requests users of this software to return to
60114822Strhodes *
61131530Sru *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62131530Sru *  School of Computer Science
631638Srgrimes *  Carnegie Mellon University
6479727Sschweikh *  Pittsburgh PA 15213-3890
651638Srgrimes *
66114822Strhodes * any improvements or extensions that they make and grant Carnegie the
671638Srgrimes * rights to redistribute these changes.
68114822Strhodes */
691638Srgrimes
701638Srgrimes/*
711638Srgrimes *	Page fault handling module.
721638Srgrimes */
731638Srgrimes
741638Srgrimes#include <sys/cdefs.h>
751638Srgrimes__FBSDID("$FreeBSD: stable/10/sys/vm/vm_fault.c 265311 2014-05-04 07:19:37Z kib $");
76136586Syar
771638Srgrimes#include "opt_ktrace.h"
781638Srgrimes#include "opt_vm.h"
791638Srgrimes
801638Srgrimes#include <sys/param.h>
811638Srgrimes#include <sys/systm.h>
821638Srgrimes#include <sys/kernel.h>
831638Srgrimes#include <sys/lock.h>
841638Srgrimes#include <sys/proc.h>
851638Srgrimes#include <sys/resourcevar.h>
861638Srgrimes#include <sys/rwlock.h>
871638Srgrimes#include <sys/sysctl.h>
881638Srgrimes#include <sys/vmmeter.h>
891638Srgrimes#include <sys/vnode.h>
901638Srgrimes#ifdef KTRACE
91163353Sru#include <sys/ktrace.h>
921638Srgrimes#endif
931638Srgrimes
941638Srgrimes#include <vm/vm.h>
951638Srgrimes#include <vm/vm_param.h>
961638Srgrimes#include <vm/pmap.h>
971638Srgrimes#include <vm/vm_map.h>
981638Srgrimes#include <vm/vm_object.h>
991638Srgrimes#include <vm/vm_page.h>
10021708Smpp#include <vm/vm_pageout.h>
1011638Srgrimes#include <vm/vm_kern.h>
1021638Srgrimes#include <vm/vm_pager.h>
1031638Srgrimes#include <vm/vm_extern.h>
1041638Srgrimes
1051638Srgrimes#define PFBAK 4
1061638Srgrimes#define PFFOR 4
1071638Srgrimes#define PAGEORDER_SIZE (PFBAK+PFFOR)
1081638Srgrimes
1091638Srgrimesstatic int prefault_pageorder[] = {
1101638Srgrimes	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
1111638Srgrimes	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
1121638Srgrimes	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
1131638Srgrimes	-4 * PAGE_SIZE, 4 * PAGE_SIZE
1141638Srgrimes};
1151638Srgrimes
1161638Srgrimesstatic int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
1171638Srgrimesstatic void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
1181638Srgrimes
1191638Srgrimes#define	VM_FAULT_READ_BEHIND	8
1201638Srgrimes#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
1211638Srgrimes#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
122107788Sru#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
1231638Srgrimes#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
1241638Srgrimes
1251638Srgrimesstruct faultstate {
1261638Srgrimes	vm_page_t m;
1271638Srgrimes	vm_object_t object;
1281638Srgrimes	vm_pindex_t pindex;
1291638Srgrimes	vm_page_t first_m;
1301638Srgrimes	vm_object_t	first_object;
1311638Srgrimes	vm_pindex_t first_pindex;
1321638Srgrimes	vm_map_t map;
1331638Srgrimes	vm_map_entry_t entry;
1341638Srgrimes	int lookup_still_valid;
1351638Srgrimes	struct vnode *vp;
1361638Srgrimes};
137148514Skeramida
1381638Srgrimesstatic void vm_fault_cache_behind(const struct faultstate *fs, int distance);
1391638Srgrimes
1401638Srgrimesstatic inline void
1411638Srgrimesrelease_page(struct faultstate *fs)
1421638Srgrimes{
1431638Srgrimes
144	vm_page_xunbusy(fs->m);
145	vm_page_lock(fs->m);
146	vm_page_deactivate(fs->m);
147	vm_page_unlock(fs->m);
148	fs->m = NULL;
149}
150
151static inline void
152unlock_map(struct faultstate *fs)
153{
154
155	if (fs->lookup_still_valid) {
156		vm_map_lookup_done(fs->map, fs->entry);
157		fs->lookup_still_valid = FALSE;
158	}
159}
160
161static void
162unlock_and_deallocate(struct faultstate *fs)
163{
164
165	vm_object_pip_wakeup(fs->object);
166	VM_OBJECT_WUNLOCK(fs->object);
167	if (fs->object != fs->first_object) {
168		VM_OBJECT_WLOCK(fs->first_object);
169		vm_page_lock(fs->first_m);
170		vm_page_free(fs->first_m);
171		vm_page_unlock(fs->first_m);
172		vm_object_pip_wakeup(fs->first_object);
173		VM_OBJECT_WUNLOCK(fs->first_object);
174		fs->first_m = NULL;
175	}
176	vm_object_deallocate(fs->first_object);
177	unlock_map(fs);
178	if (fs->vp != NULL) {
179		vput(fs->vp);
180		fs->vp = NULL;
181	}
182}
183
184/*
185 * TRYPAGER - used by vm_fault to calculate whether the pager for the
186 *	      current object *might* contain the page.
187 *
188 *	      default objects are zero-fill, there is no real pager.
189 */
190#define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
191			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
192
193/*
194 *	vm_fault:
195 *
196 *	Handle a page fault occurring at the given address,
197 *	requiring the given permissions, in the map specified.
198 *	If successful, the page is inserted into the
199 *	associated physical map.
200 *
201 *	NOTE: the given address should be truncated to the
202 *	proper page address.
203 *
204 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
205 *	a standard error specifying why the fault is fatal is returned.
206 *
207 *	The map in question must be referenced, and remains so.
208 *	Caller may hold no locks.
209 */
210int
211vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
212    int fault_flags)
213{
214	struct thread *td;
215	int result;
216
217	td = curthread;
218	if ((td->td_pflags & TDP_NOFAULTING) != 0)
219		return (KERN_PROTECTION_FAILURE);
220#ifdef KTRACE
221	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
222		ktrfault(vaddr, fault_type);
223#endif
224	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
225	    NULL);
226#ifdef KTRACE
227	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
228		ktrfaultend(result);
229#endif
230	return (result);
231}
232
233int
234vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
235    int fault_flags, vm_page_t *m_hold)
236{
237	vm_prot_t prot;
238	long ahead, behind;
239	int alloc_req, era, faultcount, nera, reqpage, result;
240	boolean_t growstack, is_first_object_locked, wired;
241	int map_generation;
242	vm_object_t next_object;
243	vm_page_t marray[VM_FAULT_READ_MAX];
244	int hardfault;
245	struct faultstate fs;
246	struct vnode *vp;
247	int locked, error;
248
249	hardfault = 0;
250	growstack = TRUE;
251	PCPU_INC(cnt.v_vm_faults);
252	fs.vp = NULL;
253	faultcount = reqpage = 0;
254
255RetryFault:;
256
257	/*
258	 * Find the backing store object and offset into it to begin the
259	 * search.
260	 */
261	fs.map = map;
262	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
263	    &fs.first_object, &fs.first_pindex, &prot, &wired);
264	if (result != KERN_SUCCESS) {
265		if (growstack && result == KERN_INVALID_ADDRESS &&
266		    map != kernel_map) {
267			result = vm_map_growstack(curproc, vaddr);
268			if (result != KERN_SUCCESS)
269				return (KERN_FAILURE);
270			growstack = FALSE;
271			goto RetryFault;
272		}
273		return (result);
274	}
275
276	map_generation = fs.map->timestamp;
277
278	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
279		if ((curthread->td_pflags & TDP_DEVMEMIO) != 0) {
280			vm_map_unlock_read(fs.map);
281			return (KERN_FAILURE);
282		}
283		panic("vm_fault: fault on nofault entry, addr: %lx",
284		    (u_long)vaddr);
285	}
286
287	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
288	    fs.entry->wiring_thread != curthread) {
289		vm_map_unlock_read(fs.map);
290		vm_map_lock(fs.map);
291		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
292		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
293			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
294			vm_map_unlock_and_wait(fs.map, 0);
295		} else
296			vm_map_unlock(fs.map);
297		goto RetryFault;
298	}
299
300	/*
301	 * Make a reference to this object to prevent its disposal while we
302	 * are messing with it.  Once we have the reference, the map is free
303	 * to be diddled.  Since objects reference their shadows (and copies),
304	 * they will stay around as well.
305	 *
306	 * Bump the paging-in-progress count to prevent size changes (e.g.
307	 * truncation operations) during I/O.  This must be done after
308	 * obtaining the vnode lock in order to avoid possible deadlocks.
309	 */
310	VM_OBJECT_WLOCK(fs.first_object);
311	vm_object_reference_locked(fs.first_object);
312	vm_object_pip_add(fs.first_object, 1);
313
314	fs.lookup_still_valid = TRUE;
315
316	if (wired)
317		fault_type = prot | (fault_type & VM_PROT_COPY);
318
319	fs.first_m = NULL;
320
321	/*
322	 * Search for the page at object/offset.
323	 */
324	fs.object = fs.first_object;
325	fs.pindex = fs.first_pindex;
326	while (TRUE) {
327		/*
328		 * If the object is dead, we stop here
329		 */
330		if (fs.object->flags & OBJ_DEAD) {
331			unlock_and_deallocate(&fs);
332			return (KERN_PROTECTION_FAILURE);
333		}
334
335		/*
336		 * See if page is resident
337		 */
338		fs.m = vm_page_lookup(fs.object, fs.pindex);
339		if (fs.m != NULL) {
340			/*
341			 * Wait/Retry if the page is busy.  We have to do this
342			 * if the page is either exclusive or shared busy
343			 * because the vm_pager may be using read busy for
344			 * pageouts (and even pageins if it is the vnode
345			 * pager), and we could end up trying to pagein and
346			 * pageout the same page simultaneously.
347			 *
348			 * We can theoretically allow the busy case on a read
349			 * fault if the page is marked valid, but since such
350			 * pages are typically already pmap'd, putting that
351			 * special case in might be more effort then it is
352			 * worth.  We cannot under any circumstances mess
353			 * around with a shared busied page except, perhaps,
354			 * to pmap it.
355			 */
356			if (vm_page_busied(fs.m)) {
357				/*
358				 * Reference the page before unlocking and
359				 * sleeping so that the page daemon is less
360				 * likely to reclaim it.
361				 */
362				vm_page_aflag_set(fs.m, PGA_REFERENCED);
363				if (fs.object != fs.first_object) {
364					if (!VM_OBJECT_TRYWLOCK(
365					    fs.first_object)) {
366						VM_OBJECT_WUNLOCK(fs.object);
367						VM_OBJECT_WLOCK(fs.first_object);
368						VM_OBJECT_WLOCK(fs.object);
369					}
370					vm_page_lock(fs.first_m);
371					vm_page_free(fs.first_m);
372					vm_page_unlock(fs.first_m);
373					vm_object_pip_wakeup(fs.first_object);
374					VM_OBJECT_WUNLOCK(fs.first_object);
375					fs.first_m = NULL;
376				}
377				unlock_map(&fs);
378				if (fs.m == vm_page_lookup(fs.object,
379				    fs.pindex)) {
380					vm_page_sleep_if_busy(fs.m, "vmpfw");
381				}
382				vm_object_pip_wakeup(fs.object);
383				VM_OBJECT_WUNLOCK(fs.object);
384				PCPU_INC(cnt.v_intrans);
385				vm_object_deallocate(fs.first_object);
386				goto RetryFault;
387			}
388			vm_page_lock(fs.m);
389			vm_page_remque(fs.m);
390			vm_page_unlock(fs.m);
391
392			/*
393			 * Mark page busy for other processes, and the
394			 * pagedaemon.  If it still isn't completely valid
395			 * (readable), jump to readrest, else break-out ( we
396			 * found the page ).
397			 */
398			vm_page_xbusy(fs.m);
399			if (fs.m->valid != VM_PAGE_BITS_ALL)
400				goto readrest;
401			break;
402		}
403
404		/*
405		 * Page is not resident, If this is the search termination
406		 * or the pager might contain the page, allocate a new page.
407		 */
408		if (TRYPAGER || fs.object == fs.first_object) {
409			if (fs.pindex >= fs.object->size) {
410				unlock_and_deallocate(&fs);
411				return (KERN_PROTECTION_FAILURE);
412			}
413
414			/*
415			 * Allocate a new page for this object/offset pair.
416			 *
417			 * Unlocked read of the p_flag is harmless. At
418			 * worst, the P_KILLED might be not observed
419			 * there, and allocation can fail, causing
420			 * restart and new reading of the p_flag.
421			 */
422			fs.m = NULL;
423			if (!vm_page_count_severe() || P_KILLED(curproc)) {
424#if VM_NRESERVLEVEL > 0
425				if ((fs.object->flags & OBJ_COLORED) == 0) {
426					fs.object->flags |= OBJ_COLORED;
427					fs.object->pg_color = atop(vaddr) -
428					    fs.pindex;
429				}
430#endif
431				alloc_req = P_KILLED(curproc) ?
432				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
433				if (fs.object->type != OBJT_VNODE &&
434				    fs.object->backing_object == NULL)
435					alloc_req |= VM_ALLOC_ZERO;
436				fs.m = vm_page_alloc(fs.object, fs.pindex,
437				    alloc_req);
438			}
439			if (fs.m == NULL) {
440				unlock_and_deallocate(&fs);
441				VM_WAITPFAULT;
442				goto RetryFault;
443			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
444				break;
445		}
446
447readrest:
448		/*
449		 * We have found a valid page or we have allocated a new page.
450		 * The page thus may not be valid or may not be entirely
451		 * valid.
452		 *
453		 * Attempt to fault-in the page if there is a chance that the
454		 * pager has it, and potentially fault in additional pages
455		 * at the same time.
456		 */
457		if (TRYPAGER) {
458			int rv;
459			u_char behavior = vm_map_entry_behavior(fs.entry);
460
461			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
462			    P_KILLED(curproc)) {
463				behind = 0;
464				ahead = 0;
465			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
466				behind = 0;
467				ahead = atop(fs.entry->end - vaddr) - 1;
468				if (ahead > VM_FAULT_READ_AHEAD_MAX)
469					ahead = VM_FAULT_READ_AHEAD_MAX;
470				if (fs.pindex == fs.entry->next_read)
471					vm_fault_cache_behind(&fs,
472					    VM_FAULT_READ_MAX);
473			} else {
474				/*
475				 * If this is a sequential page fault, then
476				 * arithmetically increase the number of pages
477				 * in the read-ahead window.  Otherwise, reset
478				 * the read-ahead window to its smallest size.
479				 */
480				behind = atop(vaddr - fs.entry->start);
481				if (behind > VM_FAULT_READ_BEHIND)
482					behind = VM_FAULT_READ_BEHIND;
483				ahead = atop(fs.entry->end - vaddr) - 1;
484				era = fs.entry->read_ahead;
485				if (fs.pindex == fs.entry->next_read) {
486					nera = era + behind;
487					if (nera > VM_FAULT_READ_AHEAD_MAX)
488						nera = VM_FAULT_READ_AHEAD_MAX;
489					behind = 0;
490					if (ahead > nera)
491						ahead = nera;
492					if (era == VM_FAULT_READ_AHEAD_MAX)
493						vm_fault_cache_behind(&fs,
494						    VM_FAULT_CACHE_BEHIND);
495				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
496					ahead = VM_FAULT_READ_AHEAD_MIN;
497				if (era != ahead)
498					fs.entry->read_ahead = ahead;
499			}
500
501			/*
502			 * Call the pager to retrieve the data, if any, after
503			 * releasing the lock on the map.  We hold a ref on
504			 * fs.object and the pages are exclusive busied.
505			 */
506			unlock_map(&fs);
507
508			if (fs.object->type == OBJT_VNODE) {
509				vp = fs.object->handle;
510				if (vp == fs.vp)
511					goto vnode_locked;
512				else if (fs.vp != NULL) {
513					vput(fs.vp);
514					fs.vp = NULL;
515				}
516				locked = VOP_ISLOCKED(vp);
517
518				if (locked != LK_EXCLUSIVE)
519					locked = LK_SHARED;
520				/* Do not sleep for vnode lock while fs.m is busy */
521				error = vget(vp, locked | LK_CANRECURSE |
522				    LK_NOWAIT, curthread);
523				if (error != 0) {
524					vhold(vp);
525					release_page(&fs);
526					unlock_and_deallocate(&fs);
527					error = vget(vp, locked | LK_RETRY |
528					    LK_CANRECURSE, curthread);
529					vdrop(vp);
530					fs.vp = vp;
531					KASSERT(error == 0,
532					    ("vm_fault: vget failed"));
533					goto RetryFault;
534				}
535				fs.vp = vp;
536			}
537vnode_locked:
538			KASSERT(fs.vp == NULL || !fs.map->system_map,
539			    ("vm_fault: vnode-backed object mapped by system map"));
540
541			/*
542			 * now we find out if any other pages should be paged
543			 * in at this time this routine checks to see if the
544			 * pages surrounding this fault reside in the same
545			 * object as the page for this fault.  If they do,
546			 * then they are faulted in also into the object.  The
547			 * array "marray" returned contains an array of
548			 * vm_page_t structs where one of them is the
549			 * vm_page_t passed to the routine.  The reqpage
550			 * return value is the index into the marray for the
551			 * vm_page_t passed to the routine.
552			 *
553			 * fs.m plus the additional pages are exclusive busied.
554			 */
555			faultcount = vm_fault_additional_pages(
556			    fs.m, behind, ahead, marray, &reqpage);
557
558			rv = faultcount ?
559			    vm_pager_get_pages(fs.object, marray, faultcount,
560				reqpage) : VM_PAGER_FAIL;
561
562			if (rv == VM_PAGER_OK) {
563				/*
564				 * Found the page. Leave it busy while we play
565				 * with it.
566				 */
567
568				/*
569				 * Relookup in case pager changed page. Pager
570				 * is responsible for disposition of old page
571				 * if moved.
572				 */
573				fs.m = vm_page_lookup(fs.object, fs.pindex);
574				if (!fs.m) {
575					unlock_and_deallocate(&fs);
576					goto RetryFault;
577				}
578
579				hardfault++;
580				break; /* break to PAGE HAS BEEN FOUND */
581			}
582			/*
583			 * Remove the bogus page (which does not exist at this
584			 * object/offset); before doing so, we must get back
585			 * our object lock to preserve our invariant.
586			 *
587			 * Also wake up any other process that may want to bring
588			 * in this page.
589			 *
590			 * If this is the top-level object, we must leave the
591			 * busy page to prevent another process from rushing
592			 * past us, and inserting the page in that object at
593			 * the same time that we are.
594			 */
595			if (rv == VM_PAGER_ERROR)
596				printf("vm_fault: pager read error, pid %d (%s)\n",
597				    curproc->p_pid, curproc->p_comm);
598			/*
599			 * Data outside the range of the pager or an I/O error
600			 */
601			/*
602			 * XXX - the check for kernel_map is a kludge to work
603			 * around having the machine panic on a kernel space
604			 * fault w/ I/O error.
605			 */
606			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
607				(rv == VM_PAGER_BAD)) {
608				vm_page_lock(fs.m);
609				vm_page_free(fs.m);
610				vm_page_unlock(fs.m);
611				fs.m = NULL;
612				unlock_and_deallocate(&fs);
613				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
614			}
615			if (fs.object != fs.first_object) {
616				vm_page_lock(fs.m);
617				vm_page_free(fs.m);
618				vm_page_unlock(fs.m);
619				fs.m = NULL;
620				/*
621				 * XXX - we cannot just fall out at this
622				 * point, m has been freed and is invalid!
623				 */
624			}
625		}
626
627		/*
628		 * We get here if the object has default pager (or unwiring)
629		 * or the pager doesn't have the page.
630		 */
631		if (fs.object == fs.first_object)
632			fs.first_m = fs.m;
633
634		/*
635		 * Move on to the next object.  Lock the next object before
636		 * unlocking the current one.
637		 */
638		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
639		next_object = fs.object->backing_object;
640		if (next_object == NULL) {
641			/*
642			 * If there's no object left, fill the page in the top
643			 * object with zeros.
644			 */
645			if (fs.object != fs.first_object) {
646				vm_object_pip_wakeup(fs.object);
647				VM_OBJECT_WUNLOCK(fs.object);
648
649				fs.object = fs.first_object;
650				fs.pindex = fs.first_pindex;
651				fs.m = fs.first_m;
652				VM_OBJECT_WLOCK(fs.object);
653			}
654			fs.first_m = NULL;
655
656			/*
657			 * Zero the page if necessary and mark it valid.
658			 */
659			if ((fs.m->flags & PG_ZERO) == 0) {
660				pmap_zero_page(fs.m);
661			} else {
662				PCPU_INC(cnt.v_ozfod);
663			}
664			PCPU_INC(cnt.v_zfod);
665			fs.m->valid = VM_PAGE_BITS_ALL;
666			break;	/* break to PAGE HAS BEEN FOUND */
667		} else {
668			KASSERT(fs.object != next_object,
669			    ("object loop %p", next_object));
670			VM_OBJECT_WLOCK(next_object);
671			vm_object_pip_add(next_object, 1);
672			if (fs.object != fs.first_object)
673				vm_object_pip_wakeup(fs.object);
674			VM_OBJECT_WUNLOCK(fs.object);
675			fs.object = next_object;
676		}
677	}
678
679	vm_page_assert_xbusied(fs.m);
680
681	/*
682	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
683	 * is held.]
684	 */
685
686	/*
687	 * If the page is being written, but isn't already owned by the
688	 * top-level object, we have to copy it into a new page owned by the
689	 * top-level object.
690	 */
691	if (fs.object != fs.first_object) {
692		/*
693		 * We only really need to copy if we want to write it.
694		 */
695		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
696			/*
697			 * This allows pages to be virtually copied from a
698			 * backing_object into the first_object, where the
699			 * backing object has no other refs to it, and cannot
700			 * gain any more refs.  Instead of a bcopy, we just
701			 * move the page from the backing object to the
702			 * first object.  Note that we must mark the page
703			 * dirty in the first object so that it will go out
704			 * to swap when needed.
705			 */
706			is_first_object_locked = FALSE;
707			if (
708				/*
709				 * Only one shadow object
710				 */
711				(fs.object->shadow_count == 1) &&
712				/*
713				 * No COW refs, except us
714				 */
715				(fs.object->ref_count == 1) &&
716				/*
717				 * No one else can look this object up
718				 */
719				(fs.object->handle == NULL) &&
720				/*
721				 * No other ways to look the object up
722				 */
723				((fs.object->type == OBJT_DEFAULT) ||
724				 (fs.object->type == OBJT_SWAP)) &&
725			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
726				/*
727				 * We don't chase down the shadow chain
728				 */
729			    fs.object == fs.first_object->backing_object) {
730				/*
731				 * get rid of the unnecessary page
732				 */
733				vm_page_lock(fs.first_m);
734				vm_page_free(fs.first_m);
735				vm_page_unlock(fs.first_m);
736				/*
737				 * grab the page and put it into the
738				 * process'es object.  The page is
739				 * automatically made dirty.
740				 */
741				if (vm_page_rename(fs.m, fs.first_object,
742				    fs.first_pindex)) {
743					unlock_and_deallocate(&fs);
744					goto RetryFault;
745				}
746				vm_page_xbusy(fs.m);
747				fs.first_m = fs.m;
748				fs.m = NULL;
749				PCPU_INC(cnt.v_cow_optim);
750			} else {
751				/*
752				 * Oh, well, lets copy it.
753				 */
754				pmap_copy_page(fs.m, fs.first_m);
755				fs.first_m->valid = VM_PAGE_BITS_ALL;
756				if (wired && (fault_flags &
757				    VM_FAULT_CHANGE_WIRING) == 0) {
758					vm_page_lock(fs.first_m);
759					vm_page_wire(fs.first_m);
760					vm_page_unlock(fs.first_m);
761
762					vm_page_lock(fs.m);
763					vm_page_unwire(fs.m, FALSE);
764					vm_page_unlock(fs.m);
765				}
766				/*
767				 * We no longer need the old page or object.
768				 */
769				release_page(&fs);
770			}
771			/*
772			 * fs.object != fs.first_object due to above
773			 * conditional
774			 */
775			vm_object_pip_wakeup(fs.object);
776			VM_OBJECT_WUNLOCK(fs.object);
777			/*
778			 * Only use the new page below...
779			 */
780			fs.object = fs.first_object;
781			fs.pindex = fs.first_pindex;
782			fs.m = fs.first_m;
783			if (!is_first_object_locked)
784				VM_OBJECT_WLOCK(fs.object);
785			PCPU_INC(cnt.v_cow_faults);
786			curthread->td_cow++;
787		} else {
788			prot &= ~VM_PROT_WRITE;
789		}
790	}
791
792	/*
793	 * We must verify that the maps have not changed since our last
794	 * lookup.
795	 */
796	if (!fs.lookup_still_valid) {
797		vm_object_t retry_object;
798		vm_pindex_t retry_pindex;
799		vm_prot_t retry_prot;
800
801		if (!vm_map_trylock_read(fs.map)) {
802			release_page(&fs);
803			unlock_and_deallocate(&fs);
804			goto RetryFault;
805		}
806		fs.lookup_still_valid = TRUE;
807		if (fs.map->timestamp != map_generation) {
808			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
809			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
810
811			/*
812			 * If we don't need the page any longer, put it on the inactive
813			 * list (the easiest thing to do here).  If no one needs it,
814			 * pageout will grab it eventually.
815			 */
816			if (result != KERN_SUCCESS) {
817				release_page(&fs);
818				unlock_and_deallocate(&fs);
819
820				/*
821				 * If retry of map lookup would have blocked then
822				 * retry fault from start.
823				 */
824				if (result == KERN_FAILURE)
825					goto RetryFault;
826				return (result);
827			}
828			if ((retry_object != fs.first_object) ||
829			    (retry_pindex != fs.first_pindex)) {
830				release_page(&fs);
831				unlock_and_deallocate(&fs);
832				goto RetryFault;
833			}
834
835			/*
836			 * Check whether the protection has changed or the object has
837			 * been copied while we left the map unlocked. Changing from
838			 * read to write permission is OK - we leave the page
839			 * write-protected, and catch the write fault. Changing from
840			 * write to read permission means that we can't mark the page
841			 * write-enabled after all.
842			 */
843			prot &= retry_prot;
844		}
845	}
846	/*
847	 * If the page was filled by a pager, update the map entry's
848	 * last read offset.  Since the pager does not return the
849	 * actual set of pages that it read, this update is based on
850	 * the requested set.  Typically, the requested and actual
851	 * sets are the same.
852	 *
853	 * XXX The following assignment modifies the map
854	 * without holding a write lock on it.
855	 */
856	if (hardfault)
857		fs.entry->next_read = fs.pindex + faultcount - reqpage;
858
859	if ((prot & VM_PROT_WRITE) != 0 ||
860	    (fault_flags & VM_FAULT_DIRTY) != 0) {
861		vm_object_set_writeable_dirty(fs.object);
862
863		/*
864		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
865		 * if the page is already dirty to prevent data written with
866		 * the expectation of being synced from not being synced.
867		 * Likewise if this entry does not request NOSYNC then make
868		 * sure the page isn't marked NOSYNC.  Applications sharing
869		 * data should use the same flags to avoid ping ponging.
870		 */
871		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
872			if (fs.m->dirty == 0)
873				fs.m->oflags |= VPO_NOSYNC;
874		} else {
875			fs.m->oflags &= ~VPO_NOSYNC;
876		}
877
878		/*
879		 * If the fault is a write, we know that this page is being
880		 * written NOW so dirty it explicitly to save on
881		 * pmap_is_modified() calls later.
882		 *
883		 * Also tell the backing pager, if any, that it should remove
884		 * any swap backing since the page is now dirty.
885		 */
886		if (((fault_type & VM_PROT_WRITE) != 0 &&
887		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
888		    (fault_flags & VM_FAULT_DIRTY) != 0) {
889			vm_page_dirty(fs.m);
890			vm_pager_page_unswapped(fs.m);
891		}
892	}
893
894	vm_page_assert_xbusied(fs.m);
895
896	/*
897	 * Page must be completely valid or it is not fit to
898	 * map into user space.  vm_pager_get_pages() ensures this.
899	 */
900	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
901	    ("vm_fault: page %p partially invalid", fs.m));
902	VM_OBJECT_WUNLOCK(fs.object);
903
904	/*
905	 * Put this page into the physical map.  We had to do the unlock above
906	 * because pmap_enter() may sleep.  We don't put the page
907	 * back on the active queue until later so that the pageout daemon
908	 * won't find it (yet).
909	 */
910	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
911	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
912		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
913	VM_OBJECT_WLOCK(fs.object);
914	vm_page_lock(fs.m);
915
916	/*
917	 * If the page is not wired down, then put it where the pageout daemon
918	 * can find it.
919	 */
920	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
921		if (wired)
922			vm_page_wire(fs.m);
923		else
924			vm_page_unwire(fs.m, 1);
925	} else
926		vm_page_activate(fs.m);
927	if (m_hold != NULL) {
928		*m_hold = fs.m;
929		vm_page_hold(fs.m);
930	}
931	vm_page_unlock(fs.m);
932	vm_page_xunbusy(fs.m);
933
934	/*
935	 * Unlock everything, and return
936	 */
937	unlock_and_deallocate(&fs);
938	if (hardfault) {
939		PCPU_INC(cnt.v_io_faults);
940		curthread->td_ru.ru_majflt++;
941	} else
942		curthread->td_ru.ru_minflt++;
943
944	return (KERN_SUCCESS);
945}
946
947/*
948 * Speed up the reclamation of up to "distance" pages that precede the
949 * faulting pindex within the first object of the shadow chain.
950 */
951static void
952vm_fault_cache_behind(const struct faultstate *fs, int distance)
953{
954	vm_object_t first_object, object;
955	vm_page_t m, m_prev;
956	vm_pindex_t pindex;
957
958	object = fs->object;
959	VM_OBJECT_ASSERT_WLOCKED(object);
960	first_object = fs->first_object;
961	if (first_object != object) {
962		if (!VM_OBJECT_TRYWLOCK(first_object)) {
963			VM_OBJECT_WUNLOCK(object);
964			VM_OBJECT_WLOCK(first_object);
965			VM_OBJECT_WLOCK(object);
966		}
967	}
968	/* Neither fictitious nor unmanaged pages can be cached. */
969	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
970		if (fs->first_pindex < distance)
971			pindex = 0;
972		else
973			pindex = fs->first_pindex - distance;
974		if (pindex < OFF_TO_IDX(fs->entry->offset))
975			pindex = OFF_TO_IDX(fs->entry->offset);
976		m = first_object != object ? fs->first_m : fs->m;
977		vm_page_assert_xbusied(m);
978		m_prev = vm_page_prev(m);
979		while ((m = m_prev) != NULL && m->pindex >= pindex &&
980		    m->valid == VM_PAGE_BITS_ALL) {
981			m_prev = vm_page_prev(m);
982			if (vm_page_busied(m))
983				continue;
984			vm_page_lock(m);
985			if (m->hold_count == 0 && m->wire_count == 0) {
986				pmap_remove_all(m);
987				vm_page_aflag_clear(m, PGA_REFERENCED);
988				if (m->dirty != 0)
989					vm_page_deactivate(m);
990				else
991					vm_page_cache(m);
992			}
993			vm_page_unlock(m);
994		}
995	}
996	if (first_object != object)
997		VM_OBJECT_WUNLOCK(first_object);
998}
999
1000/*
1001 * vm_fault_prefault provides a quick way of clustering
1002 * pagefaults into a processes address space.  It is a "cousin"
1003 * of vm_map_pmap_enter, except it runs at page fault time instead
1004 * of mmap time.
1005 */
1006static void
1007vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
1008{
1009	int i;
1010	vm_offset_t addr, starta;
1011	vm_pindex_t pindex;
1012	vm_page_t m;
1013	vm_object_t object;
1014
1015	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1016		return;
1017
1018	object = entry->object.vm_object;
1019
1020	starta = addra - PFBAK * PAGE_SIZE;
1021	if (starta < entry->start) {
1022		starta = entry->start;
1023	} else if (starta > addra) {
1024		starta = 0;
1025	}
1026
1027	for (i = 0; i < PAGEORDER_SIZE; i++) {
1028		vm_object_t backing_object, lobject;
1029
1030		addr = addra + prefault_pageorder[i];
1031		if (addr > addra + (PFFOR * PAGE_SIZE))
1032			addr = 0;
1033
1034		if (addr < starta || addr >= entry->end)
1035			continue;
1036
1037		if (!pmap_is_prefaultable(pmap, addr))
1038			continue;
1039
1040		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1041		lobject = object;
1042		VM_OBJECT_RLOCK(lobject);
1043		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1044		    lobject->type == OBJT_DEFAULT &&
1045		    (backing_object = lobject->backing_object) != NULL) {
1046			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1047			    0, ("vm_fault_prefault: unaligned object offset"));
1048			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1049			VM_OBJECT_RLOCK(backing_object);
1050			VM_OBJECT_RUNLOCK(lobject);
1051			lobject = backing_object;
1052		}
1053		/*
1054		 * give-up when a page is not in memory
1055		 */
1056		if (m == NULL) {
1057			VM_OBJECT_RUNLOCK(lobject);
1058			break;
1059		}
1060		if (m->valid == VM_PAGE_BITS_ALL &&
1061		    (m->flags & PG_FICTITIOUS) == 0)
1062			pmap_enter_quick(pmap, addr, m, entry->protection);
1063		VM_OBJECT_RUNLOCK(lobject);
1064	}
1065}
1066
1067/*
1068 * Hold each of the physical pages that are mapped by the specified range of
1069 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1070 * and allow the specified types of access, "prot".  If all of the implied
1071 * pages are successfully held, then the number of held pages is returned
1072 * together with pointers to those pages in the array "ma".  However, if any
1073 * of the pages cannot be held, -1 is returned.
1074 */
1075int
1076vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1077    vm_prot_t prot, vm_page_t *ma, int max_count)
1078{
1079	vm_offset_t end, va;
1080	vm_page_t *mp;
1081	int count;
1082	boolean_t pmap_failed;
1083
1084	if (len == 0)
1085		return (0);
1086	end = round_page(addr + len);
1087	addr = trunc_page(addr);
1088
1089	/*
1090	 * Check for illegal addresses.
1091	 */
1092	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1093		return (-1);
1094
1095	if (atop(end - addr) > max_count)
1096		panic("vm_fault_quick_hold_pages: count > max_count");
1097	count = atop(end - addr);
1098
1099	/*
1100	 * Most likely, the physical pages are resident in the pmap, so it is
1101	 * faster to try pmap_extract_and_hold() first.
1102	 */
1103	pmap_failed = FALSE;
1104	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1105		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1106		if (*mp == NULL)
1107			pmap_failed = TRUE;
1108		else if ((prot & VM_PROT_WRITE) != 0 &&
1109		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1110			/*
1111			 * Explicitly dirty the physical page.  Otherwise, the
1112			 * caller's changes may go unnoticed because they are
1113			 * performed through an unmanaged mapping or by a DMA
1114			 * operation.
1115			 *
1116			 * The object lock is not held here.
1117			 * See vm_page_clear_dirty_mask().
1118			 */
1119			vm_page_dirty(*mp);
1120		}
1121	}
1122	if (pmap_failed) {
1123		/*
1124		 * One or more pages could not be held by the pmap.  Either no
1125		 * page was mapped at the specified virtual address or that
1126		 * mapping had insufficient permissions.  Attempt to fault in
1127		 * and hold these pages.
1128		 */
1129		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1130			if (*mp == NULL && vm_fault_hold(map, va, prot,
1131			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1132				goto error;
1133	}
1134	return (count);
1135error:
1136	for (mp = ma; mp < ma + count; mp++)
1137		if (*mp != NULL) {
1138			vm_page_lock(*mp);
1139			vm_page_unhold(*mp);
1140			vm_page_unlock(*mp);
1141		}
1142	return (-1);
1143}
1144
1145/*
1146 *	vm_fault_wire:
1147 *
1148 *	Wire down a range of virtual addresses in a map.
1149 */
1150int
1151vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1152    boolean_t fictitious)
1153{
1154	vm_offset_t va;
1155	int rv;
1156
1157	/*
1158	 * We simulate a fault to get the page and enter it in the physical
1159	 * map.  For user wiring, we only ask for read access on currently
1160	 * read-only sections.
1161	 */
1162	for (va = start; va < end; va += PAGE_SIZE) {
1163		rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1164		if (rv) {
1165			if (va != start)
1166				vm_fault_unwire(map, start, va, fictitious);
1167			return (rv);
1168		}
1169	}
1170	return (KERN_SUCCESS);
1171}
1172
1173/*
1174 *	vm_fault_unwire:
1175 *
1176 *	Unwire a range of virtual addresses in a map.
1177 */
1178void
1179vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1180    boolean_t fictitious)
1181{
1182	vm_paddr_t pa;
1183	vm_offset_t va;
1184	vm_page_t m;
1185	pmap_t pmap;
1186
1187	pmap = vm_map_pmap(map);
1188
1189	/*
1190	 * Since the pages are wired down, we must be able to get their
1191	 * mappings from the physical map system.
1192	 */
1193	for (va = start; va < end; va += PAGE_SIZE) {
1194		pa = pmap_extract(pmap, va);
1195		if (pa != 0) {
1196			pmap_change_wiring(pmap, va, FALSE);
1197			if (!fictitious) {
1198				m = PHYS_TO_VM_PAGE(pa);
1199				vm_page_lock(m);
1200				vm_page_unwire(m, TRUE);
1201				vm_page_unlock(m);
1202			}
1203		}
1204	}
1205}
1206
1207/*
1208 *	Routine:
1209 *		vm_fault_copy_entry
1210 *	Function:
1211 *		Create new shadow object backing dst_entry with private copy of
1212 *		all underlying pages. When src_entry is equal to dst_entry,
1213 *		function implements COW for wired-down map entry. Otherwise,
1214 *		it forks wired entry into dst_map.
1215 *
1216 *	In/out conditions:
1217 *		The source and destination maps must be locked for write.
1218 *		The source map entry must be wired down (or be a sharing map
1219 *		entry corresponding to a main map entry that is wired down).
1220 */
1221void
1222vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1223    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1224    vm_ooffset_t *fork_charge)
1225{
1226	vm_object_t backing_object, dst_object, object, src_object;
1227	vm_pindex_t dst_pindex, pindex, src_pindex;
1228	vm_prot_t access, prot;
1229	vm_offset_t vaddr;
1230	vm_page_t dst_m;
1231	vm_page_t src_m;
1232	boolean_t upgrade;
1233
1234#ifdef	lint
1235	src_map++;
1236#endif	/* lint */
1237
1238	upgrade = src_entry == dst_entry;
1239
1240	src_object = src_entry->object.vm_object;
1241	src_pindex = OFF_TO_IDX(src_entry->offset);
1242
1243	/*
1244	 * Create the top-level object for the destination entry. (Doesn't
1245	 * actually shadow anything - we copy the pages directly.)
1246	 */
1247	dst_object = vm_object_allocate(OBJT_DEFAULT,
1248	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1249#if VM_NRESERVLEVEL > 0
1250	dst_object->flags |= OBJ_COLORED;
1251	dst_object->pg_color = atop(dst_entry->start);
1252#endif
1253
1254	VM_OBJECT_WLOCK(dst_object);
1255	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1256	    ("vm_fault_copy_entry: vm_object not NULL"));
1257	dst_entry->object.vm_object = dst_object;
1258	dst_entry->offset = 0;
1259	dst_object->charge = dst_entry->end - dst_entry->start;
1260	if (fork_charge != NULL) {
1261		KASSERT(dst_entry->cred == NULL,
1262		    ("vm_fault_copy_entry: leaked swp charge"));
1263		dst_object->cred = curthread->td_ucred;
1264		crhold(dst_object->cred);
1265		*fork_charge += dst_object->charge;
1266	} else {
1267		dst_object->cred = dst_entry->cred;
1268		dst_entry->cred = NULL;
1269	}
1270	access = prot = dst_entry->protection;
1271	/*
1272	 * If not an upgrade, then enter the mappings in the pmap as
1273	 * read and/or execute accesses.  Otherwise, enter them as
1274	 * write accesses.
1275	 *
1276	 * A writeable large page mapping is only created if all of
1277	 * the constituent small page mappings are modified. Marking
1278	 * PTEs as modified on inception allows promotion to happen
1279	 * without taking potentially large number of soft faults.
1280	 */
1281	if (!upgrade)
1282		access &= ~VM_PROT_WRITE;
1283
1284	/*
1285	 * Loop through all of the virtual pages within the entry's
1286	 * range, copying each page from the source object to the
1287	 * destination object.  Since the source is wired, those pages
1288	 * must exist.  In contrast, the destination is pageable.
1289	 * Since the destination object does share any backing storage
1290	 * with the source object, all of its pages must be dirtied,
1291	 * regardless of whether they can be written.
1292	 */
1293	for (vaddr = dst_entry->start, dst_pindex = 0;
1294	    vaddr < dst_entry->end;
1295	    vaddr += PAGE_SIZE, dst_pindex++) {
1296
1297		/*
1298		 * Allocate a page in the destination object.
1299		 */
1300		do {
1301			dst_m = vm_page_alloc(dst_object, dst_pindex,
1302			    VM_ALLOC_NORMAL);
1303			if (dst_m == NULL) {
1304				VM_OBJECT_WUNLOCK(dst_object);
1305				VM_WAIT;
1306				VM_OBJECT_WLOCK(dst_object);
1307			}
1308		} while (dst_m == NULL);
1309
1310		/*
1311		 * Find the page in the source object, and copy it in.
1312		 * Because the source is wired down, the page will be
1313		 * in memory.
1314		 */
1315		VM_OBJECT_RLOCK(src_object);
1316		object = src_object;
1317		pindex = src_pindex + dst_pindex;
1318		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1319		    (backing_object = object->backing_object) != NULL) {
1320			/*
1321			 * Unless the source mapping is read-only or
1322			 * it is presently being upgraded from
1323			 * read-only, the first object in the shadow
1324			 * chain should provide all of the pages.  In
1325			 * other words, this loop body should never be
1326			 * executed when the source mapping is already
1327			 * read/write.
1328			 */
1329			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1330			    upgrade,
1331			    ("vm_fault_copy_entry: main object missing page"));
1332
1333			VM_OBJECT_RLOCK(backing_object);
1334			pindex += OFF_TO_IDX(object->backing_object_offset);
1335			VM_OBJECT_RUNLOCK(object);
1336			object = backing_object;
1337		}
1338		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1339		pmap_copy_page(src_m, dst_m);
1340		VM_OBJECT_RUNLOCK(object);
1341		dst_m->valid = VM_PAGE_BITS_ALL;
1342		dst_m->dirty = VM_PAGE_BITS_ALL;
1343		VM_OBJECT_WUNLOCK(dst_object);
1344
1345		/*
1346		 * Enter it in the pmap. If a wired, copy-on-write
1347		 * mapping is being replaced by a write-enabled
1348		 * mapping, then wire that new mapping.
1349		 */
1350		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1351
1352		/*
1353		 * Mark it no longer busy, and put it on the active list.
1354		 */
1355		VM_OBJECT_WLOCK(dst_object);
1356
1357		if (upgrade) {
1358			vm_page_lock(src_m);
1359			vm_page_unwire(src_m, 0);
1360			vm_page_unlock(src_m);
1361
1362			vm_page_lock(dst_m);
1363			vm_page_wire(dst_m);
1364			vm_page_unlock(dst_m);
1365		} else {
1366			vm_page_lock(dst_m);
1367			vm_page_activate(dst_m);
1368			vm_page_unlock(dst_m);
1369		}
1370		vm_page_xunbusy(dst_m);
1371	}
1372	VM_OBJECT_WUNLOCK(dst_object);
1373	if (upgrade) {
1374		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1375		vm_object_deallocate(src_object);
1376	}
1377}
1378
1379
1380/*
1381 * This routine checks around the requested page for other pages that
1382 * might be able to be faulted in.  This routine brackets the viable
1383 * pages for the pages to be paged in.
1384 *
1385 * Inputs:
1386 *	m, rbehind, rahead
1387 *
1388 * Outputs:
1389 *  marray (array of vm_page_t), reqpage (index of requested page)
1390 *
1391 * Return value:
1392 *  number of pages in marray
1393 */
1394static int
1395vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1396	vm_page_t m;
1397	int rbehind;
1398	int rahead;
1399	vm_page_t *marray;
1400	int *reqpage;
1401{
1402	int i,j;
1403	vm_object_t object;
1404	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1405	vm_page_t rtm;
1406	int cbehind, cahead;
1407
1408	VM_OBJECT_ASSERT_WLOCKED(m->object);
1409
1410	object = m->object;
1411	pindex = m->pindex;
1412	cbehind = cahead = 0;
1413
1414	/*
1415	 * if the requested page is not available, then give up now
1416	 */
1417	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1418		return 0;
1419	}
1420
1421	if ((cbehind == 0) && (cahead == 0)) {
1422		*reqpage = 0;
1423		marray[0] = m;
1424		return 1;
1425	}
1426
1427	if (rahead > cahead) {
1428		rahead = cahead;
1429	}
1430
1431	if (rbehind > cbehind) {
1432		rbehind = cbehind;
1433	}
1434
1435	/*
1436	 * scan backward for the read behind pages -- in memory
1437	 */
1438	if (pindex > 0) {
1439		if (rbehind > pindex) {
1440			rbehind = pindex;
1441			startpindex = 0;
1442		} else {
1443			startpindex = pindex - rbehind;
1444		}
1445
1446		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1447		    rtm->pindex >= startpindex)
1448			startpindex = rtm->pindex + 1;
1449
1450		/* tpindex is unsigned; beware of numeric underflow. */
1451		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1452		    tpindex < pindex; i++, tpindex--) {
1453
1454			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1455			    VM_ALLOC_IFNOTCACHED);
1456			if (rtm == NULL) {
1457				/*
1458				 * Shift the allocated pages to the
1459				 * beginning of the array.
1460				 */
1461				for (j = 0; j < i; j++) {
1462					marray[j] = marray[j + tpindex + 1 -
1463					    startpindex];
1464				}
1465				break;
1466			}
1467
1468			marray[tpindex - startpindex] = rtm;
1469		}
1470	} else {
1471		startpindex = 0;
1472		i = 0;
1473	}
1474
1475	marray[i] = m;
1476	/* page offset of the required page */
1477	*reqpage = i;
1478
1479	tpindex = pindex + 1;
1480	i++;
1481
1482	/*
1483	 * scan forward for the read ahead pages
1484	 */
1485	endpindex = tpindex + rahead;
1486	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1487		endpindex = rtm->pindex;
1488	if (endpindex > object->size)
1489		endpindex = object->size;
1490
1491	for (; tpindex < endpindex; i++, tpindex++) {
1492
1493		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1494		    VM_ALLOC_IFNOTCACHED);
1495		if (rtm == NULL) {
1496			break;
1497		}
1498
1499		marray[i] = rtm;
1500	}
1501
1502	/* return number of pages */
1503	return i;
1504}
1505
1506/*
1507 * Block entry into the machine-independent layer's page fault handler by
1508 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1509 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1510 * spurious page faults.
1511 */
1512int
1513vm_fault_disable_pagefaults(void)
1514{
1515
1516	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1517}
1518
1519void
1520vm_fault_enable_pagefaults(int save)
1521{
1522
1523	curthread_pflags_restore(save);
1524}
1525