vm_fault.c revision 259499
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 *	Page fault handling module.
72 */
73
74#include <sys/cdefs.h>
75__FBSDID("$FreeBSD: stable/10/sys/vm/vm_fault.c 259499 2013-12-17 09:21:56Z kib $");
76
77#include "opt_ktrace.h"
78#include "opt_vm.h"
79
80#include <sys/param.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83#include <sys/lock.h>
84#include <sys/proc.h>
85#include <sys/resourcevar.h>
86#include <sys/rwlock.h>
87#include <sys/sysctl.h>
88#include <sys/vmmeter.h>
89#include <sys/vnode.h>
90#ifdef KTRACE
91#include <sys/ktrace.h>
92#endif
93
94#include <vm/vm.h>
95#include <vm/vm_param.h>
96#include <vm/pmap.h>
97#include <vm/vm_map.h>
98#include <vm/vm_object.h>
99#include <vm/vm_page.h>
100#include <vm/vm_pageout.h>
101#include <vm/vm_kern.h>
102#include <vm/vm_pager.h>
103#include <vm/vm_extern.h>
104
105#define PFBAK 4
106#define PFFOR 4
107#define PAGEORDER_SIZE (PFBAK+PFFOR)
108
109static int prefault_pageorder[] = {
110	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
111	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
112	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
113	-4 * PAGE_SIZE, 4 * PAGE_SIZE
114};
115
116static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
117static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
118
119#define	VM_FAULT_READ_BEHIND	8
120#define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
121#define	VM_FAULT_NINCR		(VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
122#define	VM_FAULT_SUM		(VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
123#define	VM_FAULT_CACHE_BEHIND	(VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
124
125struct faultstate {
126	vm_page_t m;
127	vm_object_t object;
128	vm_pindex_t pindex;
129	vm_page_t first_m;
130	vm_object_t	first_object;
131	vm_pindex_t first_pindex;
132	vm_map_t map;
133	vm_map_entry_t entry;
134	int lookup_still_valid;
135	struct vnode *vp;
136};
137
138static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
139
140static inline void
141release_page(struct faultstate *fs)
142{
143
144	vm_page_xunbusy(fs->m);
145	vm_page_lock(fs->m);
146	vm_page_deactivate(fs->m);
147	vm_page_unlock(fs->m);
148	fs->m = NULL;
149}
150
151static inline void
152unlock_map(struct faultstate *fs)
153{
154
155	if (fs->lookup_still_valid) {
156		vm_map_lookup_done(fs->map, fs->entry);
157		fs->lookup_still_valid = FALSE;
158	}
159}
160
161static void
162unlock_and_deallocate(struct faultstate *fs)
163{
164
165	vm_object_pip_wakeup(fs->object);
166	VM_OBJECT_WUNLOCK(fs->object);
167	if (fs->object != fs->first_object) {
168		VM_OBJECT_WLOCK(fs->first_object);
169		vm_page_lock(fs->first_m);
170		vm_page_free(fs->first_m);
171		vm_page_unlock(fs->first_m);
172		vm_object_pip_wakeup(fs->first_object);
173		VM_OBJECT_WUNLOCK(fs->first_object);
174		fs->first_m = NULL;
175	}
176	vm_object_deallocate(fs->first_object);
177	unlock_map(fs);
178	if (fs->vp != NULL) {
179		vput(fs->vp);
180		fs->vp = NULL;
181	}
182}
183
184/*
185 * TRYPAGER - used by vm_fault to calculate whether the pager for the
186 *	      current object *might* contain the page.
187 *
188 *	      default objects are zero-fill, there is no real pager.
189 */
190#define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
191			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
192
193/*
194 *	vm_fault:
195 *
196 *	Handle a page fault occurring at the given address,
197 *	requiring the given permissions, in the map specified.
198 *	If successful, the page is inserted into the
199 *	associated physical map.
200 *
201 *	NOTE: the given address should be truncated to the
202 *	proper page address.
203 *
204 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
205 *	a standard error specifying why the fault is fatal is returned.
206 *
207 *	The map in question must be referenced, and remains so.
208 *	Caller may hold no locks.
209 */
210int
211vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
212    int fault_flags)
213{
214	struct thread *td;
215	int result;
216
217	td = curthread;
218	if ((td->td_pflags & TDP_NOFAULTING) != 0)
219		return (KERN_PROTECTION_FAILURE);
220#ifdef KTRACE
221	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
222		ktrfault(vaddr, fault_type);
223#endif
224	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
225	    NULL);
226#ifdef KTRACE
227	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
228		ktrfaultend(result);
229#endif
230	return (result);
231}
232
233int
234vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
235    int fault_flags, vm_page_t *m_hold)
236{
237	vm_prot_t prot;
238	long ahead, behind;
239	int alloc_req, era, faultcount, nera, reqpage, result;
240	boolean_t growstack, is_first_object_locked, wired;
241	int map_generation;
242	vm_object_t next_object;
243	vm_page_t marray[VM_FAULT_READ_MAX];
244	int hardfault;
245	struct faultstate fs;
246	struct vnode *vp;
247	int locked, error;
248
249	hardfault = 0;
250	growstack = TRUE;
251	PCPU_INC(cnt.v_vm_faults);
252	fs.vp = NULL;
253	faultcount = reqpage = 0;
254
255RetryFault:;
256
257	/*
258	 * Find the backing store object and offset into it to begin the
259	 * search.
260	 */
261	fs.map = map;
262	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
263	    &fs.first_object, &fs.first_pindex, &prot, &wired);
264	if (result != KERN_SUCCESS) {
265		if (growstack && result == KERN_INVALID_ADDRESS &&
266		    map != kernel_map) {
267			result = vm_map_growstack(curproc, vaddr);
268			if (result != KERN_SUCCESS)
269				return (KERN_FAILURE);
270			growstack = FALSE;
271			goto RetryFault;
272		}
273		return (result);
274	}
275
276	map_generation = fs.map->timestamp;
277
278	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
279		panic("vm_fault: fault on nofault entry, addr: %lx",
280		    (u_long)vaddr);
281	}
282
283	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
284	    fs.entry->wiring_thread != curthread) {
285		vm_map_unlock_read(fs.map);
286		vm_map_lock(fs.map);
287		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
288		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
289			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
290			vm_map_unlock_and_wait(fs.map, 0);
291		} else
292			vm_map_unlock(fs.map);
293		goto RetryFault;
294	}
295
296	/*
297	 * Make a reference to this object to prevent its disposal while we
298	 * are messing with it.  Once we have the reference, the map is free
299	 * to be diddled.  Since objects reference their shadows (and copies),
300	 * they will stay around as well.
301	 *
302	 * Bump the paging-in-progress count to prevent size changes (e.g.
303	 * truncation operations) during I/O.  This must be done after
304	 * obtaining the vnode lock in order to avoid possible deadlocks.
305	 */
306	VM_OBJECT_WLOCK(fs.first_object);
307	vm_object_reference_locked(fs.first_object);
308	vm_object_pip_add(fs.first_object, 1);
309
310	fs.lookup_still_valid = TRUE;
311
312	if (wired)
313		fault_type = prot | (fault_type & VM_PROT_COPY);
314
315	fs.first_m = NULL;
316
317	/*
318	 * Search for the page at object/offset.
319	 */
320	fs.object = fs.first_object;
321	fs.pindex = fs.first_pindex;
322	while (TRUE) {
323		/*
324		 * If the object is dead, we stop here
325		 */
326		if (fs.object->flags & OBJ_DEAD) {
327			unlock_and_deallocate(&fs);
328			return (KERN_PROTECTION_FAILURE);
329		}
330
331		/*
332		 * See if page is resident
333		 */
334		fs.m = vm_page_lookup(fs.object, fs.pindex);
335		if (fs.m != NULL) {
336			/*
337			 * Wait/Retry if the page is busy.  We have to do this
338			 * if the page is either exclusive or shared busy
339			 * because the vm_pager may be using read busy for
340			 * pageouts (and even pageins if it is the vnode
341			 * pager), and we could end up trying to pagein and
342			 * pageout the same page simultaneously.
343			 *
344			 * We can theoretically allow the busy case on a read
345			 * fault if the page is marked valid, but since such
346			 * pages are typically already pmap'd, putting that
347			 * special case in might be more effort then it is
348			 * worth.  We cannot under any circumstances mess
349			 * around with a shared busied page except, perhaps,
350			 * to pmap it.
351			 */
352			if (vm_page_busied(fs.m)) {
353				/*
354				 * Reference the page before unlocking and
355				 * sleeping so that the page daemon is less
356				 * likely to reclaim it.
357				 */
358				vm_page_aflag_set(fs.m, PGA_REFERENCED);
359				if (fs.object != fs.first_object) {
360					if (!VM_OBJECT_TRYWLOCK(
361					    fs.first_object)) {
362						VM_OBJECT_WUNLOCK(fs.object);
363						VM_OBJECT_WLOCK(fs.first_object);
364						VM_OBJECT_WLOCK(fs.object);
365					}
366					vm_page_lock(fs.first_m);
367					vm_page_free(fs.first_m);
368					vm_page_unlock(fs.first_m);
369					vm_object_pip_wakeup(fs.first_object);
370					VM_OBJECT_WUNLOCK(fs.first_object);
371					fs.first_m = NULL;
372				}
373				unlock_map(&fs);
374				if (fs.m == vm_page_lookup(fs.object,
375				    fs.pindex)) {
376					vm_page_sleep_if_busy(fs.m, "vmpfw");
377				}
378				vm_object_pip_wakeup(fs.object);
379				VM_OBJECT_WUNLOCK(fs.object);
380				PCPU_INC(cnt.v_intrans);
381				vm_object_deallocate(fs.first_object);
382				goto RetryFault;
383			}
384			vm_page_lock(fs.m);
385			vm_page_remque(fs.m);
386			vm_page_unlock(fs.m);
387
388			/*
389			 * Mark page busy for other processes, and the
390			 * pagedaemon.  If it still isn't completely valid
391			 * (readable), jump to readrest, else break-out ( we
392			 * found the page ).
393			 */
394			vm_page_xbusy(fs.m);
395			if (fs.m->valid != VM_PAGE_BITS_ALL)
396				goto readrest;
397			break;
398		}
399
400		/*
401		 * Page is not resident, If this is the search termination
402		 * or the pager might contain the page, allocate a new page.
403		 */
404		if (TRYPAGER || fs.object == fs.first_object) {
405			if (fs.pindex >= fs.object->size) {
406				unlock_and_deallocate(&fs);
407				return (KERN_PROTECTION_FAILURE);
408			}
409
410			/*
411			 * Allocate a new page for this object/offset pair.
412			 *
413			 * Unlocked read of the p_flag is harmless. At
414			 * worst, the P_KILLED might be not observed
415			 * there, and allocation can fail, causing
416			 * restart and new reading of the p_flag.
417			 */
418			fs.m = NULL;
419			if (!vm_page_count_severe() || P_KILLED(curproc)) {
420#if VM_NRESERVLEVEL > 0
421				if ((fs.object->flags & OBJ_COLORED) == 0) {
422					fs.object->flags |= OBJ_COLORED;
423					fs.object->pg_color = atop(vaddr) -
424					    fs.pindex;
425				}
426#endif
427				alloc_req = P_KILLED(curproc) ?
428				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
429				if (fs.object->type != OBJT_VNODE &&
430				    fs.object->backing_object == NULL)
431					alloc_req |= VM_ALLOC_ZERO;
432				fs.m = vm_page_alloc(fs.object, fs.pindex,
433				    alloc_req);
434			}
435			if (fs.m == NULL) {
436				unlock_and_deallocate(&fs);
437				VM_WAITPFAULT;
438				goto RetryFault;
439			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
440				break;
441		}
442
443readrest:
444		/*
445		 * We have found a valid page or we have allocated a new page.
446		 * The page thus may not be valid or may not be entirely
447		 * valid.
448		 *
449		 * Attempt to fault-in the page if there is a chance that the
450		 * pager has it, and potentially fault in additional pages
451		 * at the same time.
452		 */
453		if (TRYPAGER) {
454			int rv;
455			u_char behavior = vm_map_entry_behavior(fs.entry);
456
457			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
458			    P_KILLED(curproc)) {
459				behind = 0;
460				ahead = 0;
461			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
462				behind = 0;
463				ahead = atop(fs.entry->end - vaddr) - 1;
464				if (ahead > VM_FAULT_READ_AHEAD_MAX)
465					ahead = VM_FAULT_READ_AHEAD_MAX;
466				if (fs.pindex == fs.entry->next_read)
467					vm_fault_cache_behind(&fs,
468					    VM_FAULT_READ_MAX);
469			} else {
470				/*
471				 * If this is a sequential page fault, then
472				 * arithmetically increase the number of pages
473				 * in the read-ahead window.  Otherwise, reset
474				 * the read-ahead window to its smallest size.
475				 */
476				behind = atop(vaddr - fs.entry->start);
477				if (behind > VM_FAULT_READ_BEHIND)
478					behind = VM_FAULT_READ_BEHIND;
479				ahead = atop(fs.entry->end - vaddr) - 1;
480				era = fs.entry->read_ahead;
481				if (fs.pindex == fs.entry->next_read) {
482					nera = era + behind;
483					if (nera > VM_FAULT_READ_AHEAD_MAX)
484						nera = VM_FAULT_READ_AHEAD_MAX;
485					behind = 0;
486					if (ahead > nera)
487						ahead = nera;
488					if (era == VM_FAULT_READ_AHEAD_MAX)
489						vm_fault_cache_behind(&fs,
490						    VM_FAULT_CACHE_BEHIND);
491				} else if (ahead > VM_FAULT_READ_AHEAD_MIN)
492					ahead = VM_FAULT_READ_AHEAD_MIN;
493				if (era != ahead)
494					fs.entry->read_ahead = ahead;
495			}
496
497			/*
498			 * Call the pager to retrieve the data, if any, after
499			 * releasing the lock on the map.  We hold a ref on
500			 * fs.object and the pages are exclusive busied.
501			 */
502			unlock_map(&fs);
503
504			if (fs.object->type == OBJT_VNODE) {
505				vp = fs.object->handle;
506				if (vp == fs.vp)
507					goto vnode_locked;
508				else if (fs.vp != NULL) {
509					vput(fs.vp);
510					fs.vp = NULL;
511				}
512				locked = VOP_ISLOCKED(vp);
513
514				if (locked != LK_EXCLUSIVE)
515					locked = LK_SHARED;
516				/* Do not sleep for vnode lock while fs.m is busy */
517				error = vget(vp, locked | LK_CANRECURSE |
518				    LK_NOWAIT, curthread);
519				if (error != 0) {
520					vhold(vp);
521					release_page(&fs);
522					unlock_and_deallocate(&fs);
523					error = vget(vp, locked | LK_RETRY |
524					    LK_CANRECURSE, curthread);
525					vdrop(vp);
526					fs.vp = vp;
527					KASSERT(error == 0,
528					    ("vm_fault: vget failed"));
529					goto RetryFault;
530				}
531				fs.vp = vp;
532			}
533vnode_locked:
534			KASSERT(fs.vp == NULL || !fs.map->system_map,
535			    ("vm_fault: vnode-backed object mapped by system map"));
536
537			/*
538			 * now we find out if any other pages should be paged
539			 * in at this time this routine checks to see if the
540			 * pages surrounding this fault reside in the same
541			 * object as the page for this fault.  If they do,
542			 * then they are faulted in also into the object.  The
543			 * array "marray" returned contains an array of
544			 * vm_page_t structs where one of them is the
545			 * vm_page_t passed to the routine.  The reqpage
546			 * return value is the index into the marray for the
547			 * vm_page_t passed to the routine.
548			 *
549			 * fs.m plus the additional pages are exclusive busied.
550			 */
551			faultcount = vm_fault_additional_pages(
552			    fs.m, behind, ahead, marray, &reqpage);
553
554			rv = faultcount ?
555			    vm_pager_get_pages(fs.object, marray, faultcount,
556				reqpage) : VM_PAGER_FAIL;
557
558			if (rv == VM_PAGER_OK) {
559				/*
560				 * Found the page. Leave it busy while we play
561				 * with it.
562				 */
563
564				/*
565				 * Relookup in case pager changed page. Pager
566				 * is responsible for disposition of old page
567				 * if moved.
568				 */
569				fs.m = vm_page_lookup(fs.object, fs.pindex);
570				if (!fs.m) {
571					unlock_and_deallocate(&fs);
572					goto RetryFault;
573				}
574
575				hardfault++;
576				break; /* break to PAGE HAS BEEN FOUND */
577			}
578			/*
579			 * Remove the bogus page (which does not exist at this
580			 * object/offset); before doing so, we must get back
581			 * our object lock to preserve our invariant.
582			 *
583			 * Also wake up any other process that may want to bring
584			 * in this page.
585			 *
586			 * If this is the top-level object, we must leave the
587			 * busy page to prevent another process from rushing
588			 * past us, and inserting the page in that object at
589			 * the same time that we are.
590			 */
591			if (rv == VM_PAGER_ERROR)
592				printf("vm_fault: pager read error, pid %d (%s)\n",
593				    curproc->p_pid, curproc->p_comm);
594			/*
595			 * Data outside the range of the pager or an I/O error
596			 */
597			/*
598			 * XXX - the check for kernel_map is a kludge to work
599			 * around having the machine panic on a kernel space
600			 * fault w/ I/O error.
601			 */
602			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
603				(rv == VM_PAGER_BAD)) {
604				vm_page_lock(fs.m);
605				vm_page_free(fs.m);
606				vm_page_unlock(fs.m);
607				fs.m = NULL;
608				unlock_and_deallocate(&fs);
609				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
610			}
611			if (fs.object != fs.first_object) {
612				vm_page_lock(fs.m);
613				vm_page_free(fs.m);
614				vm_page_unlock(fs.m);
615				fs.m = NULL;
616				/*
617				 * XXX - we cannot just fall out at this
618				 * point, m has been freed and is invalid!
619				 */
620			}
621		}
622
623		/*
624		 * We get here if the object has default pager (or unwiring)
625		 * or the pager doesn't have the page.
626		 */
627		if (fs.object == fs.first_object)
628			fs.first_m = fs.m;
629
630		/*
631		 * Move on to the next object.  Lock the next object before
632		 * unlocking the current one.
633		 */
634		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
635		next_object = fs.object->backing_object;
636		if (next_object == NULL) {
637			/*
638			 * If there's no object left, fill the page in the top
639			 * object with zeros.
640			 */
641			if (fs.object != fs.first_object) {
642				vm_object_pip_wakeup(fs.object);
643				VM_OBJECT_WUNLOCK(fs.object);
644
645				fs.object = fs.first_object;
646				fs.pindex = fs.first_pindex;
647				fs.m = fs.first_m;
648				VM_OBJECT_WLOCK(fs.object);
649			}
650			fs.first_m = NULL;
651
652			/*
653			 * Zero the page if necessary and mark it valid.
654			 */
655			if ((fs.m->flags & PG_ZERO) == 0) {
656				pmap_zero_page(fs.m);
657			} else {
658				PCPU_INC(cnt.v_ozfod);
659			}
660			PCPU_INC(cnt.v_zfod);
661			fs.m->valid = VM_PAGE_BITS_ALL;
662			break;	/* break to PAGE HAS BEEN FOUND */
663		} else {
664			KASSERT(fs.object != next_object,
665			    ("object loop %p", next_object));
666			VM_OBJECT_WLOCK(next_object);
667			vm_object_pip_add(next_object, 1);
668			if (fs.object != fs.first_object)
669				vm_object_pip_wakeup(fs.object);
670			VM_OBJECT_WUNLOCK(fs.object);
671			fs.object = next_object;
672		}
673	}
674
675	vm_page_assert_xbusied(fs.m);
676
677	/*
678	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
679	 * is held.]
680	 */
681
682	/*
683	 * If the page is being written, but isn't already owned by the
684	 * top-level object, we have to copy it into a new page owned by the
685	 * top-level object.
686	 */
687	if (fs.object != fs.first_object) {
688		/*
689		 * We only really need to copy if we want to write it.
690		 */
691		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
692			/*
693			 * This allows pages to be virtually copied from a
694			 * backing_object into the first_object, where the
695			 * backing object has no other refs to it, and cannot
696			 * gain any more refs.  Instead of a bcopy, we just
697			 * move the page from the backing object to the
698			 * first object.  Note that we must mark the page
699			 * dirty in the first object so that it will go out
700			 * to swap when needed.
701			 */
702			is_first_object_locked = FALSE;
703			if (
704				/*
705				 * Only one shadow object
706				 */
707				(fs.object->shadow_count == 1) &&
708				/*
709				 * No COW refs, except us
710				 */
711				(fs.object->ref_count == 1) &&
712				/*
713				 * No one else can look this object up
714				 */
715				(fs.object->handle == NULL) &&
716				/*
717				 * No other ways to look the object up
718				 */
719				((fs.object->type == OBJT_DEFAULT) ||
720				 (fs.object->type == OBJT_SWAP)) &&
721			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
722				/*
723				 * We don't chase down the shadow chain
724				 */
725			    fs.object == fs.first_object->backing_object) {
726				/*
727				 * get rid of the unnecessary page
728				 */
729				vm_page_lock(fs.first_m);
730				vm_page_free(fs.first_m);
731				vm_page_unlock(fs.first_m);
732				/*
733				 * grab the page and put it into the
734				 * process'es object.  The page is
735				 * automatically made dirty.
736				 */
737				if (vm_page_rename(fs.m, fs.first_object,
738				    fs.first_pindex)) {
739					unlock_and_deallocate(&fs);
740					goto RetryFault;
741				}
742				vm_page_xbusy(fs.m);
743				fs.first_m = fs.m;
744				fs.m = NULL;
745				PCPU_INC(cnt.v_cow_optim);
746			} else {
747				/*
748				 * Oh, well, lets copy it.
749				 */
750				pmap_copy_page(fs.m, fs.first_m);
751				fs.first_m->valid = VM_PAGE_BITS_ALL;
752				if (wired && (fault_flags &
753				    VM_FAULT_CHANGE_WIRING) == 0) {
754					vm_page_lock(fs.first_m);
755					vm_page_wire(fs.first_m);
756					vm_page_unlock(fs.first_m);
757
758					vm_page_lock(fs.m);
759					vm_page_unwire(fs.m, FALSE);
760					vm_page_unlock(fs.m);
761				}
762				/*
763				 * We no longer need the old page or object.
764				 */
765				release_page(&fs);
766			}
767			/*
768			 * fs.object != fs.first_object due to above
769			 * conditional
770			 */
771			vm_object_pip_wakeup(fs.object);
772			VM_OBJECT_WUNLOCK(fs.object);
773			/*
774			 * Only use the new page below...
775			 */
776			fs.object = fs.first_object;
777			fs.pindex = fs.first_pindex;
778			fs.m = fs.first_m;
779			if (!is_first_object_locked)
780				VM_OBJECT_WLOCK(fs.object);
781			PCPU_INC(cnt.v_cow_faults);
782			curthread->td_cow++;
783		} else {
784			prot &= ~VM_PROT_WRITE;
785		}
786	}
787
788	/*
789	 * We must verify that the maps have not changed since our last
790	 * lookup.
791	 */
792	if (!fs.lookup_still_valid) {
793		vm_object_t retry_object;
794		vm_pindex_t retry_pindex;
795		vm_prot_t retry_prot;
796
797		if (!vm_map_trylock_read(fs.map)) {
798			release_page(&fs);
799			unlock_and_deallocate(&fs);
800			goto RetryFault;
801		}
802		fs.lookup_still_valid = TRUE;
803		if (fs.map->timestamp != map_generation) {
804			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
805			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
806
807			/*
808			 * If we don't need the page any longer, put it on the inactive
809			 * list (the easiest thing to do here).  If no one needs it,
810			 * pageout will grab it eventually.
811			 */
812			if (result != KERN_SUCCESS) {
813				release_page(&fs);
814				unlock_and_deallocate(&fs);
815
816				/*
817				 * If retry of map lookup would have blocked then
818				 * retry fault from start.
819				 */
820				if (result == KERN_FAILURE)
821					goto RetryFault;
822				return (result);
823			}
824			if ((retry_object != fs.first_object) ||
825			    (retry_pindex != fs.first_pindex)) {
826				release_page(&fs);
827				unlock_and_deallocate(&fs);
828				goto RetryFault;
829			}
830
831			/*
832			 * Check whether the protection has changed or the object has
833			 * been copied while we left the map unlocked. Changing from
834			 * read to write permission is OK - we leave the page
835			 * write-protected, and catch the write fault. Changing from
836			 * write to read permission means that we can't mark the page
837			 * write-enabled after all.
838			 */
839			prot &= retry_prot;
840		}
841	}
842	/*
843	 * If the page was filled by a pager, update the map entry's
844	 * last read offset.  Since the pager does not return the
845	 * actual set of pages that it read, this update is based on
846	 * the requested set.  Typically, the requested and actual
847	 * sets are the same.
848	 *
849	 * XXX The following assignment modifies the map
850	 * without holding a write lock on it.
851	 */
852	if (hardfault)
853		fs.entry->next_read = fs.pindex + faultcount - reqpage;
854
855	if ((prot & VM_PROT_WRITE) != 0 ||
856	    (fault_flags & VM_FAULT_DIRTY) != 0) {
857		vm_object_set_writeable_dirty(fs.object);
858
859		/*
860		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
861		 * if the page is already dirty to prevent data written with
862		 * the expectation of being synced from not being synced.
863		 * Likewise if this entry does not request NOSYNC then make
864		 * sure the page isn't marked NOSYNC.  Applications sharing
865		 * data should use the same flags to avoid ping ponging.
866		 */
867		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
868			if (fs.m->dirty == 0)
869				fs.m->oflags |= VPO_NOSYNC;
870		} else {
871			fs.m->oflags &= ~VPO_NOSYNC;
872		}
873
874		/*
875		 * If the fault is a write, we know that this page is being
876		 * written NOW so dirty it explicitly to save on
877		 * pmap_is_modified() calls later.
878		 *
879		 * Also tell the backing pager, if any, that it should remove
880		 * any swap backing since the page is now dirty.
881		 */
882		if (((fault_type & VM_PROT_WRITE) != 0 &&
883		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
884		    (fault_flags & VM_FAULT_DIRTY) != 0) {
885			vm_page_dirty(fs.m);
886			vm_pager_page_unswapped(fs.m);
887		}
888	}
889
890	vm_page_assert_xbusied(fs.m);
891
892	/*
893	 * Page must be completely valid or it is not fit to
894	 * map into user space.  vm_pager_get_pages() ensures this.
895	 */
896	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
897	    ("vm_fault: page %p partially invalid", fs.m));
898	VM_OBJECT_WUNLOCK(fs.object);
899
900	/*
901	 * Put this page into the physical map.  We had to do the unlock above
902	 * because pmap_enter() may sleep.  We don't put the page
903	 * back on the active queue until later so that the pageout daemon
904	 * won't find it (yet).
905	 */
906	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
907	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
908		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
909	VM_OBJECT_WLOCK(fs.object);
910	vm_page_lock(fs.m);
911
912	/*
913	 * If the page is not wired down, then put it where the pageout daemon
914	 * can find it.
915	 */
916	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
917		if (wired)
918			vm_page_wire(fs.m);
919		else
920			vm_page_unwire(fs.m, 1);
921	} else
922		vm_page_activate(fs.m);
923	if (m_hold != NULL) {
924		*m_hold = fs.m;
925		vm_page_hold(fs.m);
926	}
927	vm_page_unlock(fs.m);
928	vm_page_xunbusy(fs.m);
929
930	/*
931	 * Unlock everything, and return
932	 */
933	unlock_and_deallocate(&fs);
934	if (hardfault) {
935		PCPU_INC(cnt.v_io_faults);
936		curthread->td_ru.ru_majflt++;
937	} else
938		curthread->td_ru.ru_minflt++;
939
940	return (KERN_SUCCESS);
941}
942
943/*
944 * Speed up the reclamation of up to "distance" pages that precede the
945 * faulting pindex within the first object of the shadow chain.
946 */
947static void
948vm_fault_cache_behind(const struct faultstate *fs, int distance)
949{
950	vm_object_t first_object, object;
951	vm_page_t m, m_prev;
952	vm_pindex_t pindex;
953
954	object = fs->object;
955	VM_OBJECT_ASSERT_WLOCKED(object);
956	first_object = fs->first_object;
957	if (first_object != object) {
958		if (!VM_OBJECT_TRYWLOCK(first_object)) {
959			VM_OBJECT_WUNLOCK(object);
960			VM_OBJECT_WLOCK(first_object);
961			VM_OBJECT_WLOCK(object);
962		}
963	}
964	/* Neither fictitious nor unmanaged pages can be cached. */
965	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
966		if (fs->first_pindex < distance)
967			pindex = 0;
968		else
969			pindex = fs->first_pindex - distance;
970		if (pindex < OFF_TO_IDX(fs->entry->offset))
971			pindex = OFF_TO_IDX(fs->entry->offset);
972		m = first_object != object ? fs->first_m : fs->m;
973		vm_page_assert_xbusied(m);
974		m_prev = vm_page_prev(m);
975		while ((m = m_prev) != NULL && m->pindex >= pindex &&
976		    m->valid == VM_PAGE_BITS_ALL) {
977			m_prev = vm_page_prev(m);
978			if (vm_page_busied(m))
979				continue;
980			vm_page_lock(m);
981			if (m->hold_count == 0 && m->wire_count == 0) {
982				pmap_remove_all(m);
983				vm_page_aflag_clear(m, PGA_REFERENCED);
984				if (m->dirty != 0)
985					vm_page_deactivate(m);
986				else
987					vm_page_cache(m);
988			}
989			vm_page_unlock(m);
990		}
991	}
992	if (first_object != object)
993		VM_OBJECT_WUNLOCK(first_object);
994}
995
996/*
997 * vm_fault_prefault provides a quick way of clustering
998 * pagefaults into a processes address space.  It is a "cousin"
999 * of vm_map_pmap_enter, except it runs at page fault time instead
1000 * of mmap time.
1001 */
1002static void
1003vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
1004{
1005	int i;
1006	vm_offset_t addr, starta;
1007	vm_pindex_t pindex;
1008	vm_page_t m;
1009	vm_object_t object;
1010
1011	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1012		return;
1013
1014	object = entry->object.vm_object;
1015
1016	starta = addra - PFBAK * PAGE_SIZE;
1017	if (starta < entry->start) {
1018		starta = entry->start;
1019	} else if (starta > addra) {
1020		starta = 0;
1021	}
1022
1023	for (i = 0; i < PAGEORDER_SIZE; i++) {
1024		vm_object_t backing_object, lobject;
1025
1026		addr = addra + prefault_pageorder[i];
1027		if (addr > addra + (PFFOR * PAGE_SIZE))
1028			addr = 0;
1029
1030		if (addr < starta || addr >= entry->end)
1031			continue;
1032
1033		if (!pmap_is_prefaultable(pmap, addr))
1034			continue;
1035
1036		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1037		lobject = object;
1038		VM_OBJECT_RLOCK(lobject);
1039		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1040		    lobject->type == OBJT_DEFAULT &&
1041		    (backing_object = lobject->backing_object) != NULL) {
1042			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1043			    0, ("vm_fault_prefault: unaligned object offset"));
1044			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1045			VM_OBJECT_RLOCK(backing_object);
1046			VM_OBJECT_RUNLOCK(lobject);
1047			lobject = backing_object;
1048		}
1049		/*
1050		 * give-up when a page is not in memory
1051		 */
1052		if (m == NULL) {
1053			VM_OBJECT_RUNLOCK(lobject);
1054			break;
1055		}
1056		if (m->valid == VM_PAGE_BITS_ALL &&
1057		    (m->flags & PG_FICTITIOUS) == 0)
1058			pmap_enter_quick(pmap, addr, m, entry->protection);
1059		VM_OBJECT_RUNLOCK(lobject);
1060	}
1061}
1062
1063/*
1064 * Hold each of the physical pages that are mapped by the specified range of
1065 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1066 * and allow the specified types of access, "prot".  If all of the implied
1067 * pages are successfully held, then the number of held pages is returned
1068 * together with pointers to those pages in the array "ma".  However, if any
1069 * of the pages cannot be held, -1 is returned.
1070 */
1071int
1072vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1073    vm_prot_t prot, vm_page_t *ma, int max_count)
1074{
1075	vm_offset_t end, va;
1076	vm_page_t *mp;
1077	int count;
1078	boolean_t pmap_failed;
1079
1080	if (len == 0)
1081		return (0);
1082	end = round_page(addr + len);
1083	addr = trunc_page(addr);
1084
1085	/*
1086	 * Check for illegal addresses.
1087	 */
1088	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1089		return (-1);
1090
1091	if (atop(end - addr) > max_count)
1092		panic("vm_fault_quick_hold_pages: count > max_count");
1093	count = atop(end - addr);
1094
1095	/*
1096	 * Most likely, the physical pages are resident in the pmap, so it is
1097	 * faster to try pmap_extract_and_hold() first.
1098	 */
1099	pmap_failed = FALSE;
1100	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1101		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1102		if (*mp == NULL)
1103			pmap_failed = TRUE;
1104		else if ((prot & VM_PROT_WRITE) != 0 &&
1105		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1106			/*
1107			 * Explicitly dirty the physical page.  Otherwise, the
1108			 * caller's changes may go unnoticed because they are
1109			 * performed through an unmanaged mapping or by a DMA
1110			 * operation.
1111			 *
1112			 * The object lock is not held here.
1113			 * See vm_page_clear_dirty_mask().
1114			 */
1115			vm_page_dirty(*mp);
1116		}
1117	}
1118	if (pmap_failed) {
1119		/*
1120		 * One or more pages could not be held by the pmap.  Either no
1121		 * page was mapped at the specified virtual address or that
1122		 * mapping had insufficient permissions.  Attempt to fault in
1123		 * and hold these pages.
1124		 */
1125		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1126			if (*mp == NULL && vm_fault_hold(map, va, prot,
1127			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1128				goto error;
1129	}
1130	return (count);
1131error:
1132	for (mp = ma; mp < ma + count; mp++)
1133		if (*mp != NULL) {
1134			vm_page_lock(*mp);
1135			vm_page_unhold(*mp);
1136			vm_page_unlock(*mp);
1137		}
1138	return (-1);
1139}
1140
1141/*
1142 *	vm_fault_wire:
1143 *
1144 *	Wire down a range of virtual addresses in a map.
1145 */
1146int
1147vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1148    boolean_t fictitious)
1149{
1150	vm_offset_t va;
1151	int rv;
1152
1153	/*
1154	 * We simulate a fault to get the page and enter it in the physical
1155	 * map.  For user wiring, we only ask for read access on currently
1156	 * read-only sections.
1157	 */
1158	for (va = start; va < end; va += PAGE_SIZE) {
1159		rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1160		if (rv) {
1161			if (va != start)
1162				vm_fault_unwire(map, start, va, fictitious);
1163			return (rv);
1164		}
1165	}
1166	return (KERN_SUCCESS);
1167}
1168
1169/*
1170 *	vm_fault_unwire:
1171 *
1172 *	Unwire a range of virtual addresses in a map.
1173 */
1174void
1175vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1176    boolean_t fictitious)
1177{
1178	vm_paddr_t pa;
1179	vm_offset_t va;
1180	vm_page_t m;
1181	pmap_t pmap;
1182
1183	pmap = vm_map_pmap(map);
1184
1185	/*
1186	 * Since the pages are wired down, we must be able to get their
1187	 * mappings from the physical map system.
1188	 */
1189	for (va = start; va < end; va += PAGE_SIZE) {
1190		pa = pmap_extract(pmap, va);
1191		if (pa != 0) {
1192			pmap_change_wiring(pmap, va, FALSE);
1193			if (!fictitious) {
1194				m = PHYS_TO_VM_PAGE(pa);
1195				vm_page_lock(m);
1196				vm_page_unwire(m, TRUE);
1197				vm_page_unlock(m);
1198			}
1199		}
1200	}
1201}
1202
1203/*
1204 *	Routine:
1205 *		vm_fault_copy_entry
1206 *	Function:
1207 *		Create new shadow object backing dst_entry with private copy of
1208 *		all underlying pages. When src_entry is equal to dst_entry,
1209 *		function implements COW for wired-down map entry. Otherwise,
1210 *		it forks wired entry into dst_map.
1211 *
1212 *	In/out conditions:
1213 *		The source and destination maps must be locked for write.
1214 *		The source map entry must be wired down (or be a sharing map
1215 *		entry corresponding to a main map entry that is wired down).
1216 */
1217void
1218vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1219    vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1220    vm_ooffset_t *fork_charge)
1221{
1222	vm_object_t backing_object, dst_object, object, src_object;
1223	vm_pindex_t dst_pindex, pindex, src_pindex;
1224	vm_prot_t access, prot;
1225	vm_offset_t vaddr;
1226	vm_page_t dst_m;
1227	vm_page_t src_m;
1228	boolean_t src_readonly, upgrade;
1229
1230#ifdef	lint
1231	src_map++;
1232#endif	/* lint */
1233
1234	upgrade = src_entry == dst_entry;
1235
1236	src_object = src_entry->object.vm_object;
1237	src_pindex = OFF_TO_IDX(src_entry->offset);
1238	src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1239
1240	/*
1241	 * Create the top-level object for the destination entry. (Doesn't
1242	 * actually shadow anything - we copy the pages directly.)
1243	 */
1244	dst_object = vm_object_allocate(OBJT_DEFAULT,
1245	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1246#if VM_NRESERVLEVEL > 0
1247	dst_object->flags |= OBJ_COLORED;
1248	dst_object->pg_color = atop(dst_entry->start);
1249#endif
1250
1251	VM_OBJECT_WLOCK(dst_object);
1252	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1253	    ("vm_fault_copy_entry: vm_object not NULL"));
1254	dst_entry->object.vm_object = dst_object;
1255	dst_entry->offset = 0;
1256	dst_object->charge = dst_entry->end - dst_entry->start;
1257	if (fork_charge != NULL) {
1258		KASSERT(dst_entry->cred == NULL,
1259		    ("vm_fault_copy_entry: leaked swp charge"));
1260		dst_object->cred = curthread->td_ucred;
1261		crhold(dst_object->cred);
1262		*fork_charge += dst_object->charge;
1263	} else {
1264		dst_object->cred = dst_entry->cred;
1265		dst_entry->cred = NULL;
1266	}
1267	access = prot = dst_entry->protection;
1268	/*
1269	 * If not an upgrade, then enter the mappings in the pmap as
1270	 * read and/or execute accesses.  Otherwise, enter them as
1271	 * write accesses.
1272	 *
1273	 * A writeable large page mapping is only created if all of
1274	 * the constituent small page mappings are modified. Marking
1275	 * PTEs as modified on inception allows promotion to happen
1276	 * without taking potentially large number of soft faults.
1277	 */
1278	if (!upgrade)
1279		access &= ~VM_PROT_WRITE;
1280
1281	/*
1282	 * Loop through all of the virtual pages within the entry's
1283	 * range, copying each page from the source object to the
1284	 * destination object.  Since the source is wired, those pages
1285	 * must exist.  In contrast, the destination is pageable.
1286	 * Since the destination object does share any backing storage
1287	 * with the source object, all of its pages must be dirtied,
1288	 * regardless of whether they can be written.
1289	 */
1290	for (vaddr = dst_entry->start, dst_pindex = 0;
1291	    vaddr < dst_entry->end;
1292	    vaddr += PAGE_SIZE, dst_pindex++) {
1293
1294		/*
1295		 * Allocate a page in the destination object.
1296		 */
1297		do {
1298			dst_m = vm_page_alloc(dst_object, dst_pindex,
1299			    VM_ALLOC_NORMAL);
1300			if (dst_m == NULL) {
1301				VM_OBJECT_WUNLOCK(dst_object);
1302				VM_WAIT;
1303				VM_OBJECT_WLOCK(dst_object);
1304			}
1305		} while (dst_m == NULL);
1306
1307		/*
1308		 * Find the page in the source object, and copy it in.
1309		 * (Because the source is wired down, the page will be in
1310		 * memory.)
1311		 */
1312		VM_OBJECT_RLOCK(src_object);
1313		object = src_object;
1314		pindex = src_pindex + dst_pindex;
1315		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1316		    src_readonly &&
1317		    (backing_object = object->backing_object) != NULL) {
1318			/*
1319			 * Allow fallback to backing objects if we are reading.
1320			 */
1321			VM_OBJECT_RLOCK(backing_object);
1322			pindex += OFF_TO_IDX(object->backing_object_offset);
1323			VM_OBJECT_RUNLOCK(object);
1324			object = backing_object;
1325		}
1326		if (src_m == NULL)
1327			panic("vm_fault_copy_wired: page missing");
1328		pmap_copy_page(src_m, dst_m);
1329		VM_OBJECT_RUNLOCK(object);
1330		dst_m->valid = VM_PAGE_BITS_ALL;
1331		dst_m->dirty = VM_PAGE_BITS_ALL;
1332		VM_OBJECT_WUNLOCK(dst_object);
1333
1334		/*
1335		 * Enter it in the pmap. If a wired, copy-on-write
1336		 * mapping is being replaced by a write-enabled
1337		 * mapping, then wire that new mapping.
1338		 */
1339		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1340
1341		/*
1342		 * Mark it no longer busy, and put it on the active list.
1343		 */
1344		VM_OBJECT_WLOCK(dst_object);
1345
1346		if (upgrade) {
1347			vm_page_lock(src_m);
1348			vm_page_unwire(src_m, 0);
1349			vm_page_unlock(src_m);
1350
1351			vm_page_lock(dst_m);
1352			vm_page_wire(dst_m);
1353			vm_page_unlock(dst_m);
1354		} else {
1355			vm_page_lock(dst_m);
1356			vm_page_activate(dst_m);
1357			vm_page_unlock(dst_m);
1358		}
1359		vm_page_xunbusy(dst_m);
1360	}
1361	VM_OBJECT_WUNLOCK(dst_object);
1362	if (upgrade) {
1363		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1364		vm_object_deallocate(src_object);
1365	}
1366}
1367
1368
1369/*
1370 * This routine checks around the requested page for other pages that
1371 * might be able to be faulted in.  This routine brackets the viable
1372 * pages for the pages to be paged in.
1373 *
1374 * Inputs:
1375 *	m, rbehind, rahead
1376 *
1377 * Outputs:
1378 *  marray (array of vm_page_t), reqpage (index of requested page)
1379 *
1380 * Return value:
1381 *  number of pages in marray
1382 */
1383static int
1384vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1385	vm_page_t m;
1386	int rbehind;
1387	int rahead;
1388	vm_page_t *marray;
1389	int *reqpage;
1390{
1391	int i,j;
1392	vm_object_t object;
1393	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1394	vm_page_t rtm;
1395	int cbehind, cahead;
1396
1397	VM_OBJECT_ASSERT_WLOCKED(m->object);
1398
1399	object = m->object;
1400	pindex = m->pindex;
1401	cbehind = cahead = 0;
1402
1403	/*
1404	 * if the requested page is not available, then give up now
1405	 */
1406	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1407		return 0;
1408	}
1409
1410	if ((cbehind == 0) && (cahead == 0)) {
1411		*reqpage = 0;
1412		marray[0] = m;
1413		return 1;
1414	}
1415
1416	if (rahead > cahead) {
1417		rahead = cahead;
1418	}
1419
1420	if (rbehind > cbehind) {
1421		rbehind = cbehind;
1422	}
1423
1424	/*
1425	 * scan backward for the read behind pages -- in memory
1426	 */
1427	if (pindex > 0) {
1428		if (rbehind > pindex) {
1429			rbehind = pindex;
1430			startpindex = 0;
1431		} else {
1432			startpindex = pindex - rbehind;
1433		}
1434
1435		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1436		    rtm->pindex >= startpindex)
1437			startpindex = rtm->pindex + 1;
1438
1439		/* tpindex is unsigned; beware of numeric underflow. */
1440		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1441		    tpindex < pindex; i++, tpindex--) {
1442
1443			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1444			    VM_ALLOC_IFNOTCACHED);
1445			if (rtm == NULL) {
1446				/*
1447				 * Shift the allocated pages to the
1448				 * beginning of the array.
1449				 */
1450				for (j = 0; j < i; j++) {
1451					marray[j] = marray[j + tpindex + 1 -
1452					    startpindex];
1453				}
1454				break;
1455			}
1456
1457			marray[tpindex - startpindex] = rtm;
1458		}
1459	} else {
1460		startpindex = 0;
1461		i = 0;
1462	}
1463
1464	marray[i] = m;
1465	/* page offset of the required page */
1466	*reqpage = i;
1467
1468	tpindex = pindex + 1;
1469	i++;
1470
1471	/*
1472	 * scan forward for the read ahead pages
1473	 */
1474	endpindex = tpindex + rahead;
1475	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1476		endpindex = rtm->pindex;
1477	if (endpindex > object->size)
1478		endpindex = object->size;
1479
1480	for (; tpindex < endpindex; i++, tpindex++) {
1481
1482		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1483		    VM_ALLOC_IFNOTCACHED);
1484		if (rtm == NULL) {
1485			break;
1486		}
1487
1488		marray[i] = rtm;
1489	}
1490
1491	/* return number of pages */
1492	return i;
1493}
1494
1495/*
1496 * Block entry into the machine-independent layer's page fault handler by
1497 * the calling thread.  Subsequent calls to vm_fault() by that thread will
1498 * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1499 * spurious page faults.
1500 */
1501int
1502vm_fault_disable_pagefaults(void)
1503{
1504
1505	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1506}
1507
1508void
1509vm_fault_enable_pagefaults(int save)
1510{
1511
1512	curthread_pflags_restore(save);
1513}
1514