uma_core.c revision 320440
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * effecient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/10/sys/vm/uma_core.c 320440 2017-06-28 06:40:13Z alc $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/eventhandler.h>
68#include <sys/kernel.h>
69#include <sys/types.h>
70#include <sys/queue.h>
71#include <sys/malloc.h>
72#include <sys/ktr.h>
73#include <sys/lock.h>
74#include <sys/sysctl.h>
75#include <sys/mutex.h>
76#include <sys/proc.h>
77#include <sys/rwlock.h>
78#include <sys/sbuf.h>
79#include <sys/sched.h>
80#include <sys/smp.h>
81#include <sys/vmmeter.h>
82
83#include <vm/vm.h>
84#include <vm/vm_object.h>
85#include <vm/vm_page.h>
86#include <vm/vm_pageout.h>
87#include <vm/vm_param.h>
88#include <vm/vm_map.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_extern.h>
91#include <vm/uma.h>
92#include <vm/uma_int.h>
93#include <vm/uma_dbg.h>
94
95#include <ddb/ddb.h>
96
97#ifdef DEBUG_MEMGUARD
98#include <vm/memguard.h>
99#endif
100
101/*
102 * This is the zone and keg from which all zones are spawned.  The idea is that
103 * even the zone & keg heads are allocated from the allocator, so we use the
104 * bss section to bootstrap us.
105 */
106static struct uma_keg masterkeg;
107static struct uma_zone masterzone_k;
108static struct uma_zone masterzone_z;
109static uma_zone_t kegs = &masterzone_k;
110static uma_zone_t zones = &masterzone_z;
111
112/* This is the zone from which all of uma_slab_t's are allocated. */
113static uma_zone_t slabzone;
114static uma_zone_t slabrefzone;	/* With refcounters (for UMA_ZONE_REFCNT) */
115
116/*
117 * The initial hash tables come out of this zone so they can be allocated
118 * prior to malloc coming up.
119 */
120static uma_zone_t hashzone;
121
122/* The boot-time adjusted value for cache line alignment. */
123int uma_align_cache = 64 - 1;
124
125static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
126
127/*
128 * Are we allowed to allocate buckets?
129 */
130static int bucketdisable = 1;
131
132/* Linked list of all kegs in the system */
133static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
134
135/* Linked list of all cache-only zones in the system */
136static LIST_HEAD(,uma_zone) uma_cachezones =
137    LIST_HEAD_INITIALIZER(uma_cachezones);
138
139/* This RW lock protects the keg list */
140static struct rwlock_padalign uma_rwlock;
141
142/* Linked list of boot time pages */
143static LIST_HEAD(,uma_slab) uma_boot_pages =
144    LIST_HEAD_INITIALIZER(uma_boot_pages);
145
146/* This mutex protects the boot time pages list */
147static struct mtx_padalign uma_boot_pages_mtx;
148
149static struct sx uma_drain_lock;
150
151/* Is the VM done starting up? */
152static int booted = 0;
153#define	UMA_STARTUP	1
154#define	UMA_STARTUP2	2
155
156/*
157 * Only mbuf clusters use ref zones.  Just provide enough references
158 * to support the one user.  New code should not use the ref facility.
159 */
160static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES;
161
162/*
163 * This is the handle used to schedule events that need to happen
164 * outside of the allocation fast path.
165 */
166static struct callout uma_callout;
167#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
168
169/*
170 * This structure is passed as the zone ctor arg so that I don't have to create
171 * a special allocation function just for zones.
172 */
173struct uma_zctor_args {
174	const char *name;
175	size_t size;
176	uma_ctor ctor;
177	uma_dtor dtor;
178	uma_init uminit;
179	uma_fini fini;
180	uma_import import;
181	uma_release release;
182	void *arg;
183	uma_keg_t keg;
184	int align;
185	uint32_t flags;
186};
187
188struct uma_kctor_args {
189	uma_zone_t zone;
190	size_t size;
191	uma_init uminit;
192	uma_fini fini;
193	int align;
194	uint32_t flags;
195};
196
197struct uma_bucket_zone {
198	uma_zone_t	ubz_zone;
199	char		*ubz_name;
200	int		ubz_entries;	/* Number of items it can hold. */
201	int		ubz_maxsize;	/* Maximum allocation size per-item. */
202};
203
204/*
205 * Compute the actual number of bucket entries to pack them in power
206 * of two sizes for more efficient space utilization.
207 */
208#define	BUCKET_SIZE(n)						\
209    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
210
211#define	BUCKET_MAX	BUCKET_SIZE(256)
212
213struct uma_bucket_zone bucket_zones[] = {
214	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
215	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
216	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
217	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
218	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
219	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
220	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
221	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
222	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
223	{ NULL, NULL, 0}
224};
225
226/*
227 * Flags and enumerations to be passed to internal functions.
228 */
229enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
230
231/* Prototypes.. */
232
233static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
234static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
235static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
236static void page_free(void *, vm_size_t, uint8_t);
237static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
238static void cache_drain(uma_zone_t);
239static void bucket_drain(uma_zone_t, uma_bucket_t);
240static void bucket_cache_drain(uma_zone_t zone);
241static int keg_ctor(void *, int, void *, int);
242static void keg_dtor(void *, int, void *);
243static int zone_ctor(void *, int, void *, int);
244static void zone_dtor(void *, int, void *);
245static int zero_init(void *, int, int);
246static void keg_small_init(uma_keg_t keg);
247static void keg_large_init(uma_keg_t keg);
248static void zone_foreach(void (*zfunc)(uma_zone_t));
249static void zone_timeout(uma_zone_t zone);
250static int hash_alloc(struct uma_hash *);
251static int hash_expand(struct uma_hash *, struct uma_hash *);
252static void hash_free(struct uma_hash *hash);
253static void uma_timeout(void *);
254static void uma_startup3(void);
255static void *zone_alloc_item(uma_zone_t, void *, int);
256static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
257static void bucket_enable(void);
258static void bucket_init(void);
259static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
260static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
261static void bucket_zone_drain(void);
262static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
263static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
264static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
265static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
266static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
267static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
268    uma_fini fini, int align, uint32_t flags);
269static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
270static void zone_release(uma_zone_t zone, void **bucket, int cnt);
271static void uma_zero_item(void *item, uma_zone_t zone);
272
273void uma_print_zone(uma_zone_t);
274void uma_print_stats(void);
275static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
276static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
277
278SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
279
280SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
281    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
282
283SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
284    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
285
286static int zone_warnings = 1;
287TUNABLE_INT("vm.zone_warnings", &zone_warnings);
288SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0,
289    "Warn when UMA zones becomes full");
290
291/*
292 * This routine checks to see whether or not it's safe to enable buckets.
293 */
294static void
295bucket_enable(void)
296{
297	bucketdisable = vm_page_count_min();
298}
299
300/*
301 * Initialize bucket_zones, the array of zones of buckets of various sizes.
302 *
303 * For each zone, calculate the memory required for each bucket, consisting
304 * of the header and an array of pointers.
305 */
306static void
307bucket_init(void)
308{
309	struct uma_bucket_zone *ubz;
310	int size;
311
312	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
313		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
314		size += sizeof(void *) * ubz->ubz_entries;
315		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
316		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
317		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
318	}
319}
320
321/*
322 * Given a desired number of entries for a bucket, return the zone from which
323 * to allocate the bucket.
324 */
325static struct uma_bucket_zone *
326bucket_zone_lookup(int entries)
327{
328	struct uma_bucket_zone *ubz;
329
330	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
331		if (ubz->ubz_entries >= entries)
332			return (ubz);
333	ubz--;
334	return (ubz);
335}
336
337static int
338bucket_select(int size)
339{
340	struct uma_bucket_zone *ubz;
341
342	ubz = &bucket_zones[0];
343	if (size > ubz->ubz_maxsize)
344		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
345
346	for (; ubz->ubz_entries != 0; ubz++)
347		if (ubz->ubz_maxsize < size)
348			break;
349	ubz--;
350	return (ubz->ubz_entries);
351}
352
353static uma_bucket_t
354bucket_alloc(uma_zone_t zone, void *udata, int flags)
355{
356	struct uma_bucket_zone *ubz;
357	uma_bucket_t bucket;
358
359	/*
360	 * This is to stop us from allocating per cpu buckets while we're
361	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
362	 * boot pages.  This also prevents us from allocating buckets in
363	 * low memory situations.
364	 */
365	if (bucketdisable)
366		return (NULL);
367	/*
368	 * To limit bucket recursion we store the original zone flags
369	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
370	 * NOVM flag to persist even through deep recursions.  We also
371	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
372	 * a bucket for a bucket zone so we do not allow infinite bucket
373	 * recursion.  This cookie will even persist to frees of unused
374	 * buckets via the allocation path or bucket allocations in the
375	 * free path.
376	 */
377	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
378		udata = (void *)(uintptr_t)zone->uz_flags;
379	else {
380		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
381			return (NULL);
382		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
383	}
384	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
385		flags |= M_NOVM;
386	ubz = bucket_zone_lookup(zone->uz_count);
387	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
388		ubz++;
389	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
390	if (bucket) {
391#ifdef INVARIANTS
392		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
393#endif
394		bucket->ub_cnt = 0;
395		bucket->ub_entries = ubz->ubz_entries;
396	}
397
398	return (bucket);
399}
400
401static void
402bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
403{
404	struct uma_bucket_zone *ubz;
405
406	KASSERT(bucket->ub_cnt == 0,
407	    ("bucket_free: Freeing a non free bucket."));
408	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
409		udata = (void *)(uintptr_t)zone->uz_flags;
410	ubz = bucket_zone_lookup(bucket->ub_entries);
411	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
412}
413
414static void
415bucket_zone_drain(void)
416{
417	struct uma_bucket_zone *ubz;
418
419	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
420		zone_drain(ubz->ubz_zone);
421}
422
423static void
424zone_log_warning(uma_zone_t zone)
425{
426	static const struct timeval warninterval = { 300, 0 };
427
428	if (!zone_warnings || zone->uz_warning == NULL)
429		return;
430
431	if (ratecheck(&zone->uz_ratecheck, &warninterval))
432		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
433}
434
435static void
436zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
437{
438	uma_klink_t klink;
439
440	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
441		kegfn(klink->kl_keg);
442}
443
444/*
445 * Routine called by timeout which is used to fire off some time interval
446 * based calculations.  (stats, hash size, etc.)
447 *
448 * Arguments:
449 *	arg   Unused
450 *
451 * Returns:
452 *	Nothing
453 */
454static void
455uma_timeout(void *unused)
456{
457	bucket_enable();
458	zone_foreach(zone_timeout);
459
460	/* Reschedule this event */
461	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
462}
463
464/*
465 * Routine to perform timeout driven calculations.  This expands the
466 * hashes and does per cpu statistics aggregation.
467 *
468 *  Returns nothing.
469 */
470static void
471keg_timeout(uma_keg_t keg)
472{
473
474	KEG_LOCK(keg);
475	/*
476	 * Expand the keg hash table.
477	 *
478	 * This is done if the number of slabs is larger than the hash size.
479	 * What I'm trying to do here is completely reduce collisions.  This
480	 * may be a little aggressive.  Should I allow for two collisions max?
481	 */
482	if (keg->uk_flags & UMA_ZONE_HASH &&
483	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
484		struct uma_hash newhash;
485		struct uma_hash oldhash;
486		int ret;
487
488		/*
489		 * This is so involved because allocating and freeing
490		 * while the keg lock is held will lead to deadlock.
491		 * I have to do everything in stages and check for
492		 * races.
493		 */
494		newhash = keg->uk_hash;
495		KEG_UNLOCK(keg);
496		ret = hash_alloc(&newhash);
497		KEG_LOCK(keg);
498		if (ret) {
499			if (hash_expand(&keg->uk_hash, &newhash)) {
500				oldhash = keg->uk_hash;
501				keg->uk_hash = newhash;
502			} else
503				oldhash = newhash;
504
505			KEG_UNLOCK(keg);
506			hash_free(&oldhash);
507			return;
508		}
509	}
510	KEG_UNLOCK(keg);
511}
512
513static void
514zone_timeout(uma_zone_t zone)
515{
516
517	zone_foreach_keg(zone, &keg_timeout);
518}
519
520/*
521 * Allocate and zero fill the next sized hash table from the appropriate
522 * backing store.
523 *
524 * Arguments:
525 *	hash  A new hash structure with the old hash size in uh_hashsize
526 *
527 * Returns:
528 *	1 on sucess and 0 on failure.
529 */
530static int
531hash_alloc(struct uma_hash *hash)
532{
533	int oldsize;
534	int alloc;
535
536	oldsize = hash->uh_hashsize;
537
538	/* We're just going to go to a power of two greater */
539	if (oldsize)  {
540		hash->uh_hashsize = oldsize * 2;
541		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
542		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
543		    M_UMAHASH, M_NOWAIT);
544	} else {
545		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
546		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
547		    M_WAITOK);
548		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
549	}
550	if (hash->uh_slab_hash) {
551		bzero(hash->uh_slab_hash, alloc);
552		hash->uh_hashmask = hash->uh_hashsize - 1;
553		return (1);
554	}
555
556	return (0);
557}
558
559/*
560 * Expands the hash table for HASH zones.  This is done from zone_timeout
561 * to reduce collisions.  This must not be done in the regular allocation
562 * path, otherwise, we can recurse on the vm while allocating pages.
563 *
564 * Arguments:
565 *	oldhash  The hash you want to expand
566 *	newhash  The hash structure for the new table
567 *
568 * Returns:
569 *	Nothing
570 *
571 * Discussion:
572 */
573static int
574hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
575{
576	uma_slab_t slab;
577	int hval;
578	int i;
579
580	if (!newhash->uh_slab_hash)
581		return (0);
582
583	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
584		return (0);
585
586	/*
587	 * I need to investigate hash algorithms for resizing without a
588	 * full rehash.
589	 */
590
591	for (i = 0; i < oldhash->uh_hashsize; i++)
592		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
593			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
594			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
595			hval = UMA_HASH(newhash, slab->us_data);
596			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
597			    slab, us_hlink);
598		}
599
600	return (1);
601}
602
603/*
604 * Free the hash bucket to the appropriate backing store.
605 *
606 * Arguments:
607 *	slab_hash  The hash bucket we're freeing
608 *	hashsize   The number of entries in that hash bucket
609 *
610 * Returns:
611 *	Nothing
612 */
613static void
614hash_free(struct uma_hash *hash)
615{
616	if (hash->uh_slab_hash == NULL)
617		return;
618	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
619		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
620	else
621		free(hash->uh_slab_hash, M_UMAHASH);
622}
623
624/*
625 * Frees all outstanding items in a bucket
626 *
627 * Arguments:
628 *	zone   The zone to free to, must be unlocked.
629 *	bucket The free/alloc bucket with items, cpu queue must be locked.
630 *
631 * Returns:
632 *	Nothing
633 */
634
635static void
636bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
637{
638	int i;
639
640	if (bucket == NULL)
641		return;
642
643	if (zone->uz_fini)
644		for (i = 0; i < bucket->ub_cnt; i++)
645			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
646	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
647	bucket->ub_cnt = 0;
648}
649
650/*
651 * Drains the per cpu caches for a zone.
652 *
653 * NOTE: This may only be called while the zone is being turn down, and not
654 * during normal operation.  This is necessary in order that we do not have
655 * to migrate CPUs to drain the per-CPU caches.
656 *
657 * Arguments:
658 *	zone     The zone to drain, must be unlocked.
659 *
660 * Returns:
661 *	Nothing
662 */
663static void
664cache_drain(uma_zone_t zone)
665{
666	uma_cache_t cache;
667	int cpu;
668
669	/*
670	 * XXX: It is safe to not lock the per-CPU caches, because we're
671	 * tearing down the zone anyway.  I.e., there will be no further use
672	 * of the caches at this point.
673	 *
674	 * XXX: It would good to be able to assert that the zone is being
675	 * torn down to prevent improper use of cache_drain().
676	 *
677	 * XXX: We lock the zone before passing into bucket_cache_drain() as
678	 * it is used elsewhere.  Should the tear-down path be made special
679	 * there in some form?
680	 */
681	CPU_FOREACH(cpu) {
682		cache = &zone->uz_cpu[cpu];
683		bucket_drain(zone, cache->uc_allocbucket);
684		bucket_drain(zone, cache->uc_freebucket);
685		if (cache->uc_allocbucket != NULL)
686			bucket_free(zone, cache->uc_allocbucket, NULL);
687		if (cache->uc_freebucket != NULL)
688			bucket_free(zone, cache->uc_freebucket, NULL);
689		cache->uc_allocbucket = cache->uc_freebucket = NULL;
690	}
691	ZONE_LOCK(zone);
692	bucket_cache_drain(zone);
693	ZONE_UNLOCK(zone);
694}
695
696static void
697cache_shrink(uma_zone_t zone)
698{
699
700	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
701		return;
702
703	ZONE_LOCK(zone);
704	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
705	ZONE_UNLOCK(zone);
706}
707
708static void
709cache_drain_safe_cpu(uma_zone_t zone)
710{
711	uma_cache_t cache;
712	uma_bucket_t b1, b2;
713
714	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
715		return;
716
717	b1 = b2 = NULL;
718	ZONE_LOCK(zone);
719	critical_enter();
720	cache = &zone->uz_cpu[curcpu];
721	if (cache->uc_allocbucket) {
722		if (cache->uc_allocbucket->ub_cnt != 0)
723			LIST_INSERT_HEAD(&zone->uz_buckets,
724			    cache->uc_allocbucket, ub_link);
725		else
726			b1 = cache->uc_allocbucket;
727		cache->uc_allocbucket = NULL;
728	}
729	if (cache->uc_freebucket) {
730		if (cache->uc_freebucket->ub_cnt != 0)
731			LIST_INSERT_HEAD(&zone->uz_buckets,
732			    cache->uc_freebucket, ub_link);
733		else
734			b2 = cache->uc_freebucket;
735		cache->uc_freebucket = NULL;
736	}
737	critical_exit();
738	ZONE_UNLOCK(zone);
739	if (b1)
740		bucket_free(zone, b1, NULL);
741	if (b2)
742		bucket_free(zone, b2, NULL);
743}
744
745/*
746 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
747 * This is an expensive call because it needs to bind to all CPUs
748 * one by one and enter a critical section on each of them in order
749 * to safely access their cache buckets.
750 * Zone lock must not be held on call this function.
751 */
752static void
753cache_drain_safe(uma_zone_t zone)
754{
755	int cpu;
756
757	/*
758	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
759	 */
760	if (zone)
761		cache_shrink(zone);
762	else
763		zone_foreach(cache_shrink);
764
765	CPU_FOREACH(cpu) {
766		thread_lock(curthread);
767		sched_bind(curthread, cpu);
768		thread_unlock(curthread);
769
770		if (zone)
771			cache_drain_safe_cpu(zone);
772		else
773			zone_foreach(cache_drain_safe_cpu);
774	}
775	thread_lock(curthread);
776	sched_unbind(curthread);
777	thread_unlock(curthread);
778}
779
780/*
781 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
782 */
783static void
784bucket_cache_drain(uma_zone_t zone)
785{
786	uma_bucket_t bucket;
787
788	/*
789	 * Drain the bucket queues and free the buckets, we just keep two per
790	 * cpu (alloc/free).
791	 */
792	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
793		LIST_REMOVE(bucket, ub_link);
794		ZONE_UNLOCK(zone);
795		bucket_drain(zone, bucket);
796		bucket_free(zone, bucket, NULL);
797		ZONE_LOCK(zone);
798	}
799
800	/*
801	 * Shrink further bucket sizes.  Price of single zone lock collision
802	 * is probably lower then price of global cache drain.
803	 */
804	if (zone->uz_count > zone->uz_count_min)
805		zone->uz_count--;
806}
807
808static void
809keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
810{
811	uint8_t *mem;
812	int i;
813	uint8_t flags;
814
815	mem = slab->us_data;
816	flags = slab->us_flags;
817	i = start;
818	if (keg->uk_fini != NULL) {
819		for (i--; i > -1; i--)
820			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
821			    keg->uk_size);
822	}
823	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
824		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
825#ifdef UMA_DEBUG
826	printf("%s: Returning %d bytes.\n", keg->uk_name,
827	    PAGE_SIZE * keg->uk_ppera);
828#endif
829	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
830}
831
832/*
833 * Frees pages from a keg back to the system.  This is done on demand from
834 * the pageout daemon.
835 *
836 * Returns nothing.
837 */
838static void
839keg_drain(uma_keg_t keg)
840{
841	struct slabhead freeslabs = { 0 };
842	uma_slab_t slab;
843	uma_slab_t n;
844
845	/*
846	 * We don't want to take pages from statically allocated kegs at this
847	 * time
848	 */
849	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
850		return;
851
852#ifdef UMA_DEBUG
853	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
854#endif
855	KEG_LOCK(keg);
856	if (keg->uk_free == 0)
857		goto finished;
858
859	slab = LIST_FIRST(&keg->uk_free_slab);
860	while (slab) {
861		n = LIST_NEXT(slab, us_link);
862
863		/* We have no where to free these to */
864		if (slab->us_flags & UMA_SLAB_BOOT) {
865			slab = n;
866			continue;
867		}
868
869		LIST_REMOVE(slab, us_link);
870		keg->uk_pages -= keg->uk_ppera;
871		keg->uk_free -= keg->uk_ipers;
872
873		if (keg->uk_flags & UMA_ZONE_HASH)
874			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
875
876		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
877
878		slab = n;
879	}
880finished:
881	KEG_UNLOCK(keg);
882
883	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
884		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
885		keg_free_slab(keg, slab, keg->uk_ipers);
886	}
887}
888
889static void
890zone_drain_wait(uma_zone_t zone, int waitok)
891{
892
893	/*
894	 * Set draining to interlock with zone_dtor() so we can release our
895	 * locks as we go.  Only dtor() should do a WAITOK call since it
896	 * is the only call that knows the structure will still be available
897	 * when it wakes up.
898	 */
899	ZONE_LOCK(zone);
900	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
901		if (waitok == M_NOWAIT)
902			goto out;
903		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
904	}
905	zone->uz_flags |= UMA_ZFLAG_DRAINING;
906	bucket_cache_drain(zone);
907	ZONE_UNLOCK(zone);
908	/*
909	 * The DRAINING flag protects us from being freed while
910	 * we're running.  Normally the uma_rwlock would protect us but we
911	 * must be able to release and acquire the right lock for each keg.
912	 */
913	zone_foreach_keg(zone, &keg_drain);
914	ZONE_LOCK(zone);
915	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
916	wakeup(zone);
917out:
918	ZONE_UNLOCK(zone);
919}
920
921void
922zone_drain(uma_zone_t zone)
923{
924
925	zone_drain_wait(zone, M_NOWAIT);
926}
927
928/*
929 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
930 *
931 * Arguments:
932 *	wait  Shall we wait?
933 *
934 * Returns:
935 *	The slab that was allocated or NULL if there is no memory and the
936 *	caller specified M_NOWAIT.
937 */
938static uma_slab_t
939keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
940{
941	uma_slabrefcnt_t slabref;
942	uma_alloc allocf;
943	uma_slab_t slab;
944	uint8_t *mem;
945	uint8_t flags;
946	int i;
947
948	mtx_assert(&keg->uk_lock, MA_OWNED);
949	slab = NULL;
950	mem = NULL;
951
952#ifdef UMA_DEBUG
953	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
954#endif
955	allocf = keg->uk_allocf;
956	KEG_UNLOCK(keg);
957
958	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
959		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
960		if (slab == NULL)
961			goto out;
962	}
963
964	/*
965	 * This reproduces the old vm_zone behavior of zero filling pages the
966	 * first time they are added to a zone.
967	 *
968	 * Malloced items are zeroed in uma_zalloc.
969	 */
970
971	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
972		wait |= M_ZERO;
973	else
974		wait &= ~M_ZERO;
975
976	if (keg->uk_flags & UMA_ZONE_NODUMP)
977		wait |= M_NODUMP;
978
979	/* zone is passed for legacy reasons. */
980	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
981	if (mem == NULL) {
982		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
983			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
984		slab = NULL;
985		goto out;
986	}
987
988	/* Point the slab into the allocated memory */
989	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
990		slab = (uma_slab_t )(mem + keg->uk_pgoff);
991
992	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
993		for (i = 0; i < keg->uk_ppera; i++)
994			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
995
996	slab->us_keg = keg;
997	slab->us_data = mem;
998	slab->us_freecount = keg->uk_ipers;
999	slab->us_flags = flags;
1000	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
1001#ifdef INVARIANTS
1002	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1003#endif
1004	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1005		slabref = (uma_slabrefcnt_t)slab;
1006		for (i = 0; i < keg->uk_ipers; i++)
1007			slabref->us_refcnt[i] = 0;
1008	}
1009
1010	if (keg->uk_init != NULL) {
1011		for (i = 0; i < keg->uk_ipers; i++)
1012			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1013			    keg->uk_size, wait) != 0)
1014				break;
1015		if (i != keg->uk_ipers) {
1016			keg_free_slab(keg, slab, i);
1017			slab = NULL;
1018			goto out;
1019		}
1020	}
1021out:
1022	KEG_LOCK(keg);
1023
1024	if (slab != NULL) {
1025		if (keg->uk_flags & UMA_ZONE_HASH)
1026			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1027
1028		keg->uk_pages += keg->uk_ppera;
1029		keg->uk_free += keg->uk_ipers;
1030	}
1031
1032	return (slab);
1033}
1034
1035/*
1036 * This function is intended to be used early on in place of page_alloc() so
1037 * that we may use the boot time page cache to satisfy allocations before
1038 * the VM is ready.
1039 */
1040static void *
1041startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1042{
1043	uma_keg_t keg;
1044	uma_slab_t tmps;
1045	int pages, check_pages;
1046
1047	keg = zone_first_keg(zone);
1048	pages = howmany(bytes, PAGE_SIZE);
1049	check_pages = pages - 1;
1050	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1051
1052	/*
1053	 * Check our small startup cache to see if it has pages remaining.
1054	 */
1055	mtx_lock(&uma_boot_pages_mtx);
1056
1057	/* First check if we have enough room. */
1058	tmps = LIST_FIRST(&uma_boot_pages);
1059	while (tmps != NULL && check_pages-- > 0)
1060		tmps = LIST_NEXT(tmps, us_link);
1061	if (tmps != NULL) {
1062		/*
1063		 * It's ok to lose tmps references.  The last one will
1064		 * have tmps->us_data pointing to the start address of
1065		 * "pages" contiguous pages of memory.
1066		 */
1067		while (pages-- > 0) {
1068			tmps = LIST_FIRST(&uma_boot_pages);
1069			LIST_REMOVE(tmps, us_link);
1070		}
1071		mtx_unlock(&uma_boot_pages_mtx);
1072		*pflag = tmps->us_flags;
1073		return (tmps->us_data);
1074	}
1075	mtx_unlock(&uma_boot_pages_mtx);
1076	if (booted < UMA_STARTUP2)
1077		panic("UMA: Increase vm.boot_pages");
1078	/*
1079	 * Now that we've booted reset these users to their real allocator.
1080	 */
1081#ifdef UMA_MD_SMALL_ALLOC
1082	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1083#else
1084	keg->uk_allocf = page_alloc;
1085#endif
1086	return keg->uk_allocf(zone, bytes, pflag, wait);
1087}
1088
1089/*
1090 * Allocates a number of pages from the system
1091 *
1092 * Arguments:
1093 *	bytes  The number of bytes requested
1094 *	wait  Shall we wait?
1095 *
1096 * Returns:
1097 *	A pointer to the alloced memory or possibly
1098 *	NULL if M_NOWAIT is set.
1099 */
1100static void *
1101page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1102{
1103	void *p;	/* Returned page */
1104
1105	*pflag = UMA_SLAB_KMEM;
1106	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1107
1108	return (p);
1109}
1110
1111/*
1112 * Allocates a number of pages from within an object
1113 *
1114 * Arguments:
1115 *	bytes  The number of bytes requested
1116 *	wait   Shall we wait?
1117 *
1118 * Returns:
1119 *	A pointer to the alloced memory or possibly
1120 *	NULL if M_NOWAIT is set.
1121 */
1122static void *
1123noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
1124{
1125	TAILQ_HEAD(, vm_page) alloctail;
1126	u_long npages;
1127	vm_offset_t retkva, zkva;
1128	vm_page_t p, p_next;
1129	uma_keg_t keg;
1130
1131	TAILQ_INIT(&alloctail);
1132	keg = zone_first_keg(zone);
1133
1134	npages = howmany(bytes, PAGE_SIZE);
1135	while (npages > 0) {
1136		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1137		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1138		if (p != NULL) {
1139			/*
1140			 * Since the page does not belong to an object, its
1141			 * listq is unused.
1142			 */
1143			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1144			npages--;
1145			continue;
1146		}
1147		if (wait & M_WAITOK) {
1148			VM_WAIT;
1149			continue;
1150		}
1151
1152		/*
1153		 * Page allocation failed, free intermediate pages and
1154		 * exit.
1155		 */
1156		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1157			vm_page_unwire(p, 0);
1158			vm_page_free(p);
1159		}
1160		return (NULL);
1161	}
1162	*flags = UMA_SLAB_PRIV;
1163	zkva = keg->uk_kva +
1164	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1165	retkva = zkva;
1166	TAILQ_FOREACH(p, &alloctail, listq) {
1167		pmap_qenter(zkva, &p, 1);
1168		zkva += PAGE_SIZE;
1169	}
1170
1171	return ((void *)retkva);
1172}
1173
1174/*
1175 * Frees a number of pages to the system
1176 *
1177 * Arguments:
1178 *	mem   A pointer to the memory to be freed
1179 *	size  The size of the memory being freed
1180 *	flags The original p->us_flags field
1181 *
1182 * Returns:
1183 *	Nothing
1184 */
1185static void
1186page_free(void *mem, vm_size_t size, uint8_t flags)
1187{
1188	struct vmem *vmem;
1189
1190	if (flags & UMA_SLAB_KMEM)
1191		vmem = kmem_arena;
1192	else if (flags & UMA_SLAB_KERNEL)
1193		vmem = kernel_arena;
1194	else
1195		panic("UMA: page_free used with invalid flags %d", flags);
1196
1197	kmem_free(vmem, (vm_offset_t)mem, size);
1198}
1199
1200/*
1201 * Zero fill initializer
1202 *
1203 * Arguments/Returns follow uma_init specifications
1204 */
1205static int
1206zero_init(void *mem, int size, int flags)
1207{
1208	bzero(mem, size);
1209	return (0);
1210}
1211
1212/*
1213 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1214 *
1215 * Arguments
1216 *	keg  The zone we should initialize
1217 *
1218 * Returns
1219 *	Nothing
1220 */
1221static void
1222keg_small_init(uma_keg_t keg)
1223{
1224	u_int rsize;
1225	u_int memused;
1226	u_int wastedspace;
1227	u_int shsize;
1228	u_int slabsize;
1229
1230	if (keg->uk_flags & UMA_ZONE_PCPU) {
1231		u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1232
1233		slabsize = sizeof(struct pcpu);
1234		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1235		    PAGE_SIZE);
1236	} else {
1237		slabsize = UMA_SLAB_SIZE;
1238		keg->uk_ppera = 1;
1239	}
1240
1241	/*
1242	 * Calculate the size of each allocation (rsize) according to
1243	 * alignment.  If the requested size is smaller than we have
1244	 * allocation bits for we round it up.
1245	 */
1246	rsize = keg->uk_size;
1247	if (rsize < slabsize / SLAB_SETSIZE)
1248		rsize = slabsize / SLAB_SETSIZE;
1249	if (rsize & keg->uk_align)
1250		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1251	keg->uk_rsize = rsize;
1252
1253	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1254	    keg->uk_rsize < sizeof(struct pcpu),
1255	    ("%s: size %u too large", __func__, keg->uk_rsize));
1256
1257	if (keg->uk_flags & UMA_ZONE_REFCNT)
1258		rsize += sizeof(uint32_t);
1259
1260	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1261		shsize = 0;
1262	else
1263		shsize = sizeof(struct uma_slab);
1264
1265	keg->uk_ipers = (slabsize - shsize) / rsize;
1266	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1267	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1268
1269	memused = keg->uk_ipers * rsize + shsize;
1270	wastedspace = slabsize - memused;
1271
1272	/*
1273	 * We can't do OFFPAGE if we're internal or if we've been
1274	 * asked to not go to the VM for buckets.  If we do this we
1275	 * may end up going to the VM  for slabs which we do not
1276	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1277	 * of UMA_ZONE_VM, which clearly forbids it.
1278	 */
1279	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1280	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1281		return;
1282
1283	/*
1284	 * See if using an OFFPAGE slab will limit our waste.  Only do
1285	 * this if it permits more items per-slab.
1286	 *
1287	 * XXX We could try growing slabsize to limit max waste as well.
1288	 * Historically this was not done because the VM could not
1289	 * efficiently handle contiguous allocations.
1290	 */
1291	if ((wastedspace >= slabsize / UMA_MAX_WASTE) &&
1292	    (keg->uk_ipers < (slabsize / keg->uk_rsize))) {
1293		keg->uk_ipers = slabsize / keg->uk_rsize;
1294		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1295		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1296#ifdef UMA_DEBUG
1297		printf("UMA decided we need offpage slab headers for "
1298		    "keg: %s, calculated wastedspace = %d, "
1299		    "maximum wasted space allowed = %d, "
1300		    "calculated ipers = %d, "
1301		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1302		    slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1303		    slabsize - keg->uk_ipers * keg->uk_rsize);
1304#endif
1305		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1306	}
1307
1308	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1309	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1310		keg->uk_flags |= UMA_ZONE_HASH;
1311}
1312
1313/*
1314 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1315 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1316 * more complicated.
1317 *
1318 * Arguments
1319 *	keg  The keg we should initialize
1320 *
1321 * Returns
1322 *	Nothing
1323 */
1324static void
1325keg_large_init(uma_keg_t keg)
1326{
1327	u_int shsize;
1328
1329	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1330	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1331	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1332	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1333	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1334
1335	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1336	keg->uk_ipers = 1;
1337	keg->uk_rsize = keg->uk_size;
1338
1339	/* We can't do OFFPAGE if we're internal, bail out here. */
1340	if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
1341		return;
1342
1343	/* Check whether we have enough space to not do OFFPAGE. */
1344	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1345		shsize = sizeof(struct uma_slab);
1346		if (keg->uk_flags & UMA_ZONE_REFCNT)
1347			shsize += keg->uk_ipers * sizeof(uint32_t);
1348		if (shsize & UMA_ALIGN_PTR)
1349			shsize = (shsize & ~UMA_ALIGN_PTR) +
1350			    (UMA_ALIGN_PTR + 1);
1351
1352		if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize)
1353			keg->uk_flags |= UMA_ZONE_OFFPAGE;
1354	}
1355
1356	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1357	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1358		keg->uk_flags |= UMA_ZONE_HASH;
1359}
1360
1361static void
1362keg_cachespread_init(uma_keg_t keg)
1363{
1364	int alignsize;
1365	int trailer;
1366	int pages;
1367	int rsize;
1368
1369	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1370	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1371
1372	alignsize = keg->uk_align + 1;
1373	rsize = keg->uk_size;
1374	/*
1375	 * We want one item to start on every align boundary in a page.  To
1376	 * do this we will span pages.  We will also extend the item by the
1377	 * size of align if it is an even multiple of align.  Otherwise, it
1378	 * would fall on the same boundary every time.
1379	 */
1380	if (rsize & keg->uk_align)
1381		rsize = (rsize & ~keg->uk_align) + alignsize;
1382	if ((rsize & alignsize) == 0)
1383		rsize += alignsize;
1384	trailer = rsize - keg->uk_size;
1385	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1386	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1387	keg->uk_rsize = rsize;
1388	keg->uk_ppera = pages;
1389	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1390	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1391	KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1392	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1393	    keg->uk_ipers));
1394}
1395
1396/*
1397 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1398 * the keg onto the global keg list.
1399 *
1400 * Arguments/Returns follow uma_ctor specifications
1401 *	udata  Actually uma_kctor_args
1402 */
1403static int
1404keg_ctor(void *mem, int size, void *udata, int flags)
1405{
1406	struct uma_kctor_args *arg = udata;
1407	uma_keg_t keg = mem;
1408	uma_zone_t zone;
1409
1410	bzero(keg, size);
1411	keg->uk_size = arg->size;
1412	keg->uk_init = arg->uminit;
1413	keg->uk_fini = arg->fini;
1414	keg->uk_align = arg->align;
1415	keg->uk_free = 0;
1416	keg->uk_reserve = 0;
1417	keg->uk_pages = 0;
1418	keg->uk_flags = arg->flags;
1419	keg->uk_allocf = page_alloc;
1420	keg->uk_freef = page_free;
1421	keg->uk_slabzone = NULL;
1422
1423	/*
1424	 * The master zone is passed to us at keg-creation time.
1425	 */
1426	zone = arg->zone;
1427	keg->uk_name = zone->uz_name;
1428
1429	if (arg->flags & UMA_ZONE_VM)
1430		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1431
1432	if (arg->flags & UMA_ZONE_ZINIT)
1433		keg->uk_init = zero_init;
1434
1435	if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1436		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1437
1438	if (arg->flags & UMA_ZONE_PCPU)
1439#ifdef SMP
1440		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1441#else
1442		keg->uk_flags &= ~UMA_ZONE_PCPU;
1443#endif
1444
1445	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1446		keg_cachespread_init(keg);
1447	} else if (keg->uk_flags & UMA_ZONE_REFCNT) {
1448		if (keg->uk_size >
1449		    (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) -
1450		    sizeof(uint32_t)))
1451			keg_large_init(keg);
1452		else
1453			keg_small_init(keg);
1454	} else {
1455		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1456			keg_large_init(keg);
1457		else
1458			keg_small_init(keg);
1459	}
1460
1461	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1462		if (keg->uk_flags & UMA_ZONE_REFCNT) {
1463			if (keg->uk_ipers > uma_max_ipers_ref)
1464				panic("Too many ref items per zone: %d > %d\n",
1465				    keg->uk_ipers, uma_max_ipers_ref);
1466			keg->uk_slabzone = slabrefzone;
1467		} else
1468			keg->uk_slabzone = slabzone;
1469	}
1470
1471	/*
1472	 * If we haven't booted yet we need allocations to go through the
1473	 * startup cache until the vm is ready.
1474	 */
1475	if (keg->uk_ppera == 1) {
1476#ifdef UMA_MD_SMALL_ALLOC
1477		keg->uk_allocf = uma_small_alloc;
1478		keg->uk_freef = uma_small_free;
1479
1480		if (booted < UMA_STARTUP)
1481			keg->uk_allocf = startup_alloc;
1482#else
1483		if (booted < UMA_STARTUP2)
1484			keg->uk_allocf = startup_alloc;
1485#endif
1486	} else if (booted < UMA_STARTUP2 &&
1487	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1488		keg->uk_allocf = startup_alloc;
1489
1490	/*
1491	 * Initialize keg's lock
1492	 */
1493	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1494
1495	/*
1496	 * If we're putting the slab header in the actual page we need to
1497	 * figure out where in each page it goes.  This calculates a right
1498	 * justified offset into the memory on an ALIGN_PTR boundary.
1499	 */
1500	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1501		u_int totsize;
1502
1503		/* Size of the slab struct and free list */
1504		totsize = sizeof(struct uma_slab);
1505
1506		/* Size of the reference counts. */
1507		if (keg->uk_flags & UMA_ZONE_REFCNT)
1508			totsize += keg->uk_ipers * sizeof(uint32_t);
1509
1510		if (totsize & UMA_ALIGN_PTR)
1511			totsize = (totsize & ~UMA_ALIGN_PTR) +
1512			    (UMA_ALIGN_PTR + 1);
1513		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1514
1515		/*
1516		 * The only way the following is possible is if with our
1517		 * UMA_ALIGN_PTR adjustments we are now bigger than
1518		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1519		 * mathematically possible for all cases, so we make
1520		 * sure here anyway.
1521		 */
1522		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1523		if (keg->uk_flags & UMA_ZONE_REFCNT)
1524			totsize += keg->uk_ipers * sizeof(uint32_t);
1525		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1526			printf("zone %s ipers %d rsize %d size %d\n",
1527			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1528			    keg->uk_size);
1529			panic("UMA slab won't fit.");
1530		}
1531	}
1532
1533	if (keg->uk_flags & UMA_ZONE_HASH)
1534		hash_alloc(&keg->uk_hash);
1535
1536#ifdef UMA_DEBUG
1537	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1538	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1539	    keg->uk_ipers, keg->uk_ppera,
1540	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
1541	    keg->uk_free);
1542#endif
1543
1544	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1545
1546	rw_wlock(&uma_rwlock);
1547	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1548	rw_wunlock(&uma_rwlock);
1549	return (0);
1550}
1551
1552/*
1553 * Zone header ctor.  This initializes all fields, locks, etc.
1554 *
1555 * Arguments/Returns follow uma_ctor specifications
1556 *	udata  Actually uma_zctor_args
1557 */
1558static int
1559zone_ctor(void *mem, int size, void *udata, int flags)
1560{
1561	struct uma_zctor_args *arg = udata;
1562	uma_zone_t zone = mem;
1563	uma_zone_t z;
1564	uma_keg_t keg;
1565
1566	bzero(zone, size);
1567	zone->uz_name = arg->name;
1568	zone->uz_ctor = arg->ctor;
1569	zone->uz_dtor = arg->dtor;
1570	zone->uz_slab = zone_fetch_slab;
1571	zone->uz_init = NULL;
1572	zone->uz_fini = NULL;
1573	zone->uz_allocs = 0;
1574	zone->uz_frees = 0;
1575	zone->uz_fails = 0;
1576	zone->uz_sleeps = 0;
1577	zone->uz_count = 0;
1578	zone->uz_count_min = 0;
1579	zone->uz_flags = 0;
1580	zone->uz_warning = NULL;
1581	timevalclear(&zone->uz_ratecheck);
1582	keg = arg->keg;
1583
1584	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1585
1586	/*
1587	 * This is a pure cache zone, no kegs.
1588	 */
1589	if (arg->import) {
1590		if (arg->flags & UMA_ZONE_VM)
1591			arg->flags |= UMA_ZFLAG_CACHEONLY;
1592		zone->uz_flags = arg->flags;
1593		zone->uz_size = arg->size;
1594		zone->uz_import = arg->import;
1595		zone->uz_release = arg->release;
1596		zone->uz_arg = arg->arg;
1597		zone->uz_lockptr = &zone->uz_lock;
1598		rw_wlock(&uma_rwlock);
1599		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1600		rw_wunlock(&uma_rwlock);
1601		goto out;
1602	}
1603
1604	/*
1605	 * Use the regular zone/keg/slab allocator.
1606	 */
1607	zone->uz_import = (uma_import)zone_import;
1608	zone->uz_release = (uma_release)zone_release;
1609	zone->uz_arg = zone;
1610
1611	if (arg->flags & UMA_ZONE_SECONDARY) {
1612		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1613		zone->uz_init = arg->uminit;
1614		zone->uz_fini = arg->fini;
1615		zone->uz_lockptr = &keg->uk_lock;
1616		zone->uz_flags |= UMA_ZONE_SECONDARY;
1617		rw_wlock(&uma_rwlock);
1618		ZONE_LOCK(zone);
1619		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1620			if (LIST_NEXT(z, uz_link) == NULL) {
1621				LIST_INSERT_AFTER(z, zone, uz_link);
1622				break;
1623			}
1624		}
1625		ZONE_UNLOCK(zone);
1626		rw_wunlock(&uma_rwlock);
1627	} else if (keg == NULL) {
1628		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1629		    arg->align, arg->flags)) == NULL)
1630			return (ENOMEM);
1631	} else {
1632		struct uma_kctor_args karg;
1633		int error;
1634
1635		/* We should only be here from uma_startup() */
1636		karg.size = arg->size;
1637		karg.uminit = arg->uminit;
1638		karg.fini = arg->fini;
1639		karg.align = arg->align;
1640		karg.flags = arg->flags;
1641		karg.zone = zone;
1642		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1643		    flags);
1644		if (error)
1645			return (error);
1646	}
1647
1648	/*
1649	 * Link in the first keg.
1650	 */
1651	zone->uz_klink.kl_keg = keg;
1652	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1653	zone->uz_lockptr = &keg->uk_lock;
1654	zone->uz_size = keg->uk_size;
1655	zone->uz_flags |= (keg->uk_flags &
1656	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1657
1658	/*
1659	 * Some internal zones don't have room allocated for the per cpu
1660	 * caches.  If we're internal, bail out here.
1661	 */
1662	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1663		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1664		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1665		return (0);
1666	}
1667
1668out:
1669	if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0)
1670		zone->uz_count = bucket_select(zone->uz_size);
1671	else
1672		zone->uz_count = BUCKET_MAX;
1673	zone->uz_count_min = zone->uz_count;
1674
1675	return (0);
1676}
1677
1678/*
1679 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1680 * table and removes the keg from the global list.
1681 *
1682 * Arguments/Returns follow uma_dtor specifications
1683 *	udata  unused
1684 */
1685static void
1686keg_dtor(void *arg, int size, void *udata)
1687{
1688	uma_keg_t keg;
1689
1690	keg = (uma_keg_t)arg;
1691	KEG_LOCK(keg);
1692	if (keg->uk_free != 0) {
1693		printf("Freed UMA keg (%s) was not empty (%d items). "
1694		    " Lost %d pages of memory.\n",
1695		    keg->uk_name ? keg->uk_name : "",
1696		    keg->uk_free, keg->uk_pages);
1697	}
1698	KEG_UNLOCK(keg);
1699
1700	hash_free(&keg->uk_hash);
1701
1702	KEG_LOCK_FINI(keg);
1703}
1704
1705/*
1706 * Zone header dtor.
1707 *
1708 * Arguments/Returns follow uma_dtor specifications
1709 *	udata  unused
1710 */
1711static void
1712zone_dtor(void *arg, int size, void *udata)
1713{
1714	uma_klink_t klink;
1715	uma_zone_t zone;
1716	uma_keg_t keg;
1717
1718	zone = (uma_zone_t)arg;
1719	keg = zone_first_keg(zone);
1720
1721	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1722		cache_drain(zone);
1723
1724	rw_wlock(&uma_rwlock);
1725	LIST_REMOVE(zone, uz_link);
1726	rw_wunlock(&uma_rwlock);
1727	/*
1728	 * XXX there are some races here where
1729	 * the zone can be drained but zone lock
1730	 * released and then refilled before we
1731	 * remove it... we dont care for now
1732	 */
1733	zone_drain_wait(zone, M_WAITOK);
1734	/*
1735	 * Unlink all of our kegs.
1736	 */
1737	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1738		klink->kl_keg = NULL;
1739		LIST_REMOVE(klink, kl_link);
1740		if (klink == &zone->uz_klink)
1741			continue;
1742		free(klink, M_TEMP);
1743	}
1744	/*
1745	 * We only destroy kegs from non secondary zones.
1746	 */
1747	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1748		rw_wlock(&uma_rwlock);
1749		LIST_REMOVE(keg, uk_link);
1750		rw_wunlock(&uma_rwlock);
1751		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1752	}
1753	ZONE_LOCK_FINI(zone);
1754}
1755
1756/*
1757 * Traverses every zone in the system and calls a callback
1758 *
1759 * Arguments:
1760 *	zfunc  A pointer to a function which accepts a zone
1761 *		as an argument.
1762 *
1763 * Returns:
1764 *	Nothing
1765 */
1766static void
1767zone_foreach(void (*zfunc)(uma_zone_t))
1768{
1769	uma_keg_t keg;
1770	uma_zone_t zone;
1771
1772	rw_rlock(&uma_rwlock);
1773	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1774		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1775			zfunc(zone);
1776	}
1777	rw_runlock(&uma_rwlock);
1778}
1779
1780/* Public functions */
1781/* See uma.h */
1782void
1783uma_startup(void *bootmem, int boot_pages)
1784{
1785	struct uma_zctor_args args;
1786	uma_slab_t slab;
1787	u_int slabsize;
1788	int i;
1789
1790#ifdef UMA_DEBUG
1791	printf("Creating uma keg headers zone and keg.\n");
1792#endif
1793	rw_init(&uma_rwlock, "UMA lock");
1794
1795	/* "manually" create the initial zone */
1796	memset(&args, 0, sizeof(args));
1797	args.name = "UMA Kegs";
1798	args.size = sizeof(struct uma_keg);
1799	args.ctor = keg_ctor;
1800	args.dtor = keg_dtor;
1801	args.uminit = zero_init;
1802	args.fini = NULL;
1803	args.keg = &masterkeg;
1804	args.align = 32 - 1;
1805	args.flags = UMA_ZFLAG_INTERNAL;
1806	/* The initial zone has no Per cpu queues so it's smaller */
1807	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1808
1809#ifdef UMA_DEBUG
1810	printf("Filling boot free list.\n");
1811#endif
1812	for (i = 0; i < boot_pages; i++) {
1813		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1814		slab->us_data = (uint8_t *)slab;
1815		slab->us_flags = UMA_SLAB_BOOT;
1816		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1817	}
1818	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1819
1820#ifdef UMA_DEBUG
1821	printf("Creating uma zone headers zone and keg.\n");
1822#endif
1823	args.name = "UMA Zones";
1824	args.size = sizeof(struct uma_zone) +
1825	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1826	args.ctor = zone_ctor;
1827	args.dtor = zone_dtor;
1828	args.uminit = zero_init;
1829	args.fini = NULL;
1830	args.keg = NULL;
1831	args.align = 32 - 1;
1832	args.flags = UMA_ZFLAG_INTERNAL;
1833	/* The initial zone has no Per cpu queues so it's smaller */
1834	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1835
1836#ifdef UMA_DEBUG
1837	printf("Initializing pcpu cache locks.\n");
1838#endif
1839#ifdef UMA_DEBUG
1840	printf("Creating slab and hash zones.\n");
1841#endif
1842
1843	/* Now make a zone for slab headers */
1844	slabzone = uma_zcreate("UMA Slabs",
1845				sizeof(struct uma_slab),
1846				NULL, NULL, NULL, NULL,
1847				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1848
1849	/*
1850	 * We also create a zone for the bigger slabs with reference
1851	 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1852	 */
1853	slabsize = sizeof(struct uma_slab_refcnt);
1854	slabsize += uma_max_ipers_ref * sizeof(uint32_t);
1855	slabrefzone = uma_zcreate("UMA RCntSlabs",
1856				  slabsize,
1857				  NULL, NULL, NULL, NULL,
1858				  UMA_ALIGN_PTR,
1859				  UMA_ZFLAG_INTERNAL);
1860
1861	hashzone = uma_zcreate("UMA Hash",
1862	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1863	    NULL, NULL, NULL, NULL,
1864	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1865
1866	bucket_init();
1867
1868	booted = UMA_STARTUP;
1869
1870#ifdef UMA_DEBUG
1871	printf("UMA startup complete.\n");
1872#endif
1873}
1874
1875/* see uma.h */
1876void
1877uma_startup2(void)
1878{
1879	booted = UMA_STARTUP2;
1880	bucket_enable();
1881	sx_init(&uma_drain_lock, "umadrain");
1882#ifdef UMA_DEBUG
1883	printf("UMA startup2 complete.\n");
1884#endif
1885}
1886
1887/*
1888 * Initialize our callout handle
1889 *
1890 */
1891
1892static void
1893uma_startup3(void)
1894{
1895#ifdef UMA_DEBUG
1896	printf("Starting callout.\n");
1897#endif
1898	callout_init(&uma_callout, 1);
1899	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1900#ifdef UMA_DEBUG
1901	printf("UMA startup3 complete.\n");
1902#endif
1903}
1904
1905static uma_keg_t
1906uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1907		int align, uint32_t flags)
1908{
1909	struct uma_kctor_args args;
1910
1911	args.size = size;
1912	args.uminit = uminit;
1913	args.fini = fini;
1914	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1915	args.flags = flags;
1916	args.zone = zone;
1917	return (zone_alloc_item(kegs, &args, M_WAITOK));
1918}
1919
1920/* See uma.h */
1921void
1922uma_set_align(int align)
1923{
1924
1925	if (align != UMA_ALIGN_CACHE)
1926		uma_align_cache = align;
1927}
1928
1929/* See uma.h */
1930uma_zone_t
1931uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1932		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1933
1934{
1935	struct uma_zctor_args args;
1936	uma_zone_t res;
1937	bool locked;
1938
1939	KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
1940	    align, name));
1941
1942	/* This stuff is essential for the zone ctor */
1943	memset(&args, 0, sizeof(args));
1944	args.name = name;
1945	args.size = size;
1946	args.ctor = ctor;
1947	args.dtor = dtor;
1948	args.uminit = uminit;
1949	args.fini = fini;
1950	args.align = align;
1951	args.flags = flags;
1952	args.keg = NULL;
1953
1954	if (booted < UMA_STARTUP2) {
1955		locked = false;
1956	} else {
1957		sx_slock(&uma_drain_lock);
1958		locked = true;
1959	}
1960	res = zone_alloc_item(zones, &args, M_WAITOK);
1961	if (locked)
1962		sx_sunlock(&uma_drain_lock);
1963	return (res);
1964}
1965
1966/* See uma.h */
1967uma_zone_t
1968uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1969		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1970{
1971	struct uma_zctor_args args;
1972	uma_keg_t keg;
1973	uma_zone_t res;
1974	bool locked;
1975
1976	keg = zone_first_keg(master);
1977	memset(&args, 0, sizeof(args));
1978	args.name = name;
1979	args.size = keg->uk_size;
1980	args.ctor = ctor;
1981	args.dtor = dtor;
1982	args.uminit = zinit;
1983	args.fini = zfini;
1984	args.align = keg->uk_align;
1985	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1986	args.keg = keg;
1987
1988	if (booted < UMA_STARTUP2) {
1989		locked = false;
1990	} else {
1991		sx_slock(&uma_drain_lock);
1992		locked = true;
1993	}
1994	/* XXX Attaches only one keg of potentially many. */
1995	res = zone_alloc_item(zones, &args, M_WAITOK);
1996	if (locked)
1997		sx_sunlock(&uma_drain_lock);
1998	return (res);
1999}
2000
2001/* See uma.h */
2002uma_zone_t
2003uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
2004		    uma_init zinit, uma_fini zfini, uma_import zimport,
2005		    uma_release zrelease, void *arg, int flags)
2006{
2007	struct uma_zctor_args args;
2008
2009	memset(&args, 0, sizeof(args));
2010	args.name = name;
2011	args.size = size;
2012	args.ctor = ctor;
2013	args.dtor = dtor;
2014	args.uminit = zinit;
2015	args.fini = zfini;
2016	args.import = zimport;
2017	args.release = zrelease;
2018	args.arg = arg;
2019	args.align = 0;
2020	args.flags = flags;
2021
2022	return (zone_alloc_item(zones, &args, M_WAITOK));
2023}
2024
2025static void
2026zone_lock_pair(uma_zone_t a, uma_zone_t b)
2027{
2028	if (a < b) {
2029		ZONE_LOCK(a);
2030		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
2031	} else {
2032		ZONE_LOCK(b);
2033		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2034	}
2035}
2036
2037static void
2038zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2039{
2040
2041	ZONE_UNLOCK(a);
2042	ZONE_UNLOCK(b);
2043}
2044
2045int
2046uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2047{
2048	uma_klink_t klink;
2049	uma_klink_t kl;
2050	int error;
2051
2052	error = 0;
2053	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2054
2055	zone_lock_pair(zone, master);
2056	/*
2057	 * zone must use vtoslab() to resolve objects and must already be
2058	 * a secondary.
2059	 */
2060	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2061	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2062		error = EINVAL;
2063		goto out;
2064	}
2065	/*
2066	 * The new master must also use vtoslab().
2067	 */
2068	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2069		error = EINVAL;
2070		goto out;
2071	}
2072	/*
2073	 * Both must either be refcnt, or not be refcnt.
2074	 */
2075	if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
2076	    (master->uz_flags & UMA_ZONE_REFCNT)) {
2077		error = EINVAL;
2078		goto out;
2079	}
2080	/*
2081	 * The underlying object must be the same size.  rsize
2082	 * may be different.
2083	 */
2084	if (master->uz_size != zone->uz_size) {
2085		error = E2BIG;
2086		goto out;
2087	}
2088	/*
2089	 * Put it at the end of the list.
2090	 */
2091	klink->kl_keg = zone_first_keg(master);
2092	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2093		if (LIST_NEXT(kl, kl_link) == NULL) {
2094			LIST_INSERT_AFTER(kl, klink, kl_link);
2095			break;
2096		}
2097	}
2098	klink = NULL;
2099	zone->uz_flags |= UMA_ZFLAG_MULTI;
2100	zone->uz_slab = zone_fetch_slab_multi;
2101
2102out:
2103	zone_unlock_pair(zone, master);
2104	if (klink != NULL)
2105		free(klink, M_TEMP);
2106
2107	return (error);
2108}
2109
2110
2111/* See uma.h */
2112void
2113uma_zdestroy(uma_zone_t zone)
2114{
2115
2116	sx_slock(&uma_drain_lock);
2117	zone_free_item(zones, zone, NULL, SKIP_NONE);
2118	sx_sunlock(&uma_drain_lock);
2119}
2120
2121/* See uma.h */
2122void *
2123uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2124{
2125	void *item;
2126	uma_cache_t cache;
2127	uma_bucket_t bucket;
2128	int lockfail;
2129	int cpu;
2130
2131	/* This is the fast path allocation */
2132#ifdef UMA_DEBUG_ALLOC_1
2133	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2134#endif
2135	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2136	    zone->uz_name, flags);
2137
2138	if (flags & M_WAITOK) {
2139		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2140		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2141	}
2142#ifdef DEBUG_MEMGUARD
2143	if (memguard_cmp_zone(zone)) {
2144		item = memguard_alloc(zone->uz_size, flags);
2145		if (item != NULL) {
2146			/*
2147			 * Avoid conflict with the use-after-free
2148			 * protecting infrastructure from INVARIANTS.
2149			 */
2150			if (zone->uz_init != NULL &&
2151			    zone->uz_init != mtrash_init &&
2152			    zone->uz_init(item, zone->uz_size, flags) != 0)
2153				return (NULL);
2154			if (zone->uz_ctor != NULL &&
2155			    zone->uz_ctor != mtrash_ctor &&
2156			    zone->uz_ctor(item, zone->uz_size, udata,
2157			    flags) != 0) {
2158			    	zone->uz_fini(item, zone->uz_size);
2159				return (NULL);
2160			}
2161			return (item);
2162		}
2163		/* This is unfortunate but should not be fatal. */
2164	}
2165#endif
2166	/*
2167	 * If possible, allocate from the per-CPU cache.  There are two
2168	 * requirements for safe access to the per-CPU cache: (1) the thread
2169	 * accessing the cache must not be preempted or yield during access,
2170	 * and (2) the thread must not migrate CPUs without switching which
2171	 * cache it accesses.  We rely on a critical section to prevent
2172	 * preemption and migration.  We release the critical section in
2173	 * order to acquire the zone mutex if we are unable to allocate from
2174	 * the current cache; when we re-acquire the critical section, we
2175	 * must detect and handle migration if it has occurred.
2176	 */
2177	critical_enter();
2178	cpu = curcpu;
2179	cache = &zone->uz_cpu[cpu];
2180
2181zalloc_start:
2182	bucket = cache->uc_allocbucket;
2183	if (bucket != NULL && bucket->ub_cnt > 0) {
2184		bucket->ub_cnt--;
2185		item = bucket->ub_bucket[bucket->ub_cnt];
2186#ifdef INVARIANTS
2187		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2188#endif
2189		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2190		cache->uc_allocs++;
2191		critical_exit();
2192		if (zone->uz_ctor != NULL &&
2193		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2194			atomic_add_long(&zone->uz_fails, 1);
2195			zone_free_item(zone, item, udata, SKIP_DTOR);
2196			return (NULL);
2197		}
2198#ifdef INVARIANTS
2199		uma_dbg_alloc(zone, NULL, item);
2200#endif
2201		if (flags & M_ZERO)
2202			uma_zero_item(item, zone);
2203		return (item);
2204	}
2205
2206	/*
2207	 * We have run out of items in our alloc bucket.
2208	 * See if we can switch with our free bucket.
2209	 */
2210	bucket = cache->uc_freebucket;
2211	if (bucket != NULL && bucket->ub_cnt > 0) {
2212#ifdef UMA_DEBUG_ALLOC
2213		printf("uma_zalloc: Swapping empty with alloc.\n");
2214#endif
2215		cache->uc_freebucket = cache->uc_allocbucket;
2216		cache->uc_allocbucket = bucket;
2217		goto zalloc_start;
2218	}
2219
2220	/*
2221	 * Discard any empty allocation bucket while we hold no locks.
2222	 */
2223	bucket = cache->uc_allocbucket;
2224	cache->uc_allocbucket = NULL;
2225	critical_exit();
2226	if (bucket != NULL)
2227		bucket_free(zone, bucket, udata);
2228
2229	/* Short-circuit for zones without buckets and low memory. */
2230	if (zone->uz_count == 0 || bucketdisable)
2231		goto zalloc_item;
2232
2233	/*
2234	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2235	 * we must go back to the zone.  This requires the zone lock, so we
2236	 * must drop the critical section, then re-acquire it when we go back
2237	 * to the cache.  Since the critical section is released, we may be
2238	 * preempted or migrate.  As such, make sure not to maintain any
2239	 * thread-local state specific to the cache from prior to releasing
2240	 * the critical section.
2241	 */
2242	lockfail = 0;
2243	if (ZONE_TRYLOCK(zone) == 0) {
2244		/* Record contention to size the buckets. */
2245		ZONE_LOCK(zone);
2246		lockfail = 1;
2247	}
2248	critical_enter();
2249	cpu = curcpu;
2250	cache = &zone->uz_cpu[cpu];
2251
2252	/*
2253	 * Since we have locked the zone we may as well send back our stats.
2254	 */
2255	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2256	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2257	cache->uc_allocs = 0;
2258	cache->uc_frees = 0;
2259
2260	/* See if we lost the race to fill the cache. */
2261	if (cache->uc_allocbucket != NULL) {
2262		ZONE_UNLOCK(zone);
2263		goto zalloc_start;
2264	}
2265
2266	/*
2267	 * Check the zone's cache of buckets.
2268	 */
2269	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2270		KASSERT(bucket->ub_cnt != 0,
2271		    ("uma_zalloc_arg: Returning an empty bucket."));
2272
2273		LIST_REMOVE(bucket, ub_link);
2274		cache->uc_allocbucket = bucket;
2275		ZONE_UNLOCK(zone);
2276		goto zalloc_start;
2277	}
2278	/* We are no longer associated with this CPU. */
2279	critical_exit();
2280
2281	/*
2282	 * We bump the uz count when the cache size is insufficient to
2283	 * handle the working set.
2284	 */
2285	if (lockfail && zone->uz_count < BUCKET_MAX)
2286		zone->uz_count++;
2287	ZONE_UNLOCK(zone);
2288
2289	/*
2290	 * Now lets just fill a bucket and put it on the free list.  If that
2291	 * works we'll restart the allocation from the begining and it
2292	 * will use the just filled bucket.
2293	 */
2294	bucket = zone_alloc_bucket(zone, udata, flags);
2295	if (bucket != NULL) {
2296		ZONE_LOCK(zone);
2297		critical_enter();
2298		cpu = curcpu;
2299		cache = &zone->uz_cpu[cpu];
2300		/*
2301		 * See if we lost the race or were migrated.  Cache the
2302		 * initialized bucket to make this less likely or claim
2303		 * the memory directly.
2304		 */
2305		if (cache->uc_allocbucket == NULL)
2306			cache->uc_allocbucket = bucket;
2307		else
2308			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2309		ZONE_UNLOCK(zone);
2310		goto zalloc_start;
2311	}
2312
2313	/*
2314	 * We may not be able to get a bucket so return an actual item.
2315	 */
2316#ifdef UMA_DEBUG
2317	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2318#endif
2319
2320zalloc_item:
2321	item = zone_alloc_item(zone, udata, flags);
2322
2323	return (item);
2324}
2325
2326static uma_slab_t
2327keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2328{
2329	uma_slab_t slab;
2330	int reserve;
2331
2332	mtx_assert(&keg->uk_lock, MA_OWNED);
2333	slab = NULL;
2334	reserve = 0;
2335	if ((flags & M_USE_RESERVE) == 0)
2336		reserve = keg->uk_reserve;
2337
2338	for (;;) {
2339		/*
2340		 * Find a slab with some space.  Prefer slabs that are partially
2341		 * used over those that are totally full.  This helps to reduce
2342		 * fragmentation.
2343		 */
2344		if (keg->uk_free > reserve) {
2345			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2346				slab = LIST_FIRST(&keg->uk_part_slab);
2347			} else {
2348				slab = LIST_FIRST(&keg->uk_free_slab);
2349				LIST_REMOVE(slab, us_link);
2350				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2351				    us_link);
2352			}
2353			MPASS(slab->us_keg == keg);
2354			return (slab);
2355		}
2356
2357		/*
2358		 * M_NOVM means don't ask at all!
2359		 */
2360		if (flags & M_NOVM)
2361			break;
2362
2363		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2364			keg->uk_flags |= UMA_ZFLAG_FULL;
2365			/*
2366			 * If this is not a multi-zone, set the FULL bit.
2367			 * Otherwise slab_multi() takes care of it.
2368			 */
2369			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2370				zone->uz_flags |= UMA_ZFLAG_FULL;
2371				zone_log_warning(zone);
2372			}
2373			if (flags & M_NOWAIT)
2374				break;
2375			zone->uz_sleeps++;
2376			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2377			continue;
2378		}
2379		slab = keg_alloc_slab(keg, zone, flags);
2380		/*
2381		 * If we got a slab here it's safe to mark it partially used
2382		 * and return.  We assume that the caller is going to remove
2383		 * at least one item.
2384		 */
2385		if (slab) {
2386			MPASS(slab->us_keg == keg);
2387			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2388			return (slab);
2389		}
2390		/*
2391		 * We might not have been able to get a slab but another cpu
2392		 * could have while we were unlocked.  Check again before we
2393		 * fail.
2394		 */
2395		flags |= M_NOVM;
2396	}
2397	return (slab);
2398}
2399
2400static uma_slab_t
2401zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2402{
2403	uma_slab_t slab;
2404
2405	if (keg == NULL) {
2406		keg = zone_first_keg(zone);
2407		KEG_LOCK(keg);
2408	}
2409
2410	for (;;) {
2411		slab = keg_fetch_slab(keg, zone, flags);
2412		if (slab)
2413			return (slab);
2414		if (flags & (M_NOWAIT | M_NOVM))
2415			break;
2416	}
2417	KEG_UNLOCK(keg);
2418	return (NULL);
2419}
2420
2421/*
2422 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2423 * with the keg locked.  On NULL no lock is held.
2424 *
2425 * The last pointer is used to seed the search.  It is not required.
2426 */
2427static uma_slab_t
2428zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2429{
2430	uma_klink_t klink;
2431	uma_slab_t slab;
2432	uma_keg_t keg;
2433	int flags;
2434	int empty;
2435	int full;
2436
2437	/*
2438	 * Don't wait on the first pass.  This will skip limit tests
2439	 * as well.  We don't want to block if we can find a provider
2440	 * without blocking.
2441	 */
2442	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2443	/*
2444	 * Use the last slab allocated as a hint for where to start
2445	 * the search.
2446	 */
2447	if (last != NULL) {
2448		slab = keg_fetch_slab(last, zone, flags);
2449		if (slab)
2450			return (slab);
2451		KEG_UNLOCK(last);
2452	}
2453	/*
2454	 * Loop until we have a slab incase of transient failures
2455	 * while M_WAITOK is specified.  I'm not sure this is 100%
2456	 * required but we've done it for so long now.
2457	 */
2458	for (;;) {
2459		empty = 0;
2460		full = 0;
2461		/*
2462		 * Search the available kegs for slabs.  Be careful to hold the
2463		 * correct lock while calling into the keg layer.
2464		 */
2465		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2466			keg = klink->kl_keg;
2467			KEG_LOCK(keg);
2468			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2469				slab = keg_fetch_slab(keg, zone, flags);
2470				if (slab)
2471					return (slab);
2472			}
2473			if (keg->uk_flags & UMA_ZFLAG_FULL)
2474				full++;
2475			else
2476				empty++;
2477			KEG_UNLOCK(keg);
2478		}
2479		if (rflags & (M_NOWAIT | M_NOVM))
2480			break;
2481		flags = rflags;
2482		/*
2483		 * All kegs are full.  XXX We can't atomically check all kegs
2484		 * and sleep so just sleep for a short period and retry.
2485		 */
2486		if (full && !empty) {
2487			ZONE_LOCK(zone);
2488			zone->uz_flags |= UMA_ZFLAG_FULL;
2489			zone->uz_sleeps++;
2490			zone_log_warning(zone);
2491			msleep(zone, zone->uz_lockptr, PVM,
2492			    "zonelimit", hz/100);
2493			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2494			ZONE_UNLOCK(zone);
2495			continue;
2496		}
2497	}
2498	return (NULL);
2499}
2500
2501static void *
2502slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2503{
2504	void *item;
2505	uint8_t freei;
2506
2507	MPASS(keg == slab->us_keg);
2508	mtx_assert(&keg->uk_lock, MA_OWNED);
2509
2510	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2511	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2512	item = slab->us_data + (keg->uk_rsize * freei);
2513	slab->us_freecount--;
2514	keg->uk_free--;
2515
2516	/* Move this slab to the full list */
2517	if (slab->us_freecount == 0) {
2518		LIST_REMOVE(slab, us_link);
2519		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2520	}
2521
2522	return (item);
2523}
2524
2525static int
2526zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2527{
2528	uma_slab_t slab;
2529	uma_keg_t keg;
2530	int i;
2531
2532	slab = NULL;
2533	keg = NULL;
2534	/* Try to keep the buckets totally full */
2535	for (i = 0; i < max; ) {
2536		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2537			break;
2538		keg = slab->us_keg;
2539		while (slab->us_freecount && i < max) {
2540			bucket[i++] = slab_alloc_item(keg, slab);
2541			if (keg->uk_free <= keg->uk_reserve)
2542				break;
2543		}
2544		/* Don't grab more than one slab at a time. */
2545		flags &= ~M_WAITOK;
2546		flags |= M_NOWAIT;
2547	}
2548	if (slab != NULL)
2549		KEG_UNLOCK(keg);
2550
2551	return i;
2552}
2553
2554static uma_bucket_t
2555zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2556{
2557	uma_bucket_t bucket;
2558	int max;
2559
2560	/* Don't wait for buckets, preserve caller's NOVM setting. */
2561	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2562	if (bucket == NULL)
2563		return (NULL);
2564
2565	max = MIN(bucket->ub_entries, zone->uz_count);
2566	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2567	    max, flags);
2568
2569	/*
2570	 * Initialize the memory if necessary.
2571	 */
2572	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2573		int i;
2574
2575		for (i = 0; i < bucket->ub_cnt; i++)
2576			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2577			    flags) != 0)
2578				break;
2579		/*
2580		 * If we couldn't initialize the whole bucket, put the
2581		 * rest back onto the freelist.
2582		 */
2583		if (i != bucket->ub_cnt) {
2584			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2585			    bucket->ub_cnt - i);
2586#ifdef INVARIANTS
2587			bzero(&bucket->ub_bucket[i],
2588			    sizeof(void *) * (bucket->ub_cnt - i));
2589#endif
2590			bucket->ub_cnt = i;
2591		}
2592	}
2593
2594	if (bucket->ub_cnt == 0) {
2595		bucket_free(zone, bucket, udata);
2596		atomic_add_long(&zone->uz_fails, 1);
2597		return (NULL);
2598	}
2599
2600	return (bucket);
2601}
2602
2603/*
2604 * Allocates a single item from a zone.
2605 *
2606 * Arguments
2607 *	zone   The zone to alloc for.
2608 *	udata  The data to be passed to the constructor.
2609 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2610 *
2611 * Returns
2612 *	NULL if there is no memory and M_NOWAIT is set
2613 *	An item if successful
2614 */
2615
2616static void *
2617zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2618{
2619	void *item;
2620
2621	item = NULL;
2622
2623#ifdef UMA_DEBUG_ALLOC
2624	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2625#endif
2626	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2627		goto fail;
2628	atomic_add_long(&zone->uz_allocs, 1);
2629
2630	/*
2631	 * We have to call both the zone's init (not the keg's init)
2632	 * and the zone's ctor.  This is because the item is going from
2633	 * a keg slab directly to the user, and the user is expecting it
2634	 * to be both zone-init'd as well as zone-ctor'd.
2635	 */
2636	if (zone->uz_init != NULL) {
2637		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2638			zone_free_item(zone, item, udata, SKIP_FINI);
2639			goto fail;
2640		}
2641	}
2642	if (zone->uz_ctor != NULL) {
2643		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2644			zone_free_item(zone, item, udata, SKIP_DTOR);
2645			goto fail;
2646		}
2647	}
2648#ifdef INVARIANTS
2649	uma_dbg_alloc(zone, NULL, item);
2650#endif
2651	if (flags & M_ZERO)
2652		uma_zero_item(item, zone);
2653
2654	return (item);
2655
2656fail:
2657	atomic_add_long(&zone->uz_fails, 1);
2658	return (NULL);
2659}
2660
2661/* See uma.h */
2662void
2663uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2664{
2665	uma_cache_t cache;
2666	uma_bucket_t bucket;
2667	int lockfail;
2668	int cpu;
2669
2670#ifdef UMA_DEBUG_ALLOC_1
2671	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2672#endif
2673	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2674	    zone->uz_name);
2675
2676        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2677        if (item == NULL)
2678                return;
2679#ifdef DEBUG_MEMGUARD
2680	if (is_memguard_addr(item)) {
2681		if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor)
2682			zone->uz_dtor(item, zone->uz_size, udata);
2683		if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini)
2684			zone->uz_fini(item, zone->uz_size);
2685		memguard_free(item);
2686		return;
2687	}
2688#endif
2689#ifdef INVARIANTS
2690	if (zone->uz_flags & UMA_ZONE_MALLOC)
2691		uma_dbg_free(zone, udata, item);
2692	else
2693		uma_dbg_free(zone, NULL, item);
2694#endif
2695	if (zone->uz_dtor != NULL)
2696		zone->uz_dtor(item, zone->uz_size, udata);
2697
2698	/*
2699	 * The race here is acceptable.  If we miss it we'll just have to wait
2700	 * a little longer for the limits to be reset.
2701	 */
2702	if (zone->uz_flags & UMA_ZFLAG_FULL)
2703		goto zfree_item;
2704
2705	/*
2706	 * If possible, free to the per-CPU cache.  There are two
2707	 * requirements for safe access to the per-CPU cache: (1) the thread
2708	 * accessing the cache must not be preempted or yield during access,
2709	 * and (2) the thread must not migrate CPUs without switching which
2710	 * cache it accesses.  We rely on a critical section to prevent
2711	 * preemption and migration.  We release the critical section in
2712	 * order to acquire the zone mutex if we are unable to free to the
2713	 * current cache; when we re-acquire the critical section, we must
2714	 * detect and handle migration if it has occurred.
2715	 */
2716zfree_restart:
2717	critical_enter();
2718	cpu = curcpu;
2719	cache = &zone->uz_cpu[cpu];
2720
2721zfree_start:
2722	/*
2723	 * Try to free into the allocbucket first to give LIFO ordering
2724	 * for cache-hot datastructures.  Spill over into the freebucket
2725	 * if necessary.  Alloc will swap them if one runs dry.
2726	 */
2727	bucket = cache->uc_allocbucket;
2728	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2729		bucket = cache->uc_freebucket;
2730	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2731		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2732		    ("uma_zfree: Freeing to non free bucket index."));
2733		bucket->ub_bucket[bucket->ub_cnt] = item;
2734		bucket->ub_cnt++;
2735		cache->uc_frees++;
2736		critical_exit();
2737		return;
2738	}
2739
2740	/*
2741	 * We must go back the zone, which requires acquiring the zone lock,
2742	 * which in turn means we must release and re-acquire the critical
2743	 * section.  Since the critical section is released, we may be
2744	 * preempted or migrate.  As such, make sure not to maintain any
2745	 * thread-local state specific to the cache from prior to releasing
2746	 * the critical section.
2747	 */
2748	critical_exit();
2749	if (zone->uz_count == 0 || bucketdisable)
2750		goto zfree_item;
2751
2752	lockfail = 0;
2753	if (ZONE_TRYLOCK(zone) == 0) {
2754		/* Record contention to size the buckets. */
2755		ZONE_LOCK(zone);
2756		lockfail = 1;
2757	}
2758	critical_enter();
2759	cpu = curcpu;
2760	cache = &zone->uz_cpu[cpu];
2761
2762	/*
2763	 * Since we have locked the zone we may as well send back our stats.
2764	 */
2765	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2766	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2767	cache->uc_allocs = 0;
2768	cache->uc_frees = 0;
2769
2770	bucket = cache->uc_freebucket;
2771	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2772		ZONE_UNLOCK(zone);
2773		goto zfree_start;
2774	}
2775	cache->uc_freebucket = NULL;
2776	/* We are no longer associated with this CPU. */
2777	critical_exit();
2778
2779	/* Can we throw this on the zone full list? */
2780	if (bucket != NULL) {
2781#ifdef UMA_DEBUG_ALLOC
2782		printf("uma_zfree: Putting old bucket on the free list.\n");
2783#endif
2784		/* ub_cnt is pointing to the last free item */
2785		KASSERT(bucket->ub_cnt != 0,
2786		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2787		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2788	}
2789
2790	/*
2791	 * We bump the uz count when the cache size is insufficient to
2792	 * handle the working set.
2793	 */
2794	if (lockfail && zone->uz_count < BUCKET_MAX)
2795		zone->uz_count++;
2796	ZONE_UNLOCK(zone);
2797
2798#ifdef UMA_DEBUG_ALLOC
2799	printf("uma_zfree: Allocating new free bucket.\n");
2800#endif
2801	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2802	if (bucket) {
2803		critical_enter();
2804		cpu = curcpu;
2805		cache = &zone->uz_cpu[cpu];
2806		if (cache->uc_freebucket == NULL) {
2807			cache->uc_freebucket = bucket;
2808			goto zfree_start;
2809		}
2810		/*
2811		 * We lost the race, start over.  We have to drop our
2812		 * critical section to free the bucket.
2813		 */
2814		critical_exit();
2815		bucket_free(zone, bucket, udata);
2816		goto zfree_restart;
2817	}
2818
2819	/*
2820	 * If nothing else caught this, we'll just do an internal free.
2821	 */
2822zfree_item:
2823	zone_free_item(zone, item, udata, SKIP_DTOR);
2824
2825	return;
2826}
2827
2828static void
2829slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2830{
2831	uint8_t freei;
2832
2833	mtx_assert(&keg->uk_lock, MA_OWNED);
2834	MPASS(keg == slab->us_keg);
2835
2836	/* Do we need to remove from any lists? */
2837	if (slab->us_freecount+1 == keg->uk_ipers) {
2838		LIST_REMOVE(slab, us_link);
2839		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2840	} else if (slab->us_freecount == 0) {
2841		LIST_REMOVE(slab, us_link);
2842		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2843	}
2844
2845	/* Slab management. */
2846	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2847	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2848	slab->us_freecount++;
2849
2850	/* Keg statistics. */
2851	keg->uk_free++;
2852}
2853
2854static void
2855zone_release(uma_zone_t zone, void **bucket, int cnt)
2856{
2857	void *item;
2858	uma_slab_t slab;
2859	uma_keg_t keg;
2860	uint8_t *mem;
2861	int clearfull;
2862	int i;
2863
2864	clearfull = 0;
2865	keg = zone_first_keg(zone);
2866	KEG_LOCK(keg);
2867	for (i = 0; i < cnt; i++) {
2868		item = bucket[i];
2869		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2870			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2871			if (zone->uz_flags & UMA_ZONE_HASH) {
2872				slab = hash_sfind(&keg->uk_hash, mem);
2873			} else {
2874				mem += keg->uk_pgoff;
2875				slab = (uma_slab_t)mem;
2876			}
2877		} else {
2878			slab = vtoslab((vm_offset_t)item);
2879			if (slab->us_keg != keg) {
2880				KEG_UNLOCK(keg);
2881				keg = slab->us_keg;
2882				KEG_LOCK(keg);
2883			}
2884		}
2885		slab_free_item(keg, slab, item);
2886		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2887			if (keg->uk_pages < keg->uk_maxpages) {
2888				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2889				clearfull = 1;
2890			}
2891
2892			/*
2893			 * We can handle one more allocation. Since we're
2894			 * clearing ZFLAG_FULL, wake up all procs blocked
2895			 * on pages. This should be uncommon, so keeping this
2896			 * simple for now (rather than adding count of blocked
2897			 * threads etc).
2898			 */
2899			wakeup(keg);
2900		}
2901	}
2902	KEG_UNLOCK(keg);
2903	if (clearfull) {
2904		ZONE_LOCK(zone);
2905		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2906		wakeup(zone);
2907		ZONE_UNLOCK(zone);
2908	}
2909
2910}
2911
2912/*
2913 * Frees a single item to any zone.
2914 *
2915 * Arguments:
2916 *	zone   The zone to free to
2917 *	item   The item we're freeing
2918 *	udata  User supplied data for the dtor
2919 *	skip   Skip dtors and finis
2920 */
2921static void
2922zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2923{
2924
2925#ifdef INVARIANTS
2926	if (skip == SKIP_NONE) {
2927		if (zone->uz_flags & UMA_ZONE_MALLOC)
2928			uma_dbg_free(zone, udata, item);
2929		else
2930			uma_dbg_free(zone, NULL, item);
2931	}
2932#endif
2933	if (skip < SKIP_DTOR && zone->uz_dtor)
2934		zone->uz_dtor(item, zone->uz_size, udata);
2935
2936	if (skip < SKIP_FINI && zone->uz_fini)
2937		zone->uz_fini(item, zone->uz_size);
2938
2939	atomic_add_long(&zone->uz_frees, 1);
2940	zone->uz_release(zone->uz_arg, &item, 1);
2941}
2942
2943/* See uma.h */
2944int
2945uma_zone_set_max(uma_zone_t zone, int nitems)
2946{
2947	uma_keg_t keg;
2948
2949	keg = zone_first_keg(zone);
2950	if (keg == NULL)
2951		return (0);
2952	KEG_LOCK(keg);
2953	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2954	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2955		keg->uk_maxpages += keg->uk_ppera;
2956	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2957	KEG_UNLOCK(keg);
2958
2959	return (nitems);
2960}
2961
2962/* See uma.h */
2963int
2964uma_zone_get_max(uma_zone_t zone)
2965{
2966	int nitems;
2967	uma_keg_t keg;
2968
2969	keg = zone_first_keg(zone);
2970	if (keg == NULL)
2971		return (0);
2972	KEG_LOCK(keg);
2973	nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2974	KEG_UNLOCK(keg);
2975
2976	return (nitems);
2977}
2978
2979/* See uma.h */
2980void
2981uma_zone_set_warning(uma_zone_t zone, const char *warning)
2982{
2983
2984	ZONE_LOCK(zone);
2985	zone->uz_warning = warning;
2986	ZONE_UNLOCK(zone);
2987}
2988
2989/* See uma.h */
2990int
2991uma_zone_get_cur(uma_zone_t zone)
2992{
2993	int64_t nitems;
2994	u_int i;
2995
2996	ZONE_LOCK(zone);
2997	nitems = zone->uz_allocs - zone->uz_frees;
2998	CPU_FOREACH(i) {
2999		/*
3000		 * See the comment in sysctl_vm_zone_stats() regarding the
3001		 * safety of accessing the per-cpu caches. With the zone lock
3002		 * held, it is safe, but can potentially result in stale data.
3003		 */
3004		nitems += zone->uz_cpu[i].uc_allocs -
3005		    zone->uz_cpu[i].uc_frees;
3006	}
3007	ZONE_UNLOCK(zone);
3008
3009	return (nitems < 0 ? 0 : nitems);
3010}
3011
3012/* See uma.h */
3013void
3014uma_zone_set_init(uma_zone_t zone, uma_init uminit)
3015{
3016	uma_keg_t keg;
3017
3018	keg = zone_first_keg(zone);
3019	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3020	KEG_LOCK(keg);
3021	KASSERT(keg->uk_pages == 0,
3022	    ("uma_zone_set_init on non-empty keg"));
3023	keg->uk_init = uminit;
3024	KEG_UNLOCK(keg);
3025}
3026
3027/* See uma.h */
3028void
3029uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3030{
3031	uma_keg_t keg;
3032
3033	keg = zone_first_keg(zone);
3034	KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type"));
3035	KEG_LOCK(keg);
3036	KASSERT(keg->uk_pages == 0,
3037	    ("uma_zone_set_fini on non-empty keg"));
3038	keg->uk_fini = fini;
3039	KEG_UNLOCK(keg);
3040}
3041
3042/* See uma.h */
3043void
3044uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3045{
3046
3047	ZONE_LOCK(zone);
3048	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3049	    ("uma_zone_set_zinit on non-empty keg"));
3050	zone->uz_init = zinit;
3051	ZONE_UNLOCK(zone);
3052}
3053
3054/* See uma.h */
3055void
3056uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3057{
3058
3059	ZONE_LOCK(zone);
3060	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3061	    ("uma_zone_set_zfini on non-empty keg"));
3062	zone->uz_fini = zfini;
3063	ZONE_UNLOCK(zone);
3064}
3065
3066/* See uma.h */
3067/* XXX uk_freef is not actually used with the zone locked */
3068void
3069uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3070{
3071	uma_keg_t keg;
3072
3073	keg = zone_first_keg(zone);
3074	KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type"));
3075	KEG_LOCK(keg);
3076	keg->uk_freef = freef;
3077	KEG_UNLOCK(keg);
3078}
3079
3080/* See uma.h */
3081/* XXX uk_allocf is not actually used with the zone locked */
3082void
3083uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3084{
3085	uma_keg_t keg;
3086
3087	keg = zone_first_keg(zone);
3088	KEG_LOCK(keg);
3089	keg->uk_allocf = allocf;
3090	KEG_UNLOCK(keg);
3091}
3092
3093/* See uma.h */
3094void
3095uma_zone_reserve(uma_zone_t zone, int items)
3096{
3097	uma_keg_t keg;
3098
3099	keg = zone_first_keg(zone);
3100	if (keg == NULL)
3101		return;
3102	KEG_LOCK(keg);
3103	keg->uk_reserve = items;
3104	KEG_UNLOCK(keg);
3105
3106	return;
3107}
3108
3109/* See uma.h */
3110int
3111uma_zone_reserve_kva(uma_zone_t zone, int count)
3112{
3113	uma_keg_t keg;
3114	vm_offset_t kva;
3115	u_int pages;
3116
3117	keg = zone_first_keg(zone);
3118	if (keg == NULL)
3119		return (0);
3120	pages = count / keg->uk_ipers;
3121
3122	if (pages * keg->uk_ipers < count)
3123		pages++;
3124	pages *= keg->uk_ppera;
3125
3126#ifdef UMA_MD_SMALL_ALLOC
3127	if (keg->uk_ppera > 1) {
3128#else
3129	if (1) {
3130#endif
3131		kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
3132		if (kva == 0)
3133			return (0);
3134	} else
3135		kva = 0;
3136	KEG_LOCK(keg);
3137	keg->uk_kva = kva;
3138	keg->uk_offset = 0;
3139	keg->uk_maxpages = pages;
3140#ifdef UMA_MD_SMALL_ALLOC
3141	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3142#else
3143	keg->uk_allocf = noobj_alloc;
3144#endif
3145	keg->uk_flags |= UMA_ZONE_NOFREE;
3146	KEG_UNLOCK(keg);
3147
3148	return (1);
3149}
3150
3151/* See uma.h */
3152void
3153uma_prealloc(uma_zone_t zone, int items)
3154{
3155	int slabs;
3156	uma_slab_t slab;
3157	uma_keg_t keg;
3158
3159	keg = zone_first_keg(zone);
3160	if (keg == NULL)
3161		return;
3162	KEG_LOCK(keg);
3163	slabs = items / keg->uk_ipers;
3164	if (slabs * keg->uk_ipers < items)
3165		slabs++;
3166	while (slabs > 0) {
3167		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3168		if (slab == NULL)
3169			break;
3170		MPASS(slab->us_keg == keg);
3171		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3172		slabs--;
3173	}
3174	KEG_UNLOCK(keg);
3175}
3176
3177/* See uma.h */
3178uint32_t *
3179uma_find_refcnt(uma_zone_t zone, void *item)
3180{
3181	uma_slabrefcnt_t slabref;
3182	uma_slab_t slab;
3183	uma_keg_t keg;
3184	uint32_t *refcnt;
3185	int idx;
3186
3187	slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK));
3188	slabref = (uma_slabrefcnt_t)slab;
3189	keg = slab->us_keg;
3190	KASSERT(keg->uk_flags & UMA_ZONE_REFCNT,
3191	    ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
3192	idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3193	refcnt = &slabref->us_refcnt[idx];
3194	return refcnt;
3195}
3196
3197/* See uma.h */
3198static void
3199uma_reclaim_locked(bool kmem_danger)
3200{
3201
3202#ifdef UMA_DEBUG
3203	printf("UMA: vm asked us to release pages!\n");
3204#endif
3205	sx_assert(&uma_drain_lock, SA_XLOCKED);
3206	bucket_enable();
3207	zone_foreach(zone_drain);
3208	if (vm_page_count_min() || kmem_danger) {
3209		cache_drain_safe(NULL);
3210		zone_foreach(zone_drain);
3211	}
3212	/*
3213	 * Some slabs may have been freed but this zone will be visited early
3214	 * we visit again so that we can free pages that are empty once other
3215	 * zones are drained.  We have to do the same for buckets.
3216	 */
3217	zone_drain(slabzone);
3218	zone_drain(slabrefzone);
3219	bucket_zone_drain();
3220}
3221
3222void
3223uma_reclaim(void)
3224{
3225
3226	sx_xlock(&uma_drain_lock);
3227	uma_reclaim_locked(false);
3228	sx_xunlock(&uma_drain_lock);
3229}
3230
3231static int uma_reclaim_needed;
3232
3233void
3234uma_reclaim_wakeup(void)
3235{
3236
3237	uma_reclaim_needed = 1;
3238	wakeup(&uma_reclaim_needed);
3239}
3240
3241void
3242uma_reclaim_worker(void *arg __unused)
3243{
3244
3245	sx_xlock(&uma_drain_lock);
3246	for (;;) {
3247		sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM,
3248		    "umarcl", 0);
3249		if (uma_reclaim_needed) {
3250			uma_reclaim_needed = 0;
3251			sx_xunlock(&uma_drain_lock);
3252			EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
3253			sx_xlock(&uma_drain_lock);
3254			uma_reclaim_locked(true);
3255		}
3256	}
3257}
3258
3259/* See uma.h */
3260int
3261uma_zone_exhausted(uma_zone_t zone)
3262{
3263	int full;
3264
3265	ZONE_LOCK(zone);
3266	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3267	ZONE_UNLOCK(zone);
3268	return (full);
3269}
3270
3271int
3272uma_zone_exhausted_nolock(uma_zone_t zone)
3273{
3274	return (zone->uz_flags & UMA_ZFLAG_FULL);
3275}
3276
3277void *
3278uma_large_malloc(vm_size_t size, int wait)
3279{
3280	void *mem;
3281	uma_slab_t slab;
3282	uint8_t flags;
3283
3284	slab = zone_alloc_item(slabzone, NULL, wait);
3285	if (slab == NULL)
3286		return (NULL);
3287	mem = page_alloc(NULL, size, &flags, wait);
3288	if (mem) {
3289		vsetslab((vm_offset_t)mem, slab);
3290		slab->us_data = mem;
3291		slab->us_flags = flags | UMA_SLAB_MALLOC;
3292		slab->us_size = size;
3293	} else {
3294		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3295	}
3296
3297	return (mem);
3298}
3299
3300void
3301uma_large_free(uma_slab_t slab)
3302{
3303
3304	page_free(slab->us_data, slab->us_size, slab->us_flags);
3305	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3306}
3307
3308static void
3309uma_zero_item(void *item, uma_zone_t zone)
3310{
3311
3312	if (zone->uz_flags & UMA_ZONE_PCPU) {
3313		for (int i = 0; i < mp_ncpus; i++)
3314			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
3315	} else
3316		bzero(item, zone->uz_size);
3317}
3318
3319void
3320uma_print_stats(void)
3321{
3322	zone_foreach(uma_print_zone);
3323}
3324
3325static void
3326slab_print(uma_slab_t slab)
3327{
3328	printf("slab: keg %p, data %p, freecount %d\n",
3329		slab->us_keg, slab->us_data, slab->us_freecount);
3330}
3331
3332static void
3333cache_print(uma_cache_t cache)
3334{
3335	printf("alloc: %p(%d), free: %p(%d)\n",
3336		cache->uc_allocbucket,
3337		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3338		cache->uc_freebucket,
3339		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3340}
3341
3342static void
3343uma_print_keg(uma_keg_t keg)
3344{
3345	uma_slab_t slab;
3346
3347	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3348	    "out %d free %d limit %d\n",
3349	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3350	    keg->uk_ipers, keg->uk_ppera,
3351	    (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
3352	    keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3353	printf("Part slabs:\n");
3354	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3355		slab_print(slab);
3356	printf("Free slabs:\n");
3357	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3358		slab_print(slab);
3359	printf("Full slabs:\n");
3360	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3361		slab_print(slab);
3362}
3363
3364void
3365uma_print_zone(uma_zone_t zone)
3366{
3367	uma_cache_t cache;
3368	uma_klink_t kl;
3369	int i;
3370
3371	printf("zone: %s(%p) size %d flags %#x\n",
3372	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3373	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3374		uma_print_keg(kl->kl_keg);
3375	CPU_FOREACH(i) {
3376		cache = &zone->uz_cpu[i];
3377		printf("CPU %d Cache:\n", i);
3378		cache_print(cache);
3379	}
3380}
3381
3382#ifdef DDB
3383/*
3384 * Generate statistics across both the zone and its per-cpu cache's.  Return
3385 * desired statistics if the pointer is non-NULL for that statistic.
3386 *
3387 * Note: does not update the zone statistics, as it can't safely clear the
3388 * per-CPU cache statistic.
3389 *
3390 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3391 * safe from off-CPU; we should modify the caches to track this information
3392 * directly so that we don't have to.
3393 */
3394static void
3395uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3396    uint64_t *freesp, uint64_t *sleepsp)
3397{
3398	uma_cache_t cache;
3399	uint64_t allocs, frees, sleeps;
3400	int cachefree, cpu;
3401
3402	allocs = frees = sleeps = 0;
3403	cachefree = 0;
3404	CPU_FOREACH(cpu) {
3405		cache = &z->uz_cpu[cpu];
3406		if (cache->uc_allocbucket != NULL)
3407			cachefree += cache->uc_allocbucket->ub_cnt;
3408		if (cache->uc_freebucket != NULL)
3409			cachefree += cache->uc_freebucket->ub_cnt;
3410		allocs += cache->uc_allocs;
3411		frees += cache->uc_frees;
3412	}
3413	allocs += z->uz_allocs;
3414	frees += z->uz_frees;
3415	sleeps += z->uz_sleeps;
3416	if (cachefreep != NULL)
3417		*cachefreep = cachefree;
3418	if (allocsp != NULL)
3419		*allocsp = allocs;
3420	if (freesp != NULL)
3421		*freesp = frees;
3422	if (sleepsp != NULL)
3423		*sleepsp = sleeps;
3424}
3425#endif /* DDB */
3426
3427static int
3428sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3429{
3430	uma_keg_t kz;
3431	uma_zone_t z;
3432	int count;
3433
3434	count = 0;
3435	rw_rlock(&uma_rwlock);
3436	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3437		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3438			count++;
3439	}
3440	rw_runlock(&uma_rwlock);
3441	return (sysctl_handle_int(oidp, &count, 0, req));
3442}
3443
3444static int
3445sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3446{
3447	struct uma_stream_header ush;
3448	struct uma_type_header uth;
3449	struct uma_percpu_stat ups;
3450	uma_bucket_t bucket;
3451	struct sbuf sbuf;
3452	uma_cache_t cache;
3453	uma_klink_t kl;
3454	uma_keg_t kz;
3455	uma_zone_t z;
3456	uma_keg_t k;
3457	int count, error, i;
3458
3459	error = sysctl_wire_old_buffer(req, 0);
3460	if (error != 0)
3461		return (error);
3462	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3463
3464	count = 0;
3465	rw_rlock(&uma_rwlock);
3466	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3467		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3468			count++;
3469	}
3470
3471	/*
3472	 * Insert stream header.
3473	 */
3474	bzero(&ush, sizeof(ush));
3475	ush.ush_version = UMA_STREAM_VERSION;
3476	ush.ush_maxcpus = (mp_maxid + 1);
3477	ush.ush_count = count;
3478	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3479
3480	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3481		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3482			bzero(&uth, sizeof(uth));
3483			ZONE_LOCK(z);
3484			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3485			uth.uth_align = kz->uk_align;
3486			uth.uth_size = kz->uk_size;
3487			uth.uth_rsize = kz->uk_rsize;
3488			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3489				k = kl->kl_keg;
3490				uth.uth_maxpages += k->uk_maxpages;
3491				uth.uth_pages += k->uk_pages;
3492				uth.uth_keg_free += k->uk_free;
3493				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3494				    * k->uk_ipers;
3495			}
3496
3497			/*
3498			 * A zone is secondary is it is not the first entry
3499			 * on the keg's zone list.
3500			 */
3501			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3502			    (LIST_FIRST(&kz->uk_zones) != z))
3503				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3504
3505			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3506				uth.uth_zone_free += bucket->ub_cnt;
3507			uth.uth_allocs = z->uz_allocs;
3508			uth.uth_frees = z->uz_frees;
3509			uth.uth_fails = z->uz_fails;
3510			uth.uth_sleeps = z->uz_sleeps;
3511			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3512			/*
3513			 * While it is not normally safe to access the cache
3514			 * bucket pointers while not on the CPU that owns the
3515			 * cache, we only allow the pointers to be exchanged
3516			 * without the zone lock held, not invalidated, so
3517			 * accept the possible race associated with bucket
3518			 * exchange during monitoring.
3519			 */
3520			for (i = 0; i < (mp_maxid + 1); i++) {
3521				bzero(&ups, sizeof(ups));
3522				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3523					goto skip;
3524				if (CPU_ABSENT(i))
3525					goto skip;
3526				cache = &z->uz_cpu[i];
3527				if (cache->uc_allocbucket != NULL)
3528					ups.ups_cache_free +=
3529					    cache->uc_allocbucket->ub_cnt;
3530				if (cache->uc_freebucket != NULL)
3531					ups.ups_cache_free +=
3532					    cache->uc_freebucket->ub_cnt;
3533				ups.ups_allocs = cache->uc_allocs;
3534				ups.ups_frees = cache->uc_frees;
3535skip:
3536				(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3537			}
3538			ZONE_UNLOCK(z);
3539		}
3540	}
3541	rw_runlock(&uma_rwlock);
3542	error = sbuf_finish(&sbuf);
3543	sbuf_delete(&sbuf);
3544	return (error);
3545}
3546
3547int
3548sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
3549{
3550	uma_zone_t zone = *(uma_zone_t *)arg1;
3551	int error, max, old;
3552
3553	old = max = uma_zone_get_max(zone);
3554	error = sysctl_handle_int(oidp, &max, 0, req);
3555	if (error || !req->newptr)
3556		return (error);
3557
3558	if (max < old)
3559		return (EINVAL);
3560
3561	uma_zone_set_max(zone, max);
3562
3563	return (0);
3564}
3565
3566int
3567sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
3568{
3569	uma_zone_t zone = *(uma_zone_t *)arg1;
3570	int cur;
3571
3572	cur = uma_zone_get_cur(zone);
3573	return (sysctl_handle_int(oidp, &cur, 0, req));
3574}
3575
3576#ifdef DDB
3577DB_SHOW_COMMAND(uma, db_show_uma)
3578{
3579	uint64_t allocs, frees, sleeps;
3580	uma_bucket_t bucket;
3581	uma_keg_t kz;
3582	uma_zone_t z;
3583	int cachefree;
3584
3585	db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
3586	    "Free", "Requests", "Sleeps", "Bucket");
3587	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3588		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3589			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3590				allocs = z->uz_allocs;
3591				frees = z->uz_frees;
3592				sleeps = z->uz_sleeps;
3593				cachefree = 0;
3594			} else
3595				uma_zone_sumstat(z, &cachefree, &allocs,
3596				    &frees, &sleeps);
3597			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3598			    (LIST_FIRST(&kz->uk_zones) != z)))
3599				cachefree += kz->uk_free;
3600			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3601				cachefree += bucket->ub_cnt;
3602			db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
3603			    z->uz_name, (uintmax_t)kz->uk_size,
3604			    (intmax_t)(allocs - frees), cachefree,
3605			    (uintmax_t)allocs, sleeps, z->uz_count);
3606			if (db_pager_quit)
3607				return;
3608		}
3609	}
3610}
3611
3612DB_SHOW_COMMAND(umacache, db_show_umacache)
3613{
3614	uint64_t allocs, frees;
3615	uma_bucket_t bucket;
3616	uma_zone_t z;
3617	int cachefree;
3618
3619	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3620	    "Requests", "Bucket");
3621	LIST_FOREACH(z, &uma_cachezones, uz_link) {
3622		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
3623		LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3624			cachefree += bucket->ub_cnt;
3625		db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
3626		    z->uz_name, (uintmax_t)z->uz_size,
3627		    (intmax_t)(allocs - frees), cachefree,
3628		    (uintmax_t)allocs, z->uz_count);
3629		if (db_pager_quit)
3630			return;
3631	}
3632}
3633#endif
3634