uma_core.c revision 273451
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * effecient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/10/sys/vm/uma_core.c 273451 2014-10-22 04:09:47Z bryanv $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/kernel.h>
68#include <sys/types.h>
69#include <sys/queue.h>
70#include <sys/malloc.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/sysctl.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/rwlock.h>
77#include <sys/sbuf.h>
78#include <sys/sched.h>
79#include <sys/smp.h>
80#include <sys/vmmeter.h>
81
82#include <vm/vm.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_param.h>
87#include <vm/vm_map.h>
88#include <vm/vm_kern.h>
89#include <vm/vm_extern.h>
90#include <vm/uma.h>
91#include <vm/uma_int.h>
92#include <vm/uma_dbg.h>
93
94#include <ddb/ddb.h>
95
96#ifdef DEBUG_MEMGUARD
97#include <vm/memguard.h>
98#endif
99
100/*
101 * This is the zone and keg from which all zones are spawned.  The idea is that
102 * even the zone & keg heads are allocated from the allocator, so we use the
103 * bss section to bootstrap us.
104 */
105static struct uma_keg masterkeg;
106static struct uma_zone masterzone_k;
107static struct uma_zone masterzone_z;
108static uma_zone_t kegs = &masterzone_k;
109static uma_zone_t zones = &masterzone_z;
110
111/* This is the zone from which all of uma_slab_t's are allocated. */
112static uma_zone_t slabzone;
113static uma_zone_t slabrefzone;	/* With refcounters (for UMA_ZONE_REFCNT) */
114
115/*
116 * The initial hash tables come out of this zone so they can be allocated
117 * prior to malloc coming up.
118 */
119static uma_zone_t hashzone;
120
121/* The boot-time adjusted value for cache line alignment. */
122int uma_align_cache = 64 - 1;
123
124static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
125
126/*
127 * Are we allowed to allocate buckets?
128 */
129static int bucketdisable = 1;
130
131/* Linked list of all kegs in the system */
132static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
133
134/* Linked list of all cache-only zones in the system */
135static LIST_HEAD(,uma_zone) uma_cachezones =
136    LIST_HEAD_INITIALIZER(uma_cachezones);
137
138/* This RW lock protects the keg list */
139static struct rwlock_padalign uma_rwlock;
140
141/* Linked list of boot time pages */
142static LIST_HEAD(,uma_slab) uma_boot_pages =
143    LIST_HEAD_INITIALIZER(uma_boot_pages);
144
145/* This mutex protects the boot time pages list */
146static struct mtx_padalign uma_boot_pages_mtx;
147
148/* Is the VM done starting up? */
149static int booted = 0;
150#define	UMA_STARTUP	1
151#define	UMA_STARTUP2	2
152
153/*
154 * Only mbuf clusters use ref zones.  Just provide enough references
155 * to support the one user.  New code should not use the ref facility.
156 */
157static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES;
158
159/*
160 * This is the handle used to schedule events that need to happen
161 * outside of the allocation fast path.
162 */
163static struct callout uma_callout;
164#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
165
166/*
167 * This structure is passed as the zone ctor arg so that I don't have to create
168 * a special allocation function just for zones.
169 */
170struct uma_zctor_args {
171	const char *name;
172	size_t size;
173	uma_ctor ctor;
174	uma_dtor dtor;
175	uma_init uminit;
176	uma_fini fini;
177	uma_import import;
178	uma_release release;
179	void *arg;
180	uma_keg_t keg;
181	int align;
182	uint32_t flags;
183};
184
185struct uma_kctor_args {
186	uma_zone_t zone;
187	size_t size;
188	uma_init uminit;
189	uma_fini fini;
190	int align;
191	uint32_t flags;
192};
193
194struct uma_bucket_zone {
195	uma_zone_t	ubz_zone;
196	char		*ubz_name;
197	int		ubz_entries;	/* Number of items it can hold. */
198	int		ubz_maxsize;	/* Maximum allocation size per-item. */
199};
200
201/*
202 * Compute the actual number of bucket entries to pack them in power
203 * of two sizes for more efficient space utilization.
204 */
205#define	BUCKET_SIZE(n)						\
206    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
207
208#define	BUCKET_MAX	BUCKET_SIZE(256)
209
210struct uma_bucket_zone bucket_zones[] = {
211	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
212	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
213	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
214	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
215	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
216	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
217	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
218	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
219	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
220	{ NULL, NULL, 0}
221};
222
223/*
224 * Flags and enumerations to be passed to internal functions.
225 */
226enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
227
228/* Prototypes.. */
229
230static void *noobj_alloc(uma_zone_t, int, uint8_t *, int);
231static void *page_alloc(uma_zone_t, int, uint8_t *, int);
232static void *startup_alloc(uma_zone_t, int, uint8_t *, int);
233static void page_free(void *, int, uint8_t);
234static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
235static void cache_drain(uma_zone_t);
236static void bucket_drain(uma_zone_t, uma_bucket_t);
237static void bucket_cache_drain(uma_zone_t zone);
238static int keg_ctor(void *, int, void *, int);
239static void keg_dtor(void *, int, void *);
240static int zone_ctor(void *, int, void *, int);
241static void zone_dtor(void *, int, void *);
242static int zero_init(void *, int, int);
243static void keg_small_init(uma_keg_t keg);
244static void keg_large_init(uma_keg_t keg);
245static void zone_foreach(void (*zfunc)(uma_zone_t));
246static void zone_timeout(uma_zone_t zone);
247static int hash_alloc(struct uma_hash *);
248static int hash_expand(struct uma_hash *, struct uma_hash *);
249static void hash_free(struct uma_hash *hash);
250static void uma_timeout(void *);
251static void uma_startup3(void);
252static void *zone_alloc_item(uma_zone_t, void *, int);
253static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
254static void bucket_enable(void);
255static void bucket_init(void);
256static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
257static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
258static void bucket_zone_drain(void);
259static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
260static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
261static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
262static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
263static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
264static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
265    uma_fini fini, int align, uint32_t flags);
266static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
267static void zone_release(uma_zone_t zone, void **bucket, int cnt);
268static void uma_zero_item(void *item, uma_zone_t zone);
269
270void uma_print_zone(uma_zone_t);
271void uma_print_stats(void);
272static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
273static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
274
275SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
276
277SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
278    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
279
280SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
281    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
282
283static int zone_warnings = 1;
284TUNABLE_INT("vm.zone_warnings", &zone_warnings);
285SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0,
286    "Warn when UMA zones becomes full");
287
288/*
289 * This routine checks to see whether or not it's safe to enable buckets.
290 */
291static void
292bucket_enable(void)
293{
294	bucketdisable = vm_page_count_min();
295}
296
297/*
298 * Initialize bucket_zones, the array of zones of buckets of various sizes.
299 *
300 * For each zone, calculate the memory required for each bucket, consisting
301 * of the header and an array of pointers.
302 */
303static void
304bucket_init(void)
305{
306	struct uma_bucket_zone *ubz;
307	int size;
308	int i;
309
310	for (i = 0, ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
311		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
312		size += sizeof(void *) * ubz->ubz_entries;
313		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
314		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
315		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
316	}
317}
318
319/*
320 * Given a desired number of entries for a bucket, return the zone from which
321 * to allocate the bucket.
322 */
323static struct uma_bucket_zone *
324bucket_zone_lookup(int entries)
325{
326	struct uma_bucket_zone *ubz;
327
328	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
329		if (ubz->ubz_entries >= entries)
330			return (ubz);
331	ubz--;
332	return (ubz);
333}
334
335static int
336bucket_select(int size)
337{
338	struct uma_bucket_zone *ubz;
339
340	ubz = &bucket_zones[0];
341	if (size > ubz->ubz_maxsize)
342		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
343
344	for (; ubz->ubz_entries != 0; ubz++)
345		if (ubz->ubz_maxsize < size)
346			break;
347	ubz--;
348	return (ubz->ubz_entries);
349}
350
351static uma_bucket_t
352bucket_alloc(uma_zone_t zone, void *udata, int flags)
353{
354	struct uma_bucket_zone *ubz;
355	uma_bucket_t bucket;
356
357	/*
358	 * This is to stop us from allocating per cpu buckets while we're
359	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
360	 * boot pages.  This also prevents us from allocating buckets in
361	 * low memory situations.
362	 */
363	if (bucketdisable)
364		return (NULL);
365	/*
366	 * To limit bucket recursion we store the original zone flags
367	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
368	 * NOVM flag to persist even through deep recursions.  We also
369	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
370	 * a bucket for a bucket zone so we do not allow infinite bucket
371	 * recursion.  This cookie will even persist to frees of unused
372	 * buckets via the allocation path or bucket allocations in the
373	 * free path.
374	 */
375	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
376		udata = (void *)(uintptr_t)zone->uz_flags;
377	else {
378		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
379			return (NULL);
380		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
381	}
382	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
383		flags |= M_NOVM;
384	ubz = bucket_zone_lookup(zone->uz_count);
385	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
386		ubz++;
387	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
388	if (bucket) {
389#ifdef INVARIANTS
390		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
391#endif
392		bucket->ub_cnt = 0;
393		bucket->ub_entries = ubz->ubz_entries;
394	}
395
396	return (bucket);
397}
398
399static void
400bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
401{
402	struct uma_bucket_zone *ubz;
403
404	KASSERT(bucket->ub_cnt == 0,
405	    ("bucket_free: Freeing a non free bucket."));
406	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
407		udata = (void *)(uintptr_t)zone->uz_flags;
408	ubz = bucket_zone_lookup(bucket->ub_entries);
409	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
410}
411
412static void
413bucket_zone_drain(void)
414{
415	struct uma_bucket_zone *ubz;
416
417	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
418		zone_drain(ubz->ubz_zone);
419}
420
421static void
422zone_log_warning(uma_zone_t zone)
423{
424	static const struct timeval warninterval = { 300, 0 };
425
426	if (!zone_warnings || zone->uz_warning == NULL)
427		return;
428
429	if (ratecheck(&zone->uz_ratecheck, &warninterval))
430		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
431}
432
433static void
434zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
435{
436	uma_klink_t klink;
437
438	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
439		kegfn(klink->kl_keg);
440}
441
442/*
443 * Routine called by timeout which is used to fire off some time interval
444 * based calculations.  (stats, hash size, etc.)
445 *
446 * Arguments:
447 *	arg   Unused
448 *
449 * Returns:
450 *	Nothing
451 */
452static void
453uma_timeout(void *unused)
454{
455	bucket_enable();
456	zone_foreach(zone_timeout);
457
458	/* Reschedule this event */
459	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
460}
461
462/*
463 * Routine to perform timeout driven calculations.  This expands the
464 * hashes and does per cpu statistics aggregation.
465 *
466 *  Returns nothing.
467 */
468static void
469keg_timeout(uma_keg_t keg)
470{
471
472	KEG_LOCK(keg);
473	/*
474	 * Expand the keg hash table.
475	 *
476	 * This is done if the number of slabs is larger than the hash size.
477	 * What I'm trying to do here is completely reduce collisions.  This
478	 * may be a little aggressive.  Should I allow for two collisions max?
479	 */
480	if (keg->uk_flags & UMA_ZONE_HASH &&
481	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
482		struct uma_hash newhash;
483		struct uma_hash oldhash;
484		int ret;
485
486		/*
487		 * This is so involved because allocating and freeing
488		 * while the keg lock is held will lead to deadlock.
489		 * I have to do everything in stages and check for
490		 * races.
491		 */
492		newhash = keg->uk_hash;
493		KEG_UNLOCK(keg);
494		ret = hash_alloc(&newhash);
495		KEG_LOCK(keg);
496		if (ret) {
497			if (hash_expand(&keg->uk_hash, &newhash)) {
498				oldhash = keg->uk_hash;
499				keg->uk_hash = newhash;
500			} else
501				oldhash = newhash;
502
503			KEG_UNLOCK(keg);
504			hash_free(&oldhash);
505			return;
506		}
507	}
508	KEG_UNLOCK(keg);
509}
510
511static void
512zone_timeout(uma_zone_t zone)
513{
514
515	zone_foreach_keg(zone, &keg_timeout);
516}
517
518/*
519 * Allocate and zero fill the next sized hash table from the appropriate
520 * backing store.
521 *
522 * Arguments:
523 *	hash  A new hash structure with the old hash size in uh_hashsize
524 *
525 * Returns:
526 *	1 on sucess and 0 on failure.
527 */
528static int
529hash_alloc(struct uma_hash *hash)
530{
531	int oldsize;
532	int alloc;
533
534	oldsize = hash->uh_hashsize;
535
536	/* We're just going to go to a power of two greater */
537	if (oldsize)  {
538		hash->uh_hashsize = oldsize * 2;
539		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
540		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
541		    M_UMAHASH, M_NOWAIT);
542	} else {
543		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
544		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
545		    M_WAITOK);
546		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
547	}
548	if (hash->uh_slab_hash) {
549		bzero(hash->uh_slab_hash, alloc);
550		hash->uh_hashmask = hash->uh_hashsize - 1;
551		return (1);
552	}
553
554	return (0);
555}
556
557/*
558 * Expands the hash table for HASH zones.  This is done from zone_timeout
559 * to reduce collisions.  This must not be done in the regular allocation
560 * path, otherwise, we can recurse on the vm while allocating pages.
561 *
562 * Arguments:
563 *	oldhash  The hash you want to expand
564 *	newhash  The hash structure for the new table
565 *
566 * Returns:
567 *	Nothing
568 *
569 * Discussion:
570 */
571static int
572hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
573{
574	uma_slab_t slab;
575	int hval;
576	int i;
577
578	if (!newhash->uh_slab_hash)
579		return (0);
580
581	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
582		return (0);
583
584	/*
585	 * I need to investigate hash algorithms for resizing without a
586	 * full rehash.
587	 */
588
589	for (i = 0; i < oldhash->uh_hashsize; i++)
590		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
591			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
592			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
593			hval = UMA_HASH(newhash, slab->us_data);
594			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
595			    slab, us_hlink);
596		}
597
598	return (1);
599}
600
601/*
602 * Free the hash bucket to the appropriate backing store.
603 *
604 * Arguments:
605 *	slab_hash  The hash bucket we're freeing
606 *	hashsize   The number of entries in that hash bucket
607 *
608 * Returns:
609 *	Nothing
610 */
611static void
612hash_free(struct uma_hash *hash)
613{
614	if (hash->uh_slab_hash == NULL)
615		return;
616	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
617		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
618	else
619		free(hash->uh_slab_hash, M_UMAHASH);
620}
621
622/*
623 * Frees all outstanding items in a bucket
624 *
625 * Arguments:
626 *	zone   The zone to free to, must be unlocked.
627 *	bucket The free/alloc bucket with items, cpu queue must be locked.
628 *
629 * Returns:
630 *	Nothing
631 */
632
633static void
634bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
635{
636	int i;
637
638	if (bucket == NULL)
639		return;
640
641	if (zone->uz_fini)
642		for (i = 0; i < bucket->ub_cnt; i++)
643			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
644	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
645	bucket->ub_cnt = 0;
646}
647
648/*
649 * Drains the per cpu caches for a zone.
650 *
651 * NOTE: This may only be called while the zone is being turn down, and not
652 * during normal operation.  This is necessary in order that we do not have
653 * to migrate CPUs to drain the per-CPU caches.
654 *
655 * Arguments:
656 *	zone     The zone to drain, must be unlocked.
657 *
658 * Returns:
659 *	Nothing
660 */
661static void
662cache_drain(uma_zone_t zone)
663{
664	uma_cache_t cache;
665	int cpu;
666
667	/*
668	 * XXX: It is safe to not lock the per-CPU caches, because we're
669	 * tearing down the zone anyway.  I.e., there will be no further use
670	 * of the caches at this point.
671	 *
672	 * XXX: It would good to be able to assert that the zone is being
673	 * torn down to prevent improper use of cache_drain().
674	 *
675	 * XXX: We lock the zone before passing into bucket_cache_drain() as
676	 * it is used elsewhere.  Should the tear-down path be made special
677	 * there in some form?
678	 */
679	CPU_FOREACH(cpu) {
680		cache = &zone->uz_cpu[cpu];
681		bucket_drain(zone, cache->uc_allocbucket);
682		bucket_drain(zone, cache->uc_freebucket);
683		if (cache->uc_allocbucket != NULL)
684			bucket_free(zone, cache->uc_allocbucket, NULL);
685		if (cache->uc_freebucket != NULL)
686			bucket_free(zone, cache->uc_freebucket, NULL);
687		cache->uc_allocbucket = cache->uc_freebucket = NULL;
688	}
689	ZONE_LOCK(zone);
690	bucket_cache_drain(zone);
691	ZONE_UNLOCK(zone);
692}
693
694static void
695cache_shrink(uma_zone_t zone)
696{
697
698	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
699		return;
700
701	ZONE_LOCK(zone);
702	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
703	ZONE_UNLOCK(zone);
704}
705
706static void
707cache_drain_safe_cpu(uma_zone_t zone)
708{
709	uma_cache_t cache;
710	uma_bucket_t b1, b2;
711
712	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
713		return;
714
715	b1 = b2 = NULL;
716	ZONE_LOCK(zone);
717	critical_enter();
718	cache = &zone->uz_cpu[curcpu];
719	if (cache->uc_allocbucket) {
720		if (cache->uc_allocbucket->ub_cnt != 0)
721			LIST_INSERT_HEAD(&zone->uz_buckets,
722			    cache->uc_allocbucket, ub_link);
723		else
724			b1 = cache->uc_allocbucket;
725		cache->uc_allocbucket = NULL;
726	}
727	if (cache->uc_freebucket) {
728		if (cache->uc_freebucket->ub_cnt != 0)
729			LIST_INSERT_HEAD(&zone->uz_buckets,
730			    cache->uc_freebucket, ub_link);
731		else
732			b2 = cache->uc_freebucket;
733		cache->uc_freebucket = NULL;
734	}
735	critical_exit();
736	ZONE_UNLOCK(zone);
737	if (b1)
738		bucket_free(zone, b1, NULL);
739	if (b2)
740		bucket_free(zone, b2, NULL);
741}
742
743/*
744 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
745 * This is an expensive call because it needs to bind to all CPUs
746 * one by one and enter a critical section on each of them in order
747 * to safely access their cache buckets.
748 * Zone lock must not be held on call this function.
749 */
750static void
751cache_drain_safe(uma_zone_t zone)
752{
753	int cpu;
754
755	/*
756	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
757	 */
758	if (zone)
759		cache_shrink(zone);
760	else
761		zone_foreach(cache_shrink);
762
763	CPU_FOREACH(cpu) {
764		thread_lock(curthread);
765		sched_bind(curthread, cpu);
766		thread_unlock(curthread);
767
768		if (zone)
769			cache_drain_safe_cpu(zone);
770		else
771			zone_foreach(cache_drain_safe_cpu);
772	}
773	thread_lock(curthread);
774	sched_unbind(curthread);
775	thread_unlock(curthread);
776}
777
778/*
779 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
780 */
781static void
782bucket_cache_drain(uma_zone_t zone)
783{
784	uma_bucket_t bucket;
785
786	/*
787	 * Drain the bucket queues and free the buckets, we just keep two per
788	 * cpu (alloc/free).
789	 */
790	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
791		LIST_REMOVE(bucket, ub_link);
792		ZONE_UNLOCK(zone);
793		bucket_drain(zone, bucket);
794		bucket_free(zone, bucket, NULL);
795		ZONE_LOCK(zone);
796	}
797
798	/*
799	 * Shrink further bucket sizes.  Price of single zone lock collision
800	 * is probably lower then price of global cache drain.
801	 */
802	if (zone->uz_count > zone->uz_count_min)
803		zone->uz_count--;
804}
805
806static void
807keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
808{
809	uint8_t *mem;
810	int i;
811	uint8_t flags;
812
813	mem = slab->us_data;
814	flags = slab->us_flags;
815	i = start;
816	if (keg->uk_fini != NULL) {
817		for (i--; i > -1; i--)
818			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
819			    keg->uk_size);
820	}
821	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
822		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
823#ifdef UMA_DEBUG
824	printf("%s: Returning %d bytes.\n", keg->uk_name,
825	    PAGE_SIZE * keg->uk_ppera);
826#endif
827	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
828}
829
830/*
831 * Frees pages from a keg back to the system.  This is done on demand from
832 * the pageout daemon.
833 *
834 * Returns nothing.
835 */
836static void
837keg_drain(uma_keg_t keg)
838{
839	struct slabhead freeslabs = { 0 };
840	uma_slab_t slab;
841	uma_slab_t n;
842
843	/*
844	 * We don't want to take pages from statically allocated kegs at this
845	 * time
846	 */
847	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
848		return;
849
850#ifdef UMA_DEBUG
851	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
852#endif
853	KEG_LOCK(keg);
854	if (keg->uk_free == 0)
855		goto finished;
856
857	slab = LIST_FIRST(&keg->uk_free_slab);
858	while (slab) {
859		n = LIST_NEXT(slab, us_link);
860
861		/* We have no where to free these to */
862		if (slab->us_flags & UMA_SLAB_BOOT) {
863			slab = n;
864			continue;
865		}
866
867		LIST_REMOVE(slab, us_link);
868		keg->uk_pages -= keg->uk_ppera;
869		keg->uk_free -= keg->uk_ipers;
870
871		if (keg->uk_flags & UMA_ZONE_HASH)
872			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
873
874		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
875
876		slab = n;
877	}
878finished:
879	KEG_UNLOCK(keg);
880
881	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
882		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
883		keg_free_slab(keg, slab, keg->uk_ipers);
884	}
885}
886
887static void
888zone_drain_wait(uma_zone_t zone, int waitok)
889{
890
891	/*
892	 * Set draining to interlock with zone_dtor() so we can release our
893	 * locks as we go.  Only dtor() should do a WAITOK call since it
894	 * is the only call that knows the structure will still be available
895	 * when it wakes up.
896	 */
897	ZONE_LOCK(zone);
898	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
899		if (waitok == M_NOWAIT)
900			goto out;
901		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
902	}
903	zone->uz_flags |= UMA_ZFLAG_DRAINING;
904	bucket_cache_drain(zone);
905	ZONE_UNLOCK(zone);
906	/*
907	 * The DRAINING flag protects us from being freed while
908	 * we're running.  Normally the uma_rwlock would protect us but we
909	 * must be able to release and acquire the right lock for each keg.
910	 */
911	zone_foreach_keg(zone, &keg_drain);
912	ZONE_LOCK(zone);
913	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
914	wakeup(zone);
915out:
916	ZONE_UNLOCK(zone);
917}
918
919void
920zone_drain(uma_zone_t zone)
921{
922
923	zone_drain_wait(zone, M_NOWAIT);
924}
925
926/*
927 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
928 *
929 * Arguments:
930 *	wait  Shall we wait?
931 *
932 * Returns:
933 *	The slab that was allocated or NULL if there is no memory and the
934 *	caller specified M_NOWAIT.
935 */
936static uma_slab_t
937keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
938{
939	uma_slabrefcnt_t slabref;
940	uma_alloc allocf;
941	uma_slab_t slab;
942	uint8_t *mem;
943	uint8_t flags;
944	int i;
945
946	mtx_assert(&keg->uk_lock, MA_OWNED);
947	slab = NULL;
948	mem = NULL;
949
950#ifdef UMA_DEBUG
951	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
952#endif
953	allocf = keg->uk_allocf;
954	KEG_UNLOCK(keg);
955
956	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
957		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
958		if (slab == NULL)
959			goto out;
960	}
961
962	/*
963	 * This reproduces the old vm_zone behavior of zero filling pages the
964	 * first time they are added to a zone.
965	 *
966	 * Malloced items are zeroed in uma_zalloc.
967	 */
968
969	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
970		wait |= M_ZERO;
971	else
972		wait &= ~M_ZERO;
973
974	if (keg->uk_flags & UMA_ZONE_NODUMP)
975		wait |= M_NODUMP;
976
977	/* zone is passed for legacy reasons. */
978	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
979	if (mem == NULL) {
980		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
981			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
982		slab = NULL;
983		goto out;
984	}
985
986	/* Point the slab into the allocated memory */
987	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
988		slab = (uma_slab_t )(mem + keg->uk_pgoff);
989
990	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
991		for (i = 0; i < keg->uk_ppera; i++)
992			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
993
994	slab->us_keg = keg;
995	slab->us_data = mem;
996	slab->us_freecount = keg->uk_ipers;
997	slab->us_flags = flags;
998	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
999#ifdef INVARIANTS
1000	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1001#endif
1002	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1003		slabref = (uma_slabrefcnt_t)slab;
1004		for (i = 0; i < keg->uk_ipers; i++)
1005			slabref->us_refcnt[i] = 0;
1006	}
1007
1008	if (keg->uk_init != NULL) {
1009		for (i = 0; i < keg->uk_ipers; i++)
1010			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1011			    keg->uk_size, wait) != 0)
1012				break;
1013		if (i != keg->uk_ipers) {
1014			keg_free_slab(keg, slab, i);
1015			slab = NULL;
1016			goto out;
1017		}
1018	}
1019out:
1020	KEG_LOCK(keg);
1021
1022	if (slab != NULL) {
1023		if (keg->uk_flags & UMA_ZONE_HASH)
1024			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1025
1026		keg->uk_pages += keg->uk_ppera;
1027		keg->uk_free += keg->uk_ipers;
1028	}
1029
1030	return (slab);
1031}
1032
1033/*
1034 * This function is intended to be used early on in place of page_alloc() so
1035 * that we may use the boot time page cache to satisfy allocations before
1036 * the VM is ready.
1037 */
1038static void *
1039startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
1040{
1041	uma_keg_t keg;
1042	uma_slab_t tmps;
1043	int pages, check_pages;
1044
1045	keg = zone_first_keg(zone);
1046	pages = howmany(bytes, PAGE_SIZE);
1047	check_pages = pages - 1;
1048	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1049
1050	/*
1051	 * Check our small startup cache to see if it has pages remaining.
1052	 */
1053	mtx_lock(&uma_boot_pages_mtx);
1054
1055	/* First check if we have enough room. */
1056	tmps = LIST_FIRST(&uma_boot_pages);
1057	while (tmps != NULL && check_pages-- > 0)
1058		tmps = LIST_NEXT(tmps, us_link);
1059	if (tmps != NULL) {
1060		/*
1061		 * It's ok to lose tmps references.  The last one will
1062		 * have tmps->us_data pointing to the start address of
1063		 * "pages" contiguous pages of memory.
1064		 */
1065		while (pages-- > 0) {
1066			tmps = LIST_FIRST(&uma_boot_pages);
1067			LIST_REMOVE(tmps, us_link);
1068		}
1069		mtx_unlock(&uma_boot_pages_mtx);
1070		*pflag = tmps->us_flags;
1071		return (tmps->us_data);
1072	}
1073	mtx_unlock(&uma_boot_pages_mtx);
1074	if (booted < UMA_STARTUP2)
1075		panic("UMA: Increase vm.boot_pages");
1076	/*
1077	 * Now that we've booted reset these users to their real allocator.
1078	 */
1079#ifdef UMA_MD_SMALL_ALLOC
1080	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1081#else
1082	keg->uk_allocf = page_alloc;
1083#endif
1084	return keg->uk_allocf(zone, bytes, pflag, wait);
1085}
1086
1087/*
1088 * Allocates a number of pages from the system
1089 *
1090 * Arguments:
1091 *	bytes  The number of bytes requested
1092 *	wait  Shall we wait?
1093 *
1094 * Returns:
1095 *	A pointer to the alloced memory or possibly
1096 *	NULL if M_NOWAIT is set.
1097 */
1098static void *
1099page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
1100{
1101	void *p;	/* Returned page */
1102
1103	*pflag = UMA_SLAB_KMEM;
1104	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1105
1106	return (p);
1107}
1108
1109/*
1110 * Allocates a number of pages from within an object
1111 *
1112 * Arguments:
1113 *	bytes  The number of bytes requested
1114 *	wait   Shall we wait?
1115 *
1116 * Returns:
1117 *	A pointer to the alloced memory or possibly
1118 *	NULL if M_NOWAIT is set.
1119 */
1120static void *
1121noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait)
1122{
1123	TAILQ_HEAD(, vm_page) alloctail;
1124	u_long npages;
1125	vm_offset_t retkva, zkva;
1126	vm_page_t p, p_next;
1127	uma_keg_t keg;
1128
1129	TAILQ_INIT(&alloctail);
1130	keg = zone_first_keg(zone);
1131
1132	npages = howmany(bytes, PAGE_SIZE);
1133	while (npages > 0) {
1134		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1135		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1136		if (p != NULL) {
1137			/*
1138			 * Since the page does not belong to an object, its
1139			 * listq is unused.
1140			 */
1141			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1142			npages--;
1143			continue;
1144		}
1145		if (wait & M_WAITOK) {
1146			VM_WAIT;
1147			continue;
1148		}
1149
1150		/*
1151		 * Page allocation failed, free intermediate pages and
1152		 * exit.
1153		 */
1154		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1155			vm_page_unwire(p, 0);
1156			vm_page_free(p);
1157		}
1158		return (NULL);
1159	}
1160	*flags = UMA_SLAB_PRIV;
1161	zkva = keg->uk_kva +
1162	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1163	retkva = zkva;
1164	TAILQ_FOREACH(p, &alloctail, listq) {
1165		pmap_qenter(zkva, &p, 1);
1166		zkva += PAGE_SIZE;
1167	}
1168
1169	return ((void *)retkva);
1170}
1171
1172/*
1173 * Frees a number of pages to the system
1174 *
1175 * Arguments:
1176 *	mem   A pointer to the memory to be freed
1177 *	size  The size of the memory being freed
1178 *	flags The original p->us_flags field
1179 *
1180 * Returns:
1181 *	Nothing
1182 */
1183static void
1184page_free(void *mem, int size, uint8_t flags)
1185{
1186	struct vmem *vmem;
1187
1188	if (flags & UMA_SLAB_KMEM)
1189		vmem = kmem_arena;
1190	else if (flags & UMA_SLAB_KERNEL)
1191		vmem = kernel_arena;
1192	else
1193		panic("UMA: page_free used with invalid flags %d", flags);
1194
1195	kmem_free(vmem, (vm_offset_t)mem, size);
1196}
1197
1198/*
1199 * Zero fill initializer
1200 *
1201 * Arguments/Returns follow uma_init specifications
1202 */
1203static int
1204zero_init(void *mem, int size, int flags)
1205{
1206	bzero(mem, size);
1207	return (0);
1208}
1209
1210/*
1211 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1212 *
1213 * Arguments
1214 *	keg  The zone we should initialize
1215 *
1216 * Returns
1217 *	Nothing
1218 */
1219static void
1220keg_small_init(uma_keg_t keg)
1221{
1222	u_int rsize;
1223	u_int memused;
1224	u_int wastedspace;
1225	u_int shsize;
1226
1227	if (keg->uk_flags & UMA_ZONE_PCPU) {
1228		u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1229
1230		keg->uk_slabsize = sizeof(struct pcpu);
1231		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1232		    PAGE_SIZE);
1233	} else {
1234		keg->uk_slabsize = UMA_SLAB_SIZE;
1235		keg->uk_ppera = 1;
1236	}
1237
1238	/*
1239	 * Calculate the size of each allocation (rsize) according to
1240	 * alignment.  If the requested size is smaller than we have
1241	 * allocation bits for we round it up.
1242	 */
1243	rsize = keg->uk_size;
1244	if (rsize < keg->uk_slabsize / SLAB_SETSIZE)
1245		rsize = keg->uk_slabsize / SLAB_SETSIZE;
1246	if (rsize & keg->uk_align)
1247		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1248	keg->uk_rsize = rsize;
1249
1250	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1251	    keg->uk_rsize < sizeof(struct pcpu),
1252	    ("%s: size %u too large", __func__, keg->uk_rsize));
1253
1254	if (keg->uk_flags & UMA_ZONE_REFCNT)
1255		rsize += sizeof(uint32_t);
1256
1257	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1258		shsize = 0;
1259	else
1260		shsize = sizeof(struct uma_slab);
1261
1262	keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize;
1263	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1264	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1265
1266	memused = keg->uk_ipers * rsize + shsize;
1267	wastedspace = keg->uk_slabsize - memused;
1268
1269	/*
1270	 * We can't do OFFPAGE if we're internal or if we've been
1271	 * asked to not go to the VM for buckets.  If we do this we
1272	 * may end up going to the VM  for slabs which we do not
1273	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1274	 * of UMA_ZONE_VM, which clearly forbids it.
1275	 */
1276	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1277	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1278		return;
1279
1280	/*
1281	 * See if using an OFFPAGE slab will limit our waste.  Only do
1282	 * this if it permits more items per-slab.
1283	 *
1284	 * XXX We could try growing slabsize to limit max waste as well.
1285	 * Historically this was not done because the VM could not
1286	 * efficiently handle contiguous allocations.
1287	 */
1288	if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) &&
1289	    (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) {
1290		keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize;
1291		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1292		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1293#ifdef UMA_DEBUG
1294		printf("UMA decided we need offpage slab headers for "
1295		    "keg: %s, calculated wastedspace = %d, "
1296		    "maximum wasted space allowed = %d, "
1297		    "calculated ipers = %d, "
1298		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1299		    keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1300		    keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize);
1301#endif
1302		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1303	}
1304
1305	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1306	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1307		keg->uk_flags |= UMA_ZONE_HASH;
1308}
1309
1310/*
1311 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1312 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1313 * more complicated.
1314 *
1315 * Arguments
1316 *	keg  The keg we should initialize
1317 *
1318 * Returns
1319 *	Nothing
1320 */
1321static void
1322keg_large_init(uma_keg_t keg)
1323{
1324	u_int shsize;
1325
1326	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1327	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1328	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1329	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1330	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1331
1332	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1333	keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE;
1334	keg->uk_ipers = 1;
1335	keg->uk_rsize = keg->uk_size;
1336
1337	/* We can't do OFFPAGE if we're internal, bail out here. */
1338	if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
1339		return;
1340
1341	/* Check whether we have enough space to not do OFFPAGE. */
1342	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1343		shsize = sizeof(struct uma_slab);
1344		if (keg->uk_flags & UMA_ZONE_REFCNT)
1345			shsize += keg->uk_ipers * sizeof(uint32_t);
1346		if (shsize & UMA_ALIGN_PTR)
1347			shsize = (shsize & ~UMA_ALIGN_PTR) +
1348			    (UMA_ALIGN_PTR + 1);
1349
1350		if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize)
1351			keg->uk_flags |= UMA_ZONE_OFFPAGE;
1352	}
1353
1354	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1355	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1356		keg->uk_flags |= UMA_ZONE_HASH;
1357}
1358
1359static void
1360keg_cachespread_init(uma_keg_t keg)
1361{
1362	int alignsize;
1363	int trailer;
1364	int pages;
1365	int rsize;
1366
1367	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1368	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1369
1370	alignsize = keg->uk_align + 1;
1371	rsize = keg->uk_size;
1372	/*
1373	 * We want one item to start on every align boundary in a page.  To
1374	 * do this we will span pages.  We will also extend the item by the
1375	 * size of align if it is an even multiple of align.  Otherwise, it
1376	 * would fall on the same boundary every time.
1377	 */
1378	if (rsize & keg->uk_align)
1379		rsize = (rsize & ~keg->uk_align) + alignsize;
1380	if ((rsize & alignsize) == 0)
1381		rsize += alignsize;
1382	trailer = rsize - keg->uk_size;
1383	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1384	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1385	keg->uk_rsize = rsize;
1386	keg->uk_ppera = pages;
1387	keg->uk_slabsize = UMA_SLAB_SIZE;
1388	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1389	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1390	KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1391	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1392	    keg->uk_ipers));
1393}
1394
1395/*
1396 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1397 * the keg onto the global keg list.
1398 *
1399 * Arguments/Returns follow uma_ctor specifications
1400 *	udata  Actually uma_kctor_args
1401 */
1402static int
1403keg_ctor(void *mem, int size, void *udata, int flags)
1404{
1405	struct uma_kctor_args *arg = udata;
1406	uma_keg_t keg = mem;
1407	uma_zone_t zone;
1408
1409	bzero(keg, size);
1410	keg->uk_size = arg->size;
1411	keg->uk_init = arg->uminit;
1412	keg->uk_fini = arg->fini;
1413	keg->uk_align = arg->align;
1414	keg->uk_free = 0;
1415	keg->uk_reserve = 0;
1416	keg->uk_pages = 0;
1417	keg->uk_flags = arg->flags;
1418	keg->uk_allocf = page_alloc;
1419	keg->uk_freef = page_free;
1420	keg->uk_slabzone = NULL;
1421
1422	/*
1423	 * The master zone is passed to us at keg-creation time.
1424	 */
1425	zone = arg->zone;
1426	keg->uk_name = zone->uz_name;
1427
1428	if (arg->flags & UMA_ZONE_VM)
1429		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1430
1431	if (arg->flags & UMA_ZONE_ZINIT)
1432		keg->uk_init = zero_init;
1433
1434	if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1435		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1436
1437	if (arg->flags & UMA_ZONE_PCPU)
1438#ifdef SMP
1439		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1440#else
1441		keg->uk_flags &= ~UMA_ZONE_PCPU;
1442#endif
1443
1444	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1445		keg_cachespread_init(keg);
1446	} else if (keg->uk_flags & UMA_ZONE_REFCNT) {
1447		if (keg->uk_size >
1448		    (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) -
1449		    sizeof(uint32_t)))
1450			keg_large_init(keg);
1451		else
1452			keg_small_init(keg);
1453	} else {
1454		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1455			keg_large_init(keg);
1456		else
1457			keg_small_init(keg);
1458	}
1459
1460	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1461		if (keg->uk_flags & UMA_ZONE_REFCNT) {
1462			if (keg->uk_ipers > uma_max_ipers_ref)
1463				panic("Too many ref items per zone: %d > %d\n",
1464				    keg->uk_ipers, uma_max_ipers_ref);
1465			keg->uk_slabzone = slabrefzone;
1466		} else
1467			keg->uk_slabzone = slabzone;
1468	}
1469
1470	/*
1471	 * If we haven't booted yet we need allocations to go through the
1472	 * startup cache until the vm is ready.
1473	 */
1474	if (keg->uk_ppera == 1) {
1475#ifdef UMA_MD_SMALL_ALLOC
1476		keg->uk_allocf = uma_small_alloc;
1477		keg->uk_freef = uma_small_free;
1478
1479		if (booted < UMA_STARTUP)
1480			keg->uk_allocf = startup_alloc;
1481#else
1482		if (booted < UMA_STARTUP2)
1483			keg->uk_allocf = startup_alloc;
1484#endif
1485	} else if (booted < UMA_STARTUP2 &&
1486	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1487		keg->uk_allocf = startup_alloc;
1488
1489	/*
1490	 * Initialize keg's lock
1491	 */
1492	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1493
1494	/*
1495	 * If we're putting the slab header in the actual page we need to
1496	 * figure out where in each page it goes.  This calculates a right
1497	 * justified offset into the memory on an ALIGN_PTR boundary.
1498	 */
1499	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1500		u_int totsize;
1501
1502		/* Size of the slab struct and free list */
1503		totsize = sizeof(struct uma_slab);
1504
1505		/* Size of the reference counts. */
1506		if (keg->uk_flags & UMA_ZONE_REFCNT)
1507			totsize += keg->uk_ipers * sizeof(uint32_t);
1508
1509		if (totsize & UMA_ALIGN_PTR)
1510			totsize = (totsize & ~UMA_ALIGN_PTR) +
1511			    (UMA_ALIGN_PTR + 1);
1512		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1513
1514		/*
1515		 * The only way the following is possible is if with our
1516		 * UMA_ALIGN_PTR adjustments we are now bigger than
1517		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1518		 * mathematically possible for all cases, so we make
1519		 * sure here anyway.
1520		 */
1521		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1522		if (keg->uk_flags & UMA_ZONE_REFCNT)
1523			totsize += keg->uk_ipers * sizeof(uint32_t);
1524		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1525			printf("zone %s ipers %d rsize %d size %d\n",
1526			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1527			    keg->uk_size);
1528			panic("UMA slab won't fit.");
1529		}
1530	}
1531
1532	if (keg->uk_flags & UMA_ZONE_HASH)
1533		hash_alloc(&keg->uk_hash);
1534
1535#ifdef UMA_DEBUG
1536	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1537	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1538	    keg->uk_ipers, keg->uk_ppera,
1539	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1540#endif
1541
1542	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1543
1544	rw_wlock(&uma_rwlock);
1545	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1546	rw_wunlock(&uma_rwlock);
1547	return (0);
1548}
1549
1550/*
1551 * Zone header ctor.  This initializes all fields, locks, etc.
1552 *
1553 * Arguments/Returns follow uma_ctor specifications
1554 *	udata  Actually uma_zctor_args
1555 */
1556static int
1557zone_ctor(void *mem, int size, void *udata, int flags)
1558{
1559	struct uma_zctor_args *arg = udata;
1560	uma_zone_t zone = mem;
1561	uma_zone_t z;
1562	uma_keg_t keg;
1563
1564	bzero(zone, size);
1565	zone->uz_name = arg->name;
1566	zone->uz_ctor = arg->ctor;
1567	zone->uz_dtor = arg->dtor;
1568	zone->uz_slab = zone_fetch_slab;
1569	zone->uz_init = NULL;
1570	zone->uz_fini = NULL;
1571	zone->uz_allocs = 0;
1572	zone->uz_frees = 0;
1573	zone->uz_fails = 0;
1574	zone->uz_sleeps = 0;
1575	zone->uz_count = 0;
1576	zone->uz_count_min = 0;
1577	zone->uz_flags = 0;
1578	zone->uz_warning = NULL;
1579	timevalclear(&zone->uz_ratecheck);
1580	keg = arg->keg;
1581
1582	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1583
1584	/*
1585	 * This is a pure cache zone, no kegs.
1586	 */
1587	if (arg->import) {
1588		if (arg->flags & UMA_ZONE_VM)
1589			arg->flags |= UMA_ZFLAG_CACHEONLY;
1590		zone->uz_flags = arg->flags;
1591		zone->uz_size = arg->size;
1592		zone->uz_import = arg->import;
1593		zone->uz_release = arg->release;
1594		zone->uz_arg = arg->arg;
1595		zone->uz_lockptr = &zone->uz_lock;
1596		rw_wlock(&uma_rwlock);
1597		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1598		rw_wunlock(&uma_rwlock);
1599		goto out;
1600	}
1601
1602	/*
1603	 * Use the regular zone/keg/slab allocator.
1604	 */
1605	zone->uz_import = (uma_import)zone_import;
1606	zone->uz_release = (uma_release)zone_release;
1607	zone->uz_arg = zone;
1608
1609	if (arg->flags & UMA_ZONE_SECONDARY) {
1610		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1611		zone->uz_init = arg->uminit;
1612		zone->uz_fini = arg->fini;
1613		zone->uz_lockptr = &keg->uk_lock;
1614		zone->uz_flags |= UMA_ZONE_SECONDARY;
1615		rw_wlock(&uma_rwlock);
1616		ZONE_LOCK(zone);
1617		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1618			if (LIST_NEXT(z, uz_link) == NULL) {
1619				LIST_INSERT_AFTER(z, zone, uz_link);
1620				break;
1621			}
1622		}
1623		ZONE_UNLOCK(zone);
1624		rw_wunlock(&uma_rwlock);
1625	} else if (keg == NULL) {
1626		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1627		    arg->align, arg->flags)) == NULL)
1628			return (ENOMEM);
1629	} else {
1630		struct uma_kctor_args karg;
1631		int error;
1632
1633		/* We should only be here from uma_startup() */
1634		karg.size = arg->size;
1635		karg.uminit = arg->uminit;
1636		karg.fini = arg->fini;
1637		karg.align = arg->align;
1638		karg.flags = arg->flags;
1639		karg.zone = zone;
1640		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1641		    flags);
1642		if (error)
1643			return (error);
1644	}
1645
1646	/*
1647	 * Link in the first keg.
1648	 */
1649	zone->uz_klink.kl_keg = keg;
1650	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1651	zone->uz_lockptr = &keg->uk_lock;
1652	zone->uz_size = keg->uk_size;
1653	zone->uz_flags |= (keg->uk_flags &
1654	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1655
1656	/*
1657	 * Some internal zones don't have room allocated for the per cpu
1658	 * caches.  If we're internal, bail out here.
1659	 */
1660	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1661		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1662		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1663		return (0);
1664	}
1665
1666out:
1667	if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0)
1668		zone->uz_count = bucket_select(zone->uz_size);
1669	else
1670		zone->uz_count = BUCKET_MAX;
1671	zone->uz_count_min = zone->uz_count;
1672
1673	return (0);
1674}
1675
1676/*
1677 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1678 * table and removes the keg from the global list.
1679 *
1680 * Arguments/Returns follow uma_dtor specifications
1681 *	udata  unused
1682 */
1683static void
1684keg_dtor(void *arg, int size, void *udata)
1685{
1686	uma_keg_t keg;
1687
1688	keg = (uma_keg_t)arg;
1689	KEG_LOCK(keg);
1690	if (keg->uk_free != 0) {
1691		printf("Freed UMA keg (%s) was not empty (%d items). "
1692		    " Lost %d pages of memory.\n",
1693		    keg->uk_name ? keg->uk_name : "",
1694		    keg->uk_free, keg->uk_pages);
1695	}
1696	KEG_UNLOCK(keg);
1697
1698	hash_free(&keg->uk_hash);
1699
1700	KEG_LOCK_FINI(keg);
1701}
1702
1703/*
1704 * Zone header dtor.
1705 *
1706 * Arguments/Returns follow uma_dtor specifications
1707 *	udata  unused
1708 */
1709static void
1710zone_dtor(void *arg, int size, void *udata)
1711{
1712	uma_klink_t klink;
1713	uma_zone_t zone;
1714	uma_keg_t keg;
1715
1716	zone = (uma_zone_t)arg;
1717	keg = zone_first_keg(zone);
1718
1719	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1720		cache_drain(zone);
1721
1722	rw_wlock(&uma_rwlock);
1723	LIST_REMOVE(zone, uz_link);
1724	rw_wunlock(&uma_rwlock);
1725	/*
1726	 * XXX there are some races here where
1727	 * the zone can be drained but zone lock
1728	 * released and then refilled before we
1729	 * remove it... we dont care for now
1730	 */
1731	zone_drain_wait(zone, M_WAITOK);
1732	/*
1733	 * Unlink all of our kegs.
1734	 */
1735	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1736		klink->kl_keg = NULL;
1737		LIST_REMOVE(klink, kl_link);
1738		if (klink == &zone->uz_klink)
1739			continue;
1740		free(klink, M_TEMP);
1741	}
1742	/*
1743	 * We only destroy kegs from non secondary zones.
1744	 */
1745	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1746		rw_wlock(&uma_rwlock);
1747		LIST_REMOVE(keg, uk_link);
1748		rw_wunlock(&uma_rwlock);
1749		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1750	}
1751	ZONE_LOCK_FINI(zone);
1752}
1753
1754/*
1755 * Traverses every zone in the system and calls a callback
1756 *
1757 * Arguments:
1758 *	zfunc  A pointer to a function which accepts a zone
1759 *		as an argument.
1760 *
1761 * Returns:
1762 *	Nothing
1763 */
1764static void
1765zone_foreach(void (*zfunc)(uma_zone_t))
1766{
1767	uma_keg_t keg;
1768	uma_zone_t zone;
1769
1770	rw_rlock(&uma_rwlock);
1771	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1772		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1773			zfunc(zone);
1774	}
1775	rw_runlock(&uma_rwlock);
1776}
1777
1778/* Public functions */
1779/* See uma.h */
1780void
1781uma_startup(void *bootmem, int boot_pages)
1782{
1783	struct uma_zctor_args args;
1784	uma_slab_t slab;
1785	u_int slabsize;
1786	int i;
1787
1788#ifdef UMA_DEBUG
1789	printf("Creating uma keg headers zone and keg.\n");
1790#endif
1791	rw_init(&uma_rwlock, "UMA lock");
1792
1793	/* "manually" create the initial zone */
1794	memset(&args, 0, sizeof(args));
1795	args.name = "UMA Kegs";
1796	args.size = sizeof(struct uma_keg);
1797	args.ctor = keg_ctor;
1798	args.dtor = keg_dtor;
1799	args.uminit = zero_init;
1800	args.fini = NULL;
1801	args.keg = &masterkeg;
1802	args.align = 32 - 1;
1803	args.flags = UMA_ZFLAG_INTERNAL;
1804	/* The initial zone has no Per cpu queues so it's smaller */
1805	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1806
1807#ifdef UMA_DEBUG
1808	printf("Filling boot free list.\n");
1809#endif
1810	for (i = 0; i < boot_pages; i++) {
1811		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1812		slab->us_data = (uint8_t *)slab;
1813		slab->us_flags = UMA_SLAB_BOOT;
1814		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1815	}
1816	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1817
1818#ifdef UMA_DEBUG
1819	printf("Creating uma zone headers zone and keg.\n");
1820#endif
1821	args.name = "UMA Zones";
1822	args.size = sizeof(struct uma_zone) +
1823	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1824	args.ctor = zone_ctor;
1825	args.dtor = zone_dtor;
1826	args.uminit = zero_init;
1827	args.fini = NULL;
1828	args.keg = NULL;
1829	args.align = 32 - 1;
1830	args.flags = UMA_ZFLAG_INTERNAL;
1831	/* The initial zone has no Per cpu queues so it's smaller */
1832	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1833
1834#ifdef UMA_DEBUG
1835	printf("Initializing pcpu cache locks.\n");
1836#endif
1837#ifdef UMA_DEBUG
1838	printf("Creating slab and hash zones.\n");
1839#endif
1840
1841	/* Now make a zone for slab headers */
1842	slabzone = uma_zcreate("UMA Slabs",
1843				sizeof(struct uma_slab),
1844				NULL, NULL, NULL, NULL,
1845				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1846
1847	/*
1848	 * We also create a zone for the bigger slabs with reference
1849	 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1850	 */
1851	slabsize = sizeof(struct uma_slab_refcnt);
1852	slabsize += uma_max_ipers_ref * sizeof(uint32_t);
1853	slabrefzone = uma_zcreate("UMA RCntSlabs",
1854				  slabsize,
1855				  NULL, NULL, NULL, NULL,
1856				  UMA_ALIGN_PTR,
1857				  UMA_ZFLAG_INTERNAL);
1858
1859	hashzone = uma_zcreate("UMA Hash",
1860	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1861	    NULL, NULL, NULL, NULL,
1862	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1863
1864	bucket_init();
1865
1866	booted = UMA_STARTUP;
1867
1868#ifdef UMA_DEBUG
1869	printf("UMA startup complete.\n");
1870#endif
1871}
1872
1873/* see uma.h */
1874void
1875uma_startup2(void)
1876{
1877	booted = UMA_STARTUP2;
1878	bucket_enable();
1879#ifdef UMA_DEBUG
1880	printf("UMA startup2 complete.\n");
1881#endif
1882}
1883
1884/*
1885 * Initialize our callout handle
1886 *
1887 */
1888
1889static void
1890uma_startup3(void)
1891{
1892#ifdef UMA_DEBUG
1893	printf("Starting callout.\n");
1894#endif
1895	callout_init(&uma_callout, CALLOUT_MPSAFE);
1896	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1897#ifdef UMA_DEBUG
1898	printf("UMA startup3 complete.\n");
1899#endif
1900}
1901
1902static uma_keg_t
1903uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1904		int align, uint32_t flags)
1905{
1906	struct uma_kctor_args args;
1907
1908	args.size = size;
1909	args.uminit = uminit;
1910	args.fini = fini;
1911	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1912	args.flags = flags;
1913	args.zone = zone;
1914	return (zone_alloc_item(kegs, &args, M_WAITOK));
1915}
1916
1917/* See uma.h */
1918void
1919uma_set_align(int align)
1920{
1921
1922	if (align != UMA_ALIGN_CACHE)
1923		uma_align_cache = align;
1924}
1925
1926/* See uma.h */
1927uma_zone_t
1928uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1929		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1930
1931{
1932	struct uma_zctor_args args;
1933
1934	/* This stuff is essential for the zone ctor */
1935	memset(&args, 0, sizeof(args));
1936	args.name = name;
1937	args.size = size;
1938	args.ctor = ctor;
1939	args.dtor = dtor;
1940	args.uminit = uminit;
1941	args.fini = fini;
1942	args.align = align;
1943	args.flags = flags;
1944	args.keg = NULL;
1945
1946	return (zone_alloc_item(zones, &args, M_WAITOK));
1947}
1948
1949/* See uma.h */
1950uma_zone_t
1951uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1952		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1953{
1954	struct uma_zctor_args args;
1955	uma_keg_t keg;
1956
1957	keg = zone_first_keg(master);
1958	memset(&args, 0, sizeof(args));
1959	args.name = name;
1960	args.size = keg->uk_size;
1961	args.ctor = ctor;
1962	args.dtor = dtor;
1963	args.uminit = zinit;
1964	args.fini = zfini;
1965	args.align = keg->uk_align;
1966	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1967	args.keg = keg;
1968
1969	/* XXX Attaches only one keg of potentially many. */
1970	return (zone_alloc_item(zones, &args, M_WAITOK));
1971}
1972
1973/* See uma.h */
1974uma_zone_t
1975uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1976		    uma_init zinit, uma_fini zfini, uma_import zimport,
1977		    uma_release zrelease, void *arg, int flags)
1978{
1979	struct uma_zctor_args args;
1980
1981	memset(&args, 0, sizeof(args));
1982	args.name = name;
1983	args.size = size;
1984	args.ctor = ctor;
1985	args.dtor = dtor;
1986	args.uminit = zinit;
1987	args.fini = zfini;
1988	args.import = zimport;
1989	args.release = zrelease;
1990	args.arg = arg;
1991	args.align = 0;
1992	args.flags = flags;
1993
1994	return (zone_alloc_item(zones, &args, M_WAITOK));
1995}
1996
1997static void
1998zone_lock_pair(uma_zone_t a, uma_zone_t b)
1999{
2000	if (a < b) {
2001		ZONE_LOCK(a);
2002		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
2003	} else {
2004		ZONE_LOCK(b);
2005		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2006	}
2007}
2008
2009static void
2010zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2011{
2012
2013	ZONE_UNLOCK(a);
2014	ZONE_UNLOCK(b);
2015}
2016
2017int
2018uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2019{
2020	uma_klink_t klink;
2021	uma_klink_t kl;
2022	int error;
2023
2024	error = 0;
2025	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2026
2027	zone_lock_pair(zone, master);
2028	/*
2029	 * zone must use vtoslab() to resolve objects and must already be
2030	 * a secondary.
2031	 */
2032	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2033	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2034		error = EINVAL;
2035		goto out;
2036	}
2037	/*
2038	 * The new master must also use vtoslab().
2039	 */
2040	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2041		error = EINVAL;
2042		goto out;
2043	}
2044	/*
2045	 * Both must either be refcnt, or not be refcnt.
2046	 */
2047	if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
2048	    (master->uz_flags & UMA_ZONE_REFCNT)) {
2049		error = EINVAL;
2050		goto out;
2051	}
2052	/*
2053	 * The underlying object must be the same size.  rsize
2054	 * may be different.
2055	 */
2056	if (master->uz_size != zone->uz_size) {
2057		error = E2BIG;
2058		goto out;
2059	}
2060	/*
2061	 * Put it at the end of the list.
2062	 */
2063	klink->kl_keg = zone_first_keg(master);
2064	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2065		if (LIST_NEXT(kl, kl_link) == NULL) {
2066			LIST_INSERT_AFTER(kl, klink, kl_link);
2067			break;
2068		}
2069	}
2070	klink = NULL;
2071	zone->uz_flags |= UMA_ZFLAG_MULTI;
2072	zone->uz_slab = zone_fetch_slab_multi;
2073
2074out:
2075	zone_unlock_pair(zone, master);
2076	if (klink != NULL)
2077		free(klink, M_TEMP);
2078
2079	return (error);
2080}
2081
2082
2083/* See uma.h */
2084void
2085uma_zdestroy(uma_zone_t zone)
2086{
2087
2088	zone_free_item(zones, zone, NULL, SKIP_NONE);
2089}
2090
2091/* See uma.h */
2092void *
2093uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2094{
2095	void *item;
2096	uma_cache_t cache;
2097	uma_bucket_t bucket;
2098	int lockfail;
2099	int cpu;
2100
2101	/* This is the fast path allocation */
2102#ifdef UMA_DEBUG_ALLOC_1
2103	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2104#endif
2105	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2106	    zone->uz_name, flags);
2107
2108	if (flags & M_WAITOK) {
2109		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2110		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2111	}
2112#ifdef DEBUG_MEMGUARD
2113	if (memguard_cmp_zone(zone)) {
2114		item = memguard_alloc(zone->uz_size, flags);
2115		if (item != NULL) {
2116			/*
2117			 * Avoid conflict with the use-after-free
2118			 * protecting infrastructure from INVARIANTS.
2119			 */
2120			if (zone->uz_init != NULL &&
2121			    zone->uz_init != mtrash_init &&
2122			    zone->uz_init(item, zone->uz_size, flags) != 0)
2123				return (NULL);
2124			if (zone->uz_ctor != NULL &&
2125			    zone->uz_ctor != mtrash_ctor &&
2126			    zone->uz_ctor(item, zone->uz_size, udata,
2127			    flags) != 0) {
2128			    	zone->uz_fini(item, zone->uz_size);
2129				return (NULL);
2130			}
2131			return (item);
2132		}
2133		/* This is unfortunate but should not be fatal. */
2134	}
2135#endif
2136	/*
2137	 * If possible, allocate from the per-CPU cache.  There are two
2138	 * requirements for safe access to the per-CPU cache: (1) the thread
2139	 * accessing the cache must not be preempted or yield during access,
2140	 * and (2) the thread must not migrate CPUs without switching which
2141	 * cache it accesses.  We rely on a critical section to prevent
2142	 * preemption and migration.  We release the critical section in
2143	 * order to acquire the zone mutex if we are unable to allocate from
2144	 * the current cache; when we re-acquire the critical section, we
2145	 * must detect and handle migration if it has occurred.
2146	 */
2147	critical_enter();
2148	cpu = curcpu;
2149	cache = &zone->uz_cpu[cpu];
2150
2151zalloc_start:
2152	bucket = cache->uc_allocbucket;
2153	if (bucket != NULL && bucket->ub_cnt > 0) {
2154		bucket->ub_cnt--;
2155		item = bucket->ub_bucket[bucket->ub_cnt];
2156#ifdef INVARIANTS
2157		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2158#endif
2159		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2160		cache->uc_allocs++;
2161		critical_exit();
2162		if (zone->uz_ctor != NULL &&
2163		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2164			atomic_add_long(&zone->uz_fails, 1);
2165			zone_free_item(zone, item, udata, SKIP_DTOR);
2166			return (NULL);
2167		}
2168#ifdef INVARIANTS
2169		uma_dbg_alloc(zone, NULL, item);
2170#endif
2171		if (flags & M_ZERO)
2172			uma_zero_item(item, zone);
2173		return (item);
2174	}
2175
2176	/*
2177	 * We have run out of items in our alloc bucket.
2178	 * See if we can switch with our free bucket.
2179	 */
2180	bucket = cache->uc_freebucket;
2181	if (bucket != NULL && bucket->ub_cnt > 0) {
2182#ifdef UMA_DEBUG_ALLOC
2183		printf("uma_zalloc: Swapping empty with alloc.\n");
2184#endif
2185		cache->uc_freebucket = cache->uc_allocbucket;
2186		cache->uc_allocbucket = bucket;
2187		goto zalloc_start;
2188	}
2189
2190	/*
2191	 * Discard any empty allocation bucket while we hold no locks.
2192	 */
2193	bucket = cache->uc_allocbucket;
2194	cache->uc_allocbucket = NULL;
2195	critical_exit();
2196	if (bucket != NULL)
2197		bucket_free(zone, bucket, udata);
2198
2199	/* Short-circuit for zones without buckets and low memory. */
2200	if (zone->uz_count == 0 || bucketdisable)
2201		goto zalloc_item;
2202
2203	/*
2204	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2205	 * we must go back to the zone.  This requires the zone lock, so we
2206	 * must drop the critical section, then re-acquire it when we go back
2207	 * to the cache.  Since the critical section is released, we may be
2208	 * preempted or migrate.  As such, make sure not to maintain any
2209	 * thread-local state specific to the cache from prior to releasing
2210	 * the critical section.
2211	 */
2212	lockfail = 0;
2213	if (ZONE_TRYLOCK(zone) == 0) {
2214		/* Record contention to size the buckets. */
2215		ZONE_LOCK(zone);
2216		lockfail = 1;
2217	}
2218	critical_enter();
2219	cpu = curcpu;
2220	cache = &zone->uz_cpu[cpu];
2221
2222	/*
2223	 * Since we have locked the zone we may as well send back our stats.
2224	 */
2225	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2226	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2227	cache->uc_allocs = 0;
2228	cache->uc_frees = 0;
2229
2230	/* See if we lost the race to fill the cache. */
2231	if (cache->uc_allocbucket != NULL) {
2232		ZONE_UNLOCK(zone);
2233		goto zalloc_start;
2234	}
2235
2236	/*
2237	 * Check the zone's cache of buckets.
2238	 */
2239	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2240		KASSERT(bucket->ub_cnt != 0,
2241		    ("uma_zalloc_arg: Returning an empty bucket."));
2242
2243		LIST_REMOVE(bucket, ub_link);
2244		cache->uc_allocbucket = bucket;
2245		ZONE_UNLOCK(zone);
2246		goto zalloc_start;
2247	}
2248	/* We are no longer associated with this CPU. */
2249	critical_exit();
2250
2251	/*
2252	 * We bump the uz count when the cache size is insufficient to
2253	 * handle the working set.
2254	 */
2255	if (lockfail && zone->uz_count < BUCKET_MAX)
2256		zone->uz_count++;
2257	ZONE_UNLOCK(zone);
2258
2259	/*
2260	 * Now lets just fill a bucket and put it on the free list.  If that
2261	 * works we'll restart the allocation from the begining and it
2262	 * will use the just filled bucket.
2263	 */
2264	bucket = zone_alloc_bucket(zone, udata, flags);
2265	if (bucket != NULL) {
2266		ZONE_LOCK(zone);
2267		critical_enter();
2268		cpu = curcpu;
2269		cache = &zone->uz_cpu[cpu];
2270		/*
2271		 * See if we lost the race or were migrated.  Cache the
2272		 * initialized bucket to make this less likely or claim
2273		 * the memory directly.
2274		 */
2275		if (cache->uc_allocbucket == NULL)
2276			cache->uc_allocbucket = bucket;
2277		else
2278			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2279		ZONE_UNLOCK(zone);
2280		goto zalloc_start;
2281	}
2282
2283	/*
2284	 * We may not be able to get a bucket so return an actual item.
2285	 */
2286#ifdef UMA_DEBUG
2287	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2288#endif
2289
2290zalloc_item:
2291	item = zone_alloc_item(zone, udata, flags);
2292
2293	return (item);
2294}
2295
2296static uma_slab_t
2297keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2298{
2299	uma_slab_t slab;
2300	int reserve;
2301
2302	mtx_assert(&keg->uk_lock, MA_OWNED);
2303	slab = NULL;
2304	reserve = 0;
2305	if ((flags & M_USE_RESERVE) == 0)
2306		reserve = keg->uk_reserve;
2307
2308	for (;;) {
2309		/*
2310		 * Find a slab with some space.  Prefer slabs that are partially
2311		 * used over those that are totally full.  This helps to reduce
2312		 * fragmentation.
2313		 */
2314		if (keg->uk_free > reserve) {
2315			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2316				slab = LIST_FIRST(&keg->uk_part_slab);
2317			} else {
2318				slab = LIST_FIRST(&keg->uk_free_slab);
2319				LIST_REMOVE(slab, us_link);
2320				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2321				    us_link);
2322			}
2323			MPASS(slab->us_keg == keg);
2324			return (slab);
2325		}
2326
2327		/*
2328		 * M_NOVM means don't ask at all!
2329		 */
2330		if (flags & M_NOVM)
2331			break;
2332
2333		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2334			keg->uk_flags |= UMA_ZFLAG_FULL;
2335			/*
2336			 * If this is not a multi-zone, set the FULL bit.
2337			 * Otherwise slab_multi() takes care of it.
2338			 */
2339			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2340				zone->uz_flags |= UMA_ZFLAG_FULL;
2341				zone_log_warning(zone);
2342			}
2343			if (flags & M_NOWAIT)
2344				break;
2345			zone->uz_sleeps++;
2346			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2347			continue;
2348		}
2349		slab = keg_alloc_slab(keg, zone, flags);
2350		/*
2351		 * If we got a slab here it's safe to mark it partially used
2352		 * and return.  We assume that the caller is going to remove
2353		 * at least one item.
2354		 */
2355		if (slab) {
2356			MPASS(slab->us_keg == keg);
2357			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2358			return (slab);
2359		}
2360		/*
2361		 * We might not have been able to get a slab but another cpu
2362		 * could have while we were unlocked.  Check again before we
2363		 * fail.
2364		 */
2365		flags |= M_NOVM;
2366	}
2367	return (slab);
2368}
2369
2370static uma_slab_t
2371zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2372{
2373	uma_slab_t slab;
2374
2375	if (keg == NULL) {
2376		keg = zone_first_keg(zone);
2377		KEG_LOCK(keg);
2378	}
2379
2380	for (;;) {
2381		slab = keg_fetch_slab(keg, zone, flags);
2382		if (slab)
2383			return (slab);
2384		if (flags & (M_NOWAIT | M_NOVM))
2385			break;
2386	}
2387	KEG_UNLOCK(keg);
2388	return (NULL);
2389}
2390
2391/*
2392 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2393 * with the keg locked.  On NULL no lock is held.
2394 *
2395 * The last pointer is used to seed the search.  It is not required.
2396 */
2397static uma_slab_t
2398zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2399{
2400	uma_klink_t klink;
2401	uma_slab_t slab;
2402	uma_keg_t keg;
2403	int flags;
2404	int empty;
2405	int full;
2406
2407	/*
2408	 * Don't wait on the first pass.  This will skip limit tests
2409	 * as well.  We don't want to block if we can find a provider
2410	 * without blocking.
2411	 */
2412	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2413	/*
2414	 * Use the last slab allocated as a hint for where to start
2415	 * the search.
2416	 */
2417	if (last != NULL) {
2418		slab = keg_fetch_slab(last, zone, flags);
2419		if (slab)
2420			return (slab);
2421		KEG_UNLOCK(last);
2422	}
2423	/*
2424	 * Loop until we have a slab incase of transient failures
2425	 * while M_WAITOK is specified.  I'm not sure this is 100%
2426	 * required but we've done it for so long now.
2427	 */
2428	for (;;) {
2429		empty = 0;
2430		full = 0;
2431		/*
2432		 * Search the available kegs for slabs.  Be careful to hold the
2433		 * correct lock while calling into the keg layer.
2434		 */
2435		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2436			keg = klink->kl_keg;
2437			KEG_LOCK(keg);
2438			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2439				slab = keg_fetch_slab(keg, zone, flags);
2440				if (slab)
2441					return (slab);
2442			}
2443			if (keg->uk_flags & UMA_ZFLAG_FULL)
2444				full++;
2445			else
2446				empty++;
2447			KEG_UNLOCK(keg);
2448		}
2449		if (rflags & (M_NOWAIT | M_NOVM))
2450			break;
2451		flags = rflags;
2452		/*
2453		 * All kegs are full.  XXX We can't atomically check all kegs
2454		 * and sleep so just sleep for a short period and retry.
2455		 */
2456		if (full && !empty) {
2457			ZONE_LOCK(zone);
2458			zone->uz_flags |= UMA_ZFLAG_FULL;
2459			zone->uz_sleeps++;
2460			zone_log_warning(zone);
2461			msleep(zone, zone->uz_lockptr, PVM,
2462			    "zonelimit", hz/100);
2463			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2464			ZONE_UNLOCK(zone);
2465			continue;
2466		}
2467	}
2468	return (NULL);
2469}
2470
2471static void *
2472slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2473{
2474	void *item;
2475	uint8_t freei;
2476
2477	MPASS(keg == slab->us_keg);
2478	mtx_assert(&keg->uk_lock, MA_OWNED);
2479
2480	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2481	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2482	item = slab->us_data + (keg->uk_rsize * freei);
2483	slab->us_freecount--;
2484	keg->uk_free--;
2485
2486	/* Move this slab to the full list */
2487	if (slab->us_freecount == 0) {
2488		LIST_REMOVE(slab, us_link);
2489		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2490	}
2491
2492	return (item);
2493}
2494
2495static int
2496zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2497{
2498	uma_slab_t slab;
2499	uma_keg_t keg;
2500	int i;
2501
2502	slab = NULL;
2503	keg = NULL;
2504	/* Try to keep the buckets totally full */
2505	for (i = 0; i < max; ) {
2506		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2507			break;
2508		keg = slab->us_keg;
2509		while (slab->us_freecount && i < max) {
2510			bucket[i++] = slab_alloc_item(keg, slab);
2511			if (keg->uk_free <= keg->uk_reserve)
2512				break;
2513		}
2514		/* Don't grab more than one slab at a time. */
2515		flags &= ~M_WAITOK;
2516		flags |= M_NOWAIT;
2517	}
2518	if (slab != NULL)
2519		KEG_UNLOCK(keg);
2520
2521	return i;
2522}
2523
2524static uma_bucket_t
2525zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2526{
2527	uma_bucket_t bucket;
2528	int max;
2529
2530	/* Don't wait for buckets, preserve caller's NOVM setting. */
2531	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2532	if (bucket == NULL)
2533		return (NULL);
2534
2535	max = MIN(bucket->ub_entries, zone->uz_count);
2536	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2537	    max, flags);
2538
2539	/*
2540	 * Initialize the memory if necessary.
2541	 */
2542	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2543		int i;
2544
2545		for (i = 0; i < bucket->ub_cnt; i++)
2546			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2547			    flags) != 0)
2548				break;
2549		/*
2550		 * If we couldn't initialize the whole bucket, put the
2551		 * rest back onto the freelist.
2552		 */
2553		if (i != bucket->ub_cnt) {
2554			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2555			    bucket->ub_cnt - i);
2556#ifdef INVARIANTS
2557			bzero(&bucket->ub_bucket[i],
2558			    sizeof(void *) * (bucket->ub_cnt - i));
2559#endif
2560			bucket->ub_cnt = i;
2561		}
2562	}
2563
2564	if (bucket->ub_cnt == 0) {
2565		bucket_free(zone, bucket, udata);
2566		atomic_add_long(&zone->uz_fails, 1);
2567		return (NULL);
2568	}
2569
2570	return (bucket);
2571}
2572
2573/*
2574 * Allocates a single item from a zone.
2575 *
2576 * Arguments
2577 *	zone   The zone to alloc for.
2578 *	udata  The data to be passed to the constructor.
2579 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2580 *
2581 * Returns
2582 *	NULL if there is no memory and M_NOWAIT is set
2583 *	An item if successful
2584 */
2585
2586static void *
2587zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2588{
2589	void *item;
2590
2591	item = NULL;
2592
2593#ifdef UMA_DEBUG_ALLOC
2594	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2595#endif
2596	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2597		goto fail;
2598	atomic_add_long(&zone->uz_allocs, 1);
2599
2600	/*
2601	 * We have to call both the zone's init (not the keg's init)
2602	 * and the zone's ctor.  This is because the item is going from
2603	 * a keg slab directly to the user, and the user is expecting it
2604	 * to be both zone-init'd as well as zone-ctor'd.
2605	 */
2606	if (zone->uz_init != NULL) {
2607		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2608			zone_free_item(zone, item, udata, SKIP_FINI);
2609			goto fail;
2610		}
2611	}
2612	if (zone->uz_ctor != NULL) {
2613		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2614			zone_free_item(zone, item, udata, SKIP_DTOR);
2615			goto fail;
2616		}
2617	}
2618#ifdef INVARIANTS
2619	uma_dbg_alloc(zone, NULL, item);
2620#endif
2621	if (flags & M_ZERO)
2622		uma_zero_item(item, zone);
2623
2624	return (item);
2625
2626fail:
2627	atomic_add_long(&zone->uz_fails, 1);
2628	return (NULL);
2629}
2630
2631/* See uma.h */
2632void
2633uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2634{
2635	uma_cache_t cache;
2636	uma_bucket_t bucket;
2637	int lockfail;
2638	int cpu;
2639
2640#ifdef UMA_DEBUG_ALLOC_1
2641	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2642#endif
2643	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2644	    zone->uz_name);
2645
2646        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2647        if (item == NULL)
2648                return;
2649#ifdef DEBUG_MEMGUARD
2650	if (is_memguard_addr(item)) {
2651		if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor)
2652			zone->uz_dtor(item, zone->uz_size, udata);
2653		if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini)
2654			zone->uz_fini(item, zone->uz_size);
2655		memguard_free(item);
2656		return;
2657	}
2658#endif
2659#ifdef INVARIANTS
2660	if (zone->uz_flags & UMA_ZONE_MALLOC)
2661		uma_dbg_free(zone, udata, item);
2662	else
2663		uma_dbg_free(zone, NULL, item);
2664#endif
2665	if (zone->uz_dtor != NULL)
2666		zone->uz_dtor(item, zone->uz_size, udata);
2667
2668	/*
2669	 * The race here is acceptable.  If we miss it we'll just have to wait
2670	 * a little longer for the limits to be reset.
2671	 */
2672	if (zone->uz_flags & UMA_ZFLAG_FULL)
2673		goto zfree_item;
2674
2675	/*
2676	 * If possible, free to the per-CPU cache.  There are two
2677	 * requirements for safe access to the per-CPU cache: (1) the thread
2678	 * accessing the cache must not be preempted or yield during access,
2679	 * and (2) the thread must not migrate CPUs without switching which
2680	 * cache it accesses.  We rely on a critical section to prevent
2681	 * preemption and migration.  We release the critical section in
2682	 * order to acquire the zone mutex if we are unable to free to the
2683	 * current cache; when we re-acquire the critical section, we must
2684	 * detect and handle migration if it has occurred.
2685	 */
2686zfree_restart:
2687	critical_enter();
2688	cpu = curcpu;
2689	cache = &zone->uz_cpu[cpu];
2690
2691zfree_start:
2692	/*
2693	 * Try to free into the allocbucket first to give LIFO ordering
2694	 * for cache-hot datastructures.  Spill over into the freebucket
2695	 * if necessary.  Alloc will swap them if one runs dry.
2696	 */
2697	bucket = cache->uc_allocbucket;
2698	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2699		bucket = cache->uc_freebucket;
2700	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2701		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2702		    ("uma_zfree: Freeing to non free bucket index."));
2703		bucket->ub_bucket[bucket->ub_cnt] = item;
2704		bucket->ub_cnt++;
2705		cache->uc_frees++;
2706		critical_exit();
2707		return;
2708	}
2709
2710	/*
2711	 * We must go back the zone, which requires acquiring the zone lock,
2712	 * which in turn means we must release and re-acquire the critical
2713	 * section.  Since the critical section is released, we may be
2714	 * preempted or migrate.  As such, make sure not to maintain any
2715	 * thread-local state specific to the cache from prior to releasing
2716	 * the critical section.
2717	 */
2718	critical_exit();
2719	if (zone->uz_count == 0 || bucketdisable)
2720		goto zfree_item;
2721
2722	lockfail = 0;
2723	if (ZONE_TRYLOCK(zone) == 0) {
2724		/* Record contention to size the buckets. */
2725		ZONE_LOCK(zone);
2726		lockfail = 1;
2727	}
2728	critical_enter();
2729	cpu = curcpu;
2730	cache = &zone->uz_cpu[cpu];
2731
2732	/*
2733	 * Since we have locked the zone we may as well send back our stats.
2734	 */
2735	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2736	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2737	cache->uc_allocs = 0;
2738	cache->uc_frees = 0;
2739
2740	bucket = cache->uc_freebucket;
2741	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2742		ZONE_UNLOCK(zone);
2743		goto zfree_start;
2744	}
2745	cache->uc_freebucket = NULL;
2746
2747	/* Can we throw this on the zone full list? */
2748	if (bucket != NULL) {
2749#ifdef UMA_DEBUG_ALLOC
2750		printf("uma_zfree: Putting old bucket on the free list.\n");
2751#endif
2752		/* ub_cnt is pointing to the last free item */
2753		KASSERT(bucket->ub_cnt != 0,
2754		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2755		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2756	}
2757
2758	/* We are no longer associated with this CPU. */
2759	critical_exit();
2760
2761	/*
2762	 * We bump the uz count when the cache size is insufficient to
2763	 * handle the working set.
2764	 */
2765	if (lockfail && zone->uz_count < BUCKET_MAX)
2766		zone->uz_count++;
2767	ZONE_UNLOCK(zone);
2768
2769#ifdef UMA_DEBUG_ALLOC
2770	printf("uma_zfree: Allocating new free bucket.\n");
2771#endif
2772	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2773	if (bucket) {
2774		critical_enter();
2775		cpu = curcpu;
2776		cache = &zone->uz_cpu[cpu];
2777		if (cache->uc_freebucket == NULL) {
2778			cache->uc_freebucket = bucket;
2779			goto zfree_start;
2780		}
2781		/*
2782		 * We lost the race, start over.  We have to drop our
2783		 * critical section to free the bucket.
2784		 */
2785		critical_exit();
2786		bucket_free(zone, bucket, udata);
2787		goto zfree_restart;
2788	}
2789
2790	/*
2791	 * If nothing else caught this, we'll just do an internal free.
2792	 */
2793zfree_item:
2794	zone_free_item(zone, item, udata, SKIP_DTOR);
2795
2796	return;
2797}
2798
2799static void
2800slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2801{
2802	uint8_t freei;
2803
2804	mtx_assert(&keg->uk_lock, MA_OWNED);
2805	MPASS(keg == slab->us_keg);
2806
2807	/* Do we need to remove from any lists? */
2808	if (slab->us_freecount+1 == keg->uk_ipers) {
2809		LIST_REMOVE(slab, us_link);
2810		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2811	} else if (slab->us_freecount == 0) {
2812		LIST_REMOVE(slab, us_link);
2813		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2814	}
2815
2816	/* Slab management. */
2817	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2818	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2819	slab->us_freecount++;
2820
2821	/* Keg statistics. */
2822	keg->uk_free++;
2823}
2824
2825static void
2826zone_release(uma_zone_t zone, void **bucket, int cnt)
2827{
2828	void *item;
2829	uma_slab_t slab;
2830	uma_keg_t keg;
2831	uint8_t *mem;
2832	int clearfull;
2833	int i;
2834
2835	clearfull = 0;
2836	keg = zone_first_keg(zone);
2837	KEG_LOCK(keg);
2838	for (i = 0; i < cnt; i++) {
2839		item = bucket[i];
2840		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2841			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2842			if (zone->uz_flags & UMA_ZONE_HASH) {
2843				slab = hash_sfind(&keg->uk_hash, mem);
2844			} else {
2845				mem += keg->uk_pgoff;
2846				slab = (uma_slab_t)mem;
2847			}
2848		} else {
2849			slab = vtoslab((vm_offset_t)item);
2850			if (slab->us_keg != keg) {
2851				KEG_UNLOCK(keg);
2852				keg = slab->us_keg;
2853				KEG_LOCK(keg);
2854			}
2855		}
2856		slab_free_item(keg, slab, item);
2857		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2858			if (keg->uk_pages < keg->uk_maxpages) {
2859				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2860				clearfull = 1;
2861			}
2862
2863			/*
2864			 * We can handle one more allocation. Since we're
2865			 * clearing ZFLAG_FULL, wake up all procs blocked
2866			 * on pages. This should be uncommon, so keeping this
2867			 * simple for now (rather than adding count of blocked
2868			 * threads etc).
2869			 */
2870			wakeup(keg);
2871		}
2872	}
2873	KEG_UNLOCK(keg);
2874	if (clearfull) {
2875		ZONE_LOCK(zone);
2876		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2877		wakeup(zone);
2878		ZONE_UNLOCK(zone);
2879	}
2880
2881}
2882
2883/*
2884 * Frees a single item to any zone.
2885 *
2886 * Arguments:
2887 *	zone   The zone to free to
2888 *	item   The item we're freeing
2889 *	udata  User supplied data for the dtor
2890 *	skip   Skip dtors and finis
2891 */
2892static void
2893zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2894{
2895
2896#ifdef INVARIANTS
2897	if (skip == SKIP_NONE) {
2898		if (zone->uz_flags & UMA_ZONE_MALLOC)
2899			uma_dbg_free(zone, udata, item);
2900		else
2901			uma_dbg_free(zone, NULL, item);
2902	}
2903#endif
2904	if (skip < SKIP_DTOR && zone->uz_dtor)
2905		zone->uz_dtor(item, zone->uz_size, udata);
2906
2907	if (skip < SKIP_FINI && zone->uz_fini)
2908		zone->uz_fini(item, zone->uz_size);
2909
2910	atomic_add_long(&zone->uz_frees, 1);
2911	zone->uz_release(zone->uz_arg, &item, 1);
2912}
2913
2914/* See uma.h */
2915int
2916uma_zone_set_max(uma_zone_t zone, int nitems)
2917{
2918	uma_keg_t keg;
2919
2920	keg = zone_first_keg(zone);
2921	if (keg == NULL)
2922		return (0);
2923	KEG_LOCK(keg);
2924	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2925	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2926		keg->uk_maxpages += keg->uk_ppera;
2927	nitems = keg->uk_maxpages * keg->uk_ipers;
2928	KEG_UNLOCK(keg);
2929
2930	return (nitems);
2931}
2932
2933/* See uma.h */
2934int
2935uma_zone_get_max(uma_zone_t zone)
2936{
2937	int nitems;
2938	uma_keg_t keg;
2939
2940	keg = zone_first_keg(zone);
2941	if (keg == NULL)
2942		return (0);
2943	KEG_LOCK(keg);
2944	nitems = keg->uk_maxpages * keg->uk_ipers;
2945	KEG_UNLOCK(keg);
2946
2947	return (nitems);
2948}
2949
2950/* See uma.h */
2951void
2952uma_zone_set_warning(uma_zone_t zone, const char *warning)
2953{
2954
2955	ZONE_LOCK(zone);
2956	zone->uz_warning = warning;
2957	ZONE_UNLOCK(zone);
2958}
2959
2960/* See uma.h */
2961int
2962uma_zone_get_cur(uma_zone_t zone)
2963{
2964	int64_t nitems;
2965	u_int i;
2966
2967	ZONE_LOCK(zone);
2968	nitems = zone->uz_allocs - zone->uz_frees;
2969	CPU_FOREACH(i) {
2970		/*
2971		 * See the comment in sysctl_vm_zone_stats() regarding the
2972		 * safety of accessing the per-cpu caches. With the zone lock
2973		 * held, it is safe, but can potentially result in stale data.
2974		 */
2975		nitems += zone->uz_cpu[i].uc_allocs -
2976		    zone->uz_cpu[i].uc_frees;
2977	}
2978	ZONE_UNLOCK(zone);
2979
2980	return (nitems < 0 ? 0 : nitems);
2981}
2982
2983/* See uma.h */
2984void
2985uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2986{
2987	uma_keg_t keg;
2988
2989	keg = zone_first_keg(zone);
2990	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
2991	KEG_LOCK(keg);
2992	KASSERT(keg->uk_pages == 0,
2993	    ("uma_zone_set_init on non-empty keg"));
2994	keg->uk_init = uminit;
2995	KEG_UNLOCK(keg);
2996}
2997
2998/* See uma.h */
2999void
3000uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3001{
3002	uma_keg_t keg;
3003
3004	keg = zone_first_keg(zone);
3005	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3006	KEG_LOCK(keg);
3007	KASSERT(keg->uk_pages == 0,
3008	    ("uma_zone_set_fini on non-empty keg"));
3009	keg->uk_fini = fini;
3010	KEG_UNLOCK(keg);
3011}
3012
3013/* See uma.h */
3014void
3015uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3016{
3017
3018	ZONE_LOCK(zone);
3019	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3020	    ("uma_zone_set_zinit on non-empty keg"));
3021	zone->uz_init = zinit;
3022	ZONE_UNLOCK(zone);
3023}
3024
3025/* See uma.h */
3026void
3027uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3028{
3029
3030	ZONE_LOCK(zone);
3031	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3032	    ("uma_zone_set_zfini on non-empty keg"));
3033	zone->uz_fini = zfini;
3034	ZONE_UNLOCK(zone);
3035}
3036
3037/* See uma.h */
3038/* XXX uk_freef is not actually used with the zone locked */
3039void
3040uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3041{
3042	uma_keg_t keg;
3043
3044	keg = zone_first_keg(zone);
3045	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3046	KEG_LOCK(keg);
3047	keg->uk_freef = freef;
3048	KEG_UNLOCK(keg);
3049}
3050
3051/* See uma.h */
3052/* XXX uk_allocf is not actually used with the zone locked */
3053void
3054uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3055{
3056	uma_keg_t keg;
3057
3058	keg = zone_first_keg(zone);
3059	KEG_LOCK(keg);
3060	keg->uk_allocf = allocf;
3061	KEG_UNLOCK(keg);
3062}
3063
3064/* See uma.h */
3065void
3066uma_zone_reserve(uma_zone_t zone, int items)
3067{
3068	uma_keg_t keg;
3069
3070	keg = zone_first_keg(zone);
3071	if (keg == NULL)
3072		return;
3073	KEG_LOCK(keg);
3074	keg->uk_reserve = items;
3075	KEG_UNLOCK(keg);
3076
3077	return;
3078}
3079
3080/* See uma.h */
3081int
3082uma_zone_reserve_kva(uma_zone_t zone, int count)
3083{
3084	uma_keg_t keg;
3085	vm_offset_t kva;
3086	int pages;
3087
3088	keg = zone_first_keg(zone);
3089	if (keg == NULL)
3090		return (0);
3091	pages = count / keg->uk_ipers;
3092
3093	if (pages * keg->uk_ipers < count)
3094		pages++;
3095
3096#ifdef UMA_MD_SMALL_ALLOC
3097	if (keg->uk_ppera > 1) {
3098#else
3099	if (1) {
3100#endif
3101		kva = kva_alloc(pages * UMA_SLAB_SIZE);
3102		if (kva == 0)
3103			return (0);
3104	} else
3105		kva = 0;
3106	KEG_LOCK(keg);
3107	keg->uk_kva = kva;
3108	keg->uk_offset = 0;
3109	keg->uk_maxpages = pages;
3110#ifdef UMA_MD_SMALL_ALLOC
3111	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3112#else
3113	keg->uk_allocf = noobj_alloc;
3114#endif
3115	keg->uk_flags |= UMA_ZONE_NOFREE;
3116	KEG_UNLOCK(keg);
3117
3118	return (1);
3119}
3120
3121/* See uma.h */
3122void
3123uma_prealloc(uma_zone_t zone, int items)
3124{
3125	int slabs;
3126	uma_slab_t slab;
3127	uma_keg_t keg;
3128
3129	keg = zone_first_keg(zone);
3130	if (keg == NULL)
3131		return;
3132	KEG_LOCK(keg);
3133	slabs = items / keg->uk_ipers;
3134	if (slabs * keg->uk_ipers < items)
3135		slabs++;
3136	while (slabs > 0) {
3137		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3138		if (slab == NULL)
3139			break;
3140		MPASS(slab->us_keg == keg);
3141		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3142		slabs--;
3143	}
3144	KEG_UNLOCK(keg);
3145}
3146
3147/* See uma.h */
3148uint32_t *
3149uma_find_refcnt(uma_zone_t zone, void *item)
3150{
3151	uma_slabrefcnt_t slabref;
3152	uma_slab_t slab;
3153	uma_keg_t keg;
3154	uint32_t *refcnt;
3155	int idx;
3156
3157	slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK));
3158	slabref = (uma_slabrefcnt_t)slab;
3159	keg = slab->us_keg;
3160	KASSERT(keg->uk_flags & UMA_ZONE_REFCNT,
3161	    ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
3162	idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3163	refcnt = &slabref->us_refcnt[idx];
3164	return refcnt;
3165}
3166
3167/* See uma.h */
3168void
3169uma_reclaim(void)
3170{
3171#ifdef UMA_DEBUG
3172	printf("UMA: vm asked us to release pages!\n");
3173#endif
3174	bucket_enable();
3175	zone_foreach(zone_drain);
3176	if (vm_page_count_min()) {
3177		cache_drain_safe(NULL);
3178		zone_foreach(zone_drain);
3179	}
3180	/*
3181	 * Some slabs may have been freed but this zone will be visited early
3182	 * we visit again so that we can free pages that are empty once other
3183	 * zones are drained.  We have to do the same for buckets.
3184	 */
3185	zone_drain(slabzone);
3186	zone_drain(slabrefzone);
3187	bucket_zone_drain();
3188}
3189
3190/* See uma.h */
3191int
3192uma_zone_exhausted(uma_zone_t zone)
3193{
3194	int full;
3195
3196	ZONE_LOCK(zone);
3197	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3198	ZONE_UNLOCK(zone);
3199	return (full);
3200}
3201
3202int
3203uma_zone_exhausted_nolock(uma_zone_t zone)
3204{
3205	return (zone->uz_flags & UMA_ZFLAG_FULL);
3206}
3207
3208void *
3209uma_large_malloc(int size, int wait)
3210{
3211	void *mem;
3212	uma_slab_t slab;
3213	uint8_t flags;
3214
3215	slab = zone_alloc_item(slabzone, NULL, wait);
3216	if (slab == NULL)
3217		return (NULL);
3218	mem = page_alloc(NULL, size, &flags, wait);
3219	if (mem) {
3220		vsetslab((vm_offset_t)mem, slab);
3221		slab->us_data = mem;
3222		slab->us_flags = flags | UMA_SLAB_MALLOC;
3223		slab->us_size = size;
3224	} else {
3225		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3226	}
3227
3228	return (mem);
3229}
3230
3231void
3232uma_large_free(uma_slab_t slab)
3233{
3234
3235	page_free(slab->us_data, slab->us_size, slab->us_flags);
3236	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3237}
3238
3239static void
3240uma_zero_item(void *item, uma_zone_t zone)
3241{
3242
3243	if (zone->uz_flags & UMA_ZONE_PCPU) {
3244		for (int i = 0; i < mp_ncpus; i++)
3245			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
3246	} else
3247		bzero(item, zone->uz_size);
3248}
3249
3250void
3251uma_print_stats(void)
3252{
3253	zone_foreach(uma_print_zone);
3254}
3255
3256static void
3257slab_print(uma_slab_t slab)
3258{
3259	printf("slab: keg %p, data %p, freecount %d\n",
3260		slab->us_keg, slab->us_data, slab->us_freecount);
3261}
3262
3263static void
3264cache_print(uma_cache_t cache)
3265{
3266	printf("alloc: %p(%d), free: %p(%d)\n",
3267		cache->uc_allocbucket,
3268		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3269		cache->uc_freebucket,
3270		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3271}
3272
3273static void
3274uma_print_keg(uma_keg_t keg)
3275{
3276	uma_slab_t slab;
3277
3278	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3279	    "out %d free %d limit %d\n",
3280	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3281	    keg->uk_ipers, keg->uk_ppera,
3282	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3283	    (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3284	printf("Part slabs:\n");
3285	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3286		slab_print(slab);
3287	printf("Free slabs:\n");
3288	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3289		slab_print(slab);
3290	printf("Full slabs:\n");
3291	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3292		slab_print(slab);
3293}
3294
3295void
3296uma_print_zone(uma_zone_t zone)
3297{
3298	uma_cache_t cache;
3299	uma_klink_t kl;
3300	int i;
3301
3302	printf("zone: %s(%p) size %d flags %#x\n",
3303	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3304	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3305		uma_print_keg(kl->kl_keg);
3306	CPU_FOREACH(i) {
3307		cache = &zone->uz_cpu[i];
3308		printf("CPU %d Cache:\n", i);
3309		cache_print(cache);
3310	}
3311}
3312
3313#ifdef DDB
3314/*
3315 * Generate statistics across both the zone and its per-cpu cache's.  Return
3316 * desired statistics if the pointer is non-NULL for that statistic.
3317 *
3318 * Note: does not update the zone statistics, as it can't safely clear the
3319 * per-CPU cache statistic.
3320 *
3321 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3322 * safe from off-CPU; we should modify the caches to track this information
3323 * directly so that we don't have to.
3324 */
3325static void
3326uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3327    uint64_t *freesp, uint64_t *sleepsp)
3328{
3329	uma_cache_t cache;
3330	uint64_t allocs, frees, sleeps;
3331	int cachefree, cpu;
3332
3333	allocs = frees = sleeps = 0;
3334	cachefree = 0;
3335	CPU_FOREACH(cpu) {
3336		cache = &z->uz_cpu[cpu];
3337		if (cache->uc_allocbucket != NULL)
3338			cachefree += cache->uc_allocbucket->ub_cnt;
3339		if (cache->uc_freebucket != NULL)
3340			cachefree += cache->uc_freebucket->ub_cnt;
3341		allocs += cache->uc_allocs;
3342		frees += cache->uc_frees;
3343	}
3344	allocs += z->uz_allocs;
3345	frees += z->uz_frees;
3346	sleeps += z->uz_sleeps;
3347	if (cachefreep != NULL)
3348		*cachefreep = cachefree;
3349	if (allocsp != NULL)
3350		*allocsp = allocs;
3351	if (freesp != NULL)
3352		*freesp = frees;
3353	if (sleepsp != NULL)
3354		*sleepsp = sleeps;
3355}
3356#endif /* DDB */
3357
3358static int
3359sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3360{
3361	uma_keg_t kz;
3362	uma_zone_t z;
3363	int count;
3364
3365	count = 0;
3366	rw_rlock(&uma_rwlock);
3367	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3368		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3369			count++;
3370	}
3371	rw_runlock(&uma_rwlock);
3372	return (sysctl_handle_int(oidp, &count, 0, req));
3373}
3374
3375static int
3376sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3377{
3378	struct uma_stream_header ush;
3379	struct uma_type_header uth;
3380	struct uma_percpu_stat ups;
3381	uma_bucket_t bucket;
3382	struct sbuf sbuf;
3383	uma_cache_t cache;
3384	uma_klink_t kl;
3385	uma_keg_t kz;
3386	uma_zone_t z;
3387	uma_keg_t k;
3388	int count, error, i;
3389
3390	error = sysctl_wire_old_buffer(req, 0);
3391	if (error != 0)
3392		return (error);
3393	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3394
3395	count = 0;
3396	rw_rlock(&uma_rwlock);
3397	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3398		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3399			count++;
3400	}
3401
3402	/*
3403	 * Insert stream header.
3404	 */
3405	bzero(&ush, sizeof(ush));
3406	ush.ush_version = UMA_STREAM_VERSION;
3407	ush.ush_maxcpus = (mp_maxid + 1);
3408	ush.ush_count = count;
3409	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3410
3411	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3412		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3413			bzero(&uth, sizeof(uth));
3414			ZONE_LOCK(z);
3415			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3416			uth.uth_align = kz->uk_align;
3417			uth.uth_size = kz->uk_size;
3418			uth.uth_rsize = kz->uk_rsize;
3419			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3420				k = kl->kl_keg;
3421				uth.uth_maxpages += k->uk_maxpages;
3422				uth.uth_pages += k->uk_pages;
3423				uth.uth_keg_free += k->uk_free;
3424				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3425				    * k->uk_ipers;
3426			}
3427
3428			/*
3429			 * A zone is secondary is it is not the first entry
3430			 * on the keg's zone list.
3431			 */
3432			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3433			    (LIST_FIRST(&kz->uk_zones) != z))
3434				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3435
3436			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3437				uth.uth_zone_free += bucket->ub_cnt;
3438			uth.uth_allocs = z->uz_allocs;
3439			uth.uth_frees = z->uz_frees;
3440			uth.uth_fails = z->uz_fails;
3441			uth.uth_sleeps = z->uz_sleeps;
3442			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3443			/*
3444			 * While it is not normally safe to access the cache
3445			 * bucket pointers while not on the CPU that owns the
3446			 * cache, we only allow the pointers to be exchanged
3447			 * without the zone lock held, not invalidated, so
3448			 * accept the possible race associated with bucket
3449			 * exchange during monitoring.
3450			 */
3451			for (i = 0; i < (mp_maxid + 1); i++) {
3452				bzero(&ups, sizeof(ups));
3453				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3454					goto skip;
3455				if (CPU_ABSENT(i))
3456					goto skip;
3457				cache = &z->uz_cpu[i];
3458				if (cache->uc_allocbucket != NULL)
3459					ups.ups_cache_free +=
3460					    cache->uc_allocbucket->ub_cnt;
3461				if (cache->uc_freebucket != NULL)
3462					ups.ups_cache_free +=
3463					    cache->uc_freebucket->ub_cnt;
3464				ups.ups_allocs = cache->uc_allocs;
3465				ups.ups_frees = cache->uc_frees;
3466skip:
3467				(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3468			}
3469			ZONE_UNLOCK(z);
3470		}
3471	}
3472	rw_runlock(&uma_rwlock);
3473	error = sbuf_finish(&sbuf);
3474	sbuf_delete(&sbuf);
3475	return (error);
3476}
3477
3478int
3479sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
3480{
3481	uma_zone_t zone = *(uma_zone_t *)arg1;
3482	int error, max, old;
3483
3484	old = max = uma_zone_get_max(zone);
3485	error = sysctl_handle_int(oidp, &max, 0, req);
3486	if (error || !req->newptr)
3487		return (error);
3488
3489	if (max < old)
3490		return (EINVAL);
3491
3492	uma_zone_set_max(zone, max);
3493
3494	return (0);
3495}
3496
3497int
3498sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
3499{
3500	uma_zone_t zone = *(uma_zone_t *)arg1;
3501	int cur;
3502
3503	cur = uma_zone_get_cur(zone);
3504	return (sysctl_handle_int(oidp, &cur, 0, req));
3505}
3506
3507#ifdef DDB
3508DB_SHOW_COMMAND(uma, db_show_uma)
3509{
3510	uint64_t allocs, frees, sleeps;
3511	uma_bucket_t bucket;
3512	uma_keg_t kz;
3513	uma_zone_t z;
3514	int cachefree;
3515
3516	db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
3517	    "Free", "Requests", "Sleeps", "Bucket");
3518	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3519		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3520			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3521				allocs = z->uz_allocs;
3522				frees = z->uz_frees;
3523				sleeps = z->uz_sleeps;
3524				cachefree = 0;
3525			} else
3526				uma_zone_sumstat(z, &cachefree, &allocs,
3527				    &frees, &sleeps);
3528			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3529			    (LIST_FIRST(&kz->uk_zones) != z)))
3530				cachefree += kz->uk_free;
3531			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3532				cachefree += bucket->ub_cnt;
3533			db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
3534			    z->uz_name, (uintmax_t)kz->uk_size,
3535			    (intmax_t)(allocs - frees), cachefree,
3536			    (uintmax_t)allocs, sleeps, z->uz_count);
3537			if (db_pager_quit)
3538				return;
3539		}
3540	}
3541}
3542
3543DB_SHOW_COMMAND(umacache, db_show_umacache)
3544{
3545	uint64_t allocs, frees;
3546	uma_bucket_t bucket;
3547	uma_zone_t z;
3548	int cachefree;
3549
3550	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3551	    "Requests", "Bucket");
3552	LIST_FOREACH(z, &uma_cachezones, uz_link) {
3553		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
3554		LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3555			cachefree += bucket->ub_cnt;
3556		db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
3557		    z->uz_name, (uintmax_t)z->uz_size,
3558		    (intmax_t)(allocs - frees), cachefree,
3559		    (uintmax_t)allocs, z->uz_count);
3560		if (db_pager_quit)
3561			return;
3562	}
3563}
3564#endif
3565