uma_core.c revision 267751
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * effecient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/10/sys/vm/uma_core.c 267751 2014-06-22 21:19:19Z mav $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/kernel.h>
68#include <sys/types.h>
69#include <sys/queue.h>
70#include <sys/malloc.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/sysctl.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/rwlock.h>
77#include <sys/sbuf.h>
78#include <sys/sched.h>
79#include <sys/smp.h>
80#include <sys/vmmeter.h>
81
82#include <vm/vm.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_param.h>
87#include <vm/vm_map.h>
88#include <vm/vm_kern.h>
89#include <vm/vm_extern.h>
90#include <vm/uma.h>
91#include <vm/uma_int.h>
92#include <vm/uma_dbg.h>
93
94#include <ddb/ddb.h>
95
96#ifdef DEBUG_MEMGUARD
97#include <vm/memguard.h>
98#endif
99
100/*
101 * This is the zone and keg from which all zones are spawned.  The idea is that
102 * even the zone & keg heads are allocated from the allocator, so we use the
103 * bss section to bootstrap us.
104 */
105static struct uma_keg masterkeg;
106static struct uma_zone masterzone_k;
107static struct uma_zone masterzone_z;
108static uma_zone_t kegs = &masterzone_k;
109static uma_zone_t zones = &masterzone_z;
110
111/* This is the zone from which all of uma_slab_t's are allocated. */
112static uma_zone_t slabzone;
113static uma_zone_t slabrefzone;	/* With refcounters (for UMA_ZONE_REFCNT) */
114
115/*
116 * The initial hash tables come out of this zone so they can be allocated
117 * prior to malloc coming up.
118 */
119static uma_zone_t hashzone;
120
121/* The boot-time adjusted value for cache line alignment. */
122int uma_align_cache = 64 - 1;
123
124static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
125
126/*
127 * Are we allowed to allocate buckets?
128 */
129static int bucketdisable = 1;
130
131/* Linked list of all kegs in the system */
132static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
133
134/* Linked list of all cache-only zones in the system */
135static LIST_HEAD(,uma_zone) uma_cachezones =
136    LIST_HEAD_INITIALIZER(uma_cachezones);
137
138/* This mutex protects the keg list */
139static struct mtx_padalign uma_mtx;
140
141/* Linked list of boot time pages */
142static LIST_HEAD(,uma_slab) uma_boot_pages =
143    LIST_HEAD_INITIALIZER(uma_boot_pages);
144
145/* This mutex protects the boot time pages list */
146static struct mtx_padalign uma_boot_pages_mtx;
147
148/* Is the VM done starting up? */
149static int booted = 0;
150#define	UMA_STARTUP	1
151#define	UMA_STARTUP2	2
152
153/*
154 * Only mbuf clusters use ref zones.  Just provide enough references
155 * to support the one user.  New code should not use the ref facility.
156 */
157static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES;
158
159/*
160 * This is the handle used to schedule events that need to happen
161 * outside of the allocation fast path.
162 */
163static struct callout uma_callout;
164#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
165
166/*
167 * This structure is passed as the zone ctor arg so that I don't have to create
168 * a special allocation function just for zones.
169 */
170struct uma_zctor_args {
171	const char *name;
172	size_t size;
173	uma_ctor ctor;
174	uma_dtor dtor;
175	uma_init uminit;
176	uma_fini fini;
177	uma_import import;
178	uma_release release;
179	void *arg;
180	uma_keg_t keg;
181	int align;
182	uint32_t flags;
183};
184
185struct uma_kctor_args {
186	uma_zone_t zone;
187	size_t size;
188	uma_init uminit;
189	uma_fini fini;
190	int align;
191	uint32_t flags;
192};
193
194struct uma_bucket_zone {
195	uma_zone_t	ubz_zone;
196	char		*ubz_name;
197	int		ubz_entries;	/* Number of items it can hold. */
198	int		ubz_maxsize;	/* Maximum allocation size per-item. */
199};
200
201/*
202 * Compute the actual number of bucket entries to pack them in power
203 * of two sizes for more efficient space utilization.
204 */
205#define	BUCKET_SIZE(n)						\
206    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
207
208#define	BUCKET_MAX	BUCKET_SIZE(256)
209
210struct uma_bucket_zone bucket_zones[] = {
211	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
212	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
213	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
214	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
215	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
216	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
217	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
218	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
219	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
220	{ NULL, NULL, 0}
221};
222
223/*
224 * Flags and enumerations to be passed to internal functions.
225 */
226enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
227
228/* Prototypes.. */
229
230static void *noobj_alloc(uma_zone_t, int, uint8_t *, int);
231static void *page_alloc(uma_zone_t, int, uint8_t *, int);
232static void *startup_alloc(uma_zone_t, int, uint8_t *, int);
233static void page_free(void *, int, uint8_t);
234static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
235static void cache_drain(uma_zone_t);
236static void bucket_drain(uma_zone_t, uma_bucket_t);
237static void bucket_cache_drain(uma_zone_t zone);
238static int keg_ctor(void *, int, void *, int);
239static void keg_dtor(void *, int, void *);
240static int zone_ctor(void *, int, void *, int);
241static void zone_dtor(void *, int, void *);
242static int zero_init(void *, int, int);
243static void keg_small_init(uma_keg_t keg);
244static void keg_large_init(uma_keg_t keg);
245static void zone_foreach(void (*zfunc)(uma_zone_t));
246static void zone_timeout(uma_zone_t zone);
247static int hash_alloc(struct uma_hash *);
248static int hash_expand(struct uma_hash *, struct uma_hash *);
249static void hash_free(struct uma_hash *hash);
250static void uma_timeout(void *);
251static void uma_startup3(void);
252static void *zone_alloc_item(uma_zone_t, void *, int);
253static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
254static void bucket_enable(void);
255static void bucket_init(void);
256static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
257static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
258static void bucket_zone_drain(void);
259static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
260static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
261static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
262static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
263static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
264static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
265    uma_fini fini, int align, uint32_t flags);
266static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
267static void zone_release(uma_zone_t zone, void **bucket, int cnt);
268static void uma_zero_item(void *item, uma_zone_t zone);
269
270void uma_print_zone(uma_zone_t);
271void uma_print_stats(void);
272static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
273static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
274
275SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
276
277SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
278    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
279
280SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
281    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
282
283static int zone_warnings = 1;
284TUNABLE_INT("vm.zone_warnings", &zone_warnings);
285SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0,
286    "Warn when UMA zones becomes full");
287
288/*
289 * This routine checks to see whether or not it's safe to enable buckets.
290 */
291static void
292bucket_enable(void)
293{
294	bucketdisable = vm_page_count_min();
295}
296
297/*
298 * Initialize bucket_zones, the array of zones of buckets of various sizes.
299 *
300 * For each zone, calculate the memory required for each bucket, consisting
301 * of the header and an array of pointers.
302 */
303static void
304bucket_init(void)
305{
306	struct uma_bucket_zone *ubz;
307	int size;
308	int i;
309
310	for (i = 0, ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
311		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
312		size += sizeof(void *) * ubz->ubz_entries;
313		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
314		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
315		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
316	}
317}
318
319/*
320 * Given a desired number of entries for a bucket, return the zone from which
321 * to allocate the bucket.
322 */
323static struct uma_bucket_zone *
324bucket_zone_lookup(int entries)
325{
326	struct uma_bucket_zone *ubz;
327
328	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
329		if (ubz->ubz_entries >= entries)
330			return (ubz);
331	ubz--;
332	return (ubz);
333}
334
335static int
336bucket_select(int size)
337{
338	struct uma_bucket_zone *ubz;
339
340	ubz = &bucket_zones[0];
341	if (size > ubz->ubz_maxsize)
342		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
343
344	for (; ubz->ubz_entries != 0; ubz++)
345		if (ubz->ubz_maxsize < size)
346			break;
347	ubz--;
348	return (ubz->ubz_entries);
349}
350
351static uma_bucket_t
352bucket_alloc(uma_zone_t zone, void *udata, int flags)
353{
354	struct uma_bucket_zone *ubz;
355	uma_bucket_t bucket;
356
357	/*
358	 * This is to stop us from allocating per cpu buckets while we're
359	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
360	 * boot pages.  This also prevents us from allocating buckets in
361	 * low memory situations.
362	 */
363	if (bucketdisable)
364		return (NULL);
365	/*
366	 * To limit bucket recursion we store the original zone flags
367	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
368	 * NOVM flag to persist even through deep recursions.  We also
369	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
370	 * a bucket for a bucket zone so we do not allow infinite bucket
371	 * recursion.  This cookie will even persist to frees of unused
372	 * buckets via the allocation path or bucket allocations in the
373	 * free path.
374	 */
375	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
376		udata = (void *)(uintptr_t)zone->uz_flags;
377	else {
378		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
379			return (NULL);
380		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
381	}
382	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
383		flags |= M_NOVM;
384	ubz = bucket_zone_lookup(zone->uz_count);
385	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
386		ubz++;
387	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
388	if (bucket) {
389#ifdef INVARIANTS
390		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
391#endif
392		bucket->ub_cnt = 0;
393		bucket->ub_entries = ubz->ubz_entries;
394	}
395
396	return (bucket);
397}
398
399static void
400bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
401{
402	struct uma_bucket_zone *ubz;
403
404	KASSERT(bucket->ub_cnt == 0,
405	    ("bucket_free: Freeing a non free bucket."));
406	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
407		udata = (void *)(uintptr_t)zone->uz_flags;
408	ubz = bucket_zone_lookup(bucket->ub_entries);
409	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
410}
411
412static void
413bucket_zone_drain(void)
414{
415	struct uma_bucket_zone *ubz;
416
417	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
418		zone_drain(ubz->ubz_zone);
419}
420
421static void
422zone_log_warning(uma_zone_t zone)
423{
424	static const struct timeval warninterval = { 300, 0 };
425
426	if (!zone_warnings || zone->uz_warning == NULL)
427		return;
428
429	if (ratecheck(&zone->uz_ratecheck, &warninterval))
430		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
431}
432
433static void
434zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
435{
436	uma_klink_t klink;
437
438	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
439		kegfn(klink->kl_keg);
440}
441
442/*
443 * Routine called by timeout which is used to fire off some time interval
444 * based calculations.  (stats, hash size, etc.)
445 *
446 * Arguments:
447 *	arg   Unused
448 *
449 * Returns:
450 *	Nothing
451 */
452static void
453uma_timeout(void *unused)
454{
455	bucket_enable();
456	zone_foreach(zone_timeout);
457
458	/* Reschedule this event */
459	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
460}
461
462/*
463 * Routine to perform timeout driven calculations.  This expands the
464 * hashes and does per cpu statistics aggregation.
465 *
466 *  Returns nothing.
467 */
468static void
469keg_timeout(uma_keg_t keg)
470{
471
472	KEG_LOCK(keg);
473	/*
474	 * Expand the keg hash table.
475	 *
476	 * This is done if the number of slabs is larger than the hash size.
477	 * What I'm trying to do here is completely reduce collisions.  This
478	 * may be a little aggressive.  Should I allow for two collisions max?
479	 */
480	if (keg->uk_flags & UMA_ZONE_HASH &&
481	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
482		struct uma_hash newhash;
483		struct uma_hash oldhash;
484		int ret;
485
486		/*
487		 * This is so involved because allocating and freeing
488		 * while the keg lock is held will lead to deadlock.
489		 * I have to do everything in stages and check for
490		 * races.
491		 */
492		newhash = keg->uk_hash;
493		KEG_UNLOCK(keg);
494		ret = hash_alloc(&newhash);
495		KEG_LOCK(keg);
496		if (ret) {
497			if (hash_expand(&keg->uk_hash, &newhash)) {
498				oldhash = keg->uk_hash;
499				keg->uk_hash = newhash;
500			} else
501				oldhash = newhash;
502
503			KEG_UNLOCK(keg);
504			hash_free(&oldhash);
505			return;
506		}
507	}
508	KEG_UNLOCK(keg);
509}
510
511static void
512zone_timeout(uma_zone_t zone)
513{
514
515	zone_foreach_keg(zone, &keg_timeout);
516}
517
518/*
519 * Allocate and zero fill the next sized hash table from the appropriate
520 * backing store.
521 *
522 * Arguments:
523 *	hash  A new hash structure with the old hash size in uh_hashsize
524 *
525 * Returns:
526 *	1 on sucess and 0 on failure.
527 */
528static int
529hash_alloc(struct uma_hash *hash)
530{
531	int oldsize;
532	int alloc;
533
534	oldsize = hash->uh_hashsize;
535
536	/* We're just going to go to a power of two greater */
537	if (oldsize)  {
538		hash->uh_hashsize = oldsize * 2;
539		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
540		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
541		    M_UMAHASH, M_NOWAIT);
542	} else {
543		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
544		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
545		    M_WAITOK);
546		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
547	}
548	if (hash->uh_slab_hash) {
549		bzero(hash->uh_slab_hash, alloc);
550		hash->uh_hashmask = hash->uh_hashsize - 1;
551		return (1);
552	}
553
554	return (0);
555}
556
557/*
558 * Expands the hash table for HASH zones.  This is done from zone_timeout
559 * to reduce collisions.  This must not be done in the regular allocation
560 * path, otherwise, we can recurse on the vm while allocating pages.
561 *
562 * Arguments:
563 *	oldhash  The hash you want to expand
564 *	newhash  The hash structure for the new table
565 *
566 * Returns:
567 *	Nothing
568 *
569 * Discussion:
570 */
571static int
572hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
573{
574	uma_slab_t slab;
575	int hval;
576	int i;
577
578	if (!newhash->uh_slab_hash)
579		return (0);
580
581	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
582		return (0);
583
584	/*
585	 * I need to investigate hash algorithms for resizing without a
586	 * full rehash.
587	 */
588
589	for (i = 0; i < oldhash->uh_hashsize; i++)
590		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
591			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
592			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
593			hval = UMA_HASH(newhash, slab->us_data);
594			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
595			    slab, us_hlink);
596		}
597
598	return (1);
599}
600
601/*
602 * Free the hash bucket to the appropriate backing store.
603 *
604 * Arguments:
605 *	slab_hash  The hash bucket we're freeing
606 *	hashsize   The number of entries in that hash bucket
607 *
608 * Returns:
609 *	Nothing
610 */
611static void
612hash_free(struct uma_hash *hash)
613{
614	if (hash->uh_slab_hash == NULL)
615		return;
616	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
617		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
618	else
619		free(hash->uh_slab_hash, M_UMAHASH);
620}
621
622/*
623 * Frees all outstanding items in a bucket
624 *
625 * Arguments:
626 *	zone   The zone to free to, must be unlocked.
627 *	bucket The free/alloc bucket with items, cpu queue must be locked.
628 *
629 * Returns:
630 *	Nothing
631 */
632
633static void
634bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
635{
636	int i;
637
638	if (bucket == NULL)
639		return;
640
641	if (zone->uz_fini)
642		for (i = 0; i < bucket->ub_cnt; i++)
643			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
644	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
645	bucket->ub_cnt = 0;
646}
647
648/*
649 * Drains the per cpu caches for a zone.
650 *
651 * NOTE: This may only be called while the zone is being turn down, and not
652 * during normal operation.  This is necessary in order that we do not have
653 * to migrate CPUs to drain the per-CPU caches.
654 *
655 * Arguments:
656 *	zone     The zone to drain, must be unlocked.
657 *
658 * Returns:
659 *	Nothing
660 */
661static void
662cache_drain(uma_zone_t zone)
663{
664	uma_cache_t cache;
665	int cpu;
666
667	/*
668	 * XXX: It is safe to not lock the per-CPU caches, because we're
669	 * tearing down the zone anyway.  I.e., there will be no further use
670	 * of the caches at this point.
671	 *
672	 * XXX: It would good to be able to assert that the zone is being
673	 * torn down to prevent improper use of cache_drain().
674	 *
675	 * XXX: We lock the zone before passing into bucket_cache_drain() as
676	 * it is used elsewhere.  Should the tear-down path be made special
677	 * there in some form?
678	 */
679	CPU_FOREACH(cpu) {
680		cache = &zone->uz_cpu[cpu];
681		bucket_drain(zone, cache->uc_allocbucket);
682		bucket_drain(zone, cache->uc_freebucket);
683		if (cache->uc_allocbucket != NULL)
684			bucket_free(zone, cache->uc_allocbucket, NULL);
685		if (cache->uc_freebucket != NULL)
686			bucket_free(zone, cache->uc_freebucket, NULL);
687		cache->uc_allocbucket = cache->uc_freebucket = NULL;
688	}
689	ZONE_LOCK(zone);
690	bucket_cache_drain(zone);
691	ZONE_UNLOCK(zone);
692}
693
694static void
695cache_shrink(uma_zone_t zone)
696{
697
698	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
699		return;
700
701	ZONE_LOCK(zone);
702	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
703	ZONE_UNLOCK(zone);
704}
705
706static void
707cache_drain_safe_cpu(uma_zone_t zone)
708{
709	uma_cache_t cache;
710	uma_bucket_t b1, b2;
711
712	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
713		return;
714
715	b1 = b2 = NULL;
716	ZONE_LOCK(zone);
717	critical_enter();
718	cache = &zone->uz_cpu[curcpu];
719	if (cache->uc_allocbucket) {
720		if (cache->uc_allocbucket->ub_cnt != 0)
721			LIST_INSERT_HEAD(&zone->uz_buckets,
722			    cache->uc_allocbucket, ub_link);
723		else
724			b1 = cache->uc_allocbucket;
725		cache->uc_allocbucket = NULL;
726	}
727	if (cache->uc_freebucket) {
728		if (cache->uc_freebucket->ub_cnt != 0)
729			LIST_INSERT_HEAD(&zone->uz_buckets,
730			    cache->uc_freebucket, ub_link);
731		else
732			b2 = cache->uc_freebucket;
733		cache->uc_freebucket = NULL;
734	}
735	critical_exit();
736	ZONE_UNLOCK(zone);
737	if (b1)
738		bucket_free(zone, b1, NULL);
739	if (b2)
740		bucket_free(zone, b2, NULL);
741}
742
743/*
744 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
745 * This is an expensive call because it needs to bind to all CPUs
746 * one by one and enter a critical section on each of them in order
747 * to safely access their cache buckets.
748 * Zone lock must not be held on call this function.
749 */
750static void
751cache_drain_safe(uma_zone_t zone)
752{
753	int cpu;
754
755	/*
756	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
757	 */
758	if (zone)
759		cache_shrink(zone);
760	else
761		zone_foreach(cache_shrink);
762
763	CPU_FOREACH(cpu) {
764		thread_lock(curthread);
765		sched_bind(curthread, cpu);
766		thread_unlock(curthread);
767
768		if (zone)
769			cache_drain_safe_cpu(zone);
770		else
771			zone_foreach(cache_drain_safe_cpu);
772	}
773	thread_lock(curthread);
774	sched_unbind(curthread);
775	thread_unlock(curthread);
776}
777
778/*
779 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
780 */
781static void
782bucket_cache_drain(uma_zone_t zone)
783{
784	uma_bucket_t bucket;
785
786	/*
787	 * Drain the bucket queues and free the buckets, we just keep two per
788	 * cpu (alloc/free).
789	 */
790	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
791		LIST_REMOVE(bucket, ub_link);
792		ZONE_UNLOCK(zone);
793		bucket_drain(zone, bucket);
794		bucket_free(zone, bucket, NULL);
795		ZONE_LOCK(zone);
796	}
797
798	/*
799	 * Shrink further bucket sizes.  Price of single zone lock collision
800	 * is probably lower then price of global cache drain.
801	 */
802	if (zone->uz_count > zone->uz_count_min)
803		zone->uz_count--;
804}
805
806static void
807keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
808{
809	uint8_t *mem;
810	int i;
811	uint8_t flags;
812
813	mem = slab->us_data;
814	flags = slab->us_flags;
815	i = start;
816	if (keg->uk_fini != NULL) {
817		for (i--; i > -1; i--)
818			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
819			    keg->uk_size);
820	}
821	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
822		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
823#ifdef UMA_DEBUG
824	printf("%s: Returning %d bytes.\n", keg->uk_name,
825	    PAGE_SIZE * keg->uk_ppera);
826#endif
827	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
828}
829
830/*
831 * Frees pages from a keg back to the system.  This is done on demand from
832 * the pageout daemon.
833 *
834 * Returns nothing.
835 */
836static void
837keg_drain(uma_keg_t keg)
838{
839	struct slabhead freeslabs = { 0 };
840	uma_slab_t slab;
841	uma_slab_t n;
842
843	/*
844	 * We don't want to take pages from statically allocated kegs at this
845	 * time
846	 */
847	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
848		return;
849
850#ifdef UMA_DEBUG
851	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
852#endif
853	KEG_LOCK(keg);
854	if (keg->uk_free == 0)
855		goto finished;
856
857	slab = LIST_FIRST(&keg->uk_free_slab);
858	while (slab) {
859		n = LIST_NEXT(slab, us_link);
860
861		/* We have no where to free these to */
862		if (slab->us_flags & UMA_SLAB_BOOT) {
863			slab = n;
864			continue;
865		}
866
867		LIST_REMOVE(slab, us_link);
868		keg->uk_pages -= keg->uk_ppera;
869		keg->uk_free -= keg->uk_ipers;
870
871		if (keg->uk_flags & UMA_ZONE_HASH)
872			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
873
874		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
875
876		slab = n;
877	}
878finished:
879	KEG_UNLOCK(keg);
880
881	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
882		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
883		keg_free_slab(keg, slab, keg->uk_ipers);
884	}
885}
886
887static void
888zone_drain_wait(uma_zone_t zone, int waitok)
889{
890
891	/*
892	 * Set draining to interlock with zone_dtor() so we can release our
893	 * locks as we go.  Only dtor() should do a WAITOK call since it
894	 * is the only call that knows the structure will still be available
895	 * when it wakes up.
896	 */
897	ZONE_LOCK(zone);
898	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
899		if (waitok == M_NOWAIT)
900			goto out;
901		mtx_unlock(&uma_mtx);
902		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
903		mtx_lock(&uma_mtx);
904	}
905	zone->uz_flags |= UMA_ZFLAG_DRAINING;
906	bucket_cache_drain(zone);
907	ZONE_UNLOCK(zone);
908	/*
909	 * The DRAINING flag protects us from being freed while
910	 * we're running.  Normally the uma_mtx would protect us but we
911	 * must be able to release and acquire the right lock for each keg.
912	 */
913	zone_foreach_keg(zone, &keg_drain);
914	ZONE_LOCK(zone);
915	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
916	wakeup(zone);
917out:
918	ZONE_UNLOCK(zone);
919}
920
921void
922zone_drain(uma_zone_t zone)
923{
924
925	zone_drain_wait(zone, M_NOWAIT);
926}
927
928/*
929 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
930 *
931 * Arguments:
932 *	wait  Shall we wait?
933 *
934 * Returns:
935 *	The slab that was allocated or NULL if there is no memory and the
936 *	caller specified M_NOWAIT.
937 */
938static uma_slab_t
939keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
940{
941	uma_slabrefcnt_t slabref;
942	uma_alloc allocf;
943	uma_slab_t slab;
944	uint8_t *mem;
945	uint8_t flags;
946	int i;
947
948	mtx_assert(&keg->uk_lock, MA_OWNED);
949	slab = NULL;
950	mem = NULL;
951
952#ifdef UMA_DEBUG
953	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
954#endif
955	allocf = keg->uk_allocf;
956	KEG_UNLOCK(keg);
957
958	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
959		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
960		if (slab == NULL)
961			goto out;
962	}
963
964	/*
965	 * This reproduces the old vm_zone behavior of zero filling pages the
966	 * first time they are added to a zone.
967	 *
968	 * Malloced items are zeroed in uma_zalloc.
969	 */
970
971	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
972		wait |= M_ZERO;
973	else
974		wait &= ~M_ZERO;
975
976	if (keg->uk_flags & UMA_ZONE_NODUMP)
977		wait |= M_NODUMP;
978
979	/* zone is passed for legacy reasons. */
980	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
981	if (mem == NULL) {
982		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
983			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
984		slab = NULL;
985		goto out;
986	}
987
988	/* Point the slab into the allocated memory */
989	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
990		slab = (uma_slab_t )(mem + keg->uk_pgoff);
991
992	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
993		for (i = 0; i < keg->uk_ppera; i++)
994			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
995
996	slab->us_keg = keg;
997	slab->us_data = mem;
998	slab->us_freecount = keg->uk_ipers;
999	slab->us_flags = flags;
1000	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
1001#ifdef INVARIANTS
1002	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1003#endif
1004	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1005		slabref = (uma_slabrefcnt_t)slab;
1006		for (i = 0; i < keg->uk_ipers; i++)
1007			slabref->us_refcnt[i] = 0;
1008	}
1009
1010	if (keg->uk_init != NULL) {
1011		for (i = 0; i < keg->uk_ipers; i++)
1012			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1013			    keg->uk_size, wait) != 0)
1014				break;
1015		if (i != keg->uk_ipers) {
1016			keg_free_slab(keg, slab, i);
1017			slab = NULL;
1018			goto out;
1019		}
1020	}
1021out:
1022	KEG_LOCK(keg);
1023
1024	if (slab != NULL) {
1025		if (keg->uk_flags & UMA_ZONE_HASH)
1026			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1027
1028		keg->uk_pages += keg->uk_ppera;
1029		keg->uk_free += keg->uk_ipers;
1030	}
1031
1032	return (slab);
1033}
1034
1035/*
1036 * This function is intended to be used early on in place of page_alloc() so
1037 * that we may use the boot time page cache to satisfy allocations before
1038 * the VM is ready.
1039 */
1040static void *
1041startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
1042{
1043	uma_keg_t keg;
1044	uma_slab_t tmps;
1045	int pages, check_pages;
1046
1047	keg = zone_first_keg(zone);
1048	pages = howmany(bytes, PAGE_SIZE);
1049	check_pages = pages - 1;
1050	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1051
1052	/*
1053	 * Check our small startup cache to see if it has pages remaining.
1054	 */
1055	mtx_lock(&uma_boot_pages_mtx);
1056
1057	/* First check if we have enough room. */
1058	tmps = LIST_FIRST(&uma_boot_pages);
1059	while (tmps != NULL && check_pages-- > 0)
1060		tmps = LIST_NEXT(tmps, us_link);
1061	if (tmps != NULL) {
1062		/*
1063		 * It's ok to lose tmps references.  The last one will
1064		 * have tmps->us_data pointing to the start address of
1065		 * "pages" contiguous pages of memory.
1066		 */
1067		while (pages-- > 0) {
1068			tmps = LIST_FIRST(&uma_boot_pages);
1069			LIST_REMOVE(tmps, us_link);
1070		}
1071		mtx_unlock(&uma_boot_pages_mtx);
1072		*pflag = tmps->us_flags;
1073		return (tmps->us_data);
1074	}
1075	mtx_unlock(&uma_boot_pages_mtx);
1076	if (booted < UMA_STARTUP2)
1077		panic("UMA: Increase vm.boot_pages");
1078	/*
1079	 * Now that we've booted reset these users to their real allocator.
1080	 */
1081#ifdef UMA_MD_SMALL_ALLOC
1082	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1083#else
1084	keg->uk_allocf = page_alloc;
1085#endif
1086	return keg->uk_allocf(zone, bytes, pflag, wait);
1087}
1088
1089/*
1090 * Allocates a number of pages from the system
1091 *
1092 * Arguments:
1093 *	bytes  The number of bytes requested
1094 *	wait  Shall we wait?
1095 *
1096 * Returns:
1097 *	A pointer to the alloced memory or possibly
1098 *	NULL if M_NOWAIT is set.
1099 */
1100static void *
1101page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
1102{
1103	void *p;	/* Returned page */
1104
1105	*pflag = UMA_SLAB_KMEM;
1106	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1107
1108	return (p);
1109}
1110
1111/*
1112 * Allocates a number of pages from within an object
1113 *
1114 * Arguments:
1115 *	bytes  The number of bytes requested
1116 *	wait   Shall we wait?
1117 *
1118 * Returns:
1119 *	A pointer to the alloced memory or possibly
1120 *	NULL if M_NOWAIT is set.
1121 */
1122static void *
1123noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait)
1124{
1125	TAILQ_HEAD(, vm_page) alloctail;
1126	u_long npages;
1127	vm_offset_t retkva, zkva;
1128	vm_page_t p, p_next;
1129	uma_keg_t keg;
1130
1131	TAILQ_INIT(&alloctail);
1132	keg = zone_first_keg(zone);
1133
1134	npages = howmany(bytes, PAGE_SIZE);
1135	while (npages > 0) {
1136		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1137		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1138		if (p != NULL) {
1139			/*
1140			 * Since the page does not belong to an object, its
1141			 * listq is unused.
1142			 */
1143			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1144			npages--;
1145			continue;
1146		}
1147		if (wait & M_WAITOK) {
1148			VM_WAIT;
1149			continue;
1150		}
1151
1152		/*
1153		 * Page allocation failed, free intermediate pages and
1154		 * exit.
1155		 */
1156		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1157			vm_page_unwire(p, 0);
1158			vm_page_free(p);
1159		}
1160		return (NULL);
1161	}
1162	*flags = UMA_SLAB_PRIV;
1163	zkva = keg->uk_kva +
1164	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1165	retkva = zkva;
1166	TAILQ_FOREACH(p, &alloctail, listq) {
1167		pmap_qenter(zkva, &p, 1);
1168		zkva += PAGE_SIZE;
1169	}
1170
1171	return ((void *)retkva);
1172}
1173
1174/*
1175 * Frees a number of pages to the system
1176 *
1177 * Arguments:
1178 *	mem   A pointer to the memory to be freed
1179 *	size  The size of the memory being freed
1180 *	flags The original p->us_flags field
1181 *
1182 * Returns:
1183 *	Nothing
1184 */
1185static void
1186page_free(void *mem, int size, uint8_t flags)
1187{
1188	struct vmem *vmem;
1189
1190	if (flags & UMA_SLAB_KMEM)
1191		vmem = kmem_arena;
1192	else if (flags & UMA_SLAB_KERNEL)
1193		vmem = kernel_arena;
1194	else
1195		panic("UMA: page_free used with invalid flags %d", flags);
1196
1197	kmem_free(vmem, (vm_offset_t)mem, size);
1198}
1199
1200/*
1201 * Zero fill initializer
1202 *
1203 * Arguments/Returns follow uma_init specifications
1204 */
1205static int
1206zero_init(void *mem, int size, int flags)
1207{
1208	bzero(mem, size);
1209	return (0);
1210}
1211
1212/*
1213 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1214 *
1215 * Arguments
1216 *	keg  The zone we should initialize
1217 *
1218 * Returns
1219 *	Nothing
1220 */
1221static void
1222keg_small_init(uma_keg_t keg)
1223{
1224	u_int rsize;
1225	u_int memused;
1226	u_int wastedspace;
1227	u_int shsize;
1228
1229	if (keg->uk_flags & UMA_ZONE_PCPU) {
1230		u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1231
1232		keg->uk_slabsize = sizeof(struct pcpu);
1233		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1234		    PAGE_SIZE);
1235	} else {
1236		keg->uk_slabsize = UMA_SLAB_SIZE;
1237		keg->uk_ppera = 1;
1238	}
1239
1240	/*
1241	 * Calculate the size of each allocation (rsize) according to
1242	 * alignment.  If the requested size is smaller than we have
1243	 * allocation bits for we round it up.
1244	 */
1245	rsize = keg->uk_size;
1246	if (rsize < keg->uk_slabsize / SLAB_SETSIZE)
1247		rsize = keg->uk_slabsize / SLAB_SETSIZE;
1248	if (rsize & keg->uk_align)
1249		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1250	keg->uk_rsize = rsize;
1251
1252	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1253	    keg->uk_rsize < sizeof(struct pcpu),
1254	    ("%s: size %u too large", __func__, keg->uk_rsize));
1255
1256	if (keg->uk_flags & UMA_ZONE_REFCNT)
1257		rsize += sizeof(uint32_t);
1258
1259	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1260		shsize = 0;
1261	else
1262		shsize = sizeof(struct uma_slab);
1263
1264	keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize;
1265	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1266	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1267
1268	memused = keg->uk_ipers * rsize + shsize;
1269	wastedspace = keg->uk_slabsize - memused;
1270
1271	/*
1272	 * We can't do OFFPAGE if we're internal or if we've been
1273	 * asked to not go to the VM for buckets.  If we do this we
1274	 * may end up going to the VM  for slabs which we do not
1275	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1276	 * of UMA_ZONE_VM, which clearly forbids it.
1277	 */
1278	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1279	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1280		return;
1281
1282	/*
1283	 * See if using an OFFPAGE slab will limit our waste.  Only do
1284	 * this if it permits more items per-slab.
1285	 *
1286	 * XXX We could try growing slabsize to limit max waste as well.
1287	 * Historically this was not done because the VM could not
1288	 * efficiently handle contiguous allocations.
1289	 */
1290	if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) &&
1291	    (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) {
1292		keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize;
1293		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1294		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1295#ifdef UMA_DEBUG
1296		printf("UMA decided we need offpage slab headers for "
1297		    "keg: %s, calculated wastedspace = %d, "
1298		    "maximum wasted space allowed = %d, "
1299		    "calculated ipers = %d, "
1300		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1301		    keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1302		    keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize);
1303#endif
1304		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1305	}
1306
1307	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1308	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1309		keg->uk_flags |= UMA_ZONE_HASH;
1310}
1311
1312/*
1313 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1314 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1315 * more complicated.
1316 *
1317 * Arguments
1318 *	keg  The keg we should initialize
1319 *
1320 * Returns
1321 *	Nothing
1322 */
1323static void
1324keg_large_init(uma_keg_t keg)
1325{
1326	u_int shsize;
1327
1328	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1329	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1330	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1331	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1332	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1333
1334	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1335	keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE;
1336	keg->uk_ipers = 1;
1337	keg->uk_rsize = keg->uk_size;
1338
1339	/* We can't do OFFPAGE if we're internal, bail out here. */
1340	if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
1341		return;
1342
1343	/* Check whether we have enough space to not do OFFPAGE. */
1344	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1345		shsize = sizeof(struct uma_slab);
1346		if (keg->uk_flags & UMA_ZONE_REFCNT)
1347			shsize += keg->uk_ipers * sizeof(uint32_t);
1348		if (shsize & UMA_ALIGN_PTR)
1349			shsize = (shsize & ~UMA_ALIGN_PTR) +
1350			    (UMA_ALIGN_PTR + 1);
1351
1352		if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize)
1353			keg->uk_flags |= UMA_ZONE_OFFPAGE;
1354	}
1355
1356	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1357	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1358		keg->uk_flags |= UMA_ZONE_HASH;
1359}
1360
1361static void
1362keg_cachespread_init(uma_keg_t keg)
1363{
1364	int alignsize;
1365	int trailer;
1366	int pages;
1367	int rsize;
1368
1369	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1370	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1371
1372	alignsize = keg->uk_align + 1;
1373	rsize = keg->uk_size;
1374	/*
1375	 * We want one item to start on every align boundary in a page.  To
1376	 * do this we will span pages.  We will also extend the item by the
1377	 * size of align if it is an even multiple of align.  Otherwise, it
1378	 * would fall on the same boundary every time.
1379	 */
1380	if (rsize & keg->uk_align)
1381		rsize = (rsize & ~keg->uk_align) + alignsize;
1382	if ((rsize & alignsize) == 0)
1383		rsize += alignsize;
1384	trailer = rsize - keg->uk_size;
1385	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1386	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1387	keg->uk_rsize = rsize;
1388	keg->uk_ppera = pages;
1389	keg->uk_slabsize = UMA_SLAB_SIZE;
1390	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1391	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1392	KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1393	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1394	    keg->uk_ipers));
1395}
1396
1397/*
1398 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1399 * the keg onto the global keg list.
1400 *
1401 * Arguments/Returns follow uma_ctor specifications
1402 *	udata  Actually uma_kctor_args
1403 */
1404static int
1405keg_ctor(void *mem, int size, void *udata, int flags)
1406{
1407	struct uma_kctor_args *arg = udata;
1408	uma_keg_t keg = mem;
1409	uma_zone_t zone;
1410
1411	bzero(keg, size);
1412	keg->uk_size = arg->size;
1413	keg->uk_init = arg->uminit;
1414	keg->uk_fini = arg->fini;
1415	keg->uk_align = arg->align;
1416	keg->uk_free = 0;
1417	keg->uk_reserve = 0;
1418	keg->uk_pages = 0;
1419	keg->uk_flags = arg->flags;
1420	keg->uk_allocf = page_alloc;
1421	keg->uk_freef = page_free;
1422	keg->uk_slabzone = NULL;
1423
1424	/*
1425	 * The master zone is passed to us at keg-creation time.
1426	 */
1427	zone = arg->zone;
1428	keg->uk_name = zone->uz_name;
1429
1430	if (arg->flags & UMA_ZONE_VM)
1431		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1432
1433	if (arg->flags & UMA_ZONE_ZINIT)
1434		keg->uk_init = zero_init;
1435
1436	if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1437		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1438
1439	if (arg->flags & UMA_ZONE_PCPU)
1440#ifdef SMP
1441		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1442#else
1443		keg->uk_flags &= ~UMA_ZONE_PCPU;
1444#endif
1445
1446	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1447		keg_cachespread_init(keg);
1448	} else if (keg->uk_flags & UMA_ZONE_REFCNT) {
1449		if (keg->uk_size >
1450		    (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) -
1451		    sizeof(uint32_t)))
1452			keg_large_init(keg);
1453		else
1454			keg_small_init(keg);
1455	} else {
1456		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1457			keg_large_init(keg);
1458		else
1459			keg_small_init(keg);
1460	}
1461
1462	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1463		if (keg->uk_flags & UMA_ZONE_REFCNT) {
1464			if (keg->uk_ipers > uma_max_ipers_ref)
1465				panic("Too many ref items per zone: %d > %d\n",
1466				    keg->uk_ipers, uma_max_ipers_ref);
1467			keg->uk_slabzone = slabrefzone;
1468		} else
1469			keg->uk_slabzone = slabzone;
1470	}
1471
1472	/*
1473	 * If we haven't booted yet we need allocations to go through the
1474	 * startup cache until the vm is ready.
1475	 */
1476	if (keg->uk_ppera == 1) {
1477#ifdef UMA_MD_SMALL_ALLOC
1478		keg->uk_allocf = uma_small_alloc;
1479		keg->uk_freef = uma_small_free;
1480
1481		if (booted < UMA_STARTUP)
1482			keg->uk_allocf = startup_alloc;
1483#else
1484		if (booted < UMA_STARTUP2)
1485			keg->uk_allocf = startup_alloc;
1486#endif
1487	} else if (booted < UMA_STARTUP2 &&
1488	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1489		keg->uk_allocf = startup_alloc;
1490
1491	/*
1492	 * Initialize keg's lock
1493	 */
1494	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1495
1496	/*
1497	 * If we're putting the slab header in the actual page we need to
1498	 * figure out where in each page it goes.  This calculates a right
1499	 * justified offset into the memory on an ALIGN_PTR boundary.
1500	 */
1501	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1502		u_int totsize;
1503
1504		/* Size of the slab struct and free list */
1505		totsize = sizeof(struct uma_slab);
1506
1507		/* Size of the reference counts. */
1508		if (keg->uk_flags & UMA_ZONE_REFCNT)
1509			totsize += keg->uk_ipers * sizeof(uint32_t);
1510
1511		if (totsize & UMA_ALIGN_PTR)
1512			totsize = (totsize & ~UMA_ALIGN_PTR) +
1513			    (UMA_ALIGN_PTR + 1);
1514		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1515
1516		/*
1517		 * The only way the following is possible is if with our
1518		 * UMA_ALIGN_PTR adjustments we are now bigger than
1519		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1520		 * mathematically possible for all cases, so we make
1521		 * sure here anyway.
1522		 */
1523		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1524		if (keg->uk_flags & UMA_ZONE_REFCNT)
1525			totsize += keg->uk_ipers * sizeof(uint32_t);
1526		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1527			printf("zone %s ipers %d rsize %d size %d\n",
1528			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1529			    keg->uk_size);
1530			panic("UMA slab won't fit.");
1531		}
1532	}
1533
1534	if (keg->uk_flags & UMA_ZONE_HASH)
1535		hash_alloc(&keg->uk_hash);
1536
1537#ifdef UMA_DEBUG
1538	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1539	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1540	    keg->uk_ipers, keg->uk_ppera,
1541	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1542#endif
1543
1544	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1545
1546	mtx_lock(&uma_mtx);
1547	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1548	mtx_unlock(&uma_mtx);
1549	return (0);
1550}
1551
1552/*
1553 * Zone header ctor.  This initializes all fields, locks, etc.
1554 *
1555 * Arguments/Returns follow uma_ctor specifications
1556 *	udata  Actually uma_zctor_args
1557 */
1558static int
1559zone_ctor(void *mem, int size, void *udata, int flags)
1560{
1561	struct uma_zctor_args *arg = udata;
1562	uma_zone_t zone = mem;
1563	uma_zone_t z;
1564	uma_keg_t keg;
1565
1566	bzero(zone, size);
1567	zone->uz_name = arg->name;
1568	zone->uz_ctor = arg->ctor;
1569	zone->uz_dtor = arg->dtor;
1570	zone->uz_slab = zone_fetch_slab;
1571	zone->uz_init = NULL;
1572	zone->uz_fini = NULL;
1573	zone->uz_allocs = 0;
1574	zone->uz_frees = 0;
1575	zone->uz_fails = 0;
1576	zone->uz_sleeps = 0;
1577	zone->uz_count = 0;
1578	zone->uz_count_min = 0;
1579	zone->uz_flags = 0;
1580	zone->uz_warning = NULL;
1581	timevalclear(&zone->uz_ratecheck);
1582	keg = arg->keg;
1583
1584	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1585
1586	/*
1587	 * This is a pure cache zone, no kegs.
1588	 */
1589	if (arg->import) {
1590		if (arg->flags & UMA_ZONE_VM)
1591			arg->flags |= UMA_ZFLAG_CACHEONLY;
1592		zone->uz_flags = arg->flags;
1593		zone->uz_size = arg->size;
1594		zone->uz_import = arg->import;
1595		zone->uz_release = arg->release;
1596		zone->uz_arg = arg->arg;
1597		zone->uz_lockptr = &zone->uz_lock;
1598		mtx_lock(&uma_mtx);
1599		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1600		mtx_unlock(&uma_mtx);
1601		goto out;
1602	}
1603
1604	/*
1605	 * Use the regular zone/keg/slab allocator.
1606	 */
1607	zone->uz_import = (uma_import)zone_import;
1608	zone->uz_release = (uma_release)zone_release;
1609	zone->uz_arg = zone;
1610
1611	if (arg->flags & UMA_ZONE_SECONDARY) {
1612		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1613		zone->uz_init = arg->uminit;
1614		zone->uz_fini = arg->fini;
1615		zone->uz_lockptr = &keg->uk_lock;
1616		zone->uz_flags |= UMA_ZONE_SECONDARY;
1617		mtx_lock(&uma_mtx);
1618		ZONE_LOCK(zone);
1619		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1620			if (LIST_NEXT(z, uz_link) == NULL) {
1621				LIST_INSERT_AFTER(z, zone, uz_link);
1622				break;
1623			}
1624		}
1625		ZONE_UNLOCK(zone);
1626		mtx_unlock(&uma_mtx);
1627	} else if (keg == NULL) {
1628		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1629		    arg->align, arg->flags)) == NULL)
1630			return (ENOMEM);
1631	} else {
1632		struct uma_kctor_args karg;
1633		int error;
1634
1635		/* We should only be here from uma_startup() */
1636		karg.size = arg->size;
1637		karg.uminit = arg->uminit;
1638		karg.fini = arg->fini;
1639		karg.align = arg->align;
1640		karg.flags = arg->flags;
1641		karg.zone = zone;
1642		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1643		    flags);
1644		if (error)
1645			return (error);
1646	}
1647
1648	/*
1649	 * Link in the first keg.
1650	 */
1651	zone->uz_klink.kl_keg = keg;
1652	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1653	zone->uz_lockptr = &keg->uk_lock;
1654	zone->uz_size = keg->uk_size;
1655	zone->uz_flags |= (keg->uk_flags &
1656	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1657
1658	/*
1659	 * Some internal zones don't have room allocated for the per cpu
1660	 * caches.  If we're internal, bail out here.
1661	 */
1662	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1663		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1664		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1665		return (0);
1666	}
1667
1668out:
1669	if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0)
1670		zone->uz_count = bucket_select(zone->uz_size);
1671	else
1672		zone->uz_count = BUCKET_MAX;
1673	zone->uz_count_min = zone->uz_count;
1674
1675	return (0);
1676}
1677
1678/*
1679 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1680 * table and removes the keg from the global list.
1681 *
1682 * Arguments/Returns follow uma_dtor specifications
1683 *	udata  unused
1684 */
1685static void
1686keg_dtor(void *arg, int size, void *udata)
1687{
1688	uma_keg_t keg;
1689
1690	keg = (uma_keg_t)arg;
1691	KEG_LOCK(keg);
1692	if (keg->uk_free != 0) {
1693		printf("Freed UMA keg (%s) was not empty (%d items). "
1694		    " Lost %d pages of memory.\n",
1695		    keg->uk_name ? keg->uk_name : "",
1696		    keg->uk_free, keg->uk_pages);
1697	}
1698	KEG_UNLOCK(keg);
1699
1700	hash_free(&keg->uk_hash);
1701
1702	KEG_LOCK_FINI(keg);
1703}
1704
1705/*
1706 * Zone header dtor.
1707 *
1708 * Arguments/Returns follow uma_dtor specifications
1709 *	udata  unused
1710 */
1711static void
1712zone_dtor(void *arg, int size, void *udata)
1713{
1714	uma_klink_t klink;
1715	uma_zone_t zone;
1716	uma_keg_t keg;
1717
1718	zone = (uma_zone_t)arg;
1719	keg = zone_first_keg(zone);
1720
1721	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1722		cache_drain(zone);
1723
1724	mtx_lock(&uma_mtx);
1725	LIST_REMOVE(zone, uz_link);
1726	mtx_unlock(&uma_mtx);
1727	/*
1728	 * XXX there are some races here where
1729	 * the zone can be drained but zone lock
1730	 * released and then refilled before we
1731	 * remove it... we dont care for now
1732	 */
1733	zone_drain_wait(zone, M_WAITOK);
1734	/*
1735	 * Unlink all of our kegs.
1736	 */
1737	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1738		klink->kl_keg = NULL;
1739		LIST_REMOVE(klink, kl_link);
1740		if (klink == &zone->uz_klink)
1741			continue;
1742		free(klink, M_TEMP);
1743	}
1744	/*
1745	 * We only destroy kegs from non secondary zones.
1746	 */
1747	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1748		mtx_lock(&uma_mtx);
1749		LIST_REMOVE(keg, uk_link);
1750		mtx_unlock(&uma_mtx);
1751		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1752	}
1753	ZONE_LOCK_FINI(zone);
1754}
1755
1756/*
1757 * Traverses every zone in the system and calls a callback
1758 *
1759 * Arguments:
1760 *	zfunc  A pointer to a function which accepts a zone
1761 *		as an argument.
1762 *
1763 * Returns:
1764 *	Nothing
1765 */
1766static void
1767zone_foreach(void (*zfunc)(uma_zone_t))
1768{
1769	uma_keg_t keg;
1770	uma_zone_t zone;
1771
1772	mtx_lock(&uma_mtx);
1773	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1774		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1775			zfunc(zone);
1776	}
1777	mtx_unlock(&uma_mtx);
1778}
1779
1780/* Public functions */
1781/* See uma.h */
1782void
1783uma_startup(void *bootmem, int boot_pages)
1784{
1785	struct uma_zctor_args args;
1786	uma_slab_t slab;
1787	u_int slabsize;
1788	int i;
1789
1790#ifdef UMA_DEBUG
1791	printf("Creating uma keg headers zone and keg.\n");
1792#endif
1793	mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
1794
1795	/* "manually" create the initial zone */
1796	memset(&args, 0, sizeof(args));
1797	args.name = "UMA Kegs";
1798	args.size = sizeof(struct uma_keg);
1799	args.ctor = keg_ctor;
1800	args.dtor = keg_dtor;
1801	args.uminit = zero_init;
1802	args.fini = NULL;
1803	args.keg = &masterkeg;
1804	args.align = 32 - 1;
1805	args.flags = UMA_ZFLAG_INTERNAL;
1806	/* The initial zone has no Per cpu queues so it's smaller */
1807	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1808
1809#ifdef UMA_DEBUG
1810	printf("Filling boot free list.\n");
1811#endif
1812	for (i = 0; i < boot_pages; i++) {
1813		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1814		slab->us_data = (uint8_t *)slab;
1815		slab->us_flags = UMA_SLAB_BOOT;
1816		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1817	}
1818	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1819
1820#ifdef UMA_DEBUG
1821	printf("Creating uma zone headers zone and keg.\n");
1822#endif
1823	args.name = "UMA Zones";
1824	args.size = sizeof(struct uma_zone) +
1825	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1826	args.ctor = zone_ctor;
1827	args.dtor = zone_dtor;
1828	args.uminit = zero_init;
1829	args.fini = NULL;
1830	args.keg = NULL;
1831	args.align = 32 - 1;
1832	args.flags = UMA_ZFLAG_INTERNAL;
1833	/* The initial zone has no Per cpu queues so it's smaller */
1834	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1835
1836#ifdef UMA_DEBUG
1837	printf("Initializing pcpu cache locks.\n");
1838#endif
1839#ifdef UMA_DEBUG
1840	printf("Creating slab and hash zones.\n");
1841#endif
1842
1843	/* Now make a zone for slab headers */
1844	slabzone = uma_zcreate("UMA Slabs",
1845				sizeof(struct uma_slab),
1846				NULL, NULL, NULL, NULL,
1847				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1848
1849	/*
1850	 * We also create a zone for the bigger slabs with reference
1851	 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1852	 */
1853	slabsize = sizeof(struct uma_slab_refcnt);
1854	slabsize += uma_max_ipers_ref * sizeof(uint32_t);
1855	slabrefzone = uma_zcreate("UMA RCntSlabs",
1856				  slabsize,
1857				  NULL, NULL, NULL, NULL,
1858				  UMA_ALIGN_PTR,
1859				  UMA_ZFLAG_INTERNAL);
1860
1861	hashzone = uma_zcreate("UMA Hash",
1862	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1863	    NULL, NULL, NULL, NULL,
1864	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1865
1866	bucket_init();
1867
1868	booted = UMA_STARTUP;
1869
1870#ifdef UMA_DEBUG
1871	printf("UMA startup complete.\n");
1872#endif
1873}
1874
1875/* see uma.h */
1876void
1877uma_startup2(void)
1878{
1879	booted = UMA_STARTUP2;
1880	bucket_enable();
1881#ifdef UMA_DEBUG
1882	printf("UMA startup2 complete.\n");
1883#endif
1884}
1885
1886/*
1887 * Initialize our callout handle
1888 *
1889 */
1890
1891static void
1892uma_startup3(void)
1893{
1894#ifdef UMA_DEBUG
1895	printf("Starting callout.\n");
1896#endif
1897	callout_init(&uma_callout, CALLOUT_MPSAFE);
1898	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1899#ifdef UMA_DEBUG
1900	printf("UMA startup3 complete.\n");
1901#endif
1902}
1903
1904static uma_keg_t
1905uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1906		int align, uint32_t flags)
1907{
1908	struct uma_kctor_args args;
1909
1910	args.size = size;
1911	args.uminit = uminit;
1912	args.fini = fini;
1913	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1914	args.flags = flags;
1915	args.zone = zone;
1916	return (zone_alloc_item(kegs, &args, M_WAITOK));
1917}
1918
1919/* See uma.h */
1920void
1921uma_set_align(int align)
1922{
1923
1924	if (align != UMA_ALIGN_CACHE)
1925		uma_align_cache = align;
1926}
1927
1928/* See uma.h */
1929uma_zone_t
1930uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1931		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1932
1933{
1934	struct uma_zctor_args args;
1935
1936	/* This stuff is essential for the zone ctor */
1937	memset(&args, 0, sizeof(args));
1938	args.name = name;
1939	args.size = size;
1940	args.ctor = ctor;
1941	args.dtor = dtor;
1942	args.uminit = uminit;
1943	args.fini = fini;
1944	args.align = align;
1945	args.flags = flags;
1946	args.keg = NULL;
1947
1948	return (zone_alloc_item(zones, &args, M_WAITOK));
1949}
1950
1951/* See uma.h */
1952uma_zone_t
1953uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1954		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1955{
1956	struct uma_zctor_args args;
1957	uma_keg_t keg;
1958
1959	keg = zone_first_keg(master);
1960	memset(&args, 0, sizeof(args));
1961	args.name = name;
1962	args.size = keg->uk_size;
1963	args.ctor = ctor;
1964	args.dtor = dtor;
1965	args.uminit = zinit;
1966	args.fini = zfini;
1967	args.align = keg->uk_align;
1968	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1969	args.keg = keg;
1970
1971	/* XXX Attaches only one keg of potentially many. */
1972	return (zone_alloc_item(zones, &args, M_WAITOK));
1973}
1974
1975/* See uma.h */
1976uma_zone_t
1977uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1978		    uma_init zinit, uma_fini zfini, uma_import zimport,
1979		    uma_release zrelease, void *arg, int flags)
1980{
1981	struct uma_zctor_args args;
1982
1983	memset(&args, 0, sizeof(args));
1984	args.name = name;
1985	args.size = size;
1986	args.ctor = ctor;
1987	args.dtor = dtor;
1988	args.uminit = zinit;
1989	args.fini = zfini;
1990	args.import = zimport;
1991	args.release = zrelease;
1992	args.arg = arg;
1993	args.align = 0;
1994	args.flags = flags;
1995
1996	return (zone_alloc_item(zones, &args, M_WAITOK));
1997}
1998
1999static void
2000zone_lock_pair(uma_zone_t a, uma_zone_t b)
2001{
2002	if (a < b) {
2003		ZONE_LOCK(a);
2004		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
2005	} else {
2006		ZONE_LOCK(b);
2007		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2008	}
2009}
2010
2011static void
2012zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2013{
2014
2015	ZONE_UNLOCK(a);
2016	ZONE_UNLOCK(b);
2017}
2018
2019int
2020uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2021{
2022	uma_klink_t klink;
2023	uma_klink_t kl;
2024	int error;
2025
2026	error = 0;
2027	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2028
2029	zone_lock_pair(zone, master);
2030	/*
2031	 * zone must use vtoslab() to resolve objects and must already be
2032	 * a secondary.
2033	 */
2034	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2035	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2036		error = EINVAL;
2037		goto out;
2038	}
2039	/*
2040	 * The new master must also use vtoslab().
2041	 */
2042	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2043		error = EINVAL;
2044		goto out;
2045	}
2046	/*
2047	 * Both must either be refcnt, or not be refcnt.
2048	 */
2049	if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
2050	    (master->uz_flags & UMA_ZONE_REFCNT)) {
2051		error = EINVAL;
2052		goto out;
2053	}
2054	/*
2055	 * The underlying object must be the same size.  rsize
2056	 * may be different.
2057	 */
2058	if (master->uz_size != zone->uz_size) {
2059		error = E2BIG;
2060		goto out;
2061	}
2062	/*
2063	 * Put it at the end of the list.
2064	 */
2065	klink->kl_keg = zone_first_keg(master);
2066	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2067		if (LIST_NEXT(kl, kl_link) == NULL) {
2068			LIST_INSERT_AFTER(kl, klink, kl_link);
2069			break;
2070		}
2071	}
2072	klink = NULL;
2073	zone->uz_flags |= UMA_ZFLAG_MULTI;
2074	zone->uz_slab = zone_fetch_slab_multi;
2075
2076out:
2077	zone_unlock_pair(zone, master);
2078	if (klink != NULL)
2079		free(klink, M_TEMP);
2080
2081	return (error);
2082}
2083
2084
2085/* See uma.h */
2086void
2087uma_zdestroy(uma_zone_t zone)
2088{
2089
2090	zone_free_item(zones, zone, NULL, SKIP_NONE);
2091}
2092
2093/* See uma.h */
2094void *
2095uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2096{
2097	void *item;
2098	uma_cache_t cache;
2099	uma_bucket_t bucket;
2100	int lockfail;
2101	int cpu;
2102
2103	/* This is the fast path allocation */
2104#ifdef UMA_DEBUG_ALLOC_1
2105	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2106#endif
2107	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2108	    zone->uz_name, flags);
2109
2110	if (flags & M_WAITOK) {
2111		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2112		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2113	}
2114#ifdef DEBUG_MEMGUARD
2115	if (memguard_cmp_zone(zone)) {
2116		item = memguard_alloc(zone->uz_size, flags);
2117		if (item != NULL) {
2118			/*
2119			 * Avoid conflict with the use-after-free
2120			 * protecting infrastructure from INVARIANTS.
2121			 */
2122			if (zone->uz_init != NULL &&
2123			    zone->uz_init != mtrash_init &&
2124			    zone->uz_init(item, zone->uz_size, flags) != 0)
2125				return (NULL);
2126			if (zone->uz_ctor != NULL &&
2127			    zone->uz_ctor != mtrash_ctor &&
2128			    zone->uz_ctor(item, zone->uz_size, udata,
2129			    flags) != 0) {
2130			    	zone->uz_fini(item, zone->uz_size);
2131				return (NULL);
2132			}
2133			return (item);
2134		}
2135		/* This is unfortunate but should not be fatal. */
2136	}
2137#endif
2138	/*
2139	 * If possible, allocate from the per-CPU cache.  There are two
2140	 * requirements for safe access to the per-CPU cache: (1) the thread
2141	 * accessing the cache must not be preempted or yield during access,
2142	 * and (2) the thread must not migrate CPUs without switching which
2143	 * cache it accesses.  We rely on a critical section to prevent
2144	 * preemption and migration.  We release the critical section in
2145	 * order to acquire the zone mutex if we are unable to allocate from
2146	 * the current cache; when we re-acquire the critical section, we
2147	 * must detect and handle migration if it has occurred.
2148	 */
2149	critical_enter();
2150	cpu = curcpu;
2151	cache = &zone->uz_cpu[cpu];
2152
2153zalloc_start:
2154	bucket = cache->uc_allocbucket;
2155	if (bucket != NULL && bucket->ub_cnt > 0) {
2156		bucket->ub_cnt--;
2157		item = bucket->ub_bucket[bucket->ub_cnt];
2158#ifdef INVARIANTS
2159		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2160#endif
2161		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2162		cache->uc_allocs++;
2163		critical_exit();
2164		if (zone->uz_ctor != NULL &&
2165		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2166			atomic_add_long(&zone->uz_fails, 1);
2167			zone_free_item(zone, item, udata, SKIP_DTOR);
2168			return (NULL);
2169		}
2170#ifdef INVARIANTS
2171		uma_dbg_alloc(zone, NULL, item);
2172#endif
2173		if (flags & M_ZERO)
2174			uma_zero_item(item, zone);
2175		return (item);
2176	}
2177
2178	/*
2179	 * We have run out of items in our alloc bucket.
2180	 * See if we can switch with our free bucket.
2181	 */
2182	bucket = cache->uc_freebucket;
2183	if (bucket != NULL && bucket->ub_cnt > 0) {
2184#ifdef UMA_DEBUG_ALLOC
2185		printf("uma_zalloc: Swapping empty with alloc.\n");
2186#endif
2187		cache->uc_freebucket = cache->uc_allocbucket;
2188		cache->uc_allocbucket = bucket;
2189		goto zalloc_start;
2190	}
2191
2192	/*
2193	 * Discard any empty allocation bucket while we hold no locks.
2194	 */
2195	bucket = cache->uc_allocbucket;
2196	cache->uc_allocbucket = NULL;
2197	critical_exit();
2198	if (bucket != NULL)
2199		bucket_free(zone, bucket, udata);
2200
2201	/* Short-circuit for zones without buckets and low memory. */
2202	if (zone->uz_count == 0 || bucketdisable)
2203		goto zalloc_item;
2204
2205	/*
2206	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2207	 * we must go back to the zone.  This requires the zone lock, so we
2208	 * must drop the critical section, then re-acquire it when we go back
2209	 * to the cache.  Since the critical section is released, we may be
2210	 * preempted or migrate.  As such, make sure not to maintain any
2211	 * thread-local state specific to the cache from prior to releasing
2212	 * the critical section.
2213	 */
2214	lockfail = 0;
2215	if (ZONE_TRYLOCK(zone) == 0) {
2216		/* Record contention to size the buckets. */
2217		ZONE_LOCK(zone);
2218		lockfail = 1;
2219	}
2220	critical_enter();
2221	cpu = curcpu;
2222	cache = &zone->uz_cpu[cpu];
2223
2224	/*
2225	 * Since we have locked the zone we may as well send back our stats.
2226	 */
2227	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2228	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2229	cache->uc_allocs = 0;
2230	cache->uc_frees = 0;
2231
2232	/* See if we lost the race to fill the cache. */
2233	if (cache->uc_allocbucket != NULL) {
2234		ZONE_UNLOCK(zone);
2235		goto zalloc_start;
2236	}
2237
2238	/*
2239	 * Check the zone's cache of buckets.
2240	 */
2241	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2242		KASSERT(bucket->ub_cnt != 0,
2243		    ("uma_zalloc_arg: Returning an empty bucket."));
2244
2245		LIST_REMOVE(bucket, ub_link);
2246		cache->uc_allocbucket = bucket;
2247		ZONE_UNLOCK(zone);
2248		goto zalloc_start;
2249	}
2250	/* We are no longer associated with this CPU. */
2251	critical_exit();
2252
2253	/*
2254	 * We bump the uz count when the cache size is insufficient to
2255	 * handle the working set.
2256	 */
2257	if (lockfail && zone->uz_count < BUCKET_MAX)
2258		zone->uz_count++;
2259	ZONE_UNLOCK(zone);
2260
2261	/*
2262	 * Now lets just fill a bucket and put it on the free list.  If that
2263	 * works we'll restart the allocation from the begining and it
2264	 * will use the just filled bucket.
2265	 */
2266	bucket = zone_alloc_bucket(zone, udata, flags);
2267	if (bucket != NULL) {
2268		ZONE_LOCK(zone);
2269		critical_enter();
2270		cpu = curcpu;
2271		cache = &zone->uz_cpu[cpu];
2272		/*
2273		 * See if we lost the race or were migrated.  Cache the
2274		 * initialized bucket to make this less likely or claim
2275		 * the memory directly.
2276		 */
2277		if (cache->uc_allocbucket == NULL)
2278			cache->uc_allocbucket = bucket;
2279		else
2280			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2281		ZONE_UNLOCK(zone);
2282		goto zalloc_start;
2283	}
2284
2285	/*
2286	 * We may not be able to get a bucket so return an actual item.
2287	 */
2288#ifdef UMA_DEBUG
2289	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2290#endif
2291
2292zalloc_item:
2293	item = zone_alloc_item(zone, udata, flags);
2294
2295	return (item);
2296}
2297
2298static uma_slab_t
2299keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2300{
2301	uma_slab_t slab;
2302	int reserve;
2303
2304	mtx_assert(&keg->uk_lock, MA_OWNED);
2305	slab = NULL;
2306	reserve = 0;
2307	if ((flags & M_USE_RESERVE) == 0)
2308		reserve = keg->uk_reserve;
2309
2310	for (;;) {
2311		/*
2312		 * Find a slab with some space.  Prefer slabs that are partially
2313		 * used over those that are totally full.  This helps to reduce
2314		 * fragmentation.
2315		 */
2316		if (keg->uk_free > reserve) {
2317			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2318				slab = LIST_FIRST(&keg->uk_part_slab);
2319			} else {
2320				slab = LIST_FIRST(&keg->uk_free_slab);
2321				LIST_REMOVE(slab, us_link);
2322				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2323				    us_link);
2324			}
2325			MPASS(slab->us_keg == keg);
2326			return (slab);
2327		}
2328
2329		/*
2330		 * M_NOVM means don't ask at all!
2331		 */
2332		if (flags & M_NOVM)
2333			break;
2334
2335		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2336			keg->uk_flags |= UMA_ZFLAG_FULL;
2337			/*
2338			 * If this is not a multi-zone, set the FULL bit.
2339			 * Otherwise slab_multi() takes care of it.
2340			 */
2341			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2342				zone->uz_flags |= UMA_ZFLAG_FULL;
2343				zone_log_warning(zone);
2344			}
2345			if (flags & M_NOWAIT)
2346				break;
2347			zone->uz_sleeps++;
2348			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2349			continue;
2350		}
2351		slab = keg_alloc_slab(keg, zone, flags);
2352		/*
2353		 * If we got a slab here it's safe to mark it partially used
2354		 * and return.  We assume that the caller is going to remove
2355		 * at least one item.
2356		 */
2357		if (slab) {
2358			MPASS(slab->us_keg == keg);
2359			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2360			return (slab);
2361		}
2362		/*
2363		 * We might not have been able to get a slab but another cpu
2364		 * could have while we were unlocked.  Check again before we
2365		 * fail.
2366		 */
2367		flags |= M_NOVM;
2368	}
2369	return (slab);
2370}
2371
2372static uma_slab_t
2373zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2374{
2375	uma_slab_t slab;
2376
2377	if (keg == NULL) {
2378		keg = zone_first_keg(zone);
2379		KEG_LOCK(keg);
2380	}
2381
2382	for (;;) {
2383		slab = keg_fetch_slab(keg, zone, flags);
2384		if (slab)
2385			return (slab);
2386		if (flags & (M_NOWAIT | M_NOVM))
2387			break;
2388	}
2389	KEG_UNLOCK(keg);
2390	return (NULL);
2391}
2392
2393/*
2394 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2395 * with the keg locked.  On NULL no lock is held.
2396 *
2397 * The last pointer is used to seed the search.  It is not required.
2398 */
2399static uma_slab_t
2400zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2401{
2402	uma_klink_t klink;
2403	uma_slab_t slab;
2404	uma_keg_t keg;
2405	int flags;
2406	int empty;
2407	int full;
2408
2409	/*
2410	 * Don't wait on the first pass.  This will skip limit tests
2411	 * as well.  We don't want to block if we can find a provider
2412	 * without blocking.
2413	 */
2414	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2415	/*
2416	 * Use the last slab allocated as a hint for where to start
2417	 * the search.
2418	 */
2419	if (last != NULL) {
2420		slab = keg_fetch_slab(last, zone, flags);
2421		if (slab)
2422			return (slab);
2423		KEG_UNLOCK(last);
2424	}
2425	/*
2426	 * Loop until we have a slab incase of transient failures
2427	 * while M_WAITOK is specified.  I'm not sure this is 100%
2428	 * required but we've done it for so long now.
2429	 */
2430	for (;;) {
2431		empty = 0;
2432		full = 0;
2433		/*
2434		 * Search the available kegs for slabs.  Be careful to hold the
2435		 * correct lock while calling into the keg layer.
2436		 */
2437		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2438			keg = klink->kl_keg;
2439			KEG_LOCK(keg);
2440			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2441				slab = keg_fetch_slab(keg, zone, flags);
2442				if (slab)
2443					return (slab);
2444			}
2445			if (keg->uk_flags & UMA_ZFLAG_FULL)
2446				full++;
2447			else
2448				empty++;
2449			KEG_UNLOCK(keg);
2450		}
2451		if (rflags & (M_NOWAIT | M_NOVM))
2452			break;
2453		flags = rflags;
2454		/*
2455		 * All kegs are full.  XXX We can't atomically check all kegs
2456		 * and sleep so just sleep for a short period and retry.
2457		 */
2458		if (full && !empty) {
2459			ZONE_LOCK(zone);
2460			zone->uz_flags |= UMA_ZFLAG_FULL;
2461			zone->uz_sleeps++;
2462			zone_log_warning(zone);
2463			msleep(zone, zone->uz_lockptr, PVM,
2464			    "zonelimit", hz/100);
2465			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2466			ZONE_UNLOCK(zone);
2467			continue;
2468		}
2469	}
2470	return (NULL);
2471}
2472
2473static void *
2474slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2475{
2476	void *item;
2477	uint8_t freei;
2478
2479	MPASS(keg == slab->us_keg);
2480	mtx_assert(&keg->uk_lock, MA_OWNED);
2481
2482	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2483	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2484	item = slab->us_data + (keg->uk_rsize * freei);
2485	slab->us_freecount--;
2486	keg->uk_free--;
2487
2488	/* Move this slab to the full list */
2489	if (slab->us_freecount == 0) {
2490		LIST_REMOVE(slab, us_link);
2491		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2492	}
2493
2494	return (item);
2495}
2496
2497static int
2498zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2499{
2500	uma_slab_t slab;
2501	uma_keg_t keg;
2502	int i;
2503
2504	slab = NULL;
2505	keg = NULL;
2506	/* Try to keep the buckets totally full */
2507	for (i = 0; i < max; ) {
2508		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2509			break;
2510		keg = slab->us_keg;
2511		while (slab->us_freecount && i < max) {
2512			bucket[i++] = slab_alloc_item(keg, slab);
2513			if (keg->uk_free <= keg->uk_reserve)
2514				break;
2515		}
2516		/* Don't grab more than one slab at a time. */
2517		flags &= ~M_WAITOK;
2518		flags |= M_NOWAIT;
2519	}
2520	if (slab != NULL)
2521		KEG_UNLOCK(keg);
2522
2523	return i;
2524}
2525
2526static uma_bucket_t
2527zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2528{
2529	uma_bucket_t bucket;
2530	int max;
2531
2532	/* Don't wait for buckets, preserve caller's NOVM setting. */
2533	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2534	if (bucket == NULL)
2535		return (NULL);
2536
2537	max = MIN(bucket->ub_entries, zone->uz_count);
2538	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2539	    max, flags);
2540
2541	/*
2542	 * Initialize the memory if necessary.
2543	 */
2544	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2545		int i;
2546
2547		for (i = 0; i < bucket->ub_cnt; i++)
2548			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2549			    flags) != 0)
2550				break;
2551		/*
2552		 * If we couldn't initialize the whole bucket, put the
2553		 * rest back onto the freelist.
2554		 */
2555		if (i != bucket->ub_cnt) {
2556			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2557			    bucket->ub_cnt - i);
2558#ifdef INVARIANTS
2559			bzero(&bucket->ub_bucket[i],
2560			    sizeof(void *) * (bucket->ub_cnt - i));
2561#endif
2562			bucket->ub_cnt = i;
2563		}
2564	}
2565
2566	if (bucket->ub_cnt == 0) {
2567		bucket_free(zone, bucket, udata);
2568		atomic_add_long(&zone->uz_fails, 1);
2569		return (NULL);
2570	}
2571
2572	return (bucket);
2573}
2574
2575/*
2576 * Allocates a single item from a zone.
2577 *
2578 * Arguments
2579 *	zone   The zone to alloc for.
2580 *	udata  The data to be passed to the constructor.
2581 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2582 *
2583 * Returns
2584 *	NULL if there is no memory and M_NOWAIT is set
2585 *	An item if successful
2586 */
2587
2588static void *
2589zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2590{
2591	void *item;
2592
2593	item = NULL;
2594
2595#ifdef UMA_DEBUG_ALLOC
2596	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2597#endif
2598	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2599		goto fail;
2600	atomic_add_long(&zone->uz_allocs, 1);
2601
2602	/*
2603	 * We have to call both the zone's init (not the keg's init)
2604	 * and the zone's ctor.  This is because the item is going from
2605	 * a keg slab directly to the user, and the user is expecting it
2606	 * to be both zone-init'd as well as zone-ctor'd.
2607	 */
2608	if (zone->uz_init != NULL) {
2609		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2610			zone_free_item(zone, item, udata, SKIP_FINI);
2611			goto fail;
2612		}
2613	}
2614	if (zone->uz_ctor != NULL) {
2615		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2616			zone_free_item(zone, item, udata, SKIP_DTOR);
2617			goto fail;
2618		}
2619	}
2620#ifdef INVARIANTS
2621	uma_dbg_alloc(zone, NULL, item);
2622#endif
2623	if (flags & M_ZERO)
2624		uma_zero_item(item, zone);
2625
2626	return (item);
2627
2628fail:
2629	atomic_add_long(&zone->uz_fails, 1);
2630	return (NULL);
2631}
2632
2633/* See uma.h */
2634void
2635uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2636{
2637	uma_cache_t cache;
2638	uma_bucket_t bucket;
2639	int lockfail;
2640	int cpu;
2641
2642#ifdef UMA_DEBUG_ALLOC_1
2643	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2644#endif
2645	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2646	    zone->uz_name);
2647
2648        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2649        if (item == NULL)
2650                return;
2651#ifdef DEBUG_MEMGUARD
2652	if (is_memguard_addr(item)) {
2653		if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor)
2654			zone->uz_dtor(item, zone->uz_size, udata);
2655		if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini)
2656			zone->uz_fini(item, zone->uz_size);
2657		memguard_free(item);
2658		return;
2659	}
2660#endif
2661#ifdef INVARIANTS
2662	if (zone->uz_flags & UMA_ZONE_MALLOC)
2663		uma_dbg_free(zone, udata, item);
2664	else
2665		uma_dbg_free(zone, NULL, item);
2666#endif
2667	if (zone->uz_dtor != NULL)
2668		zone->uz_dtor(item, zone->uz_size, udata);
2669
2670	/*
2671	 * The race here is acceptable.  If we miss it we'll just have to wait
2672	 * a little longer for the limits to be reset.
2673	 */
2674	if (zone->uz_flags & UMA_ZFLAG_FULL)
2675		goto zfree_item;
2676
2677	/*
2678	 * If possible, free to the per-CPU cache.  There are two
2679	 * requirements for safe access to the per-CPU cache: (1) the thread
2680	 * accessing the cache must not be preempted or yield during access,
2681	 * and (2) the thread must not migrate CPUs without switching which
2682	 * cache it accesses.  We rely on a critical section to prevent
2683	 * preemption and migration.  We release the critical section in
2684	 * order to acquire the zone mutex if we are unable to free to the
2685	 * current cache; when we re-acquire the critical section, we must
2686	 * detect and handle migration if it has occurred.
2687	 */
2688zfree_restart:
2689	critical_enter();
2690	cpu = curcpu;
2691	cache = &zone->uz_cpu[cpu];
2692
2693zfree_start:
2694	/*
2695	 * Try to free into the allocbucket first to give LIFO ordering
2696	 * for cache-hot datastructures.  Spill over into the freebucket
2697	 * if necessary.  Alloc will swap them if one runs dry.
2698	 */
2699	bucket = cache->uc_allocbucket;
2700	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2701		bucket = cache->uc_freebucket;
2702	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2703		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2704		    ("uma_zfree: Freeing to non free bucket index."));
2705		bucket->ub_bucket[bucket->ub_cnt] = item;
2706		bucket->ub_cnt++;
2707		cache->uc_frees++;
2708		critical_exit();
2709		return;
2710	}
2711
2712	/*
2713	 * We must go back the zone, which requires acquiring the zone lock,
2714	 * which in turn means we must release and re-acquire the critical
2715	 * section.  Since the critical section is released, we may be
2716	 * preempted or migrate.  As such, make sure not to maintain any
2717	 * thread-local state specific to the cache from prior to releasing
2718	 * the critical section.
2719	 */
2720	critical_exit();
2721	if (zone->uz_count == 0 || bucketdisable)
2722		goto zfree_item;
2723
2724	lockfail = 0;
2725	if (ZONE_TRYLOCK(zone) == 0) {
2726		/* Record contention to size the buckets. */
2727		ZONE_LOCK(zone);
2728		lockfail = 1;
2729	}
2730	critical_enter();
2731	cpu = curcpu;
2732	cache = &zone->uz_cpu[cpu];
2733
2734	/*
2735	 * Since we have locked the zone we may as well send back our stats.
2736	 */
2737	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2738	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2739	cache->uc_allocs = 0;
2740	cache->uc_frees = 0;
2741
2742	bucket = cache->uc_freebucket;
2743	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2744		ZONE_UNLOCK(zone);
2745		goto zfree_start;
2746	}
2747	cache->uc_freebucket = NULL;
2748
2749	/* Can we throw this on the zone full list? */
2750	if (bucket != NULL) {
2751#ifdef UMA_DEBUG_ALLOC
2752		printf("uma_zfree: Putting old bucket on the free list.\n");
2753#endif
2754		/* ub_cnt is pointing to the last free item */
2755		KASSERT(bucket->ub_cnt != 0,
2756		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2757		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2758	}
2759
2760	/* We are no longer associated with this CPU. */
2761	critical_exit();
2762
2763	/*
2764	 * We bump the uz count when the cache size is insufficient to
2765	 * handle the working set.
2766	 */
2767	if (lockfail && zone->uz_count < BUCKET_MAX)
2768		zone->uz_count++;
2769	ZONE_UNLOCK(zone);
2770
2771#ifdef UMA_DEBUG_ALLOC
2772	printf("uma_zfree: Allocating new free bucket.\n");
2773#endif
2774	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2775	if (bucket) {
2776		critical_enter();
2777		cpu = curcpu;
2778		cache = &zone->uz_cpu[cpu];
2779		if (cache->uc_freebucket == NULL) {
2780			cache->uc_freebucket = bucket;
2781			goto zfree_start;
2782		}
2783		/*
2784		 * We lost the race, start over.  We have to drop our
2785		 * critical section to free the bucket.
2786		 */
2787		critical_exit();
2788		bucket_free(zone, bucket, udata);
2789		goto zfree_restart;
2790	}
2791
2792	/*
2793	 * If nothing else caught this, we'll just do an internal free.
2794	 */
2795zfree_item:
2796	zone_free_item(zone, item, udata, SKIP_DTOR);
2797
2798	return;
2799}
2800
2801static void
2802slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2803{
2804	uint8_t freei;
2805
2806	mtx_assert(&keg->uk_lock, MA_OWNED);
2807	MPASS(keg == slab->us_keg);
2808
2809	/* Do we need to remove from any lists? */
2810	if (slab->us_freecount+1 == keg->uk_ipers) {
2811		LIST_REMOVE(slab, us_link);
2812		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2813	} else if (slab->us_freecount == 0) {
2814		LIST_REMOVE(slab, us_link);
2815		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2816	}
2817
2818	/* Slab management. */
2819	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2820	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2821	slab->us_freecount++;
2822
2823	/* Keg statistics. */
2824	keg->uk_free++;
2825}
2826
2827static void
2828zone_release(uma_zone_t zone, void **bucket, int cnt)
2829{
2830	void *item;
2831	uma_slab_t slab;
2832	uma_keg_t keg;
2833	uint8_t *mem;
2834	int clearfull;
2835	int i;
2836
2837	clearfull = 0;
2838	keg = zone_first_keg(zone);
2839	KEG_LOCK(keg);
2840	for (i = 0; i < cnt; i++) {
2841		item = bucket[i];
2842		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2843			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2844			if (zone->uz_flags & UMA_ZONE_HASH) {
2845				slab = hash_sfind(&keg->uk_hash, mem);
2846			} else {
2847				mem += keg->uk_pgoff;
2848				slab = (uma_slab_t)mem;
2849			}
2850		} else {
2851			slab = vtoslab((vm_offset_t)item);
2852			if (slab->us_keg != keg) {
2853				KEG_UNLOCK(keg);
2854				keg = slab->us_keg;
2855				KEG_LOCK(keg);
2856			}
2857		}
2858		slab_free_item(keg, slab, item);
2859		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2860			if (keg->uk_pages < keg->uk_maxpages) {
2861				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2862				clearfull = 1;
2863			}
2864
2865			/*
2866			 * We can handle one more allocation. Since we're
2867			 * clearing ZFLAG_FULL, wake up all procs blocked
2868			 * on pages. This should be uncommon, so keeping this
2869			 * simple for now (rather than adding count of blocked
2870			 * threads etc).
2871			 */
2872			wakeup(keg);
2873		}
2874	}
2875	KEG_UNLOCK(keg);
2876	if (clearfull) {
2877		ZONE_LOCK(zone);
2878		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2879		wakeup(zone);
2880		ZONE_UNLOCK(zone);
2881	}
2882
2883}
2884
2885/*
2886 * Frees a single item to any zone.
2887 *
2888 * Arguments:
2889 *	zone   The zone to free to
2890 *	item   The item we're freeing
2891 *	udata  User supplied data for the dtor
2892 *	skip   Skip dtors and finis
2893 */
2894static void
2895zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2896{
2897
2898#ifdef INVARIANTS
2899	if (skip == SKIP_NONE) {
2900		if (zone->uz_flags & UMA_ZONE_MALLOC)
2901			uma_dbg_free(zone, udata, item);
2902		else
2903			uma_dbg_free(zone, NULL, item);
2904	}
2905#endif
2906	if (skip < SKIP_DTOR && zone->uz_dtor)
2907		zone->uz_dtor(item, zone->uz_size, udata);
2908
2909	if (skip < SKIP_FINI && zone->uz_fini)
2910		zone->uz_fini(item, zone->uz_size);
2911
2912	atomic_add_long(&zone->uz_frees, 1);
2913	zone->uz_release(zone->uz_arg, &item, 1);
2914}
2915
2916/* See uma.h */
2917int
2918uma_zone_set_max(uma_zone_t zone, int nitems)
2919{
2920	uma_keg_t keg;
2921
2922	keg = zone_first_keg(zone);
2923	if (keg == NULL)
2924		return (0);
2925	KEG_LOCK(keg);
2926	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2927	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2928		keg->uk_maxpages += keg->uk_ppera;
2929	nitems = keg->uk_maxpages * keg->uk_ipers;
2930	KEG_UNLOCK(keg);
2931
2932	return (nitems);
2933}
2934
2935/* See uma.h */
2936int
2937uma_zone_get_max(uma_zone_t zone)
2938{
2939	int nitems;
2940	uma_keg_t keg;
2941
2942	keg = zone_first_keg(zone);
2943	if (keg == NULL)
2944		return (0);
2945	KEG_LOCK(keg);
2946	nitems = keg->uk_maxpages * keg->uk_ipers;
2947	KEG_UNLOCK(keg);
2948
2949	return (nitems);
2950}
2951
2952/* See uma.h */
2953void
2954uma_zone_set_warning(uma_zone_t zone, const char *warning)
2955{
2956
2957	ZONE_LOCK(zone);
2958	zone->uz_warning = warning;
2959	ZONE_UNLOCK(zone);
2960}
2961
2962/* See uma.h */
2963int
2964uma_zone_get_cur(uma_zone_t zone)
2965{
2966	int64_t nitems;
2967	u_int i;
2968
2969	ZONE_LOCK(zone);
2970	nitems = zone->uz_allocs - zone->uz_frees;
2971	CPU_FOREACH(i) {
2972		/*
2973		 * See the comment in sysctl_vm_zone_stats() regarding the
2974		 * safety of accessing the per-cpu caches. With the zone lock
2975		 * held, it is safe, but can potentially result in stale data.
2976		 */
2977		nitems += zone->uz_cpu[i].uc_allocs -
2978		    zone->uz_cpu[i].uc_frees;
2979	}
2980	ZONE_UNLOCK(zone);
2981
2982	return (nitems < 0 ? 0 : nitems);
2983}
2984
2985/* See uma.h */
2986void
2987uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2988{
2989	uma_keg_t keg;
2990
2991	keg = zone_first_keg(zone);
2992	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
2993	KEG_LOCK(keg);
2994	KASSERT(keg->uk_pages == 0,
2995	    ("uma_zone_set_init on non-empty keg"));
2996	keg->uk_init = uminit;
2997	KEG_UNLOCK(keg);
2998}
2999
3000/* See uma.h */
3001void
3002uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3003{
3004	uma_keg_t keg;
3005
3006	keg = zone_first_keg(zone);
3007	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3008	KEG_LOCK(keg);
3009	KASSERT(keg->uk_pages == 0,
3010	    ("uma_zone_set_fini on non-empty keg"));
3011	keg->uk_fini = fini;
3012	KEG_UNLOCK(keg);
3013}
3014
3015/* See uma.h */
3016void
3017uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3018{
3019
3020	ZONE_LOCK(zone);
3021	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3022	    ("uma_zone_set_zinit on non-empty keg"));
3023	zone->uz_init = zinit;
3024	ZONE_UNLOCK(zone);
3025}
3026
3027/* See uma.h */
3028void
3029uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3030{
3031
3032	ZONE_LOCK(zone);
3033	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3034	    ("uma_zone_set_zfini on non-empty keg"));
3035	zone->uz_fini = zfini;
3036	ZONE_UNLOCK(zone);
3037}
3038
3039/* See uma.h */
3040/* XXX uk_freef is not actually used with the zone locked */
3041void
3042uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3043{
3044	uma_keg_t keg;
3045
3046	keg = zone_first_keg(zone);
3047	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3048	KEG_LOCK(keg);
3049	keg->uk_freef = freef;
3050	KEG_UNLOCK(keg);
3051}
3052
3053/* See uma.h */
3054/* XXX uk_allocf is not actually used with the zone locked */
3055void
3056uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3057{
3058	uma_keg_t keg;
3059
3060	keg = zone_first_keg(zone);
3061	KEG_LOCK(keg);
3062	keg->uk_allocf = allocf;
3063	KEG_UNLOCK(keg);
3064}
3065
3066/* See uma.h */
3067void
3068uma_zone_reserve(uma_zone_t zone, int items)
3069{
3070	uma_keg_t keg;
3071
3072	keg = zone_first_keg(zone);
3073	if (keg == NULL)
3074		return;
3075	KEG_LOCK(keg);
3076	keg->uk_reserve = items;
3077	KEG_UNLOCK(keg);
3078
3079	return;
3080}
3081
3082/* See uma.h */
3083int
3084uma_zone_reserve_kva(uma_zone_t zone, int count)
3085{
3086	uma_keg_t keg;
3087	vm_offset_t kva;
3088	int pages;
3089
3090	keg = zone_first_keg(zone);
3091	if (keg == NULL)
3092		return (0);
3093	pages = count / keg->uk_ipers;
3094
3095	if (pages * keg->uk_ipers < count)
3096		pages++;
3097
3098#ifdef UMA_MD_SMALL_ALLOC
3099	if (keg->uk_ppera > 1) {
3100#else
3101	if (1) {
3102#endif
3103		kva = kva_alloc(pages * UMA_SLAB_SIZE);
3104		if (kva == 0)
3105			return (0);
3106	} else
3107		kva = 0;
3108	KEG_LOCK(keg);
3109	keg->uk_kva = kva;
3110	keg->uk_offset = 0;
3111	keg->uk_maxpages = pages;
3112#ifdef UMA_MD_SMALL_ALLOC
3113	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3114#else
3115	keg->uk_allocf = noobj_alloc;
3116#endif
3117	keg->uk_flags |= UMA_ZONE_NOFREE;
3118	KEG_UNLOCK(keg);
3119
3120	return (1);
3121}
3122
3123/* See uma.h */
3124void
3125uma_prealloc(uma_zone_t zone, int items)
3126{
3127	int slabs;
3128	uma_slab_t slab;
3129	uma_keg_t keg;
3130
3131	keg = zone_first_keg(zone);
3132	if (keg == NULL)
3133		return;
3134	KEG_LOCK(keg);
3135	slabs = items / keg->uk_ipers;
3136	if (slabs * keg->uk_ipers < items)
3137		slabs++;
3138	while (slabs > 0) {
3139		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3140		if (slab == NULL)
3141			break;
3142		MPASS(slab->us_keg == keg);
3143		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3144		slabs--;
3145	}
3146	KEG_UNLOCK(keg);
3147}
3148
3149/* See uma.h */
3150uint32_t *
3151uma_find_refcnt(uma_zone_t zone, void *item)
3152{
3153	uma_slabrefcnt_t slabref;
3154	uma_slab_t slab;
3155	uma_keg_t keg;
3156	uint32_t *refcnt;
3157	int idx;
3158
3159	slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK));
3160	slabref = (uma_slabrefcnt_t)slab;
3161	keg = slab->us_keg;
3162	KASSERT(keg->uk_flags & UMA_ZONE_REFCNT,
3163	    ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
3164	idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3165	refcnt = &slabref->us_refcnt[idx];
3166	return refcnt;
3167}
3168
3169/* See uma.h */
3170void
3171uma_reclaim(void)
3172{
3173#ifdef UMA_DEBUG
3174	printf("UMA: vm asked us to release pages!\n");
3175#endif
3176	bucket_enable();
3177	zone_foreach(zone_drain);
3178	if (vm_page_count_min()) {
3179		cache_drain_safe(NULL);
3180		zone_foreach(zone_drain);
3181	}
3182	/*
3183	 * Some slabs may have been freed but this zone will be visited early
3184	 * we visit again so that we can free pages that are empty once other
3185	 * zones are drained.  We have to do the same for buckets.
3186	 */
3187	zone_drain(slabzone);
3188	zone_drain(slabrefzone);
3189	bucket_zone_drain();
3190}
3191
3192/* See uma.h */
3193int
3194uma_zone_exhausted(uma_zone_t zone)
3195{
3196	int full;
3197
3198	ZONE_LOCK(zone);
3199	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3200	ZONE_UNLOCK(zone);
3201	return (full);
3202}
3203
3204int
3205uma_zone_exhausted_nolock(uma_zone_t zone)
3206{
3207	return (zone->uz_flags & UMA_ZFLAG_FULL);
3208}
3209
3210void *
3211uma_large_malloc(int size, int wait)
3212{
3213	void *mem;
3214	uma_slab_t slab;
3215	uint8_t flags;
3216
3217	slab = zone_alloc_item(slabzone, NULL, wait);
3218	if (slab == NULL)
3219		return (NULL);
3220	mem = page_alloc(NULL, size, &flags, wait);
3221	if (mem) {
3222		vsetslab((vm_offset_t)mem, slab);
3223		slab->us_data = mem;
3224		slab->us_flags = flags | UMA_SLAB_MALLOC;
3225		slab->us_size = size;
3226	} else {
3227		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3228	}
3229
3230	return (mem);
3231}
3232
3233void
3234uma_large_free(uma_slab_t slab)
3235{
3236
3237	page_free(slab->us_data, slab->us_size, slab->us_flags);
3238	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3239}
3240
3241static void
3242uma_zero_item(void *item, uma_zone_t zone)
3243{
3244
3245	if (zone->uz_flags & UMA_ZONE_PCPU) {
3246		for (int i = 0; i < mp_ncpus; i++)
3247			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
3248	} else
3249		bzero(item, zone->uz_size);
3250}
3251
3252void
3253uma_print_stats(void)
3254{
3255	zone_foreach(uma_print_zone);
3256}
3257
3258static void
3259slab_print(uma_slab_t slab)
3260{
3261	printf("slab: keg %p, data %p, freecount %d\n",
3262		slab->us_keg, slab->us_data, slab->us_freecount);
3263}
3264
3265static void
3266cache_print(uma_cache_t cache)
3267{
3268	printf("alloc: %p(%d), free: %p(%d)\n",
3269		cache->uc_allocbucket,
3270		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3271		cache->uc_freebucket,
3272		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3273}
3274
3275static void
3276uma_print_keg(uma_keg_t keg)
3277{
3278	uma_slab_t slab;
3279
3280	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3281	    "out %d free %d limit %d\n",
3282	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3283	    keg->uk_ipers, keg->uk_ppera,
3284	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3285	    (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3286	printf("Part slabs:\n");
3287	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3288		slab_print(slab);
3289	printf("Free slabs:\n");
3290	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3291		slab_print(slab);
3292	printf("Full slabs:\n");
3293	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3294		slab_print(slab);
3295}
3296
3297void
3298uma_print_zone(uma_zone_t zone)
3299{
3300	uma_cache_t cache;
3301	uma_klink_t kl;
3302	int i;
3303
3304	printf("zone: %s(%p) size %d flags %#x\n",
3305	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3306	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3307		uma_print_keg(kl->kl_keg);
3308	CPU_FOREACH(i) {
3309		cache = &zone->uz_cpu[i];
3310		printf("CPU %d Cache:\n", i);
3311		cache_print(cache);
3312	}
3313}
3314
3315#ifdef DDB
3316/*
3317 * Generate statistics across both the zone and its per-cpu cache's.  Return
3318 * desired statistics if the pointer is non-NULL for that statistic.
3319 *
3320 * Note: does not update the zone statistics, as it can't safely clear the
3321 * per-CPU cache statistic.
3322 *
3323 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3324 * safe from off-CPU; we should modify the caches to track this information
3325 * directly so that we don't have to.
3326 */
3327static void
3328uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3329    uint64_t *freesp, uint64_t *sleepsp)
3330{
3331	uma_cache_t cache;
3332	uint64_t allocs, frees, sleeps;
3333	int cachefree, cpu;
3334
3335	allocs = frees = sleeps = 0;
3336	cachefree = 0;
3337	CPU_FOREACH(cpu) {
3338		cache = &z->uz_cpu[cpu];
3339		if (cache->uc_allocbucket != NULL)
3340			cachefree += cache->uc_allocbucket->ub_cnt;
3341		if (cache->uc_freebucket != NULL)
3342			cachefree += cache->uc_freebucket->ub_cnt;
3343		allocs += cache->uc_allocs;
3344		frees += cache->uc_frees;
3345	}
3346	allocs += z->uz_allocs;
3347	frees += z->uz_frees;
3348	sleeps += z->uz_sleeps;
3349	if (cachefreep != NULL)
3350		*cachefreep = cachefree;
3351	if (allocsp != NULL)
3352		*allocsp = allocs;
3353	if (freesp != NULL)
3354		*freesp = frees;
3355	if (sleepsp != NULL)
3356		*sleepsp = sleeps;
3357}
3358#endif /* DDB */
3359
3360static int
3361sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3362{
3363	uma_keg_t kz;
3364	uma_zone_t z;
3365	int count;
3366
3367	count = 0;
3368	mtx_lock(&uma_mtx);
3369	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3370		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3371			count++;
3372	}
3373	mtx_unlock(&uma_mtx);
3374	return (sysctl_handle_int(oidp, &count, 0, req));
3375}
3376
3377static int
3378sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3379{
3380	struct uma_stream_header ush;
3381	struct uma_type_header uth;
3382	struct uma_percpu_stat ups;
3383	uma_bucket_t bucket;
3384	struct sbuf sbuf;
3385	uma_cache_t cache;
3386	uma_klink_t kl;
3387	uma_keg_t kz;
3388	uma_zone_t z;
3389	uma_keg_t k;
3390	int count, error, i;
3391
3392	error = sysctl_wire_old_buffer(req, 0);
3393	if (error != 0)
3394		return (error);
3395	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3396
3397	count = 0;
3398	mtx_lock(&uma_mtx);
3399	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3400		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3401			count++;
3402	}
3403
3404	/*
3405	 * Insert stream header.
3406	 */
3407	bzero(&ush, sizeof(ush));
3408	ush.ush_version = UMA_STREAM_VERSION;
3409	ush.ush_maxcpus = (mp_maxid + 1);
3410	ush.ush_count = count;
3411	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3412
3413	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3414		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3415			bzero(&uth, sizeof(uth));
3416			ZONE_LOCK(z);
3417			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3418			uth.uth_align = kz->uk_align;
3419			uth.uth_size = kz->uk_size;
3420			uth.uth_rsize = kz->uk_rsize;
3421			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3422				k = kl->kl_keg;
3423				uth.uth_maxpages += k->uk_maxpages;
3424				uth.uth_pages += k->uk_pages;
3425				uth.uth_keg_free += k->uk_free;
3426				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3427				    * k->uk_ipers;
3428			}
3429
3430			/*
3431			 * A zone is secondary is it is not the first entry
3432			 * on the keg's zone list.
3433			 */
3434			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3435			    (LIST_FIRST(&kz->uk_zones) != z))
3436				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3437
3438			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3439				uth.uth_zone_free += bucket->ub_cnt;
3440			uth.uth_allocs = z->uz_allocs;
3441			uth.uth_frees = z->uz_frees;
3442			uth.uth_fails = z->uz_fails;
3443			uth.uth_sleeps = z->uz_sleeps;
3444			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3445			/*
3446			 * While it is not normally safe to access the cache
3447			 * bucket pointers while not on the CPU that owns the
3448			 * cache, we only allow the pointers to be exchanged
3449			 * without the zone lock held, not invalidated, so
3450			 * accept the possible race associated with bucket
3451			 * exchange during monitoring.
3452			 */
3453			for (i = 0; i < (mp_maxid + 1); i++) {
3454				bzero(&ups, sizeof(ups));
3455				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3456					goto skip;
3457				if (CPU_ABSENT(i))
3458					goto skip;
3459				cache = &z->uz_cpu[i];
3460				if (cache->uc_allocbucket != NULL)
3461					ups.ups_cache_free +=
3462					    cache->uc_allocbucket->ub_cnt;
3463				if (cache->uc_freebucket != NULL)
3464					ups.ups_cache_free +=
3465					    cache->uc_freebucket->ub_cnt;
3466				ups.ups_allocs = cache->uc_allocs;
3467				ups.ups_frees = cache->uc_frees;
3468skip:
3469				(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3470			}
3471			ZONE_UNLOCK(z);
3472		}
3473	}
3474	mtx_unlock(&uma_mtx);
3475	error = sbuf_finish(&sbuf);
3476	sbuf_delete(&sbuf);
3477	return (error);
3478}
3479
3480int
3481sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
3482{
3483	uma_zone_t zone = *(uma_zone_t *)arg1;
3484	int error, max, old;
3485
3486	old = max = uma_zone_get_max(zone);
3487	error = sysctl_handle_int(oidp, &max, 0, req);
3488	if (error || !req->newptr)
3489		return (error);
3490
3491	if (max < old)
3492		return (EINVAL);
3493
3494	uma_zone_set_max(zone, max);
3495
3496	return (0);
3497}
3498
3499int
3500sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
3501{
3502	uma_zone_t zone = *(uma_zone_t *)arg1;
3503	int cur;
3504
3505	cur = uma_zone_get_cur(zone);
3506	return (sysctl_handle_int(oidp, &cur, 0, req));
3507}
3508
3509#ifdef DDB
3510DB_SHOW_COMMAND(uma, db_show_uma)
3511{
3512	uint64_t allocs, frees, sleeps;
3513	uma_bucket_t bucket;
3514	uma_keg_t kz;
3515	uma_zone_t z;
3516	int cachefree;
3517
3518	db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
3519	    "Free", "Requests", "Sleeps", "Bucket");
3520	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3521		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3522			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3523				allocs = z->uz_allocs;
3524				frees = z->uz_frees;
3525				sleeps = z->uz_sleeps;
3526				cachefree = 0;
3527			} else
3528				uma_zone_sumstat(z, &cachefree, &allocs,
3529				    &frees, &sleeps);
3530			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3531			    (LIST_FIRST(&kz->uk_zones) != z)))
3532				cachefree += kz->uk_free;
3533			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3534				cachefree += bucket->ub_cnt;
3535			db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
3536			    z->uz_name, (uintmax_t)kz->uk_size,
3537			    (intmax_t)(allocs - frees), cachefree,
3538			    (uintmax_t)allocs, sleeps, z->uz_count);
3539			if (db_pager_quit)
3540				return;
3541		}
3542	}
3543}
3544
3545DB_SHOW_COMMAND(umacache, db_show_umacache)
3546{
3547	uint64_t allocs, frees;
3548	uma_bucket_t bucket;
3549	uma_zone_t z;
3550	int cachefree;
3551
3552	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3553	    "Requests", "Bucket");
3554	LIST_FOREACH(z, &uma_cachezones, uz_link) {
3555		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
3556		LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3557			cachefree += bucket->ub_cnt;
3558		db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
3559		    z->uz_name, (uintmax_t)z->uz_size,
3560		    (intmax_t)(allocs - frees), cachefree,
3561		    (uintmax_t)allocs, z->uz_count);
3562		if (db_pager_quit)
3563			return;
3564	}
3565}
3566#endif
3567