uma_core.c revision 260305
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * effecient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/10/sys/vm/uma_core.c 260305 2014-01-04 23:42:24Z mav $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/kernel.h>
68#include <sys/types.h>
69#include <sys/queue.h>
70#include <sys/malloc.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/sysctl.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/rwlock.h>
77#include <sys/sbuf.h>
78#include <sys/sched.h>
79#include <sys/smp.h>
80#include <sys/vmmeter.h>
81
82#include <vm/vm.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_param.h>
87#include <vm/vm_map.h>
88#include <vm/vm_kern.h>
89#include <vm/vm_extern.h>
90#include <vm/uma.h>
91#include <vm/uma_int.h>
92#include <vm/uma_dbg.h>
93
94#include <ddb/ddb.h>
95
96#ifdef DEBUG_MEMGUARD
97#include <vm/memguard.h>
98#endif
99
100/*
101 * This is the zone and keg from which all zones are spawned.  The idea is that
102 * even the zone & keg heads are allocated from the allocator, so we use the
103 * bss section to bootstrap us.
104 */
105static struct uma_keg masterkeg;
106static struct uma_zone masterzone_k;
107static struct uma_zone masterzone_z;
108static uma_zone_t kegs = &masterzone_k;
109static uma_zone_t zones = &masterzone_z;
110
111/* This is the zone from which all of uma_slab_t's are allocated. */
112static uma_zone_t slabzone;
113static uma_zone_t slabrefzone;	/* With refcounters (for UMA_ZONE_REFCNT) */
114
115/*
116 * The initial hash tables come out of this zone so they can be allocated
117 * prior to malloc coming up.
118 */
119static uma_zone_t hashzone;
120
121/* The boot-time adjusted value for cache line alignment. */
122int uma_align_cache = 64 - 1;
123
124static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
125
126/*
127 * Are we allowed to allocate buckets?
128 */
129static int bucketdisable = 1;
130
131/* Linked list of all kegs in the system */
132static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
133
134/* This mutex protects the keg list */
135static struct mtx_padalign uma_mtx;
136
137/* Linked list of boot time pages */
138static LIST_HEAD(,uma_slab) uma_boot_pages =
139    LIST_HEAD_INITIALIZER(uma_boot_pages);
140
141/* This mutex protects the boot time pages list */
142static struct mtx_padalign uma_boot_pages_mtx;
143
144/* Is the VM done starting up? */
145static int booted = 0;
146#define	UMA_STARTUP	1
147#define	UMA_STARTUP2	2
148
149/* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
150static const u_int uma_max_ipers = SLAB_SETSIZE;
151
152/*
153 * Only mbuf clusters use ref zones.  Just provide enough references
154 * to support the one user.  New code should not use the ref facility.
155 */
156static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES;
157
158/*
159 * This is the handle used to schedule events that need to happen
160 * outside of the allocation fast path.
161 */
162static struct callout uma_callout;
163#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
164
165/*
166 * This structure is passed as the zone ctor arg so that I don't have to create
167 * a special allocation function just for zones.
168 */
169struct uma_zctor_args {
170	const char *name;
171	size_t size;
172	uma_ctor ctor;
173	uma_dtor dtor;
174	uma_init uminit;
175	uma_fini fini;
176	uma_import import;
177	uma_release release;
178	void *arg;
179	uma_keg_t keg;
180	int align;
181	uint32_t flags;
182};
183
184struct uma_kctor_args {
185	uma_zone_t zone;
186	size_t size;
187	uma_init uminit;
188	uma_fini fini;
189	int align;
190	uint32_t flags;
191};
192
193struct uma_bucket_zone {
194	uma_zone_t	ubz_zone;
195	char		*ubz_name;
196	int		ubz_entries;	/* Number of items it can hold. */
197	int		ubz_maxsize;	/* Maximum allocation size per-item. */
198};
199
200/*
201 * Compute the actual number of bucket entries to pack them in power
202 * of two sizes for more efficient space utilization.
203 */
204#define	BUCKET_SIZE(n)						\
205    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
206
207#define	BUCKET_MAX	BUCKET_SIZE(128)
208
209struct uma_bucket_zone bucket_zones[] = {
210	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
211	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
212	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
213	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
214	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
215	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
216	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
217	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
218	{ NULL, NULL, 0}
219};
220
221/*
222 * Flags and enumerations to be passed to internal functions.
223 */
224enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
225
226/* Prototypes.. */
227
228static void *noobj_alloc(uma_zone_t, int, uint8_t *, int);
229static void *page_alloc(uma_zone_t, int, uint8_t *, int);
230static void *startup_alloc(uma_zone_t, int, uint8_t *, int);
231static void page_free(void *, int, uint8_t);
232static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
233static void cache_drain(uma_zone_t);
234static void bucket_drain(uma_zone_t, uma_bucket_t);
235static void bucket_cache_drain(uma_zone_t zone);
236static int keg_ctor(void *, int, void *, int);
237static void keg_dtor(void *, int, void *);
238static int zone_ctor(void *, int, void *, int);
239static void zone_dtor(void *, int, void *);
240static int zero_init(void *, int, int);
241static void keg_small_init(uma_keg_t keg);
242static void keg_large_init(uma_keg_t keg);
243static void zone_foreach(void (*zfunc)(uma_zone_t));
244static void zone_timeout(uma_zone_t zone);
245static int hash_alloc(struct uma_hash *);
246static int hash_expand(struct uma_hash *, struct uma_hash *);
247static void hash_free(struct uma_hash *hash);
248static void uma_timeout(void *);
249static void uma_startup3(void);
250static void *zone_alloc_item(uma_zone_t, void *, int);
251static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
252static void bucket_enable(void);
253static void bucket_init(void);
254static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
255static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
256static void bucket_zone_drain(void);
257static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
258static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
259static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
260static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
261static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
262static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
263    uma_fini fini, int align, uint32_t flags);
264static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
265static void zone_release(uma_zone_t zone, void **bucket, int cnt);
266
267void uma_print_zone(uma_zone_t);
268void uma_print_stats(void);
269static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
270static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
271
272SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
273
274SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
275    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
276
277SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
278    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
279
280static int zone_warnings = 1;
281TUNABLE_INT("vm.zone_warnings", &zone_warnings);
282SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0,
283    "Warn when UMA zones becomes full");
284
285/*
286 * This routine checks to see whether or not it's safe to enable buckets.
287 */
288static void
289bucket_enable(void)
290{
291	bucketdisable = vm_page_count_min();
292}
293
294/*
295 * Initialize bucket_zones, the array of zones of buckets of various sizes.
296 *
297 * For each zone, calculate the memory required for each bucket, consisting
298 * of the header and an array of pointers.
299 */
300static void
301bucket_init(void)
302{
303	struct uma_bucket_zone *ubz;
304	int size;
305	int i;
306
307	for (i = 0, ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
308		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
309		size += sizeof(void *) * ubz->ubz_entries;
310		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
311		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
312		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
313	}
314}
315
316/*
317 * Given a desired number of entries for a bucket, return the zone from which
318 * to allocate the bucket.
319 */
320static struct uma_bucket_zone *
321bucket_zone_lookup(int entries)
322{
323	struct uma_bucket_zone *ubz;
324
325	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
326		if (ubz->ubz_entries >= entries)
327			return (ubz);
328	ubz--;
329	return (ubz);
330}
331
332static int
333bucket_select(int size)
334{
335	struct uma_bucket_zone *ubz;
336
337	ubz = &bucket_zones[0];
338	if (size > ubz->ubz_maxsize)
339		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
340
341	for (; ubz->ubz_entries != 0; ubz++)
342		if (ubz->ubz_maxsize < size)
343			break;
344	ubz--;
345	return (ubz->ubz_entries);
346}
347
348static uma_bucket_t
349bucket_alloc(uma_zone_t zone, void *udata, int flags)
350{
351	struct uma_bucket_zone *ubz;
352	uma_bucket_t bucket;
353
354	/*
355	 * This is to stop us from allocating per cpu buckets while we're
356	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
357	 * boot pages.  This also prevents us from allocating buckets in
358	 * low memory situations.
359	 */
360	if (bucketdisable)
361		return (NULL);
362	/*
363	 * To limit bucket recursion we store the original zone flags
364	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
365	 * NOVM flag to persist even through deep recursions.  We also
366	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
367	 * a bucket for a bucket zone so we do not allow infinite bucket
368	 * recursion.  This cookie will even persist to frees of unused
369	 * buckets via the allocation path or bucket allocations in the
370	 * free path.
371	 */
372	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
373		udata = (void *)(uintptr_t)zone->uz_flags;
374	else {
375		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
376			return (NULL);
377		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
378	}
379	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
380		flags |= M_NOVM;
381	ubz = bucket_zone_lookup(zone->uz_count);
382	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
383	if (bucket) {
384#ifdef INVARIANTS
385		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
386#endif
387		bucket->ub_cnt = 0;
388		bucket->ub_entries = ubz->ubz_entries;
389	}
390
391	return (bucket);
392}
393
394static void
395bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
396{
397	struct uma_bucket_zone *ubz;
398
399	KASSERT(bucket->ub_cnt == 0,
400	    ("bucket_free: Freeing a non free bucket."));
401	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
402		udata = (void *)(uintptr_t)zone->uz_flags;
403	ubz = bucket_zone_lookup(bucket->ub_entries);
404	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
405}
406
407static void
408bucket_zone_drain(void)
409{
410	struct uma_bucket_zone *ubz;
411
412	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
413		zone_drain(ubz->ubz_zone);
414}
415
416static void
417zone_log_warning(uma_zone_t zone)
418{
419	static const struct timeval warninterval = { 300, 0 };
420
421	if (!zone_warnings || zone->uz_warning == NULL)
422		return;
423
424	if (ratecheck(&zone->uz_ratecheck, &warninterval))
425		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
426}
427
428static void
429zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
430{
431	uma_klink_t klink;
432
433	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
434		kegfn(klink->kl_keg);
435}
436
437/*
438 * Routine called by timeout which is used to fire off some time interval
439 * based calculations.  (stats, hash size, etc.)
440 *
441 * Arguments:
442 *	arg   Unused
443 *
444 * Returns:
445 *	Nothing
446 */
447static void
448uma_timeout(void *unused)
449{
450	bucket_enable();
451	zone_foreach(zone_timeout);
452
453	/* Reschedule this event */
454	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
455}
456
457/*
458 * Routine to perform timeout driven calculations.  This expands the
459 * hashes and does per cpu statistics aggregation.
460 *
461 *  Returns nothing.
462 */
463static void
464keg_timeout(uma_keg_t keg)
465{
466
467	KEG_LOCK(keg);
468	/*
469	 * Expand the keg hash table.
470	 *
471	 * This is done if the number of slabs is larger than the hash size.
472	 * What I'm trying to do here is completely reduce collisions.  This
473	 * may be a little aggressive.  Should I allow for two collisions max?
474	 */
475	if (keg->uk_flags & UMA_ZONE_HASH &&
476	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
477		struct uma_hash newhash;
478		struct uma_hash oldhash;
479		int ret;
480
481		/*
482		 * This is so involved because allocating and freeing
483		 * while the keg lock is held will lead to deadlock.
484		 * I have to do everything in stages and check for
485		 * races.
486		 */
487		newhash = keg->uk_hash;
488		KEG_UNLOCK(keg);
489		ret = hash_alloc(&newhash);
490		KEG_LOCK(keg);
491		if (ret) {
492			if (hash_expand(&keg->uk_hash, &newhash)) {
493				oldhash = keg->uk_hash;
494				keg->uk_hash = newhash;
495			} else
496				oldhash = newhash;
497
498			KEG_UNLOCK(keg);
499			hash_free(&oldhash);
500			return;
501		}
502	}
503	KEG_UNLOCK(keg);
504}
505
506static void
507zone_timeout(uma_zone_t zone)
508{
509
510	zone_foreach_keg(zone, &keg_timeout);
511}
512
513/*
514 * Allocate and zero fill the next sized hash table from the appropriate
515 * backing store.
516 *
517 * Arguments:
518 *	hash  A new hash structure with the old hash size in uh_hashsize
519 *
520 * Returns:
521 *	1 on sucess and 0 on failure.
522 */
523static int
524hash_alloc(struct uma_hash *hash)
525{
526	int oldsize;
527	int alloc;
528
529	oldsize = hash->uh_hashsize;
530
531	/* We're just going to go to a power of two greater */
532	if (oldsize)  {
533		hash->uh_hashsize = oldsize * 2;
534		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
535		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
536		    M_UMAHASH, M_NOWAIT);
537	} else {
538		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
539		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
540		    M_WAITOK);
541		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
542	}
543	if (hash->uh_slab_hash) {
544		bzero(hash->uh_slab_hash, alloc);
545		hash->uh_hashmask = hash->uh_hashsize - 1;
546		return (1);
547	}
548
549	return (0);
550}
551
552/*
553 * Expands the hash table for HASH zones.  This is done from zone_timeout
554 * to reduce collisions.  This must not be done in the regular allocation
555 * path, otherwise, we can recurse on the vm while allocating pages.
556 *
557 * Arguments:
558 *	oldhash  The hash you want to expand
559 *	newhash  The hash structure for the new table
560 *
561 * Returns:
562 *	Nothing
563 *
564 * Discussion:
565 */
566static int
567hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
568{
569	uma_slab_t slab;
570	int hval;
571	int i;
572
573	if (!newhash->uh_slab_hash)
574		return (0);
575
576	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
577		return (0);
578
579	/*
580	 * I need to investigate hash algorithms for resizing without a
581	 * full rehash.
582	 */
583
584	for (i = 0; i < oldhash->uh_hashsize; i++)
585		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
586			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
587			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
588			hval = UMA_HASH(newhash, slab->us_data);
589			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
590			    slab, us_hlink);
591		}
592
593	return (1);
594}
595
596/*
597 * Free the hash bucket to the appropriate backing store.
598 *
599 * Arguments:
600 *	slab_hash  The hash bucket we're freeing
601 *	hashsize   The number of entries in that hash bucket
602 *
603 * Returns:
604 *	Nothing
605 */
606static void
607hash_free(struct uma_hash *hash)
608{
609	if (hash->uh_slab_hash == NULL)
610		return;
611	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
612		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
613	else
614		free(hash->uh_slab_hash, M_UMAHASH);
615}
616
617/*
618 * Frees all outstanding items in a bucket
619 *
620 * Arguments:
621 *	zone   The zone to free to, must be unlocked.
622 *	bucket The free/alloc bucket with items, cpu queue must be locked.
623 *
624 * Returns:
625 *	Nothing
626 */
627
628static void
629bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
630{
631	int i;
632
633	if (bucket == NULL)
634		return;
635
636	if (zone->uz_fini)
637		for (i = 0; i < bucket->ub_cnt; i++)
638			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
639	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
640	bucket->ub_cnt = 0;
641}
642
643/*
644 * Drains the per cpu caches for a zone.
645 *
646 * NOTE: This may only be called while the zone is being turn down, and not
647 * during normal operation.  This is necessary in order that we do not have
648 * to migrate CPUs to drain the per-CPU caches.
649 *
650 * Arguments:
651 *	zone     The zone to drain, must be unlocked.
652 *
653 * Returns:
654 *	Nothing
655 */
656static void
657cache_drain(uma_zone_t zone)
658{
659	uma_cache_t cache;
660	int cpu;
661
662	/*
663	 * XXX: It is safe to not lock the per-CPU caches, because we're
664	 * tearing down the zone anyway.  I.e., there will be no further use
665	 * of the caches at this point.
666	 *
667	 * XXX: It would good to be able to assert that the zone is being
668	 * torn down to prevent improper use of cache_drain().
669	 *
670	 * XXX: We lock the zone before passing into bucket_cache_drain() as
671	 * it is used elsewhere.  Should the tear-down path be made special
672	 * there in some form?
673	 */
674	CPU_FOREACH(cpu) {
675		cache = &zone->uz_cpu[cpu];
676		bucket_drain(zone, cache->uc_allocbucket);
677		bucket_drain(zone, cache->uc_freebucket);
678		if (cache->uc_allocbucket != NULL)
679			bucket_free(zone, cache->uc_allocbucket, NULL);
680		if (cache->uc_freebucket != NULL)
681			bucket_free(zone, cache->uc_freebucket, NULL);
682		cache->uc_allocbucket = cache->uc_freebucket = NULL;
683	}
684	ZONE_LOCK(zone);
685	bucket_cache_drain(zone);
686	ZONE_UNLOCK(zone);
687}
688
689static void
690cache_shrink(uma_zone_t zone)
691{
692
693	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
694		return;
695
696	ZONE_LOCK(zone);
697	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
698	ZONE_UNLOCK(zone);
699}
700
701static void
702cache_drain_safe_cpu(uma_zone_t zone)
703{
704	uma_cache_t cache;
705	uma_bucket_t b1, b2;
706
707	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
708		return;
709
710	b1 = b2 = NULL;
711	ZONE_LOCK(zone);
712	critical_enter();
713	cache = &zone->uz_cpu[curcpu];
714	if (cache->uc_allocbucket) {
715		if (cache->uc_allocbucket->ub_cnt != 0)
716			LIST_INSERT_HEAD(&zone->uz_buckets,
717			    cache->uc_allocbucket, ub_link);
718		else
719			b1 = cache->uc_allocbucket;
720		cache->uc_allocbucket = NULL;
721	}
722	if (cache->uc_freebucket) {
723		if (cache->uc_freebucket->ub_cnt != 0)
724			LIST_INSERT_HEAD(&zone->uz_buckets,
725			    cache->uc_freebucket, ub_link);
726		else
727			b2 = cache->uc_freebucket;
728		cache->uc_freebucket = NULL;
729	}
730	critical_exit();
731	ZONE_UNLOCK(zone);
732	if (b1)
733		bucket_free(zone, b1, NULL);
734	if (b2)
735		bucket_free(zone, b2, NULL);
736}
737
738/*
739 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
740 * This is an expensive call because it needs to bind to all CPUs
741 * one by one and enter a critical section on each of them in order
742 * to safely access their cache buckets.
743 * Zone lock must not be held on call this function.
744 */
745static void
746cache_drain_safe(uma_zone_t zone)
747{
748	int cpu;
749
750	/*
751	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
752	 */
753	if (zone)
754		cache_shrink(zone);
755	else
756		zone_foreach(cache_shrink);
757
758	CPU_FOREACH(cpu) {
759		thread_lock(curthread);
760		sched_bind(curthread, cpu);
761		thread_unlock(curthread);
762
763		if (zone)
764			cache_drain_safe_cpu(zone);
765		else
766			zone_foreach(cache_drain_safe_cpu);
767	}
768	thread_lock(curthread);
769	sched_unbind(curthread);
770	thread_unlock(curthread);
771}
772
773/*
774 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
775 */
776static void
777bucket_cache_drain(uma_zone_t zone)
778{
779	uma_bucket_t bucket;
780
781	/*
782	 * Drain the bucket queues and free the buckets, we just keep two per
783	 * cpu (alloc/free).
784	 */
785	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
786		LIST_REMOVE(bucket, ub_link);
787		ZONE_UNLOCK(zone);
788		bucket_drain(zone, bucket);
789		bucket_free(zone, bucket, NULL);
790		ZONE_LOCK(zone);
791	}
792
793	/*
794	 * Shrink further bucket sizes.  Price of single zone lock collision
795	 * is probably lower then price of global cache drain.
796	 */
797	if (zone->uz_count > zone->uz_count_min)
798		zone->uz_count--;
799}
800
801static void
802keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
803{
804	uint8_t *mem;
805	int i;
806	uint8_t flags;
807
808	mem = slab->us_data;
809	flags = slab->us_flags;
810	i = start;
811	if (keg->uk_fini != NULL) {
812		for (i--; i > -1; i--)
813			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
814			    keg->uk_size);
815	}
816	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
817		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
818#ifdef UMA_DEBUG
819	printf("%s: Returning %d bytes.\n", keg->uk_name,
820	    PAGE_SIZE * keg->uk_ppera);
821#endif
822	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
823}
824
825/*
826 * Frees pages from a keg back to the system.  This is done on demand from
827 * the pageout daemon.
828 *
829 * Returns nothing.
830 */
831static void
832keg_drain(uma_keg_t keg)
833{
834	struct slabhead freeslabs = { 0 };
835	uma_slab_t slab;
836	uma_slab_t n;
837
838	/*
839	 * We don't want to take pages from statically allocated kegs at this
840	 * time
841	 */
842	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
843		return;
844
845#ifdef UMA_DEBUG
846	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
847#endif
848	KEG_LOCK(keg);
849	if (keg->uk_free == 0)
850		goto finished;
851
852	slab = LIST_FIRST(&keg->uk_free_slab);
853	while (slab) {
854		n = LIST_NEXT(slab, us_link);
855
856		/* We have no where to free these to */
857		if (slab->us_flags & UMA_SLAB_BOOT) {
858			slab = n;
859			continue;
860		}
861
862		LIST_REMOVE(slab, us_link);
863		keg->uk_pages -= keg->uk_ppera;
864		keg->uk_free -= keg->uk_ipers;
865
866		if (keg->uk_flags & UMA_ZONE_HASH)
867			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
868
869		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
870
871		slab = n;
872	}
873finished:
874	KEG_UNLOCK(keg);
875
876	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
877		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
878		keg_free_slab(keg, slab, keg->uk_ipers);
879	}
880}
881
882static void
883zone_drain_wait(uma_zone_t zone, int waitok)
884{
885
886	/*
887	 * Set draining to interlock with zone_dtor() so we can release our
888	 * locks as we go.  Only dtor() should do a WAITOK call since it
889	 * is the only call that knows the structure will still be available
890	 * when it wakes up.
891	 */
892	ZONE_LOCK(zone);
893	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
894		if (waitok == M_NOWAIT)
895			goto out;
896		mtx_unlock(&uma_mtx);
897		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
898		mtx_lock(&uma_mtx);
899	}
900	zone->uz_flags |= UMA_ZFLAG_DRAINING;
901	bucket_cache_drain(zone);
902	ZONE_UNLOCK(zone);
903	/*
904	 * The DRAINING flag protects us from being freed while
905	 * we're running.  Normally the uma_mtx would protect us but we
906	 * must be able to release and acquire the right lock for each keg.
907	 */
908	zone_foreach_keg(zone, &keg_drain);
909	ZONE_LOCK(zone);
910	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
911	wakeup(zone);
912out:
913	ZONE_UNLOCK(zone);
914}
915
916void
917zone_drain(uma_zone_t zone)
918{
919
920	zone_drain_wait(zone, M_NOWAIT);
921}
922
923/*
924 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
925 *
926 * Arguments:
927 *	wait  Shall we wait?
928 *
929 * Returns:
930 *	The slab that was allocated or NULL if there is no memory and the
931 *	caller specified M_NOWAIT.
932 */
933static uma_slab_t
934keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
935{
936	uma_slabrefcnt_t slabref;
937	uma_alloc allocf;
938	uma_slab_t slab;
939	uint8_t *mem;
940	uint8_t flags;
941	int i;
942
943	mtx_assert(&keg->uk_lock, MA_OWNED);
944	slab = NULL;
945	mem = NULL;
946
947#ifdef UMA_DEBUG
948	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
949#endif
950	allocf = keg->uk_allocf;
951	KEG_UNLOCK(keg);
952
953	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
954		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
955		if (slab == NULL)
956			goto out;
957	}
958
959	/*
960	 * This reproduces the old vm_zone behavior of zero filling pages the
961	 * first time they are added to a zone.
962	 *
963	 * Malloced items are zeroed in uma_zalloc.
964	 */
965
966	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
967		wait |= M_ZERO;
968	else
969		wait &= ~M_ZERO;
970
971	if (keg->uk_flags & UMA_ZONE_NODUMP)
972		wait |= M_NODUMP;
973
974	/* zone is passed for legacy reasons. */
975	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
976	if (mem == NULL) {
977		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
978			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
979		slab = NULL;
980		goto out;
981	}
982
983	/* Point the slab into the allocated memory */
984	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
985		slab = (uma_slab_t )(mem + keg->uk_pgoff);
986
987	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
988		for (i = 0; i < keg->uk_ppera; i++)
989			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
990
991	slab->us_keg = keg;
992	slab->us_data = mem;
993	slab->us_freecount = keg->uk_ipers;
994	slab->us_flags = flags;
995	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
996#ifdef INVARIANTS
997	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
998#endif
999	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1000		slabref = (uma_slabrefcnt_t)slab;
1001		for (i = 0; i < keg->uk_ipers; i++)
1002			slabref->us_refcnt[i] = 0;
1003	}
1004
1005	if (keg->uk_init != NULL) {
1006		for (i = 0; i < keg->uk_ipers; i++)
1007			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1008			    keg->uk_size, wait) != 0)
1009				break;
1010		if (i != keg->uk_ipers) {
1011			keg_free_slab(keg, slab, i);
1012			slab = NULL;
1013			goto out;
1014		}
1015	}
1016out:
1017	KEG_LOCK(keg);
1018
1019	if (slab != NULL) {
1020		if (keg->uk_flags & UMA_ZONE_HASH)
1021			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1022
1023		keg->uk_pages += keg->uk_ppera;
1024		keg->uk_free += keg->uk_ipers;
1025	}
1026
1027	return (slab);
1028}
1029
1030/*
1031 * This function is intended to be used early on in place of page_alloc() so
1032 * that we may use the boot time page cache to satisfy allocations before
1033 * the VM is ready.
1034 */
1035static void *
1036startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
1037{
1038	uma_keg_t keg;
1039	uma_slab_t tmps;
1040	int pages, check_pages;
1041
1042	keg = zone_first_keg(zone);
1043	pages = howmany(bytes, PAGE_SIZE);
1044	check_pages = pages - 1;
1045	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1046
1047	/*
1048	 * Check our small startup cache to see if it has pages remaining.
1049	 */
1050	mtx_lock(&uma_boot_pages_mtx);
1051
1052	/* First check if we have enough room. */
1053	tmps = LIST_FIRST(&uma_boot_pages);
1054	while (tmps != NULL && check_pages-- > 0)
1055		tmps = LIST_NEXT(tmps, us_link);
1056	if (tmps != NULL) {
1057		/*
1058		 * It's ok to lose tmps references.  The last one will
1059		 * have tmps->us_data pointing to the start address of
1060		 * "pages" contiguous pages of memory.
1061		 */
1062		while (pages-- > 0) {
1063			tmps = LIST_FIRST(&uma_boot_pages);
1064			LIST_REMOVE(tmps, us_link);
1065		}
1066		mtx_unlock(&uma_boot_pages_mtx);
1067		*pflag = tmps->us_flags;
1068		return (tmps->us_data);
1069	}
1070	mtx_unlock(&uma_boot_pages_mtx);
1071	if (booted < UMA_STARTUP2)
1072		panic("UMA: Increase vm.boot_pages");
1073	/*
1074	 * Now that we've booted reset these users to their real allocator.
1075	 */
1076#ifdef UMA_MD_SMALL_ALLOC
1077	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1078#else
1079	keg->uk_allocf = page_alloc;
1080#endif
1081	return keg->uk_allocf(zone, bytes, pflag, wait);
1082}
1083
1084/*
1085 * Allocates a number of pages from the system
1086 *
1087 * Arguments:
1088 *	bytes  The number of bytes requested
1089 *	wait  Shall we wait?
1090 *
1091 * Returns:
1092 *	A pointer to the alloced memory or possibly
1093 *	NULL if M_NOWAIT is set.
1094 */
1095static void *
1096page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
1097{
1098	void *p;	/* Returned page */
1099
1100	*pflag = UMA_SLAB_KMEM;
1101	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1102
1103	return (p);
1104}
1105
1106/*
1107 * Allocates a number of pages from within an object
1108 *
1109 * Arguments:
1110 *	bytes  The number of bytes requested
1111 *	wait   Shall we wait?
1112 *
1113 * Returns:
1114 *	A pointer to the alloced memory or possibly
1115 *	NULL if M_NOWAIT is set.
1116 */
1117static void *
1118noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait)
1119{
1120	TAILQ_HEAD(, vm_page) alloctail;
1121	u_long npages;
1122	vm_offset_t retkva, zkva;
1123	vm_page_t p, p_next;
1124	uma_keg_t keg;
1125
1126	TAILQ_INIT(&alloctail);
1127	keg = zone_first_keg(zone);
1128
1129	npages = howmany(bytes, PAGE_SIZE);
1130	while (npages > 0) {
1131		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1132		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1133		if (p != NULL) {
1134			/*
1135			 * Since the page does not belong to an object, its
1136			 * listq is unused.
1137			 */
1138			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1139			npages--;
1140			continue;
1141		}
1142		if (wait & M_WAITOK) {
1143			VM_WAIT;
1144			continue;
1145		}
1146
1147		/*
1148		 * Page allocation failed, free intermediate pages and
1149		 * exit.
1150		 */
1151		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1152			vm_page_unwire(p, 0);
1153			vm_page_free(p);
1154		}
1155		return (NULL);
1156	}
1157	*flags = UMA_SLAB_PRIV;
1158	zkva = keg->uk_kva +
1159	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1160	retkva = zkva;
1161	TAILQ_FOREACH(p, &alloctail, listq) {
1162		pmap_qenter(zkva, &p, 1);
1163		zkva += PAGE_SIZE;
1164	}
1165
1166	return ((void *)retkva);
1167}
1168
1169/*
1170 * Frees a number of pages to the system
1171 *
1172 * Arguments:
1173 *	mem   A pointer to the memory to be freed
1174 *	size  The size of the memory being freed
1175 *	flags The original p->us_flags field
1176 *
1177 * Returns:
1178 *	Nothing
1179 */
1180static void
1181page_free(void *mem, int size, uint8_t flags)
1182{
1183	struct vmem *vmem;
1184
1185	if (flags & UMA_SLAB_KMEM)
1186		vmem = kmem_arena;
1187	else if (flags & UMA_SLAB_KERNEL)
1188		vmem = kernel_arena;
1189	else
1190		panic("UMA: page_free used with invalid flags %d", flags);
1191
1192	kmem_free(vmem, (vm_offset_t)mem, size);
1193}
1194
1195/*
1196 * Zero fill initializer
1197 *
1198 * Arguments/Returns follow uma_init specifications
1199 */
1200static int
1201zero_init(void *mem, int size, int flags)
1202{
1203	bzero(mem, size);
1204	return (0);
1205}
1206
1207/*
1208 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1209 *
1210 * Arguments
1211 *	keg  The zone we should initialize
1212 *
1213 * Returns
1214 *	Nothing
1215 */
1216static void
1217keg_small_init(uma_keg_t keg)
1218{
1219	u_int rsize;
1220	u_int memused;
1221	u_int wastedspace;
1222	u_int shsize;
1223
1224	if (keg->uk_flags & UMA_ZONE_PCPU) {
1225		u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1226
1227		keg->uk_slabsize = sizeof(struct pcpu);
1228		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1229		    PAGE_SIZE);
1230	} else {
1231		keg->uk_slabsize = UMA_SLAB_SIZE;
1232		keg->uk_ppera = 1;
1233	}
1234
1235	/*
1236	 * Calculate the size of each allocation (rsize) according to
1237	 * alignment.  If the requested size is smaller than we have
1238	 * allocation bits for we round it up.
1239	 */
1240	rsize = keg->uk_size;
1241	if (rsize < keg->uk_slabsize / SLAB_SETSIZE)
1242		rsize = keg->uk_slabsize / SLAB_SETSIZE;
1243	if (rsize & keg->uk_align)
1244		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1245	keg->uk_rsize = rsize;
1246
1247	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1248	    keg->uk_rsize < sizeof(struct pcpu),
1249	    ("%s: size %u too large", __func__, keg->uk_rsize));
1250
1251	if (keg->uk_flags & UMA_ZONE_REFCNT)
1252		rsize += sizeof(uint32_t);
1253
1254	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1255		shsize = 0;
1256	else
1257		shsize = sizeof(struct uma_slab);
1258
1259	keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize;
1260	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1261	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1262
1263	memused = keg->uk_ipers * rsize + shsize;
1264	wastedspace = keg->uk_slabsize - memused;
1265
1266	/*
1267	 * We can't do OFFPAGE if we're internal or if we've been
1268	 * asked to not go to the VM for buckets.  If we do this we
1269	 * may end up going to the VM  for slabs which we do not
1270	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1271	 * of UMA_ZONE_VM, which clearly forbids it.
1272	 */
1273	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1274	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1275		return;
1276
1277	/*
1278	 * See if using an OFFPAGE slab will limit our waste.  Only do
1279	 * this if it permits more items per-slab.
1280	 *
1281	 * XXX We could try growing slabsize to limit max waste as well.
1282	 * Historically this was not done because the VM could not
1283	 * efficiently handle contiguous allocations.
1284	 */
1285	if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) &&
1286	    (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) {
1287		keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize;
1288		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1289		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1290#ifdef UMA_DEBUG
1291		printf("UMA decided we need offpage slab headers for "
1292		    "keg: %s, calculated wastedspace = %d, "
1293		    "maximum wasted space allowed = %d, "
1294		    "calculated ipers = %d, "
1295		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1296		    keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1297		    keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize);
1298#endif
1299		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1300	}
1301
1302	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1303	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1304		keg->uk_flags |= UMA_ZONE_HASH;
1305}
1306
1307/*
1308 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1309 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1310 * more complicated.
1311 *
1312 * Arguments
1313 *	keg  The keg we should initialize
1314 *
1315 * Returns
1316 *	Nothing
1317 */
1318static void
1319keg_large_init(uma_keg_t keg)
1320{
1321	u_int shsize;
1322
1323	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1324	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1325	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1326	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1327	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1328
1329	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1330	keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE;
1331	keg->uk_ipers = 1;
1332	keg->uk_rsize = keg->uk_size;
1333
1334	/* We can't do OFFPAGE if we're internal, bail out here. */
1335	if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
1336		return;
1337
1338	/* Check whether we have enough space to not do OFFPAGE. */
1339	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1340		shsize = sizeof(struct uma_slab);
1341		if (keg->uk_flags & UMA_ZONE_REFCNT)
1342			shsize += keg->uk_ipers * sizeof(uint32_t);
1343		if (shsize & UMA_ALIGN_PTR)
1344			shsize = (shsize & ~UMA_ALIGN_PTR) +
1345			    (UMA_ALIGN_PTR + 1);
1346
1347		if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize)
1348			keg->uk_flags |= UMA_ZONE_OFFPAGE;
1349	}
1350
1351	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1352	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1353		keg->uk_flags |= UMA_ZONE_HASH;
1354}
1355
1356static void
1357keg_cachespread_init(uma_keg_t keg)
1358{
1359	int alignsize;
1360	int trailer;
1361	int pages;
1362	int rsize;
1363
1364	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1365	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1366
1367	alignsize = keg->uk_align + 1;
1368	rsize = keg->uk_size;
1369	/*
1370	 * We want one item to start on every align boundary in a page.  To
1371	 * do this we will span pages.  We will also extend the item by the
1372	 * size of align if it is an even multiple of align.  Otherwise, it
1373	 * would fall on the same boundary every time.
1374	 */
1375	if (rsize & keg->uk_align)
1376		rsize = (rsize & ~keg->uk_align) + alignsize;
1377	if ((rsize & alignsize) == 0)
1378		rsize += alignsize;
1379	trailer = rsize - keg->uk_size;
1380	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1381	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1382	keg->uk_rsize = rsize;
1383	keg->uk_ppera = pages;
1384	keg->uk_slabsize = UMA_SLAB_SIZE;
1385	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1386	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1387	KASSERT(keg->uk_ipers <= uma_max_ipers,
1388	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1389	    keg->uk_ipers));
1390}
1391
1392/*
1393 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1394 * the keg onto the global keg list.
1395 *
1396 * Arguments/Returns follow uma_ctor specifications
1397 *	udata  Actually uma_kctor_args
1398 */
1399static int
1400keg_ctor(void *mem, int size, void *udata, int flags)
1401{
1402	struct uma_kctor_args *arg = udata;
1403	uma_keg_t keg = mem;
1404	uma_zone_t zone;
1405
1406	bzero(keg, size);
1407	keg->uk_size = arg->size;
1408	keg->uk_init = arg->uminit;
1409	keg->uk_fini = arg->fini;
1410	keg->uk_align = arg->align;
1411	keg->uk_free = 0;
1412	keg->uk_reserve = 0;
1413	keg->uk_pages = 0;
1414	keg->uk_flags = arg->flags;
1415	keg->uk_allocf = page_alloc;
1416	keg->uk_freef = page_free;
1417	keg->uk_slabzone = NULL;
1418
1419	/*
1420	 * The master zone is passed to us at keg-creation time.
1421	 */
1422	zone = arg->zone;
1423	keg->uk_name = zone->uz_name;
1424
1425	if (arg->flags & UMA_ZONE_VM)
1426		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1427
1428	if (arg->flags & UMA_ZONE_ZINIT)
1429		keg->uk_init = zero_init;
1430
1431	if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1432		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1433
1434	if (arg->flags & UMA_ZONE_PCPU)
1435#ifdef SMP
1436		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1437#else
1438		keg->uk_flags &= ~UMA_ZONE_PCPU;
1439#endif
1440
1441	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1442		keg_cachespread_init(keg);
1443	} else if (keg->uk_flags & UMA_ZONE_REFCNT) {
1444		if (keg->uk_size >
1445		    (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) -
1446		    sizeof(uint32_t)))
1447			keg_large_init(keg);
1448		else
1449			keg_small_init(keg);
1450	} else {
1451		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1452			keg_large_init(keg);
1453		else
1454			keg_small_init(keg);
1455	}
1456
1457	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1458		if (keg->uk_flags & UMA_ZONE_REFCNT) {
1459			if (keg->uk_ipers > uma_max_ipers_ref)
1460				panic("Too many ref items per zone: %d > %d\n",
1461				    keg->uk_ipers, uma_max_ipers_ref);
1462			keg->uk_slabzone = slabrefzone;
1463		} else
1464			keg->uk_slabzone = slabzone;
1465	}
1466
1467	/*
1468	 * If we haven't booted yet we need allocations to go through the
1469	 * startup cache until the vm is ready.
1470	 */
1471	if (keg->uk_ppera == 1) {
1472#ifdef UMA_MD_SMALL_ALLOC
1473		keg->uk_allocf = uma_small_alloc;
1474		keg->uk_freef = uma_small_free;
1475
1476		if (booted < UMA_STARTUP)
1477			keg->uk_allocf = startup_alloc;
1478#else
1479		if (booted < UMA_STARTUP2)
1480			keg->uk_allocf = startup_alloc;
1481#endif
1482	} else if (booted < UMA_STARTUP2 &&
1483	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1484		keg->uk_allocf = startup_alloc;
1485
1486	/*
1487	 * Initialize keg's lock
1488	 */
1489	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1490
1491	/*
1492	 * If we're putting the slab header in the actual page we need to
1493	 * figure out where in each page it goes.  This calculates a right
1494	 * justified offset into the memory on an ALIGN_PTR boundary.
1495	 */
1496	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1497		u_int totsize;
1498
1499		/* Size of the slab struct and free list */
1500		totsize = sizeof(struct uma_slab);
1501
1502		/* Size of the reference counts. */
1503		if (keg->uk_flags & UMA_ZONE_REFCNT)
1504			totsize += keg->uk_ipers * sizeof(uint32_t);
1505
1506		if (totsize & UMA_ALIGN_PTR)
1507			totsize = (totsize & ~UMA_ALIGN_PTR) +
1508			    (UMA_ALIGN_PTR + 1);
1509		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1510
1511		/*
1512		 * The only way the following is possible is if with our
1513		 * UMA_ALIGN_PTR adjustments we are now bigger than
1514		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1515		 * mathematically possible for all cases, so we make
1516		 * sure here anyway.
1517		 */
1518		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1519		if (keg->uk_flags & UMA_ZONE_REFCNT)
1520			totsize += keg->uk_ipers * sizeof(uint32_t);
1521		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1522			printf("zone %s ipers %d rsize %d size %d\n",
1523			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1524			    keg->uk_size);
1525			panic("UMA slab won't fit.");
1526		}
1527	}
1528
1529	if (keg->uk_flags & UMA_ZONE_HASH)
1530		hash_alloc(&keg->uk_hash);
1531
1532#ifdef UMA_DEBUG
1533	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1534	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1535	    keg->uk_ipers, keg->uk_ppera,
1536	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1537#endif
1538
1539	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1540
1541	mtx_lock(&uma_mtx);
1542	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1543	mtx_unlock(&uma_mtx);
1544	return (0);
1545}
1546
1547/*
1548 * Zone header ctor.  This initializes all fields, locks, etc.
1549 *
1550 * Arguments/Returns follow uma_ctor specifications
1551 *	udata  Actually uma_zctor_args
1552 */
1553static int
1554zone_ctor(void *mem, int size, void *udata, int flags)
1555{
1556	struct uma_zctor_args *arg = udata;
1557	uma_zone_t zone = mem;
1558	uma_zone_t z;
1559	uma_keg_t keg;
1560
1561	bzero(zone, size);
1562	zone->uz_name = arg->name;
1563	zone->uz_ctor = arg->ctor;
1564	zone->uz_dtor = arg->dtor;
1565	zone->uz_slab = zone_fetch_slab;
1566	zone->uz_init = NULL;
1567	zone->uz_fini = NULL;
1568	zone->uz_allocs = 0;
1569	zone->uz_frees = 0;
1570	zone->uz_fails = 0;
1571	zone->uz_sleeps = 0;
1572	zone->uz_count = 0;
1573	zone->uz_count_min = 0;
1574	zone->uz_flags = 0;
1575	zone->uz_warning = NULL;
1576	timevalclear(&zone->uz_ratecheck);
1577	keg = arg->keg;
1578
1579	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1580
1581	/*
1582	 * This is a pure cache zone, no kegs.
1583	 */
1584	if (arg->import) {
1585		if (arg->flags & UMA_ZONE_VM)
1586			arg->flags |= UMA_ZFLAG_CACHEONLY;
1587		zone->uz_flags = arg->flags;
1588		zone->uz_size = arg->size;
1589		zone->uz_import = arg->import;
1590		zone->uz_release = arg->release;
1591		zone->uz_arg = arg->arg;
1592		zone->uz_lockptr = &zone->uz_lock;
1593		goto out;
1594	}
1595
1596	/*
1597	 * Use the regular zone/keg/slab allocator.
1598	 */
1599	zone->uz_import = (uma_import)zone_import;
1600	zone->uz_release = (uma_release)zone_release;
1601	zone->uz_arg = zone;
1602
1603	if (arg->flags & UMA_ZONE_SECONDARY) {
1604		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1605		zone->uz_init = arg->uminit;
1606		zone->uz_fini = arg->fini;
1607		zone->uz_lockptr = &keg->uk_lock;
1608		zone->uz_flags |= UMA_ZONE_SECONDARY;
1609		mtx_lock(&uma_mtx);
1610		ZONE_LOCK(zone);
1611		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1612			if (LIST_NEXT(z, uz_link) == NULL) {
1613				LIST_INSERT_AFTER(z, zone, uz_link);
1614				break;
1615			}
1616		}
1617		ZONE_UNLOCK(zone);
1618		mtx_unlock(&uma_mtx);
1619	} else if (keg == NULL) {
1620		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1621		    arg->align, arg->flags)) == NULL)
1622			return (ENOMEM);
1623	} else {
1624		struct uma_kctor_args karg;
1625		int error;
1626
1627		/* We should only be here from uma_startup() */
1628		karg.size = arg->size;
1629		karg.uminit = arg->uminit;
1630		karg.fini = arg->fini;
1631		karg.align = arg->align;
1632		karg.flags = arg->flags;
1633		karg.zone = zone;
1634		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1635		    flags);
1636		if (error)
1637			return (error);
1638	}
1639
1640	/*
1641	 * Link in the first keg.
1642	 */
1643	zone->uz_klink.kl_keg = keg;
1644	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1645	zone->uz_lockptr = &keg->uk_lock;
1646	zone->uz_size = keg->uk_size;
1647	zone->uz_flags |= (keg->uk_flags &
1648	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1649
1650	/*
1651	 * Some internal zones don't have room allocated for the per cpu
1652	 * caches.  If we're internal, bail out here.
1653	 */
1654	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1655		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1656		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1657		return (0);
1658	}
1659
1660out:
1661	if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0)
1662		zone->uz_count = bucket_select(zone->uz_size);
1663	else
1664		zone->uz_count = BUCKET_MAX;
1665	zone->uz_count_min = zone->uz_count;
1666
1667	return (0);
1668}
1669
1670/*
1671 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1672 * table and removes the keg from the global list.
1673 *
1674 * Arguments/Returns follow uma_dtor specifications
1675 *	udata  unused
1676 */
1677static void
1678keg_dtor(void *arg, int size, void *udata)
1679{
1680	uma_keg_t keg;
1681
1682	keg = (uma_keg_t)arg;
1683	KEG_LOCK(keg);
1684	if (keg->uk_free != 0) {
1685		printf("Freed UMA keg (%s) was not empty (%d items). "
1686		    " Lost %d pages of memory.\n",
1687		    keg->uk_name ? keg->uk_name : "",
1688		    keg->uk_free, keg->uk_pages);
1689	}
1690	KEG_UNLOCK(keg);
1691
1692	hash_free(&keg->uk_hash);
1693
1694	KEG_LOCK_FINI(keg);
1695}
1696
1697/*
1698 * Zone header dtor.
1699 *
1700 * Arguments/Returns follow uma_dtor specifications
1701 *	udata  unused
1702 */
1703static void
1704zone_dtor(void *arg, int size, void *udata)
1705{
1706	uma_klink_t klink;
1707	uma_zone_t zone;
1708	uma_keg_t keg;
1709
1710	zone = (uma_zone_t)arg;
1711	keg = zone_first_keg(zone);
1712
1713	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1714		cache_drain(zone);
1715
1716	mtx_lock(&uma_mtx);
1717	LIST_REMOVE(zone, uz_link);
1718	mtx_unlock(&uma_mtx);
1719	/*
1720	 * XXX there are some races here where
1721	 * the zone can be drained but zone lock
1722	 * released and then refilled before we
1723	 * remove it... we dont care for now
1724	 */
1725	zone_drain_wait(zone, M_WAITOK);
1726	/*
1727	 * Unlink all of our kegs.
1728	 */
1729	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1730		klink->kl_keg = NULL;
1731		LIST_REMOVE(klink, kl_link);
1732		if (klink == &zone->uz_klink)
1733			continue;
1734		free(klink, M_TEMP);
1735	}
1736	/*
1737	 * We only destroy kegs from non secondary zones.
1738	 */
1739	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1740		mtx_lock(&uma_mtx);
1741		LIST_REMOVE(keg, uk_link);
1742		mtx_unlock(&uma_mtx);
1743		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1744	}
1745	ZONE_LOCK_FINI(zone);
1746}
1747
1748/*
1749 * Traverses every zone in the system and calls a callback
1750 *
1751 * Arguments:
1752 *	zfunc  A pointer to a function which accepts a zone
1753 *		as an argument.
1754 *
1755 * Returns:
1756 *	Nothing
1757 */
1758static void
1759zone_foreach(void (*zfunc)(uma_zone_t))
1760{
1761	uma_keg_t keg;
1762	uma_zone_t zone;
1763
1764	mtx_lock(&uma_mtx);
1765	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1766		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1767			zfunc(zone);
1768	}
1769	mtx_unlock(&uma_mtx);
1770}
1771
1772/* Public functions */
1773/* See uma.h */
1774void
1775uma_startup(void *bootmem, int boot_pages)
1776{
1777	struct uma_zctor_args args;
1778	uma_slab_t slab;
1779	u_int slabsize;
1780	int i;
1781
1782#ifdef UMA_DEBUG
1783	printf("Creating uma keg headers zone and keg.\n");
1784#endif
1785	mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
1786
1787	/* "manually" create the initial zone */
1788	memset(&args, 0, sizeof(args));
1789	args.name = "UMA Kegs";
1790	args.size = sizeof(struct uma_keg);
1791	args.ctor = keg_ctor;
1792	args.dtor = keg_dtor;
1793	args.uminit = zero_init;
1794	args.fini = NULL;
1795	args.keg = &masterkeg;
1796	args.align = 32 - 1;
1797	args.flags = UMA_ZFLAG_INTERNAL;
1798	/* The initial zone has no Per cpu queues so it's smaller */
1799	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1800
1801#ifdef UMA_DEBUG
1802	printf("Filling boot free list.\n");
1803#endif
1804	for (i = 0; i < boot_pages; i++) {
1805		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1806		slab->us_data = (uint8_t *)slab;
1807		slab->us_flags = UMA_SLAB_BOOT;
1808		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1809	}
1810	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1811
1812#ifdef UMA_DEBUG
1813	printf("Creating uma zone headers zone and keg.\n");
1814#endif
1815	args.name = "UMA Zones";
1816	args.size = sizeof(struct uma_zone) +
1817	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1818	args.ctor = zone_ctor;
1819	args.dtor = zone_dtor;
1820	args.uminit = zero_init;
1821	args.fini = NULL;
1822	args.keg = NULL;
1823	args.align = 32 - 1;
1824	args.flags = UMA_ZFLAG_INTERNAL;
1825	/* The initial zone has no Per cpu queues so it's smaller */
1826	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1827
1828#ifdef UMA_DEBUG
1829	printf("Initializing pcpu cache locks.\n");
1830#endif
1831#ifdef UMA_DEBUG
1832	printf("Creating slab and hash zones.\n");
1833#endif
1834
1835	/* Now make a zone for slab headers */
1836	slabzone = uma_zcreate("UMA Slabs",
1837				sizeof(struct uma_slab),
1838				NULL, NULL, NULL, NULL,
1839				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1840
1841	/*
1842	 * We also create a zone for the bigger slabs with reference
1843	 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1844	 */
1845	slabsize = sizeof(struct uma_slab_refcnt);
1846	slabsize += uma_max_ipers_ref * sizeof(uint32_t);
1847	slabrefzone = uma_zcreate("UMA RCntSlabs",
1848				  slabsize,
1849				  NULL, NULL, NULL, NULL,
1850				  UMA_ALIGN_PTR,
1851				  UMA_ZFLAG_INTERNAL);
1852
1853	hashzone = uma_zcreate("UMA Hash",
1854	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1855	    NULL, NULL, NULL, NULL,
1856	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1857
1858	bucket_init();
1859
1860	booted = UMA_STARTUP;
1861
1862#ifdef UMA_DEBUG
1863	printf("UMA startup complete.\n");
1864#endif
1865}
1866
1867/* see uma.h */
1868void
1869uma_startup2(void)
1870{
1871	booted = UMA_STARTUP2;
1872	bucket_enable();
1873#ifdef UMA_DEBUG
1874	printf("UMA startup2 complete.\n");
1875#endif
1876}
1877
1878/*
1879 * Initialize our callout handle
1880 *
1881 */
1882
1883static void
1884uma_startup3(void)
1885{
1886#ifdef UMA_DEBUG
1887	printf("Starting callout.\n");
1888#endif
1889	callout_init(&uma_callout, CALLOUT_MPSAFE);
1890	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1891#ifdef UMA_DEBUG
1892	printf("UMA startup3 complete.\n");
1893#endif
1894}
1895
1896static uma_keg_t
1897uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1898		int align, uint32_t flags)
1899{
1900	struct uma_kctor_args args;
1901
1902	args.size = size;
1903	args.uminit = uminit;
1904	args.fini = fini;
1905	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1906	args.flags = flags;
1907	args.zone = zone;
1908	return (zone_alloc_item(kegs, &args, M_WAITOK));
1909}
1910
1911/* See uma.h */
1912void
1913uma_set_align(int align)
1914{
1915
1916	if (align != UMA_ALIGN_CACHE)
1917		uma_align_cache = align;
1918}
1919
1920/* See uma.h */
1921uma_zone_t
1922uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1923		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1924
1925{
1926	struct uma_zctor_args args;
1927
1928	/* This stuff is essential for the zone ctor */
1929	memset(&args, 0, sizeof(args));
1930	args.name = name;
1931	args.size = size;
1932	args.ctor = ctor;
1933	args.dtor = dtor;
1934	args.uminit = uminit;
1935	args.fini = fini;
1936	args.align = align;
1937	args.flags = flags;
1938	args.keg = NULL;
1939
1940	return (zone_alloc_item(zones, &args, M_WAITOK));
1941}
1942
1943/* See uma.h */
1944uma_zone_t
1945uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1946		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1947{
1948	struct uma_zctor_args args;
1949	uma_keg_t keg;
1950
1951	keg = zone_first_keg(master);
1952	memset(&args, 0, sizeof(args));
1953	args.name = name;
1954	args.size = keg->uk_size;
1955	args.ctor = ctor;
1956	args.dtor = dtor;
1957	args.uminit = zinit;
1958	args.fini = zfini;
1959	args.align = keg->uk_align;
1960	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1961	args.keg = keg;
1962
1963	/* XXX Attaches only one keg of potentially many. */
1964	return (zone_alloc_item(zones, &args, M_WAITOK));
1965}
1966
1967/* See uma.h */
1968uma_zone_t
1969uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1970		    uma_init zinit, uma_fini zfini, uma_import zimport,
1971		    uma_release zrelease, void *arg, int flags)
1972{
1973	struct uma_zctor_args args;
1974
1975	memset(&args, 0, sizeof(args));
1976	args.name = name;
1977	args.size = size;
1978	args.ctor = ctor;
1979	args.dtor = dtor;
1980	args.uminit = zinit;
1981	args.fini = zfini;
1982	args.import = zimport;
1983	args.release = zrelease;
1984	args.arg = arg;
1985	args.align = 0;
1986	args.flags = flags;
1987
1988	return (zone_alloc_item(zones, &args, M_WAITOK));
1989}
1990
1991static void
1992zone_lock_pair(uma_zone_t a, uma_zone_t b)
1993{
1994	if (a < b) {
1995		ZONE_LOCK(a);
1996		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
1997	} else {
1998		ZONE_LOCK(b);
1999		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2000	}
2001}
2002
2003static void
2004zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2005{
2006
2007	ZONE_UNLOCK(a);
2008	ZONE_UNLOCK(b);
2009}
2010
2011int
2012uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2013{
2014	uma_klink_t klink;
2015	uma_klink_t kl;
2016	int error;
2017
2018	error = 0;
2019	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2020
2021	zone_lock_pair(zone, master);
2022	/*
2023	 * zone must use vtoslab() to resolve objects and must already be
2024	 * a secondary.
2025	 */
2026	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2027	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2028		error = EINVAL;
2029		goto out;
2030	}
2031	/*
2032	 * The new master must also use vtoslab().
2033	 */
2034	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2035		error = EINVAL;
2036		goto out;
2037	}
2038	/*
2039	 * Both must either be refcnt, or not be refcnt.
2040	 */
2041	if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
2042	    (master->uz_flags & UMA_ZONE_REFCNT)) {
2043		error = EINVAL;
2044		goto out;
2045	}
2046	/*
2047	 * The underlying object must be the same size.  rsize
2048	 * may be different.
2049	 */
2050	if (master->uz_size != zone->uz_size) {
2051		error = E2BIG;
2052		goto out;
2053	}
2054	/*
2055	 * Put it at the end of the list.
2056	 */
2057	klink->kl_keg = zone_first_keg(master);
2058	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2059		if (LIST_NEXT(kl, kl_link) == NULL) {
2060			LIST_INSERT_AFTER(kl, klink, kl_link);
2061			break;
2062		}
2063	}
2064	klink = NULL;
2065	zone->uz_flags |= UMA_ZFLAG_MULTI;
2066	zone->uz_slab = zone_fetch_slab_multi;
2067
2068out:
2069	zone_unlock_pair(zone, master);
2070	if (klink != NULL)
2071		free(klink, M_TEMP);
2072
2073	return (error);
2074}
2075
2076
2077/* See uma.h */
2078void
2079uma_zdestroy(uma_zone_t zone)
2080{
2081
2082	zone_free_item(zones, zone, NULL, SKIP_NONE);
2083}
2084
2085/* See uma.h */
2086void *
2087uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2088{
2089	void *item;
2090	uma_cache_t cache;
2091	uma_bucket_t bucket;
2092	int lockfail;
2093	int cpu;
2094
2095	/* This is the fast path allocation */
2096#ifdef UMA_DEBUG_ALLOC_1
2097	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2098#endif
2099	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2100	    zone->uz_name, flags);
2101
2102	if (flags & M_WAITOK) {
2103		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2104		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2105	}
2106#ifdef DEBUG_MEMGUARD
2107	if (memguard_cmp_zone(zone)) {
2108		item = memguard_alloc(zone->uz_size, flags);
2109		if (item != NULL) {
2110			/*
2111			 * Avoid conflict with the use-after-free
2112			 * protecting infrastructure from INVARIANTS.
2113			 */
2114			if (zone->uz_init != NULL &&
2115			    zone->uz_init != mtrash_init &&
2116			    zone->uz_init(item, zone->uz_size, flags) != 0)
2117				return (NULL);
2118			if (zone->uz_ctor != NULL &&
2119			    zone->uz_ctor != mtrash_ctor &&
2120			    zone->uz_ctor(item, zone->uz_size, udata,
2121			    flags) != 0) {
2122			    	zone->uz_fini(item, zone->uz_size);
2123				return (NULL);
2124			}
2125			return (item);
2126		}
2127		/* This is unfortunate but should not be fatal. */
2128	}
2129#endif
2130	/*
2131	 * If possible, allocate from the per-CPU cache.  There are two
2132	 * requirements for safe access to the per-CPU cache: (1) the thread
2133	 * accessing the cache must not be preempted or yield during access,
2134	 * and (2) the thread must not migrate CPUs without switching which
2135	 * cache it accesses.  We rely on a critical section to prevent
2136	 * preemption and migration.  We release the critical section in
2137	 * order to acquire the zone mutex if we are unable to allocate from
2138	 * the current cache; when we re-acquire the critical section, we
2139	 * must detect and handle migration if it has occurred.
2140	 */
2141	critical_enter();
2142	cpu = curcpu;
2143	cache = &zone->uz_cpu[cpu];
2144
2145zalloc_start:
2146	bucket = cache->uc_allocbucket;
2147	if (bucket != NULL && bucket->ub_cnt > 0) {
2148		bucket->ub_cnt--;
2149		item = bucket->ub_bucket[bucket->ub_cnt];
2150#ifdef INVARIANTS
2151		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2152#endif
2153		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2154		cache->uc_allocs++;
2155		critical_exit();
2156		if (zone->uz_ctor != NULL &&
2157		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2158			atomic_add_long(&zone->uz_fails, 1);
2159			zone_free_item(zone, item, udata, SKIP_DTOR);
2160			return (NULL);
2161		}
2162#ifdef INVARIANTS
2163		uma_dbg_alloc(zone, NULL, item);
2164#endif
2165		if (flags & M_ZERO)
2166			bzero(item, zone->uz_size);
2167		return (item);
2168	}
2169
2170	/*
2171	 * We have run out of items in our alloc bucket.
2172	 * See if we can switch with our free bucket.
2173	 */
2174	bucket = cache->uc_freebucket;
2175	if (bucket != NULL && bucket->ub_cnt > 0) {
2176#ifdef UMA_DEBUG_ALLOC
2177		printf("uma_zalloc: Swapping empty with alloc.\n");
2178#endif
2179		cache->uc_freebucket = cache->uc_allocbucket;
2180		cache->uc_allocbucket = bucket;
2181		goto zalloc_start;
2182	}
2183
2184	/*
2185	 * Discard any empty allocation bucket while we hold no locks.
2186	 */
2187	bucket = cache->uc_allocbucket;
2188	cache->uc_allocbucket = NULL;
2189	critical_exit();
2190	if (bucket != NULL)
2191		bucket_free(zone, bucket, udata);
2192
2193	/* Short-circuit for zones without buckets and low memory. */
2194	if (zone->uz_count == 0 || bucketdisable)
2195		goto zalloc_item;
2196
2197	/*
2198	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2199	 * we must go back to the zone.  This requires the zone lock, so we
2200	 * must drop the critical section, then re-acquire it when we go back
2201	 * to the cache.  Since the critical section is released, we may be
2202	 * preempted or migrate.  As such, make sure not to maintain any
2203	 * thread-local state specific to the cache from prior to releasing
2204	 * the critical section.
2205	 */
2206	lockfail = 0;
2207	if (ZONE_TRYLOCK(zone) == 0) {
2208		/* Record contention to size the buckets. */
2209		ZONE_LOCK(zone);
2210		lockfail = 1;
2211	}
2212	critical_enter();
2213	cpu = curcpu;
2214	cache = &zone->uz_cpu[cpu];
2215
2216	/*
2217	 * Since we have locked the zone we may as well send back our stats.
2218	 */
2219	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2220	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2221	cache->uc_allocs = 0;
2222	cache->uc_frees = 0;
2223
2224	/* See if we lost the race to fill the cache. */
2225	if (cache->uc_allocbucket != NULL) {
2226		ZONE_UNLOCK(zone);
2227		goto zalloc_start;
2228	}
2229
2230	/*
2231	 * Check the zone's cache of buckets.
2232	 */
2233	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2234		KASSERT(bucket->ub_cnt != 0,
2235		    ("uma_zalloc_arg: Returning an empty bucket."));
2236
2237		LIST_REMOVE(bucket, ub_link);
2238		cache->uc_allocbucket = bucket;
2239		ZONE_UNLOCK(zone);
2240		goto zalloc_start;
2241	}
2242	/* We are no longer associated with this CPU. */
2243	critical_exit();
2244
2245	/*
2246	 * We bump the uz count when the cache size is insufficient to
2247	 * handle the working set.
2248	 */
2249	if (lockfail && zone->uz_count < BUCKET_MAX)
2250		zone->uz_count++;
2251	ZONE_UNLOCK(zone);
2252
2253	/*
2254	 * Now lets just fill a bucket and put it on the free list.  If that
2255	 * works we'll restart the allocation from the begining and it
2256	 * will use the just filled bucket.
2257	 */
2258	bucket = zone_alloc_bucket(zone, udata, flags);
2259	if (bucket != NULL) {
2260		ZONE_LOCK(zone);
2261		critical_enter();
2262		cpu = curcpu;
2263		cache = &zone->uz_cpu[cpu];
2264		/*
2265		 * See if we lost the race or were migrated.  Cache the
2266		 * initialized bucket to make this less likely or claim
2267		 * the memory directly.
2268		 */
2269		if (cache->uc_allocbucket == NULL)
2270			cache->uc_allocbucket = bucket;
2271		else
2272			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2273		ZONE_UNLOCK(zone);
2274		goto zalloc_start;
2275	}
2276
2277	/*
2278	 * We may not be able to get a bucket so return an actual item.
2279	 */
2280#ifdef UMA_DEBUG
2281	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2282#endif
2283
2284zalloc_item:
2285	item = zone_alloc_item(zone, udata, flags);
2286
2287	return (item);
2288}
2289
2290static uma_slab_t
2291keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2292{
2293	uma_slab_t slab;
2294	int reserve;
2295
2296	mtx_assert(&keg->uk_lock, MA_OWNED);
2297	slab = NULL;
2298	reserve = 0;
2299	if ((flags & M_USE_RESERVE) == 0)
2300		reserve = keg->uk_reserve;
2301
2302	for (;;) {
2303		/*
2304		 * Find a slab with some space.  Prefer slabs that are partially
2305		 * used over those that are totally full.  This helps to reduce
2306		 * fragmentation.
2307		 */
2308		if (keg->uk_free > reserve) {
2309			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2310				slab = LIST_FIRST(&keg->uk_part_slab);
2311			} else {
2312				slab = LIST_FIRST(&keg->uk_free_slab);
2313				LIST_REMOVE(slab, us_link);
2314				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2315				    us_link);
2316			}
2317			MPASS(slab->us_keg == keg);
2318			return (slab);
2319		}
2320
2321		/*
2322		 * M_NOVM means don't ask at all!
2323		 */
2324		if (flags & M_NOVM)
2325			break;
2326
2327		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2328			keg->uk_flags |= UMA_ZFLAG_FULL;
2329			/*
2330			 * If this is not a multi-zone, set the FULL bit.
2331			 * Otherwise slab_multi() takes care of it.
2332			 */
2333			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2334				zone->uz_flags |= UMA_ZFLAG_FULL;
2335				zone_log_warning(zone);
2336			}
2337			if (flags & M_NOWAIT)
2338				break;
2339			zone->uz_sleeps++;
2340			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2341			continue;
2342		}
2343		slab = keg_alloc_slab(keg, zone, flags);
2344		/*
2345		 * If we got a slab here it's safe to mark it partially used
2346		 * and return.  We assume that the caller is going to remove
2347		 * at least one item.
2348		 */
2349		if (slab) {
2350			MPASS(slab->us_keg == keg);
2351			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2352			return (slab);
2353		}
2354		/*
2355		 * We might not have been able to get a slab but another cpu
2356		 * could have while we were unlocked.  Check again before we
2357		 * fail.
2358		 */
2359		flags |= M_NOVM;
2360	}
2361	return (slab);
2362}
2363
2364static uma_slab_t
2365zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2366{
2367	uma_slab_t slab;
2368
2369	if (keg == NULL) {
2370		keg = zone_first_keg(zone);
2371		KEG_LOCK(keg);
2372	}
2373
2374	for (;;) {
2375		slab = keg_fetch_slab(keg, zone, flags);
2376		if (slab)
2377			return (slab);
2378		if (flags & (M_NOWAIT | M_NOVM))
2379			break;
2380	}
2381	KEG_UNLOCK(keg);
2382	return (NULL);
2383}
2384
2385/*
2386 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2387 * with the keg locked.  On NULL no lock is held.
2388 *
2389 * The last pointer is used to seed the search.  It is not required.
2390 */
2391static uma_slab_t
2392zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2393{
2394	uma_klink_t klink;
2395	uma_slab_t slab;
2396	uma_keg_t keg;
2397	int flags;
2398	int empty;
2399	int full;
2400
2401	/*
2402	 * Don't wait on the first pass.  This will skip limit tests
2403	 * as well.  We don't want to block if we can find a provider
2404	 * without blocking.
2405	 */
2406	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2407	/*
2408	 * Use the last slab allocated as a hint for where to start
2409	 * the search.
2410	 */
2411	if (last != NULL) {
2412		slab = keg_fetch_slab(last, zone, flags);
2413		if (slab)
2414			return (slab);
2415		KEG_UNLOCK(last);
2416	}
2417	/*
2418	 * Loop until we have a slab incase of transient failures
2419	 * while M_WAITOK is specified.  I'm not sure this is 100%
2420	 * required but we've done it for so long now.
2421	 */
2422	for (;;) {
2423		empty = 0;
2424		full = 0;
2425		/*
2426		 * Search the available kegs for slabs.  Be careful to hold the
2427		 * correct lock while calling into the keg layer.
2428		 */
2429		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2430			keg = klink->kl_keg;
2431			KEG_LOCK(keg);
2432			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2433				slab = keg_fetch_slab(keg, zone, flags);
2434				if (slab)
2435					return (slab);
2436			}
2437			if (keg->uk_flags & UMA_ZFLAG_FULL)
2438				full++;
2439			else
2440				empty++;
2441			KEG_UNLOCK(keg);
2442		}
2443		if (rflags & (M_NOWAIT | M_NOVM))
2444			break;
2445		flags = rflags;
2446		/*
2447		 * All kegs are full.  XXX We can't atomically check all kegs
2448		 * and sleep so just sleep for a short period and retry.
2449		 */
2450		if (full && !empty) {
2451			ZONE_LOCK(zone);
2452			zone->uz_flags |= UMA_ZFLAG_FULL;
2453			zone->uz_sleeps++;
2454			zone_log_warning(zone);
2455			msleep(zone, zone->uz_lockptr, PVM,
2456			    "zonelimit", hz/100);
2457			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2458			ZONE_UNLOCK(zone);
2459			continue;
2460		}
2461	}
2462	return (NULL);
2463}
2464
2465static void *
2466slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2467{
2468	void *item;
2469	uint8_t freei;
2470
2471	MPASS(keg == slab->us_keg);
2472	mtx_assert(&keg->uk_lock, MA_OWNED);
2473
2474	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2475	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2476	item = slab->us_data + (keg->uk_rsize * freei);
2477	slab->us_freecount--;
2478	keg->uk_free--;
2479
2480	/* Move this slab to the full list */
2481	if (slab->us_freecount == 0) {
2482		LIST_REMOVE(slab, us_link);
2483		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2484	}
2485
2486	return (item);
2487}
2488
2489static int
2490zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2491{
2492	uma_slab_t slab;
2493	uma_keg_t keg;
2494	int i;
2495
2496	slab = NULL;
2497	keg = NULL;
2498	/* Try to keep the buckets totally full */
2499	for (i = 0; i < max; ) {
2500		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2501			break;
2502		keg = slab->us_keg;
2503		while (slab->us_freecount && i < max) {
2504			bucket[i++] = slab_alloc_item(keg, slab);
2505			if (keg->uk_free <= keg->uk_reserve)
2506				break;
2507		}
2508		/* Don't grab more than one slab at a time. */
2509		flags &= ~M_WAITOK;
2510		flags |= M_NOWAIT;
2511	}
2512	if (slab != NULL)
2513		KEG_UNLOCK(keg);
2514
2515	return i;
2516}
2517
2518static uma_bucket_t
2519zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2520{
2521	uma_bucket_t bucket;
2522	int max;
2523
2524	/* Don't wait for buckets, preserve caller's NOVM setting. */
2525	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2526	if (bucket == NULL)
2527		return (NULL);
2528
2529	max = MIN(bucket->ub_entries, zone->uz_count);
2530	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2531	    max, flags);
2532
2533	/*
2534	 * Initialize the memory if necessary.
2535	 */
2536	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2537		int i;
2538
2539		for (i = 0; i < bucket->ub_cnt; i++)
2540			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2541			    flags) != 0)
2542				break;
2543		/*
2544		 * If we couldn't initialize the whole bucket, put the
2545		 * rest back onto the freelist.
2546		 */
2547		if (i != bucket->ub_cnt) {
2548			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2549			    bucket->ub_cnt - i);
2550#ifdef INVARIANTS
2551			bzero(&bucket->ub_bucket[i],
2552			    sizeof(void *) * (bucket->ub_cnt - i));
2553#endif
2554			bucket->ub_cnt = i;
2555		}
2556	}
2557
2558	if (bucket->ub_cnt == 0) {
2559		bucket_free(zone, bucket, udata);
2560		atomic_add_long(&zone->uz_fails, 1);
2561		return (NULL);
2562	}
2563
2564	return (bucket);
2565}
2566
2567/*
2568 * Allocates a single item from a zone.
2569 *
2570 * Arguments
2571 *	zone   The zone to alloc for.
2572 *	udata  The data to be passed to the constructor.
2573 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2574 *
2575 * Returns
2576 *	NULL if there is no memory and M_NOWAIT is set
2577 *	An item if successful
2578 */
2579
2580static void *
2581zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2582{
2583	void *item;
2584
2585	item = NULL;
2586
2587#ifdef UMA_DEBUG_ALLOC
2588	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2589#endif
2590	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2591		goto fail;
2592	atomic_add_long(&zone->uz_allocs, 1);
2593
2594	/*
2595	 * We have to call both the zone's init (not the keg's init)
2596	 * and the zone's ctor.  This is because the item is going from
2597	 * a keg slab directly to the user, and the user is expecting it
2598	 * to be both zone-init'd as well as zone-ctor'd.
2599	 */
2600	if (zone->uz_init != NULL) {
2601		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2602			zone_free_item(zone, item, udata, SKIP_FINI);
2603			goto fail;
2604		}
2605	}
2606	if (zone->uz_ctor != NULL) {
2607		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2608			zone_free_item(zone, item, udata, SKIP_DTOR);
2609			goto fail;
2610		}
2611	}
2612#ifdef INVARIANTS
2613	uma_dbg_alloc(zone, NULL, item);
2614#endif
2615	if (flags & M_ZERO)
2616		bzero(item, zone->uz_size);
2617
2618	return (item);
2619
2620fail:
2621	atomic_add_long(&zone->uz_fails, 1);
2622	return (NULL);
2623}
2624
2625/* See uma.h */
2626void
2627uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2628{
2629	uma_cache_t cache;
2630	uma_bucket_t bucket;
2631	int lockfail;
2632	int cpu;
2633
2634#ifdef UMA_DEBUG_ALLOC_1
2635	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2636#endif
2637	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2638	    zone->uz_name);
2639
2640        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2641        if (item == NULL)
2642                return;
2643#ifdef DEBUG_MEMGUARD
2644	if (is_memguard_addr(item)) {
2645		if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor)
2646			zone->uz_dtor(item, zone->uz_size, udata);
2647		if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini)
2648			zone->uz_fini(item, zone->uz_size);
2649		memguard_free(item);
2650		return;
2651	}
2652#endif
2653#ifdef INVARIANTS
2654	if (zone->uz_flags & UMA_ZONE_MALLOC)
2655		uma_dbg_free(zone, udata, item);
2656	else
2657		uma_dbg_free(zone, NULL, item);
2658#endif
2659	if (zone->uz_dtor != NULL)
2660		zone->uz_dtor(item, zone->uz_size, udata);
2661
2662	/*
2663	 * The race here is acceptable.  If we miss it we'll just have to wait
2664	 * a little longer for the limits to be reset.
2665	 */
2666	if (zone->uz_flags & UMA_ZFLAG_FULL)
2667		goto zfree_item;
2668
2669	/*
2670	 * If possible, free to the per-CPU cache.  There are two
2671	 * requirements for safe access to the per-CPU cache: (1) the thread
2672	 * accessing the cache must not be preempted or yield during access,
2673	 * and (2) the thread must not migrate CPUs without switching which
2674	 * cache it accesses.  We rely on a critical section to prevent
2675	 * preemption and migration.  We release the critical section in
2676	 * order to acquire the zone mutex if we are unable to free to the
2677	 * current cache; when we re-acquire the critical section, we must
2678	 * detect and handle migration if it has occurred.
2679	 */
2680zfree_restart:
2681	critical_enter();
2682	cpu = curcpu;
2683	cache = &zone->uz_cpu[cpu];
2684
2685zfree_start:
2686	/*
2687	 * Try to free into the allocbucket first to give LIFO ordering
2688	 * for cache-hot datastructures.  Spill over into the freebucket
2689	 * if necessary.  Alloc will swap them if one runs dry.
2690	 */
2691	bucket = cache->uc_allocbucket;
2692	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2693		bucket = cache->uc_freebucket;
2694	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2695		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2696		    ("uma_zfree: Freeing to non free bucket index."));
2697		bucket->ub_bucket[bucket->ub_cnt] = item;
2698		bucket->ub_cnt++;
2699		cache->uc_frees++;
2700		critical_exit();
2701		return;
2702	}
2703
2704	/*
2705	 * We must go back the zone, which requires acquiring the zone lock,
2706	 * which in turn means we must release and re-acquire the critical
2707	 * section.  Since the critical section is released, we may be
2708	 * preempted or migrate.  As such, make sure not to maintain any
2709	 * thread-local state specific to the cache from prior to releasing
2710	 * the critical section.
2711	 */
2712	critical_exit();
2713	if (zone->uz_count == 0 || bucketdisable)
2714		goto zfree_item;
2715
2716	lockfail = 0;
2717	if (ZONE_TRYLOCK(zone) == 0) {
2718		/* Record contention to size the buckets. */
2719		ZONE_LOCK(zone);
2720		lockfail = 1;
2721	}
2722	critical_enter();
2723	cpu = curcpu;
2724	cache = &zone->uz_cpu[cpu];
2725
2726	/*
2727	 * Since we have locked the zone we may as well send back our stats.
2728	 */
2729	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2730	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2731	cache->uc_allocs = 0;
2732	cache->uc_frees = 0;
2733
2734	bucket = cache->uc_freebucket;
2735	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2736		ZONE_UNLOCK(zone);
2737		goto zfree_start;
2738	}
2739	cache->uc_freebucket = NULL;
2740
2741	/* Can we throw this on the zone full list? */
2742	if (bucket != NULL) {
2743#ifdef UMA_DEBUG_ALLOC
2744		printf("uma_zfree: Putting old bucket on the free list.\n");
2745#endif
2746		/* ub_cnt is pointing to the last free item */
2747		KASSERT(bucket->ub_cnt != 0,
2748		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2749		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2750	}
2751
2752	/* We are no longer associated with this CPU. */
2753	critical_exit();
2754
2755	/*
2756	 * We bump the uz count when the cache size is insufficient to
2757	 * handle the working set.
2758	 */
2759	if (lockfail && zone->uz_count < BUCKET_MAX)
2760		zone->uz_count++;
2761	ZONE_UNLOCK(zone);
2762
2763#ifdef UMA_DEBUG_ALLOC
2764	printf("uma_zfree: Allocating new free bucket.\n");
2765#endif
2766	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2767	if (bucket) {
2768		critical_enter();
2769		cpu = curcpu;
2770		cache = &zone->uz_cpu[cpu];
2771		if (cache->uc_freebucket == NULL) {
2772			cache->uc_freebucket = bucket;
2773			goto zfree_start;
2774		}
2775		/*
2776		 * We lost the race, start over.  We have to drop our
2777		 * critical section to free the bucket.
2778		 */
2779		critical_exit();
2780		bucket_free(zone, bucket, udata);
2781		goto zfree_restart;
2782	}
2783
2784	/*
2785	 * If nothing else caught this, we'll just do an internal free.
2786	 */
2787zfree_item:
2788	zone_free_item(zone, item, udata, SKIP_DTOR);
2789
2790	return;
2791}
2792
2793static void
2794slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2795{
2796	uint8_t freei;
2797
2798	mtx_assert(&keg->uk_lock, MA_OWNED);
2799	MPASS(keg == slab->us_keg);
2800
2801	/* Do we need to remove from any lists? */
2802	if (slab->us_freecount+1 == keg->uk_ipers) {
2803		LIST_REMOVE(slab, us_link);
2804		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2805	} else if (slab->us_freecount == 0) {
2806		LIST_REMOVE(slab, us_link);
2807		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2808	}
2809
2810	/* Slab management. */
2811	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2812	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2813	slab->us_freecount++;
2814
2815	/* Keg statistics. */
2816	keg->uk_free++;
2817}
2818
2819static void
2820zone_release(uma_zone_t zone, void **bucket, int cnt)
2821{
2822	void *item;
2823	uma_slab_t slab;
2824	uma_keg_t keg;
2825	uint8_t *mem;
2826	int clearfull;
2827	int i;
2828
2829	clearfull = 0;
2830	keg = zone_first_keg(zone);
2831	KEG_LOCK(keg);
2832	for (i = 0; i < cnt; i++) {
2833		item = bucket[i];
2834		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2835			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2836			if (zone->uz_flags & UMA_ZONE_HASH) {
2837				slab = hash_sfind(&keg->uk_hash, mem);
2838			} else {
2839				mem += keg->uk_pgoff;
2840				slab = (uma_slab_t)mem;
2841			}
2842		} else {
2843			slab = vtoslab((vm_offset_t)item);
2844			if (slab->us_keg != keg) {
2845				KEG_UNLOCK(keg);
2846				keg = slab->us_keg;
2847				KEG_LOCK(keg);
2848			}
2849		}
2850		slab_free_item(keg, slab, item);
2851		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2852			if (keg->uk_pages < keg->uk_maxpages) {
2853				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2854				clearfull = 1;
2855			}
2856
2857			/*
2858			 * We can handle one more allocation. Since we're
2859			 * clearing ZFLAG_FULL, wake up all procs blocked
2860			 * on pages. This should be uncommon, so keeping this
2861			 * simple for now (rather than adding count of blocked
2862			 * threads etc).
2863			 */
2864			wakeup(keg);
2865		}
2866	}
2867	KEG_UNLOCK(keg);
2868	if (clearfull) {
2869		ZONE_LOCK(zone);
2870		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2871		wakeup(zone);
2872		ZONE_UNLOCK(zone);
2873	}
2874
2875}
2876
2877/*
2878 * Frees a single item to any zone.
2879 *
2880 * Arguments:
2881 *	zone   The zone to free to
2882 *	item   The item we're freeing
2883 *	udata  User supplied data for the dtor
2884 *	skip   Skip dtors and finis
2885 */
2886static void
2887zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2888{
2889
2890#ifdef INVARIANTS
2891	if (skip == SKIP_NONE) {
2892		if (zone->uz_flags & UMA_ZONE_MALLOC)
2893			uma_dbg_free(zone, udata, item);
2894		else
2895			uma_dbg_free(zone, NULL, item);
2896	}
2897#endif
2898	if (skip < SKIP_DTOR && zone->uz_dtor)
2899		zone->uz_dtor(item, zone->uz_size, udata);
2900
2901	if (skip < SKIP_FINI && zone->uz_fini)
2902		zone->uz_fini(item, zone->uz_size);
2903
2904	atomic_add_long(&zone->uz_frees, 1);
2905	zone->uz_release(zone->uz_arg, &item, 1);
2906}
2907
2908/* See uma.h */
2909int
2910uma_zone_set_max(uma_zone_t zone, int nitems)
2911{
2912	uma_keg_t keg;
2913
2914	keg = zone_first_keg(zone);
2915	if (keg == NULL)
2916		return (0);
2917	KEG_LOCK(keg);
2918	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2919	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2920		keg->uk_maxpages += keg->uk_ppera;
2921	nitems = keg->uk_maxpages * keg->uk_ipers;
2922	KEG_UNLOCK(keg);
2923
2924	return (nitems);
2925}
2926
2927/* See uma.h */
2928int
2929uma_zone_get_max(uma_zone_t zone)
2930{
2931	int nitems;
2932	uma_keg_t keg;
2933
2934	keg = zone_first_keg(zone);
2935	if (keg == NULL)
2936		return (0);
2937	KEG_LOCK(keg);
2938	nitems = keg->uk_maxpages * keg->uk_ipers;
2939	KEG_UNLOCK(keg);
2940
2941	return (nitems);
2942}
2943
2944/* See uma.h */
2945void
2946uma_zone_set_warning(uma_zone_t zone, const char *warning)
2947{
2948
2949	ZONE_LOCK(zone);
2950	zone->uz_warning = warning;
2951	ZONE_UNLOCK(zone);
2952}
2953
2954/* See uma.h */
2955int
2956uma_zone_get_cur(uma_zone_t zone)
2957{
2958	int64_t nitems;
2959	u_int i;
2960
2961	ZONE_LOCK(zone);
2962	nitems = zone->uz_allocs - zone->uz_frees;
2963	CPU_FOREACH(i) {
2964		/*
2965		 * See the comment in sysctl_vm_zone_stats() regarding the
2966		 * safety of accessing the per-cpu caches. With the zone lock
2967		 * held, it is safe, but can potentially result in stale data.
2968		 */
2969		nitems += zone->uz_cpu[i].uc_allocs -
2970		    zone->uz_cpu[i].uc_frees;
2971	}
2972	ZONE_UNLOCK(zone);
2973
2974	return (nitems < 0 ? 0 : nitems);
2975}
2976
2977/* See uma.h */
2978void
2979uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2980{
2981	uma_keg_t keg;
2982
2983	keg = zone_first_keg(zone);
2984	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
2985	KEG_LOCK(keg);
2986	KASSERT(keg->uk_pages == 0,
2987	    ("uma_zone_set_init on non-empty keg"));
2988	keg->uk_init = uminit;
2989	KEG_UNLOCK(keg);
2990}
2991
2992/* See uma.h */
2993void
2994uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
2995{
2996	uma_keg_t keg;
2997
2998	keg = zone_first_keg(zone);
2999	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3000	KEG_LOCK(keg);
3001	KASSERT(keg->uk_pages == 0,
3002	    ("uma_zone_set_fini on non-empty keg"));
3003	keg->uk_fini = fini;
3004	KEG_UNLOCK(keg);
3005}
3006
3007/* See uma.h */
3008void
3009uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3010{
3011
3012	ZONE_LOCK(zone);
3013	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3014	    ("uma_zone_set_zinit on non-empty keg"));
3015	zone->uz_init = zinit;
3016	ZONE_UNLOCK(zone);
3017}
3018
3019/* See uma.h */
3020void
3021uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3022{
3023
3024	ZONE_LOCK(zone);
3025	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3026	    ("uma_zone_set_zfini on non-empty keg"));
3027	zone->uz_fini = zfini;
3028	ZONE_UNLOCK(zone);
3029}
3030
3031/* See uma.h */
3032/* XXX uk_freef is not actually used with the zone locked */
3033void
3034uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3035{
3036	uma_keg_t keg;
3037
3038	keg = zone_first_keg(zone);
3039	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3040	KEG_LOCK(keg);
3041	keg->uk_freef = freef;
3042	KEG_UNLOCK(keg);
3043}
3044
3045/* See uma.h */
3046/* XXX uk_allocf is not actually used with the zone locked */
3047void
3048uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3049{
3050	uma_keg_t keg;
3051
3052	keg = zone_first_keg(zone);
3053	KEG_LOCK(keg);
3054	keg->uk_allocf = allocf;
3055	KEG_UNLOCK(keg);
3056}
3057
3058/* See uma.h */
3059void
3060uma_zone_reserve(uma_zone_t zone, int items)
3061{
3062	uma_keg_t keg;
3063
3064	keg = zone_first_keg(zone);
3065	if (keg == NULL)
3066		return;
3067	KEG_LOCK(keg);
3068	keg->uk_reserve = items;
3069	KEG_UNLOCK(keg);
3070
3071	return;
3072}
3073
3074/* See uma.h */
3075int
3076uma_zone_reserve_kva(uma_zone_t zone, int count)
3077{
3078	uma_keg_t keg;
3079	vm_offset_t kva;
3080	int pages;
3081
3082	keg = zone_first_keg(zone);
3083	if (keg == NULL)
3084		return (0);
3085	pages = count / keg->uk_ipers;
3086
3087	if (pages * keg->uk_ipers < count)
3088		pages++;
3089
3090#ifdef UMA_MD_SMALL_ALLOC
3091	if (keg->uk_ppera > 1) {
3092#else
3093	if (1) {
3094#endif
3095		kva = kva_alloc(pages * UMA_SLAB_SIZE);
3096		if (kva == 0)
3097			return (0);
3098	} else
3099		kva = 0;
3100	KEG_LOCK(keg);
3101	keg->uk_kva = kva;
3102	keg->uk_offset = 0;
3103	keg->uk_maxpages = pages;
3104#ifdef UMA_MD_SMALL_ALLOC
3105	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3106#else
3107	keg->uk_allocf = noobj_alloc;
3108#endif
3109	keg->uk_flags |= UMA_ZONE_NOFREE;
3110	KEG_UNLOCK(keg);
3111
3112	return (1);
3113}
3114
3115/* See uma.h */
3116void
3117uma_prealloc(uma_zone_t zone, int items)
3118{
3119	int slabs;
3120	uma_slab_t slab;
3121	uma_keg_t keg;
3122
3123	keg = zone_first_keg(zone);
3124	if (keg == NULL)
3125		return;
3126	KEG_LOCK(keg);
3127	slabs = items / keg->uk_ipers;
3128	if (slabs * keg->uk_ipers < items)
3129		slabs++;
3130	while (slabs > 0) {
3131		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3132		if (slab == NULL)
3133			break;
3134		MPASS(slab->us_keg == keg);
3135		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3136		slabs--;
3137	}
3138	KEG_UNLOCK(keg);
3139}
3140
3141/* See uma.h */
3142uint32_t *
3143uma_find_refcnt(uma_zone_t zone, void *item)
3144{
3145	uma_slabrefcnt_t slabref;
3146	uma_slab_t slab;
3147	uma_keg_t keg;
3148	uint32_t *refcnt;
3149	int idx;
3150
3151	slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK));
3152	slabref = (uma_slabrefcnt_t)slab;
3153	keg = slab->us_keg;
3154	KASSERT(keg->uk_flags & UMA_ZONE_REFCNT,
3155	    ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
3156	idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3157	refcnt = &slabref->us_refcnt[idx];
3158	return refcnt;
3159}
3160
3161/* See uma.h */
3162void
3163uma_reclaim(void)
3164{
3165#ifdef UMA_DEBUG
3166	printf("UMA: vm asked us to release pages!\n");
3167#endif
3168	bucket_enable();
3169	zone_foreach(zone_drain);
3170	if (vm_page_count_min()) {
3171		cache_drain_safe(NULL);
3172		zone_foreach(zone_drain);
3173	}
3174	/*
3175	 * Some slabs may have been freed but this zone will be visited early
3176	 * we visit again so that we can free pages that are empty once other
3177	 * zones are drained.  We have to do the same for buckets.
3178	 */
3179	zone_drain(slabzone);
3180	zone_drain(slabrefzone);
3181	bucket_zone_drain();
3182}
3183
3184/* See uma.h */
3185int
3186uma_zone_exhausted(uma_zone_t zone)
3187{
3188	int full;
3189
3190	ZONE_LOCK(zone);
3191	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3192	ZONE_UNLOCK(zone);
3193	return (full);
3194}
3195
3196int
3197uma_zone_exhausted_nolock(uma_zone_t zone)
3198{
3199	return (zone->uz_flags & UMA_ZFLAG_FULL);
3200}
3201
3202void *
3203uma_large_malloc(int size, int wait)
3204{
3205	void *mem;
3206	uma_slab_t slab;
3207	uint8_t flags;
3208
3209	slab = zone_alloc_item(slabzone, NULL, wait);
3210	if (slab == NULL)
3211		return (NULL);
3212	mem = page_alloc(NULL, size, &flags, wait);
3213	if (mem) {
3214		vsetslab((vm_offset_t)mem, slab);
3215		slab->us_data = mem;
3216		slab->us_flags = flags | UMA_SLAB_MALLOC;
3217		slab->us_size = size;
3218	} else {
3219		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3220	}
3221
3222	return (mem);
3223}
3224
3225void
3226uma_large_free(uma_slab_t slab)
3227{
3228
3229	page_free(slab->us_data, slab->us_size, slab->us_flags);
3230	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3231}
3232
3233void
3234uma_print_stats(void)
3235{
3236	zone_foreach(uma_print_zone);
3237}
3238
3239static void
3240slab_print(uma_slab_t slab)
3241{
3242	printf("slab: keg %p, data %p, freecount %d\n",
3243		slab->us_keg, slab->us_data, slab->us_freecount);
3244}
3245
3246static void
3247cache_print(uma_cache_t cache)
3248{
3249	printf("alloc: %p(%d), free: %p(%d)\n",
3250		cache->uc_allocbucket,
3251		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3252		cache->uc_freebucket,
3253		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3254}
3255
3256static void
3257uma_print_keg(uma_keg_t keg)
3258{
3259	uma_slab_t slab;
3260
3261	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3262	    "out %d free %d limit %d\n",
3263	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3264	    keg->uk_ipers, keg->uk_ppera,
3265	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3266	    (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3267	printf("Part slabs:\n");
3268	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3269		slab_print(slab);
3270	printf("Free slabs:\n");
3271	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3272		slab_print(slab);
3273	printf("Full slabs:\n");
3274	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3275		slab_print(slab);
3276}
3277
3278void
3279uma_print_zone(uma_zone_t zone)
3280{
3281	uma_cache_t cache;
3282	uma_klink_t kl;
3283	int i;
3284
3285	printf("zone: %s(%p) size %d flags %#x\n",
3286	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3287	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3288		uma_print_keg(kl->kl_keg);
3289	CPU_FOREACH(i) {
3290		cache = &zone->uz_cpu[i];
3291		printf("CPU %d Cache:\n", i);
3292		cache_print(cache);
3293	}
3294}
3295
3296#ifdef DDB
3297/*
3298 * Generate statistics across both the zone and its per-cpu cache's.  Return
3299 * desired statistics if the pointer is non-NULL for that statistic.
3300 *
3301 * Note: does not update the zone statistics, as it can't safely clear the
3302 * per-CPU cache statistic.
3303 *
3304 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3305 * safe from off-CPU; we should modify the caches to track this information
3306 * directly so that we don't have to.
3307 */
3308static void
3309uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3310    uint64_t *freesp, uint64_t *sleepsp)
3311{
3312	uma_cache_t cache;
3313	uint64_t allocs, frees, sleeps;
3314	int cachefree, cpu;
3315
3316	allocs = frees = sleeps = 0;
3317	cachefree = 0;
3318	CPU_FOREACH(cpu) {
3319		cache = &z->uz_cpu[cpu];
3320		if (cache->uc_allocbucket != NULL)
3321			cachefree += cache->uc_allocbucket->ub_cnt;
3322		if (cache->uc_freebucket != NULL)
3323			cachefree += cache->uc_freebucket->ub_cnt;
3324		allocs += cache->uc_allocs;
3325		frees += cache->uc_frees;
3326	}
3327	allocs += z->uz_allocs;
3328	frees += z->uz_frees;
3329	sleeps += z->uz_sleeps;
3330	if (cachefreep != NULL)
3331		*cachefreep = cachefree;
3332	if (allocsp != NULL)
3333		*allocsp = allocs;
3334	if (freesp != NULL)
3335		*freesp = frees;
3336	if (sleepsp != NULL)
3337		*sleepsp = sleeps;
3338}
3339#endif /* DDB */
3340
3341static int
3342sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3343{
3344	uma_keg_t kz;
3345	uma_zone_t z;
3346	int count;
3347
3348	count = 0;
3349	mtx_lock(&uma_mtx);
3350	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3351		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3352			count++;
3353	}
3354	mtx_unlock(&uma_mtx);
3355	return (sysctl_handle_int(oidp, &count, 0, req));
3356}
3357
3358static int
3359sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3360{
3361	struct uma_stream_header ush;
3362	struct uma_type_header uth;
3363	struct uma_percpu_stat ups;
3364	uma_bucket_t bucket;
3365	struct sbuf sbuf;
3366	uma_cache_t cache;
3367	uma_klink_t kl;
3368	uma_keg_t kz;
3369	uma_zone_t z;
3370	uma_keg_t k;
3371	int count, error, i;
3372
3373	error = sysctl_wire_old_buffer(req, 0);
3374	if (error != 0)
3375		return (error);
3376	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3377
3378	count = 0;
3379	mtx_lock(&uma_mtx);
3380	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3381		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3382			count++;
3383	}
3384
3385	/*
3386	 * Insert stream header.
3387	 */
3388	bzero(&ush, sizeof(ush));
3389	ush.ush_version = UMA_STREAM_VERSION;
3390	ush.ush_maxcpus = (mp_maxid + 1);
3391	ush.ush_count = count;
3392	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3393
3394	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3395		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3396			bzero(&uth, sizeof(uth));
3397			ZONE_LOCK(z);
3398			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3399			uth.uth_align = kz->uk_align;
3400			uth.uth_size = kz->uk_size;
3401			uth.uth_rsize = kz->uk_rsize;
3402			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3403				k = kl->kl_keg;
3404				uth.uth_maxpages += k->uk_maxpages;
3405				uth.uth_pages += k->uk_pages;
3406				uth.uth_keg_free += k->uk_free;
3407				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3408				    * k->uk_ipers;
3409			}
3410
3411			/*
3412			 * A zone is secondary is it is not the first entry
3413			 * on the keg's zone list.
3414			 */
3415			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3416			    (LIST_FIRST(&kz->uk_zones) != z))
3417				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3418
3419			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3420				uth.uth_zone_free += bucket->ub_cnt;
3421			uth.uth_allocs = z->uz_allocs;
3422			uth.uth_frees = z->uz_frees;
3423			uth.uth_fails = z->uz_fails;
3424			uth.uth_sleeps = z->uz_sleeps;
3425			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3426			/*
3427			 * While it is not normally safe to access the cache
3428			 * bucket pointers while not on the CPU that owns the
3429			 * cache, we only allow the pointers to be exchanged
3430			 * without the zone lock held, not invalidated, so
3431			 * accept the possible race associated with bucket
3432			 * exchange during monitoring.
3433			 */
3434			for (i = 0; i < (mp_maxid + 1); i++) {
3435				bzero(&ups, sizeof(ups));
3436				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3437					goto skip;
3438				if (CPU_ABSENT(i))
3439					goto skip;
3440				cache = &z->uz_cpu[i];
3441				if (cache->uc_allocbucket != NULL)
3442					ups.ups_cache_free +=
3443					    cache->uc_allocbucket->ub_cnt;
3444				if (cache->uc_freebucket != NULL)
3445					ups.ups_cache_free +=
3446					    cache->uc_freebucket->ub_cnt;
3447				ups.ups_allocs = cache->uc_allocs;
3448				ups.ups_frees = cache->uc_frees;
3449skip:
3450				(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3451			}
3452			ZONE_UNLOCK(z);
3453		}
3454	}
3455	mtx_unlock(&uma_mtx);
3456	error = sbuf_finish(&sbuf);
3457	sbuf_delete(&sbuf);
3458	return (error);
3459}
3460
3461#ifdef DDB
3462DB_SHOW_COMMAND(uma, db_show_uma)
3463{
3464	uint64_t allocs, frees, sleeps;
3465	uma_bucket_t bucket;
3466	uma_keg_t kz;
3467	uma_zone_t z;
3468	int cachefree;
3469
3470	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3471	    "Requests", "Sleeps");
3472	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3473		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3474			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3475				allocs = z->uz_allocs;
3476				frees = z->uz_frees;
3477				sleeps = z->uz_sleeps;
3478				cachefree = 0;
3479			} else
3480				uma_zone_sumstat(z, &cachefree, &allocs,
3481				    &frees, &sleeps);
3482			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3483			    (LIST_FIRST(&kz->uk_zones) != z)))
3484				cachefree += kz->uk_free;
3485			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3486				cachefree += bucket->ub_cnt;
3487			db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name,
3488			    (uintmax_t)kz->uk_size,
3489			    (intmax_t)(allocs - frees), cachefree,
3490			    (uintmax_t)allocs, sleeps);
3491			if (db_pager_quit)
3492				return;
3493		}
3494	}
3495}
3496#endif
3497