uma_core.c revision 260303
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * effecient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/10/sys/vm/uma_core.c 260303 2014-01-04 23:39:39Z mav $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/kernel.h>
68#include <sys/types.h>
69#include <sys/queue.h>
70#include <sys/malloc.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/sysctl.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/rwlock.h>
77#include <sys/sbuf.h>
78#include <sys/sched.h>
79#include <sys/smp.h>
80#include <sys/vmmeter.h>
81
82#include <vm/vm.h>
83#include <vm/vm_object.h>
84#include <vm/vm_page.h>
85#include <vm/vm_pageout.h>
86#include <vm/vm_param.h>
87#include <vm/vm_map.h>
88#include <vm/vm_kern.h>
89#include <vm/vm_extern.h>
90#include <vm/uma.h>
91#include <vm/uma_int.h>
92#include <vm/uma_dbg.h>
93
94#include <ddb/ddb.h>
95
96#ifdef DEBUG_MEMGUARD
97#include <vm/memguard.h>
98#endif
99
100/*
101 * This is the zone and keg from which all zones are spawned.  The idea is that
102 * even the zone & keg heads are allocated from the allocator, so we use the
103 * bss section to bootstrap us.
104 */
105static struct uma_keg masterkeg;
106static struct uma_zone masterzone_k;
107static struct uma_zone masterzone_z;
108static uma_zone_t kegs = &masterzone_k;
109static uma_zone_t zones = &masterzone_z;
110
111/* This is the zone from which all of uma_slab_t's are allocated. */
112static uma_zone_t slabzone;
113static uma_zone_t slabrefzone;	/* With refcounters (for UMA_ZONE_REFCNT) */
114
115/*
116 * The initial hash tables come out of this zone so they can be allocated
117 * prior to malloc coming up.
118 */
119static uma_zone_t hashzone;
120
121/* The boot-time adjusted value for cache line alignment. */
122int uma_align_cache = 64 - 1;
123
124static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
125
126/*
127 * Are we allowed to allocate buckets?
128 */
129static int bucketdisable = 1;
130
131/* Linked list of all kegs in the system */
132static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
133
134/* This mutex protects the keg list */
135static struct mtx_padalign uma_mtx;
136
137/* Linked list of boot time pages */
138static LIST_HEAD(,uma_slab) uma_boot_pages =
139    LIST_HEAD_INITIALIZER(uma_boot_pages);
140
141/* This mutex protects the boot time pages list */
142static struct mtx_padalign uma_boot_pages_mtx;
143
144/* Is the VM done starting up? */
145static int booted = 0;
146#define	UMA_STARTUP	1
147#define	UMA_STARTUP2	2
148
149/* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
150static const u_int uma_max_ipers = SLAB_SETSIZE;
151
152/*
153 * Only mbuf clusters use ref zones.  Just provide enough references
154 * to support the one user.  New code should not use the ref facility.
155 */
156static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES;
157
158/*
159 * This is the handle used to schedule events that need to happen
160 * outside of the allocation fast path.
161 */
162static struct callout uma_callout;
163#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
164
165/*
166 * This structure is passed as the zone ctor arg so that I don't have to create
167 * a special allocation function just for zones.
168 */
169struct uma_zctor_args {
170	const char *name;
171	size_t size;
172	uma_ctor ctor;
173	uma_dtor dtor;
174	uma_init uminit;
175	uma_fini fini;
176	uma_import import;
177	uma_release release;
178	void *arg;
179	uma_keg_t keg;
180	int align;
181	uint32_t flags;
182};
183
184struct uma_kctor_args {
185	uma_zone_t zone;
186	size_t size;
187	uma_init uminit;
188	uma_fini fini;
189	int align;
190	uint32_t flags;
191};
192
193struct uma_bucket_zone {
194	uma_zone_t	ubz_zone;
195	char		*ubz_name;
196	int		ubz_entries;	/* Number of items it can hold. */
197	int		ubz_maxsize;	/* Maximum allocation size per-item. */
198};
199
200/*
201 * Compute the actual number of bucket entries to pack them in power
202 * of two sizes for more efficient space utilization.
203 */
204#define	BUCKET_SIZE(n)						\
205    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
206
207#define	BUCKET_MAX	BUCKET_SIZE(128)
208
209struct uma_bucket_zone bucket_zones[] = {
210	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
211	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
212	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
213	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
214	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
215	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
216	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
217	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
218	{ NULL, NULL, 0}
219};
220
221/*
222 * Flags and enumerations to be passed to internal functions.
223 */
224enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
225
226/* Prototypes.. */
227
228static void *noobj_alloc(uma_zone_t, int, uint8_t *, int);
229static void *page_alloc(uma_zone_t, int, uint8_t *, int);
230static void *startup_alloc(uma_zone_t, int, uint8_t *, int);
231static void page_free(void *, int, uint8_t);
232static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
233static void cache_drain(uma_zone_t);
234static void bucket_drain(uma_zone_t, uma_bucket_t);
235static void bucket_cache_drain(uma_zone_t zone);
236static int keg_ctor(void *, int, void *, int);
237static void keg_dtor(void *, int, void *);
238static int zone_ctor(void *, int, void *, int);
239static void zone_dtor(void *, int, void *);
240static int zero_init(void *, int, int);
241static void keg_small_init(uma_keg_t keg);
242static void keg_large_init(uma_keg_t keg);
243static void zone_foreach(void (*zfunc)(uma_zone_t));
244static void zone_timeout(uma_zone_t zone);
245static int hash_alloc(struct uma_hash *);
246static int hash_expand(struct uma_hash *, struct uma_hash *);
247static void hash_free(struct uma_hash *hash);
248static void uma_timeout(void *);
249static void uma_startup3(void);
250static void *zone_alloc_item(uma_zone_t, void *, int);
251static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
252static void bucket_enable(void);
253static void bucket_init(void);
254static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
255static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
256static void bucket_zone_drain(void);
257static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
258static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
259static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
260static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
261static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
262static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
263    uma_fini fini, int align, uint32_t flags);
264static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
265static void zone_release(uma_zone_t zone, void **bucket, int cnt);
266
267void uma_print_zone(uma_zone_t);
268void uma_print_stats(void);
269static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
270static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
271
272SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
273
274SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
275    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
276
277SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
278    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
279
280static int zone_warnings = 1;
281TUNABLE_INT("vm.zone_warnings", &zone_warnings);
282SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0,
283    "Warn when UMA zones becomes full");
284
285/*
286 * This routine checks to see whether or not it's safe to enable buckets.
287 */
288static void
289bucket_enable(void)
290{
291	bucketdisable = vm_page_count_min();
292}
293
294/*
295 * Initialize bucket_zones, the array of zones of buckets of various sizes.
296 *
297 * For each zone, calculate the memory required for each bucket, consisting
298 * of the header and an array of pointers.
299 */
300static void
301bucket_init(void)
302{
303	struct uma_bucket_zone *ubz;
304	int size;
305	int i;
306
307	for (i = 0, ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
308		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
309		size += sizeof(void *) * ubz->ubz_entries;
310		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
311		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
312		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
313	}
314}
315
316/*
317 * Given a desired number of entries for a bucket, return the zone from which
318 * to allocate the bucket.
319 */
320static struct uma_bucket_zone *
321bucket_zone_lookup(int entries)
322{
323	struct uma_bucket_zone *ubz;
324
325	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
326		if (ubz->ubz_entries >= entries)
327			return (ubz);
328	ubz--;
329	return (ubz);
330}
331
332static int
333bucket_select(int size)
334{
335	struct uma_bucket_zone *ubz;
336
337	ubz = &bucket_zones[0];
338	if (size > ubz->ubz_maxsize)
339		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
340
341	for (; ubz->ubz_entries != 0; ubz++)
342		if (ubz->ubz_maxsize < size)
343			break;
344	ubz--;
345	return (ubz->ubz_entries);
346}
347
348static uma_bucket_t
349bucket_alloc(uma_zone_t zone, void *udata, int flags)
350{
351	struct uma_bucket_zone *ubz;
352	uma_bucket_t bucket;
353
354	/*
355	 * This is to stop us from allocating per cpu buckets while we're
356	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
357	 * boot pages.  This also prevents us from allocating buckets in
358	 * low memory situations.
359	 */
360	if (bucketdisable)
361		return (NULL);
362	/*
363	 * To limit bucket recursion we store the original zone flags
364	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
365	 * NOVM flag to persist even through deep recursions.  We also
366	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
367	 * a bucket for a bucket zone so we do not allow infinite bucket
368	 * recursion.  This cookie will even persist to frees of unused
369	 * buckets via the allocation path or bucket allocations in the
370	 * free path.
371	 */
372	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
373		udata = (void *)(uintptr_t)zone->uz_flags;
374	else {
375		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
376			return (NULL);
377		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
378	}
379	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
380		flags |= M_NOVM;
381	ubz = bucket_zone_lookup(zone->uz_count);
382	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
383	if (bucket) {
384#ifdef INVARIANTS
385		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
386#endif
387		bucket->ub_cnt = 0;
388		bucket->ub_entries = ubz->ubz_entries;
389	}
390
391	return (bucket);
392}
393
394static void
395bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
396{
397	struct uma_bucket_zone *ubz;
398
399	KASSERT(bucket->ub_cnt == 0,
400	    ("bucket_free: Freeing a non free bucket."));
401	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
402		udata = (void *)(uintptr_t)zone->uz_flags;
403	ubz = bucket_zone_lookup(bucket->ub_entries);
404	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
405}
406
407static void
408bucket_zone_drain(void)
409{
410	struct uma_bucket_zone *ubz;
411
412	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
413		zone_drain(ubz->ubz_zone);
414}
415
416static void
417zone_log_warning(uma_zone_t zone)
418{
419	static const struct timeval warninterval = { 300, 0 };
420
421	if (!zone_warnings || zone->uz_warning == NULL)
422		return;
423
424	if (ratecheck(&zone->uz_ratecheck, &warninterval))
425		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
426}
427
428static void
429zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
430{
431	uma_klink_t klink;
432
433	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
434		kegfn(klink->kl_keg);
435}
436
437/*
438 * Routine called by timeout which is used to fire off some time interval
439 * based calculations.  (stats, hash size, etc.)
440 *
441 * Arguments:
442 *	arg   Unused
443 *
444 * Returns:
445 *	Nothing
446 */
447static void
448uma_timeout(void *unused)
449{
450	bucket_enable();
451	zone_foreach(zone_timeout);
452
453	/* Reschedule this event */
454	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
455}
456
457/*
458 * Routine to perform timeout driven calculations.  This expands the
459 * hashes and does per cpu statistics aggregation.
460 *
461 *  Returns nothing.
462 */
463static void
464keg_timeout(uma_keg_t keg)
465{
466
467	KEG_LOCK(keg);
468	/*
469	 * Expand the keg hash table.
470	 *
471	 * This is done if the number of slabs is larger than the hash size.
472	 * What I'm trying to do here is completely reduce collisions.  This
473	 * may be a little aggressive.  Should I allow for two collisions max?
474	 */
475	if (keg->uk_flags & UMA_ZONE_HASH &&
476	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
477		struct uma_hash newhash;
478		struct uma_hash oldhash;
479		int ret;
480
481		/*
482		 * This is so involved because allocating and freeing
483		 * while the keg lock is held will lead to deadlock.
484		 * I have to do everything in stages and check for
485		 * races.
486		 */
487		newhash = keg->uk_hash;
488		KEG_UNLOCK(keg);
489		ret = hash_alloc(&newhash);
490		KEG_LOCK(keg);
491		if (ret) {
492			if (hash_expand(&keg->uk_hash, &newhash)) {
493				oldhash = keg->uk_hash;
494				keg->uk_hash = newhash;
495			} else
496				oldhash = newhash;
497
498			KEG_UNLOCK(keg);
499			hash_free(&oldhash);
500			return;
501		}
502	}
503	KEG_UNLOCK(keg);
504}
505
506static void
507zone_timeout(uma_zone_t zone)
508{
509
510	zone_foreach_keg(zone, &keg_timeout);
511}
512
513/*
514 * Allocate and zero fill the next sized hash table from the appropriate
515 * backing store.
516 *
517 * Arguments:
518 *	hash  A new hash structure with the old hash size in uh_hashsize
519 *
520 * Returns:
521 *	1 on sucess and 0 on failure.
522 */
523static int
524hash_alloc(struct uma_hash *hash)
525{
526	int oldsize;
527	int alloc;
528
529	oldsize = hash->uh_hashsize;
530
531	/* We're just going to go to a power of two greater */
532	if (oldsize)  {
533		hash->uh_hashsize = oldsize * 2;
534		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
535		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
536		    M_UMAHASH, M_NOWAIT);
537	} else {
538		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
539		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
540		    M_WAITOK);
541		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
542	}
543	if (hash->uh_slab_hash) {
544		bzero(hash->uh_slab_hash, alloc);
545		hash->uh_hashmask = hash->uh_hashsize - 1;
546		return (1);
547	}
548
549	return (0);
550}
551
552/*
553 * Expands the hash table for HASH zones.  This is done from zone_timeout
554 * to reduce collisions.  This must not be done in the regular allocation
555 * path, otherwise, we can recurse on the vm while allocating pages.
556 *
557 * Arguments:
558 *	oldhash  The hash you want to expand
559 *	newhash  The hash structure for the new table
560 *
561 * Returns:
562 *	Nothing
563 *
564 * Discussion:
565 */
566static int
567hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
568{
569	uma_slab_t slab;
570	int hval;
571	int i;
572
573	if (!newhash->uh_slab_hash)
574		return (0);
575
576	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
577		return (0);
578
579	/*
580	 * I need to investigate hash algorithms for resizing without a
581	 * full rehash.
582	 */
583
584	for (i = 0; i < oldhash->uh_hashsize; i++)
585		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
586			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
587			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
588			hval = UMA_HASH(newhash, slab->us_data);
589			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
590			    slab, us_hlink);
591		}
592
593	return (1);
594}
595
596/*
597 * Free the hash bucket to the appropriate backing store.
598 *
599 * Arguments:
600 *	slab_hash  The hash bucket we're freeing
601 *	hashsize   The number of entries in that hash bucket
602 *
603 * Returns:
604 *	Nothing
605 */
606static void
607hash_free(struct uma_hash *hash)
608{
609	if (hash->uh_slab_hash == NULL)
610		return;
611	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
612		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
613	else
614		free(hash->uh_slab_hash, M_UMAHASH);
615}
616
617/*
618 * Frees all outstanding items in a bucket
619 *
620 * Arguments:
621 *	zone   The zone to free to, must be unlocked.
622 *	bucket The free/alloc bucket with items, cpu queue must be locked.
623 *
624 * Returns:
625 *	Nothing
626 */
627
628static void
629bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
630{
631	int i;
632
633	if (bucket == NULL)
634		return;
635
636	if (zone->uz_fini)
637		for (i = 0; i < bucket->ub_cnt; i++)
638			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
639	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
640	bucket->ub_cnt = 0;
641}
642
643/*
644 * Drains the per cpu caches for a zone.
645 *
646 * NOTE: This may only be called while the zone is being turn down, and not
647 * during normal operation.  This is necessary in order that we do not have
648 * to migrate CPUs to drain the per-CPU caches.
649 *
650 * Arguments:
651 *	zone     The zone to drain, must be unlocked.
652 *
653 * Returns:
654 *	Nothing
655 */
656static void
657cache_drain(uma_zone_t zone)
658{
659	uma_cache_t cache;
660	int cpu;
661
662	/*
663	 * XXX: It is safe to not lock the per-CPU caches, because we're
664	 * tearing down the zone anyway.  I.e., there will be no further use
665	 * of the caches at this point.
666	 *
667	 * XXX: It would good to be able to assert that the zone is being
668	 * torn down to prevent improper use of cache_drain().
669	 *
670	 * XXX: We lock the zone before passing into bucket_cache_drain() as
671	 * it is used elsewhere.  Should the tear-down path be made special
672	 * there in some form?
673	 */
674	CPU_FOREACH(cpu) {
675		cache = &zone->uz_cpu[cpu];
676		bucket_drain(zone, cache->uc_allocbucket);
677		bucket_drain(zone, cache->uc_freebucket);
678		if (cache->uc_allocbucket != NULL)
679			bucket_free(zone, cache->uc_allocbucket, NULL);
680		if (cache->uc_freebucket != NULL)
681			bucket_free(zone, cache->uc_freebucket, NULL);
682		cache->uc_allocbucket = cache->uc_freebucket = NULL;
683	}
684	ZONE_LOCK(zone);
685	bucket_cache_drain(zone);
686	ZONE_UNLOCK(zone);
687}
688
689static void
690cache_shrink(uma_zone_t zone)
691{
692
693	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
694		return;
695
696	ZONE_LOCK(zone);
697	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
698	ZONE_UNLOCK(zone);
699}
700
701static void
702cache_drain_safe_cpu(uma_zone_t zone)
703{
704	uma_cache_t cache;
705	uma_bucket_t b1, b2;
706
707	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
708		return;
709
710	b1 = b2 = NULL;
711	ZONE_LOCK(zone);
712	critical_enter();
713	cache = &zone->uz_cpu[curcpu];
714	if (cache->uc_allocbucket) {
715		if (cache->uc_allocbucket->ub_cnt != 0)
716			LIST_INSERT_HEAD(&zone->uz_buckets,
717			    cache->uc_allocbucket, ub_link);
718		else
719			b1 = cache->uc_allocbucket;
720		cache->uc_allocbucket = NULL;
721	}
722	if (cache->uc_freebucket) {
723		if (cache->uc_freebucket->ub_cnt != 0)
724			LIST_INSERT_HEAD(&zone->uz_buckets,
725			    cache->uc_freebucket, ub_link);
726		else
727			b2 = cache->uc_freebucket;
728		cache->uc_freebucket = NULL;
729	}
730	critical_exit();
731	ZONE_UNLOCK(zone);
732	if (b1)
733		bucket_free(zone, b1, NULL);
734	if (b2)
735		bucket_free(zone, b2, NULL);
736}
737
738/*
739 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
740 * This is an expensive call because it needs to bind to all CPUs
741 * one by one and enter a critical section on each of them in order
742 * to safely access their cache buckets.
743 * Zone lock must not be held on call this function.
744 */
745static void
746cache_drain_safe(uma_zone_t zone)
747{
748	int cpu;
749
750	/*
751	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
752	 */
753	if (zone)
754		cache_shrink(zone);
755	else
756		zone_foreach(cache_shrink);
757
758	CPU_FOREACH(cpu) {
759		thread_lock(curthread);
760		sched_bind(curthread, cpu);
761		thread_unlock(curthread);
762
763		if (zone)
764			cache_drain_safe_cpu(zone);
765		else
766			zone_foreach(cache_drain_safe_cpu);
767	}
768	thread_lock(curthread);
769	sched_unbind(curthread);
770	thread_unlock(curthread);
771}
772
773/*
774 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
775 */
776static void
777bucket_cache_drain(uma_zone_t zone)
778{
779	uma_bucket_t bucket;
780
781	/*
782	 * Drain the bucket queues and free the buckets, we just keep two per
783	 * cpu (alloc/free).
784	 */
785	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
786		LIST_REMOVE(bucket, ub_link);
787		ZONE_UNLOCK(zone);
788		bucket_drain(zone, bucket);
789		bucket_free(zone, bucket, NULL);
790		ZONE_LOCK(zone);
791	}
792
793	/*
794	 * Shrink further bucket sizes.  Price of single zone lock collision
795	 * is probably lower then price of global cache drain.
796	 */
797	if (zone->uz_count > zone->uz_count_min)
798		zone->uz_count--;
799}
800
801static void
802keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
803{
804	uint8_t *mem;
805	int i;
806	uint8_t flags;
807
808	mem = slab->us_data;
809	flags = slab->us_flags;
810	i = start;
811	if (keg->uk_fini != NULL) {
812		for (i--; i > -1; i--)
813			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
814			    keg->uk_size);
815	}
816	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
817		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
818#ifdef UMA_DEBUG
819	printf("%s: Returning %d bytes.\n", keg->uk_name,
820	    PAGE_SIZE * keg->uk_ppera);
821#endif
822	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
823}
824
825/*
826 * Frees pages from a keg back to the system.  This is done on demand from
827 * the pageout daemon.
828 *
829 * Returns nothing.
830 */
831static void
832keg_drain(uma_keg_t keg)
833{
834	struct slabhead freeslabs = { 0 };
835	uma_slab_t slab;
836	uma_slab_t n;
837
838	/*
839	 * We don't want to take pages from statically allocated kegs at this
840	 * time
841	 */
842	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
843		return;
844
845#ifdef UMA_DEBUG
846	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
847#endif
848	KEG_LOCK(keg);
849	if (keg->uk_free == 0)
850		goto finished;
851
852	slab = LIST_FIRST(&keg->uk_free_slab);
853	while (slab) {
854		n = LIST_NEXT(slab, us_link);
855
856		/* We have no where to free these to */
857		if (slab->us_flags & UMA_SLAB_BOOT) {
858			slab = n;
859			continue;
860		}
861
862		LIST_REMOVE(slab, us_link);
863		keg->uk_pages -= keg->uk_ppera;
864		keg->uk_free -= keg->uk_ipers;
865
866		if (keg->uk_flags & UMA_ZONE_HASH)
867			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
868
869		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
870
871		slab = n;
872	}
873finished:
874	KEG_UNLOCK(keg);
875
876	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
877		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
878		keg_free_slab(keg, slab, keg->uk_ipers);
879	}
880}
881
882static void
883zone_drain_wait(uma_zone_t zone, int waitok)
884{
885
886	/*
887	 * Set draining to interlock with zone_dtor() so we can release our
888	 * locks as we go.  Only dtor() should do a WAITOK call since it
889	 * is the only call that knows the structure will still be available
890	 * when it wakes up.
891	 */
892	ZONE_LOCK(zone);
893	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
894		if (waitok == M_NOWAIT)
895			goto out;
896		mtx_unlock(&uma_mtx);
897		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
898		mtx_lock(&uma_mtx);
899	}
900	zone->uz_flags |= UMA_ZFLAG_DRAINING;
901	bucket_cache_drain(zone);
902	ZONE_UNLOCK(zone);
903	/*
904	 * The DRAINING flag protects us from being freed while
905	 * we're running.  Normally the uma_mtx would protect us but we
906	 * must be able to release and acquire the right lock for each keg.
907	 */
908	zone_foreach_keg(zone, &keg_drain);
909	ZONE_LOCK(zone);
910	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
911	wakeup(zone);
912out:
913	ZONE_UNLOCK(zone);
914}
915
916void
917zone_drain(uma_zone_t zone)
918{
919
920	zone_drain_wait(zone, M_NOWAIT);
921}
922
923/*
924 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
925 *
926 * Arguments:
927 *	wait  Shall we wait?
928 *
929 * Returns:
930 *	The slab that was allocated or NULL if there is no memory and the
931 *	caller specified M_NOWAIT.
932 */
933static uma_slab_t
934keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
935{
936	uma_slabrefcnt_t slabref;
937	uma_alloc allocf;
938	uma_slab_t slab;
939	uint8_t *mem;
940	uint8_t flags;
941	int i;
942
943	mtx_assert(&keg->uk_lock, MA_OWNED);
944	slab = NULL;
945	mem = NULL;
946
947#ifdef UMA_DEBUG
948	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
949#endif
950	allocf = keg->uk_allocf;
951	KEG_UNLOCK(keg);
952
953	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
954		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
955		if (slab == NULL)
956			goto out;
957	}
958
959	/*
960	 * This reproduces the old vm_zone behavior of zero filling pages the
961	 * first time they are added to a zone.
962	 *
963	 * Malloced items are zeroed in uma_zalloc.
964	 */
965
966	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
967		wait |= M_ZERO;
968	else
969		wait &= ~M_ZERO;
970
971	if (keg->uk_flags & UMA_ZONE_NODUMP)
972		wait |= M_NODUMP;
973
974	/* zone is passed for legacy reasons. */
975	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
976	if (mem == NULL) {
977		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
978			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
979		slab = NULL;
980		goto out;
981	}
982
983	/* Point the slab into the allocated memory */
984	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
985		slab = (uma_slab_t )(mem + keg->uk_pgoff);
986
987	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
988		for (i = 0; i < keg->uk_ppera; i++)
989			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
990
991	slab->us_keg = keg;
992	slab->us_data = mem;
993	slab->us_freecount = keg->uk_ipers;
994	slab->us_flags = flags;
995	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
996#ifdef INVARIANTS
997	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
998#endif
999	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1000		slabref = (uma_slabrefcnt_t)slab;
1001		for (i = 0; i < keg->uk_ipers; i++)
1002			slabref->us_refcnt[i] = 0;
1003	}
1004
1005	if (keg->uk_init != NULL) {
1006		for (i = 0; i < keg->uk_ipers; i++)
1007			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1008			    keg->uk_size, wait) != 0)
1009				break;
1010		if (i != keg->uk_ipers) {
1011			keg_free_slab(keg, slab, i);
1012			slab = NULL;
1013			goto out;
1014		}
1015	}
1016out:
1017	KEG_LOCK(keg);
1018
1019	if (slab != NULL) {
1020		if (keg->uk_flags & UMA_ZONE_HASH)
1021			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1022
1023		keg->uk_pages += keg->uk_ppera;
1024		keg->uk_free += keg->uk_ipers;
1025	}
1026
1027	return (slab);
1028}
1029
1030/*
1031 * This function is intended to be used early on in place of page_alloc() so
1032 * that we may use the boot time page cache to satisfy allocations before
1033 * the VM is ready.
1034 */
1035static void *
1036startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
1037{
1038	uma_keg_t keg;
1039	uma_slab_t tmps;
1040	int pages, check_pages;
1041
1042	keg = zone_first_keg(zone);
1043	pages = howmany(bytes, PAGE_SIZE);
1044	check_pages = pages - 1;
1045	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1046
1047	/*
1048	 * Check our small startup cache to see if it has pages remaining.
1049	 */
1050	mtx_lock(&uma_boot_pages_mtx);
1051
1052	/* First check if we have enough room. */
1053	tmps = LIST_FIRST(&uma_boot_pages);
1054	while (tmps != NULL && check_pages-- > 0)
1055		tmps = LIST_NEXT(tmps, us_link);
1056	if (tmps != NULL) {
1057		/*
1058		 * It's ok to lose tmps references.  The last one will
1059		 * have tmps->us_data pointing to the start address of
1060		 * "pages" contiguous pages of memory.
1061		 */
1062		while (pages-- > 0) {
1063			tmps = LIST_FIRST(&uma_boot_pages);
1064			LIST_REMOVE(tmps, us_link);
1065		}
1066		mtx_unlock(&uma_boot_pages_mtx);
1067		*pflag = tmps->us_flags;
1068		return (tmps->us_data);
1069	}
1070	mtx_unlock(&uma_boot_pages_mtx);
1071	if (booted < UMA_STARTUP2)
1072		panic("UMA: Increase vm.boot_pages");
1073	/*
1074	 * Now that we've booted reset these users to their real allocator.
1075	 */
1076#ifdef UMA_MD_SMALL_ALLOC
1077	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1078#else
1079	keg->uk_allocf = page_alloc;
1080#endif
1081	return keg->uk_allocf(zone, bytes, pflag, wait);
1082}
1083
1084/*
1085 * Allocates a number of pages from the system
1086 *
1087 * Arguments:
1088 *	bytes  The number of bytes requested
1089 *	wait  Shall we wait?
1090 *
1091 * Returns:
1092 *	A pointer to the alloced memory or possibly
1093 *	NULL if M_NOWAIT is set.
1094 */
1095static void *
1096page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
1097{
1098	void *p;	/* Returned page */
1099
1100	*pflag = UMA_SLAB_KMEM;
1101	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1102
1103	return (p);
1104}
1105
1106/*
1107 * Allocates a number of pages from within an object
1108 *
1109 * Arguments:
1110 *	bytes  The number of bytes requested
1111 *	wait   Shall we wait?
1112 *
1113 * Returns:
1114 *	A pointer to the alloced memory or possibly
1115 *	NULL if M_NOWAIT is set.
1116 */
1117static void *
1118noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait)
1119{
1120	TAILQ_HEAD(, vm_page) alloctail;
1121	u_long npages;
1122	vm_offset_t retkva, zkva;
1123	vm_page_t p, p_next;
1124	uma_keg_t keg;
1125
1126	TAILQ_INIT(&alloctail);
1127	keg = zone_first_keg(zone);
1128
1129	npages = howmany(bytes, PAGE_SIZE);
1130	while (npages > 0) {
1131		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1132		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1133		if (p != NULL) {
1134			/*
1135			 * Since the page does not belong to an object, its
1136			 * listq is unused.
1137			 */
1138			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1139			npages--;
1140			continue;
1141		}
1142		if (wait & M_WAITOK) {
1143			VM_WAIT;
1144			continue;
1145		}
1146
1147		/*
1148		 * Page allocation failed, free intermediate pages and
1149		 * exit.
1150		 */
1151		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1152			vm_page_unwire(p, 0);
1153			vm_page_free(p);
1154		}
1155		return (NULL);
1156	}
1157	*flags = UMA_SLAB_PRIV;
1158	zkva = keg->uk_kva +
1159	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1160	retkva = zkva;
1161	TAILQ_FOREACH(p, &alloctail, listq) {
1162		pmap_qenter(zkva, &p, 1);
1163		zkva += PAGE_SIZE;
1164	}
1165
1166	return ((void *)retkva);
1167}
1168
1169/*
1170 * Frees a number of pages to the system
1171 *
1172 * Arguments:
1173 *	mem   A pointer to the memory to be freed
1174 *	size  The size of the memory being freed
1175 *	flags The original p->us_flags field
1176 *
1177 * Returns:
1178 *	Nothing
1179 */
1180static void
1181page_free(void *mem, int size, uint8_t flags)
1182{
1183	struct vmem *vmem;
1184
1185	if (flags & UMA_SLAB_KMEM)
1186		vmem = kmem_arena;
1187	else if (flags & UMA_SLAB_KERNEL)
1188		vmem = kernel_arena;
1189	else
1190		panic("UMA: page_free used with invalid flags %d", flags);
1191
1192	kmem_free(vmem, (vm_offset_t)mem, size);
1193}
1194
1195/*
1196 * Zero fill initializer
1197 *
1198 * Arguments/Returns follow uma_init specifications
1199 */
1200static int
1201zero_init(void *mem, int size, int flags)
1202{
1203	bzero(mem, size);
1204	return (0);
1205}
1206
1207/*
1208 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1209 *
1210 * Arguments
1211 *	keg  The zone we should initialize
1212 *
1213 * Returns
1214 *	Nothing
1215 */
1216static void
1217keg_small_init(uma_keg_t keg)
1218{
1219	u_int rsize;
1220	u_int memused;
1221	u_int wastedspace;
1222	u_int shsize;
1223
1224	if (keg->uk_flags & UMA_ZONE_PCPU) {
1225		u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1226
1227		keg->uk_slabsize = sizeof(struct pcpu);
1228		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1229		    PAGE_SIZE);
1230	} else {
1231		keg->uk_slabsize = UMA_SLAB_SIZE;
1232		keg->uk_ppera = 1;
1233	}
1234
1235	/*
1236	 * Calculate the size of each allocation (rsize) according to
1237	 * alignment.  If the requested size is smaller than we have
1238	 * allocation bits for we round it up.
1239	 */
1240	rsize = keg->uk_size;
1241	if (rsize < keg->uk_slabsize / SLAB_SETSIZE)
1242		rsize = keg->uk_slabsize / SLAB_SETSIZE;
1243	if (rsize & keg->uk_align)
1244		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1245	keg->uk_rsize = rsize;
1246
1247	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1248	    keg->uk_rsize < sizeof(struct pcpu),
1249	    ("%s: size %u too large", __func__, keg->uk_rsize));
1250
1251	if (keg->uk_flags & UMA_ZONE_REFCNT)
1252		rsize += sizeof(uint32_t);
1253
1254	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1255		shsize = 0;
1256	else
1257		shsize = sizeof(struct uma_slab);
1258
1259	keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize;
1260	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1261	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1262
1263	memused = keg->uk_ipers * rsize + shsize;
1264	wastedspace = keg->uk_slabsize - memused;
1265
1266	/*
1267	 * We can't do OFFPAGE if we're internal or if we've been
1268	 * asked to not go to the VM for buckets.  If we do this we
1269	 * may end up going to the VM  for slabs which we do not
1270	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1271	 * of UMA_ZONE_VM, which clearly forbids it.
1272	 */
1273	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1274	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1275		return;
1276
1277	/*
1278	 * See if using an OFFPAGE slab will limit our waste.  Only do
1279	 * this if it permits more items per-slab.
1280	 *
1281	 * XXX We could try growing slabsize to limit max waste as well.
1282	 * Historically this was not done because the VM could not
1283	 * efficiently handle contiguous allocations.
1284	 */
1285	if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) &&
1286	    (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) {
1287		keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize;
1288		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1289		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1290#ifdef UMA_DEBUG
1291		printf("UMA decided we need offpage slab headers for "
1292		    "keg: %s, calculated wastedspace = %d, "
1293		    "maximum wasted space allowed = %d, "
1294		    "calculated ipers = %d, "
1295		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1296		    keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1297		    keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize);
1298#endif
1299		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1300	}
1301
1302	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1303	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1304		keg->uk_flags |= UMA_ZONE_HASH;
1305}
1306
1307/*
1308 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1309 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1310 * more complicated.
1311 *
1312 * Arguments
1313 *	keg  The keg we should initialize
1314 *
1315 * Returns
1316 *	Nothing
1317 */
1318static void
1319keg_large_init(uma_keg_t keg)
1320{
1321
1322	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1323	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1324	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1325	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1326	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1327
1328	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1329	keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE;
1330	keg->uk_ipers = 1;
1331	keg->uk_rsize = keg->uk_size;
1332
1333	/* We can't do OFFPAGE if we're internal, bail out here. */
1334	if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
1335		return;
1336
1337	keg->uk_flags |= UMA_ZONE_OFFPAGE;
1338	if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1339		keg->uk_flags |= UMA_ZONE_HASH;
1340}
1341
1342static void
1343keg_cachespread_init(uma_keg_t keg)
1344{
1345	int alignsize;
1346	int trailer;
1347	int pages;
1348	int rsize;
1349
1350	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1351	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1352
1353	alignsize = keg->uk_align + 1;
1354	rsize = keg->uk_size;
1355	/*
1356	 * We want one item to start on every align boundary in a page.  To
1357	 * do this we will span pages.  We will also extend the item by the
1358	 * size of align if it is an even multiple of align.  Otherwise, it
1359	 * would fall on the same boundary every time.
1360	 */
1361	if (rsize & keg->uk_align)
1362		rsize = (rsize & ~keg->uk_align) + alignsize;
1363	if ((rsize & alignsize) == 0)
1364		rsize += alignsize;
1365	trailer = rsize - keg->uk_size;
1366	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1367	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1368	keg->uk_rsize = rsize;
1369	keg->uk_ppera = pages;
1370	keg->uk_slabsize = UMA_SLAB_SIZE;
1371	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1372	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1373	KASSERT(keg->uk_ipers <= uma_max_ipers,
1374	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1375	    keg->uk_ipers));
1376}
1377
1378/*
1379 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1380 * the keg onto the global keg list.
1381 *
1382 * Arguments/Returns follow uma_ctor specifications
1383 *	udata  Actually uma_kctor_args
1384 */
1385static int
1386keg_ctor(void *mem, int size, void *udata, int flags)
1387{
1388	struct uma_kctor_args *arg = udata;
1389	uma_keg_t keg = mem;
1390	uma_zone_t zone;
1391
1392	bzero(keg, size);
1393	keg->uk_size = arg->size;
1394	keg->uk_init = arg->uminit;
1395	keg->uk_fini = arg->fini;
1396	keg->uk_align = arg->align;
1397	keg->uk_free = 0;
1398	keg->uk_reserve = 0;
1399	keg->uk_pages = 0;
1400	keg->uk_flags = arg->flags;
1401	keg->uk_allocf = page_alloc;
1402	keg->uk_freef = page_free;
1403	keg->uk_slabzone = NULL;
1404
1405	/*
1406	 * The master zone is passed to us at keg-creation time.
1407	 */
1408	zone = arg->zone;
1409	keg->uk_name = zone->uz_name;
1410
1411	if (arg->flags & UMA_ZONE_VM)
1412		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1413
1414	if (arg->flags & UMA_ZONE_ZINIT)
1415		keg->uk_init = zero_init;
1416
1417	if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1418		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1419
1420	if (arg->flags & UMA_ZONE_PCPU)
1421#ifdef SMP
1422		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1423#else
1424		keg->uk_flags &= ~UMA_ZONE_PCPU;
1425#endif
1426
1427	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1428		keg_cachespread_init(keg);
1429	} else if (keg->uk_flags & UMA_ZONE_REFCNT) {
1430		if (keg->uk_size >
1431		    (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) -
1432		    sizeof(uint32_t)))
1433			keg_large_init(keg);
1434		else
1435			keg_small_init(keg);
1436	} else {
1437		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1438			keg_large_init(keg);
1439		else
1440			keg_small_init(keg);
1441	}
1442
1443	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1444		if (keg->uk_flags & UMA_ZONE_REFCNT) {
1445			if (keg->uk_ipers > uma_max_ipers_ref)
1446				panic("Too many ref items per zone: %d > %d\n",
1447				    keg->uk_ipers, uma_max_ipers_ref);
1448			keg->uk_slabzone = slabrefzone;
1449		} else
1450			keg->uk_slabzone = slabzone;
1451	}
1452
1453	/*
1454	 * If we haven't booted yet we need allocations to go through the
1455	 * startup cache until the vm is ready.
1456	 */
1457	if (keg->uk_ppera == 1) {
1458#ifdef UMA_MD_SMALL_ALLOC
1459		keg->uk_allocf = uma_small_alloc;
1460		keg->uk_freef = uma_small_free;
1461
1462		if (booted < UMA_STARTUP)
1463			keg->uk_allocf = startup_alloc;
1464#else
1465		if (booted < UMA_STARTUP2)
1466			keg->uk_allocf = startup_alloc;
1467#endif
1468	} else if (booted < UMA_STARTUP2 &&
1469	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1470		keg->uk_allocf = startup_alloc;
1471
1472	/*
1473	 * Initialize keg's lock
1474	 */
1475	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1476
1477	/*
1478	 * If we're putting the slab header in the actual page we need to
1479	 * figure out where in each page it goes.  This calculates a right
1480	 * justified offset into the memory on an ALIGN_PTR boundary.
1481	 */
1482	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1483		u_int totsize;
1484
1485		/* Size of the slab struct and free list */
1486		totsize = sizeof(struct uma_slab);
1487
1488		/* Size of the reference counts. */
1489		if (keg->uk_flags & UMA_ZONE_REFCNT)
1490			totsize += keg->uk_ipers * sizeof(uint32_t);
1491
1492		if (totsize & UMA_ALIGN_PTR)
1493			totsize = (totsize & ~UMA_ALIGN_PTR) +
1494			    (UMA_ALIGN_PTR + 1);
1495		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1496
1497		/*
1498		 * The only way the following is possible is if with our
1499		 * UMA_ALIGN_PTR adjustments we are now bigger than
1500		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1501		 * mathematically possible for all cases, so we make
1502		 * sure here anyway.
1503		 */
1504		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1505		if (keg->uk_flags & UMA_ZONE_REFCNT)
1506			totsize += keg->uk_ipers * sizeof(uint32_t);
1507		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1508			printf("zone %s ipers %d rsize %d size %d\n",
1509			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1510			    keg->uk_size);
1511			panic("UMA slab won't fit.");
1512		}
1513	}
1514
1515	if (keg->uk_flags & UMA_ZONE_HASH)
1516		hash_alloc(&keg->uk_hash);
1517
1518#ifdef UMA_DEBUG
1519	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1520	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1521	    keg->uk_ipers, keg->uk_ppera,
1522	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1523#endif
1524
1525	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1526
1527	mtx_lock(&uma_mtx);
1528	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1529	mtx_unlock(&uma_mtx);
1530	return (0);
1531}
1532
1533/*
1534 * Zone header ctor.  This initializes all fields, locks, etc.
1535 *
1536 * Arguments/Returns follow uma_ctor specifications
1537 *	udata  Actually uma_zctor_args
1538 */
1539static int
1540zone_ctor(void *mem, int size, void *udata, int flags)
1541{
1542	struct uma_zctor_args *arg = udata;
1543	uma_zone_t zone = mem;
1544	uma_zone_t z;
1545	uma_keg_t keg;
1546
1547	bzero(zone, size);
1548	zone->uz_name = arg->name;
1549	zone->uz_ctor = arg->ctor;
1550	zone->uz_dtor = arg->dtor;
1551	zone->uz_slab = zone_fetch_slab;
1552	zone->uz_init = NULL;
1553	zone->uz_fini = NULL;
1554	zone->uz_allocs = 0;
1555	zone->uz_frees = 0;
1556	zone->uz_fails = 0;
1557	zone->uz_sleeps = 0;
1558	zone->uz_count = 0;
1559	zone->uz_count_min = 0;
1560	zone->uz_flags = 0;
1561	zone->uz_warning = NULL;
1562	timevalclear(&zone->uz_ratecheck);
1563	keg = arg->keg;
1564
1565	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1566
1567	/*
1568	 * This is a pure cache zone, no kegs.
1569	 */
1570	if (arg->import) {
1571		if (arg->flags & UMA_ZONE_VM)
1572			arg->flags |= UMA_ZFLAG_CACHEONLY;
1573		zone->uz_flags = arg->flags;
1574		zone->uz_size = arg->size;
1575		zone->uz_import = arg->import;
1576		zone->uz_release = arg->release;
1577		zone->uz_arg = arg->arg;
1578		zone->uz_lockptr = &zone->uz_lock;
1579		goto out;
1580	}
1581
1582	/*
1583	 * Use the regular zone/keg/slab allocator.
1584	 */
1585	zone->uz_import = (uma_import)zone_import;
1586	zone->uz_release = (uma_release)zone_release;
1587	zone->uz_arg = zone;
1588
1589	if (arg->flags & UMA_ZONE_SECONDARY) {
1590		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1591		zone->uz_init = arg->uminit;
1592		zone->uz_fini = arg->fini;
1593		zone->uz_lockptr = &keg->uk_lock;
1594		zone->uz_flags |= UMA_ZONE_SECONDARY;
1595		mtx_lock(&uma_mtx);
1596		ZONE_LOCK(zone);
1597		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1598			if (LIST_NEXT(z, uz_link) == NULL) {
1599				LIST_INSERT_AFTER(z, zone, uz_link);
1600				break;
1601			}
1602		}
1603		ZONE_UNLOCK(zone);
1604		mtx_unlock(&uma_mtx);
1605	} else if (keg == NULL) {
1606		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1607		    arg->align, arg->flags)) == NULL)
1608			return (ENOMEM);
1609	} else {
1610		struct uma_kctor_args karg;
1611		int error;
1612
1613		/* We should only be here from uma_startup() */
1614		karg.size = arg->size;
1615		karg.uminit = arg->uminit;
1616		karg.fini = arg->fini;
1617		karg.align = arg->align;
1618		karg.flags = arg->flags;
1619		karg.zone = zone;
1620		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1621		    flags);
1622		if (error)
1623			return (error);
1624	}
1625
1626	/*
1627	 * Link in the first keg.
1628	 */
1629	zone->uz_klink.kl_keg = keg;
1630	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1631	zone->uz_lockptr = &keg->uk_lock;
1632	zone->uz_size = keg->uk_size;
1633	zone->uz_flags |= (keg->uk_flags &
1634	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1635
1636	/*
1637	 * Some internal zones don't have room allocated for the per cpu
1638	 * caches.  If we're internal, bail out here.
1639	 */
1640	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1641		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1642		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1643		return (0);
1644	}
1645
1646out:
1647	if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0)
1648		zone->uz_count = bucket_select(zone->uz_size);
1649	else
1650		zone->uz_count = BUCKET_MAX;
1651	zone->uz_count_min = zone->uz_count;
1652
1653	return (0);
1654}
1655
1656/*
1657 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1658 * table and removes the keg from the global list.
1659 *
1660 * Arguments/Returns follow uma_dtor specifications
1661 *	udata  unused
1662 */
1663static void
1664keg_dtor(void *arg, int size, void *udata)
1665{
1666	uma_keg_t keg;
1667
1668	keg = (uma_keg_t)arg;
1669	KEG_LOCK(keg);
1670	if (keg->uk_free != 0) {
1671		printf("Freed UMA keg (%s) was not empty (%d items). "
1672		    " Lost %d pages of memory.\n",
1673		    keg->uk_name ? keg->uk_name : "",
1674		    keg->uk_free, keg->uk_pages);
1675	}
1676	KEG_UNLOCK(keg);
1677
1678	hash_free(&keg->uk_hash);
1679
1680	KEG_LOCK_FINI(keg);
1681}
1682
1683/*
1684 * Zone header dtor.
1685 *
1686 * Arguments/Returns follow uma_dtor specifications
1687 *	udata  unused
1688 */
1689static void
1690zone_dtor(void *arg, int size, void *udata)
1691{
1692	uma_klink_t klink;
1693	uma_zone_t zone;
1694	uma_keg_t keg;
1695
1696	zone = (uma_zone_t)arg;
1697	keg = zone_first_keg(zone);
1698
1699	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1700		cache_drain(zone);
1701
1702	mtx_lock(&uma_mtx);
1703	LIST_REMOVE(zone, uz_link);
1704	mtx_unlock(&uma_mtx);
1705	/*
1706	 * XXX there are some races here where
1707	 * the zone can be drained but zone lock
1708	 * released and then refilled before we
1709	 * remove it... we dont care for now
1710	 */
1711	zone_drain_wait(zone, M_WAITOK);
1712	/*
1713	 * Unlink all of our kegs.
1714	 */
1715	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1716		klink->kl_keg = NULL;
1717		LIST_REMOVE(klink, kl_link);
1718		if (klink == &zone->uz_klink)
1719			continue;
1720		free(klink, M_TEMP);
1721	}
1722	/*
1723	 * We only destroy kegs from non secondary zones.
1724	 */
1725	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1726		mtx_lock(&uma_mtx);
1727		LIST_REMOVE(keg, uk_link);
1728		mtx_unlock(&uma_mtx);
1729		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1730	}
1731	ZONE_LOCK_FINI(zone);
1732}
1733
1734/*
1735 * Traverses every zone in the system and calls a callback
1736 *
1737 * Arguments:
1738 *	zfunc  A pointer to a function which accepts a zone
1739 *		as an argument.
1740 *
1741 * Returns:
1742 *	Nothing
1743 */
1744static void
1745zone_foreach(void (*zfunc)(uma_zone_t))
1746{
1747	uma_keg_t keg;
1748	uma_zone_t zone;
1749
1750	mtx_lock(&uma_mtx);
1751	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1752		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1753			zfunc(zone);
1754	}
1755	mtx_unlock(&uma_mtx);
1756}
1757
1758/* Public functions */
1759/* See uma.h */
1760void
1761uma_startup(void *bootmem, int boot_pages)
1762{
1763	struct uma_zctor_args args;
1764	uma_slab_t slab;
1765	u_int slabsize;
1766	int i;
1767
1768#ifdef UMA_DEBUG
1769	printf("Creating uma keg headers zone and keg.\n");
1770#endif
1771	mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
1772
1773	/* "manually" create the initial zone */
1774	memset(&args, 0, sizeof(args));
1775	args.name = "UMA Kegs";
1776	args.size = sizeof(struct uma_keg);
1777	args.ctor = keg_ctor;
1778	args.dtor = keg_dtor;
1779	args.uminit = zero_init;
1780	args.fini = NULL;
1781	args.keg = &masterkeg;
1782	args.align = 32 - 1;
1783	args.flags = UMA_ZFLAG_INTERNAL;
1784	/* The initial zone has no Per cpu queues so it's smaller */
1785	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1786
1787#ifdef UMA_DEBUG
1788	printf("Filling boot free list.\n");
1789#endif
1790	for (i = 0; i < boot_pages; i++) {
1791		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1792		slab->us_data = (uint8_t *)slab;
1793		slab->us_flags = UMA_SLAB_BOOT;
1794		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1795	}
1796	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1797
1798#ifdef UMA_DEBUG
1799	printf("Creating uma zone headers zone and keg.\n");
1800#endif
1801	args.name = "UMA Zones";
1802	args.size = sizeof(struct uma_zone) +
1803	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1804	args.ctor = zone_ctor;
1805	args.dtor = zone_dtor;
1806	args.uminit = zero_init;
1807	args.fini = NULL;
1808	args.keg = NULL;
1809	args.align = 32 - 1;
1810	args.flags = UMA_ZFLAG_INTERNAL;
1811	/* The initial zone has no Per cpu queues so it's smaller */
1812	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1813
1814#ifdef UMA_DEBUG
1815	printf("Initializing pcpu cache locks.\n");
1816#endif
1817#ifdef UMA_DEBUG
1818	printf("Creating slab and hash zones.\n");
1819#endif
1820
1821	/* Now make a zone for slab headers */
1822	slabzone = uma_zcreate("UMA Slabs",
1823				sizeof(struct uma_slab),
1824				NULL, NULL, NULL, NULL,
1825				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1826
1827	/*
1828	 * We also create a zone for the bigger slabs with reference
1829	 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1830	 */
1831	slabsize = sizeof(struct uma_slab_refcnt);
1832	slabsize += uma_max_ipers_ref * sizeof(uint32_t);
1833	slabrefzone = uma_zcreate("UMA RCntSlabs",
1834				  slabsize,
1835				  NULL, NULL, NULL, NULL,
1836				  UMA_ALIGN_PTR,
1837				  UMA_ZFLAG_INTERNAL);
1838
1839	hashzone = uma_zcreate("UMA Hash",
1840	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1841	    NULL, NULL, NULL, NULL,
1842	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1843
1844	bucket_init();
1845
1846	booted = UMA_STARTUP;
1847
1848#ifdef UMA_DEBUG
1849	printf("UMA startup complete.\n");
1850#endif
1851}
1852
1853/* see uma.h */
1854void
1855uma_startup2(void)
1856{
1857	booted = UMA_STARTUP2;
1858	bucket_enable();
1859#ifdef UMA_DEBUG
1860	printf("UMA startup2 complete.\n");
1861#endif
1862}
1863
1864/*
1865 * Initialize our callout handle
1866 *
1867 */
1868
1869static void
1870uma_startup3(void)
1871{
1872#ifdef UMA_DEBUG
1873	printf("Starting callout.\n");
1874#endif
1875	callout_init(&uma_callout, CALLOUT_MPSAFE);
1876	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1877#ifdef UMA_DEBUG
1878	printf("UMA startup3 complete.\n");
1879#endif
1880}
1881
1882static uma_keg_t
1883uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1884		int align, uint32_t flags)
1885{
1886	struct uma_kctor_args args;
1887
1888	args.size = size;
1889	args.uminit = uminit;
1890	args.fini = fini;
1891	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1892	args.flags = flags;
1893	args.zone = zone;
1894	return (zone_alloc_item(kegs, &args, M_WAITOK));
1895}
1896
1897/* See uma.h */
1898void
1899uma_set_align(int align)
1900{
1901
1902	if (align != UMA_ALIGN_CACHE)
1903		uma_align_cache = align;
1904}
1905
1906/* See uma.h */
1907uma_zone_t
1908uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1909		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1910
1911{
1912	struct uma_zctor_args args;
1913
1914	/* This stuff is essential for the zone ctor */
1915	memset(&args, 0, sizeof(args));
1916	args.name = name;
1917	args.size = size;
1918	args.ctor = ctor;
1919	args.dtor = dtor;
1920	args.uminit = uminit;
1921	args.fini = fini;
1922	args.align = align;
1923	args.flags = flags;
1924	args.keg = NULL;
1925
1926	return (zone_alloc_item(zones, &args, M_WAITOK));
1927}
1928
1929/* See uma.h */
1930uma_zone_t
1931uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1932		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1933{
1934	struct uma_zctor_args args;
1935	uma_keg_t keg;
1936
1937	keg = zone_first_keg(master);
1938	memset(&args, 0, sizeof(args));
1939	args.name = name;
1940	args.size = keg->uk_size;
1941	args.ctor = ctor;
1942	args.dtor = dtor;
1943	args.uminit = zinit;
1944	args.fini = zfini;
1945	args.align = keg->uk_align;
1946	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1947	args.keg = keg;
1948
1949	/* XXX Attaches only one keg of potentially many. */
1950	return (zone_alloc_item(zones, &args, M_WAITOK));
1951}
1952
1953/* See uma.h */
1954uma_zone_t
1955uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1956		    uma_init zinit, uma_fini zfini, uma_import zimport,
1957		    uma_release zrelease, void *arg, int flags)
1958{
1959	struct uma_zctor_args args;
1960
1961	memset(&args, 0, sizeof(args));
1962	args.name = name;
1963	args.size = size;
1964	args.ctor = ctor;
1965	args.dtor = dtor;
1966	args.uminit = zinit;
1967	args.fini = zfini;
1968	args.import = zimport;
1969	args.release = zrelease;
1970	args.arg = arg;
1971	args.align = 0;
1972	args.flags = flags;
1973
1974	return (zone_alloc_item(zones, &args, M_WAITOK));
1975}
1976
1977static void
1978zone_lock_pair(uma_zone_t a, uma_zone_t b)
1979{
1980	if (a < b) {
1981		ZONE_LOCK(a);
1982		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
1983	} else {
1984		ZONE_LOCK(b);
1985		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
1986	}
1987}
1988
1989static void
1990zone_unlock_pair(uma_zone_t a, uma_zone_t b)
1991{
1992
1993	ZONE_UNLOCK(a);
1994	ZONE_UNLOCK(b);
1995}
1996
1997int
1998uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
1999{
2000	uma_klink_t klink;
2001	uma_klink_t kl;
2002	int error;
2003
2004	error = 0;
2005	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2006
2007	zone_lock_pair(zone, master);
2008	/*
2009	 * zone must use vtoslab() to resolve objects and must already be
2010	 * a secondary.
2011	 */
2012	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2013	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2014		error = EINVAL;
2015		goto out;
2016	}
2017	/*
2018	 * The new master must also use vtoslab().
2019	 */
2020	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2021		error = EINVAL;
2022		goto out;
2023	}
2024	/*
2025	 * Both must either be refcnt, or not be refcnt.
2026	 */
2027	if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
2028	    (master->uz_flags & UMA_ZONE_REFCNT)) {
2029		error = EINVAL;
2030		goto out;
2031	}
2032	/*
2033	 * The underlying object must be the same size.  rsize
2034	 * may be different.
2035	 */
2036	if (master->uz_size != zone->uz_size) {
2037		error = E2BIG;
2038		goto out;
2039	}
2040	/*
2041	 * Put it at the end of the list.
2042	 */
2043	klink->kl_keg = zone_first_keg(master);
2044	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2045		if (LIST_NEXT(kl, kl_link) == NULL) {
2046			LIST_INSERT_AFTER(kl, klink, kl_link);
2047			break;
2048		}
2049	}
2050	klink = NULL;
2051	zone->uz_flags |= UMA_ZFLAG_MULTI;
2052	zone->uz_slab = zone_fetch_slab_multi;
2053
2054out:
2055	zone_unlock_pair(zone, master);
2056	if (klink != NULL)
2057		free(klink, M_TEMP);
2058
2059	return (error);
2060}
2061
2062
2063/* See uma.h */
2064void
2065uma_zdestroy(uma_zone_t zone)
2066{
2067
2068	zone_free_item(zones, zone, NULL, SKIP_NONE);
2069}
2070
2071/* See uma.h */
2072void *
2073uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2074{
2075	void *item;
2076	uma_cache_t cache;
2077	uma_bucket_t bucket;
2078	int lockfail;
2079	int cpu;
2080
2081	/* This is the fast path allocation */
2082#ifdef UMA_DEBUG_ALLOC_1
2083	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2084#endif
2085	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2086	    zone->uz_name, flags);
2087
2088	if (flags & M_WAITOK) {
2089		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2090		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2091	}
2092#ifdef DEBUG_MEMGUARD
2093	if (memguard_cmp_zone(zone)) {
2094		item = memguard_alloc(zone->uz_size, flags);
2095		if (item != NULL) {
2096			/*
2097			 * Avoid conflict with the use-after-free
2098			 * protecting infrastructure from INVARIANTS.
2099			 */
2100			if (zone->uz_init != NULL &&
2101			    zone->uz_init != mtrash_init &&
2102			    zone->uz_init(item, zone->uz_size, flags) != 0)
2103				return (NULL);
2104			if (zone->uz_ctor != NULL &&
2105			    zone->uz_ctor != mtrash_ctor &&
2106			    zone->uz_ctor(item, zone->uz_size, udata,
2107			    flags) != 0) {
2108			    	zone->uz_fini(item, zone->uz_size);
2109				return (NULL);
2110			}
2111			return (item);
2112		}
2113		/* This is unfortunate but should not be fatal. */
2114	}
2115#endif
2116	/*
2117	 * If possible, allocate from the per-CPU cache.  There are two
2118	 * requirements for safe access to the per-CPU cache: (1) the thread
2119	 * accessing the cache must not be preempted or yield during access,
2120	 * and (2) the thread must not migrate CPUs without switching which
2121	 * cache it accesses.  We rely on a critical section to prevent
2122	 * preemption and migration.  We release the critical section in
2123	 * order to acquire the zone mutex if we are unable to allocate from
2124	 * the current cache; when we re-acquire the critical section, we
2125	 * must detect and handle migration if it has occurred.
2126	 */
2127	critical_enter();
2128	cpu = curcpu;
2129	cache = &zone->uz_cpu[cpu];
2130
2131zalloc_start:
2132	bucket = cache->uc_allocbucket;
2133	if (bucket != NULL && bucket->ub_cnt > 0) {
2134		bucket->ub_cnt--;
2135		item = bucket->ub_bucket[bucket->ub_cnt];
2136#ifdef INVARIANTS
2137		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2138#endif
2139		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2140		cache->uc_allocs++;
2141		critical_exit();
2142		if (zone->uz_ctor != NULL &&
2143		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2144			atomic_add_long(&zone->uz_fails, 1);
2145			zone_free_item(zone, item, udata, SKIP_DTOR);
2146			return (NULL);
2147		}
2148#ifdef INVARIANTS
2149		uma_dbg_alloc(zone, NULL, item);
2150#endif
2151		if (flags & M_ZERO)
2152			bzero(item, zone->uz_size);
2153		return (item);
2154	}
2155
2156	/*
2157	 * We have run out of items in our alloc bucket.
2158	 * See if we can switch with our free bucket.
2159	 */
2160	bucket = cache->uc_freebucket;
2161	if (bucket != NULL && bucket->ub_cnt > 0) {
2162#ifdef UMA_DEBUG_ALLOC
2163		printf("uma_zalloc: Swapping empty with alloc.\n");
2164#endif
2165		cache->uc_freebucket = cache->uc_allocbucket;
2166		cache->uc_allocbucket = bucket;
2167		goto zalloc_start;
2168	}
2169
2170	/*
2171	 * Discard any empty allocation bucket while we hold no locks.
2172	 */
2173	bucket = cache->uc_allocbucket;
2174	cache->uc_allocbucket = NULL;
2175	critical_exit();
2176	if (bucket != NULL)
2177		bucket_free(zone, bucket, udata);
2178
2179	/* Short-circuit for zones without buckets and low memory. */
2180	if (zone->uz_count == 0 || bucketdisable)
2181		goto zalloc_item;
2182
2183	/*
2184	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2185	 * we must go back to the zone.  This requires the zone lock, so we
2186	 * must drop the critical section, then re-acquire it when we go back
2187	 * to the cache.  Since the critical section is released, we may be
2188	 * preempted or migrate.  As such, make sure not to maintain any
2189	 * thread-local state specific to the cache from prior to releasing
2190	 * the critical section.
2191	 */
2192	lockfail = 0;
2193	if (ZONE_TRYLOCK(zone) == 0) {
2194		/* Record contention to size the buckets. */
2195		ZONE_LOCK(zone);
2196		lockfail = 1;
2197	}
2198	critical_enter();
2199	cpu = curcpu;
2200	cache = &zone->uz_cpu[cpu];
2201
2202	/*
2203	 * Since we have locked the zone we may as well send back our stats.
2204	 */
2205	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2206	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2207	cache->uc_allocs = 0;
2208	cache->uc_frees = 0;
2209
2210	/* See if we lost the race to fill the cache. */
2211	if (cache->uc_allocbucket != NULL) {
2212		ZONE_UNLOCK(zone);
2213		goto zalloc_start;
2214	}
2215
2216	/*
2217	 * Check the zone's cache of buckets.
2218	 */
2219	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2220		KASSERT(bucket->ub_cnt != 0,
2221		    ("uma_zalloc_arg: Returning an empty bucket."));
2222
2223		LIST_REMOVE(bucket, ub_link);
2224		cache->uc_allocbucket = bucket;
2225		ZONE_UNLOCK(zone);
2226		goto zalloc_start;
2227	}
2228	/* We are no longer associated with this CPU. */
2229	critical_exit();
2230
2231	/*
2232	 * We bump the uz count when the cache size is insufficient to
2233	 * handle the working set.
2234	 */
2235	if (lockfail && zone->uz_count < BUCKET_MAX)
2236		zone->uz_count++;
2237	ZONE_UNLOCK(zone);
2238
2239	/*
2240	 * Now lets just fill a bucket and put it on the free list.  If that
2241	 * works we'll restart the allocation from the begining and it
2242	 * will use the just filled bucket.
2243	 */
2244	bucket = zone_alloc_bucket(zone, udata, flags);
2245	if (bucket != NULL) {
2246		ZONE_LOCK(zone);
2247		critical_enter();
2248		cpu = curcpu;
2249		cache = &zone->uz_cpu[cpu];
2250		/*
2251		 * See if we lost the race or were migrated.  Cache the
2252		 * initialized bucket to make this less likely or claim
2253		 * the memory directly.
2254		 */
2255		if (cache->uc_allocbucket == NULL)
2256			cache->uc_allocbucket = bucket;
2257		else
2258			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2259		ZONE_UNLOCK(zone);
2260		goto zalloc_start;
2261	}
2262
2263	/*
2264	 * We may not be able to get a bucket so return an actual item.
2265	 */
2266#ifdef UMA_DEBUG
2267	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2268#endif
2269
2270zalloc_item:
2271	item = zone_alloc_item(zone, udata, flags);
2272
2273	return (item);
2274}
2275
2276static uma_slab_t
2277keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2278{
2279	uma_slab_t slab;
2280	int reserve;
2281
2282	mtx_assert(&keg->uk_lock, MA_OWNED);
2283	slab = NULL;
2284	reserve = 0;
2285	if ((flags & M_USE_RESERVE) == 0)
2286		reserve = keg->uk_reserve;
2287
2288	for (;;) {
2289		/*
2290		 * Find a slab with some space.  Prefer slabs that are partially
2291		 * used over those that are totally full.  This helps to reduce
2292		 * fragmentation.
2293		 */
2294		if (keg->uk_free > reserve) {
2295			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2296				slab = LIST_FIRST(&keg->uk_part_slab);
2297			} else {
2298				slab = LIST_FIRST(&keg->uk_free_slab);
2299				LIST_REMOVE(slab, us_link);
2300				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2301				    us_link);
2302			}
2303			MPASS(slab->us_keg == keg);
2304			return (slab);
2305		}
2306
2307		/*
2308		 * M_NOVM means don't ask at all!
2309		 */
2310		if (flags & M_NOVM)
2311			break;
2312
2313		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2314			keg->uk_flags |= UMA_ZFLAG_FULL;
2315			/*
2316			 * If this is not a multi-zone, set the FULL bit.
2317			 * Otherwise slab_multi() takes care of it.
2318			 */
2319			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2320				zone->uz_flags |= UMA_ZFLAG_FULL;
2321				zone_log_warning(zone);
2322			}
2323			if (flags & M_NOWAIT)
2324				break;
2325			zone->uz_sleeps++;
2326			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2327			continue;
2328		}
2329		slab = keg_alloc_slab(keg, zone, flags);
2330		/*
2331		 * If we got a slab here it's safe to mark it partially used
2332		 * and return.  We assume that the caller is going to remove
2333		 * at least one item.
2334		 */
2335		if (slab) {
2336			MPASS(slab->us_keg == keg);
2337			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2338			return (slab);
2339		}
2340		/*
2341		 * We might not have been able to get a slab but another cpu
2342		 * could have while we were unlocked.  Check again before we
2343		 * fail.
2344		 */
2345		flags |= M_NOVM;
2346	}
2347	return (slab);
2348}
2349
2350static uma_slab_t
2351zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2352{
2353	uma_slab_t slab;
2354
2355	if (keg == NULL) {
2356		keg = zone_first_keg(zone);
2357		KEG_LOCK(keg);
2358	}
2359
2360	for (;;) {
2361		slab = keg_fetch_slab(keg, zone, flags);
2362		if (slab)
2363			return (slab);
2364		if (flags & (M_NOWAIT | M_NOVM))
2365			break;
2366	}
2367	KEG_UNLOCK(keg);
2368	return (NULL);
2369}
2370
2371/*
2372 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2373 * with the keg locked.  On NULL no lock is held.
2374 *
2375 * The last pointer is used to seed the search.  It is not required.
2376 */
2377static uma_slab_t
2378zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2379{
2380	uma_klink_t klink;
2381	uma_slab_t slab;
2382	uma_keg_t keg;
2383	int flags;
2384	int empty;
2385	int full;
2386
2387	/*
2388	 * Don't wait on the first pass.  This will skip limit tests
2389	 * as well.  We don't want to block if we can find a provider
2390	 * without blocking.
2391	 */
2392	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2393	/*
2394	 * Use the last slab allocated as a hint for where to start
2395	 * the search.
2396	 */
2397	if (last != NULL) {
2398		slab = keg_fetch_slab(last, zone, flags);
2399		if (slab)
2400			return (slab);
2401		KEG_UNLOCK(last);
2402	}
2403	/*
2404	 * Loop until we have a slab incase of transient failures
2405	 * while M_WAITOK is specified.  I'm not sure this is 100%
2406	 * required but we've done it for so long now.
2407	 */
2408	for (;;) {
2409		empty = 0;
2410		full = 0;
2411		/*
2412		 * Search the available kegs for slabs.  Be careful to hold the
2413		 * correct lock while calling into the keg layer.
2414		 */
2415		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2416			keg = klink->kl_keg;
2417			KEG_LOCK(keg);
2418			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2419				slab = keg_fetch_slab(keg, zone, flags);
2420				if (slab)
2421					return (slab);
2422			}
2423			if (keg->uk_flags & UMA_ZFLAG_FULL)
2424				full++;
2425			else
2426				empty++;
2427			KEG_UNLOCK(keg);
2428		}
2429		if (rflags & (M_NOWAIT | M_NOVM))
2430			break;
2431		flags = rflags;
2432		/*
2433		 * All kegs are full.  XXX We can't atomically check all kegs
2434		 * and sleep so just sleep for a short period and retry.
2435		 */
2436		if (full && !empty) {
2437			ZONE_LOCK(zone);
2438			zone->uz_flags |= UMA_ZFLAG_FULL;
2439			zone->uz_sleeps++;
2440			zone_log_warning(zone);
2441			msleep(zone, zone->uz_lockptr, PVM,
2442			    "zonelimit", hz/100);
2443			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2444			ZONE_UNLOCK(zone);
2445			continue;
2446		}
2447	}
2448	return (NULL);
2449}
2450
2451static void *
2452slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2453{
2454	void *item;
2455	uint8_t freei;
2456
2457	MPASS(keg == slab->us_keg);
2458	mtx_assert(&keg->uk_lock, MA_OWNED);
2459
2460	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2461	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2462	item = slab->us_data + (keg->uk_rsize * freei);
2463	slab->us_freecount--;
2464	keg->uk_free--;
2465
2466	/* Move this slab to the full list */
2467	if (slab->us_freecount == 0) {
2468		LIST_REMOVE(slab, us_link);
2469		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2470	}
2471
2472	return (item);
2473}
2474
2475static int
2476zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2477{
2478	uma_slab_t slab;
2479	uma_keg_t keg;
2480	int i;
2481
2482	slab = NULL;
2483	keg = NULL;
2484	/* Try to keep the buckets totally full */
2485	for (i = 0; i < max; ) {
2486		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2487			break;
2488		keg = slab->us_keg;
2489		while (slab->us_freecount && i < max) {
2490			bucket[i++] = slab_alloc_item(keg, slab);
2491			if (keg->uk_free <= keg->uk_reserve)
2492				break;
2493		}
2494		/* Don't grab more than one slab at a time. */
2495		flags &= ~M_WAITOK;
2496		flags |= M_NOWAIT;
2497	}
2498	if (slab != NULL)
2499		KEG_UNLOCK(keg);
2500
2501	return i;
2502}
2503
2504static uma_bucket_t
2505zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2506{
2507	uma_bucket_t bucket;
2508	int max;
2509
2510	/* Don't wait for buckets, preserve caller's NOVM setting. */
2511	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2512	if (bucket == NULL)
2513		goto out;
2514
2515	max = MIN(bucket->ub_entries, zone->uz_count);
2516	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2517	    max, flags);
2518
2519	/*
2520	 * Initialize the memory if necessary.
2521	 */
2522	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2523		int i;
2524
2525		for (i = 0; i < bucket->ub_cnt; i++)
2526			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2527			    flags) != 0)
2528				break;
2529		/*
2530		 * If we couldn't initialize the whole bucket, put the
2531		 * rest back onto the freelist.
2532		 */
2533		if (i != bucket->ub_cnt) {
2534			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2535			    bucket->ub_cnt - i);
2536#ifdef INVARIANTS
2537			bzero(&bucket->ub_bucket[i],
2538			    sizeof(void *) * (bucket->ub_cnt - i));
2539#endif
2540			bucket->ub_cnt = i;
2541		}
2542	}
2543
2544out:
2545	if (bucket == NULL || bucket->ub_cnt == 0) {
2546		if (bucket != NULL)
2547			bucket_free(zone, bucket, udata);
2548		atomic_add_long(&zone->uz_fails, 1);
2549		return (NULL);
2550	}
2551
2552	return (bucket);
2553}
2554
2555/*
2556 * Allocates a single item from a zone.
2557 *
2558 * Arguments
2559 *	zone   The zone to alloc for.
2560 *	udata  The data to be passed to the constructor.
2561 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2562 *
2563 * Returns
2564 *	NULL if there is no memory and M_NOWAIT is set
2565 *	An item if successful
2566 */
2567
2568static void *
2569zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2570{
2571	void *item;
2572
2573	item = NULL;
2574
2575#ifdef UMA_DEBUG_ALLOC
2576	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2577#endif
2578	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2579		goto fail;
2580	atomic_add_long(&zone->uz_allocs, 1);
2581
2582	/*
2583	 * We have to call both the zone's init (not the keg's init)
2584	 * and the zone's ctor.  This is because the item is going from
2585	 * a keg slab directly to the user, and the user is expecting it
2586	 * to be both zone-init'd as well as zone-ctor'd.
2587	 */
2588	if (zone->uz_init != NULL) {
2589		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2590			zone_free_item(zone, item, udata, SKIP_FINI);
2591			goto fail;
2592		}
2593	}
2594	if (zone->uz_ctor != NULL) {
2595		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2596			zone_free_item(zone, item, udata, SKIP_DTOR);
2597			goto fail;
2598		}
2599	}
2600#ifdef INVARIANTS
2601	uma_dbg_alloc(zone, NULL, item);
2602#endif
2603	if (flags & M_ZERO)
2604		bzero(item, zone->uz_size);
2605
2606	return (item);
2607
2608fail:
2609	atomic_add_long(&zone->uz_fails, 1);
2610	return (NULL);
2611}
2612
2613/* See uma.h */
2614void
2615uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2616{
2617	uma_cache_t cache;
2618	uma_bucket_t bucket;
2619	int lockfail;
2620	int cpu;
2621
2622#ifdef UMA_DEBUG_ALLOC_1
2623	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2624#endif
2625	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2626	    zone->uz_name);
2627
2628        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2629        if (item == NULL)
2630                return;
2631#ifdef DEBUG_MEMGUARD
2632	if (is_memguard_addr(item)) {
2633		if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor)
2634			zone->uz_dtor(item, zone->uz_size, udata);
2635		if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini)
2636			zone->uz_fini(item, zone->uz_size);
2637		memguard_free(item);
2638		return;
2639	}
2640#endif
2641#ifdef INVARIANTS
2642	if (zone->uz_flags & UMA_ZONE_MALLOC)
2643		uma_dbg_free(zone, udata, item);
2644	else
2645		uma_dbg_free(zone, NULL, item);
2646#endif
2647	if (zone->uz_dtor != NULL)
2648		zone->uz_dtor(item, zone->uz_size, udata);
2649
2650	/*
2651	 * The race here is acceptable.  If we miss it we'll just have to wait
2652	 * a little longer for the limits to be reset.
2653	 */
2654	if (zone->uz_flags & UMA_ZFLAG_FULL)
2655		goto zfree_item;
2656
2657	/*
2658	 * If possible, free to the per-CPU cache.  There are two
2659	 * requirements for safe access to the per-CPU cache: (1) the thread
2660	 * accessing the cache must not be preempted or yield during access,
2661	 * and (2) the thread must not migrate CPUs without switching which
2662	 * cache it accesses.  We rely on a critical section to prevent
2663	 * preemption and migration.  We release the critical section in
2664	 * order to acquire the zone mutex if we are unable to free to the
2665	 * current cache; when we re-acquire the critical section, we must
2666	 * detect and handle migration if it has occurred.
2667	 */
2668zfree_restart:
2669	critical_enter();
2670	cpu = curcpu;
2671	cache = &zone->uz_cpu[cpu];
2672
2673zfree_start:
2674	/*
2675	 * Try to free into the allocbucket first to give LIFO ordering
2676	 * for cache-hot datastructures.  Spill over into the freebucket
2677	 * if necessary.  Alloc will swap them if one runs dry.
2678	 */
2679	bucket = cache->uc_allocbucket;
2680	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2681		bucket = cache->uc_freebucket;
2682	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2683		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2684		    ("uma_zfree: Freeing to non free bucket index."));
2685		bucket->ub_bucket[bucket->ub_cnt] = item;
2686		bucket->ub_cnt++;
2687		cache->uc_frees++;
2688		critical_exit();
2689		return;
2690	}
2691
2692	/*
2693	 * We must go back the zone, which requires acquiring the zone lock,
2694	 * which in turn means we must release and re-acquire the critical
2695	 * section.  Since the critical section is released, we may be
2696	 * preempted or migrate.  As such, make sure not to maintain any
2697	 * thread-local state specific to the cache from prior to releasing
2698	 * the critical section.
2699	 */
2700	critical_exit();
2701	if (zone->uz_count == 0 || bucketdisable)
2702		goto zfree_item;
2703
2704	lockfail = 0;
2705	if (ZONE_TRYLOCK(zone) == 0) {
2706		/* Record contention to size the buckets. */
2707		ZONE_LOCK(zone);
2708		lockfail = 1;
2709	}
2710	critical_enter();
2711	cpu = curcpu;
2712	cache = &zone->uz_cpu[cpu];
2713
2714	/*
2715	 * Since we have locked the zone we may as well send back our stats.
2716	 */
2717	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2718	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2719	cache->uc_allocs = 0;
2720	cache->uc_frees = 0;
2721
2722	bucket = cache->uc_freebucket;
2723	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2724		ZONE_UNLOCK(zone);
2725		goto zfree_start;
2726	}
2727	cache->uc_freebucket = NULL;
2728
2729	/* Can we throw this on the zone full list? */
2730	if (bucket != NULL) {
2731#ifdef UMA_DEBUG_ALLOC
2732		printf("uma_zfree: Putting old bucket on the free list.\n");
2733#endif
2734		/* ub_cnt is pointing to the last free item */
2735		KASSERT(bucket->ub_cnt != 0,
2736		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2737		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2738	}
2739
2740	/* We are no longer associated with this CPU. */
2741	critical_exit();
2742
2743	/*
2744	 * We bump the uz count when the cache size is insufficient to
2745	 * handle the working set.
2746	 */
2747	if (lockfail && zone->uz_count < BUCKET_MAX)
2748		zone->uz_count++;
2749	ZONE_UNLOCK(zone);
2750
2751#ifdef UMA_DEBUG_ALLOC
2752	printf("uma_zfree: Allocating new free bucket.\n");
2753#endif
2754	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2755	if (bucket) {
2756		critical_enter();
2757		cpu = curcpu;
2758		cache = &zone->uz_cpu[cpu];
2759		if (cache->uc_freebucket == NULL) {
2760			cache->uc_freebucket = bucket;
2761			goto zfree_start;
2762		}
2763		/*
2764		 * We lost the race, start over.  We have to drop our
2765		 * critical section to free the bucket.
2766		 */
2767		critical_exit();
2768		bucket_free(zone, bucket, udata);
2769		goto zfree_restart;
2770	}
2771
2772	/*
2773	 * If nothing else caught this, we'll just do an internal free.
2774	 */
2775zfree_item:
2776	zone_free_item(zone, item, udata, SKIP_DTOR);
2777
2778	return;
2779}
2780
2781static void
2782slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2783{
2784	uint8_t freei;
2785
2786	mtx_assert(&keg->uk_lock, MA_OWNED);
2787	MPASS(keg == slab->us_keg);
2788
2789	/* Do we need to remove from any lists? */
2790	if (slab->us_freecount+1 == keg->uk_ipers) {
2791		LIST_REMOVE(slab, us_link);
2792		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2793	} else if (slab->us_freecount == 0) {
2794		LIST_REMOVE(slab, us_link);
2795		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2796	}
2797
2798	/* Slab management. */
2799	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2800	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2801	slab->us_freecount++;
2802
2803	/* Keg statistics. */
2804	keg->uk_free++;
2805}
2806
2807static void
2808zone_release(uma_zone_t zone, void **bucket, int cnt)
2809{
2810	void *item;
2811	uma_slab_t slab;
2812	uma_keg_t keg;
2813	uint8_t *mem;
2814	int clearfull;
2815	int i;
2816
2817	clearfull = 0;
2818	keg = zone_first_keg(zone);
2819	KEG_LOCK(keg);
2820	for (i = 0; i < cnt; i++) {
2821		item = bucket[i];
2822		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2823			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2824			if (zone->uz_flags & UMA_ZONE_HASH) {
2825				slab = hash_sfind(&keg->uk_hash, mem);
2826			} else {
2827				mem += keg->uk_pgoff;
2828				slab = (uma_slab_t)mem;
2829			}
2830		} else {
2831			slab = vtoslab((vm_offset_t)item);
2832			if (slab->us_keg != keg) {
2833				KEG_UNLOCK(keg);
2834				keg = slab->us_keg;
2835				KEG_LOCK(keg);
2836			}
2837		}
2838		slab_free_item(keg, slab, item);
2839		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2840			if (keg->uk_pages < keg->uk_maxpages) {
2841				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2842				clearfull = 1;
2843			}
2844
2845			/*
2846			 * We can handle one more allocation. Since we're
2847			 * clearing ZFLAG_FULL, wake up all procs blocked
2848			 * on pages. This should be uncommon, so keeping this
2849			 * simple for now (rather than adding count of blocked
2850			 * threads etc).
2851			 */
2852			wakeup(keg);
2853		}
2854	}
2855	KEG_UNLOCK(keg);
2856	if (clearfull) {
2857		ZONE_LOCK(zone);
2858		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2859		wakeup(zone);
2860		ZONE_UNLOCK(zone);
2861	}
2862
2863}
2864
2865/*
2866 * Frees a single item to any zone.
2867 *
2868 * Arguments:
2869 *	zone   The zone to free to
2870 *	item   The item we're freeing
2871 *	udata  User supplied data for the dtor
2872 *	skip   Skip dtors and finis
2873 */
2874static void
2875zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2876{
2877
2878#ifdef INVARIANTS
2879	if (skip == SKIP_NONE) {
2880		if (zone->uz_flags & UMA_ZONE_MALLOC)
2881			uma_dbg_free(zone, udata, item);
2882		else
2883			uma_dbg_free(zone, NULL, item);
2884	}
2885#endif
2886	if (skip < SKIP_DTOR && zone->uz_dtor)
2887		zone->uz_dtor(item, zone->uz_size, udata);
2888
2889	if (skip < SKIP_FINI && zone->uz_fini)
2890		zone->uz_fini(item, zone->uz_size);
2891
2892	atomic_add_long(&zone->uz_frees, 1);
2893	zone->uz_release(zone->uz_arg, &item, 1);
2894}
2895
2896/* See uma.h */
2897int
2898uma_zone_set_max(uma_zone_t zone, int nitems)
2899{
2900	uma_keg_t keg;
2901
2902	keg = zone_first_keg(zone);
2903	if (keg == NULL)
2904		return (0);
2905	KEG_LOCK(keg);
2906	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2907	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2908		keg->uk_maxpages += keg->uk_ppera;
2909	nitems = keg->uk_maxpages * keg->uk_ipers;
2910	KEG_UNLOCK(keg);
2911
2912	return (nitems);
2913}
2914
2915/* See uma.h */
2916int
2917uma_zone_get_max(uma_zone_t zone)
2918{
2919	int nitems;
2920	uma_keg_t keg;
2921
2922	keg = zone_first_keg(zone);
2923	if (keg == NULL)
2924		return (0);
2925	KEG_LOCK(keg);
2926	nitems = keg->uk_maxpages * keg->uk_ipers;
2927	KEG_UNLOCK(keg);
2928
2929	return (nitems);
2930}
2931
2932/* See uma.h */
2933void
2934uma_zone_set_warning(uma_zone_t zone, const char *warning)
2935{
2936
2937	ZONE_LOCK(zone);
2938	zone->uz_warning = warning;
2939	ZONE_UNLOCK(zone);
2940}
2941
2942/* See uma.h */
2943int
2944uma_zone_get_cur(uma_zone_t zone)
2945{
2946	int64_t nitems;
2947	u_int i;
2948
2949	ZONE_LOCK(zone);
2950	nitems = zone->uz_allocs - zone->uz_frees;
2951	CPU_FOREACH(i) {
2952		/*
2953		 * See the comment in sysctl_vm_zone_stats() regarding the
2954		 * safety of accessing the per-cpu caches. With the zone lock
2955		 * held, it is safe, but can potentially result in stale data.
2956		 */
2957		nitems += zone->uz_cpu[i].uc_allocs -
2958		    zone->uz_cpu[i].uc_frees;
2959	}
2960	ZONE_UNLOCK(zone);
2961
2962	return (nitems < 0 ? 0 : nitems);
2963}
2964
2965/* See uma.h */
2966void
2967uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2968{
2969	uma_keg_t keg;
2970
2971	keg = zone_first_keg(zone);
2972	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
2973	KEG_LOCK(keg);
2974	KASSERT(keg->uk_pages == 0,
2975	    ("uma_zone_set_init on non-empty keg"));
2976	keg->uk_init = uminit;
2977	KEG_UNLOCK(keg);
2978}
2979
2980/* See uma.h */
2981void
2982uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
2983{
2984	uma_keg_t keg;
2985
2986	keg = zone_first_keg(zone);
2987	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
2988	KEG_LOCK(keg);
2989	KASSERT(keg->uk_pages == 0,
2990	    ("uma_zone_set_fini on non-empty keg"));
2991	keg->uk_fini = fini;
2992	KEG_UNLOCK(keg);
2993}
2994
2995/* See uma.h */
2996void
2997uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
2998{
2999
3000	ZONE_LOCK(zone);
3001	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3002	    ("uma_zone_set_zinit on non-empty keg"));
3003	zone->uz_init = zinit;
3004	ZONE_UNLOCK(zone);
3005}
3006
3007/* See uma.h */
3008void
3009uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3010{
3011
3012	ZONE_LOCK(zone);
3013	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3014	    ("uma_zone_set_zfini on non-empty keg"));
3015	zone->uz_fini = zfini;
3016	ZONE_UNLOCK(zone);
3017}
3018
3019/* See uma.h */
3020/* XXX uk_freef is not actually used with the zone locked */
3021void
3022uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3023{
3024	uma_keg_t keg;
3025
3026	keg = zone_first_keg(zone);
3027	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3028	KEG_LOCK(keg);
3029	keg->uk_freef = freef;
3030	KEG_UNLOCK(keg);
3031}
3032
3033/* See uma.h */
3034/* XXX uk_allocf is not actually used with the zone locked */
3035void
3036uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3037{
3038	uma_keg_t keg;
3039
3040	keg = zone_first_keg(zone);
3041	KEG_LOCK(keg);
3042	keg->uk_allocf = allocf;
3043	KEG_UNLOCK(keg);
3044}
3045
3046/* See uma.h */
3047void
3048uma_zone_reserve(uma_zone_t zone, int items)
3049{
3050	uma_keg_t keg;
3051
3052	keg = zone_first_keg(zone);
3053	if (keg == NULL)
3054		return;
3055	KEG_LOCK(keg);
3056	keg->uk_reserve = items;
3057	KEG_UNLOCK(keg);
3058
3059	return;
3060}
3061
3062/* See uma.h */
3063int
3064uma_zone_reserve_kva(uma_zone_t zone, int count)
3065{
3066	uma_keg_t keg;
3067	vm_offset_t kva;
3068	int pages;
3069
3070	keg = zone_first_keg(zone);
3071	if (keg == NULL)
3072		return (0);
3073	pages = count / keg->uk_ipers;
3074
3075	if (pages * keg->uk_ipers < count)
3076		pages++;
3077
3078#ifdef UMA_MD_SMALL_ALLOC
3079	if (keg->uk_ppera > 1) {
3080#else
3081	if (1) {
3082#endif
3083		kva = kva_alloc(pages * UMA_SLAB_SIZE);
3084		if (kva == 0)
3085			return (0);
3086	} else
3087		kva = 0;
3088	KEG_LOCK(keg);
3089	keg->uk_kva = kva;
3090	keg->uk_offset = 0;
3091	keg->uk_maxpages = pages;
3092#ifdef UMA_MD_SMALL_ALLOC
3093	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3094#else
3095	keg->uk_allocf = noobj_alloc;
3096#endif
3097	keg->uk_flags |= UMA_ZONE_NOFREE;
3098	KEG_UNLOCK(keg);
3099
3100	return (1);
3101}
3102
3103/* See uma.h */
3104void
3105uma_prealloc(uma_zone_t zone, int items)
3106{
3107	int slabs;
3108	uma_slab_t slab;
3109	uma_keg_t keg;
3110
3111	keg = zone_first_keg(zone);
3112	if (keg == NULL)
3113		return;
3114	KEG_LOCK(keg);
3115	slabs = items / keg->uk_ipers;
3116	if (slabs * keg->uk_ipers < items)
3117		slabs++;
3118	while (slabs > 0) {
3119		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3120		if (slab == NULL)
3121			break;
3122		MPASS(slab->us_keg == keg);
3123		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3124		slabs--;
3125	}
3126	KEG_UNLOCK(keg);
3127}
3128
3129/* See uma.h */
3130uint32_t *
3131uma_find_refcnt(uma_zone_t zone, void *item)
3132{
3133	uma_slabrefcnt_t slabref;
3134	uma_slab_t slab;
3135	uma_keg_t keg;
3136	uint32_t *refcnt;
3137	int idx;
3138
3139	slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK));
3140	slabref = (uma_slabrefcnt_t)slab;
3141	keg = slab->us_keg;
3142	KASSERT(keg->uk_flags & UMA_ZONE_REFCNT,
3143	    ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
3144	idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3145	refcnt = &slabref->us_refcnt[idx];
3146	return refcnt;
3147}
3148
3149/* See uma.h */
3150void
3151uma_reclaim(void)
3152{
3153#ifdef UMA_DEBUG
3154	printf("UMA: vm asked us to release pages!\n");
3155#endif
3156	bucket_enable();
3157	zone_foreach(zone_drain);
3158	if (vm_page_count_min()) {
3159		cache_drain_safe(NULL);
3160		zone_foreach(zone_drain);
3161	}
3162	/*
3163	 * Some slabs may have been freed but this zone will be visited early
3164	 * we visit again so that we can free pages that are empty once other
3165	 * zones are drained.  We have to do the same for buckets.
3166	 */
3167	zone_drain(slabzone);
3168	zone_drain(slabrefzone);
3169	bucket_zone_drain();
3170}
3171
3172/* See uma.h */
3173int
3174uma_zone_exhausted(uma_zone_t zone)
3175{
3176	int full;
3177
3178	ZONE_LOCK(zone);
3179	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3180	ZONE_UNLOCK(zone);
3181	return (full);
3182}
3183
3184int
3185uma_zone_exhausted_nolock(uma_zone_t zone)
3186{
3187	return (zone->uz_flags & UMA_ZFLAG_FULL);
3188}
3189
3190void *
3191uma_large_malloc(int size, int wait)
3192{
3193	void *mem;
3194	uma_slab_t slab;
3195	uint8_t flags;
3196
3197	slab = zone_alloc_item(slabzone, NULL, wait);
3198	if (slab == NULL)
3199		return (NULL);
3200	mem = page_alloc(NULL, size, &flags, wait);
3201	if (mem) {
3202		vsetslab((vm_offset_t)mem, slab);
3203		slab->us_data = mem;
3204		slab->us_flags = flags | UMA_SLAB_MALLOC;
3205		slab->us_size = size;
3206	} else {
3207		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3208	}
3209
3210	return (mem);
3211}
3212
3213void
3214uma_large_free(uma_slab_t slab)
3215{
3216
3217	page_free(slab->us_data, slab->us_size, slab->us_flags);
3218	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3219}
3220
3221void
3222uma_print_stats(void)
3223{
3224	zone_foreach(uma_print_zone);
3225}
3226
3227static void
3228slab_print(uma_slab_t slab)
3229{
3230	printf("slab: keg %p, data %p, freecount %d\n",
3231		slab->us_keg, slab->us_data, slab->us_freecount);
3232}
3233
3234static void
3235cache_print(uma_cache_t cache)
3236{
3237	printf("alloc: %p(%d), free: %p(%d)\n",
3238		cache->uc_allocbucket,
3239		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3240		cache->uc_freebucket,
3241		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3242}
3243
3244static void
3245uma_print_keg(uma_keg_t keg)
3246{
3247	uma_slab_t slab;
3248
3249	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3250	    "out %d free %d limit %d\n",
3251	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3252	    keg->uk_ipers, keg->uk_ppera,
3253	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3254	    (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3255	printf("Part slabs:\n");
3256	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3257		slab_print(slab);
3258	printf("Free slabs:\n");
3259	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3260		slab_print(slab);
3261	printf("Full slabs:\n");
3262	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3263		slab_print(slab);
3264}
3265
3266void
3267uma_print_zone(uma_zone_t zone)
3268{
3269	uma_cache_t cache;
3270	uma_klink_t kl;
3271	int i;
3272
3273	printf("zone: %s(%p) size %d flags %#x\n",
3274	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3275	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3276		uma_print_keg(kl->kl_keg);
3277	CPU_FOREACH(i) {
3278		cache = &zone->uz_cpu[i];
3279		printf("CPU %d Cache:\n", i);
3280		cache_print(cache);
3281	}
3282}
3283
3284#ifdef DDB
3285/*
3286 * Generate statistics across both the zone and its per-cpu cache's.  Return
3287 * desired statistics if the pointer is non-NULL for that statistic.
3288 *
3289 * Note: does not update the zone statistics, as it can't safely clear the
3290 * per-CPU cache statistic.
3291 *
3292 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3293 * safe from off-CPU; we should modify the caches to track this information
3294 * directly so that we don't have to.
3295 */
3296static void
3297uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3298    uint64_t *freesp, uint64_t *sleepsp)
3299{
3300	uma_cache_t cache;
3301	uint64_t allocs, frees, sleeps;
3302	int cachefree, cpu;
3303
3304	allocs = frees = sleeps = 0;
3305	cachefree = 0;
3306	CPU_FOREACH(cpu) {
3307		cache = &z->uz_cpu[cpu];
3308		if (cache->uc_allocbucket != NULL)
3309			cachefree += cache->uc_allocbucket->ub_cnt;
3310		if (cache->uc_freebucket != NULL)
3311			cachefree += cache->uc_freebucket->ub_cnt;
3312		allocs += cache->uc_allocs;
3313		frees += cache->uc_frees;
3314	}
3315	allocs += z->uz_allocs;
3316	frees += z->uz_frees;
3317	sleeps += z->uz_sleeps;
3318	if (cachefreep != NULL)
3319		*cachefreep = cachefree;
3320	if (allocsp != NULL)
3321		*allocsp = allocs;
3322	if (freesp != NULL)
3323		*freesp = frees;
3324	if (sleepsp != NULL)
3325		*sleepsp = sleeps;
3326}
3327#endif /* DDB */
3328
3329static int
3330sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3331{
3332	uma_keg_t kz;
3333	uma_zone_t z;
3334	int count;
3335
3336	count = 0;
3337	mtx_lock(&uma_mtx);
3338	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3339		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3340			count++;
3341	}
3342	mtx_unlock(&uma_mtx);
3343	return (sysctl_handle_int(oidp, &count, 0, req));
3344}
3345
3346static int
3347sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3348{
3349	struct uma_stream_header ush;
3350	struct uma_type_header uth;
3351	struct uma_percpu_stat ups;
3352	uma_bucket_t bucket;
3353	struct sbuf sbuf;
3354	uma_cache_t cache;
3355	uma_klink_t kl;
3356	uma_keg_t kz;
3357	uma_zone_t z;
3358	uma_keg_t k;
3359	int count, error, i;
3360
3361	error = sysctl_wire_old_buffer(req, 0);
3362	if (error != 0)
3363		return (error);
3364	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3365
3366	count = 0;
3367	mtx_lock(&uma_mtx);
3368	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3369		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3370			count++;
3371	}
3372
3373	/*
3374	 * Insert stream header.
3375	 */
3376	bzero(&ush, sizeof(ush));
3377	ush.ush_version = UMA_STREAM_VERSION;
3378	ush.ush_maxcpus = (mp_maxid + 1);
3379	ush.ush_count = count;
3380	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3381
3382	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3383		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3384			bzero(&uth, sizeof(uth));
3385			ZONE_LOCK(z);
3386			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3387			uth.uth_align = kz->uk_align;
3388			uth.uth_size = kz->uk_size;
3389			uth.uth_rsize = kz->uk_rsize;
3390			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3391				k = kl->kl_keg;
3392				uth.uth_maxpages += k->uk_maxpages;
3393				uth.uth_pages += k->uk_pages;
3394				uth.uth_keg_free += k->uk_free;
3395				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3396				    * k->uk_ipers;
3397			}
3398
3399			/*
3400			 * A zone is secondary is it is not the first entry
3401			 * on the keg's zone list.
3402			 */
3403			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3404			    (LIST_FIRST(&kz->uk_zones) != z))
3405				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3406
3407			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3408				uth.uth_zone_free += bucket->ub_cnt;
3409			uth.uth_allocs = z->uz_allocs;
3410			uth.uth_frees = z->uz_frees;
3411			uth.uth_fails = z->uz_fails;
3412			uth.uth_sleeps = z->uz_sleeps;
3413			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3414			/*
3415			 * While it is not normally safe to access the cache
3416			 * bucket pointers while not on the CPU that owns the
3417			 * cache, we only allow the pointers to be exchanged
3418			 * without the zone lock held, not invalidated, so
3419			 * accept the possible race associated with bucket
3420			 * exchange during monitoring.
3421			 */
3422			for (i = 0; i < (mp_maxid + 1); i++) {
3423				bzero(&ups, sizeof(ups));
3424				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3425					goto skip;
3426				if (CPU_ABSENT(i))
3427					goto skip;
3428				cache = &z->uz_cpu[i];
3429				if (cache->uc_allocbucket != NULL)
3430					ups.ups_cache_free +=
3431					    cache->uc_allocbucket->ub_cnt;
3432				if (cache->uc_freebucket != NULL)
3433					ups.ups_cache_free +=
3434					    cache->uc_freebucket->ub_cnt;
3435				ups.ups_allocs = cache->uc_allocs;
3436				ups.ups_frees = cache->uc_frees;
3437skip:
3438				(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3439			}
3440			ZONE_UNLOCK(z);
3441		}
3442	}
3443	mtx_unlock(&uma_mtx);
3444	error = sbuf_finish(&sbuf);
3445	sbuf_delete(&sbuf);
3446	return (error);
3447}
3448
3449#ifdef DDB
3450DB_SHOW_COMMAND(uma, db_show_uma)
3451{
3452	uint64_t allocs, frees, sleeps;
3453	uma_bucket_t bucket;
3454	uma_keg_t kz;
3455	uma_zone_t z;
3456	int cachefree;
3457
3458	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3459	    "Requests", "Sleeps");
3460	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3461		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3462			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3463				allocs = z->uz_allocs;
3464				frees = z->uz_frees;
3465				sleeps = z->uz_sleeps;
3466				cachefree = 0;
3467			} else
3468				uma_zone_sumstat(z, &cachefree, &allocs,
3469				    &frees, &sleeps);
3470			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3471			    (LIST_FIRST(&kz->uk_zones) != z)))
3472				cachefree += kz->uk_free;
3473			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3474				cachefree += bucket->ub_cnt;
3475			db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name,
3476			    (uintmax_t)kz->uk_size,
3477			    (intmax_t)(allocs - frees), cachefree,
3478			    (uintmax_t)allocs, sleeps);
3479			if (db_pager_quit)
3480				return;
3481		}
3482	}
3483}
3484#endif
3485