uma_core.c revision 260280
1/*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c  Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34 * effecient.  A primary design goal is to return unused memory to the rest of
35 * the system.  This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 *	- Improve memory usage for large allocations
47 *	- Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: stable/10/sys/vm/uma_core.c 260280 2014-01-04 19:51:57Z glebius $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62#include "opt_vm.h"
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/bitset.h>
67#include <sys/kernel.h>
68#include <sys/types.h>
69#include <sys/queue.h>
70#include <sys/malloc.h>
71#include <sys/ktr.h>
72#include <sys/lock.h>
73#include <sys/sysctl.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/rwlock.h>
77#include <sys/sbuf.h>
78#include <sys/smp.h>
79#include <sys/vmmeter.h>
80
81#include <vm/vm.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_pageout.h>
85#include <vm/vm_param.h>
86#include <vm/vm_map.h>
87#include <vm/vm_kern.h>
88#include <vm/vm_extern.h>
89#include <vm/uma.h>
90#include <vm/uma_int.h>
91#include <vm/uma_dbg.h>
92
93#include <ddb/ddb.h>
94
95#ifdef DEBUG_MEMGUARD
96#include <vm/memguard.h>
97#endif
98
99/*
100 * This is the zone and keg from which all zones are spawned.  The idea is that
101 * even the zone & keg heads are allocated from the allocator, so we use the
102 * bss section to bootstrap us.
103 */
104static struct uma_keg masterkeg;
105static struct uma_zone masterzone_k;
106static struct uma_zone masterzone_z;
107static uma_zone_t kegs = &masterzone_k;
108static uma_zone_t zones = &masterzone_z;
109
110/* This is the zone from which all of uma_slab_t's are allocated. */
111static uma_zone_t slabzone;
112static uma_zone_t slabrefzone;	/* With refcounters (for UMA_ZONE_REFCNT) */
113
114/*
115 * The initial hash tables come out of this zone so they can be allocated
116 * prior to malloc coming up.
117 */
118static uma_zone_t hashzone;
119
120/* The boot-time adjusted value for cache line alignment. */
121int uma_align_cache = 64 - 1;
122
123static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
124
125/*
126 * Are we allowed to allocate buckets?
127 */
128static int bucketdisable = 1;
129
130/* Linked list of all kegs in the system */
131static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
132
133/* This mutex protects the keg list */
134static struct mtx_padalign uma_mtx;
135
136/* Linked list of boot time pages */
137static LIST_HEAD(,uma_slab) uma_boot_pages =
138    LIST_HEAD_INITIALIZER(uma_boot_pages);
139
140/* This mutex protects the boot time pages list */
141static struct mtx_padalign uma_boot_pages_mtx;
142
143/* Is the VM done starting up? */
144static int booted = 0;
145#define	UMA_STARTUP	1
146#define	UMA_STARTUP2	2
147
148/* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
149static const u_int uma_max_ipers = SLAB_SETSIZE;
150
151/*
152 * Only mbuf clusters use ref zones.  Just provide enough references
153 * to support the one user.  New code should not use the ref facility.
154 */
155static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES;
156
157/*
158 * This is the handle used to schedule events that need to happen
159 * outside of the allocation fast path.
160 */
161static struct callout uma_callout;
162#define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
163
164/*
165 * This structure is passed as the zone ctor arg so that I don't have to create
166 * a special allocation function just for zones.
167 */
168struct uma_zctor_args {
169	const char *name;
170	size_t size;
171	uma_ctor ctor;
172	uma_dtor dtor;
173	uma_init uminit;
174	uma_fini fini;
175	uma_import import;
176	uma_release release;
177	void *arg;
178	uma_keg_t keg;
179	int align;
180	uint32_t flags;
181};
182
183struct uma_kctor_args {
184	uma_zone_t zone;
185	size_t size;
186	uma_init uminit;
187	uma_fini fini;
188	int align;
189	uint32_t flags;
190};
191
192struct uma_bucket_zone {
193	uma_zone_t	ubz_zone;
194	char		*ubz_name;
195	int		ubz_entries;	/* Number of items it can hold. */
196	int		ubz_maxsize;	/* Maximum allocation size per-item. */
197};
198
199/*
200 * Compute the actual number of bucket entries to pack them in power
201 * of two sizes for more efficient space utilization.
202 */
203#define	BUCKET_SIZE(n)						\
204    (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
205
206#define	BUCKET_MAX	BUCKET_SIZE(128)
207
208struct uma_bucket_zone bucket_zones[] = {
209	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
210	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
211	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
212	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
213	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
214	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
215	{ NULL, NULL, 0}
216};
217
218/*
219 * Flags and enumerations to be passed to internal functions.
220 */
221enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
222
223/* Prototypes.. */
224
225static void *noobj_alloc(uma_zone_t, int, uint8_t *, int);
226static void *page_alloc(uma_zone_t, int, uint8_t *, int);
227static void *startup_alloc(uma_zone_t, int, uint8_t *, int);
228static void page_free(void *, int, uint8_t);
229static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
230static void cache_drain(uma_zone_t);
231static void bucket_drain(uma_zone_t, uma_bucket_t);
232static void bucket_cache_drain(uma_zone_t zone);
233static int keg_ctor(void *, int, void *, int);
234static void keg_dtor(void *, int, void *);
235static int zone_ctor(void *, int, void *, int);
236static void zone_dtor(void *, int, void *);
237static int zero_init(void *, int, int);
238static void keg_small_init(uma_keg_t keg);
239static void keg_large_init(uma_keg_t keg);
240static void zone_foreach(void (*zfunc)(uma_zone_t));
241static void zone_timeout(uma_zone_t zone);
242static int hash_alloc(struct uma_hash *);
243static int hash_expand(struct uma_hash *, struct uma_hash *);
244static void hash_free(struct uma_hash *hash);
245static void uma_timeout(void *);
246static void uma_startup3(void);
247static void *zone_alloc_item(uma_zone_t, void *, int);
248static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
249static void bucket_enable(void);
250static void bucket_init(void);
251static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
252static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
253static void bucket_zone_drain(void);
254static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
255static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
256static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
257static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
258static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
259static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
260    uma_fini fini, int align, uint32_t flags);
261static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
262static void zone_release(uma_zone_t zone, void **bucket, int cnt);
263
264void uma_print_zone(uma_zone_t);
265void uma_print_stats(void);
266static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
267static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
268
269SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
270
271SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
272    0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
273
274SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
275    0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
276
277static int zone_warnings = 1;
278TUNABLE_INT("vm.zone_warnings", &zone_warnings);
279SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RW, &zone_warnings, 0,
280    "Warn when UMA zones becomes full");
281
282/*
283 * This routine checks to see whether or not it's safe to enable buckets.
284 */
285static void
286bucket_enable(void)
287{
288	bucketdisable = vm_page_count_min();
289}
290
291/*
292 * Initialize bucket_zones, the array of zones of buckets of various sizes.
293 *
294 * For each zone, calculate the memory required for each bucket, consisting
295 * of the header and an array of pointers.
296 */
297static void
298bucket_init(void)
299{
300	struct uma_bucket_zone *ubz;
301	int size;
302	int i;
303
304	for (i = 0, ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
305		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
306		size += sizeof(void *) * ubz->ubz_entries;
307		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
308		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
309		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
310	}
311}
312
313/*
314 * Given a desired number of entries for a bucket, return the zone from which
315 * to allocate the bucket.
316 */
317static struct uma_bucket_zone *
318bucket_zone_lookup(int entries)
319{
320	struct uma_bucket_zone *ubz;
321
322	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
323		if (ubz->ubz_entries >= entries)
324			return (ubz);
325	ubz--;
326	return (ubz);
327}
328
329static int
330bucket_select(int size)
331{
332	struct uma_bucket_zone *ubz;
333
334	ubz = &bucket_zones[0];
335	if (size > ubz->ubz_maxsize)
336		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
337
338	for (; ubz->ubz_entries != 0; ubz++)
339		if (ubz->ubz_maxsize < size)
340			break;
341	ubz--;
342	return (ubz->ubz_entries);
343}
344
345static uma_bucket_t
346bucket_alloc(uma_zone_t zone, void *udata, int flags)
347{
348	struct uma_bucket_zone *ubz;
349	uma_bucket_t bucket;
350
351	/*
352	 * This is to stop us from allocating per cpu buckets while we're
353	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
354	 * boot pages.  This also prevents us from allocating buckets in
355	 * low memory situations.
356	 */
357	if (bucketdisable)
358		return (NULL);
359	/*
360	 * To limit bucket recursion we store the original zone flags
361	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
362	 * NOVM flag to persist even through deep recursions.  We also
363	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
364	 * a bucket for a bucket zone so we do not allow infinite bucket
365	 * recursion.  This cookie will even persist to frees of unused
366	 * buckets via the allocation path or bucket allocations in the
367	 * free path.
368	 */
369	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
370		udata = (void *)(uintptr_t)zone->uz_flags;
371	else {
372		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
373			return (NULL);
374		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
375	}
376	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
377		flags |= M_NOVM;
378	ubz = bucket_zone_lookup(zone->uz_count);
379	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
380	if (bucket) {
381#ifdef INVARIANTS
382		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
383#endif
384		bucket->ub_cnt = 0;
385		bucket->ub_entries = ubz->ubz_entries;
386	}
387
388	return (bucket);
389}
390
391static void
392bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
393{
394	struct uma_bucket_zone *ubz;
395
396	KASSERT(bucket->ub_cnt == 0,
397	    ("bucket_free: Freeing a non free bucket."));
398	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
399		udata = (void *)(uintptr_t)zone->uz_flags;
400	ubz = bucket_zone_lookup(bucket->ub_entries);
401	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
402}
403
404static void
405bucket_zone_drain(void)
406{
407	struct uma_bucket_zone *ubz;
408
409	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
410		zone_drain(ubz->ubz_zone);
411}
412
413static void
414zone_log_warning(uma_zone_t zone)
415{
416	static const struct timeval warninterval = { 300, 0 };
417
418	if (!zone_warnings || zone->uz_warning == NULL)
419		return;
420
421	if (ratecheck(&zone->uz_ratecheck, &warninterval))
422		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
423}
424
425static void
426zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
427{
428	uma_klink_t klink;
429
430	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
431		kegfn(klink->kl_keg);
432}
433
434/*
435 * Routine called by timeout which is used to fire off some time interval
436 * based calculations.  (stats, hash size, etc.)
437 *
438 * Arguments:
439 *	arg   Unused
440 *
441 * Returns:
442 *	Nothing
443 */
444static void
445uma_timeout(void *unused)
446{
447	bucket_enable();
448	zone_foreach(zone_timeout);
449
450	/* Reschedule this event */
451	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
452}
453
454/*
455 * Routine to perform timeout driven calculations.  This expands the
456 * hashes and does per cpu statistics aggregation.
457 *
458 *  Returns nothing.
459 */
460static void
461keg_timeout(uma_keg_t keg)
462{
463
464	KEG_LOCK(keg);
465	/*
466	 * Expand the keg hash table.
467	 *
468	 * This is done if the number of slabs is larger than the hash size.
469	 * What I'm trying to do here is completely reduce collisions.  This
470	 * may be a little aggressive.  Should I allow for two collisions max?
471	 */
472	if (keg->uk_flags & UMA_ZONE_HASH &&
473	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
474		struct uma_hash newhash;
475		struct uma_hash oldhash;
476		int ret;
477
478		/*
479		 * This is so involved because allocating and freeing
480		 * while the keg lock is held will lead to deadlock.
481		 * I have to do everything in stages and check for
482		 * races.
483		 */
484		newhash = keg->uk_hash;
485		KEG_UNLOCK(keg);
486		ret = hash_alloc(&newhash);
487		KEG_LOCK(keg);
488		if (ret) {
489			if (hash_expand(&keg->uk_hash, &newhash)) {
490				oldhash = keg->uk_hash;
491				keg->uk_hash = newhash;
492			} else
493				oldhash = newhash;
494
495			KEG_UNLOCK(keg);
496			hash_free(&oldhash);
497			return;
498		}
499	}
500	KEG_UNLOCK(keg);
501}
502
503static void
504zone_timeout(uma_zone_t zone)
505{
506
507	zone_foreach_keg(zone, &keg_timeout);
508}
509
510/*
511 * Allocate and zero fill the next sized hash table from the appropriate
512 * backing store.
513 *
514 * Arguments:
515 *	hash  A new hash structure with the old hash size in uh_hashsize
516 *
517 * Returns:
518 *	1 on sucess and 0 on failure.
519 */
520static int
521hash_alloc(struct uma_hash *hash)
522{
523	int oldsize;
524	int alloc;
525
526	oldsize = hash->uh_hashsize;
527
528	/* We're just going to go to a power of two greater */
529	if (oldsize)  {
530		hash->uh_hashsize = oldsize * 2;
531		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
532		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
533		    M_UMAHASH, M_NOWAIT);
534	} else {
535		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
536		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
537		    M_WAITOK);
538		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
539	}
540	if (hash->uh_slab_hash) {
541		bzero(hash->uh_slab_hash, alloc);
542		hash->uh_hashmask = hash->uh_hashsize - 1;
543		return (1);
544	}
545
546	return (0);
547}
548
549/*
550 * Expands the hash table for HASH zones.  This is done from zone_timeout
551 * to reduce collisions.  This must not be done in the regular allocation
552 * path, otherwise, we can recurse on the vm while allocating pages.
553 *
554 * Arguments:
555 *	oldhash  The hash you want to expand
556 *	newhash  The hash structure for the new table
557 *
558 * Returns:
559 *	Nothing
560 *
561 * Discussion:
562 */
563static int
564hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
565{
566	uma_slab_t slab;
567	int hval;
568	int i;
569
570	if (!newhash->uh_slab_hash)
571		return (0);
572
573	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
574		return (0);
575
576	/*
577	 * I need to investigate hash algorithms for resizing without a
578	 * full rehash.
579	 */
580
581	for (i = 0; i < oldhash->uh_hashsize; i++)
582		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
583			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
584			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
585			hval = UMA_HASH(newhash, slab->us_data);
586			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
587			    slab, us_hlink);
588		}
589
590	return (1);
591}
592
593/*
594 * Free the hash bucket to the appropriate backing store.
595 *
596 * Arguments:
597 *	slab_hash  The hash bucket we're freeing
598 *	hashsize   The number of entries in that hash bucket
599 *
600 * Returns:
601 *	Nothing
602 */
603static void
604hash_free(struct uma_hash *hash)
605{
606	if (hash->uh_slab_hash == NULL)
607		return;
608	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
609		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
610	else
611		free(hash->uh_slab_hash, M_UMAHASH);
612}
613
614/*
615 * Frees all outstanding items in a bucket
616 *
617 * Arguments:
618 *	zone   The zone to free to, must be unlocked.
619 *	bucket The free/alloc bucket with items, cpu queue must be locked.
620 *
621 * Returns:
622 *	Nothing
623 */
624
625static void
626bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
627{
628	int i;
629
630	if (bucket == NULL)
631		return;
632
633	if (zone->uz_fini)
634		for (i = 0; i < bucket->ub_cnt; i++)
635			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
636	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
637	bucket->ub_cnt = 0;
638}
639
640/*
641 * Drains the per cpu caches for a zone.
642 *
643 * NOTE: This may only be called while the zone is being turn down, and not
644 * during normal operation.  This is necessary in order that we do not have
645 * to migrate CPUs to drain the per-CPU caches.
646 *
647 * Arguments:
648 *	zone     The zone to drain, must be unlocked.
649 *
650 * Returns:
651 *	Nothing
652 */
653static void
654cache_drain(uma_zone_t zone)
655{
656	uma_cache_t cache;
657	int cpu;
658
659	/*
660	 * XXX: It is safe to not lock the per-CPU caches, because we're
661	 * tearing down the zone anyway.  I.e., there will be no further use
662	 * of the caches at this point.
663	 *
664	 * XXX: It would good to be able to assert that the zone is being
665	 * torn down to prevent improper use of cache_drain().
666	 *
667	 * XXX: We lock the zone before passing into bucket_cache_drain() as
668	 * it is used elsewhere.  Should the tear-down path be made special
669	 * there in some form?
670	 */
671	CPU_FOREACH(cpu) {
672		cache = &zone->uz_cpu[cpu];
673		bucket_drain(zone, cache->uc_allocbucket);
674		bucket_drain(zone, cache->uc_freebucket);
675		if (cache->uc_allocbucket != NULL)
676			bucket_free(zone, cache->uc_allocbucket, NULL);
677		if (cache->uc_freebucket != NULL)
678			bucket_free(zone, cache->uc_freebucket, NULL);
679		cache->uc_allocbucket = cache->uc_freebucket = NULL;
680	}
681	ZONE_LOCK(zone);
682	bucket_cache_drain(zone);
683	ZONE_UNLOCK(zone);
684}
685
686/*
687 * Drain the cached buckets from a zone.  Expects a locked zone on entry.
688 */
689static void
690bucket_cache_drain(uma_zone_t zone)
691{
692	uma_bucket_t bucket;
693
694	/*
695	 * Drain the bucket queues and free the buckets, we just keep two per
696	 * cpu (alloc/free).
697	 */
698	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
699		LIST_REMOVE(bucket, ub_link);
700		ZONE_UNLOCK(zone);
701		bucket_drain(zone, bucket);
702		bucket_free(zone, bucket, NULL);
703		ZONE_LOCK(zone);
704	}
705}
706
707static void
708keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
709{
710	uint8_t *mem;
711	int i;
712	uint8_t flags;
713
714	mem = slab->us_data;
715	flags = slab->us_flags;
716	i = start;
717	if (keg->uk_fini != NULL) {
718		for (i--; i > -1; i--)
719			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
720			    keg->uk_size);
721	}
722	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
723		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
724#ifdef UMA_DEBUG
725	printf("%s: Returning %d bytes.\n", keg->uk_name,
726	    PAGE_SIZE * keg->uk_ppera);
727#endif
728	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
729}
730
731/*
732 * Frees pages from a keg back to the system.  This is done on demand from
733 * the pageout daemon.
734 *
735 * Returns nothing.
736 */
737static void
738keg_drain(uma_keg_t keg)
739{
740	struct slabhead freeslabs = { 0 };
741	uma_slab_t slab;
742	uma_slab_t n;
743
744	/*
745	 * We don't want to take pages from statically allocated kegs at this
746	 * time
747	 */
748	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
749		return;
750
751#ifdef UMA_DEBUG
752	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
753#endif
754	KEG_LOCK(keg);
755	if (keg->uk_free == 0)
756		goto finished;
757
758	slab = LIST_FIRST(&keg->uk_free_slab);
759	while (slab) {
760		n = LIST_NEXT(slab, us_link);
761
762		/* We have no where to free these to */
763		if (slab->us_flags & UMA_SLAB_BOOT) {
764			slab = n;
765			continue;
766		}
767
768		LIST_REMOVE(slab, us_link);
769		keg->uk_pages -= keg->uk_ppera;
770		keg->uk_free -= keg->uk_ipers;
771
772		if (keg->uk_flags & UMA_ZONE_HASH)
773			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
774
775		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
776
777		slab = n;
778	}
779finished:
780	KEG_UNLOCK(keg);
781
782	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
783		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
784		keg_free_slab(keg, slab, keg->uk_ipers);
785	}
786}
787
788static void
789zone_drain_wait(uma_zone_t zone, int waitok)
790{
791
792	/*
793	 * Set draining to interlock with zone_dtor() so we can release our
794	 * locks as we go.  Only dtor() should do a WAITOK call since it
795	 * is the only call that knows the structure will still be available
796	 * when it wakes up.
797	 */
798	ZONE_LOCK(zone);
799	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
800		if (waitok == M_NOWAIT)
801			goto out;
802		mtx_unlock(&uma_mtx);
803		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
804		mtx_lock(&uma_mtx);
805	}
806	zone->uz_flags |= UMA_ZFLAG_DRAINING;
807	bucket_cache_drain(zone);
808	ZONE_UNLOCK(zone);
809	/*
810	 * The DRAINING flag protects us from being freed while
811	 * we're running.  Normally the uma_mtx would protect us but we
812	 * must be able to release and acquire the right lock for each keg.
813	 */
814	zone_foreach_keg(zone, &keg_drain);
815	ZONE_LOCK(zone);
816	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
817	wakeup(zone);
818out:
819	ZONE_UNLOCK(zone);
820}
821
822void
823zone_drain(uma_zone_t zone)
824{
825
826	zone_drain_wait(zone, M_NOWAIT);
827}
828
829/*
830 * Allocate a new slab for a keg.  This does not insert the slab onto a list.
831 *
832 * Arguments:
833 *	wait  Shall we wait?
834 *
835 * Returns:
836 *	The slab that was allocated or NULL if there is no memory and the
837 *	caller specified M_NOWAIT.
838 */
839static uma_slab_t
840keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
841{
842	uma_slabrefcnt_t slabref;
843	uma_alloc allocf;
844	uma_slab_t slab;
845	uint8_t *mem;
846	uint8_t flags;
847	int i;
848
849	mtx_assert(&keg->uk_lock, MA_OWNED);
850	slab = NULL;
851	mem = NULL;
852
853#ifdef UMA_DEBUG
854	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
855#endif
856	allocf = keg->uk_allocf;
857	KEG_UNLOCK(keg);
858
859	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
860		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
861		if (slab == NULL)
862			goto out;
863	}
864
865	/*
866	 * This reproduces the old vm_zone behavior of zero filling pages the
867	 * first time they are added to a zone.
868	 *
869	 * Malloced items are zeroed in uma_zalloc.
870	 */
871
872	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
873		wait |= M_ZERO;
874	else
875		wait &= ~M_ZERO;
876
877	if (keg->uk_flags & UMA_ZONE_NODUMP)
878		wait |= M_NODUMP;
879
880	/* zone is passed for legacy reasons. */
881	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
882	if (mem == NULL) {
883		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
884			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
885		slab = NULL;
886		goto out;
887	}
888
889	/* Point the slab into the allocated memory */
890	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
891		slab = (uma_slab_t )(mem + keg->uk_pgoff);
892
893	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
894		for (i = 0; i < keg->uk_ppera; i++)
895			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
896
897	slab->us_keg = keg;
898	slab->us_data = mem;
899	slab->us_freecount = keg->uk_ipers;
900	slab->us_flags = flags;
901	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
902#ifdef INVARIANTS
903	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
904#endif
905	if (keg->uk_flags & UMA_ZONE_REFCNT) {
906		slabref = (uma_slabrefcnt_t)slab;
907		for (i = 0; i < keg->uk_ipers; i++)
908			slabref->us_refcnt[i] = 0;
909	}
910
911	if (keg->uk_init != NULL) {
912		for (i = 0; i < keg->uk_ipers; i++)
913			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
914			    keg->uk_size, wait) != 0)
915				break;
916		if (i != keg->uk_ipers) {
917			keg_free_slab(keg, slab, i);
918			slab = NULL;
919			goto out;
920		}
921	}
922out:
923	KEG_LOCK(keg);
924
925	if (slab != NULL) {
926		if (keg->uk_flags & UMA_ZONE_HASH)
927			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
928
929		keg->uk_pages += keg->uk_ppera;
930		keg->uk_free += keg->uk_ipers;
931	}
932
933	return (slab);
934}
935
936/*
937 * This function is intended to be used early on in place of page_alloc() so
938 * that we may use the boot time page cache to satisfy allocations before
939 * the VM is ready.
940 */
941static void *
942startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
943{
944	uma_keg_t keg;
945	uma_slab_t tmps;
946	int pages, check_pages;
947
948	keg = zone_first_keg(zone);
949	pages = howmany(bytes, PAGE_SIZE);
950	check_pages = pages - 1;
951	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
952
953	/*
954	 * Check our small startup cache to see if it has pages remaining.
955	 */
956	mtx_lock(&uma_boot_pages_mtx);
957
958	/* First check if we have enough room. */
959	tmps = LIST_FIRST(&uma_boot_pages);
960	while (tmps != NULL && check_pages-- > 0)
961		tmps = LIST_NEXT(tmps, us_link);
962	if (tmps != NULL) {
963		/*
964		 * It's ok to lose tmps references.  The last one will
965		 * have tmps->us_data pointing to the start address of
966		 * "pages" contiguous pages of memory.
967		 */
968		while (pages-- > 0) {
969			tmps = LIST_FIRST(&uma_boot_pages);
970			LIST_REMOVE(tmps, us_link);
971		}
972		mtx_unlock(&uma_boot_pages_mtx);
973		*pflag = tmps->us_flags;
974		return (tmps->us_data);
975	}
976	mtx_unlock(&uma_boot_pages_mtx);
977	if (booted < UMA_STARTUP2)
978		panic("UMA: Increase vm.boot_pages");
979	/*
980	 * Now that we've booted reset these users to their real allocator.
981	 */
982#ifdef UMA_MD_SMALL_ALLOC
983	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
984#else
985	keg->uk_allocf = page_alloc;
986#endif
987	return keg->uk_allocf(zone, bytes, pflag, wait);
988}
989
990/*
991 * Allocates a number of pages from the system
992 *
993 * Arguments:
994 *	bytes  The number of bytes requested
995 *	wait  Shall we wait?
996 *
997 * Returns:
998 *	A pointer to the alloced memory or possibly
999 *	NULL if M_NOWAIT is set.
1000 */
1001static void *
1002page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
1003{
1004	void *p;	/* Returned page */
1005
1006	*pflag = UMA_SLAB_KMEM;
1007	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1008
1009	return (p);
1010}
1011
1012/*
1013 * Allocates a number of pages from within an object
1014 *
1015 * Arguments:
1016 *	bytes  The number of bytes requested
1017 *	wait   Shall we wait?
1018 *
1019 * Returns:
1020 *	A pointer to the alloced memory or possibly
1021 *	NULL if M_NOWAIT is set.
1022 */
1023static void *
1024noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait)
1025{
1026	TAILQ_HEAD(, vm_page) alloctail;
1027	u_long npages;
1028	vm_offset_t retkva, zkva;
1029	vm_page_t p, p_next;
1030	uma_keg_t keg;
1031
1032	TAILQ_INIT(&alloctail);
1033	keg = zone_first_keg(zone);
1034
1035	npages = howmany(bytes, PAGE_SIZE);
1036	while (npages > 0) {
1037		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1038		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1039		if (p != NULL) {
1040			/*
1041			 * Since the page does not belong to an object, its
1042			 * listq is unused.
1043			 */
1044			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1045			npages--;
1046			continue;
1047		}
1048		if (wait & M_WAITOK) {
1049			VM_WAIT;
1050			continue;
1051		}
1052
1053		/*
1054		 * Page allocation failed, free intermediate pages and
1055		 * exit.
1056		 */
1057		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1058			vm_page_unwire(p, 0);
1059			vm_page_free(p);
1060		}
1061		return (NULL);
1062	}
1063	*flags = UMA_SLAB_PRIV;
1064	zkva = keg->uk_kva +
1065	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1066	retkva = zkva;
1067	TAILQ_FOREACH(p, &alloctail, listq) {
1068		pmap_qenter(zkva, &p, 1);
1069		zkva += PAGE_SIZE;
1070	}
1071
1072	return ((void *)retkva);
1073}
1074
1075/*
1076 * Frees a number of pages to the system
1077 *
1078 * Arguments:
1079 *	mem   A pointer to the memory to be freed
1080 *	size  The size of the memory being freed
1081 *	flags The original p->us_flags field
1082 *
1083 * Returns:
1084 *	Nothing
1085 */
1086static void
1087page_free(void *mem, int size, uint8_t flags)
1088{
1089	struct vmem *vmem;
1090
1091	if (flags & UMA_SLAB_KMEM)
1092		vmem = kmem_arena;
1093	else if (flags & UMA_SLAB_KERNEL)
1094		vmem = kernel_arena;
1095	else
1096		panic("UMA: page_free used with invalid flags %d", flags);
1097
1098	kmem_free(vmem, (vm_offset_t)mem, size);
1099}
1100
1101/*
1102 * Zero fill initializer
1103 *
1104 * Arguments/Returns follow uma_init specifications
1105 */
1106static int
1107zero_init(void *mem, int size, int flags)
1108{
1109	bzero(mem, size);
1110	return (0);
1111}
1112
1113/*
1114 * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1115 *
1116 * Arguments
1117 *	keg  The zone we should initialize
1118 *
1119 * Returns
1120 *	Nothing
1121 */
1122static void
1123keg_small_init(uma_keg_t keg)
1124{
1125	u_int rsize;
1126	u_int memused;
1127	u_int wastedspace;
1128	u_int shsize;
1129
1130	if (keg->uk_flags & UMA_ZONE_PCPU) {
1131		u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1132
1133		keg->uk_slabsize = sizeof(struct pcpu);
1134		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1135		    PAGE_SIZE);
1136	} else {
1137		keg->uk_slabsize = UMA_SLAB_SIZE;
1138		keg->uk_ppera = 1;
1139	}
1140
1141	/*
1142	 * Calculate the size of each allocation (rsize) according to
1143	 * alignment.  If the requested size is smaller than we have
1144	 * allocation bits for we round it up.
1145	 */
1146	rsize = keg->uk_size;
1147	if (rsize < keg->uk_slabsize / SLAB_SETSIZE)
1148		rsize = keg->uk_slabsize / SLAB_SETSIZE;
1149	if (rsize & keg->uk_align)
1150		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1151	keg->uk_rsize = rsize;
1152
1153	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1154	    keg->uk_rsize < sizeof(struct pcpu),
1155	    ("%s: size %u too large", __func__, keg->uk_rsize));
1156
1157	if (keg->uk_flags & UMA_ZONE_REFCNT)
1158		rsize += sizeof(uint32_t);
1159
1160	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1161		shsize = 0;
1162	else
1163		shsize = sizeof(struct uma_slab);
1164
1165	keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize;
1166	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1167	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1168
1169	memused = keg->uk_ipers * rsize + shsize;
1170	wastedspace = keg->uk_slabsize - memused;
1171
1172	/*
1173	 * We can't do OFFPAGE if we're internal or if we've been
1174	 * asked to not go to the VM for buckets.  If we do this we
1175	 * may end up going to the VM  for slabs which we do not
1176	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1177	 * of UMA_ZONE_VM, which clearly forbids it.
1178	 */
1179	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1180	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1181		return;
1182
1183	/*
1184	 * See if using an OFFPAGE slab will limit our waste.  Only do
1185	 * this if it permits more items per-slab.
1186	 *
1187	 * XXX We could try growing slabsize to limit max waste as well.
1188	 * Historically this was not done because the VM could not
1189	 * efficiently handle contiguous allocations.
1190	 */
1191	if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) &&
1192	    (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) {
1193		keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize;
1194		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1195		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1196#ifdef UMA_DEBUG
1197		printf("UMA decided we need offpage slab headers for "
1198		    "keg: %s, calculated wastedspace = %d, "
1199		    "maximum wasted space allowed = %d, "
1200		    "calculated ipers = %d, "
1201		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1202		    keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1203		    keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize);
1204#endif
1205		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1206	}
1207
1208	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1209	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1210		keg->uk_flags |= UMA_ZONE_HASH;
1211}
1212
1213/*
1214 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1215 * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1216 * more complicated.
1217 *
1218 * Arguments
1219 *	keg  The keg we should initialize
1220 *
1221 * Returns
1222 *	Nothing
1223 */
1224static void
1225keg_large_init(uma_keg_t keg)
1226{
1227
1228	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1229	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1230	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1231	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1232	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1233
1234	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1235	keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE;
1236	keg->uk_ipers = 1;
1237	keg->uk_rsize = keg->uk_size;
1238
1239	/* We can't do OFFPAGE if we're internal, bail out here. */
1240	if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
1241		return;
1242
1243	keg->uk_flags |= UMA_ZONE_OFFPAGE;
1244	if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1245		keg->uk_flags |= UMA_ZONE_HASH;
1246}
1247
1248static void
1249keg_cachespread_init(uma_keg_t keg)
1250{
1251	int alignsize;
1252	int trailer;
1253	int pages;
1254	int rsize;
1255
1256	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1257	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1258
1259	alignsize = keg->uk_align + 1;
1260	rsize = keg->uk_size;
1261	/*
1262	 * We want one item to start on every align boundary in a page.  To
1263	 * do this we will span pages.  We will also extend the item by the
1264	 * size of align if it is an even multiple of align.  Otherwise, it
1265	 * would fall on the same boundary every time.
1266	 */
1267	if (rsize & keg->uk_align)
1268		rsize = (rsize & ~keg->uk_align) + alignsize;
1269	if ((rsize & alignsize) == 0)
1270		rsize += alignsize;
1271	trailer = rsize - keg->uk_size;
1272	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1273	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1274	keg->uk_rsize = rsize;
1275	keg->uk_ppera = pages;
1276	keg->uk_slabsize = UMA_SLAB_SIZE;
1277	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1278	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1279	KASSERT(keg->uk_ipers <= uma_max_ipers,
1280	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1281	    keg->uk_ipers));
1282}
1283
1284/*
1285 * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1286 * the keg onto the global keg list.
1287 *
1288 * Arguments/Returns follow uma_ctor specifications
1289 *	udata  Actually uma_kctor_args
1290 */
1291static int
1292keg_ctor(void *mem, int size, void *udata, int flags)
1293{
1294	struct uma_kctor_args *arg = udata;
1295	uma_keg_t keg = mem;
1296	uma_zone_t zone;
1297
1298	bzero(keg, size);
1299	keg->uk_size = arg->size;
1300	keg->uk_init = arg->uminit;
1301	keg->uk_fini = arg->fini;
1302	keg->uk_align = arg->align;
1303	keg->uk_free = 0;
1304	keg->uk_reserve = 0;
1305	keg->uk_pages = 0;
1306	keg->uk_flags = arg->flags;
1307	keg->uk_allocf = page_alloc;
1308	keg->uk_freef = page_free;
1309	keg->uk_slabzone = NULL;
1310
1311	/*
1312	 * The master zone is passed to us at keg-creation time.
1313	 */
1314	zone = arg->zone;
1315	keg->uk_name = zone->uz_name;
1316
1317	if (arg->flags & UMA_ZONE_VM)
1318		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1319
1320	if (arg->flags & UMA_ZONE_ZINIT)
1321		keg->uk_init = zero_init;
1322
1323	if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1324		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1325
1326	if (arg->flags & UMA_ZONE_PCPU)
1327#ifdef SMP
1328		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1329#else
1330		keg->uk_flags &= ~UMA_ZONE_PCPU;
1331#endif
1332
1333	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1334		keg_cachespread_init(keg);
1335	} else if (keg->uk_flags & UMA_ZONE_REFCNT) {
1336		if (keg->uk_size >
1337		    (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) -
1338		    sizeof(uint32_t)))
1339			keg_large_init(keg);
1340		else
1341			keg_small_init(keg);
1342	} else {
1343		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1344			keg_large_init(keg);
1345		else
1346			keg_small_init(keg);
1347	}
1348
1349	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1350		if (keg->uk_flags & UMA_ZONE_REFCNT) {
1351			if (keg->uk_ipers > uma_max_ipers_ref)
1352				panic("Too many ref items per zone: %d > %d\n",
1353				    keg->uk_ipers, uma_max_ipers_ref);
1354			keg->uk_slabzone = slabrefzone;
1355		} else
1356			keg->uk_slabzone = slabzone;
1357	}
1358
1359	/*
1360	 * If we haven't booted yet we need allocations to go through the
1361	 * startup cache until the vm is ready.
1362	 */
1363	if (keg->uk_ppera == 1) {
1364#ifdef UMA_MD_SMALL_ALLOC
1365		keg->uk_allocf = uma_small_alloc;
1366		keg->uk_freef = uma_small_free;
1367
1368		if (booted < UMA_STARTUP)
1369			keg->uk_allocf = startup_alloc;
1370#else
1371		if (booted < UMA_STARTUP2)
1372			keg->uk_allocf = startup_alloc;
1373#endif
1374	} else if (booted < UMA_STARTUP2 &&
1375	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1376		keg->uk_allocf = startup_alloc;
1377
1378	/*
1379	 * Initialize keg's lock
1380	 */
1381	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1382
1383	/*
1384	 * If we're putting the slab header in the actual page we need to
1385	 * figure out where in each page it goes.  This calculates a right
1386	 * justified offset into the memory on an ALIGN_PTR boundary.
1387	 */
1388	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1389		u_int totsize;
1390
1391		/* Size of the slab struct and free list */
1392		totsize = sizeof(struct uma_slab);
1393
1394		/* Size of the reference counts. */
1395		if (keg->uk_flags & UMA_ZONE_REFCNT)
1396			totsize += keg->uk_ipers * sizeof(uint32_t);
1397
1398		if (totsize & UMA_ALIGN_PTR)
1399			totsize = (totsize & ~UMA_ALIGN_PTR) +
1400			    (UMA_ALIGN_PTR + 1);
1401		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1402
1403		/*
1404		 * The only way the following is possible is if with our
1405		 * UMA_ALIGN_PTR adjustments we are now bigger than
1406		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1407		 * mathematically possible for all cases, so we make
1408		 * sure here anyway.
1409		 */
1410		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1411		if (keg->uk_flags & UMA_ZONE_REFCNT)
1412			totsize += keg->uk_ipers * sizeof(uint32_t);
1413		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1414			printf("zone %s ipers %d rsize %d size %d\n",
1415			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1416			    keg->uk_size);
1417			panic("UMA slab won't fit.");
1418		}
1419	}
1420
1421	if (keg->uk_flags & UMA_ZONE_HASH)
1422		hash_alloc(&keg->uk_hash);
1423
1424#ifdef UMA_DEBUG
1425	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1426	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1427	    keg->uk_ipers, keg->uk_ppera,
1428	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1429#endif
1430
1431	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1432
1433	mtx_lock(&uma_mtx);
1434	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1435	mtx_unlock(&uma_mtx);
1436	return (0);
1437}
1438
1439/*
1440 * Zone header ctor.  This initializes all fields, locks, etc.
1441 *
1442 * Arguments/Returns follow uma_ctor specifications
1443 *	udata  Actually uma_zctor_args
1444 */
1445static int
1446zone_ctor(void *mem, int size, void *udata, int flags)
1447{
1448	struct uma_zctor_args *arg = udata;
1449	uma_zone_t zone = mem;
1450	uma_zone_t z;
1451	uma_keg_t keg;
1452
1453	bzero(zone, size);
1454	zone->uz_name = arg->name;
1455	zone->uz_ctor = arg->ctor;
1456	zone->uz_dtor = arg->dtor;
1457	zone->uz_slab = zone_fetch_slab;
1458	zone->uz_init = NULL;
1459	zone->uz_fini = NULL;
1460	zone->uz_allocs = 0;
1461	zone->uz_frees = 0;
1462	zone->uz_fails = 0;
1463	zone->uz_sleeps = 0;
1464	zone->uz_count = 0;
1465	zone->uz_flags = 0;
1466	zone->uz_warning = NULL;
1467	timevalclear(&zone->uz_ratecheck);
1468	keg = arg->keg;
1469
1470	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1471
1472	/*
1473	 * This is a pure cache zone, no kegs.
1474	 */
1475	if (arg->import) {
1476		if (arg->flags & UMA_ZONE_VM)
1477			arg->flags |= UMA_ZFLAG_CACHEONLY;
1478		zone->uz_flags = arg->flags;
1479		zone->uz_size = arg->size;
1480		zone->uz_import = arg->import;
1481		zone->uz_release = arg->release;
1482		zone->uz_arg = arg->arg;
1483		zone->uz_lockptr = &zone->uz_lock;
1484		goto out;
1485	}
1486
1487	/*
1488	 * Use the regular zone/keg/slab allocator.
1489	 */
1490	zone->uz_import = (uma_import)zone_import;
1491	zone->uz_release = (uma_release)zone_release;
1492	zone->uz_arg = zone;
1493
1494	if (arg->flags & UMA_ZONE_SECONDARY) {
1495		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1496		zone->uz_init = arg->uminit;
1497		zone->uz_fini = arg->fini;
1498		zone->uz_lockptr = &keg->uk_lock;
1499		zone->uz_flags |= UMA_ZONE_SECONDARY;
1500		mtx_lock(&uma_mtx);
1501		ZONE_LOCK(zone);
1502		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1503			if (LIST_NEXT(z, uz_link) == NULL) {
1504				LIST_INSERT_AFTER(z, zone, uz_link);
1505				break;
1506			}
1507		}
1508		ZONE_UNLOCK(zone);
1509		mtx_unlock(&uma_mtx);
1510	} else if (keg == NULL) {
1511		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1512		    arg->align, arg->flags)) == NULL)
1513			return (ENOMEM);
1514	} else {
1515		struct uma_kctor_args karg;
1516		int error;
1517
1518		/* We should only be here from uma_startup() */
1519		karg.size = arg->size;
1520		karg.uminit = arg->uminit;
1521		karg.fini = arg->fini;
1522		karg.align = arg->align;
1523		karg.flags = arg->flags;
1524		karg.zone = zone;
1525		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1526		    flags);
1527		if (error)
1528			return (error);
1529	}
1530
1531	/*
1532	 * Link in the first keg.
1533	 */
1534	zone->uz_klink.kl_keg = keg;
1535	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1536	zone->uz_lockptr = &keg->uk_lock;
1537	zone->uz_size = keg->uk_size;
1538	zone->uz_flags |= (keg->uk_flags &
1539	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1540
1541	/*
1542	 * Some internal zones don't have room allocated for the per cpu
1543	 * caches.  If we're internal, bail out here.
1544	 */
1545	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1546		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1547		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1548		return (0);
1549	}
1550
1551out:
1552	if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0)
1553		zone->uz_count = bucket_select(zone->uz_size);
1554	else
1555		zone->uz_count = BUCKET_MAX;
1556
1557	return (0);
1558}
1559
1560/*
1561 * Keg header dtor.  This frees all data, destroys locks, frees the hash
1562 * table and removes the keg from the global list.
1563 *
1564 * Arguments/Returns follow uma_dtor specifications
1565 *	udata  unused
1566 */
1567static void
1568keg_dtor(void *arg, int size, void *udata)
1569{
1570	uma_keg_t keg;
1571
1572	keg = (uma_keg_t)arg;
1573	KEG_LOCK(keg);
1574	if (keg->uk_free != 0) {
1575		printf("Freed UMA keg (%s) was not empty (%d items). "
1576		    " Lost %d pages of memory.\n",
1577		    keg->uk_name ? keg->uk_name : "",
1578		    keg->uk_free, keg->uk_pages);
1579	}
1580	KEG_UNLOCK(keg);
1581
1582	hash_free(&keg->uk_hash);
1583
1584	KEG_LOCK_FINI(keg);
1585}
1586
1587/*
1588 * Zone header dtor.
1589 *
1590 * Arguments/Returns follow uma_dtor specifications
1591 *	udata  unused
1592 */
1593static void
1594zone_dtor(void *arg, int size, void *udata)
1595{
1596	uma_klink_t klink;
1597	uma_zone_t zone;
1598	uma_keg_t keg;
1599
1600	zone = (uma_zone_t)arg;
1601	keg = zone_first_keg(zone);
1602
1603	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1604		cache_drain(zone);
1605
1606	mtx_lock(&uma_mtx);
1607	LIST_REMOVE(zone, uz_link);
1608	mtx_unlock(&uma_mtx);
1609	/*
1610	 * XXX there are some races here where
1611	 * the zone can be drained but zone lock
1612	 * released and then refilled before we
1613	 * remove it... we dont care for now
1614	 */
1615	zone_drain_wait(zone, M_WAITOK);
1616	/*
1617	 * Unlink all of our kegs.
1618	 */
1619	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1620		klink->kl_keg = NULL;
1621		LIST_REMOVE(klink, kl_link);
1622		if (klink == &zone->uz_klink)
1623			continue;
1624		free(klink, M_TEMP);
1625	}
1626	/*
1627	 * We only destroy kegs from non secondary zones.
1628	 */
1629	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1630		mtx_lock(&uma_mtx);
1631		LIST_REMOVE(keg, uk_link);
1632		mtx_unlock(&uma_mtx);
1633		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1634	}
1635	ZONE_LOCK_FINI(zone);
1636}
1637
1638/*
1639 * Traverses every zone in the system and calls a callback
1640 *
1641 * Arguments:
1642 *	zfunc  A pointer to a function which accepts a zone
1643 *		as an argument.
1644 *
1645 * Returns:
1646 *	Nothing
1647 */
1648static void
1649zone_foreach(void (*zfunc)(uma_zone_t))
1650{
1651	uma_keg_t keg;
1652	uma_zone_t zone;
1653
1654	mtx_lock(&uma_mtx);
1655	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1656		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1657			zfunc(zone);
1658	}
1659	mtx_unlock(&uma_mtx);
1660}
1661
1662/* Public functions */
1663/* See uma.h */
1664void
1665uma_startup(void *bootmem, int boot_pages)
1666{
1667	struct uma_zctor_args args;
1668	uma_slab_t slab;
1669	u_int slabsize;
1670	int i;
1671
1672#ifdef UMA_DEBUG
1673	printf("Creating uma keg headers zone and keg.\n");
1674#endif
1675	mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
1676
1677	/* "manually" create the initial zone */
1678	memset(&args, 0, sizeof(args));
1679	args.name = "UMA Kegs";
1680	args.size = sizeof(struct uma_keg);
1681	args.ctor = keg_ctor;
1682	args.dtor = keg_dtor;
1683	args.uminit = zero_init;
1684	args.fini = NULL;
1685	args.keg = &masterkeg;
1686	args.align = 32 - 1;
1687	args.flags = UMA_ZFLAG_INTERNAL;
1688	/* The initial zone has no Per cpu queues so it's smaller */
1689	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1690
1691#ifdef UMA_DEBUG
1692	printf("Filling boot free list.\n");
1693#endif
1694	for (i = 0; i < boot_pages; i++) {
1695		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1696		slab->us_data = (uint8_t *)slab;
1697		slab->us_flags = UMA_SLAB_BOOT;
1698		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1699	}
1700	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1701
1702#ifdef UMA_DEBUG
1703	printf("Creating uma zone headers zone and keg.\n");
1704#endif
1705	args.name = "UMA Zones";
1706	args.size = sizeof(struct uma_zone) +
1707	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1708	args.ctor = zone_ctor;
1709	args.dtor = zone_dtor;
1710	args.uminit = zero_init;
1711	args.fini = NULL;
1712	args.keg = NULL;
1713	args.align = 32 - 1;
1714	args.flags = UMA_ZFLAG_INTERNAL;
1715	/* The initial zone has no Per cpu queues so it's smaller */
1716	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1717
1718#ifdef UMA_DEBUG
1719	printf("Initializing pcpu cache locks.\n");
1720#endif
1721#ifdef UMA_DEBUG
1722	printf("Creating slab and hash zones.\n");
1723#endif
1724
1725	/* Now make a zone for slab headers */
1726	slabzone = uma_zcreate("UMA Slabs",
1727				sizeof(struct uma_slab),
1728				NULL, NULL, NULL, NULL,
1729				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1730
1731	/*
1732	 * We also create a zone for the bigger slabs with reference
1733	 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1734	 */
1735	slabsize = sizeof(struct uma_slab_refcnt);
1736	slabsize += uma_max_ipers_ref * sizeof(uint32_t);
1737	slabrefzone = uma_zcreate("UMA RCntSlabs",
1738				  slabsize,
1739				  NULL, NULL, NULL, NULL,
1740				  UMA_ALIGN_PTR,
1741				  UMA_ZFLAG_INTERNAL);
1742
1743	hashzone = uma_zcreate("UMA Hash",
1744	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1745	    NULL, NULL, NULL, NULL,
1746	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1747
1748	bucket_init();
1749
1750	booted = UMA_STARTUP;
1751
1752#ifdef UMA_DEBUG
1753	printf("UMA startup complete.\n");
1754#endif
1755}
1756
1757/* see uma.h */
1758void
1759uma_startup2(void)
1760{
1761	booted = UMA_STARTUP2;
1762	bucket_enable();
1763#ifdef UMA_DEBUG
1764	printf("UMA startup2 complete.\n");
1765#endif
1766}
1767
1768/*
1769 * Initialize our callout handle
1770 *
1771 */
1772
1773static void
1774uma_startup3(void)
1775{
1776#ifdef UMA_DEBUG
1777	printf("Starting callout.\n");
1778#endif
1779	callout_init(&uma_callout, CALLOUT_MPSAFE);
1780	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1781#ifdef UMA_DEBUG
1782	printf("UMA startup3 complete.\n");
1783#endif
1784}
1785
1786static uma_keg_t
1787uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1788		int align, uint32_t flags)
1789{
1790	struct uma_kctor_args args;
1791
1792	args.size = size;
1793	args.uminit = uminit;
1794	args.fini = fini;
1795	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1796	args.flags = flags;
1797	args.zone = zone;
1798	return (zone_alloc_item(kegs, &args, M_WAITOK));
1799}
1800
1801/* See uma.h */
1802void
1803uma_set_align(int align)
1804{
1805
1806	if (align != UMA_ALIGN_CACHE)
1807		uma_align_cache = align;
1808}
1809
1810/* See uma.h */
1811uma_zone_t
1812uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1813		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1814
1815{
1816	struct uma_zctor_args args;
1817
1818	/* This stuff is essential for the zone ctor */
1819	memset(&args, 0, sizeof(args));
1820	args.name = name;
1821	args.size = size;
1822	args.ctor = ctor;
1823	args.dtor = dtor;
1824	args.uminit = uminit;
1825	args.fini = fini;
1826	args.align = align;
1827	args.flags = flags;
1828	args.keg = NULL;
1829
1830	return (zone_alloc_item(zones, &args, M_WAITOK));
1831}
1832
1833/* See uma.h */
1834uma_zone_t
1835uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1836		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1837{
1838	struct uma_zctor_args args;
1839	uma_keg_t keg;
1840
1841	keg = zone_first_keg(master);
1842	memset(&args, 0, sizeof(args));
1843	args.name = name;
1844	args.size = keg->uk_size;
1845	args.ctor = ctor;
1846	args.dtor = dtor;
1847	args.uminit = zinit;
1848	args.fini = zfini;
1849	args.align = keg->uk_align;
1850	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1851	args.keg = keg;
1852
1853	/* XXX Attaches only one keg of potentially many. */
1854	return (zone_alloc_item(zones, &args, M_WAITOK));
1855}
1856
1857/* See uma.h */
1858uma_zone_t
1859uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1860		    uma_init zinit, uma_fini zfini, uma_import zimport,
1861		    uma_release zrelease, void *arg, int flags)
1862{
1863	struct uma_zctor_args args;
1864
1865	memset(&args, 0, sizeof(args));
1866	args.name = name;
1867	args.size = size;
1868	args.ctor = ctor;
1869	args.dtor = dtor;
1870	args.uminit = zinit;
1871	args.fini = zfini;
1872	args.import = zimport;
1873	args.release = zrelease;
1874	args.arg = arg;
1875	args.align = 0;
1876	args.flags = flags;
1877
1878	return (zone_alloc_item(zones, &args, M_WAITOK));
1879}
1880
1881static void
1882zone_lock_pair(uma_zone_t a, uma_zone_t b)
1883{
1884	if (a < b) {
1885		ZONE_LOCK(a);
1886		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
1887	} else {
1888		ZONE_LOCK(b);
1889		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
1890	}
1891}
1892
1893static void
1894zone_unlock_pair(uma_zone_t a, uma_zone_t b)
1895{
1896
1897	ZONE_UNLOCK(a);
1898	ZONE_UNLOCK(b);
1899}
1900
1901int
1902uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
1903{
1904	uma_klink_t klink;
1905	uma_klink_t kl;
1906	int error;
1907
1908	error = 0;
1909	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
1910
1911	zone_lock_pair(zone, master);
1912	/*
1913	 * zone must use vtoslab() to resolve objects and must already be
1914	 * a secondary.
1915	 */
1916	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
1917	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
1918		error = EINVAL;
1919		goto out;
1920	}
1921	/*
1922	 * The new master must also use vtoslab().
1923	 */
1924	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
1925		error = EINVAL;
1926		goto out;
1927	}
1928	/*
1929	 * Both must either be refcnt, or not be refcnt.
1930	 */
1931	if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
1932	    (master->uz_flags & UMA_ZONE_REFCNT)) {
1933		error = EINVAL;
1934		goto out;
1935	}
1936	/*
1937	 * The underlying object must be the same size.  rsize
1938	 * may be different.
1939	 */
1940	if (master->uz_size != zone->uz_size) {
1941		error = E2BIG;
1942		goto out;
1943	}
1944	/*
1945	 * Put it at the end of the list.
1946	 */
1947	klink->kl_keg = zone_first_keg(master);
1948	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
1949		if (LIST_NEXT(kl, kl_link) == NULL) {
1950			LIST_INSERT_AFTER(kl, klink, kl_link);
1951			break;
1952		}
1953	}
1954	klink = NULL;
1955	zone->uz_flags |= UMA_ZFLAG_MULTI;
1956	zone->uz_slab = zone_fetch_slab_multi;
1957
1958out:
1959	zone_unlock_pair(zone, master);
1960	if (klink != NULL)
1961		free(klink, M_TEMP);
1962
1963	return (error);
1964}
1965
1966
1967/* See uma.h */
1968void
1969uma_zdestroy(uma_zone_t zone)
1970{
1971
1972	zone_free_item(zones, zone, NULL, SKIP_NONE);
1973}
1974
1975/* See uma.h */
1976void *
1977uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
1978{
1979	void *item;
1980	uma_cache_t cache;
1981	uma_bucket_t bucket;
1982	int lockfail;
1983	int cpu;
1984
1985	/* This is the fast path allocation */
1986#ifdef UMA_DEBUG_ALLOC_1
1987	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
1988#endif
1989	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
1990	    zone->uz_name, flags);
1991
1992	if (flags & M_WAITOK) {
1993		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
1994		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
1995	}
1996#ifdef DEBUG_MEMGUARD
1997	if (memguard_cmp_zone(zone)) {
1998		item = memguard_alloc(zone->uz_size, flags);
1999		if (item != NULL) {
2000			/*
2001			 * Avoid conflict with the use-after-free
2002			 * protecting infrastructure from INVARIANTS.
2003			 */
2004			if (zone->uz_init != NULL &&
2005			    zone->uz_init != mtrash_init &&
2006			    zone->uz_init(item, zone->uz_size, flags) != 0)
2007				return (NULL);
2008			if (zone->uz_ctor != NULL &&
2009			    zone->uz_ctor != mtrash_ctor &&
2010			    zone->uz_ctor(item, zone->uz_size, udata,
2011			    flags) != 0) {
2012			    	zone->uz_fini(item, zone->uz_size);
2013				return (NULL);
2014			}
2015			return (item);
2016		}
2017		/* This is unfortunate but should not be fatal. */
2018	}
2019#endif
2020	/*
2021	 * If possible, allocate from the per-CPU cache.  There are two
2022	 * requirements for safe access to the per-CPU cache: (1) the thread
2023	 * accessing the cache must not be preempted or yield during access,
2024	 * and (2) the thread must not migrate CPUs without switching which
2025	 * cache it accesses.  We rely on a critical section to prevent
2026	 * preemption and migration.  We release the critical section in
2027	 * order to acquire the zone mutex if we are unable to allocate from
2028	 * the current cache; when we re-acquire the critical section, we
2029	 * must detect and handle migration if it has occurred.
2030	 */
2031	critical_enter();
2032	cpu = curcpu;
2033	cache = &zone->uz_cpu[cpu];
2034
2035zalloc_start:
2036	bucket = cache->uc_allocbucket;
2037	if (bucket != NULL && bucket->ub_cnt > 0) {
2038		bucket->ub_cnt--;
2039		item = bucket->ub_bucket[bucket->ub_cnt];
2040#ifdef INVARIANTS
2041		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2042#endif
2043		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2044		cache->uc_allocs++;
2045		critical_exit();
2046		if (zone->uz_ctor != NULL &&
2047		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2048			atomic_add_long(&zone->uz_fails, 1);
2049			zone_free_item(zone, item, udata, SKIP_DTOR);
2050			return (NULL);
2051		}
2052#ifdef INVARIANTS
2053		uma_dbg_alloc(zone, NULL, item);
2054#endif
2055		if (flags & M_ZERO)
2056			bzero(item, zone->uz_size);
2057		return (item);
2058	}
2059
2060	/*
2061	 * We have run out of items in our alloc bucket.
2062	 * See if we can switch with our free bucket.
2063	 */
2064	bucket = cache->uc_freebucket;
2065	if (bucket != NULL && bucket->ub_cnt > 0) {
2066#ifdef UMA_DEBUG_ALLOC
2067		printf("uma_zalloc: Swapping empty with alloc.\n");
2068#endif
2069		cache->uc_freebucket = cache->uc_allocbucket;
2070		cache->uc_allocbucket = bucket;
2071		goto zalloc_start;
2072	}
2073
2074	/*
2075	 * Discard any empty allocation bucket while we hold no locks.
2076	 */
2077	bucket = cache->uc_allocbucket;
2078	cache->uc_allocbucket = NULL;
2079	critical_exit();
2080	if (bucket != NULL)
2081		bucket_free(zone, bucket, udata);
2082
2083	/* Short-circuit for zones without buckets and low memory. */
2084	if (zone->uz_count == 0 || bucketdisable)
2085		goto zalloc_item;
2086
2087	/*
2088	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2089	 * we must go back to the zone.  This requires the zone lock, so we
2090	 * must drop the critical section, then re-acquire it when we go back
2091	 * to the cache.  Since the critical section is released, we may be
2092	 * preempted or migrate.  As such, make sure not to maintain any
2093	 * thread-local state specific to the cache from prior to releasing
2094	 * the critical section.
2095	 */
2096	lockfail = 0;
2097	if (ZONE_TRYLOCK(zone) == 0) {
2098		/* Record contention to size the buckets. */
2099		ZONE_LOCK(zone);
2100		lockfail = 1;
2101	}
2102	critical_enter();
2103	cpu = curcpu;
2104	cache = &zone->uz_cpu[cpu];
2105
2106	/*
2107	 * Since we have locked the zone we may as well send back our stats.
2108	 */
2109	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2110	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2111	cache->uc_allocs = 0;
2112	cache->uc_frees = 0;
2113
2114	/* See if we lost the race to fill the cache. */
2115	if (cache->uc_allocbucket != NULL) {
2116		ZONE_UNLOCK(zone);
2117		goto zalloc_start;
2118	}
2119
2120	/*
2121	 * Check the zone's cache of buckets.
2122	 */
2123	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2124		KASSERT(bucket->ub_cnt != 0,
2125		    ("uma_zalloc_arg: Returning an empty bucket."));
2126
2127		LIST_REMOVE(bucket, ub_link);
2128		cache->uc_allocbucket = bucket;
2129		ZONE_UNLOCK(zone);
2130		goto zalloc_start;
2131	}
2132	/* We are no longer associated with this CPU. */
2133	critical_exit();
2134
2135	/*
2136	 * We bump the uz count when the cache size is insufficient to
2137	 * handle the working set.
2138	 */
2139	if (lockfail && zone->uz_count < BUCKET_MAX)
2140		zone->uz_count++;
2141	ZONE_UNLOCK(zone);
2142
2143	/*
2144	 * Now lets just fill a bucket and put it on the free list.  If that
2145	 * works we'll restart the allocation from the begining and it
2146	 * will use the just filled bucket.
2147	 */
2148	bucket = zone_alloc_bucket(zone, udata, flags);
2149	if (bucket != NULL) {
2150		ZONE_LOCK(zone);
2151		critical_enter();
2152		cpu = curcpu;
2153		cache = &zone->uz_cpu[cpu];
2154		/*
2155		 * See if we lost the race or were migrated.  Cache the
2156		 * initialized bucket to make this less likely or claim
2157		 * the memory directly.
2158		 */
2159		if (cache->uc_allocbucket == NULL)
2160			cache->uc_allocbucket = bucket;
2161		else
2162			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2163		ZONE_UNLOCK(zone);
2164		goto zalloc_start;
2165	}
2166
2167	/*
2168	 * We may not be able to get a bucket so return an actual item.
2169	 */
2170#ifdef UMA_DEBUG
2171	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2172#endif
2173
2174zalloc_item:
2175	item = zone_alloc_item(zone, udata, flags);
2176
2177	return (item);
2178}
2179
2180static uma_slab_t
2181keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2182{
2183	uma_slab_t slab;
2184	int reserve;
2185
2186	mtx_assert(&keg->uk_lock, MA_OWNED);
2187	slab = NULL;
2188	reserve = 0;
2189	if ((flags & M_USE_RESERVE) == 0)
2190		reserve = keg->uk_reserve;
2191
2192	for (;;) {
2193		/*
2194		 * Find a slab with some space.  Prefer slabs that are partially
2195		 * used over those that are totally full.  This helps to reduce
2196		 * fragmentation.
2197		 */
2198		if (keg->uk_free > reserve) {
2199			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2200				slab = LIST_FIRST(&keg->uk_part_slab);
2201			} else {
2202				slab = LIST_FIRST(&keg->uk_free_slab);
2203				LIST_REMOVE(slab, us_link);
2204				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2205				    us_link);
2206			}
2207			MPASS(slab->us_keg == keg);
2208			return (slab);
2209		}
2210
2211		/*
2212		 * M_NOVM means don't ask at all!
2213		 */
2214		if (flags & M_NOVM)
2215			break;
2216
2217		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2218			keg->uk_flags |= UMA_ZFLAG_FULL;
2219			/*
2220			 * If this is not a multi-zone, set the FULL bit.
2221			 * Otherwise slab_multi() takes care of it.
2222			 */
2223			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2224				zone->uz_flags |= UMA_ZFLAG_FULL;
2225				zone_log_warning(zone);
2226			}
2227			if (flags & M_NOWAIT)
2228				break;
2229			zone->uz_sleeps++;
2230			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2231			continue;
2232		}
2233		slab = keg_alloc_slab(keg, zone, flags);
2234		/*
2235		 * If we got a slab here it's safe to mark it partially used
2236		 * and return.  We assume that the caller is going to remove
2237		 * at least one item.
2238		 */
2239		if (slab) {
2240			MPASS(slab->us_keg == keg);
2241			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2242			return (slab);
2243		}
2244		/*
2245		 * We might not have been able to get a slab but another cpu
2246		 * could have while we were unlocked.  Check again before we
2247		 * fail.
2248		 */
2249		flags |= M_NOVM;
2250	}
2251	return (slab);
2252}
2253
2254static uma_slab_t
2255zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2256{
2257	uma_slab_t slab;
2258
2259	if (keg == NULL) {
2260		keg = zone_first_keg(zone);
2261		KEG_LOCK(keg);
2262	}
2263
2264	for (;;) {
2265		slab = keg_fetch_slab(keg, zone, flags);
2266		if (slab)
2267			return (slab);
2268		if (flags & (M_NOWAIT | M_NOVM))
2269			break;
2270	}
2271	KEG_UNLOCK(keg);
2272	return (NULL);
2273}
2274
2275/*
2276 * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2277 * with the keg locked.  On NULL no lock is held.
2278 *
2279 * The last pointer is used to seed the search.  It is not required.
2280 */
2281static uma_slab_t
2282zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2283{
2284	uma_klink_t klink;
2285	uma_slab_t slab;
2286	uma_keg_t keg;
2287	int flags;
2288	int empty;
2289	int full;
2290
2291	/*
2292	 * Don't wait on the first pass.  This will skip limit tests
2293	 * as well.  We don't want to block if we can find a provider
2294	 * without blocking.
2295	 */
2296	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2297	/*
2298	 * Use the last slab allocated as a hint for where to start
2299	 * the search.
2300	 */
2301	if (last != NULL) {
2302		slab = keg_fetch_slab(last, zone, flags);
2303		if (slab)
2304			return (slab);
2305		KEG_UNLOCK(last);
2306	}
2307	/*
2308	 * Loop until we have a slab incase of transient failures
2309	 * while M_WAITOK is specified.  I'm not sure this is 100%
2310	 * required but we've done it for so long now.
2311	 */
2312	for (;;) {
2313		empty = 0;
2314		full = 0;
2315		/*
2316		 * Search the available kegs for slabs.  Be careful to hold the
2317		 * correct lock while calling into the keg layer.
2318		 */
2319		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2320			keg = klink->kl_keg;
2321			KEG_LOCK(keg);
2322			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2323				slab = keg_fetch_slab(keg, zone, flags);
2324				if (slab)
2325					return (slab);
2326			}
2327			if (keg->uk_flags & UMA_ZFLAG_FULL)
2328				full++;
2329			else
2330				empty++;
2331			KEG_UNLOCK(keg);
2332		}
2333		if (rflags & (M_NOWAIT | M_NOVM))
2334			break;
2335		flags = rflags;
2336		/*
2337		 * All kegs are full.  XXX We can't atomically check all kegs
2338		 * and sleep so just sleep for a short period and retry.
2339		 */
2340		if (full && !empty) {
2341			ZONE_LOCK(zone);
2342			zone->uz_flags |= UMA_ZFLAG_FULL;
2343			zone->uz_sleeps++;
2344			zone_log_warning(zone);
2345			msleep(zone, zone->uz_lockptr, PVM,
2346			    "zonelimit", hz/100);
2347			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2348			ZONE_UNLOCK(zone);
2349			continue;
2350		}
2351	}
2352	return (NULL);
2353}
2354
2355static void *
2356slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2357{
2358	void *item;
2359	uint8_t freei;
2360
2361	MPASS(keg == slab->us_keg);
2362	mtx_assert(&keg->uk_lock, MA_OWNED);
2363
2364	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2365	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2366	item = slab->us_data + (keg->uk_rsize * freei);
2367	slab->us_freecount--;
2368	keg->uk_free--;
2369
2370	/* Move this slab to the full list */
2371	if (slab->us_freecount == 0) {
2372		LIST_REMOVE(slab, us_link);
2373		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2374	}
2375
2376	return (item);
2377}
2378
2379static int
2380zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2381{
2382	uma_slab_t slab;
2383	uma_keg_t keg;
2384	int i;
2385
2386	slab = NULL;
2387	keg = NULL;
2388	/* Try to keep the buckets totally full */
2389	for (i = 0; i < max; ) {
2390		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2391			break;
2392		keg = slab->us_keg;
2393		while (slab->us_freecount && i < max) {
2394			bucket[i++] = slab_alloc_item(keg, slab);
2395			if (keg->uk_free <= keg->uk_reserve)
2396				break;
2397		}
2398		/* Don't grab more than one slab at a time. */
2399		flags &= ~M_WAITOK;
2400		flags |= M_NOWAIT;
2401	}
2402	if (slab != NULL)
2403		KEG_UNLOCK(keg);
2404
2405	return i;
2406}
2407
2408static uma_bucket_t
2409zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2410{
2411	uma_bucket_t bucket;
2412	int max;
2413
2414	/* Don't wait for buckets, preserve caller's NOVM setting. */
2415	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2416	if (bucket == NULL)
2417		goto out;
2418
2419	max = MIN(bucket->ub_entries, zone->uz_count);
2420	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2421	    max, flags);
2422
2423	/*
2424	 * Initialize the memory if necessary.
2425	 */
2426	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2427		int i;
2428
2429		for (i = 0; i < bucket->ub_cnt; i++)
2430			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2431			    flags) != 0)
2432				break;
2433		/*
2434		 * If we couldn't initialize the whole bucket, put the
2435		 * rest back onto the freelist.
2436		 */
2437		if (i != bucket->ub_cnt) {
2438			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2439			    bucket->ub_cnt - i);
2440#ifdef INVARIANTS
2441			bzero(&bucket->ub_bucket[i],
2442			    sizeof(void *) * (bucket->ub_cnt - i));
2443#endif
2444			bucket->ub_cnt = i;
2445		}
2446	}
2447
2448out:
2449	if (bucket == NULL || bucket->ub_cnt == 0) {
2450		if (bucket != NULL)
2451			bucket_free(zone, bucket, udata);
2452		atomic_add_long(&zone->uz_fails, 1);
2453		return (NULL);
2454	}
2455
2456	return (bucket);
2457}
2458
2459/*
2460 * Allocates a single item from a zone.
2461 *
2462 * Arguments
2463 *	zone   The zone to alloc for.
2464 *	udata  The data to be passed to the constructor.
2465 *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2466 *
2467 * Returns
2468 *	NULL if there is no memory and M_NOWAIT is set
2469 *	An item if successful
2470 */
2471
2472static void *
2473zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2474{
2475	void *item;
2476
2477	item = NULL;
2478
2479#ifdef UMA_DEBUG_ALLOC
2480	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2481#endif
2482	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2483		goto fail;
2484	atomic_add_long(&zone->uz_allocs, 1);
2485
2486	/*
2487	 * We have to call both the zone's init (not the keg's init)
2488	 * and the zone's ctor.  This is because the item is going from
2489	 * a keg slab directly to the user, and the user is expecting it
2490	 * to be both zone-init'd as well as zone-ctor'd.
2491	 */
2492	if (zone->uz_init != NULL) {
2493		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2494			zone_free_item(zone, item, udata, SKIP_FINI);
2495			goto fail;
2496		}
2497	}
2498	if (zone->uz_ctor != NULL) {
2499		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2500			zone_free_item(zone, item, udata, SKIP_DTOR);
2501			goto fail;
2502		}
2503	}
2504#ifdef INVARIANTS
2505	uma_dbg_alloc(zone, NULL, item);
2506#endif
2507	if (flags & M_ZERO)
2508		bzero(item, zone->uz_size);
2509
2510	return (item);
2511
2512fail:
2513	atomic_add_long(&zone->uz_fails, 1);
2514	return (NULL);
2515}
2516
2517/* See uma.h */
2518void
2519uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2520{
2521	uma_cache_t cache;
2522	uma_bucket_t bucket;
2523	int cpu;
2524
2525#ifdef UMA_DEBUG_ALLOC_1
2526	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2527#endif
2528	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2529	    zone->uz_name);
2530
2531        /* uma_zfree(..., NULL) does nothing, to match free(9). */
2532        if (item == NULL)
2533                return;
2534#ifdef DEBUG_MEMGUARD
2535	if (is_memguard_addr(item)) {
2536		if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor)
2537			zone->uz_dtor(item, zone->uz_size, udata);
2538		if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini)
2539			zone->uz_fini(item, zone->uz_size);
2540		memguard_free(item);
2541		return;
2542	}
2543#endif
2544#ifdef INVARIANTS
2545	if (zone->uz_flags & UMA_ZONE_MALLOC)
2546		uma_dbg_free(zone, udata, item);
2547	else
2548		uma_dbg_free(zone, NULL, item);
2549#endif
2550	if (zone->uz_dtor != NULL)
2551		zone->uz_dtor(item, zone->uz_size, udata);
2552
2553	/*
2554	 * The race here is acceptable.  If we miss it we'll just have to wait
2555	 * a little longer for the limits to be reset.
2556	 */
2557	if (zone->uz_flags & UMA_ZFLAG_FULL)
2558		goto zfree_item;
2559
2560	/*
2561	 * If possible, free to the per-CPU cache.  There are two
2562	 * requirements for safe access to the per-CPU cache: (1) the thread
2563	 * accessing the cache must not be preempted or yield during access,
2564	 * and (2) the thread must not migrate CPUs without switching which
2565	 * cache it accesses.  We rely on a critical section to prevent
2566	 * preemption and migration.  We release the critical section in
2567	 * order to acquire the zone mutex if we are unable to free to the
2568	 * current cache; when we re-acquire the critical section, we must
2569	 * detect and handle migration if it has occurred.
2570	 */
2571zfree_restart:
2572	critical_enter();
2573	cpu = curcpu;
2574	cache = &zone->uz_cpu[cpu];
2575
2576zfree_start:
2577	/*
2578	 * Try to free into the allocbucket first to give LIFO ordering
2579	 * for cache-hot datastructures.  Spill over into the freebucket
2580	 * if necessary.  Alloc will swap them if one runs dry.
2581	 */
2582	bucket = cache->uc_allocbucket;
2583	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2584		bucket = cache->uc_freebucket;
2585	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2586		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2587		    ("uma_zfree: Freeing to non free bucket index."));
2588		bucket->ub_bucket[bucket->ub_cnt] = item;
2589		bucket->ub_cnt++;
2590		cache->uc_frees++;
2591		critical_exit();
2592		return;
2593	}
2594
2595	/*
2596	 * We must go back the zone, which requires acquiring the zone lock,
2597	 * which in turn means we must release and re-acquire the critical
2598	 * section.  Since the critical section is released, we may be
2599	 * preempted or migrate.  As such, make sure not to maintain any
2600	 * thread-local state specific to the cache from prior to releasing
2601	 * the critical section.
2602	 */
2603	critical_exit();
2604	if (zone->uz_count == 0 || bucketdisable)
2605		goto zfree_item;
2606
2607	ZONE_LOCK(zone);
2608	critical_enter();
2609	cpu = curcpu;
2610	cache = &zone->uz_cpu[cpu];
2611
2612	/*
2613	 * Since we have locked the zone we may as well send back our stats.
2614	 */
2615	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2616	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2617	cache->uc_allocs = 0;
2618	cache->uc_frees = 0;
2619
2620	bucket = cache->uc_freebucket;
2621	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2622		ZONE_UNLOCK(zone);
2623		goto zfree_start;
2624	}
2625	cache->uc_freebucket = NULL;
2626
2627	/* Can we throw this on the zone full list? */
2628	if (bucket != NULL) {
2629#ifdef UMA_DEBUG_ALLOC
2630		printf("uma_zfree: Putting old bucket on the free list.\n");
2631#endif
2632		/* ub_cnt is pointing to the last free item */
2633		KASSERT(bucket->ub_cnt != 0,
2634		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2635		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2636	}
2637
2638	/* We are no longer associated with this CPU. */
2639	critical_exit();
2640
2641	/* And the zone.. */
2642	ZONE_UNLOCK(zone);
2643
2644#ifdef UMA_DEBUG_ALLOC
2645	printf("uma_zfree: Allocating new free bucket.\n");
2646#endif
2647	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2648	if (bucket) {
2649		critical_enter();
2650		cpu = curcpu;
2651		cache = &zone->uz_cpu[cpu];
2652		if (cache->uc_freebucket == NULL) {
2653			cache->uc_freebucket = bucket;
2654			goto zfree_start;
2655		}
2656		/*
2657		 * We lost the race, start over.  We have to drop our
2658		 * critical section to free the bucket.
2659		 */
2660		critical_exit();
2661		bucket_free(zone, bucket, udata);
2662		goto zfree_restart;
2663	}
2664
2665	/*
2666	 * If nothing else caught this, we'll just do an internal free.
2667	 */
2668zfree_item:
2669	zone_free_item(zone, item, udata, SKIP_DTOR);
2670
2671	return;
2672}
2673
2674static void
2675slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2676{
2677	uint8_t freei;
2678
2679	mtx_assert(&keg->uk_lock, MA_OWNED);
2680	MPASS(keg == slab->us_keg);
2681
2682	/* Do we need to remove from any lists? */
2683	if (slab->us_freecount+1 == keg->uk_ipers) {
2684		LIST_REMOVE(slab, us_link);
2685		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2686	} else if (slab->us_freecount == 0) {
2687		LIST_REMOVE(slab, us_link);
2688		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2689	}
2690
2691	/* Slab management. */
2692	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2693	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2694	slab->us_freecount++;
2695
2696	/* Keg statistics. */
2697	keg->uk_free++;
2698}
2699
2700static void
2701zone_release(uma_zone_t zone, void **bucket, int cnt)
2702{
2703	void *item;
2704	uma_slab_t slab;
2705	uma_keg_t keg;
2706	uint8_t *mem;
2707	int clearfull;
2708	int i;
2709
2710	clearfull = 0;
2711	keg = zone_first_keg(zone);
2712	KEG_LOCK(keg);
2713	for (i = 0; i < cnt; i++) {
2714		item = bucket[i];
2715		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2716			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2717			if (zone->uz_flags & UMA_ZONE_HASH) {
2718				slab = hash_sfind(&keg->uk_hash, mem);
2719			} else {
2720				mem += keg->uk_pgoff;
2721				slab = (uma_slab_t)mem;
2722			}
2723		} else {
2724			slab = vtoslab((vm_offset_t)item);
2725			if (slab->us_keg != keg) {
2726				KEG_UNLOCK(keg);
2727				keg = slab->us_keg;
2728				KEG_LOCK(keg);
2729			}
2730		}
2731		slab_free_item(keg, slab, item);
2732		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2733			if (keg->uk_pages < keg->uk_maxpages) {
2734				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2735				clearfull = 1;
2736			}
2737
2738			/*
2739			 * We can handle one more allocation. Since we're
2740			 * clearing ZFLAG_FULL, wake up all procs blocked
2741			 * on pages. This should be uncommon, so keeping this
2742			 * simple for now (rather than adding count of blocked
2743			 * threads etc).
2744			 */
2745			wakeup(keg);
2746		}
2747	}
2748	KEG_UNLOCK(keg);
2749	if (clearfull) {
2750		ZONE_LOCK(zone);
2751		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2752		wakeup(zone);
2753		ZONE_UNLOCK(zone);
2754	}
2755
2756}
2757
2758/*
2759 * Frees a single item to any zone.
2760 *
2761 * Arguments:
2762 *	zone   The zone to free to
2763 *	item   The item we're freeing
2764 *	udata  User supplied data for the dtor
2765 *	skip   Skip dtors and finis
2766 */
2767static void
2768zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2769{
2770
2771#ifdef INVARIANTS
2772	if (skip == SKIP_NONE) {
2773		if (zone->uz_flags & UMA_ZONE_MALLOC)
2774			uma_dbg_free(zone, udata, item);
2775		else
2776			uma_dbg_free(zone, NULL, item);
2777	}
2778#endif
2779	if (skip < SKIP_DTOR && zone->uz_dtor)
2780		zone->uz_dtor(item, zone->uz_size, udata);
2781
2782	if (skip < SKIP_FINI && zone->uz_fini)
2783		zone->uz_fini(item, zone->uz_size);
2784
2785	atomic_add_long(&zone->uz_frees, 1);
2786	zone->uz_release(zone->uz_arg, &item, 1);
2787}
2788
2789/* See uma.h */
2790int
2791uma_zone_set_max(uma_zone_t zone, int nitems)
2792{
2793	uma_keg_t keg;
2794
2795	keg = zone_first_keg(zone);
2796	if (keg == NULL)
2797		return (0);
2798	KEG_LOCK(keg);
2799	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2800	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2801		keg->uk_maxpages += keg->uk_ppera;
2802	nitems = keg->uk_maxpages * keg->uk_ipers;
2803	KEG_UNLOCK(keg);
2804
2805	return (nitems);
2806}
2807
2808/* See uma.h */
2809int
2810uma_zone_get_max(uma_zone_t zone)
2811{
2812	int nitems;
2813	uma_keg_t keg;
2814
2815	keg = zone_first_keg(zone);
2816	if (keg == NULL)
2817		return (0);
2818	KEG_LOCK(keg);
2819	nitems = keg->uk_maxpages * keg->uk_ipers;
2820	KEG_UNLOCK(keg);
2821
2822	return (nitems);
2823}
2824
2825/* See uma.h */
2826void
2827uma_zone_set_warning(uma_zone_t zone, const char *warning)
2828{
2829
2830	ZONE_LOCK(zone);
2831	zone->uz_warning = warning;
2832	ZONE_UNLOCK(zone);
2833}
2834
2835/* See uma.h */
2836int
2837uma_zone_get_cur(uma_zone_t zone)
2838{
2839	int64_t nitems;
2840	u_int i;
2841
2842	ZONE_LOCK(zone);
2843	nitems = zone->uz_allocs - zone->uz_frees;
2844	CPU_FOREACH(i) {
2845		/*
2846		 * See the comment in sysctl_vm_zone_stats() regarding the
2847		 * safety of accessing the per-cpu caches. With the zone lock
2848		 * held, it is safe, but can potentially result in stale data.
2849		 */
2850		nitems += zone->uz_cpu[i].uc_allocs -
2851		    zone->uz_cpu[i].uc_frees;
2852	}
2853	ZONE_UNLOCK(zone);
2854
2855	return (nitems < 0 ? 0 : nitems);
2856}
2857
2858/* See uma.h */
2859void
2860uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2861{
2862	uma_keg_t keg;
2863
2864	keg = zone_first_keg(zone);
2865	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
2866	KEG_LOCK(keg);
2867	KASSERT(keg->uk_pages == 0,
2868	    ("uma_zone_set_init on non-empty keg"));
2869	keg->uk_init = uminit;
2870	KEG_UNLOCK(keg);
2871}
2872
2873/* See uma.h */
2874void
2875uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
2876{
2877	uma_keg_t keg;
2878
2879	keg = zone_first_keg(zone);
2880	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
2881	KEG_LOCK(keg);
2882	KASSERT(keg->uk_pages == 0,
2883	    ("uma_zone_set_fini on non-empty keg"));
2884	keg->uk_fini = fini;
2885	KEG_UNLOCK(keg);
2886}
2887
2888/* See uma.h */
2889void
2890uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
2891{
2892
2893	ZONE_LOCK(zone);
2894	KASSERT(zone_first_keg(zone)->uk_pages == 0,
2895	    ("uma_zone_set_zinit on non-empty keg"));
2896	zone->uz_init = zinit;
2897	ZONE_UNLOCK(zone);
2898}
2899
2900/* See uma.h */
2901void
2902uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
2903{
2904
2905	ZONE_LOCK(zone);
2906	KASSERT(zone_first_keg(zone)->uk_pages == 0,
2907	    ("uma_zone_set_zfini on non-empty keg"));
2908	zone->uz_fini = zfini;
2909	ZONE_UNLOCK(zone);
2910}
2911
2912/* See uma.h */
2913/* XXX uk_freef is not actually used with the zone locked */
2914void
2915uma_zone_set_freef(uma_zone_t zone, uma_free freef)
2916{
2917	uma_keg_t keg;
2918
2919	keg = zone_first_keg(zone);
2920	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
2921	KEG_LOCK(keg);
2922	keg->uk_freef = freef;
2923	KEG_UNLOCK(keg);
2924}
2925
2926/* See uma.h */
2927/* XXX uk_allocf is not actually used with the zone locked */
2928void
2929uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
2930{
2931	uma_keg_t keg;
2932
2933	keg = zone_first_keg(zone);
2934	KEG_LOCK(keg);
2935	keg->uk_allocf = allocf;
2936	KEG_UNLOCK(keg);
2937}
2938
2939/* See uma.h */
2940void
2941uma_zone_reserve(uma_zone_t zone, int items)
2942{
2943	uma_keg_t keg;
2944
2945	keg = zone_first_keg(zone);
2946	if (keg == NULL)
2947		return;
2948	KEG_LOCK(keg);
2949	keg->uk_reserve = items;
2950	KEG_UNLOCK(keg);
2951
2952	return;
2953}
2954
2955/* See uma.h */
2956int
2957uma_zone_reserve_kva(uma_zone_t zone, int count)
2958{
2959	uma_keg_t keg;
2960	vm_offset_t kva;
2961	int pages;
2962
2963	keg = zone_first_keg(zone);
2964	if (keg == NULL)
2965		return (0);
2966	pages = count / keg->uk_ipers;
2967
2968	if (pages * keg->uk_ipers < count)
2969		pages++;
2970
2971#ifdef UMA_MD_SMALL_ALLOC
2972	if (keg->uk_ppera > 1) {
2973#else
2974	if (1) {
2975#endif
2976		kva = kva_alloc(pages * UMA_SLAB_SIZE);
2977		if (kva == 0)
2978			return (0);
2979	} else
2980		kva = 0;
2981	KEG_LOCK(keg);
2982	keg->uk_kva = kva;
2983	keg->uk_offset = 0;
2984	keg->uk_maxpages = pages;
2985#ifdef UMA_MD_SMALL_ALLOC
2986	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
2987#else
2988	keg->uk_allocf = noobj_alloc;
2989#endif
2990	keg->uk_flags |= UMA_ZONE_NOFREE;
2991	KEG_UNLOCK(keg);
2992
2993	return (1);
2994}
2995
2996/* See uma.h */
2997void
2998uma_prealloc(uma_zone_t zone, int items)
2999{
3000	int slabs;
3001	uma_slab_t slab;
3002	uma_keg_t keg;
3003
3004	keg = zone_first_keg(zone);
3005	if (keg == NULL)
3006		return;
3007	KEG_LOCK(keg);
3008	slabs = items / keg->uk_ipers;
3009	if (slabs * keg->uk_ipers < items)
3010		slabs++;
3011	while (slabs > 0) {
3012		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3013		if (slab == NULL)
3014			break;
3015		MPASS(slab->us_keg == keg);
3016		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3017		slabs--;
3018	}
3019	KEG_UNLOCK(keg);
3020}
3021
3022/* See uma.h */
3023uint32_t *
3024uma_find_refcnt(uma_zone_t zone, void *item)
3025{
3026	uma_slabrefcnt_t slabref;
3027	uma_slab_t slab;
3028	uma_keg_t keg;
3029	uint32_t *refcnt;
3030	int idx;
3031
3032	slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK));
3033	slabref = (uma_slabrefcnt_t)slab;
3034	keg = slab->us_keg;
3035	KASSERT(keg->uk_flags & UMA_ZONE_REFCNT,
3036	    ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
3037	idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3038	refcnt = &slabref->us_refcnt[idx];
3039	return refcnt;
3040}
3041
3042/* See uma.h */
3043void
3044uma_reclaim(void)
3045{
3046#ifdef UMA_DEBUG
3047	printf("UMA: vm asked us to release pages!\n");
3048#endif
3049	bucket_enable();
3050	zone_foreach(zone_drain);
3051	/*
3052	 * Some slabs may have been freed but this zone will be visited early
3053	 * we visit again so that we can free pages that are empty once other
3054	 * zones are drained.  We have to do the same for buckets.
3055	 */
3056	zone_drain(slabzone);
3057	zone_drain(slabrefzone);
3058	bucket_zone_drain();
3059}
3060
3061/* See uma.h */
3062int
3063uma_zone_exhausted(uma_zone_t zone)
3064{
3065	int full;
3066
3067	ZONE_LOCK(zone);
3068	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3069	ZONE_UNLOCK(zone);
3070	return (full);
3071}
3072
3073int
3074uma_zone_exhausted_nolock(uma_zone_t zone)
3075{
3076	return (zone->uz_flags & UMA_ZFLAG_FULL);
3077}
3078
3079void *
3080uma_large_malloc(int size, int wait)
3081{
3082	void *mem;
3083	uma_slab_t slab;
3084	uint8_t flags;
3085
3086	slab = zone_alloc_item(slabzone, NULL, wait);
3087	if (slab == NULL)
3088		return (NULL);
3089	mem = page_alloc(NULL, size, &flags, wait);
3090	if (mem) {
3091		vsetslab((vm_offset_t)mem, slab);
3092		slab->us_data = mem;
3093		slab->us_flags = flags | UMA_SLAB_MALLOC;
3094		slab->us_size = size;
3095	} else {
3096		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3097	}
3098
3099	return (mem);
3100}
3101
3102void
3103uma_large_free(uma_slab_t slab)
3104{
3105
3106	page_free(slab->us_data, slab->us_size, slab->us_flags);
3107	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3108}
3109
3110void
3111uma_print_stats(void)
3112{
3113	zone_foreach(uma_print_zone);
3114}
3115
3116static void
3117slab_print(uma_slab_t slab)
3118{
3119	printf("slab: keg %p, data %p, freecount %d\n",
3120		slab->us_keg, slab->us_data, slab->us_freecount);
3121}
3122
3123static void
3124cache_print(uma_cache_t cache)
3125{
3126	printf("alloc: %p(%d), free: %p(%d)\n",
3127		cache->uc_allocbucket,
3128		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3129		cache->uc_freebucket,
3130		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3131}
3132
3133static void
3134uma_print_keg(uma_keg_t keg)
3135{
3136	uma_slab_t slab;
3137
3138	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3139	    "out %d free %d limit %d\n",
3140	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3141	    keg->uk_ipers, keg->uk_ppera,
3142	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3143	    (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3144	printf("Part slabs:\n");
3145	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3146		slab_print(slab);
3147	printf("Free slabs:\n");
3148	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3149		slab_print(slab);
3150	printf("Full slabs:\n");
3151	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3152		slab_print(slab);
3153}
3154
3155void
3156uma_print_zone(uma_zone_t zone)
3157{
3158	uma_cache_t cache;
3159	uma_klink_t kl;
3160	int i;
3161
3162	printf("zone: %s(%p) size %d flags %#x\n",
3163	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3164	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3165		uma_print_keg(kl->kl_keg);
3166	CPU_FOREACH(i) {
3167		cache = &zone->uz_cpu[i];
3168		printf("CPU %d Cache:\n", i);
3169		cache_print(cache);
3170	}
3171}
3172
3173#ifdef DDB
3174/*
3175 * Generate statistics across both the zone and its per-cpu cache's.  Return
3176 * desired statistics if the pointer is non-NULL for that statistic.
3177 *
3178 * Note: does not update the zone statistics, as it can't safely clear the
3179 * per-CPU cache statistic.
3180 *
3181 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3182 * safe from off-CPU; we should modify the caches to track this information
3183 * directly so that we don't have to.
3184 */
3185static void
3186uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3187    uint64_t *freesp, uint64_t *sleepsp)
3188{
3189	uma_cache_t cache;
3190	uint64_t allocs, frees, sleeps;
3191	int cachefree, cpu;
3192
3193	allocs = frees = sleeps = 0;
3194	cachefree = 0;
3195	CPU_FOREACH(cpu) {
3196		cache = &z->uz_cpu[cpu];
3197		if (cache->uc_allocbucket != NULL)
3198			cachefree += cache->uc_allocbucket->ub_cnt;
3199		if (cache->uc_freebucket != NULL)
3200			cachefree += cache->uc_freebucket->ub_cnt;
3201		allocs += cache->uc_allocs;
3202		frees += cache->uc_frees;
3203	}
3204	allocs += z->uz_allocs;
3205	frees += z->uz_frees;
3206	sleeps += z->uz_sleeps;
3207	if (cachefreep != NULL)
3208		*cachefreep = cachefree;
3209	if (allocsp != NULL)
3210		*allocsp = allocs;
3211	if (freesp != NULL)
3212		*freesp = frees;
3213	if (sleepsp != NULL)
3214		*sleepsp = sleeps;
3215}
3216#endif /* DDB */
3217
3218static int
3219sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3220{
3221	uma_keg_t kz;
3222	uma_zone_t z;
3223	int count;
3224
3225	count = 0;
3226	mtx_lock(&uma_mtx);
3227	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3228		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3229			count++;
3230	}
3231	mtx_unlock(&uma_mtx);
3232	return (sysctl_handle_int(oidp, &count, 0, req));
3233}
3234
3235static int
3236sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3237{
3238	struct uma_stream_header ush;
3239	struct uma_type_header uth;
3240	struct uma_percpu_stat ups;
3241	uma_bucket_t bucket;
3242	struct sbuf sbuf;
3243	uma_cache_t cache;
3244	uma_klink_t kl;
3245	uma_keg_t kz;
3246	uma_zone_t z;
3247	uma_keg_t k;
3248	int count, error, i;
3249
3250	error = sysctl_wire_old_buffer(req, 0);
3251	if (error != 0)
3252		return (error);
3253	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3254
3255	count = 0;
3256	mtx_lock(&uma_mtx);
3257	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3258		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3259			count++;
3260	}
3261
3262	/*
3263	 * Insert stream header.
3264	 */
3265	bzero(&ush, sizeof(ush));
3266	ush.ush_version = UMA_STREAM_VERSION;
3267	ush.ush_maxcpus = (mp_maxid + 1);
3268	ush.ush_count = count;
3269	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3270
3271	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3272		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3273			bzero(&uth, sizeof(uth));
3274			ZONE_LOCK(z);
3275			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3276			uth.uth_align = kz->uk_align;
3277			uth.uth_size = kz->uk_size;
3278			uth.uth_rsize = kz->uk_rsize;
3279			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3280				k = kl->kl_keg;
3281				uth.uth_maxpages += k->uk_maxpages;
3282				uth.uth_pages += k->uk_pages;
3283				uth.uth_keg_free += k->uk_free;
3284				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3285				    * k->uk_ipers;
3286			}
3287
3288			/*
3289			 * A zone is secondary is it is not the first entry
3290			 * on the keg's zone list.
3291			 */
3292			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3293			    (LIST_FIRST(&kz->uk_zones) != z))
3294				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3295
3296			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3297				uth.uth_zone_free += bucket->ub_cnt;
3298			uth.uth_allocs = z->uz_allocs;
3299			uth.uth_frees = z->uz_frees;
3300			uth.uth_fails = z->uz_fails;
3301			uth.uth_sleeps = z->uz_sleeps;
3302			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3303			/*
3304			 * While it is not normally safe to access the cache
3305			 * bucket pointers while not on the CPU that owns the
3306			 * cache, we only allow the pointers to be exchanged
3307			 * without the zone lock held, not invalidated, so
3308			 * accept the possible race associated with bucket
3309			 * exchange during monitoring.
3310			 */
3311			for (i = 0; i < (mp_maxid + 1); i++) {
3312				bzero(&ups, sizeof(ups));
3313				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3314					goto skip;
3315				if (CPU_ABSENT(i))
3316					goto skip;
3317				cache = &z->uz_cpu[i];
3318				if (cache->uc_allocbucket != NULL)
3319					ups.ups_cache_free +=
3320					    cache->uc_allocbucket->ub_cnt;
3321				if (cache->uc_freebucket != NULL)
3322					ups.ups_cache_free +=
3323					    cache->uc_freebucket->ub_cnt;
3324				ups.ups_allocs = cache->uc_allocs;
3325				ups.ups_frees = cache->uc_frees;
3326skip:
3327				(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3328			}
3329			ZONE_UNLOCK(z);
3330		}
3331	}
3332	mtx_unlock(&uma_mtx);
3333	error = sbuf_finish(&sbuf);
3334	sbuf_delete(&sbuf);
3335	return (error);
3336}
3337
3338#ifdef DDB
3339DB_SHOW_COMMAND(uma, db_show_uma)
3340{
3341	uint64_t allocs, frees, sleeps;
3342	uma_bucket_t bucket;
3343	uma_keg_t kz;
3344	uma_zone_t z;
3345	int cachefree;
3346
3347	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3348	    "Requests", "Sleeps");
3349	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3350		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3351			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3352				allocs = z->uz_allocs;
3353				frees = z->uz_frees;
3354				sleeps = z->uz_sleeps;
3355				cachefree = 0;
3356			} else
3357				uma_zone_sumstat(z, &cachefree, &allocs,
3358				    &frees, &sleeps);
3359			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3360			    (LIST_FIRST(&kz->uk_zones) != z)))
3361				cachefree += kz->uk_free;
3362			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3363				cachefree += bucket->ub_cnt;
3364			db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name,
3365			    (uintmax_t)kz->uk_size,
3366			    (intmax_t)(allocs - frees), cachefree,
3367			    (uintmax_t)allocs, sleeps);
3368			if (db_pager_quit)
3369				return;
3370		}
3371	}
3372}
3373#endif
3374