ffs_softdep.c revision 324612
1125491Sru/*-
256067Smarkm * Copyright 1998, 2000 Marshall Kirk McKusick.
356067Smarkm * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
456067Smarkm * All rights reserved.
556067Smarkm *
6 * The soft updates code is derived from the appendix of a University
7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8 * "Soft Updates: A Solution to the Metadata Update Problem in File
9 * Systems", CSE-TR-254-95, August 1995).
10 *
11 * Further information about soft updates can be obtained from:
12 *
13 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14 *	1614 Oxford Street		mckusick@mckusick.com
15 *	Berkeley, CA 94709-1608		+1-510-843-9542
16 *	USA
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 *
39 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40 */
41
42#include <sys/cdefs.h>
43__FBSDID("$FreeBSD: stable/10/sys/ufs/ffs/ffs_softdep.c 324612 2017-10-13 22:40:57Z jhb $");
44
45#include "opt_ffs.h"
46#include "opt_quota.h"
47#include "opt_ddb.h"
48
49/*
50 * For now we want the safety net that the DEBUG flag provides.
51 */
52#ifndef DEBUG
53#define DEBUG
54#endif
55
56#include <sys/param.h>
57#include <sys/kernel.h>
58#include <sys/systm.h>
59#include <sys/bio.h>
60#include <sys/buf.h>
61#include <sys/kdb.h>
62#include <sys/kthread.h>
63#include <sys/ktr.h>
64#include <sys/limits.h>
65#include <sys/lock.h>
66#include <sys/malloc.h>
67#include <sys/mount.h>
68#include <sys/mutex.h>
69#include <sys/namei.h>
70#include <sys/priv.h>
71#include <sys/proc.h>
72#include <sys/rwlock.h>
73#include <sys/stat.h>
74#include <sys/sysctl.h>
75#include <sys/syslog.h>
76#include <sys/vnode.h>
77#include <sys/conf.h>
78
79#include <ufs/ufs/dir.h>
80#include <ufs/ufs/extattr.h>
81#include <ufs/ufs/quota.h>
82#include <ufs/ufs/inode.h>
83#include <ufs/ufs/ufsmount.h>
84#include <ufs/ffs/fs.h>
85#include <ufs/ffs/softdep.h>
86#include <ufs/ffs/ffs_extern.h>
87#include <ufs/ufs/ufs_extern.h>
88
89#include <vm/vm.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_object.h>
92
93#include <geom/geom.h>
94
95#include <ddb/ddb.h>
96
97#define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98
99#ifndef SOFTUPDATES
100
101int
102softdep_flushfiles(oldmnt, flags, td)
103	struct mount *oldmnt;
104	int flags;
105	struct thread *td;
106{
107
108	panic("softdep_flushfiles called");
109}
110
111int
112softdep_mount(devvp, mp, fs, cred)
113	struct vnode *devvp;
114	struct mount *mp;
115	struct fs *fs;
116	struct ucred *cred;
117{
118
119	return (0);
120}
121
122void
123softdep_initialize()
124{
125
126	return;
127}
128
129void
130softdep_uninitialize()
131{
132
133	return;
134}
135
136void
137softdep_unmount(mp)
138	struct mount *mp;
139{
140
141	panic("softdep_unmount called");
142}
143
144void
145softdep_setup_sbupdate(ump, fs, bp)
146	struct ufsmount *ump;
147	struct fs *fs;
148	struct buf *bp;
149{
150
151	panic("softdep_setup_sbupdate called");
152}
153
154void
155softdep_setup_inomapdep(bp, ip, newinum, mode)
156	struct buf *bp;
157	struct inode *ip;
158	ino_t newinum;
159	int mode;
160{
161
162	panic("softdep_setup_inomapdep called");
163}
164
165void
166softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
167	struct buf *bp;
168	struct mount *mp;
169	ufs2_daddr_t newblkno;
170	int frags;
171	int oldfrags;
172{
173
174	panic("softdep_setup_blkmapdep called");
175}
176
177void
178softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
179	struct inode *ip;
180	ufs_lbn_t lbn;
181	ufs2_daddr_t newblkno;
182	ufs2_daddr_t oldblkno;
183	long newsize;
184	long oldsize;
185	struct buf *bp;
186{
187
188	panic("softdep_setup_allocdirect called");
189}
190
191void
192softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
193	struct inode *ip;
194	ufs_lbn_t lbn;
195	ufs2_daddr_t newblkno;
196	ufs2_daddr_t oldblkno;
197	long newsize;
198	long oldsize;
199	struct buf *bp;
200{
201
202	panic("softdep_setup_allocext called");
203}
204
205void
206softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
207	struct inode *ip;
208	ufs_lbn_t lbn;
209	struct buf *bp;
210	int ptrno;
211	ufs2_daddr_t newblkno;
212	ufs2_daddr_t oldblkno;
213	struct buf *nbp;
214{
215
216	panic("softdep_setup_allocindir_page called");
217}
218
219void
220softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
221	struct buf *nbp;
222	struct inode *ip;
223	struct buf *bp;
224	int ptrno;
225	ufs2_daddr_t newblkno;
226{
227
228	panic("softdep_setup_allocindir_meta called");
229}
230
231void
232softdep_journal_freeblocks(ip, cred, length, flags)
233	struct inode *ip;
234	struct ucred *cred;
235	off_t length;
236	int flags;
237{
238
239	panic("softdep_journal_freeblocks called");
240}
241
242void
243softdep_journal_fsync(ip)
244	struct inode *ip;
245{
246
247	panic("softdep_journal_fsync called");
248}
249
250void
251softdep_setup_freeblocks(ip, length, flags)
252	struct inode *ip;
253	off_t length;
254	int flags;
255{
256
257	panic("softdep_setup_freeblocks called");
258}
259
260void
261softdep_freefile(pvp, ino, mode)
262		struct vnode *pvp;
263		ino_t ino;
264		int mode;
265{
266
267	panic("softdep_freefile called");
268}
269
270int
271softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
272	struct buf *bp;
273	struct inode *dp;
274	off_t diroffset;
275	ino_t newinum;
276	struct buf *newdirbp;
277	int isnewblk;
278{
279
280	panic("softdep_setup_directory_add called");
281}
282
283void
284softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
285	struct buf *bp;
286	struct inode *dp;
287	caddr_t base;
288	caddr_t oldloc;
289	caddr_t newloc;
290	int entrysize;
291{
292
293	panic("softdep_change_directoryentry_offset called");
294}
295
296void
297softdep_setup_remove(bp, dp, ip, isrmdir)
298	struct buf *bp;
299	struct inode *dp;
300	struct inode *ip;
301	int isrmdir;
302{
303
304	panic("softdep_setup_remove called");
305}
306
307void
308softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
309	struct buf *bp;
310	struct inode *dp;
311	struct inode *ip;
312	ino_t newinum;
313	int isrmdir;
314{
315
316	panic("softdep_setup_directory_change called");
317}
318
319void
320softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
321	struct mount *mp;
322	struct buf *bp;
323	ufs2_daddr_t blkno;
324	int frags;
325	struct workhead *wkhd;
326{
327
328	panic("%s called", __FUNCTION__);
329}
330
331void
332softdep_setup_inofree(mp, bp, ino, wkhd)
333	struct mount *mp;
334	struct buf *bp;
335	ino_t ino;
336	struct workhead *wkhd;
337{
338
339	panic("%s called", __FUNCTION__);
340}
341
342void
343softdep_setup_unlink(dp, ip)
344	struct inode *dp;
345	struct inode *ip;
346{
347
348	panic("%s called", __FUNCTION__);
349}
350
351void
352softdep_setup_link(dp, ip)
353	struct inode *dp;
354	struct inode *ip;
355{
356
357	panic("%s called", __FUNCTION__);
358}
359
360void
361softdep_revert_link(dp, ip)
362	struct inode *dp;
363	struct inode *ip;
364{
365
366	panic("%s called", __FUNCTION__);
367}
368
369void
370softdep_setup_rmdir(dp, ip)
371	struct inode *dp;
372	struct inode *ip;
373{
374
375	panic("%s called", __FUNCTION__);
376}
377
378void
379softdep_revert_rmdir(dp, ip)
380	struct inode *dp;
381	struct inode *ip;
382{
383
384	panic("%s called", __FUNCTION__);
385}
386
387void
388softdep_setup_create(dp, ip)
389	struct inode *dp;
390	struct inode *ip;
391{
392
393	panic("%s called", __FUNCTION__);
394}
395
396void
397softdep_revert_create(dp, ip)
398	struct inode *dp;
399	struct inode *ip;
400{
401
402	panic("%s called", __FUNCTION__);
403}
404
405void
406softdep_setup_mkdir(dp, ip)
407	struct inode *dp;
408	struct inode *ip;
409{
410
411	panic("%s called", __FUNCTION__);
412}
413
414void
415softdep_revert_mkdir(dp, ip)
416	struct inode *dp;
417	struct inode *ip;
418{
419
420	panic("%s called", __FUNCTION__);
421}
422
423void
424softdep_setup_dotdot_link(dp, ip)
425	struct inode *dp;
426	struct inode *ip;
427{
428
429	panic("%s called", __FUNCTION__);
430}
431
432int
433softdep_prealloc(vp, waitok)
434	struct vnode *vp;
435	int waitok;
436{
437
438	panic("%s called", __FUNCTION__);
439}
440
441int
442softdep_journal_lookup(mp, vpp)
443	struct mount *mp;
444	struct vnode **vpp;
445{
446
447	return (ENOENT);
448}
449
450void
451softdep_change_linkcnt(ip)
452	struct inode *ip;
453{
454
455	panic("softdep_change_linkcnt called");
456}
457
458void
459softdep_load_inodeblock(ip)
460	struct inode *ip;
461{
462
463	panic("softdep_load_inodeblock called");
464}
465
466void
467softdep_update_inodeblock(ip, bp, waitfor)
468	struct inode *ip;
469	struct buf *bp;
470	int waitfor;
471{
472
473	panic("softdep_update_inodeblock called");
474}
475
476int
477softdep_fsync(vp)
478	struct vnode *vp;	/* the "in_core" copy of the inode */
479{
480
481	return (0);
482}
483
484void
485softdep_fsync_mountdev(vp)
486	struct vnode *vp;
487{
488
489	return;
490}
491
492int
493softdep_flushworklist(oldmnt, countp, td)
494	struct mount *oldmnt;
495	int *countp;
496	struct thread *td;
497{
498
499	*countp = 0;
500	return (0);
501}
502
503int
504softdep_sync_metadata(struct vnode *vp)
505{
506
507	panic("softdep_sync_metadata called");
508}
509
510int
511softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
512{
513
514	panic("softdep_sync_buf called");
515}
516
517int
518softdep_slowdown(vp)
519	struct vnode *vp;
520{
521
522	panic("softdep_slowdown called");
523}
524
525int
526softdep_request_cleanup(fs, vp, cred, resource)
527	struct fs *fs;
528	struct vnode *vp;
529	struct ucred *cred;
530	int resource;
531{
532
533	return (0);
534}
535
536int
537softdep_check_suspend(struct mount *mp,
538		      struct vnode *devvp,
539		      int softdep_depcnt,
540		      int softdep_accdepcnt,
541		      int secondary_writes,
542		      int secondary_accwrites)
543{
544	struct bufobj *bo;
545	int error;
546
547	(void) softdep_depcnt,
548	(void) softdep_accdepcnt;
549
550	bo = &devvp->v_bufobj;
551	ASSERT_BO_WLOCKED(bo);
552
553	MNT_ILOCK(mp);
554	while (mp->mnt_secondary_writes != 0) {
555		BO_UNLOCK(bo);
556		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557		    (PUSER - 1) | PDROP, "secwr", 0);
558		BO_LOCK(bo);
559		MNT_ILOCK(mp);
560	}
561
562	/*
563	 * Reasons for needing more work before suspend:
564	 * - Dirty buffers on devvp.
565	 * - Secondary writes occurred after start of vnode sync loop
566	 */
567	error = 0;
568	if (bo->bo_numoutput > 0 ||
569	    bo->bo_dirty.bv_cnt > 0 ||
570	    secondary_writes != 0 ||
571	    mp->mnt_secondary_writes != 0 ||
572	    secondary_accwrites != mp->mnt_secondary_accwrites)
573		error = EAGAIN;
574	BO_UNLOCK(bo);
575	return (error);
576}
577
578void
579softdep_get_depcounts(struct mount *mp,
580		      int *softdepactivep,
581		      int *softdepactiveaccp)
582{
583	(void) mp;
584	*softdepactivep = 0;
585	*softdepactiveaccp = 0;
586}
587
588void
589softdep_buf_append(bp, wkhd)
590	struct buf *bp;
591	struct workhead *wkhd;
592{
593
594	panic("softdep_buf_appendwork called");
595}
596
597void
598softdep_inode_append(ip, cred, wkhd)
599	struct inode *ip;
600	struct ucred *cred;
601	struct workhead *wkhd;
602{
603
604	panic("softdep_inode_appendwork called");
605}
606
607void
608softdep_freework(wkhd)
609	struct workhead *wkhd;
610{
611
612	panic("softdep_freework called");
613}
614
615#else
616
617FEATURE(softupdates, "FFS soft-updates support");
618
619static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
620    "soft updates stats");
621static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
622    "total dependencies allocated");
623static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
624    "high use dependencies allocated");
625static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
626    "current dependencies allocated");
627static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
628    "current dependencies written");
629
630unsigned long dep_current[D_LAST + 1];
631unsigned long dep_highuse[D_LAST + 1];
632unsigned long dep_total[D_LAST + 1];
633unsigned long dep_write[D_LAST + 1];
634
635#define	SOFTDEP_TYPE(type, str, long)					\
636    static MALLOC_DEFINE(M_ ## type, #str, long);			\
637    SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
638	&dep_total[D_ ## type], 0, "");					\
639    SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
640	&dep_current[D_ ## type], 0, "");				\
641    SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
642	&dep_highuse[D_ ## type], 0, "");				\
643    SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
644	&dep_write[D_ ## type], 0, "");
645
646SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
647SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
648SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
649    "Block or frag allocated from cyl group map");
650SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
651SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
652SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
653SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
654SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
655SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
656SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
657SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
658SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
659SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
660SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
661SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
662SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
663SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
664SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
665SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
666SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
667SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
668SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
669SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
670SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
671SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
672SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
673SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
674
675static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
676
677static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
678static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
679static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
680
681#define M_SOFTDEP_FLAGS	(M_WAITOK)
682
683/*
684 * translate from workitem type to memory type
685 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
686 */
687static struct malloc_type *memtype[] = {
688	M_PAGEDEP,
689	M_INODEDEP,
690	M_BMSAFEMAP,
691	M_NEWBLK,
692	M_ALLOCDIRECT,
693	M_INDIRDEP,
694	M_ALLOCINDIR,
695	M_FREEFRAG,
696	M_FREEBLKS,
697	M_FREEFILE,
698	M_DIRADD,
699	M_MKDIR,
700	M_DIRREM,
701	M_NEWDIRBLK,
702	M_FREEWORK,
703	M_FREEDEP,
704	M_JADDREF,
705	M_JREMREF,
706	M_JMVREF,
707	M_JNEWBLK,
708	M_JFREEBLK,
709	M_JFREEFRAG,
710	M_JSEG,
711	M_JSEGDEP,
712	M_SBDEP,
713	M_JTRUNC,
714	M_JFSYNC,
715	M_SENTINEL
716};
717
718#define DtoM(type) (memtype[type])
719
720/*
721 * Names of malloc types.
722 */
723#define TYPENAME(type)  \
724	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
725/*
726 * End system adaptation definitions.
727 */
728
729#define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
730#define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
731
732/*
733 * Internal function prototypes.
734 */
735static	void check_clear_deps(struct mount *);
736static	void softdep_error(char *, int);
737static	int softdep_process_worklist(struct mount *, int);
738static	int softdep_waitidle(struct mount *, int);
739static	void drain_output(struct vnode *);
740static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
741static	int check_inodedep_free(struct inodedep *);
742static	void clear_remove(struct mount *);
743static	void clear_inodedeps(struct mount *);
744static	void unlinked_inodedep(struct mount *, struct inodedep *);
745static	void clear_unlinked_inodedep(struct inodedep *);
746static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
747static	int flush_pagedep_deps(struct vnode *, struct mount *,
748	    struct diraddhd *);
749static	int free_pagedep(struct pagedep *);
750static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
751static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
752static	int flush_deplist(struct allocdirectlst *, int, int *);
753static	int sync_cgs(struct mount *, int);
754static	int handle_written_filepage(struct pagedep *, struct buf *, int);
755static	int handle_written_sbdep(struct sbdep *, struct buf *);
756static	void initiate_write_sbdep(struct sbdep *);
757static	void diradd_inode_written(struct diradd *, struct inodedep *);
758static	int handle_written_indirdep(struct indirdep *, struct buf *,
759	    struct buf**, int);
760static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
761static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
762	    uint8_t *);
763static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
764static	void handle_written_jaddref(struct jaddref *);
765static	void handle_written_jremref(struct jremref *);
766static	void handle_written_jseg(struct jseg *, struct buf *);
767static	void handle_written_jnewblk(struct jnewblk *);
768static	void handle_written_jblkdep(struct jblkdep *);
769static	void handle_written_jfreefrag(struct jfreefrag *);
770static	void complete_jseg(struct jseg *);
771static	void complete_jsegs(struct jseg *);
772static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
773static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
774static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
775static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
776static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
777static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
778static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
779static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
780static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
781static	inline void inoref_write(struct inoref *, struct jseg *,
782	    struct jrefrec *);
783static	void handle_allocdirect_partdone(struct allocdirect *,
784	    struct workhead *);
785static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
786	    struct workhead *);
787static	void indirdep_complete(struct indirdep *);
788static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
789static	void indirblk_insert(struct freework *);
790static	void indirblk_remove(struct freework *);
791static	void handle_allocindir_partdone(struct allocindir *);
792static	void initiate_write_filepage(struct pagedep *, struct buf *);
793static	void initiate_write_indirdep(struct indirdep*, struct buf *);
794static	void handle_written_mkdir(struct mkdir *, int);
795static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
796	    uint8_t *);
797static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
798static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
799static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
800static	void handle_workitem_freefile(struct freefile *);
801static	int handle_workitem_remove(struct dirrem *, int);
802static	struct dirrem *newdirrem(struct buf *, struct inode *,
803	    struct inode *, int, struct dirrem **);
804static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
805	    struct buf *);
806static	void cancel_indirdep(struct indirdep *, struct buf *,
807	    struct freeblks *);
808static	void free_indirdep(struct indirdep *);
809static	void free_diradd(struct diradd *, struct workhead *);
810static	void merge_diradd(struct inodedep *, struct diradd *);
811static	void complete_diradd(struct diradd *);
812static	struct diradd *diradd_lookup(struct pagedep *, int);
813static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
814	    struct jremref *);
815static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
816	    struct jremref *);
817static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
818	    struct jremref *, struct jremref *);
819static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
820	    struct jremref *);
821static	void cancel_allocindir(struct allocindir *, struct buf *bp,
822	    struct freeblks *, int);
823static	int setup_trunc_indir(struct freeblks *, struct inode *,
824	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
825static	void complete_trunc_indir(struct freework *);
826static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
827	    int);
828static	void complete_mkdir(struct mkdir *);
829static	void free_newdirblk(struct newdirblk *);
830static	void free_jremref(struct jremref *);
831static	void free_jaddref(struct jaddref *);
832static	void free_jsegdep(struct jsegdep *);
833static	void free_jsegs(struct jblocks *);
834static	void rele_jseg(struct jseg *);
835static	void free_jseg(struct jseg *, struct jblocks *);
836static	void free_jnewblk(struct jnewblk *);
837static	void free_jblkdep(struct jblkdep *);
838static	void free_jfreefrag(struct jfreefrag *);
839static	void free_freedep(struct freedep *);
840static	void journal_jremref(struct dirrem *, struct jremref *,
841	    struct inodedep *);
842static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
843static	int cancel_jaddref(struct jaddref *, struct inodedep *,
844	    struct workhead *);
845static	void cancel_jfreefrag(struct jfreefrag *);
846static	inline void setup_freedirect(struct freeblks *, struct inode *,
847	    int, int);
848static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
849static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
850	    ufs_lbn_t, int);
851static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
852static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
853static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
854static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
855static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
856static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
857	    int, int);
858static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
859static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
860static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
861static	void newblk_freefrag(struct newblk*);
862static	void free_newblk(struct newblk *);
863static	void cancel_allocdirect(struct allocdirectlst *,
864	    struct allocdirect *, struct freeblks *);
865static	int check_inode_unwritten(struct inodedep *);
866static	int free_inodedep(struct inodedep *);
867static	void freework_freeblock(struct freework *);
868static	void freework_enqueue(struct freework *);
869static	int handle_workitem_freeblocks(struct freeblks *, int);
870static	int handle_complete_freeblocks(struct freeblks *, int);
871static	void handle_workitem_indirblk(struct freework *);
872static	void handle_written_freework(struct freework *);
873static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
874static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
875	    struct workhead *);
876static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
877	    struct inodedep *, struct allocindir *, ufs_lbn_t);
878static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
879	    ufs2_daddr_t, ufs_lbn_t);
880static	void handle_workitem_freefrag(struct freefrag *);
881static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
882	    ufs_lbn_t);
883static	void allocdirect_merge(struct allocdirectlst *,
884	    struct allocdirect *, struct allocdirect *);
885static	struct freefrag *allocindir_merge(struct allocindir *,
886	    struct allocindir *);
887static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
888	    struct bmsafemap **);
889static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
890	    int cg, struct bmsafemap *);
891static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
892	    struct newblk **);
893static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
894static	int inodedep_find(struct inodedep_hashhead *, ino_t,
895	    struct inodedep **);
896static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
897static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
898	    int, struct pagedep **);
899static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
900	    struct pagedep **);
901static	void pause_timer(void *);
902static	int request_cleanup(struct mount *, int);
903static	void schedule_cleanup(struct mount *);
904static void softdep_ast_cleanup_proc(void);
905static	int process_worklist_item(struct mount *, int, int);
906static	void process_removes(struct vnode *);
907static	void process_truncates(struct vnode *);
908static	void jwork_move(struct workhead *, struct workhead *);
909static	void jwork_insert(struct workhead *, struct jsegdep *);
910static	void add_to_worklist(struct worklist *, int);
911static	void wake_worklist(struct worklist *);
912static	void wait_worklist(struct worklist *, char *);
913static	void remove_from_worklist(struct worklist *);
914static	void softdep_flush(void *);
915static	void softdep_flushjournal(struct mount *);
916static	int softdep_speedup(struct ufsmount *);
917static	void worklist_speedup(struct mount *);
918static	int journal_mount(struct mount *, struct fs *, struct ucred *);
919static	void journal_unmount(struct ufsmount *);
920static	int journal_space(struct ufsmount *, int);
921static	void journal_suspend(struct ufsmount *);
922static	int journal_unsuspend(struct ufsmount *ump);
923static	void softdep_prelink(struct vnode *, struct vnode *);
924static	void add_to_journal(struct worklist *);
925static	void remove_from_journal(struct worklist *);
926static	bool softdep_excess_items(struct ufsmount *, int);
927static	void softdep_process_journal(struct mount *, struct worklist *, int);
928static	struct jremref *newjremref(struct dirrem *, struct inode *,
929	    struct inode *ip, off_t, nlink_t);
930static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
931	    uint16_t);
932static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
933	    uint16_t);
934static	inline struct jsegdep *inoref_jseg(struct inoref *);
935static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
936static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
937	    ufs2_daddr_t, int);
938static	void adjust_newfreework(struct freeblks *, int);
939static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
940static	void move_newblock_dep(struct jaddref *, struct inodedep *);
941static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
942static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
943	    ufs2_daddr_t, long, ufs_lbn_t);
944static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
945	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
946static	int jwait(struct worklist *, int);
947static	struct inodedep *inodedep_lookup_ip(struct inode *);
948static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
949static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
950static	void handle_jwork(struct workhead *);
951static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
952	    struct mkdir **);
953static	struct jblocks *jblocks_create(void);
954static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
955static	void jblocks_free(struct jblocks *, struct mount *, int);
956static	void jblocks_destroy(struct jblocks *);
957static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
958
959/*
960 * Exported softdep operations.
961 */
962static	void softdep_disk_io_initiation(struct buf *);
963static	void softdep_disk_write_complete(struct buf *);
964static	void softdep_deallocate_dependencies(struct buf *);
965static	int softdep_count_dependencies(struct buf *bp, int);
966
967/*
968 * Global lock over all of soft updates.
969 */
970static struct mtx lk;
971MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
972
973#define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
974#define FREE_GBLLOCK(lk)	mtx_unlock(lk)
975#define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
976
977/*
978 * Per-filesystem soft-updates locking.
979 */
980#define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
981#define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
982#define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
983#define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
984#define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
985				    RA_WLOCKED)
986
987#define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
988#define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
989
990/*
991 * Worklist queue management.
992 * These routines require that the lock be held.
993 */
994#ifndef /* NOT */ DEBUG
995#define WORKLIST_INSERT(head, item) do {	\
996	(item)->wk_state |= ONWORKLIST;		\
997	LIST_INSERT_HEAD(head, item, wk_list);	\
998} while (0)
999#define WORKLIST_REMOVE(item) do {		\
1000	(item)->wk_state &= ~ONWORKLIST;	\
1001	LIST_REMOVE(item, wk_list);		\
1002} while (0)
1003#define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1004#define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1005
1006#else /* DEBUG */
1007static	void worklist_insert(struct workhead *, struct worklist *, int);
1008static	void worklist_remove(struct worklist *, int);
1009
1010#define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1011#define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1012#define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1013#define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1014
1015static void
1016worklist_insert(head, item, locked)
1017	struct workhead *head;
1018	struct worklist *item;
1019	int locked;
1020{
1021
1022	if (locked)
1023		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1024	if (item->wk_state & ONWORKLIST)
1025		panic("worklist_insert: %p %s(0x%X) already on list",
1026		    item, TYPENAME(item->wk_type), item->wk_state);
1027	item->wk_state |= ONWORKLIST;
1028	LIST_INSERT_HEAD(head, item, wk_list);
1029}
1030
1031static void
1032worklist_remove(item, locked)
1033	struct worklist *item;
1034	int locked;
1035{
1036
1037	if (locked)
1038		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1039	if ((item->wk_state & ONWORKLIST) == 0)
1040		panic("worklist_remove: %p %s(0x%X) not on list",
1041		    item, TYPENAME(item->wk_type), item->wk_state);
1042	item->wk_state &= ~ONWORKLIST;
1043	LIST_REMOVE(item, wk_list);
1044}
1045#endif /* DEBUG */
1046
1047/*
1048 * Merge two jsegdeps keeping only the oldest one as newer references
1049 * can't be discarded until after older references.
1050 */
1051static inline struct jsegdep *
1052jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1053{
1054	struct jsegdep *swp;
1055
1056	if (two == NULL)
1057		return (one);
1058
1059	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1060		swp = one;
1061		one = two;
1062		two = swp;
1063	}
1064	WORKLIST_REMOVE(&two->jd_list);
1065	free_jsegdep(two);
1066
1067	return (one);
1068}
1069
1070/*
1071 * If two freedeps are compatible free one to reduce list size.
1072 */
1073static inline struct freedep *
1074freedep_merge(struct freedep *one, struct freedep *two)
1075{
1076	if (two == NULL)
1077		return (one);
1078
1079	if (one->fd_freework == two->fd_freework) {
1080		WORKLIST_REMOVE(&two->fd_list);
1081		free_freedep(two);
1082	}
1083	return (one);
1084}
1085
1086/*
1087 * Move journal work from one list to another.  Duplicate freedeps and
1088 * jsegdeps are coalesced to keep the lists as small as possible.
1089 */
1090static void
1091jwork_move(dst, src)
1092	struct workhead *dst;
1093	struct workhead *src;
1094{
1095	struct freedep *freedep;
1096	struct jsegdep *jsegdep;
1097	struct worklist *wkn;
1098	struct worklist *wk;
1099
1100	KASSERT(dst != src,
1101	    ("jwork_move: dst == src"));
1102	freedep = NULL;
1103	jsegdep = NULL;
1104	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1105		if (wk->wk_type == D_JSEGDEP)
1106			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1107		if (wk->wk_type == D_FREEDEP)
1108			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1109	}
1110
1111	while ((wk = LIST_FIRST(src)) != NULL) {
1112		WORKLIST_REMOVE(wk);
1113		WORKLIST_INSERT(dst, wk);
1114		if (wk->wk_type == D_JSEGDEP) {
1115			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1116			continue;
1117		}
1118		if (wk->wk_type == D_FREEDEP)
1119			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1120	}
1121}
1122
1123static void
1124jwork_insert(dst, jsegdep)
1125	struct workhead *dst;
1126	struct jsegdep *jsegdep;
1127{
1128	struct jsegdep *jsegdepn;
1129	struct worklist *wk;
1130
1131	LIST_FOREACH(wk, dst, wk_list)
1132		if (wk->wk_type == D_JSEGDEP)
1133			break;
1134	if (wk == NULL) {
1135		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1136		return;
1137	}
1138	jsegdepn = WK_JSEGDEP(wk);
1139	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1140		WORKLIST_REMOVE(wk);
1141		free_jsegdep(jsegdepn);
1142		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1143	} else
1144		free_jsegdep(jsegdep);
1145}
1146
1147/*
1148 * Routines for tracking and managing workitems.
1149 */
1150static	void workitem_free(struct worklist *, int);
1151static	void workitem_alloc(struct worklist *, int, struct mount *);
1152static	void workitem_reassign(struct worklist *, int);
1153
1154#define	WORKITEM_FREE(item, type) \
1155	workitem_free((struct worklist *)(item), (type))
1156#define	WORKITEM_REASSIGN(item, type) \
1157	workitem_reassign((struct worklist *)(item), (type))
1158
1159static void
1160workitem_free(item, type)
1161	struct worklist *item;
1162	int type;
1163{
1164	struct ufsmount *ump;
1165
1166#ifdef DEBUG
1167	if (item->wk_state & ONWORKLIST)
1168		panic("workitem_free: %s(0x%X) still on list",
1169		    TYPENAME(item->wk_type), item->wk_state);
1170	if (item->wk_type != type && type != D_NEWBLK)
1171		panic("workitem_free: type mismatch %s != %s",
1172		    TYPENAME(item->wk_type), TYPENAME(type));
1173#endif
1174	if (item->wk_state & IOWAITING)
1175		wakeup(item);
1176	ump = VFSTOUFS(item->wk_mp);
1177	LOCK_OWNED(ump);
1178	KASSERT(ump->softdep_deps > 0,
1179	    ("workitem_free: %s: softdep_deps going negative",
1180	    ump->um_fs->fs_fsmnt));
1181	if (--ump->softdep_deps == 0 && ump->softdep_req)
1182		wakeup(&ump->softdep_deps);
1183	KASSERT(dep_current[item->wk_type] > 0,
1184	    ("workitem_free: %s: dep_current[%s] going negative",
1185	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1186	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1187	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1188	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1189	atomic_subtract_long(&dep_current[item->wk_type], 1);
1190	ump->softdep_curdeps[item->wk_type] -= 1;
1191	free(item, DtoM(type));
1192}
1193
1194static void
1195workitem_alloc(item, type, mp)
1196	struct worklist *item;
1197	int type;
1198	struct mount *mp;
1199{
1200	struct ufsmount *ump;
1201
1202	item->wk_type = type;
1203	item->wk_mp = mp;
1204	item->wk_state = 0;
1205
1206	ump = VFSTOUFS(mp);
1207	ACQUIRE_GBLLOCK(&lk);
1208	dep_current[type]++;
1209	if (dep_current[type] > dep_highuse[type])
1210		dep_highuse[type] = dep_current[type];
1211	dep_total[type]++;
1212	FREE_GBLLOCK(&lk);
1213	ACQUIRE_LOCK(ump);
1214	ump->softdep_curdeps[type] += 1;
1215	ump->softdep_deps++;
1216	ump->softdep_accdeps++;
1217	FREE_LOCK(ump);
1218}
1219
1220static void
1221workitem_reassign(item, newtype)
1222	struct worklist *item;
1223	int newtype;
1224{
1225	struct ufsmount *ump;
1226
1227	ump = VFSTOUFS(item->wk_mp);
1228	LOCK_OWNED(ump);
1229	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1230	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1231	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1232	ump->softdep_curdeps[item->wk_type] -= 1;
1233	ump->softdep_curdeps[newtype] += 1;
1234	KASSERT(dep_current[item->wk_type] > 0,
1235	    ("workitem_reassign: %s: dep_current[%s] going negative",
1236	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1237	ACQUIRE_GBLLOCK(&lk);
1238	dep_current[newtype]++;
1239	dep_current[item->wk_type]--;
1240	if (dep_current[newtype] > dep_highuse[newtype])
1241		dep_highuse[newtype] = dep_current[newtype];
1242	dep_total[newtype]++;
1243	FREE_GBLLOCK(&lk);
1244	item->wk_type = newtype;
1245}
1246
1247/*
1248 * Workitem queue management
1249 */
1250static int max_softdeps;	/* maximum number of structs before slowdown */
1251static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1252static int proc_waiting;	/* tracks whether we have a timeout posted */
1253static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1254static struct callout softdep_callout;
1255static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1256static int req_clear_remove;	/* syncer process flush some freeblks */
1257static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1258
1259/*
1260 * runtime statistics
1261 */
1262static int stat_flush_threads;	/* number of softdep flushing threads */
1263static int stat_worklist_push;	/* number of worklist cleanups */
1264static int stat_blk_limit_push;	/* number of times block limit neared */
1265static int stat_ino_limit_push;	/* number of times inode limit neared */
1266static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1267static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1268static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1269static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1270static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1271static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1272static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1273static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1274static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1275static int stat_journal_min;	/* Times hit journal min threshold */
1276static int stat_journal_low;	/* Times hit journal low threshold */
1277static int stat_journal_wait;	/* Times blocked in jwait(). */
1278static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1279static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1280static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1281static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1282static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1283static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1284static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1285static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1286static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1287static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1288
1289SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1290    &max_softdeps, 0, "");
1291SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1292    &tickdelay, 0, "");
1293SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1294    &stat_flush_threads, 0, "");
1295SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1296    &stat_worklist_push, 0,"");
1297SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1298    &stat_blk_limit_push, 0,"");
1299SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1300    &stat_ino_limit_push, 0,"");
1301SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1302    &stat_blk_limit_hit, 0, "");
1303SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1304    &stat_ino_limit_hit, 0, "");
1305SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1306    &stat_sync_limit_hit, 0, "");
1307SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1308    &stat_indir_blk_ptrs, 0, "");
1309SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1310    &stat_inode_bitmap, 0, "");
1311SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1312    &stat_direct_blk_ptrs, 0, "");
1313SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1314    &stat_dir_entry, 0, "");
1315SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1316    &stat_jaddref, 0, "");
1317SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1318    &stat_jnewblk, 0, "");
1319SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1320    &stat_journal_low, 0, "");
1321SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1322    &stat_journal_min, 0, "");
1323SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1324    &stat_journal_wait, 0, "");
1325SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1326    &stat_jwait_filepage, 0, "");
1327SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1328    &stat_jwait_freeblks, 0, "");
1329SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1330    &stat_jwait_inode, 0, "");
1331SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1332    &stat_jwait_newblk, 0, "");
1333SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1334    &stat_cleanup_blkrequests, 0, "");
1335SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1336    &stat_cleanup_inorequests, 0, "");
1337SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1338    &stat_cleanup_high_delay, 0, "");
1339SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1340    &stat_cleanup_retries, 0, "");
1341SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1342    &stat_cleanup_failures, 0, "");
1343SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1344    &softdep_flushcache, 0, "");
1345SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1346    &stat_emptyjblocks, 0, "");
1347
1348SYSCTL_DECL(_vfs_ffs);
1349
1350/* Whether to recompute the summary at mount time */
1351static int compute_summary_at_mount = 0;
1352SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1353	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1354static int print_threads = 0;
1355SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1356    &print_threads, 0, "Notify flusher thread start/stop");
1357
1358/* List of all filesystems mounted with soft updates */
1359static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1360
1361/*
1362 * This function cleans the worklist for a filesystem.
1363 * Each filesystem running with soft dependencies gets its own
1364 * thread to run in this function. The thread is started up in
1365 * softdep_mount and shutdown in softdep_unmount. They show up
1366 * as part of the kernel "bufdaemon" process whose process
1367 * entry is available in bufdaemonproc.
1368 */
1369static int searchfailed;
1370extern struct proc *bufdaemonproc;
1371static void
1372softdep_flush(addr)
1373	void *addr;
1374{
1375	struct mount *mp;
1376	struct thread *td;
1377	struct ufsmount *ump;
1378
1379	td = curthread;
1380	td->td_pflags |= TDP_NORUNNINGBUF;
1381	mp = (struct mount *)addr;
1382	ump = VFSTOUFS(mp);
1383	atomic_add_int(&stat_flush_threads, 1);
1384	ACQUIRE_LOCK(ump);
1385	ump->softdep_flags &= ~FLUSH_STARTING;
1386	wakeup(&ump->softdep_flushtd);
1387	FREE_LOCK(ump);
1388	if (print_threads) {
1389		if (stat_flush_threads == 1)
1390			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1391			    bufdaemonproc->p_pid);
1392		printf("Start thread %s\n", td->td_name);
1393	}
1394	for (;;) {
1395		while (softdep_process_worklist(mp, 0) > 0 ||
1396		    (MOUNTEDSUJ(mp) &&
1397		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1398			kthread_suspend_check();
1399		ACQUIRE_LOCK(ump);
1400		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1401			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1402			    "sdflush", hz / 2);
1403		ump->softdep_flags &= ~FLUSH_CLEANUP;
1404		/*
1405		 * Check to see if we are done and need to exit.
1406		 */
1407		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1408			FREE_LOCK(ump);
1409			continue;
1410		}
1411		ump->softdep_flags &= ~FLUSH_EXIT;
1412		FREE_LOCK(ump);
1413		wakeup(&ump->softdep_flags);
1414		if (print_threads)
1415			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1416		atomic_subtract_int(&stat_flush_threads, 1);
1417		kthread_exit();
1418		panic("kthread_exit failed\n");
1419	}
1420}
1421
1422static void
1423worklist_speedup(mp)
1424	struct mount *mp;
1425{
1426	struct ufsmount *ump;
1427
1428	ump = VFSTOUFS(mp);
1429	LOCK_OWNED(ump);
1430	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1431		ump->softdep_flags |= FLUSH_CLEANUP;
1432	wakeup(&ump->softdep_flushtd);
1433}
1434
1435static int
1436softdep_speedup(ump)
1437	struct ufsmount *ump;
1438{
1439	struct ufsmount *altump;
1440	struct mount_softdeps *sdp;
1441
1442	LOCK_OWNED(ump);
1443	worklist_speedup(ump->um_mountp);
1444	bd_speedup();
1445	/*
1446	 * If we have global shortages, then we need other
1447	 * filesystems to help with the cleanup. Here we wakeup a
1448	 * flusher thread for a filesystem that is over its fair
1449	 * share of resources.
1450	 */
1451	if (req_clear_inodedeps || req_clear_remove) {
1452		ACQUIRE_GBLLOCK(&lk);
1453		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1454			if ((altump = sdp->sd_ump) == ump)
1455				continue;
1456			if (((req_clear_inodedeps &&
1457			    altump->softdep_curdeps[D_INODEDEP] >
1458			    max_softdeps / stat_flush_threads) ||
1459			    (req_clear_remove &&
1460			    altump->softdep_curdeps[D_DIRREM] >
1461			    (max_softdeps / 2) / stat_flush_threads)) &&
1462			    TRY_ACQUIRE_LOCK(altump))
1463				break;
1464		}
1465		if (sdp == NULL) {
1466			searchfailed++;
1467			FREE_GBLLOCK(&lk);
1468		} else {
1469			/*
1470			 * Move to the end of the list so we pick a
1471			 * different one on out next try.
1472			 */
1473			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1474			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1475			FREE_GBLLOCK(&lk);
1476			if ((altump->softdep_flags &
1477			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1478				altump->softdep_flags |= FLUSH_CLEANUP;
1479			altump->um_softdep->sd_cleanups++;
1480			wakeup(&altump->softdep_flushtd);
1481			FREE_LOCK(altump);
1482		}
1483	}
1484	return (speedup_syncer());
1485}
1486
1487/*
1488 * Add an item to the end of the work queue.
1489 * This routine requires that the lock be held.
1490 * This is the only routine that adds items to the list.
1491 * The following routine is the only one that removes items
1492 * and does so in order from first to last.
1493 */
1494
1495#define	WK_HEAD		0x0001	/* Add to HEAD. */
1496#define	WK_NODELAY	0x0002	/* Process immediately. */
1497
1498static void
1499add_to_worklist(wk, flags)
1500	struct worklist *wk;
1501	int flags;
1502{
1503	struct ufsmount *ump;
1504
1505	ump = VFSTOUFS(wk->wk_mp);
1506	LOCK_OWNED(ump);
1507	if (wk->wk_state & ONWORKLIST)
1508		panic("add_to_worklist: %s(0x%X) already on list",
1509		    TYPENAME(wk->wk_type), wk->wk_state);
1510	wk->wk_state |= ONWORKLIST;
1511	if (ump->softdep_on_worklist == 0) {
1512		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1513		ump->softdep_worklist_tail = wk;
1514	} else if (flags & WK_HEAD) {
1515		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1516	} else {
1517		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1518		ump->softdep_worklist_tail = wk;
1519	}
1520	ump->softdep_on_worklist += 1;
1521	if (flags & WK_NODELAY)
1522		worklist_speedup(wk->wk_mp);
1523}
1524
1525/*
1526 * Remove the item to be processed. If we are removing the last
1527 * item on the list, we need to recalculate the tail pointer.
1528 */
1529static void
1530remove_from_worklist(wk)
1531	struct worklist *wk;
1532{
1533	struct ufsmount *ump;
1534
1535	ump = VFSTOUFS(wk->wk_mp);
1536	WORKLIST_REMOVE(wk);
1537	if (ump->softdep_worklist_tail == wk)
1538		ump->softdep_worklist_tail =
1539		    (struct worklist *)wk->wk_list.le_prev;
1540	ump->softdep_on_worklist -= 1;
1541}
1542
1543static void
1544wake_worklist(wk)
1545	struct worklist *wk;
1546{
1547	if (wk->wk_state & IOWAITING) {
1548		wk->wk_state &= ~IOWAITING;
1549		wakeup(wk);
1550	}
1551}
1552
1553static void
1554wait_worklist(wk, wmesg)
1555	struct worklist *wk;
1556	char *wmesg;
1557{
1558	struct ufsmount *ump;
1559
1560	ump = VFSTOUFS(wk->wk_mp);
1561	wk->wk_state |= IOWAITING;
1562	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1563}
1564
1565/*
1566 * Process that runs once per second to handle items in the background queue.
1567 *
1568 * Note that we ensure that everything is done in the order in which they
1569 * appear in the queue. The code below depends on this property to ensure
1570 * that blocks of a file are freed before the inode itself is freed. This
1571 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1572 * until all the old ones have been purged from the dependency lists.
1573 */
1574static int
1575softdep_process_worklist(mp, full)
1576	struct mount *mp;
1577	int full;
1578{
1579	int cnt, matchcnt;
1580	struct ufsmount *ump;
1581	long starttime;
1582
1583	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1584	if (MOUNTEDSOFTDEP(mp) == 0)
1585		return (0);
1586	matchcnt = 0;
1587	ump = VFSTOUFS(mp);
1588	ACQUIRE_LOCK(ump);
1589	starttime = time_second;
1590	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1591	check_clear_deps(mp);
1592	while (ump->softdep_on_worklist > 0) {
1593		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1594			break;
1595		else
1596			matchcnt += cnt;
1597		check_clear_deps(mp);
1598		/*
1599		 * We do not generally want to stop for buffer space, but if
1600		 * we are really being a buffer hog, we will stop and wait.
1601		 */
1602		if (should_yield()) {
1603			FREE_LOCK(ump);
1604			kern_yield(PRI_USER);
1605			bwillwrite();
1606			ACQUIRE_LOCK(ump);
1607		}
1608		/*
1609		 * Never allow processing to run for more than one
1610		 * second. This gives the syncer thread the opportunity
1611		 * to pause if appropriate.
1612		 */
1613		if (!full && starttime != time_second)
1614			break;
1615	}
1616	if (full == 0)
1617		journal_unsuspend(ump);
1618	FREE_LOCK(ump);
1619	return (matchcnt);
1620}
1621
1622/*
1623 * Process all removes associated with a vnode if we are running out of
1624 * journal space.  Any other process which attempts to flush these will
1625 * be unable as we have the vnodes locked.
1626 */
1627static void
1628process_removes(vp)
1629	struct vnode *vp;
1630{
1631	struct inodedep *inodedep;
1632	struct dirrem *dirrem;
1633	struct ufsmount *ump;
1634	struct mount *mp;
1635	ino_t inum;
1636
1637	mp = vp->v_mount;
1638	ump = VFSTOUFS(mp);
1639	LOCK_OWNED(ump);
1640	inum = VTOI(vp)->i_number;
1641	for (;;) {
1642top:
1643		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1644			return;
1645		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1646			/*
1647			 * If another thread is trying to lock this vnode
1648			 * it will fail but we must wait for it to do so
1649			 * before we can proceed.
1650			 */
1651			if (dirrem->dm_state & INPROGRESS) {
1652				wait_worklist(&dirrem->dm_list, "pwrwait");
1653				goto top;
1654			}
1655			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1656			    (COMPLETE | ONWORKLIST))
1657				break;
1658		}
1659		if (dirrem == NULL)
1660			return;
1661		remove_from_worklist(&dirrem->dm_list);
1662		FREE_LOCK(ump);
1663		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1664			panic("process_removes: suspended filesystem");
1665		handle_workitem_remove(dirrem, 0);
1666		vn_finished_secondary_write(mp);
1667		ACQUIRE_LOCK(ump);
1668	}
1669}
1670
1671/*
1672 * Process all truncations associated with a vnode if we are running out
1673 * of journal space.  This is called when the vnode lock is already held
1674 * and no other process can clear the truncation.  This function returns
1675 * a value greater than zero if it did any work.
1676 */
1677static void
1678process_truncates(vp)
1679	struct vnode *vp;
1680{
1681	struct inodedep *inodedep;
1682	struct freeblks *freeblks;
1683	struct ufsmount *ump;
1684	struct mount *mp;
1685	ino_t inum;
1686	int cgwait;
1687
1688	mp = vp->v_mount;
1689	ump = VFSTOUFS(mp);
1690	LOCK_OWNED(ump);
1691	inum = VTOI(vp)->i_number;
1692	for (;;) {
1693		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1694			return;
1695		cgwait = 0;
1696		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1697			/* Journal entries not yet written.  */
1698			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1699				jwait(&LIST_FIRST(
1700				    &freeblks->fb_jblkdephd)->jb_list,
1701				    MNT_WAIT);
1702				break;
1703			}
1704			/* Another thread is executing this item. */
1705			if (freeblks->fb_state & INPROGRESS) {
1706				wait_worklist(&freeblks->fb_list, "ptrwait");
1707				break;
1708			}
1709			/* Freeblks is waiting on a inode write. */
1710			if ((freeblks->fb_state & COMPLETE) == 0) {
1711				FREE_LOCK(ump);
1712				ffs_update(vp, 1);
1713				ACQUIRE_LOCK(ump);
1714				break;
1715			}
1716			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1717			    (ALLCOMPLETE | ONWORKLIST)) {
1718				remove_from_worklist(&freeblks->fb_list);
1719				freeblks->fb_state |= INPROGRESS;
1720				FREE_LOCK(ump);
1721				if (vn_start_secondary_write(NULL, &mp,
1722				    V_NOWAIT))
1723					panic("process_truncates: "
1724					    "suspended filesystem");
1725				handle_workitem_freeblocks(freeblks, 0);
1726				vn_finished_secondary_write(mp);
1727				ACQUIRE_LOCK(ump);
1728				break;
1729			}
1730			if (freeblks->fb_cgwait)
1731				cgwait++;
1732		}
1733		if (cgwait) {
1734			FREE_LOCK(ump);
1735			sync_cgs(mp, MNT_WAIT);
1736			ffs_sync_snap(mp, MNT_WAIT);
1737			ACQUIRE_LOCK(ump);
1738			continue;
1739		}
1740		if (freeblks == NULL)
1741			break;
1742	}
1743	return;
1744}
1745
1746/*
1747 * Process one item on the worklist.
1748 */
1749static int
1750process_worklist_item(mp, target, flags)
1751	struct mount *mp;
1752	int target;
1753	int flags;
1754{
1755	struct worklist sentinel;
1756	struct worklist *wk;
1757	struct ufsmount *ump;
1758	int matchcnt;
1759	int error;
1760
1761	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1762	/*
1763	 * If we are being called because of a process doing a
1764	 * copy-on-write, then it is not safe to write as we may
1765	 * recurse into the copy-on-write routine.
1766	 */
1767	if (curthread->td_pflags & TDP_COWINPROGRESS)
1768		return (-1);
1769	PHOLD(curproc);	/* Don't let the stack go away. */
1770	ump = VFSTOUFS(mp);
1771	LOCK_OWNED(ump);
1772	matchcnt = 0;
1773	sentinel.wk_mp = NULL;
1774	sentinel.wk_type = D_SENTINEL;
1775	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1776	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1777	    wk = LIST_NEXT(&sentinel, wk_list)) {
1778		if (wk->wk_type == D_SENTINEL) {
1779			LIST_REMOVE(&sentinel, wk_list);
1780			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1781			continue;
1782		}
1783		if (wk->wk_state & INPROGRESS)
1784			panic("process_worklist_item: %p already in progress.",
1785			    wk);
1786		wk->wk_state |= INPROGRESS;
1787		remove_from_worklist(wk);
1788		FREE_LOCK(ump);
1789		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1790			panic("process_worklist_item: suspended filesystem");
1791		switch (wk->wk_type) {
1792		case D_DIRREM:
1793			/* removal of a directory entry */
1794			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1795			break;
1796
1797		case D_FREEBLKS:
1798			/* releasing blocks and/or fragments from a file */
1799			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1800			    flags);
1801			break;
1802
1803		case D_FREEFRAG:
1804			/* releasing a fragment when replaced as a file grows */
1805			handle_workitem_freefrag(WK_FREEFRAG(wk));
1806			error = 0;
1807			break;
1808
1809		case D_FREEFILE:
1810			/* releasing an inode when its link count drops to 0 */
1811			handle_workitem_freefile(WK_FREEFILE(wk));
1812			error = 0;
1813			break;
1814
1815		default:
1816			panic("%s_process_worklist: Unknown type %s",
1817			    "softdep", TYPENAME(wk->wk_type));
1818			/* NOTREACHED */
1819		}
1820		vn_finished_secondary_write(mp);
1821		ACQUIRE_LOCK(ump);
1822		if (error == 0) {
1823			if (++matchcnt == target)
1824				break;
1825			continue;
1826		}
1827		/*
1828		 * We have to retry the worklist item later.  Wake up any
1829		 * waiters who may be able to complete it immediately and
1830		 * add the item back to the head so we don't try to execute
1831		 * it again.
1832		 */
1833		wk->wk_state &= ~INPROGRESS;
1834		wake_worklist(wk);
1835		add_to_worklist(wk, WK_HEAD);
1836	}
1837	LIST_REMOVE(&sentinel, wk_list);
1838	/* Sentinal could've become the tail from remove_from_worklist. */
1839	if (ump->softdep_worklist_tail == &sentinel)
1840		ump->softdep_worklist_tail =
1841		    (struct worklist *)sentinel.wk_list.le_prev;
1842	PRELE(curproc);
1843	return (matchcnt);
1844}
1845
1846/*
1847 * Move dependencies from one buffer to another.
1848 */
1849int
1850softdep_move_dependencies(oldbp, newbp)
1851	struct buf *oldbp;
1852	struct buf *newbp;
1853{
1854	struct worklist *wk, *wktail;
1855	struct ufsmount *ump;
1856	int dirty;
1857
1858	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1859		return (0);
1860	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1861	    ("softdep_move_dependencies called on non-softdep filesystem"));
1862	dirty = 0;
1863	wktail = NULL;
1864	ump = VFSTOUFS(wk->wk_mp);
1865	ACQUIRE_LOCK(ump);
1866	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1867		LIST_REMOVE(wk, wk_list);
1868		if (wk->wk_type == D_BMSAFEMAP &&
1869		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1870			dirty = 1;
1871		if (wktail == NULL)
1872			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1873		else
1874			LIST_INSERT_AFTER(wktail, wk, wk_list);
1875		wktail = wk;
1876	}
1877	FREE_LOCK(ump);
1878
1879	return (dirty);
1880}
1881
1882/*
1883 * Purge the work list of all items associated with a particular mount point.
1884 */
1885int
1886softdep_flushworklist(oldmnt, countp, td)
1887	struct mount *oldmnt;
1888	int *countp;
1889	struct thread *td;
1890{
1891	struct vnode *devvp;
1892	struct ufsmount *ump;
1893	int count, error;
1894
1895	/*
1896	 * Alternately flush the block device associated with the mount
1897	 * point and process any dependencies that the flushing
1898	 * creates. We continue until no more worklist dependencies
1899	 * are found.
1900	 */
1901	*countp = 0;
1902	error = 0;
1903	ump = VFSTOUFS(oldmnt);
1904	devvp = ump->um_devvp;
1905	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1906		*countp += count;
1907		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1908		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1909		VOP_UNLOCK(devvp, 0);
1910		if (error != 0)
1911			break;
1912	}
1913	return (error);
1914}
1915
1916#define	SU_WAITIDLE_RETRIES	20
1917static int
1918softdep_waitidle(struct mount *mp, int flags __unused)
1919{
1920	struct ufsmount *ump;
1921	struct vnode *devvp;
1922	struct thread *td;
1923	int error, i;
1924
1925	ump = VFSTOUFS(mp);
1926	devvp = ump->um_devvp;
1927	td = curthread;
1928	error = 0;
1929	ACQUIRE_LOCK(ump);
1930	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1931		ump->softdep_req = 1;
1932		KASSERT((flags & FORCECLOSE) == 0 ||
1933		    ump->softdep_on_worklist == 0,
1934		    ("softdep_waitidle: work added after flush"));
1935		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1936		    "softdeps", 10 * hz);
1937		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1938		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1939		VOP_UNLOCK(devvp, 0);
1940		ACQUIRE_LOCK(ump);
1941		if (error != 0)
1942			break;
1943	}
1944	ump->softdep_req = 0;
1945	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1946		error = EBUSY;
1947		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1948		    mp);
1949	}
1950	FREE_LOCK(ump);
1951	return (error);
1952}
1953
1954/*
1955 * Flush all vnodes and worklist items associated with a specified mount point.
1956 */
1957int
1958softdep_flushfiles(oldmnt, flags, td)
1959	struct mount *oldmnt;
1960	int flags;
1961	struct thread *td;
1962{
1963#ifdef QUOTA
1964	struct ufsmount *ump;
1965	int i;
1966#endif
1967	int error, early, depcount, loopcnt, retry_flush_count, retry;
1968	int morework;
1969
1970	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1971	    ("softdep_flushfiles called on non-softdep filesystem"));
1972	loopcnt = 10;
1973	retry_flush_count = 3;
1974retry_flush:
1975	error = 0;
1976
1977	/*
1978	 * Alternately flush the vnodes associated with the mount
1979	 * point and process any dependencies that the flushing
1980	 * creates. In theory, this loop can happen at most twice,
1981	 * but we give it a few extra just to be sure.
1982	 */
1983	for (; loopcnt > 0; loopcnt--) {
1984		/*
1985		 * Do another flush in case any vnodes were brought in
1986		 * as part of the cleanup operations.
1987		 */
1988		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1989		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1990		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1991			break;
1992		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1993		    depcount == 0)
1994			break;
1995	}
1996	/*
1997	 * If we are unmounting then it is an error to fail. If we
1998	 * are simply trying to downgrade to read-only, then filesystem
1999	 * activity can keep us busy forever, so we just fail with EBUSY.
2000	 */
2001	if (loopcnt == 0) {
2002		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2003			panic("softdep_flushfiles: looping");
2004		error = EBUSY;
2005	}
2006	if (!error)
2007		error = softdep_waitidle(oldmnt, flags);
2008	if (!error) {
2009		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2010			retry = 0;
2011			MNT_ILOCK(oldmnt);
2012			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
2013			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2014			morework = oldmnt->mnt_nvnodelistsize > 0;
2015#ifdef QUOTA
2016			ump = VFSTOUFS(oldmnt);
2017			UFS_LOCK(ump);
2018			for (i = 0; i < MAXQUOTAS; i++) {
2019				if (ump->um_quotas[i] != NULLVP)
2020					morework = 1;
2021			}
2022			UFS_UNLOCK(ump);
2023#endif
2024			if (morework) {
2025				if (--retry_flush_count > 0) {
2026					retry = 1;
2027					loopcnt = 3;
2028				} else
2029					error = EBUSY;
2030			}
2031			MNT_IUNLOCK(oldmnt);
2032			if (retry)
2033				goto retry_flush;
2034		}
2035	}
2036	return (error);
2037}
2038
2039/*
2040 * Structure hashing.
2041 *
2042 * There are four types of structures that can be looked up:
2043 *	1) pagedep structures identified by mount point, inode number,
2044 *	   and logical block.
2045 *	2) inodedep structures identified by mount point and inode number.
2046 *	3) newblk structures identified by mount point and
2047 *	   physical block number.
2048 *	4) bmsafemap structures identified by mount point and
2049 *	   cylinder group number.
2050 *
2051 * The "pagedep" and "inodedep" dependency structures are hashed
2052 * separately from the file blocks and inodes to which they correspond.
2053 * This separation helps when the in-memory copy of an inode or
2054 * file block must be replaced. It also obviates the need to access
2055 * an inode or file page when simply updating (or de-allocating)
2056 * dependency structures. Lookup of newblk structures is needed to
2057 * find newly allocated blocks when trying to associate them with
2058 * their allocdirect or allocindir structure.
2059 *
2060 * The lookup routines optionally create and hash a new instance when
2061 * an existing entry is not found. The bmsafemap lookup routine always
2062 * allocates a new structure if an existing one is not found.
2063 */
2064#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2065
2066/*
2067 * Structures and routines associated with pagedep caching.
2068 */
2069#define	PAGEDEP_HASH(ump, inum, lbn) \
2070	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2071
2072static int
2073pagedep_find(pagedephd, ino, lbn, pagedeppp)
2074	struct pagedep_hashhead *pagedephd;
2075	ino_t ino;
2076	ufs_lbn_t lbn;
2077	struct pagedep **pagedeppp;
2078{
2079	struct pagedep *pagedep;
2080
2081	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2082		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2083			*pagedeppp = pagedep;
2084			return (1);
2085		}
2086	}
2087	*pagedeppp = NULL;
2088	return (0);
2089}
2090/*
2091 * Look up a pagedep. Return 1 if found, 0 otherwise.
2092 * If not found, allocate if DEPALLOC flag is passed.
2093 * Found or allocated entry is returned in pagedeppp.
2094 * This routine must be called with splbio interrupts blocked.
2095 */
2096static int
2097pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2098	struct mount *mp;
2099	struct buf *bp;
2100	ino_t ino;
2101	ufs_lbn_t lbn;
2102	int flags;
2103	struct pagedep **pagedeppp;
2104{
2105	struct pagedep *pagedep;
2106	struct pagedep_hashhead *pagedephd;
2107	struct worklist *wk;
2108	struct ufsmount *ump;
2109	int ret;
2110	int i;
2111
2112	ump = VFSTOUFS(mp);
2113	LOCK_OWNED(ump);
2114	if (bp) {
2115		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2116			if (wk->wk_type == D_PAGEDEP) {
2117				*pagedeppp = WK_PAGEDEP(wk);
2118				return (1);
2119			}
2120		}
2121	}
2122	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2123	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2124	if (ret) {
2125		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2126			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2127		return (1);
2128	}
2129	if ((flags & DEPALLOC) == 0)
2130		return (0);
2131	FREE_LOCK(ump);
2132	pagedep = malloc(sizeof(struct pagedep),
2133	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2134	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2135	ACQUIRE_LOCK(ump);
2136	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2137	if (*pagedeppp) {
2138		/*
2139		 * This should never happen since we only create pagedeps
2140		 * with the vnode lock held.  Could be an assert.
2141		 */
2142		WORKITEM_FREE(pagedep, D_PAGEDEP);
2143		return (ret);
2144	}
2145	pagedep->pd_ino = ino;
2146	pagedep->pd_lbn = lbn;
2147	LIST_INIT(&pagedep->pd_dirremhd);
2148	LIST_INIT(&pagedep->pd_pendinghd);
2149	for (i = 0; i < DAHASHSZ; i++)
2150		LIST_INIT(&pagedep->pd_diraddhd[i]);
2151	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2152	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2153	*pagedeppp = pagedep;
2154	return (0);
2155}
2156
2157/*
2158 * Structures and routines associated with inodedep caching.
2159 */
2160#define	INODEDEP_HASH(ump, inum) \
2161      (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2162
2163static int
2164inodedep_find(inodedephd, inum, inodedeppp)
2165	struct inodedep_hashhead *inodedephd;
2166	ino_t inum;
2167	struct inodedep **inodedeppp;
2168{
2169	struct inodedep *inodedep;
2170
2171	LIST_FOREACH(inodedep, inodedephd, id_hash)
2172		if (inum == inodedep->id_ino)
2173			break;
2174	if (inodedep) {
2175		*inodedeppp = inodedep;
2176		return (1);
2177	}
2178	*inodedeppp = NULL;
2179
2180	return (0);
2181}
2182/*
2183 * Look up an inodedep. Return 1 if found, 0 if not found.
2184 * If not found, allocate if DEPALLOC flag is passed.
2185 * Found or allocated entry is returned in inodedeppp.
2186 * This routine must be called with splbio interrupts blocked.
2187 */
2188static int
2189inodedep_lookup(mp, inum, flags, inodedeppp)
2190	struct mount *mp;
2191	ino_t inum;
2192	int flags;
2193	struct inodedep **inodedeppp;
2194{
2195	struct inodedep *inodedep;
2196	struct inodedep_hashhead *inodedephd;
2197	struct ufsmount *ump;
2198	struct fs *fs;
2199
2200	ump = VFSTOUFS(mp);
2201	LOCK_OWNED(ump);
2202	fs = ump->um_fs;
2203	inodedephd = INODEDEP_HASH(ump, inum);
2204
2205	if (inodedep_find(inodedephd, inum, inodedeppp))
2206		return (1);
2207	if ((flags & DEPALLOC) == 0)
2208		return (0);
2209	/*
2210	 * If the system is over its limit and our filesystem is
2211	 * responsible for more than our share of that usage and
2212	 * we are not in a rush, request some inodedep cleanup.
2213	 */
2214	if (softdep_excess_items(ump, D_INODEDEP))
2215		schedule_cleanup(mp);
2216	else
2217		FREE_LOCK(ump);
2218	inodedep = malloc(sizeof(struct inodedep),
2219		M_INODEDEP, M_SOFTDEP_FLAGS);
2220	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2221	ACQUIRE_LOCK(ump);
2222	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2223		WORKITEM_FREE(inodedep, D_INODEDEP);
2224		return (1);
2225	}
2226	inodedep->id_fs = fs;
2227	inodedep->id_ino = inum;
2228	inodedep->id_state = ALLCOMPLETE;
2229	inodedep->id_nlinkdelta = 0;
2230	inodedep->id_savedino1 = NULL;
2231	inodedep->id_savedsize = -1;
2232	inodedep->id_savedextsize = -1;
2233	inodedep->id_savednlink = -1;
2234	inodedep->id_bmsafemap = NULL;
2235	inodedep->id_mkdiradd = NULL;
2236	LIST_INIT(&inodedep->id_dirremhd);
2237	LIST_INIT(&inodedep->id_pendinghd);
2238	LIST_INIT(&inodedep->id_inowait);
2239	LIST_INIT(&inodedep->id_bufwait);
2240	TAILQ_INIT(&inodedep->id_inoreflst);
2241	TAILQ_INIT(&inodedep->id_inoupdt);
2242	TAILQ_INIT(&inodedep->id_newinoupdt);
2243	TAILQ_INIT(&inodedep->id_extupdt);
2244	TAILQ_INIT(&inodedep->id_newextupdt);
2245	TAILQ_INIT(&inodedep->id_freeblklst);
2246	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2247	*inodedeppp = inodedep;
2248	return (0);
2249}
2250
2251/*
2252 * Structures and routines associated with newblk caching.
2253 */
2254#define	NEWBLK_HASH(ump, inum) \
2255	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2256
2257static int
2258newblk_find(newblkhd, newblkno, flags, newblkpp)
2259	struct newblk_hashhead *newblkhd;
2260	ufs2_daddr_t newblkno;
2261	int flags;
2262	struct newblk **newblkpp;
2263{
2264	struct newblk *newblk;
2265
2266	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2267		if (newblkno != newblk->nb_newblkno)
2268			continue;
2269		/*
2270		 * If we're creating a new dependency don't match those that
2271		 * have already been converted to allocdirects.  This is for
2272		 * a frag extend.
2273		 */
2274		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2275			continue;
2276		break;
2277	}
2278	if (newblk) {
2279		*newblkpp = newblk;
2280		return (1);
2281	}
2282	*newblkpp = NULL;
2283	return (0);
2284}
2285
2286/*
2287 * Look up a newblk. Return 1 if found, 0 if not found.
2288 * If not found, allocate if DEPALLOC flag is passed.
2289 * Found or allocated entry is returned in newblkpp.
2290 */
2291static int
2292newblk_lookup(mp, newblkno, flags, newblkpp)
2293	struct mount *mp;
2294	ufs2_daddr_t newblkno;
2295	int flags;
2296	struct newblk **newblkpp;
2297{
2298	struct newblk *newblk;
2299	struct newblk_hashhead *newblkhd;
2300	struct ufsmount *ump;
2301
2302	ump = VFSTOUFS(mp);
2303	LOCK_OWNED(ump);
2304	newblkhd = NEWBLK_HASH(ump, newblkno);
2305	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2306		return (1);
2307	if ((flags & DEPALLOC) == 0)
2308		return (0);
2309	if (softdep_excess_items(ump, D_NEWBLK) ||
2310	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2311	    softdep_excess_items(ump, D_ALLOCINDIR))
2312		schedule_cleanup(mp);
2313	else
2314		FREE_LOCK(ump);
2315	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2316	    M_SOFTDEP_FLAGS | M_ZERO);
2317	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2318	ACQUIRE_LOCK(ump);
2319	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2320		WORKITEM_FREE(newblk, D_NEWBLK);
2321		return (1);
2322	}
2323	newblk->nb_freefrag = NULL;
2324	LIST_INIT(&newblk->nb_indirdeps);
2325	LIST_INIT(&newblk->nb_newdirblk);
2326	LIST_INIT(&newblk->nb_jwork);
2327	newblk->nb_state = ATTACHED;
2328	newblk->nb_newblkno = newblkno;
2329	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2330	*newblkpp = newblk;
2331	return (0);
2332}
2333
2334/*
2335 * Structures and routines associated with freed indirect block caching.
2336 */
2337#define	INDIR_HASH(ump, blkno) \
2338	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2339
2340/*
2341 * Lookup an indirect block in the indir hash table.  The freework is
2342 * removed and potentially freed.  The caller must do a blocking journal
2343 * write before writing to the blkno.
2344 */
2345static int
2346indirblk_lookup(mp, blkno)
2347	struct mount *mp;
2348	ufs2_daddr_t blkno;
2349{
2350	struct freework *freework;
2351	struct indir_hashhead *wkhd;
2352	struct ufsmount *ump;
2353
2354	ump = VFSTOUFS(mp);
2355	wkhd = INDIR_HASH(ump, blkno);
2356	TAILQ_FOREACH(freework, wkhd, fw_next) {
2357		if (freework->fw_blkno != blkno)
2358			continue;
2359		indirblk_remove(freework);
2360		return (1);
2361	}
2362	return (0);
2363}
2364
2365/*
2366 * Insert an indirect block represented by freework into the indirblk
2367 * hash table so that it may prevent the block from being re-used prior
2368 * to the journal being written.
2369 */
2370static void
2371indirblk_insert(freework)
2372	struct freework *freework;
2373{
2374	struct jblocks *jblocks;
2375	struct jseg *jseg;
2376	struct ufsmount *ump;
2377
2378	ump = VFSTOUFS(freework->fw_list.wk_mp);
2379	jblocks = ump->softdep_jblocks;
2380	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2381	if (jseg == NULL)
2382		return;
2383
2384	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2385	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2386	    fw_next);
2387	freework->fw_state &= ~DEPCOMPLETE;
2388}
2389
2390static void
2391indirblk_remove(freework)
2392	struct freework *freework;
2393{
2394	struct ufsmount *ump;
2395
2396	ump = VFSTOUFS(freework->fw_list.wk_mp);
2397	LIST_REMOVE(freework, fw_segs);
2398	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2399	freework->fw_state |= DEPCOMPLETE;
2400	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2401		WORKITEM_FREE(freework, D_FREEWORK);
2402}
2403
2404/*
2405 * Executed during filesystem system initialization before
2406 * mounting any filesystems.
2407 */
2408void
2409softdep_initialize()
2410{
2411
2412	TAILQ_INIT(&softdepmounts);
2413#ifdef __LP64__
2414	max_softdeps = desiredvnodes * 4;
2415#else
2416	max_softdeps = desiredvnodes * 2;
2417#endif
2418
2419	/* initialise bioops hack */
2420	bioops.io_start = softdep_disk_io_initiation;
2421	bioops.io_complete = softdep_disk_write_complete;
2422	bioops.io_deallocate = softdep_deallocate_dependencies;
2423	bioops.io_countdeps = softdep_count_dependencies;
2424	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2425
2426	/* Initialize the callout with an mtx. */
2427	callout_init_mtx(&softdep_callout, &lk, 0);
2428}
2429
2430/*
2431 * Executed after all filesystems have been unmounted during
2432 * filesystem module unload.
2433 */
2434void
2435softdep_uninitialize()
2436{
2437
2438	/* clear bioops hack */
2439	bioops.io_start = NULL;
2440	bioops.io_complete = NULL;
2441	bioops.io_deallocate = NULL;
2442	bioops.io_countdeps = NULL;
2443	softdep_ast_cleanup = NULL;
2444
2445	callout_drain(&softdep_callout);
2446}
2447
2448/*
2449 * Called at mount time to notify the dependency code that a
2450 * filesystem wishes to use it.
2451 */
2452int
2453softdep_mount(devvp, mp, fs, cred)
2454	struct vnode *devvp;
2455	struct mount *mp;
2456	struct fs *fs;
2457	struct ucred *cred;
2458{
2459	struct csum_total cstotal;
2460	struct mount_softdeps *sdp;
2461	struct ufsmount *ump;
2462	struct cg *cgp;
2463	struct buf *bp;
2464	int i, error, cyl;
2465
2466	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2467	    M_WAITOK | M_ZERO);
2468	MNT_ILOCK(mp);
2469	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2470	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2471		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2472			MNTK_SOFTDEP | MNTK_NOASYNC;
2473	}
2474	ump = VFSTOUFS(mp);
2475	ump->um_softdep = sdp;
2476	MNT_IUNLOCK(mp);
2477	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2478	sdp->sd_ump = ump;
2479	LIST_INIT(&ump->softdep_workitem_pending);
2480	LIST_INIT(&ump->softdep_journal_pending);
2481	TAILQ_INIT(&ump->softdep_unlinked);
2482	LIST_INIT(&ump->softdep_dirtycg);
2483	ump->softdep_worklist_tail = NULL;
2484	ump->softdep_on_worklist = 0;
2485	ump->softdep_deps = 0;
2486	LIST_INIT(&ump->softdep_mkdirlisthd);
2487	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2488	    &ump->pagedep_hash_size);
2489	ump->pagedep_nextclean = 0;
2490	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2491	    &ump->inodedep_hash_size);
2492	ump->inodedep_nextclean = 0;
2493	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2494	    &ump->newblk_hash_size);
2495	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2496	    &ump->bmsafemap_hash_size);
2497	i = 1 << (ffs(desiredvnodes / 10) - 1);
2498	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2499	    M_FREEWORK, M_WAITOK);
2500	ump->indir_hash_size = i - 1;
2501	for (i = 0; i <= ump->indir_hash_size; i++)
2502		TAILQ_INIT(&ump->indir_hashtbl[i]);
2503	ACQUIRE_GBLLOCK(&lk);
2504	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2505	FREE_GBLLOCK(&lk);
2506	if ((fs->fs_flags & FS_SUJ) &&
2507	    (error = journal_mount(mp, fs, cred)) != 0) {
2508		printf("Failed to start journal: %d\n", error);
2509		softdep_unmount(mp);
2510		return (error);
2511	}
2512	/*
2513	 * Start our flushing thread in the bufdaemon process.
2514	 */
2515	ACQUIRE_LOCK(ump);
2516	ump->softdep_flags |= FLUSH_STARTING;
2517	FREE_LOCK(ump);
2518	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2519	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2520	    mp->mnt_stat.f_mntonname);
2521	ACQUIRE_LOCK(ump);
2522	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2523		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2524		    hz / 2);
2525	}
2526	FREE_LOCK(ump);
2527	/*
2528	 * When doing soft updates, the counters in the
2529	 * superblock may have gotten out of sync. Recomputation
2530	 * can take a long time and can be deferred for background
2531	 * fsck.  However, the old behavior of scanning the cylinder
2532	 * groups and recalculating them at mount time is available
2533	 * by setting vfs.ffs.compute_summary_at_mount to one.
2534	 */
2535	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2536		return (0);
2537	bzero(&cstotal, sizeof cstotal);
2538	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2539		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2540		    fs->fs_cgsize, cred, &bp)) != 0) {
2541			brelse(bp);
2542			softdep_unmount(mp);
2543			return (error);
2544		}
2545		cgp = (struct cg *)bp->b_data;
2546		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2547		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2548		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2549		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2550		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2551		brelse(bp);
2552	}
2553#ifdef DEBUG
2554	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2555		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2556#endif
2557	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2558	return (0);
2559}
2560
2561void
2562softdep_unmount(mp)
2563	struct mount *mp;
2564{
2565	struct ufsmount *ump;
2566#ifdef INVARIANTS
2567	int i;
2568#endif
2569
2570	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2571	    ("softdep_unmount called on non-softdep filesystem"));
2572	ump = VFSTOUFS(mp);
2573	MNT_ILOCK(mp);
2574	mp->mnt_flag &= ~MNT_SOFTDEP;
2575	if (MOUNTEDSUJ(mp) == 0) {
2576		MNT_IUNLOCK(mp);
2577	} else {
2578		mp->mnt_flag &= ~MNT_SUJ;
2579		MNT_IUNLOCK(mp);
2580		journal_unmount(ump);
2581	}
2582	/*
2583	 * Shut down our flushing thread. Check for NULL is if
2584	 * softdep_mount errors out before the thread has been created.
2585	 */
2586	if (ump->softdep_flushtd != NULL) {
2587		ACQUIRE_LOCK(ump);
2588		ump->softdep_flags |= FLUSH_EXIT;
2589		wakeup(&ump->softdep_flushtd);
2590		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2591		    "sdwait", 0);
2592		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2593		    ("Thread shutdown failed"));
2594	}
2595	/*
2596	 * Free up our resources.
2597	 */
2598	ACQUIRE_GBLLOCK(&lk);
2599	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2600	FREE_GBLLOCK(&lk);
2601	rw_destroy(LOCK_PTR(ump));
2602	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2603	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2604	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2605	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2606	    ump->bmsafemap_hash_size);
2607	free(ump->indir_hashtbl, M_FREEWORK);
2608#ifdef INVARIANTS
2609	for (i = 0; i <= D_LAST; i++)
2610		KASSERT(ump->softdep_curdeps[i] == 0,
2611		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2612		    TYPENAME(i), ump->softdep_curdeps[i]));
2613#endif
2614	free(ump->um_softdep, M_MOUNTDATA);
2615}
2616
2617static struct jblocks *
2618jblocks_create(void)
2619{
2620	struct jblocks *jblocks;
2621
2622	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2623	TAILQ_INIT(&jblocks->jb_segs);
2624	jblocks->jb_avail = 10;
2625	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2626	    M_JBLOCKS, M_WAITOK | M_ZERO);
2627
2628	return (jblocks);
2629}
2630
2631static ufs2_daddr_t
2632jblocks_alloc(jblocks, bytes, actual)
2633	struct jblocks *jblocks;
2634	int bytes;
2635	int *actual;
2636{
2637	ufs2_daddr_t daddr;
2638	struct jextent *jext;
2639	int freecnt;
2640	int blocks;
2641
2642	blocks = bytes / DEV_BSIZE;
2643	jext = &jblocks->jb_extent[jblocks->jb_head];
2644	freecnt = jext->je_blocks - jblocks->jb_off;
2645	if (freecnt == 0) {
2646		jblocks->jb_off = 0;
2647		if (++jblocks->jb_head > jblocks->jb_used)
2648			jblocks->jb_head = 0;
2649		jext = &jblocks->jb_extent[jblocks->jb_head];
2650		freecnt = jext->je_blocks;
2651	}
2652	if (freecnt > blocks)
2653		freecnt = blocks;
2654	*actual = freecnt * DEV_BSIZE;
2655	daddr = jext->je_daddr + jblocks->jb_off;
2656	jblocks->jb_off += freecnt;
2657	jblocks->jb_free -= freecnt;
2658
2659	return (daddr);
2660}
2661
2662static void
2663jblocks_free(jblocks, mp, bytes)
2664	struct jblocks *jblocks;
2665	struct mount *mp;
2666	int bytes;
2667{
2668
2669	LOCK_OWNED(VFSTOUFS(mp));
2670	jblocks->jb_free += bytes / DEV_BSIZE;
2671	if (jblocks->jb_suspended)
2672		worklist_speedup(mp);
2673	wakeup(jblocks);
2674}
2675
2676static void
2677jblocks_destroy(jblocks)
2678	struct jblocks *jblocks;
2679{
2680
2681	if (jblocks->jb_extent)
2682		free(jblocks->jb_extent, M_JBLOCKS);
2683	free(jblocks, M_JBLOCKS);
2684}
2685
2686static void
2687jblocks_add(jblocks, daddr, blocks)
2688	struct jblocks *jblocks;
2689	ufs2_daddr_t daddr;
2690	int blocks;
2691{
2692	struct jextent *jext;
2693
2694	jblocks->jb_blocks += blocks;
2695	jblocks->jb_free += blocks;
2696	jext = &jblocks->jb_extent[jblocks->jb_used];
2697	/* Adding the first block. */
2698	if (jext->je_daddr == 0) {
2699		jext->je_daddr = daddr;
2700		jext->je_blocks = blocks;
2701		return;
2702	}
2703	/* Extending the last extent. */
2704	if (jext->je_daddr + jext->je_blocks == daddr) {
2705		jext->je_blocks += blocks;
2706		return;
2707	}
2708	/* Adding a new extent. */
2709	if (++jblocks->jb_used == jblocks->jb_avail) {
2710		jblocks->jb_avail *= 2;
2711		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2712		    M_JBLOCKS, M_WAITOK | M_ZERO);
2713		memcpy(jext, jblocks->jb_extent,
2714		    sizeof(struct jextent) * jblocks->jb_used);
2715		free(jblocks->jb_extent, M_JBLOCKS);
2716		jblocks->jb_extent = jext;
2717	}
2718	jext = &jblocks->jb_extent[jblocks->jb_used];
2719	jext->je_daddr = daddr;
2720	jext->je_blocks = blocks;
2721	return;
2722}
2723
2724int
2725softdep_journal_lookup(mp, vpp)
2726	struct mount *mp;
2727	struct vnode **vpp;
2728{
2729	struct componentname cnp;
2730	struct vnode *dvp;
2731	ino_t sujournal;
2732	int error;
2733
2734	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2735	if (error)
2736		return (error);
2737	bzero(&cnp, sizeof(cnp));
2738	cnp.cn_nameiop = LOOKUP;
2739	cnp.cn_flags = ISLASTCN;
2740	cnp.cn_thread = curthread;
2741	cnp.cn_cred = curthread->td_ucred;
2742	cnp.cn_pnbuf = SUJ_FILE;
2743	cnp.cn_nameptr = SUJ_FILE;
2744	cnp.cn_namelen = strlen(SUJ_FILE);
2745	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2746	vput(dvp);
2747	if (error != 0)
2748		return (error);
2749	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2750	return (error);
2751}
2752
2753/*
2754 * Open and verify the journal file.
2755 */
2756static int
2757journal_mount(mp, fs, cred)
2758	struct mount *mp;
2759	struct fs *fs;
2760	struct ucred *cred;
2761{
2762	struct jblocks *jblocks;
2763	struct ufsmount *ump;
2764	struct vnode *vp;
2765	struct inode *ip;
2766	ufs2_daddr_t blkno;
2767	int bcount;
2768	int error;
2769	int i;
2770
2771	ump = VFSTOUFS(mp);
2772	ump->softdep_journal_tail = NULL;
2773	ump->softdep_on_journal = 0;
2774	ump->softdep_accdeps = 0;
2775	ump->softdep_req = 0;
2776	ump->softdep_jblocks = NULL;
2777	error = softdep_journal_lookup(mp, &vp);
2778	if (error != 0) {
2779		printf("Failed to find journal.  Use tunefs to create one\n");
2780		return (error);
2781	}
2782	ip = VTOI(vp);
2783	if (ip->i_size < SUJ_MIN) {
2784		error = ENOSPC;
2785		goto out;
2786	}
2787	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2788	jblocks = jblocks_create();
2789	for (i = 0; i < bcount; i++) {
2790		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2791		if (error)
2792			break;
2793		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2794	}
2795	if (error) {
2796		jblocks_destroy(jblocks);
2797		goto out;
2798	}
2799	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2800	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2801	ump->softdep_jblocks = jblocks;
2802out:
2803	if (error == 0) {
2804		MNT_ILOCK(mp);
2805		mp->mnt_flag |= MNT_SUJ;
2806		mp->mnt_flag &= ~MNT_SOFTDEP;
2807		MNT_IUNLOCK(mp);
2808		/*
2809		 * Only validate the journal contents if the
2810		 * filesystem is clean, otherwise we write the logs
2811		 * but they'll never be used.  If the filesystem was
2812		 * still dirty when we mounted it the journal is
2813		 * invalid and a new journal can only be valid if it
2814		 * starts from a clean mount.
2815		 */
2816		if (fs->fs_clean) {
2817			DIP_SET(ip, i_modrev, fs->fs_mtime);
2818			ip->i_flags |= IN_MODIFIED;
2819			ffs_update(vp, 1);
2820		}
2821	}
2822	vput(vp);
2823	return (error);
2824}
2825
2826static void
2827journal_unmount(ump)
2828	struct ufsmount *ump;
2829{
2830
2831	if (ump->softdep_jblocks)
2832		jblocks_destroy(ump->softdep_jblocks);
2833	ump->softdep_jblocks = NULL;
2834}
2835
2836/*
2837 * Called when a journal record is ready to be written.  Space is allocated
2838 * and the journal entry is created when the journal is flushed to stable
2839 * store.
2840 */
2841static void
2842add_to_journal(wk)
2843	struct worklist *wk;
2844{
2845	struct ufsmount *ump;
2846
2847	ump = VFSTOUFS(wk->wk_mp);
2848	LOCK_OWNED(ump);
2849	if (wk->wk_state & ONWORKLIST)
2850		panic("add_to_journal: %s(0x%X) already on list",
2851		    TYPENAME(wk->wk_type), wk->wk_state);
2852	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2853	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2854		ump->softdep_jblocks->jb_age = ticks;
2855		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2856	} else
2857		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2858	ump->softdep_journal_tail = wk;
2859	ump->softdep_on_journal += 1;
2860}
2861
2862/*
2863 * Remove an arbitrary item for the journal worklist maintain the tail
2864 * pointer.  This happens when a new operation obviates the need to
2865 * journal an old operation.
2866 */
2867static void
2868remove_from_journal(wk)
2869	struct worklist *wk;
2870{
2871	struct ufsmount *ump;
2872
2873	ump = VFSTOUFS(wk->wk_mp);
2874	LOCK_OWNED(ump);
2875#ifdef SUJ_DEBUG
2876	{
2877		struct worklist *wkn;
2878
2879		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2880			if (wkn == wk)
2881				break;
2882		if (wkn == NULL)
2883			panic("remove_from_journal: %p is not in journal", wk);
2884	}
2885#endif
2886	/*
2887	 * We emulate a TAILQ to save space in most structures which do not
2888	 * require TAILQ semantics.  Here we must update the tail position
2889	 * when removing the tail which is not the final entry. This works
2890	 * only if the worklist linkage are at the beginning of the structure.
2891	 */
2892	if (ump->softdep_journal_tail == wk)
2893		ump->softdep_journal_tail =
2894		    (struct worklist *)wk->wk_list.le_prev;
2895
2896	WORKLIST_REMOVE(wk);
2897	ump->softdep_on_journal -= 1;
2898}
2899
2900/*
2901 * Check for journal space as well as dependency limits so the prelink
2902 * code can throttle both journaled and non-journaled filesystems.
2903 * Threshold is 0 for low and 1 for min.
2904 */
2905static int
2906journal_space(ump, thresh)
2907	struct ufsmount *ump;
2908	int thresh;
2909{
2910	struct jblocks *jblocks;
2911	int limit, avail;
2912
2913	jblocks = ump->softdep_jblocks;
2914	if (jblocks == NULL)
2915		return (1);
2916	/*
2917	 * We use a tighter restriction here to prevent request_cleanup()
2918	 * running in threads from running into locks we currently hold.
2919	 * We have to be over the limit and our filesystem has to be
2920	 * responsible for more than our share of that usage.
2921	 */
2922	limit = (max_softdeps / 10) * 9;
2923	if (dep_current[D_INODEDEP] > limit &&
2924	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2925		return (0);
2926	if (thresh)
2927		thresh = jblocks->jb_min;
2928	else
2929		thresh = jblocks->jb_low;
2930	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2931	avail = jblocks->jb_free - avail;
2932
2933	return (avail > thresh);
2934}
2935
2936static void
2937journal_suspend(ump)
2938	struct ufsmount *ump;
2939{
2940	struct jblocks *jblocks;
2941	struct mount *mp;
2942
2943	mp = UFSTOVFS(ump);
2944	jblocks = ump->softdep_jblocks;
2945	MNT_ILOCK(mp);
2946	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2947		stat_journal_min++;
2948		mp->mnt_kern_flag |= MNTK_SUSPEND;
2949		mp->mnt_susp_owner = ump->softdep_flushtd;
2950	}
2951	jblocks->jb_suspended = 1;
2952	MNT_IUNLOCK(mp);
2953}
2954
2955static int
2956journal_unsuspend(struct ufsmount *ump)
2957{
2958	struct jblocks *jblocks;
2959	struct mount *mp;
2960
2961	mp = UFSTOVFS(ump);
2962	jblocks = ump->softdep_jblocks;
2963
2964	if (jblocks != NULL && jblocks->jb_suspended &&
2965	    journal_space(ump, jblocks->jb_min)) {
2966		jblocks->jb_suspended = 0;
2967		FREE_LOCK(ump);
2968		mp->mnt_susp_owner = curthread;
2969		vfs_write_resume(mp, 0);
2970		ACQUIRE_LOCK(ump);
2971		return (1);
2972	}
2973	return (0);
2974}
2975
2976/*
2977 * Called before any allocation function to be certain that there is
2978 * sufficient space in the journal prior to creating any new records.
2979 * Since in the case of block allocation we may have multiple locked
2980 * buffers at the time of the actual allocation we can not block
2981 * when the journal records are created.  Doing so would create a deadlock
2982 * if any of these buffers needed to be flushed to reclaim space.  Instead
2983 * we require a sufficiently large amount of available space such that
2984 * each thread in the system could have passed this allocation check and
2985 * still have sufficient free space.  With 20% of a minimum journal size
2986 * of 1MB we have 6553 records available.
2987 */
2988int
2989softdep_prealloc(vp, waitok)
2990	struct vnode *vp;
2991	int waitok;
2992{
2993	struct ufsmount *ump;
2994
2995	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2996	    ("softdep_prealloc called on non-softdep filesystem"));
2997	/*
2998	 * Nothing to do if we are not running journaled soft updates.
2999	 * If we currently hold the snapshot lock, we must avoid
3000	 * handling other resources that could cause deadlock.  Do not
3001	 * touch quotas vnode since it is typically recursed with
3002	 * other vnode locks held.
3003	 */
3004	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3005	    (vp->v_vflag & VV_SYSTEM) != 0)
3006		return (0);
3007	ump = VFSTOUFS(vp->v_mount);
3008	ACQUIRE_LOCK(ump);
3009	if (journal_space(ump, 0)) {
3010		FREE_LOCK(ump);
3011		return (0);
3012	}
3013	stat_journal_low++;
3014	FREE_LOCK(ump);
3015	if (waitok == MNT_NOWAIT)
3016		return (ENOSPC);
3017	/*
3018	 * Attempt to sync this vnode once to flush any journal
3019	 * work attached to it.
3020	 */
3021	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3022		ffs_syncvnode(vp, waitok, 0);
3023	ACQUIRE_LOCK(ump);
3024	process_removes(vp);
3025	process_truncates(vp);
3026	if (journal_space(ump, 0) == 0) {
3027		softdep_speedup(ump);
3028		if (journal_space(ump, 1) == 0)
3029			journal_suspend(ump);
3030	}
3031	FREE_LOCK(ump);
3032
3033	return (0);
3034}
3035
3036/*
3037 * Before adjusting a link count on a vnode verify that we have sufficient
3038 * journal space.  If not, process operations that depend on the currently
3039 * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3040 * and softdep flush threads can not acquire these locks to reclaim space.
3041 */
3042static void
3043softdep_prelink(dvp, vp)
3044	struct vnode *dvp;
3045	struct vnode *vp;
3046{
3047	struct ufsmount *ump;
3048
3049	ump = VFSTOUFS(dvp->v_mount);
3050	LOCK_OWNED(ump);
3051	/*
3052	 * Nothing to do if we have sufficient journal space.
3053	 * If we currently hold the snapshot lock, we must avoid
3054	 * handling other resources that could cause deadlock.
3055	 */
3056	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3057		return;
3058	stat_journal_low++;
3059	FREE_LOCK(ump);
3060	if (vp)
3061		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3062	ffs_syncvnode(dvp, MNT_WAIT, 0);
3063	ACQUIRE_LOCK(ump);
3064	/* Process vp before dvp as it may create .. removes. */
3065	if (vp) {
3066		process_removes(vp);
3067		process_truncates(vp);
3068	}
3069	process_removes(dvp);
3070	process_truncates(dvp);
3071	softdep_speedup(ump);
3072	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3073	if (journal_space(ump, 0) == 0) {
3074		softdep_speedup(ump);
3075		if (journal_space(ump, 1) == 0)
3076			journal_suspend(ump);
3077	}
3078}
3079
3080static void
3081jseg_write(ump, jseg, data)
3082	struct ufsmount *ump;
3083	struct jseg *jseg;
3084	uint8_t *data;
3085{
3086	struct jsegrec *rec;
3087
3088	rec = (struct jsegrec *)data;
3089	rec->jsr_seq = jseg->js_seq;
3090	rec->jsr_oldest = jseg->js_oldseq;
3091	rec->jsr_cnt = jseg->js_cnt;
3092	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3093	rec->jsr_crc = 0;
3094	rec->jsr_time = ump->um_fs->fs_mtime;
3095}
3096
3097static inline void
3098inoref_write(inoref, jseg, rec)
3099	struct inoref *inoref;
3100	struct jseg *jseg;
3101	struct jrefrec *rec;
3102{
3103
3104	inoref->if_jsegdep->jd_seg = jseg;
3105	rec->jr_ino = inoref->if_ino;
3106	rec->jr_parent = inoref->if_parent;
3107	rec->jr_nlink = inoref->if_nlink;
3108	rec->jr_mode = inoref->if_mode;
3109	rec->jr_diroff = inoref->if_diroff;
3110}
3111
3112static void
3113jaddref_write(jaddref, jseg, data)
3114	struct jaddref *jaddref;
3115	struct jseg *jseg;
3116	uint8_t *data;
3117{
3118	struct jrefrec *rec;
3119
3120	rec = (struct jrefrec *)data;
3121	rec->jr_op = JOP_ADDREF;
3122	inoref_write(&jaddref->ja_ref, jseg, rec);
3123}
3124
3125static void
3126jremref_write(jremref, jseg, data)
3127	struct jremref *jremref;
3128	struct jseg *jseg;
3129	uint8_t *data;
3130{
3131	struct jrefrec *rec;
3132
3133	rec = (struct jrefrec *)data;
3134	rec->jr_op = JOP_REMREF;
3135	inoref_write(&jremref->jr_ref, jseg, rec);
3136}
3137
3138static void
3139jmvref_write(jmvref, jseg, data)
3140	struct jmvref *jmvref;
3141	struct jseg *jseg;
3142	uint8_t *data;
3143{
3144	struct jmvrec *rec;
3145
3146	rec = (struct jmvrec *)data;
3147	rec->jm_op = JOP_MVREF;
3148	rec->jm_ino = jmvref->jm_ino;
3149	rec->jm_parent = jmvref->jm_parent;
3150	rec->jm_oldoff = jmvref->jm_oldoff;
3151	rec->jm_newoff = jmvref->jm_newoff;
3152}
3153
3154static void
3155jnewblk_write(jnewblk, jseg, data)
3156	struct jnewblk *jnewblk;
3157	struct jseg *jseg;
3158	uint8_t *data;
3159{
3160	struct jblkrec *rec;
3161
3162	jnewblk->jn_jsegdep->jd_seg = jseg;
3163	rec = (struct jblkrec *)data;
3164	rec->jb_op = JOP_NEWBLK;
3165	rec->jb_ino = jnewblk->jn_ino;
3166	rec->jb_blkno = jnewblk->jn_blkno;
3167	rec->jb_lbn = jnewblk->jn_lbn;
3168	rec->jb_frags = jnewblk->jn_frags;
3169	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3170}
3171
3172static void
3173jfreeblk_write(jfreeblk, jseg, data)
3174	struct jfreeblk *jfreeblk;
3175	struct jseg *jseg;
3176	uint8_t *data;
3177{
3178	struct jblkrec *rec;
3179
3180	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3181	rec = (struct jblkrec *)data;
3182	rec->jb_op = JOP_FREEBLK;
3183	rec->jb_ino = jfreeblk->jf_ino;
3184	rec->jb_blkno = jfreeblk->jf_blkno;
3185	rec->jb_lbn = jfreeblk->jf_lbn;
3186	rec->jb_frags = jfreeblk->jf_frags;
3187	rec->jb_oldfrags = 0;
3188}
3189
3190static void
3191jfreefrag_write(jfreefrag, jseg, data)
3192	struct jfreefrag *jfreefrag;
3193	struct jseg *jseg;
3194	uint8_t *data;
3195{
3196	struct jblkrec *rec;
3197
3198	jfreefrag->fr_jsegdep->jd_seg = jseg;
3199	rec = (struct jblkrec *)data;
3200	rec->jb_op = JOP_FREEBLK;
3201	rec->jb_ino = jfreefrag->fr_ino;
3202	rec->jb_blkno = jfreefrag->fr_blkno;
3203	rec->jb_lbn = jfreefrag->fr_lbn;
3204	rec->jb_frags = jfreefrag->fr_frags;
3205	rec->jb_oldfrags = 0;
3206}
3207
3208static void
3209jtrunc_write(jtrunc, jseg, data)
3210	struct jtrunc *jtrunc;
3211	struct jseg *jseg;
3212	uint8_t *data;
3213{
3214	struct jtrncrec *rec;
3215
3216	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3217	rec = (struct jtrncrec *)data;
3218	rec->jt_op = JOP_TRUNC;
3219	rec->jt_ino = jtrunc->jt_ino;
3220	rec->jt_size = jtrunc->jt_size;
3221	rec->jt_extsize = jtrunc->jt_extsize;
3222}
3223
3224static void
3225jfsync_write(jfsync, jseg, data)
3226	struct jfsync *jfsync;
3227	struct jseg *jseg;
3228	uint8_t *data;
3229{
3230	struct jtrncrec *rec;
3231
3232	rec = (struct jtrncrec *)data;
3233	rec->jt_op = JOP_SYNC;
3234	rec->jt_ino = jfsync->jfs_ino;
3235	rec->jt_size = jfsync->jfs_size;
3236	rec->jt_extsize = jfsync->jfs_extsize;
3237}
3238
3239static void
3240softdep_flushjournal(mp)
3241	struct mount *mp;
3242{
3243	struct jblocks *jblocks;
3244	struct ufsmount *ump;
3245
3246	if (MOUNTEDSUJ(mp) == 0)
3247		return;
3248	ump = VFSTOUFS(mp);
3249	jblocks = ump->softdep_jblocks;
3250	ACQUIRE_LOCK(ump);
3251	while (ump->softdep_on_journal) {
3252		jblocks->jb_needseg = 1;
3253		softdep_process_journal(mp, NULL, MNT_WAIT);
3254	}
3255	FREE_LOCK(ump);
3256}
3257
3258static void softdep_synchronize_completed(struct bio *);
3259static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3260
3261static void
3262softdep_synchronize_completed(bp)
3263        struct bio *bp;
3264{
3265	struct jseg *oldest;
3266	struct jseg *jseg;
3267	struct ufsmount *ump;
3268
3269	/*
3270	 * caller1 marks the last segment written before we issued the
3271	 * synchronize cache.
3272	 */
3273	jseg = bp->bio_caller1;
3274	if (jseg == NULL) {
3275		g_destroy_bio(bp);
3276		return;
3277	}
3278	ump = VFSTOUFS(jseg->js_list.wk_mp);
3279	ACQUIRE_LOCK(ump);
3280	oldest = NULL;
3281	/*
3282	 * Mark all the journal entries waiting on the synchronize cache
3283	 * as completed so they may continue on.
3284	 */
3285	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3286		jseg->js_state |= COMPLETE;
3287		oldest = jseg;
3288		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3289	}
3290	/*
3291	 * Restart deferred journal entry processing from the oldest
3292	 * completed jseg.
3293	 */
3294	if (oldest)
3295		complete_jsegs(oldest);
3296
3297	FREE_LOCK(ump);
3298	g_destroy_bio(bp);
3299}
3300
3301/*
3302 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3303 * barriers.  The journal must be written prior to any blocks that depend
3304 * on it and the journal can not be released until the blocks have be
3305 * written.  This code handles both barriers simultaneously.
3306 */
3307static void
3308softdep_synchronize(bp, ump, caller1)
3309	struct bio *bp;
3310	struct ufsmount *ump;
3311	void *caller1;
3312{
3313
3314	bp->bio_cmd = BIO_FLUSH;
3315	bp->bio_flags |= BIO_ORDERED;
3316	bp->bio_data = NULL;
3317	bp->bio_offset = ump->um_cp->provider->mediasize;
3318	bp->bio_length = 0;
3319	bp->bio_done = softdep_synchronize_completed;
3320	bp->bio_caller1 = caller1;
3321	g_io_request(bp,
3322	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3323}
3324
3325/*
3326 * Flush some journal records to disk.
3327 */
3328static void
3329softdep_process_journal(mp, needwk, flags)
3330	struct mount *mp;
3331	struct worklist *needwk;
3332	int flags;
3333{
3334	struct jblocks *jblocks;
3335	struct ufsmount *ump;
3336	struct worklist *wk;
3337	struct jseg *jseg;
3338	struct buf *bp;
3339	struct bio *bio;
3340	uint8_t *data;
3341	struct fs *fs;
3342	int shouldflush;
3343	int segwritten;
3344	int jrecmin;	/* Minimum records per block. */
3345	int jrecmax;	/* Maximum records per block. */
3346	int size;
3347	int cnt;
3348	int off;
3349	int devbsize;
3350
3351	if (MOUNTEDSUJ(mp) == 0)
3352		return;
3353	shouldflush = softdep_flushcache;
3354	bio = NULL;
3355	jseg = NULL;
3356	ump = VFSTOUFS(mp);
3357	LOCK_OWNED(ump);
3358	fs = ump->um_fs;
3359	jblocks = ump->softdep_jblocks;
3360	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3361	/*
3362	 * We write anywhere between a disk block and fs block.  The upper
3363	 * bound is picked to prevent buffer cache fragmentation and limit
3364	 * processing time per I/O.
3365	 */
3366	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3367	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3368	segwritten = 0;
3369	for (;;) {
3370		cnt = ump->softdep_on_journal;
3371		/*
3372		 * Criteria for writing a segment:
3373		 * 1) We have a full block.
3374		 * 2) We're called from jwait() and haven't found the
3375		 *    journal item yet.
3376		 * 3) Always write if needseg is set.
3377		 * 4) If we are called from process_worklist and have
3378		 *    not yet written anything we write a partial block
3379		 *    to enforce a 1 second maximum latency on journal
3380		 *    entries.
3381		 */
3382		if (cnt < (jrecmax - 1) && needwk == NULL &&
3383		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3384			break;
3385		cnt++;
3386		/*
3387		 * Verify some free journal space.  softdep_prealloc() should
3388		 * guarantee that we don't run out so this is indicative of
3389		 * a problem with the flow control.  Try to recover
3390		 * gracefully in any event.
3391		 */
3392		while (jblocks->jb_free == 0) {
3393			if (flags != MNT_WAIT)
3394				break;
3395			printf("softdep: Out of journal space!\n");
3396			softdep_speedup(ump);
3397			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3398		}
3399		FREE_LOCK(ump);
3400		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3401		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3402		LIST_INIT(&jseg->js_entries);
3403		LIST_INIT(&jseg->js_indirs);
3404		jseg->js_state = ATTACHED;
3405		if (shouldflush == 0)
3406			jseg->js_state |= COMPLETE;
3407		else if (bio == NULL)
3408			bio = g_alloc_bio();
3409		jseg->js_jblocks = jblocks;
3410		bp = geteblk(fs->fs_bsize, 0);
3411		ACQUIRE_LOCK(ump);
3412		/*
3413		 * If there was a race while we were allocating the block
3414		 * and jseg the entry we care about was likely written.
3415		 * We bail out in both the WAIT and NOWAIT case and assume
3416		 * the caller will loop if the entry it cares about is
3417		 * not written.
3418		 */
3419		cnt = ump->softdep_on_journal;
3420		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3421			bp->b_flags |= B_INVAL | B_NOCACHE;
3422			WORKITEM_FREE(jseg, D_JSEG);
3423			FREE_LOCK(ump);
3424			brelse(bp);
3425			ACQUIRE_LOCK(ump);
3426			break;
3427		}
3428		/*
3429		 * Calculate the disk block size required for the available
3430		 * records rounded to the min size.
3431		 */
3432		if (cnt == 0)
3433			size = devbsize;
3434		else if (cnt < jrecmax)
3435			size = howmany(cnt, jrecmin) * devbsize;
3436		else
3437			size = fs->fs_bsize;
3438		/*
3439		 * Allocate a disk block for this journal data and account
3440		 * for truncation of the requested size if enough contiguous
3441		 * space was not available.
3442		 */
3443		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3444		bp->b_lblkno = bp->b_blkno;
3445		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3446		bp->b_bcount = size;
3447		bp->b_flags &= ~B_INVAL;
3448		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3449		/*
3450		 * Initialize our jseg with cnt records.  Assign the next
3451		 * sequence number to it and link it in-order.
3452		 */
3453		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3454		jseg->js_buf = bp;
3455		jseg->js_cnt = cnt;
3456		jseg->js_refs = cnt + 1;	/* Self ref. */
3457		jseg->js_size = size;
3458		jseg->js_seq = jblocks->jb_nextseq++;
3459		if (jblocks->jb_oldestseg == NULL)
3460			jblocks->jb_oldestseg = jseg;
3461		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3462		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3463		if (jblocks->jb_writeseg == NULL)
3464			jblocks->jb_writeseg = jseg;
3465		/*
3466		 * Start filling in records from the pending list.
3467		 */
3468		data = bp->b_data;
3469		off = 0;
3470
3471		/*
3472		 * Always put a header on the first block.
3473		 * XXX As with below, there might not be a chance to get
3474		 * into the loop.  Ensure that something valid is written.
3475		 */
3476		jseg_write(ump, jseg, data);
3477		off += JREC_SIZE;
3478		data = bp->b_data + off;
3479
3480		/*
3481		 * XXX Something is wrong here.  There's no work to do,
3482		 * but we need to perform and I/O and allow it to complete
3483		 * anyways.
3484		 */
3485		if (LIST_EMPTY(&ump->softdep_journal_pending))
3486			stat_emptyjblocks++;
3487
3488		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3489		    != NULL) {
3490			if (cnt == 0)
3491				break;
3492			/* Place a segment header on every device block. */
3493			if ((off % devbsize) == 0) {
3494				jseg_write(ump, jseg, data);
3495				off += JREC_SIZE;
3496				data = bp->b_data + off;
3497			}
3498			if (wk == needwk)
3499				needwk = NULL;
3500			remove_from_journal(wk);
3501			wk->wk_state |= INPROGRESS;
3502			WORKLIST_INSERT(&jseg->js_entries, wk);
3503			switch (wk->wk_type) {
3504			case D_JADDREF:
3505				jaddref_write(WK_JADDREF(wk), jseg, data);
3506				break;
3507			case D_JREMREF:
3508				jremref_write(WK_JREMREF(wk), jseg, data);
3509				break;
3510			case D_JMVREF:
3511				jmvref_write(WK_JMVREF(wk), jseg, data);
3512				break;
3513			case D_JNEWBLK:
3514				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3515				break;
3516			case D_JFREEBLK:
3517				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3518				break;
3519			case D_JFREEFRAG:
3520				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3521				break;
3522			case D_JTRUNC:
3523				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3524				break;
3525			case D_JFSYNC:
3526				jfsync_write(WK_JFSYNC(wk), jseg, data);
3527				break;
3528			default:
3529				panic("process_journal: Unknown type %s",
3530				    TYPENAME(wk->wk_type));
3531				/* NOTREACHED */
3532			}
3533			off += JREC_SIZE;
3534			data = bp->b_data + off;
3535			cnt--;
3536		}
3537
3538		/* Clear any remaining space so we don't leak kernel data */
3539		if (size > off)
3540			bzero(data, size - off);
3541
3542		/*
3543		 * Write this one buffer and continue.
3544		 */
3545		segwritten = 1;
3546		jblocks->jb_needseg = 0;
3547		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3548		FREE_LOCK(ump);
3549		pbgetvp(ump->um_devvp, bp);
3550		/*
3551		 * We only do the blocking wait once we find the journal
3552		 * entry we're looking for.
3553		 */
3554		if (needwk == NULL && flags == MNT_WAIT)
3555			bwrite(bp);
3556		else
3557			bawrite(bp);
3558		ACQUIRE_LOCK(ump);
3559	}
3560	/*
3561	 * If we wrote a segment issue a synchronize cache so the journal
3562	 * is reflected on disk before the data is written.  Since reclaiming
3563	 * journal space also requires writing a journal record this
3564	 * process also enforces a barrier before reclamation.
3565	 */
3566	if (segwritten && shouldflush) {
3567		softdep_synchronize(bio, ump,
3568		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3569	} else if (bio)
3570		g_destroy_bio(bio);
3571	/*
3572	 * If we've suspended the filesystem because we ran out of journal
3573	 * space either try to sync it here to make some progress or
3574	 * unsuspend it if we already have.
3575	 */
3576	if (flags == 0 && jblocks->jb_suspended) {
3577		if (journal_unsuspend(ump))
3578			return;
3579		FREE_LOCK(ump);
3580		VFS_SYNC(mp, MNT_NOWAIT);
3581		ffs_sbupdate(ump, MNT_WAIT, 0);
3582		ACQUIRE_LOCK(ump);
3583	}
3584}
3585
3586/*
3587 * Complete a jseg, allowing all dependencies awaiting journal writes
3588 * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3589 * structures so that the journal segment can be freed to reclaim space.
3590 */
3591static void
3592complete_jseg(jseg)
3593	struct jseg *jseg;
3594{
3595	struct worklist *wk;
3596	struct jmvref *jmvref;
3597#ifdef INVARIANTS
3598	int i = 0;
3599#endif
3600
3601	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3602		WORKLIST_REMOVE(wk);
3603		wk->wk_state &= ~INPROGRESS;
3604		wk->wk_state |= COMPLETE;
3605		KASSERT(i++ < jseg->js_cnt,
3606		    ("handle_written_jseg: overflow %d >= %d",
3607		    i - 1, jseg->js_cnt));
3608		switch (wk->wk_type) {
3609		case D_JADDREF:
3610			handle_written_jaddref(WK_JADDREF(wk));
3611			break;
3612		case D_JREMREF:
3613			handle_written_jremref(WK_JREMREF(wk));
3614			break;
3615		case D_JMVREF:
3616			rele_jseg(jseg);	/* No jsegdep. */
3617			jmvref = WK_JMVREF(wk);
3618			LIST_REMOVE(jmvref, jm_deps);
3619			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3620				free_pagedep(jmvref->jm_pagedep);
3621			WORKITEM_FREE(jmvref, D_JMVREF);
3622			break;
3623		case D_JNEWBLK:
3624			handle_written_jnewblk(WK_JNEWBLK(wk));
3625			break;
3626		case D_JFREEBLK:
3627			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3628			break;
3629		case D_JTRUNC:
3630			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3631			break;
3632		case D_JFSYNC:
3633			rele_jseg(jseg);	/* No jsegdep. */
3634			WORKITEM_FREE(wk, D_JFSYNC);
3635			break;
3636		case D_JFREEFRAG:
3637			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3638			break;
3639		default:
3640			panic("handle_written_jseg: Unknown type %s",
3641			    TYPENAME(wk->wk_type));
3642			/* NOTREACHED */
3643		}
3644	}
3645	/* Release the self reference so the structure may be freed. */
3646	rele_jseg(jseg);
3647}
3648
3649/*
3650 * Determine which jsegs are ready for completion processing.  Waits for
3651 * synchronize cache to complete as well as forcing in-order completion
3652 * of journal entries.
3653 */
3654static void
3655complete_jsegs(jseg)
3656	struct jseg *jseg;
3657{
3658	struct jblocks *jblocks;
3659	struct jseg *jsegn;
3660
3661	jblocks = jseg->js_jblocks;
3662	/*
3663	 * Don't allow out of order completions.  If this isn't the first
3664	 * block wait for it to write before we're done.
3665	 */
3666	if (jseg != jblocks->jb_writeseg)
3667		return;
3668	/* Iterate through available jsegs processing their entries. */
3669	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3670		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3671		jsegn = TAILQ_NEXT(jseg, js_next);
3672		complete_jseg(jseg);
3673		jseg = jsegn;
3674	}
3675	jblocks->jb_writeseg = jseg;
3676	/*
3677	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3678	 */
3679	free_jsegs(jblocks);
3680}
3681
3682/*
3683 * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3684 * the final completions.
3685 */
3686static void
3687handle_written_jseg(jseg, bp)
3688	struct jseg *jseg;
3689	struct buf *bp;
3690{
3691
3692	if (jseg->js_refs == 0)
3693		panic("handle_written_jseg: No self-reference on %p", jseg);
3694	jseg->js_state |= DEPCOMPLETE;
3695	/*
3696	 * We'll never need this buffer again, set flags so it will be
3697	 * discarded.
3698	 */
3699	bp->b_flags |= B_INVAL | B_NOCACHE;
3700	pbrelvp(bp);
3701	complete_jsegs(jseg);
3702}
3703
3704static inline struct jsegdep *
3705inoref_jseg(inoref)
3706	struct inoref *inoref;
3707{
3708	struct jsegdep *jsegdep;
3709
3710	jsegdep = inoref->if_jsegdep;
3711	inoref->if_jsegdep = NULL;
3712
3713	return (jsegdep);
3714}
3715
3716/*
3717 * Called once a jremref has made it to stable store.  The jremref is marked
3718 * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3719 * for the jremref to complete will be awoken by free_jremref.
3720 */
3721static void
3722handle_written_jremref(jremref)
3723	struct jremref *jremref;
3724{
3725	struct inodedep *inodedep;
3726	struct jsegdep *jsegdep;
3727	struct dirrem *dirrem;
3728
3729	/* Grab the jsegdep. */
3730	jsegdep = inoref_jseg(&jremref->jr_ref);
3731	/*
3732	 * Remove us from the inoref list.
3733	 */
3734	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3735	    0, &inodedep) == 0)
3736		panic("handle_written_jremref: Lost inodedep");
3737	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3738	/*
3739	 * Complete the dirrem.
3740	 */
3741	dirrem = jremref->jr_dirrem;
3742	jremref->jr_dirrem = NULL;
3743	LIST_REMOVE(jremref, jr_deps);
3744	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3745	jwork_insert(&dirrem->dm_jwork, jsegdep);
3746	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3747	    (dirrem->dm_state & COMPLETE) != 0)
3748		add_to_worklist(&dirrem->dm_list, 0);
3749	free_jremref(jremref);
3750}
3751
3752/*
3753 * Called once a jaddref has made it to stable store.  The dependency is
3754 * marked complete and any dependent structures are added to the inode
3755 * bufwait list to be completed as soon as it is written.  If a bitmap write
3756 * depends on this entry we move the inode into the inodedephd of the
3757 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3758 */
3759static void
3760handle_written_jaddref(jaddref)
3761	struct jaddref *jaddref;
3762{
3763	struct jsegdep *jsegdep;
3764	struct inodedep *inodedep;
3765	struct diradd *diradd;
3766	struct mkdir *mkdir;
3767
3768	/* Grab the jsegdep. */
3769	jsegdep = inoref_jseg(&jaddref->ja_ref);
3770	mkdir = NULL;
3771	diradd = NULL;
3772	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3773	    0, &inodedep) == 0)
3774		panic("handle_written_jaddref: Lost inodedep.");
3775	if (jaddref->ja_diradd == NULL)
3776		panic("handle_written_jaddref: No dependency");
3777	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3778		diradd = jaddref->ja_diradd;
3779		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3780	} else if (jaddref->ja_state & MKDIR_PARENT) {
3781		mkdir = jaddref->ja_mkdir;
3782		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3783	} else if (jaddref->ja_state & MKDIR_BODY)
3784		mkdir = jaddref->ja_mkdir;
3785	else
3786		panic("handle_written_jaddref: Unknown dependency %p",
3787		    jaddref->ja_diradd);
3788	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3789	/*
3790	 * Remove us from the inode list.
3791	 */
3792	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3793	/*
3794	 * The mkdir may be waiting on the jaddref to clear before freeing.
3795	 */
3796	if (mkdir) {
3797		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3798		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3799		    TYPENAME(mkdir->md_list.wk_type)));
3800		mkdir->md_jaddref = NULL;
3801		diradd = mkdir->md_diradd;
3802		mkdir->md_state |= DEPCOMPLETE;
3803		complete_mkdir(mkdir);
3804	}
3805	jwork_insert(&diradd->da_jwork, jsegdep);
3806	if (jaddref->ja_state & NEWBLOCK) {
3807		inodedep->id_state |= ONDEPLIST;
3808		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3809		    inodedep, id_deps);
3810	}
3811	free_jaddref(jaddref);
3812}
3813
3814/*
3815 * Called once a jnewblk journal is written.  The allocdirect or allocindir
3816 * is placed in the bmsafemap to await notification of a written bitmap.  If
3817 * the operation was canceled we add the segdep to the appropriate
3818 * dependency to free the journal space once the canceling operation
3819 * completes.
3820 */
3821static void
3822handle_written_jnewblk(jnewblk)
3823	struct jnewblk *jnewblk;
3824{
3825	struct bmsafemap *bmsafemap;
3826	struct freefrag *freefrag;
3827	struct freework *freework;
3828	struct jsegdep *jsegdep;
3829	struct newblk *newblk;
3830
3831	/* Grab the jsegdep. */
3832	jsegdep = jnewblk->jn_jsegdep;
3833	jnewblk->jn_jsegdep = NULL;
3834	if (jnewblk->jn_dep == NULL)
3835		panic("handle_written_jnewblk: No dependency for the segdep.");
3836	switch (jnewblk->jn_dep->wk_type) {
3837	case D_NEWBLK:
3838	case D_ALLOCDIRECT:
3839	case D_ALLOCINDIR:
3840		/*
3841		 * Add the written block to the bmsafemap so it can
3842		 * be notified when the bitmap is on disk.
3843		 */
3844		newblk = WK_NEWBLK(jnewblk->jn_dep);
3845		newblk->nb_jnewblk = NULL;
3846		if ((newblk->nb_state & GOINGAWAY) == 0) {
3847			bmsafemap = newblk->nb_bmsafemap;
3848			newblk->nb_state |= ONDEPLIST;
3849			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3850			    nb_deps);
3851		}
3852		jwork_insert(&newblk->nb_jwork, jsegdep);
3853		break;
3854	case D_FREEFRAG:
3855		/*
3856		 * A newblock being removed by a freefrag when replaced by
3857		 * frag extension.
3858		 */
3859		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3860		freefrag->ff_jdep = NULL;
3861		jwork_insert(&freefrag->ff_jwork, jsegdep);
3862		break;
3863	case D_FREEWORK:
3864		/*
3865		 * A direct block was removed by truncate.
3866		 */
3867		freework = WK_FREEWORK(jnewblk->jn_dep);
3868		freework->fw_jnewblk = NULL;
3869		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3870		break;
3871	default:
3872		panic("handle_written_jnewblk: Unknown type %d.",
3873		    jnewblk->jn_dep->wk_type);
3874	}
3875	jnewblk->jn_dep = NULL;
3876	free_jnewblk(jnewblk);
3877}
3878
3879/*
3880 * Cancel a jfreefrag that won't be needed, probably due to colliding with
3881 * an in-flight allocation that has not yet been committed.  Divorce us
3882 * from the freefrag and mark it DEPCOMPLETE so that it may be added
3883 * to the worklist.
3884 */
3885static void
3886cancel_jfreefrag(jfreefrag)
3887	struct jfreefrag *jfreefrag;
3888{
3889	struct freefrag *freefrag;
3890
3891	if (jfreefrag->fr_jsegdep) {
3892		free_jsegdep(jfreefrag->fr_jsegdep);
3893		jfreefrag->fr_jsegdep = NULL;
3894	}
3895	freefrag = jfreefrag->fr_freefrag;
3896	jfreefrag->fr_freefrag = NULL;
3897	free_jfreefrag(jfreefrag);
3898	freefrag->ff_state |= DEPCOMPLETE;
3899	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3900}
3901
3902/*
3903 * Free a jfreefrag when the parent freefrag is rendered obsolete.
3904 */
3905static void
3906free_jfreefrag(jfreefrag)
3907	struct jfreefrag *jfreefrag;
3908{
3909
3910	if (jfreefrag->fr_state & INPROGRESS)
3911		WORKLIST_REMOVE(&jfreefrag->fr_list);
3912	else if (jfreefrag->fr_state & ONWORKLIST)
3913		remove_from_journal(&jfreefrag->fr_list);
3914	if (jfreefrag->fr_freefrag != NULL)
3915		panic("free_jfreefrag:  Still attached to a freefrag.");
3916	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3917}
3918
3919/*
3920 * Called when the journal write for a jfreefrag completes.  The parent
3921 * freefrag is added to the worklist if this completes its dependencies.
3922 */
3923static void
3924handle_written_jfreefrag(jfreefrag)
3925	struct jfreefrag *jfreefrag;
3926{
3927	struct jsegdep *jsegdep;
3928	struct freefrag *freefrag;
3929
3930	/* Grab the jsegdep. */
3931	jsegdep = jfreefrag->fr_jsegdep;
3932	jfreefrag->fr_jsegdep = NULL;
3933	freefrag = jfreefrag->fr_freefrag;
3934	if (freefrag == NULL)
3935		panic("handle_written_jfreefrag: No freefrag.");
3936	freefrag->ff_state |= DEPCOMPLETE;
3937	freefrag->ff_jdep = NULL;
3938	jwork_insert(&freefrag->ff_jwork, jsegdep);
3939	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3940		add_to_worklist(&freefrag->ff_list, 0);
3941	jfreefrag->fr_freefrag = NULL;
3942	free_jfreefrag(jfreefrag);
3943}
3944
3945/*
3946 * Called when the journal write for a jfreeblk completes.  The jfreeblk
3947 * is removed from the freeblks list of pending journal writes and the
3948 * jsegdep is moved to the freeblks jwork to be completed when all blocks
3949 * have been reclaimed.
3950 */
3951static void
3952handle_written_jblkdep(jblkdep)
3953	struct jblkdep *jblkdep;
3954{
3955	struct freeblks *freeblks;
3956	struct jsegdep *jsegdep;
3957
3958	/* Grab the jsegdep. */
3959	jsegdep = jblkdep->jb_jsegdep;
3960	jblkdep->jb_jsegdep = NULL;
3961	freeblks = jblkdep->jb_freeblks;
3962	LIST_REMOVE(jblkdep, jb_deps);
3963	jwork_insert(&freeblks->fb_jwork, jsegdep);
3964	/*
3965	 * If the freeblks is all journaled, we can add it to the worklist.
3966	 */
3967	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3968	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3969		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3970
3971	free_jblkdep(jblkdep);
3972}
3973
3974static struct jsegdep *
3975newjsegdep(struct worklist *wk)
3976{
3977	struct jsegdep *jsegdep;
3978
3979	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3980	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3981	jsegdep->jd_seg = NULL;
3982
3983	return (jsegdep);
3984}
3985
3986static struct jmvref *
3987newjmvref(dp, ino, oldoff, newoff)
3988	struct inode *dp;
3989	ino_t ino;
3990	off_t oldoff;
3991	off_t newoff;
3992{
3993	struct jmvref *jmvref;
3994
3995	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3996	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3997	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3998	jmvref->jm_parent = dp->i_number;
3999	jmvref->jm_ino = ino;
4000	jmvref->jm_oldoff = oldoff;
4001	jmvref->jm_newoff = newoff;
4002
4003	return (jmvref);
4004}
4005
4006/*
4007 * Allocate a new jremref that tracks the removal of ip from dp with the
4008 * directory entry offset of diroff.  Mark the entry as ATTACHED and
4009 * DEPCOMPLETE as we have all the information required for the journal write
4010 * and the directory has already been removed from the buffer.  The caller
4011 * is responsible for linking the jremref into the pagedep and adding it
4012 * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4013 * a DOTDOT addition so handle_workitem_remove() can properly assign
4014 * the jsegdep when we're done.
4015 */
4016static struct jremref *
4017newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4018    off_t diroff, nlink_t nlink)
4019{
4020	struct jremref *jremref;
4021
4022	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4023	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
4024	jremref->jr_state = ATTACHED;
4025	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4026	   nlink, ip->i_mode);
4027	jremref->jr_dirrem = dirrem;
4028
4029	return (jremref);
4030}
4031
4032static inline void
4033newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4034    nlink_t nlink, uint16_t mode)
4035{
4036
4037	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4038	inoref->if_diroff = diroff;
4039	inoref->if_ino = ino;
4040	inoref->if_parent = parent;
4041	inoref->if_nlink = nlink;
4042	inoref->if_mode = mode;
4043}
4044
4045/*
4046 * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4047 * directory offset may not be known until later.  The caller is responsible
4048 * adding the entry to the journal when this information is available.  nlink
4049 * should be the link count prior to the addition and mode is only required
4050 * to have the correct FMT.
4051 */
4052static struct jaddref *
4053newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4054    uint16_t mode)
4055{
4056	struct jaddref *jaddref;
4057
4058	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4059	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
4060	jaddref->ja_state = ATTACHED;
4061	jaddref->ja_mkdir = NULL;
4062	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4063
4064	return (jaddref);
4065}
4066
4067/*
4068 * Create a new free dependency for a freework.  The caller is responsible
4069 * for adjusting the reference count when it has the lock held.  The freedep
4070 * will track an outstanding bitmap write that will ultimately clear the
4071 * freework to continue.
4072 */
4073static struct freedep *
4074newfreedep(struct freework *freework)
4075{
4076	struct freedep *freedep;
4077
4078	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4079	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4080	freedep->fd_freework = freework;
4081
4082	return (freedep);
4083}
4084
4085/*
4086 * Free a freedep structure once the buffer it is linked to is written.  If
4087 * this is the last reference to the freework schedule it for completion.
4088 */
4089static void
4090free_freedep(freedep)
4091	struct freedep *freedep;
4092{
4093	struct freework *freework;
4094
4095	freework = freedep->fd_freework;
4096	freework->fw_freeblks->fb_cgwait--;
4097	if (--freework->fw_ref == 0)
4098		freework_enqueue(freework);
4099	WORKITEM_FREE(freedep, D_FREEDEP);
4100}
4101
4102/*
4103 * Allocate a new freework structure that may be a level in an indirect
4104 * when parent is not NULL or a top level block when it is.  The top level
4105 * freework structures are allocated without the per-filesystem lock held
4106 * and before the freeblks is visible outside of softdep_setup_freeblocks().
4107 */
4108static struct freework *
4109newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4110	struct ufsmount *ump;
4111	struct freeblks *freeblks;
4112	struct freework *parent;
4113	ufs_lbn_t lbn;
4114	ufs2_daddr_t nb;
4115	int frags;
4116	int off;
4117	int journal;
4118{
4119	struct freework *freework;
4120
4121	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4122	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4123	freework->fw_state = ATTACHED;
4124	freework->fw_jnewblk = NULL;
4125	freework->fw_freeblks = freeblks;
4126	freework->fw_parent = parent;
4127	freework->fw_lbn = lbn;
4128	freework->fw_blkno = nb;
4129	freework->fw_frags = frags;
4130	freework->fw_indir = NULL;
4131	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
4132		? 0 : NINDIR(ump->um_fs) + 1;
4133	freework->fw_start = freework->fw_off = off;
4134	if (journal)
4135		newjfreeblk(freeblks, lbn, nb, frags);
4136	if (parent == NULL) {
4137		ACQUIRE_LOCK(ump);
4138		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4139		freeblks->fb_ref++;
4140		FREE_LOCK(ump);
4141	}
4142
4143	return (freework);
4144}
4145
4146/*
4147 * Eliminate a jfreeblk for a block that does not need journaling.
4148 */
4149static void
4150cancel_jfreeblk(freeblks, blkno)
4151	struct freeblks *freeblks;
4152	ufs2_daddr_t blkno;
4153{
4154	struct jfreeblk *jfreeblk;
4155	struct jblkdep *jblkdep;
4156
4157	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4158		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4159			continue;
4160		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4161		if (jfreeblk->jf_blkno == blkno)
4162			break;
4163	}
4164	if (jblkdep == NULL)
4165		return;
4166	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4167	free_jsegdep(jblkdep->jb_jsegdep);
4168	LIST_REMOVE(jblkdep, jb_deps);
4169	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4170}
4171
4172/*
4173 * Allocate a new jfreeblk to journal top level block pointer when truncating
4174 * a file.  The caller must add this to the worklist when the per-filesystem
4175 * lock is held.
4176 */
4177static struct jfreeblk *
4178newjfreeblk(freeblks, lbn, blkno, frags)
4179	struct freeblks *freeblks;
4180	ufs_lbn_t lbn;
4181	ufs2_daddr_t blkno;
4182	int frags;
4183{
4184	struct jfreeblk *jfreeblk;
4185
4186	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4187	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4188	    freeblks->fb_list.wk_mp);
4189	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4190	jfreeblk->jf_dep.jb_freeblks = freeblks;
4191	jfreeblk->jf_ino = freeblks->fb_inum;
4192	jfreeblk->jf_lbn = lbn;
4193	jfreeblk->jf_blkno = blkno;
4194	jfreeblk->jf_frags = frags;
4195	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4196
4197	return (jfreeblk);
4198}
4199
4200/*
4201 * The journal is only prepared to handle full-size block numbers, so we
4202 * have to adjust the record to reflect the change to a full-size block.
4203 * For example, suppose we have a block made up of fragments 8-15 and
4204 * want to free its last two fragments. We are given a request that says:
4205 *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4206 * where frags are the number of fragments to free and oldfrags are the
4207 * number of fragments to keep. To block align it, we have to change it to
4208 * have a valid full-size blkno, so it becomes:
4209 *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4210 */
4211static void
4212adjust_newfreework(freeblks, frag_offset)
4213	struct freeblks *freeblks;
4214	int frag_offset;
4215{
4216	struct jfreeblk *jfreeblk;
4217
4218	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4219	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4220	    ("adjust_newfreework: Missing freeblks dependency"));
4221
4222	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4223	jfreeblk->jf_blkno -= frag_offset;
4224	jfreeblk->jf_frags += frag_offset;
4225}
4226
4227/*
4228 * Allocate a new jtrunc to track a partial truncation.
4229 */
4230static struct jtrunc *
4231newjtrunc(freeblks, size, extsize)
4232	struct freeblks *freeblks;
4233	off_t size;
4234	int extsize;
4235{
4236	struct jtrunc *jtrunc;
4237
4238	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4239	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4240	    freeblks->fb_list.wk_mp);
4241	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4242	jtrunc->jt_dep.jb_freeblks = freeblks;
4243	jtrunc->jt_ino = freeblks->fb_inum;
4244	jtrunc->jt_size = size;
4245	jtrunc->jt_extsize = extsize;
4246	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4247
4248	return (jtrunc);
4249}
4250
4251/*
4252 * If we're canceling a new bitmap we have to search for another ref
4253 * to move into the bmsafemap dep.  This might be better expressed
4254 * with another structure.
4255 */
4256static void
4257move_newblock_dep(jaddref, inodedep)
4258	struct jaddref *jaddref;
4259	struct inodedep *inodedep;
4260{
4261	struct inoref *inoref;
4262	struct jaddref *jaddrefn;
4263
4264	jaddrefn = NULL;
4265	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4266	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4267		if ((jaddref->ja_state & NEWBLOCK) &&
4268		    inoref->if_list.wk_type == D_JADDREF) {
4269			jaddrefn = (struct jaddref *)inoref;
4270			break;
4271		}
4272	}
4273	if (jaddrefn == NULL)
4274		return;
4275	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4276	jaddrefn->ja_state |= jaddref->ja_state &
4277	    (ATTACHED | UNDONE | NEWBLOCK);
4278	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4279	jaddref->ja_state |= ATTACHED;
4280	LIST_REMOVE(jaddref, ja_bmdeps);
4281	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4282	    ja_bmdeps);
4283}
4284
4285/*
4286 * Cancel a jaddref either before it has been written or while it is being
4287 * written.  This happens when a link is removed before the add reaches
4288 * the disk.  The jaddref dependency is kept linked into the bmsafemap
4289 * and inode to prevent the link count or bitmap from reaching the disk
4290 * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4291 * required.
4292 *
4293 * Returns 1 if the canceled addref requires journaling of the remove and
4294 * 0 otherwise.
4295 */
4296static int
4297cancel_jaddref(jaddref, inodedep, wkhd)
4298	struct jaddref *jaddref;
4299	struct inodedep *inodedep;
4300	struct workhead *wkhd;
4301{
4302	struct inoref *inoref;
4303	struct jsegdep *jsegdep;
4304	int needsj;
4305
4306	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4307	    ("cancel_jaddref: Canceling complete jaddref"));
4308	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4309		needsj = 1;
4310	else
4311		needsj = 0;
4312	if (inodedep == NULL)
4313		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4314		    0, &inodedep) == 0)
4315			panic("cancel_jaddref: Lost inodedep");
4316	/*
4317	 * We must adjust the nlink of any reference operation that follows
4318	 * us so that it is consistent with the in-memory reference.  This
4319	 * ensures that inode nlink rollbacks always have the correct link.
4320	 */
4321	if (needsj == 0) {
4322		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4323		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4324			if (inoref->if_state & GOINGAWAY)
4325				break;
4326			inoref->if_nlink--;
4327		}
4328	}
4329	jsegdep = inoref_jseg(&jaddref->ja_ref);
4330	if (jaddref->ja_state & NEWBLOCK)
4331		move_newblock_dep(jaddref, inodedep);
4332	wake_worklist(&jaddref->ja_list);
4333	jaddref->ja_mkdir = NULL;
4334	if (jaddref->ja_state & INPROGRESS) {
4335		jaddref->ja_state &= ~INPROGRESS;
4336		WORKLIST_REMOVE(&jaddref->ja_list);
4337		jwork_insert(wkhd, jsegdep);
4338	} else {
4339		free_jsegdep(jsegdep);
4340		if (jaddref->ja_state & DEPCOMPLETE)
4341			remove_from_journal(&jaddref->ja_list);
4342	}
4343	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4344	/*
4345	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4346	 * can arrange for them to be freed with the bitmap.  Otherwise we
4347	 * no longer need this addref attached to the inoreflst and it
4348	 * will incorrectly adjust nlink if we leave it.
4349	 */
4350	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4351		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4352		    if_deps);
4353		jaddref->ja_state |= COMPLETE;
4354		free_jaddref(jaddref);
4355		return (needsj);
4356	}
4357	/*
4358	 * Leave the head of the list for jsegdeps for fast merging.
4359	 */
4360	if (LIST_FIRST(wkhd) != NULL) {
4361		jaddref->ja_state |= ONWORKLIST;
4362		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4363	} else
4364		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4365
4366	return (needsj);
4367}
4368
4369/*
4370 * Attempt to free a jaddref structure when some work completes.  This
4371 * should only succeed once the entry is written and all dependencies have
4372 * been notified.
4373 */
4374static void
4375free_jaddref(jaddref)
4376	struct jaddref *jaddref;
4377{
4378
4379	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4380		return;
4381	if (jaddref->ja_ref.if_jsegdep)
4382		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4383		    jaddref, jaddref->ja_state);
4384	if (jaddref->ja_state & NEWBLOCK)
4385		LIST_REMOVE(jaddref, ja_bmdeps);
4386	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4387		panic("free_jaddref: Bad state %p(0x%X)",
4388		    jaddref, jaddref->ja_state);
4389	if (jaddref->ja_mkdir != NULL)
4390		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4391	WORKITEM_FREE(jaddref, D_JADDREF);
4392}
4393
4394/*
4395 * Free a jremref structure once it has been written or discarded.
4396 */
4397static void
4398free_jremref(jremref)
4399	struct jremref *jremref;
4400{
4401
4402	if (jremref->jr_ref.if_jsegdep)
4403		free_jsegdep(jremref->jr_ref.if_jsegdep);
4404	if (jremref->jr_state & INPROGRESS)
4405		panic("free_jremref: IO still pending");
4406	WORKITEM_FREE(jremref, D_JREMREF);
4407}
4408
4409/*
4410 * Free a jnewblk structure.
4411 */
4412static void
4413free_jnewblk(jnewblk)
4414	struct jnewblk *jnewblk;
4415{
4416
4417	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4418		return;
4419	LIST_REMOVE(jnewblk, jn_deps);
4420	if (jnewblk->jn_dep != NULL)
4421		panic("free_jnewblk: Dependency still attached.");
4422	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4423}
4424
4425/*
4426 * Cancel a jnewblk which has been been made redundant by frag extension.
4427 */
4428static void
4429cancel_jnewblk(jnewblk, wkhd)
4430	struct jnewblk *jnewblk;
4431	struct workhead *wkhd;
4432{
4433	struct jsegdep *jsegdep;
4434
4435	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4436	jsegdep = jnewblk->jn_jsegdep;
4437	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4438		panic("cancel_jnewblk: Invalid state");
4439	jnewblk->jn_jsegdep  = NULL;
4440	jnewblk->jn_dep = NULL;
4441	jnewblk->jn_state |= GOINGAWAY;
4442	if (jnewblk->jn_state & INPROGRESS) {
4443		jnewblk->jn_state &= ~INPROGRESS;
4444		WORKLIST_REMOVE(&jnewblk->jn_list);
4445		jwork_insert(wkhd, jsegdep);
4446	} else {
4447		free_jsegdep(jsegdep);
4448		remove_from_journal(&jnewblk->jn_list);
4449	}
4450	wake_worklist(&jnewblk->jn_list);
4451	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4452}
4453
4454static void
4455free_jblkdep(jblkdep)
4456	struct jblkdep *jblkdep;
4457{
4458
4459	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4460		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4461	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4462		WORKITEM_FREE(jblkdep, D_JTRUNC);
4463	else
4464		panic("free_jblkdep: Unexpected type %s",
4465		    TYPENAME(jblkdep->jb_list.wk_type));
4466}
4467
4468/*
4469 * Free a single jseg once it is no longer referenced in memory or on
4470 * disk.  Reclaim journal blocks and dependencies waiting for the segment
4471 * to disappear.
4472 */
4473static void
4474free_jseg(jseg, jblocks)
4475	struct jseg *jseg;
4476	struct jblocks *jblocks;
4477{
4478	struct freework *freework;
4479
4480	/*
4481	 * Free freework structures that were lingering to indicate freed
4482	 * indirect blocks that forced journal write ordering on reallocate.
4483	 */
4484	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4485		indirblk_remove(freework);
4486	if (jblocks->jb_oldestseg == jseg)
4487		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4488	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4489	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4490	KASSERT(LIST_EMPTY(&jseg->js_entries),
4491	    ("free_jseg: Freed jseg has valid entries."));
4492	WORKITEM_FREE(jseg, D_JSEG);
4493}
4494
4495/*
4496 * Free all jsegs that meet the criteria for being reclaimed and update
4497 * oldestseg.
4498 */
4499static void
4500free_jsegs(jblocks)
4501	struct jblocks *jblocks;
4502{
4503	struct jseg *jseg;
4504
4505	/*
4506	 * Free only those jsegs which have none allocated before them to
4507	 * preserve the journal space ordering.
4508	 */
4509	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4510		/*
4511		 * Only reclaim space when nothing depends on this journal
4512		 * set and another set has written that it is no longer
4513		 * valid.
4514		 */
4515		if (jseg->js_refs != 0) {
4516			jblocks->jb_oldestseg = jseg;
4517			return;
4518		}
4519		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4520			break;
4521		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4522			break;
4523		/*
4524		 * We can free jsegs that didn't write entries when
4525		 * oldestwrseq == js_seq.
4526		 */
4527		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4528		    jseg->js_cnt != 0)
4529			break;
4530		free_jseg(jseg, jblocks);
4531	}
4532	/*
4533	 * If we exited the loop above we still must discover the
4534	 * oldest valid segment.
4535	 */
4536	if (jseg)
4537		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4538		     jseg = TAILQ_NEXT(jseg, js_next))
4539			if (jseg->js_refs != 0)
4540				break;
4541	jblocks->jb_oldestseg = jseg;
4542	/*
4543	 * The journal has no valid records but some jsegs may still be
4544	 * waiting on oldestwrseq to advance.  We force a small record
4545	 * out to permit these lingering records to be reclaimed.
4546	 */
4547	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4548		jblocks->jb_needseg = 1;
4549}
4550
4551/*
4552 * Release one reference to a jseg and free it if the count reaches 0.  This
4553 * should eventually reclaim journal space as well.
4554 */
4555static void
4556rele_jseg(jseg)
4557	struct jseg *jseg;
4558{
4559
4560	KASSERT(jseg->js_refs > 0,
4561	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4562	if (--jseg->js_refs != 0)
4563		return;
4564	free_jsegs(jseg->js_jblocks);
4565}
4566
4567/*
4568 * Release a jsegdep and decrement the jseg count.
4569 */
4570static void
4571free_jsegdep(jsegdep)
4572	struct jsegdep *jsegdep;
4573{
4574
4575	if (jsegdep->jd_seg)
4576		rele_jseg(jsegdep->jd_seg);
4577	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4578}
4579
4580/*
4581 * Wait for a journal item to make it to disk.  Initiate journal processing
4582 * if required.
4583 */
4584static int
4585jwait(wk, waitfor)
4586	struct worklist *wk;
4587	int waitfor;
4588{
4589
4590	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4591	/*
4592	 * Blocking journal waits cause slow synchronous behavior.  Record
4593	 * stats on the frequency of these blocking operations.
4594	 */
4595	if (waitfor == MNT_WAIT) {
4596		stat_journal_wait++;
4597		switch (wk->wk_type) {
4598		case D_JREMREF:
4599		case D_JMVREF:
4600			stat_jwait_filepage++;
4601			break;
4602		case D_JTRUNC:
4603		case D_JFREEBLK:
4604			stat_jwait_freeblks++;
4605			break;
4606		case D_JNEWBLK:
4607			stat_jwait_newblk++;
4608			break;
4609		case D_JADDREF:
4610			stat_jwait_inode++;
4611			break;
4612		default:
4613			break;
4614		}
4615	}
4616	/*
4617	 * If IO has not started we process the journal.  We can't mark the
4618	 * worklist item as IOWAITING because we drop the lock while
4619	 * processing the journal and the worklist entry may be freed after
4620	 * this point.  The caller may call back in and re-issue the request.
4621	 */
4622	if ((wk->wk_state & INPROGRESS) == 0) {
4623		softdep_process_journal(wk->wk_mp, wk, waitfor);
4624		if (waitfor != MNT_WAIT)
4625			return (EBUSY);
4626		return (0);
4627	}
4628	if (waitfor != MNT_WAIT)
4629		return (EBUSY);
4630	wait_worklist(wk, "jwait");
4631	return (0);
4632}
4633
4634/*
4635 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4636 * appropriate.  This is a convenience function to reduce duplicate code
4637 * for the setup and revert functions below.
4638 */
4639static struct inodedep *
4640inodedep_lookup_ip(ip)
4641	struct inode *ip;
4642{
4643	struct inodedep *inodedep;
4644
4645	KASSERT(ip->i_nlink >= ip->i_effnlink,
4646	    ("inodedep_lookup_ip: bad delta"));
4647	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC,
4648	    &inodedep);
4649	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4650	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4651
4652	return (inodedep);
4653}
4654
4655/*
4656 * Called prior to creating a new inode and linking it to a directory.  The
4657 * jaddref structure must already be allocated by softdep_setup_inomapdep
4658 * and it is discovered here so we can initialize the mode and update
4659 * nlinkdelta.
4660 */
4661void
4662softdep_setup_create(dp, ip)
4663	struct inode *dp;
4664	struct inode *ip;
4665{
4666	struct inodedep *inodedep;
4667	struct jaddref *jaddref;
4668	struct vnode *dvp;
4669
4670	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4671	    ("softdep_setup_create called on non-softdep filesystem"));
4672	KASSERT(ip->i_nlink == 1,
4673	    ("softdep_setup_create: Invalid link count."));
4674	dvp = ITOV(dp);
4675	ACQUIRE_LOCK(dp->i_ump);
4676	inodedep = inodedep_lookup_ip(ip);
4677	if (DOINGSUJ(dvp)) {
4678		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4679		    inoreflst);
4680		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4681		    ("softdep_setup_create: No addref structure present."));
4682	}
4683	softdep_prelink(dvp, NULL);
4684	FREE_LOCK(dp->i_ump);
4685}
4686
4687/*
4688 * Create a jaddref structure to track the addition of a DOTDOT link when
4689 * we are reparenting an inode as part of a rename.  This jaddref will be
4690 * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4691 * non-journaling softdep.
4692 */
4693void
4694softdep_setup_dotdot_link(dp, ip)
4695	struct inode *dp;
4696	struct inode *ip;
4697{
4698	struct inodedep *inodedep;
4699	struct jaddref *jaddref;
4700	struct vnode *dvp;
4701
4702	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4703	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4704	dvp = ITOV(dp);
4705	jaddref = NULL;
4706	/*
4707	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4708	 * is used as a normal link would be.
4709	 */
4710	if (DOINGSUJ(dvp))
4711		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4712		    dp->i_effnlink - 1, dp->i_mode);
4713	ACQUIRE_LOCK(dp->i_ump);
4714	inodedep = inodedep_lookup_ip(dp);
4715	if (jaddref)
4716		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4717		    if_deps);
4718	softdep_prelink(dvp, ITOV(ip));
4719	FREE_LOCK(dp->i_ump);
4720}
4721
4722/*
4723 * Create a jaddref structure to track a new link to an inode.  The directory
4724 * offset is not known until softdep_setup_directory_add or
4725 * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4726 * softdep.
4727 */
4728void
4729softdep_setup_link(dp, ip)
4730	struct inode *dp;
4731	struct inode *ip;
4732{
4733	struct inodedep *inodedep;
4734	struct jaddref *jaddref;
4735	struct vnode *dvp;
4736
4737	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4738	    ("softdep_setup_link called on non-softdep filesystem"));
4739	dvp = ITOV(dp);
4740	jaddref = NULL;
4741	if (DOINGSUJ(dvp))
4742		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4743		    ip->i_mode);
4744	ACQUIRE_LOCK(dp->i_ump);
4745	inodedep = inodedep_lookup_ip(ip);
4746	if (jaddref)
4747		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4748		    if_deps);
4749	softdep_prelink(dvp, ITOV(ip));
4750	FREE_LOCK(dp->i_ump);
4751}
4752
4753/*
4754 * Called to create the jaddref structures to track . and .. references as
4755 * well as lookup and further initialize the incomplete jaddref created
4756 * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4757 * nlinkdelta for non-journaling softdep.
4758 */
4759void
4760softdep_setup_mkdir(dp, ip)
4761	struct inode *dp;
4762	struct inode *ip;
4763{
4764	struct inodedep *inodedep;
4765	struct jaddref *dotdotaddref;
4766	struct jaddref *dotaddref;
4767	struct jaddref *jaddref;
4768	struct vnode *dvp;
4769
4770	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4771	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4772	dvp = ITOV(dp);
4773	dotaddref = dotdotaddref = NULL;
4774	if (DOINGSUJ(dvp)) {
4775		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4776		    ip->i_mode);
4777		dotaddref->ja_state |= MKDIR_BODY;
4778		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4779		    dp->i_effnlink - 1, dp->i_mode);
4780		dotdotaddref->ja_state |= MKDIR_PARENT;
4781	}
4782	ACQUIRE_LOCK(dp->i_ump);
4783	inodedep = inodedep_lookup_ip(ip);
4784	if (DOINGSUJ(dvp)) {
4785		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4786		    inoreflst);
4787		KASSERT(jaddref != NULL,
4788		    ("softdep_setup_mkdir: No addref structure present."));
4789		KASSERT(jaddref->ja_parent == dp->i_number,
4790		    ("softdep_setup_mkdir: bad parent %ju",
4791		    (uintmax_t)jaddref->ja_parent));
4792		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4793		    if_deps);
4794	}
4795	inodedep = inodedep_lookup_ip(dp);
4796	if (DOINGSUJ(dvp))
4797		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4798		    &dotdotaddref->ja_ref, if_deps);
4799	softdep_prelink(ITOV(dp), NULL);
4800	FREE_LOCK(dp->i_ump);
4801}
4802
4803/*
4804 * Called to track nlinkdelta of the inode and parent directories prior to
4805 * unlinking a directory.
4806 */
4807void
4808softdep_setup_rmdir(dp, ip)
4809	struct inode *dp;
4810	struct inode *ip;
4811{
4812	struct vnode *dvp;
4813
4814	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4815	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4816	dvp = ITOV(dp);
4817	ACQUIRE_LOCK(dp->i_ump);
4818	(void) inodedep_lookup_ip(ip);
4819	(void) inodedep_lookup_ip(dp);
4820	softdep_prelink(dvp, ITOV(ip));
4821	FREE_LOCK(dp->i_ump);
4822}
4823
4824/*
4825 * Called to track nlinkdelta of the inode and parent directories prior to
4826 * unlink.
4827 */
4828void
4829softdep_setup_unlink(dp, ip)
4830	struct inode *dp;
4831	struct inode *ip;
4832{
4833	struct vnode *dvp;
4834
4835	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4836	    ("softdep_setup_unlink called on non-softdep filesystem"));
4837	dvp = ITOV(dp);
4838	ACQUIRE_LOCK(dp->i_ump);
4839	(void) inodedep_lookup_ip(ip);
4840	(void) inodedep_lookup_ip(dp);
4841	softdep_prelink(dvp, ITOV(ip));
4842	FREE_LOCK(dp->i_ump);
4843}
4844
4845/*
4846 * Called to release the journal structures created by a failed non-directory
4847 * creation.  Adjusts nlinkdelta for non-journaling softdep.
4848 */
4849void
4850softdep_revert_create(dp, ip)
4851	struct inode *dp;
4852	struct inode *ip;
4853{
4854	struct inodedep *inodedep;
4855	struct jaddref *jaddref;
4856	struct vnode *dvp;
4857
4858	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4859	    ("softdep_revert_create called on non-softdep filesystem"));
4860	dvp = ITOV(dp);
4861	ACQUIRE_LOCK(dp->i_ump);
4862	inodedep = inodedep_lookup_ip(ip);
4863	if (DOINGSUJ(dvp)) {
4864		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4865		    inoreflst);
4866		KASSERT(jaddref->ja_parent == dp->i_number,
4867		    ("softdep_revert_create: addref parent mismatch"));
4868		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4869	}
4870	FREE_LOCK(dp->i_ump);
4871}
4872
4873/*
4874 * Called to release the journal structures created by a failed link
4875 * addition.  Adjusts nlinkdelta for non-journaling softdep.
4876 */
4877void
4878softdep_revert_link(dp, ip)
4879	struct inode *dp;
4880	struct inode *ip;
4881{
4882	struct inodedep *inodedep;
4883	struct jaddref *jaddref;
4884	struct vnode *dvp;
4885
4886	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4887	    ("softdep_revert_link called on non-softdep filesystem"));
4888	dvp = ITOV(dp);
4889	ACQUIRE_LOCK(dp->i_ump);
4890	inodedep = inodedep_lookup_ip(ip);
4891	if (DOINGSUJ(dvp)) {
4892		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4893		    inoreflst);
4894		KASSERT(jaddref->ja_parent == dp->i_number,
4895		    ("softdep_revert_link: addref parent mismatch"));
4896		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4897	}
4898	FREE_LOCK(dp->i_ump);
4899}
4900
4901/*
4902 * Called to release the journal structures created by a failed mkdir
4903 * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4904 */
4905void
4906softdep_revert_mkdir(dp, ip)
4907	struct inode *dp;
4908	struct inode *ip;
4909{
4910	struct inodedep *inodedep;
4911	struct jaddref *jaddref;
4912	struct jaddref *dotaddref;
4913	struct vnode *dvp;
4914
4915	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4916	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4917	dvp = ITOV(dp);
4918
4919	ACQUIRE_LOCK(dp->i_ump);
4920	inodedep = inodedep_lookup_ip(dp);
4921	if (DOINGSUJ(dvp)) {
4922		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4923		    inoreflst);
4924		KASSERT(jaddref->ja_parent == ip->i_number,
4925		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4926		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4927	}
4928	inodedep = inodedep_lookup_ip(ip);
4929	if (DOINGSUJ(dvp)) {
4930		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4931		    inoreflst);
4932		KASSERT(jaddref->ja_parent == dp->i_number,
4933		    ("softdep_revert_mkdir: addref parent mismatch"));
4934		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4935		    inoreflst, if_deps);
4936		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4937		KASSERT(dotaddref->ja_parent == ip->i_number,
4938		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4939		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4940	}
4941	FREE_LOCK(dp->i_ump);
4942}
4943
4944/*
4945 * Called to correct nlinkdelta after a failed rmdir.
4946 */
4947void
4948softdep_revert_rmdir(dp, ip)
4949	struct inode *dp;
4950	struct inode *ip;
4951{
4952
4953	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4954	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4955	ACQUIRE_LOCK(dp->i_ump);
4956	(void) inodedep_lookup_ip(ip);
4957	(void) inodedep_lookup_ip(dp);
4958	FREE_LOCK(dp->i_ump);
4959}
4960
4961/*
4962 * Protecting the freemaps (or bitmaps).
4963 *
4964 * To eliminate the need to execute fsck before mounting a filesystem
4965 * after a power failure, one must (conservatively) guarantee that the
4966 * on-disk copy of the bitmaps never indicate that a live inode or block is
4967 * free.  So, when a block or inode is allocated, the bitmap should be
4968 * updated (on disk) before any new pointers.  When a block or inode is
4969 * freed, the bitmap should not be updated until all pointers have been
4970 * reset.  The latter dependency is handled by the delayed de-allocation
4971 * approach described below for block and inode de-allocation.  The former
4972 * dependency is handled by calling the following procedure when a block or
4973 * inode is allocated. When an inode is allocated an "inodedep" is created
4974 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4975 * Each "inodedep" is also inserted into the hash indexing structure so
4976 * that any additional link additions can be made dependent on the inode
4977 * allocation.
4978 *
4979 * The ufs filesystem maintains a number of free block counts (e.g., per
4980 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4981 * in addition to the bitmaps.  These counts are used to improve efficiency
4982 * during allocation and therefore must be consistent with the bitmaps.
4983 * There is no convenient way to guarantee post-crash consistency of these
4984 * counts with simple update ordering, for two main reasons: (1) The counts
4985 * and bitmaps for a single cylinder group block are not in the same disk
4986 * sector.  If a disk write is interrupted (e.g., by power failure), one may
4987 * be written and the other not.  (2) Some of the counts are located in the
4988 * superblock rather than the cylinder group block. So, we focus our soft
4989 * updates implementation on protecting the bitmaps. When mounting a
4990 * filesystem, we recompute the auxiliary counts from the bitmaps.
4991 */
4992
4993/*
4994 * Called just after updating the cylinder group block to allocate an inode.
4995 */
4996void
4997softdep_setup_inomapdep(bp, ip, newinum, mode)
4998	struct buf *bp;		/* buffer for cylgroup block with inode map */
4999	struct inode *ip;	/* inode related to allocation */
5000	ino_t newinum;		/* new inode number being allocated */
5001	int mode;
5002{
5003	struct inodedep *inodedep;
5004	struct bmsafemap *bmsafemap;
5005	struct jaddref *jaddref;
5006	struct mount *mp;
5007	struct fs *fs;
5008
5009	mp = UFSTOVFS(ip->i_ump);
5010	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5011	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5012	fs = ip->i_ump->um_fs;
5013	jaddref = NULL;
5014
5015	/*
5016	 * Allocate the journal reference add structure so that the bitmap
5017	 * can be dependent on it.
5018	 */
5019	if (MOUNTEDSUJ(mp)) {
5020		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5021		jaddref->ja_state |= NEWBLOCK;
5022	}
5023
5024	/*
5025	 * Create a dependency for the newly allocated inode.
5026	 * Panic if it already exists as something is seriously wrong.
5027	 * Otherwise add it to the dependency list for the buffer holding
5028	 * the cylinder group map from which it was allocated.
5029	 *
5030	 * We have to preallocate a bmsafemap entry in case it is needed
5031	 * in bmsafemap_lookup since once we allocate the inodedep, we
5032	 * have to finish initializing it before we can FREE_LOCK().
5033	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5034	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5035	 * creating the inodedep as it can be freed during the time
5036	 * that we FREE_LOCK() while allocating the inodedep. We must
5037	 * call workitem_alloc() before entering the locked section as
5038	 * it also acquires the lock and we must avoid trying doing so
5039	 * recursively.
5040	 */
5041	bmsafemap = malloc(sizeof(struct bmsafemap),
5042	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5043	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5044	ACQUIRE_LOCK(ip->i_ump);
5045	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5046		panic("softdep_setup_inomapdep: dependency %p for new"
5047		    "inode already exists", inodedep);
5048	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5049	if (jaddref) {
5050		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5051		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5052		    if_deps);
5053	} else {
5054		inodedep->id_state |= ONDEPLIST;
5055		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5056	}
5057	inodedep->id_bmsafemap = bmsafemap;
5058	inodedep->id_state &= ~DEPCOMPLETE;
5059	FREE_LOCK(ip->i_ump);
5060}
5061
5062/*
5063 * Called just after updating the cylinder group block to
5064 * allocate block or fragment.
5065 */
5066void
5067softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5068	struct buf *bp;		/* buffer for cylgroup block with block map */
5069	struct mount *mp;	/* filesystem doing allocation */
5070	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5071	int frags;		/* Number of fragments. */
5072	int oldfrags;		/* Previous number of fragments for extend. */
5073{
5074	struct newblk *newblk;
5075	struct bmsafemap *bmsafemap;
5076	struct jnewblk *jnewblk;
5077	struct ufsmount *ump;
5078	struct fs *fs;
5079
5080	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5081	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5082	ump = VFSTOUFS(mp);
5083	fs = ump->um_fs;
5084	jnewblk = NULL;
5085	/*
5086	 * Create a dependency for the newly allocated block.
5087	 * Add it to the dependency list for the buffer holding
5088	 * the cylinder group map from which it was allocated.
5089	 */
5090	if (MOUNTEDSUJ(mp)) {
5091		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5092		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5093		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5094		jnewblk->jn_state = ATTACHED;
5095		jnewblk->jn_blkno = newblkno;
5096		jnewblk->jn_frags = frags;
5097		jnewblk->jn_oldfrags = oldfrags;
5098#ifdef SUJ_DEBUG
5099		{
5100			struct cg *cgp;
5101			uint8_t *blksfree;
5102			long bno;
5103			int i;
5104
5105			cgp = (struct cg *)bp->b_data;
5106			blksfree = cg_blksfree(cgp);
5107			bno = dtogd(fs, jnewblk->jn_blkno);
5108			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5109			    i++) {
5110				if (isset(blksfree, bno + i))
5111					panic("softdep_setup_blkmapdep: "
5112					    "free fragment %d from %d-%d "
5113					    "state 0x%X dep %p", i,
5114					    jnewblk->jn_oldfrags,
5115					    jnewblk->jn_frags,
5116					    jnewblk->jn_state,
5117					    jnewblk->jn_dep);
5118			}
5119		}
5120#endif
5121	}
5122
5123	CTR3(KTR_SUJ,
5124	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5125	    newblkno, frags, oldfrags);
5126	ACQUIRE_LOCK(ump);
5127	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5128		panic("softdep_setup_blkmapdep: found block");
5129	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5130	    dtog(fs, newblkno), NULL);
5131	if (jnewblk) {
5132		jnewblk->jn_dep = (struct worklist *)newblk;
5133		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5134	} else {
5135		newblk->nb_state |= ONDEPLIST;
5136		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5137	}
5138	newblk->nb_bmsafemap = bmsafemap;
5139	newblk->nb_jnewblk = jnewblk;
5140	FREE_LOCK(ump);
5141}
5142
5143#define	BMSAFEMAP_HASH(ump, cg) \
5144      (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5145
5146static int
5147bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5148	struct bmsafemap_hashhead *bmsafemaphd;
5149	int cg;
5150	struct bmsafemap **bmsafemapp;
5151{
5152	struct bmsafemap *bmsafemap;
5153
5154	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5155		if (bmsafemap->sm_cg == cg)
5156			break;
5157	if (bmsafemap) {
5158		*bmsafemapp = bmsafemap;
5159		return (1);
5160	}
5161	*bmsafemapp = NULL;
5162
5163	return (0);
5164}
5165
5166/*
5167 * Find the bmsafemap associated with a cylinder group buffer.
5168 * If none exists, create one. The buffer must be locked when
5169 * this routine is called and this routine must be called with
5170 * the softdep lock held. To avoid giving up the lock while
5171 * allocating a new bmsafemap, a preallocated bmsafemap may be
5172 * provided. If it is provided but not needed, it is freed.
5173 */
5174static struct bmsafemap *
5175bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5176	struct mount *mp;
5177	struct buf *bp;
5178	int cg;
5179	struct bmsafemap *newbmsafemap;
5180{
5181	struct bmsafemap_hashhead *bmsafemaphd;
5182	struct bmsafemap *bmsafemap, *collision;
5183	struct worklist *wk;
5184	struct ufsmount *ump;
5185
5186	ump = VFSTOUFS(mp);
5187	LOCK_OWNED(ump);
5188	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5189	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5190		if (wk->wk_type == D_BMSAFEMAP) {
5191			if (newbmsafemap)
5192				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5193			return (WK_BMSAFEMAP(wk));
5194		}
5195	}
5196	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5197	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5198		if (newbmsafemap)
5199			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5200		return (bmsafemap);
5201	}
5202	if (newbmsafemap) {
5203		bmsafemap = newbmsafemap;
5204	} else {
5205		FREE_LOCK(ump);
5206		bmsafemap = malloc(sizeof(struct bmsafemap),
5207			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5208		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5209		ACQUIRE_LOCK(ump);
5210	}
5211	bmsafemap->sm_buf = bp;
5212	LIST_INIT(&bmsafemap->sm_inodedephd);
5213	LIST_INIT(&bmsafemap->sm_inodedepwr);
5214	LIST_INIT(&bmsafemap->sm_newblkhd);
5215	LIST_INIT(&bmsafemap->sm_newblkwr);
5216	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5217	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5218	LIST_INIT(&bmsafemap->sm_freehd);
5219	LIST_INIT(&bmsafemap->sm_freewr);
5220	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5221		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5222		return (collision);
5223	}
5224	bmsafemap->sm_cg = cg;
5225	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5226	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5227	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5228	return (bmsafemap);
5229}
5230
5231/*
5232 * Direct block allocation dependencies.
5233 *
5234 * When a new block is allocated, the corresponding disk locations must be
5235 * initialized (with zeros or new data) before the on-disk inode points to
5236 * them.  Also, the freemap from which the block was allocated must be
5237 * updated (on disk) before the inode's pointer. These two dependencies are
5238 * independent of each other and are needed for all file blocks and indirect
5239 * blocks that are pointed to directly by the inode.  Just before the
5240 * "in-core" version of the inode is updated with a newly allocated block
5241 * number, a procedure (below) is called to setup allocation dependency
5242 * structures.  These structures are removed when the corresponding
5243 * dependencies are satisfied or when the block allocation becomes obsolete
5244 * (i.e., the file is deleted, the block is de-allocated, or the block is a
5245 * fragment that gets upgraded).  All of these cases are handled in
5246 * procedures described later.
5247 *
5248 * When a file extension causes a fragment to be upgraded, either to a larger
5249 * fragment or to a full block, the on-disk location may change (if the
5250 * previous fragment could not simply be extended). In this case, the old
5251 * fragment must be de-allocated, but not until after the inode's pointer has
5252 * been updated. In most cases, this is handled by later procedures, which
5253 * will construct a "freefrag" structure to be added to the workitem queue
5254 * when the inode update is complete (or obsolete).  The main exception to
5255 * this is when an allocation occurs while a pending allocation dependency
5256 * (for the same block pointer) remains.  This case is handled in the main
5257 * allocation dependency setup procedure by immediately freeing the
5258 * unreferenced fragments.
5259 */
5260void
5261softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5262	struct inode *ip;	/* inode to which block is being added */
5263	ufs_lbn_t off;		/* block pointer within inode */
5264	ufs2_daddr_t newblkno;	/* disk block number being added */
5265	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5266	long newsize;		/* size of new block */
5267	long oldsize;		/* size of new block */
5268	struct buf *bp;		/* bp for allocated block */
5269{
5270	struct allocdirect *adp, *oldadp;
5271	struct allocdirectlst *adphead;
5272	struct freefrag *freefrag;
5273	struct inodedep *inodedep;
5274	struct pagedep *pagedep;
5275	struct jnewblk *jnewblk;
5276	struct newblk *newblk;
5277	struct mount *mp;
5278	ufs_lbn_t lbn;
5279
5280	lbn = bp->b_lblkno;
5281	mp = UFSTOVFS(ip->i_ump);
5282	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5283	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5284	if (oldblkno && oldblkno != newblkno)
5285		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5286	else
5287		freefrag = NULL;
5288
5289	CTR6(KTR_SUJ,
5290	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5291	    "off %jd newsize %ld oldsize %d",
5292	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5293	ACQUIRE_LOCK(ip->i_ump);
5294	if (off >= NDADDR) {
5295		if (lbn > 0)
5296			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5297			    lbn, off);
5298		/* allocating an indirect block */
5299		if (oldblkno != 0)
5300			panic("softdep_setup_allocdirect: non-zero indir");
5301	} else {
5302		if (off != lbn)
5303			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5304			    lbn, off);
5305		/*
5306		 * Allocating a direct block.
5307		 *
5308		 * If we are allocating a directory block, then we must
5309		 * allocate an associated pagedep to track additions and
5310		 * deletions.
5311		 */
5312		if ((ip->i_mode & IFMT) == IFDIR)
5313			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5314			    &pagedep);
5315	}
5316	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5317		panic("softdep_setup_allocdirect: lost block");
5318	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5319	    ("softdep_setup_allocdirect: newblk already initialized"));
5320	/*
5321	 * Convert the newblk to an allocdirect.
5322	 */
5323	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5324	adp = (struct allocdirect *)newblk;
5325	newblk->nb_freefrag = freefrag;
5326	adp->ad_offset = off;
5327	adp->ad_oldblkno = oldblkno;
5328	adp->ad_newsize = newsize;
5329	adp->ad_oldsize = oldsize;
5330
5331	/*
5332	 * Finish initializing the journal.
5333	 */
5334	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5335		jnewblk->jn_ino = ip->i_number;
5336		jnewblk->jn_lbn = lbn;
5337		add_to_journal(&jnewblk->jn_list);
5338	}
5339	if (freefrag && freefrag->ff_jdep != NULL &&
5340	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5341		add_to_journal(freefrag->ff_jdep);
5342	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5343	adp->ad_inodedep = inodedep;
5344
5345	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5346	/*
5347	 * The list of allocdirects must be kept in sorted and ascending
5348	 * order so that the rollback routines can quickly determine the
5349	 * first uncommitted block (the size of the file stored on disk
5350	 * ends at the end of the lowest committed fragment, or if there
5351	 * are no fragments, at the end of the highest committed block).
5352	 * Since files generally grow, the typical case is that the new
5353	 * block is to be added at the end of the list. We speed this
5354	 * special case by checking against the last allocdirect in the
5355	 * list before laboriously traversing the list looking for the
5356	 * insertion point.
5357	 */
5358	adphead = &inodedep->id_newinoupdt;
5359	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5360	if (oldadp == NULL || oldadp->ad_offset <= off) {
5361		/* insert at end of list */
5362		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5363		if (oldadp != NULL && oldadp->ad_offset == off)
5364			allocdirect_merge(adphead, adp, oldadp);
5365		FREE_LOCK(ip->i_ump);
5366		return;
5367	}
5368	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5369		if (oldadp->ad_offset >= off)
5370			break;
5371	}
5372	if (oldadp == NULL)
5373		panic("softdep_setup_allocdirect: lost entry");
5374	/* insert in middle of list */
5375	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5376	if (oldadp->ad_offset == off)
5377		allocdirect_merge(adphead, adp, oldadp);
5378
5379	FREE_LOCK(ip->i_ump);
5380}
5381
5382/*
5383 * Merge a newer and older journal record to be stored either in a
5384 * newblock or freefrag.  This handles aggregating journal records for
5385 * fragment allocation into a second record as well as replacing a
5386 * journal free with an aborted journal allocation.  A segment for the
5387 * oldest record will be placed on wkhd if it has been written.  If not
5388 * the segment for the newer record will suffice.
5389 */
5390static struct worklist *
5391jnewblk_merge(new, old, wkhd)
5392	struct worklist *new;
5393	struct worklist *old;
5394	struct workhead *wkhd;
5395{
5396	struct jnewblk *njnewblk;
5397	struct jnewblk *jnewblk;
5398
5399	/* Handle NULLs to simplify callers. */
5400	if (new == NULL)
5401		return (old);
5402	if (old == NULL)
5403		return (new);
5404	/* Replace a jfreefrag with a jnewblk. */
5405	if (new->wk_type == D_JFREEFRAG) {
5406		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5407			panic("jnewblk_merge: blkno mismatch: %p, %p",
5408			    old, new);
5409		cancel_jfreefrag(WK_JFREEFRAG(new));
5410		return (old);
5411	}
5412	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5413		panic("jnewblk_merge: Bad type: old %d new %d\n",
5414		    old->wk_type, new->wk_type);
5415	/*
5416	 * Handle merging of two jnewblk records that describe
5417	 * different sets of fragments in the same block.
5418	 */
5419	jnewblk = WK_JNEWBLK(old);
5420	njnewblk = WK_JNEWBLK(new);
5421	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5422		panic("jnewblk_merge: Merging disparate blocks.");
5423	/*
5424	 * The record may be rolled back in the cg.
5425	 */
5426	if (jnewblk->jn_state & UNDONE) {
5427		jnewblk->jn_state &= ~UNDONE;
5428		njnewblk->jn_state |= UNDONE;
5429		njnewblk->jn_state &= ~ATTACHED;
5430	}
5431	/*
5432	 * We modify the newer addref and free the older so that if neither
5433	 * has been written the most up-to-date copy will be on disk.  If
5434	 * both have been written but rolled back we only temporarily need
5435	 * one of them to fix the bits when the cg write completes.
5436	 */
5437	jnewblk->jn_state |= ATTACHED | COMPLETE;
5438	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5439	cancel_jnewblk(jnewblk, wkhd);
5440	WORKLIST_REMOVE(&jnewblk->jn_list);
5441	free_jnewblk(jnewblk);
5442	return (new);
5443}
5444
5445/*
5446 * Replace an old allocdirect dependency with a newer one.
5447 * This routine must be called with splbio interrupts blocked.
5448 */
5449static void
5450allocdirect_merge(adphead, newadp, oldadp)
5451	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5452	struct allocdirect *newadp;	/* allocdirect being added */
5453	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5454{
5455	struct worklist *wk;
5456	struct freefrag *freefrag;
5457
5458	freefrag = NULL;
5459	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5460	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5461	    newadp->ad_oldsize != oldadp->ad_newsize ||
5462	    newadp->ad_offset >= NDADDR)
5463		panic("%s %jd != new %jd || old size %ld != new %ld",
5464		    "allocdirect_merge: old blkno",
5465		    (intmax_t)newadp->ad_oldblkno,
5466		    (intmax_t)oldadp->ad_newblkno,
5467		    newadp->ad_oldsize, oldadp->ad_newsize);
5468	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5469	newadp->ad_oldsize = oldadp->ad_oldsize;
5470	/*
5471	 * If the old dependency had a fragment to free or had never
5472	 * previously had a block allocated, then the new dependency
5473	 * can immediately post its freefrag and adopt the old freefrag.
5474	 * This action is done by swapping the freefrag dependencies.
5475	 * The new dependency gains the old one's freefrag, and the
5476	 * old one gets the new one and then immediately puts it on
5477	 * the worklist when it is freed by free_newblk. It is
5478	 * not possible to do this swap when the old dependency had a
5479	 * non-zero size but no previous fragment to free. This condition
5480	 * arises when the new block is an extension of the old block.
5481	 * Here, the first part of the fragment allocated to the new
5482	 * dependency is part of the block currently claimed on disk by
5483	 * the old dependency, so cannot legitimately be freed until the
5484	 * conditions for the new dependency are fulfilled.
5485	 */
5486	freefrag = newadp->ad_freefrag;
5487	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5488		newadp->ad_freefrag = oldadp->ad_freefrag;
5489		oldadp->ad_freefrag = freefrag;
5490	}
5491	/*
5492	 * If we are tracking a new directory-block allocation,
5493	 * move it from the old allocdirect to the new allocdirect.
5494	 */
5495	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5496		WORKLIST_REMOVE(wk);
5497		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5498			panic("allocdirect_merge: extra newdirblk");
5499		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5500	}
5501	TAILQ_REMOVE(adphead, oldadp, ad_next);
5502	/*
5503	 * We need to move any journal dependencies over to the freefrag
5504	 * that releases this block if it exists.  Otherwise we are
5505	 * extending an existing block and we'll wait until that is
5506	 * complete to release the journal space and extend the
5507	 * new journal to cover this old space as well.
5508	 */
5509	if (freefrag == NULL) {
5510		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5511			panic("allocdirect_merge: %jd != %jd",
5512			    oldadp->ad_newblkno, newadp->ad_newblkno);
5513		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5514		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5515		    &oldadp->ad_block.nb_jnewblk->jn_list,
5516		    &newadp->ad_block.nb_jwork);
5517		oldadp->ad_block.nb_jnewblk = NULL;
5518		cancel_newblk(&oldadp->ad_block, NULL,
5519		    &newadp->ad_block.nb_jwork);
5520	} else {
5521		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5522		    &freefrag->ff_list, &freefrag->ff_jwork);
5523		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5524		    &freefrag->ff_jwork);
5525	}
5526	free_newblk(&oldadp->ad_block);
5527}
5528
5529/*
5530 * Allocate a jfreefrag structure to journal a single block free.
5531 */
5532static struct jfreefrag *
5533newjfreefrag(freefrag, ip, blkno, size, lbn)
5534	struct freefrag *freefrag;
5535	struct inode *ip;
5536	ufs2_daddr_t blkno;
5537	long size;
5538	ufs_lbn_t lbn;
5539{
5540	struct jfreefrag *jfreefrag;
5541	struct fs *fs;
5542
5543	fs = ip->i_fs;
5544	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5545	    M_SOFTDEP_FLAGS);
5546	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5547	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5548	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5549	jfreefrag->fr_ino = ip->i_number;
5550	jfreefrag->fr_lbn = lbn;
5551	jfreefrag->fr_blkno = blkno;
5552	jfreefrag->fr_frags = numfrags(fs, size);
5553	jfreefrag->fr_freefrag = freefrag;
5554
5555	return (jfreefrag);
5556}
5557
5558/*
5559 * Allocate a new freefrag structure.
5560 */
5561static struct freefrag *
5562newfreefrag(ip, blkno, size, lbn)
5563	struct inode *ip;
5564	ufs2_daddr_t blkno;
5565	long size;
5566	ufs_lbn_t lbn;
5567{
5568	struct freefrag *freefrag;
5569	struct fs *fs;
5570
5571	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5572	    ip->i_number, blkno, size, lbn);
5573	fs = ip->i_fs;
5574	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5575		panic("newfreefrag: frag size");
5576	freefrag = malloc(sizeof(struct freefrag),
5577	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5578	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5579	freefrag->ff_state = ATTACHED;
5580	LIST_INIT(&freefrag->ff_jwork);
5581	freefrag->ff_inum = ip->i_number;
5582	freefrag->ff_vtype = ITOV(ip)->v_type;
5583	freefrag->ff_blkno = blkno;
5584	freefrag->ff_fragsize = size;
5585
5586	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5587		freefrag->ff_jdep = (struct worklist *)
5588		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5589	} else {
5590		freefrag->ff_state |= DEPCOMPLETE;
5591		freefrag->ff_jdep = NULL;
5592	}
5593
5594	return (freefrag);
5595}
5596
5597/*
5598 * This workitem de-allocates fragments that were replaced during
5599 * file block allocation.
5600 */
5601static void
5602handle_workitem_freefrag(freefrag)
5603	struct freefrag *freefrag;
5604{
5605	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5606	struct workhead wkhd;
5607
5608	CTR3(KTR_SUJ,
5609	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5610	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5611	/*
5612	 * It would be illegal to add new completion items to the
5613	 * freefrag after it was schedule to be done so it must be
5614	 * safe to modify the list head here.
5615	 */
5616	LIST_INIT(&wkhd);
5617	ACQUIRE_LOCK(ump);
5618	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5619	/*
5620	 * If the journal has not been written we must cancel it here.
5621	 */
5622	if (freefrag->ff_jdep) {
5623		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5624			panic("handle_workitem_freefrag: Unexpected type %d\n",
5625			    freefrag->ff_jdep->wk_type);
5626		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5627	}
5628	FREE_LOCK(ump);
5629	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5630	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5631	ACQUIRE_LOCK(ump);
5632	WORKITEM_FREE(freefrag, D_FREEFRAG);
5633	FREE_LOCK(ump);
5634}
5635
5636/*
5637 * Set up a dependency structure for an external attributes data block.
5638 * This routine follows much of the structure of softdep_setup_allocdirect.
5639 * See the description of softdep_setup_allocdirect above for details.
5640 */
5641void
5642softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5643	struct inode *ip;
5644	ufs_lbn_t off;
5645	ufs2_daddr_t newblkno;
5646	ufs2_daddr_t oldblkno;
5647	long newsize;
5648	long oldsize;
5649	struct buf *bp;
5650{
5651	struct allocdirect *adp, *oldadp;
5652	struct allocdirectlst *adphead;
5653	struct freefrag *freefrag;
5654	struct inodedep *inodedep;
5655	struct jnewblk *jnewblk;
5656	struct newblk *newblk;
5657	struct mount *mp;
5658	ufs_lbn_t lbn;
5659
5660	mp = UFSTOVFS(ip->i_ump);
5661	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5662	    ("softdep_setup_allocext called on non-softdep filesystem"));
5663	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5664		    (long long)off));
5665
5666	lbn = bp->b_lblkno;
5667	if (oldblkno && oldblkno != newblkno)
5668		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5669	else
5670		freefrag = NULL;
5671
5672	ACQUIRE_LOCK(ip->i_ump);
5673	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5674		panic("softdep_setup_allocext: lost block");
5675	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5676	    ("softdep_setup_allocext: newblk already initialized"));
5677	/*
5678	 * Convert the newblk to an allocdirect.
5679	 */
5680	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5681	adp = (struct allocdirect *)newblk;
5682	newblk->nb_freefrag = freefrag;
5683	adp->ad_offset = off;
5684	adp->ad_oldblkno = oldblkno;
5685	adp->ad_newsize = newsize;
5686	adp->ad_oldsize = oldsize;
5687	adp->ad_state |=  EXTDATA;
5688
5689	/*
5690	 * Finish initializing the journal.
5691	 */
5692	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5693		jnewblk->jn_ino = ip->i_number;
5694		jnewblk->jn_lbn = lbn;
5695		add_to_journal(&jnewblk->jn_list);
5696	}
5697	if (freefrag && freefrag->ff_jdep != NULL &&
5698	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5699		add_to_journal(freefrag->ff_jdep);
5700	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5701	adp->ad_inodedep = inodedep;
5702
5703	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5704	/*
5705	 * The list of allocdirects must be kept in sorted and ascending
5706	 * order so that the rollback routines can quickly determine the
5707	 * first uncommitted block (the size of the file stored on disk
5708	 * ends at the end of the lowest committed fragment, or if there
5709	 * are no fragments, at the end of the highest committed block).
5710	 * Since files generally grow, the typical case is that the new
5711	 * block is to be added at the end of the list. We speed this
5712	 * special case by checking against the last allocdirect in the
5713	 * list before laboriously traversing the list looking for the
5714	 * insertion point.
5715	 */
5716	adphead = &inodedep->id_newextupdt;
5717	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5718	if (oldadp == NULL || oldadp->ad_offset <= off) {
5719		/* insert at end of list */
5720		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5721		if (oldadp != NULL && oldadp->ad_offset == off)
5722			allocdirect_merge(adphead, adp, oldadp);
5723		FREE_LOCK(ip->i_ump);
5724		return;
5725	}
5726	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5727		if (oldadp->ad_offset >= off)
5728			break;
5729	}
5730	if (oldadp == NULL)
5731		panic("softdep_setup_allocext: lost entry");
5732	/* insert in middle of list */
5733	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5734	if (oldadp->ad_offset == off)
5735		allocdirect_merge(adphead, adp, oldadp);
5736	FREE_LOCK(ip->i_ump);
5737}
5738
5739/*
5740 * Indirect block allocation dependencies.
5741 *
5742 * The same dependencies that exist for a direct block also exist when
5743 * a new block is allocated and pointed to by an entry in a block of
5744 * indirect pointers. The undo/redo states described above are also
5745 * used here. Because an indirect block contains many pointers that
5746 * may have dependencies, a second copy of the entire in-memory indirect
5747 * block is kept. The buffer cache copy is always completely up-to-date.
5748 * The second copy, which is used only as a source for disk writes,
5749 * contains only the safe pointers (i.e., those that have no remaining
5750 * update dependencies). The second copy is freed when all pointers
5751 * are safe. The cache is not allowed to replace indirect blocks with
5752 * pending update dependencies. If a buffer containing an indirect
5753 * block with dependencies is written, these routines will mark it
5754 * dirty again. It can only be successfully written once all the
5755 * dependencies are removed. The ffs_fsync routine in conjunction with
5756 * softdep_sync_metadata work together to get all the dependencies
5757 * removed so that a file can be successfully written to disk. Three
5758 * procedures are used when setting up indirect block pointer
5759 * dependencies. The division is necessary because of the organization
5760 * of the "balloc" routine and because of the distinction between file
5761 * pages and file metadata blocks.
5762 */
5763
5764/*
5765 * Allocate a new allocindir structure.
5766 */
5767static struct allocindir *
5768newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5769	struct inode *ip;	/* inode for file being extended */
5770	int ptrno;		/* offset of pointer in indirect block */
5771	ufs2_daddr_t newblkno;	/* disk block number being added */
5772	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5773	ufs_lbn_t lbn;
5774{
5775	struct newblk *newblk;
5776	struct allocindir *aip;
5777	struct freefrag *freefrag;
5778	struct jnewblk *jnewblk;
5779
5780	if (oldblkno)
5781		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5782	else
5783		freefrag = NULL;
5784	ACQUIRE_LOCK(ip->i_ump);
5785	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5786		panic("new_allocindir: lost block");
5787	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5788	    ("newallocindir: newblk already initialized"));
5789	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5790	newblk->nb_freefrag = freefrag;
5791	aip = (struct allocindir *)newblk;
5792	aip->ai_offset = ptrno;
5793	aip->ai_oldblkno = oldblkno;
5794	aip->ai_lbn = lbn;
5795	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5796		jnewblk->jn_ino = ip->i_number;
5797		jnewblk->jn_lbn = lbn;
5798		add_to_journal(&jnewblk->jn_list);
5799	}
5800	if (freefrag && freefrag->ff_jdep != NULL &&
5801	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5802		add_to_journal(freefrag->ff_jdep);
5803	return (aip);
5804}
5805
5806/*
5807 * Called just before setting an indirect block pointer
5808 * to a newly allocated file page.
5809 */
5810void
5811softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5812	struct inode *ip;	/* inode for file being extended */
5813	ufs_lbn_t lbn;		/* allocated block number within file */
5814	struct buf *bp;		/* buffer with indirect blk referencing page */
5815	int ptrno;		/* offset of pointer in indirect block */
5816	ufs2_daddr_t newblkno;	/* disk block number being added */
5817	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5818	struct buf *nbp;	/* buffer holding allocated page */
5819{
5820	struct inodedep *inodedep;
5821	struct freefrag *freefrag;
5822	struct allocindir *aip;
5823	struct pagedep *pagedep;
5824	struct mount *mp;
5825
5826	mp = UFSTOVFS(ip->i_ump);
5827	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5828	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5829	KASSERT(lbn == nbp->b_lblkno,
5830	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5831	    lbn, bp->b_lblkno));
5832	CTR4(KTR_SUJ,
5833	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5834	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5835	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5836	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5837	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5838	/*
5839	 * If we are allocating a directory page, then we must
5840	 * allocate an associated pagedep to track additions and
5841	 * deletions.
5842	 */
5843	if ((ip->i_mode & IFMT) == IFDIR)
5844		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5845	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5846	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5847	FREE_LOCK(ip->i_ump);
5848	if (freefrag)
5849		handle_workitem_freefrag(freefrag);
5850}
5851
5852/*
5853 * Called just before setting an indirect block pointer to a
5854 * newly allocated indirect block.
5855 */
5856void
5857softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5858	struct buf *nbp;	/* newly allocated indirect block */
5859	struct inode *ip;	/* inode for file being extended */
5860	struct buf *bp;		/* indirect block referencing allocated block */
5861	int ptrno;		/* offset of pointer in indirect block */
5862	ufs2_daddr_t newblkno;	/* disk block number being added */
5863{
5864	struct inodedep *inodedep;
5865	struct allocindir *aip;
5866	ufs_lbn_t lbn;
5867
5868	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
5869	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5870	CTR3(KTR_SUJ,
5871	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5872	    ip->i_number, newblkno, ptrno);
5873	lbn = nbp->b_lblkno;
5874	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5875	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5876	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC,
5877	    &inodedep);
5878	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5879	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5880		panic("softdep_setup_allocindir_meta: Block already existed");
5881	FREE_LOCK(ip->i_ump);
5882}
5883
5884static void
5885indirdep_complete(indirdep)
5886	struct indirdep *indirdep;
5887{
5888	struct allocindir *aip;
5889
5890	LIST_REMOVE(indirdep, ir_next);
5891	indirdep->ir_state |= DEPCOMPLETE;
5892
5893	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5894		LIST_REMOVE(aip, ai_next);
5895		free_newblk(&aip->ai_block);
5896	}
5897	/*
5898	 * If this indirdep is not attached to a buf it was simply waiting
5899	 * on completion to clear completehd.  free_indirdep() asserts
5900	 * that nothing is dangling.
5901	 */
5902	if ((indirdep->ir_state & ONWORKLIST) == 0)
5903		free_indirdep(indirdep);
5904}
5905
5906static struct indirdep *
5907indirdep_lookup(mp, ip, bp)
5908	struct mount *mp;
5909	struct inode *ip;
5910	struct buf *bp;
5911{
5912	struct indirdep *indirdep, *newindirdep;
5913	struct newblk *newblk;
5914	struct ufsmount *ump;
5915	struct worklist *wk;
5916	struct fs *fs;
5917	ufs2_daddr_t blkno;
5918
5919	ump = VFSTOUFS(mp);
5920	LOCK_OWNED(ump);
5921	indirdep = NULL;
5922	newindirdep = NULL;
5923	fs = ip->i_fs;
5924	for (;;) {
5925		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5926			if (wk->wk_type != D_INDIRDEP)
5927				continue;
5928			indirdep = WK_INDIRDEP(wk);
5929			break;
5930		}
5931		/* Found on the buffer worklist, no new structure to free. */
5932		if (indirdep != NULL && newindirdep == NULL)
5933			return (indirdep);
5934		if (indirdep != NULL && newindirdep != NULL)
5935			panic("indirdep_lookup: simultaneous create");
5936		/* None found on the buffer and a new structure is ready. */
5937		if (indirdep == NULL && newindirdep != NULL)
5938			break;
5939		/* None found and no new structure available. */
5940		FREE_LOCK(ump);
5941		newindirdep = malloc(sizeof(struct indirdep),
5942		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5943		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5944		newindirdep->ir_state = ATTACHED;
5945		if (ip->i_ump->um_fstype == UFS1)
5946			newindirdep->ir_state |= UFS1FMT;
5947		TAILQ_INIT(&newindirdep->ir_trunc);
5948		newindirdep->ir_saveddata = NULL;
5949		LIST_INIT(&newindirdep->ir_deplisthd);
5950		LIST_INIT(&newindirdep->ir_donehd);
5951		LIST_INIT(&newindirdep->ir_writehd);
5952		LIST_INIT(&newindirdep->ir_completehd);
5953		if (bp->b_blkno == bp->b_lblkno) {
5954			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5955			    NULL, NULL);
5956			bp->b_blkno = blkno;
5957		}
5958		newindirdep->ir_freeblks = NULL;
5959		newindirdep->ir_savebp =
5960		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5961		newindirdep->ir_bp = bp;
5962		BUF_KERNPROC(newindirdep->ir_savebp);
5963		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5964		ACQUIRE_LOCK(ump);
5965	}
5966	indirdep = newindirdep;
5967	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5968	/*
5969	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5970	 * that we don't free dependencies until the pointers are valid.
5971	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5972	 * than using the hash.
5973	 */
5974	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5975		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5976	else
5977		indirdep->ir_state |= DEPCOMPLETE;
5978	return (indirdep);
5979}
5980
5981/*
5982 * Called to finish the allocation of the "aip" allocated
5983 * by one of the two routines above.
5984 */
5985static struct freefrag *
5986setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5987	struct buf *bp;		/* in-memory copy of the indirect block */
5988	struct inode *ip;	/* inode for file being extended */
5989	struct inodedep *inodedep; /* Inodedep for ip */
5990	struct allocindir *aip;	/* allocindir allocated by the above routines */
5991	ufs_lbn_t lbn;		/* Logical block number for this block. */
5992{
5993	struct fs *fs;
5994	struct indirdep *indirdep;
5995	struct allocindir *oldaip;
5996	struct freefrag *freefrag;
5997	struct mount *mp;
5998
5999	LOCK_OWNED(ip->i_ump);
6000	mp = UFSTOVFS(ip->i_ump);
6001	fs = ip->i_fs;
6002	if (bp->b_lblkno >= 0)
6003		panic("setup_allocindir_phase2: not indir blk");
6004	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6005	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6006	indirdep = indirdep_lookup(mp, ip, bp);
6007	KASSERT(indirdep->ir_savebp != NULL,
6008	    ("setup_allocindir_phase2 NULL ir_savebp"));
6009	aip->ai_indirdep = indirdep;
6010	/*
6011	 * Check for an unwritten dependency for this indirect offset.  If
6012	 * there is, merge the old dependency into the new one.  This happens
6013	 * as a result of reallocblk only.
6014	 */
6015	freefrag = NULL;
6016	if (aip->ai_oldblkno != 0) {
6017		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6018			if (oldaip->ai_offset == aip->ai_offset) {
6019				freefrag = allocindir_merge(aip, oldaip);
6020				goto done;
6021			}
6022		}
6023		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6024			if (oldaip->ai_offset == aip->ai_offset) {
6025				freefrag = allocindir_merge(aip, oldaip);
6026				goto done;
6027			}
6028		}
6029	}
6030done:
6031	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6032	return (freefrag);
6033}
6034
6035/*
6036 * Merge two allocindirs which refer to the same block.  Move newblock
6037 * dependencies and setup the freefrags appropriately.
6038 */
6039static struct freefrag *
6040allocindir_merge(aip, oldaip)
6041	struct allocindir *aip;
6042	struct allocindir *oldaip;
6043{
6044	struct freefrag *freefrag;
6045	struct worklist *wk;
6046
6047	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6048		panic("allocindir_merge: blkno");
6049	aip->ai_oldblkno = oldaip->ai_oldblkno;
6050	freefrag = aip->ai_freefrag;
6051	aip->ai_freefrag = oldaip->ai_freefrag;
6052	oldaip->ai_freefrag = NULL;
6053	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6054	/*
6055	 * If we are tracking a new directory-block allocation,
6056	 * move it from the old allocindir to the new allocindir.
6057	 */
6058	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6059		WORKLIST_REMOVE(wk);
6060		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6061			panic("allocindir_merge: extra newdirblk");
6062		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6063	}
6064	/*
6065	 * We can skip journaling for this freefrag and just complete
6066	 * any pending journal work for the allocindir that is being
6067	 * removed after the freefrag completes.
6068	 */
6069	if (freefrag->ff_jdep)
6070		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6071	LIST_REMOVE(oldaip, ai_next);
6072	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6073	    &freefrag->ff_list, &freefrag->ff_jwork);
6074	free_newblk(&oldaip->ai_block);
6075
6076	return (freefrag);
6077}
6078
6079static inline void
6080setup_freedirect(freeblks, ip, i, needj)
6081	struct freeblks *freeblks;
6082	struct inode *ip;
6083	int i;
6084	int needj;
6085{
6086	ufs2_daddr_t blkno;
6087	int frags;
6088
6089	blkno = DIP(ip, i_db[i]);
6090	if (blkno == 0)
6091		return;
6092	DIP_SET(ip, i_db[i], 0);
6093	frags = sblksize(ip->i_fs, ip->i_size, i);
6094	frags = numfrags(ip->i_fs, frags);
6095	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
6096}
6097
6098static inline void
6099setup_freeext(freeblks, ip, i, needj)
6100	struct freeblks *freeblks;
6101	struct inode *ip;
6102	int i;
6103	int needj;
6104{
6105	ufs2_daddr_t blkno;
6106	int frags;
6107
6108	blkno = ip->i_din2->di_extb[i];
6109	if (blkno == 0)
6110		return;
6111	ip->i_din2->di_extb[i] = 0;
6112	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
6113	frags = numfrags(ip->i_fs, frags);
6114	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6115}
6116
6117static inline void
6118setup_freeindir(freeblks, ip, i, lbn, needj)
6119	struct freeblks *freeblks;
6120	struct inode *ip;
6121	int i;
6122	ufs_lbn_t lbn;
6123	int needj;
6124{
6125	ufs2_daddr_t blkno;
6126
6127	blkno = DIP(ip, i_ib[i]);
6128	if (blkno == 0)
6129		return;
6130	DIP_SET(ip, i_ib[i], 0);
6131	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
6132	    0, needj);
6133}
6134
6135static inline struct freeblks *
6136newfreeblks(mp, ip)
6137	struct mount *mp;
6138	struct inode *ip;
6139{
6140	struct freeblks *freeblks;
6141
6142	freeblks = malloc(sizeof(struct freeblks),
6143		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6144	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6145	LIST_INIT(&freeblks->fb_jblkdephd);
6146	LIST_INIT(&freeblks->fb_jwork);
6147	freeblks->fb_ref = 0;
6148	freeblks->fb_cgwait = 0;
6149	freeblks->fb_state = ATTACHED;
6150	freeblks->fb_uid = ip->i_uid;
6151	freeblks->fb_inum = ip->i_number;
6152	freeblks->fb_vtype = ITOV(ip)->v_type;
6153	freeblks->fb_modrev = DIP(ip, i_modrev);
6154	freeblks->fb_devvp = ip->i_devvp;
6155	freeblks->fb_chkcnt = 0;
6156	freeblks->fb_len = 0;
6157
6158	return (freeblks);
6159}
6160
6161static void
6162trunc_indirdep(indirdep, freeblks, bp, off)
6163	struct indirdep *indirdep;
6164	struct freeblks *freeblks;
6165	struct buf *bp;
6166	int off;
6167{
6168	struct allocindir *aip, *aipn;
6169
6170	/*
6171	 * The first set of allocindirs won't be in savedbp.
6172	 */
6173	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6174		if (aip->ai_offset > off)
6175			cancel_allocindir(aip, bp, freeblks, 1);
6176	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6177		if (aip->ai_offset > off)
6178			cancel_allocindir(aip, bp, freeblks, 1);
6179	/*
6180	 * These will exist in savedbp.
6181	 */
6182	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6183		if (aip->ai_offset > off)
6184			cancel_allocindir(aip, NULL, freeblks, 0);
6185	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6186		if (aip->ai_offset > off)
6187			cancel_allocindir(aip, NULL, freeblks, 0);
6188}
6189
6190/*
6191 * Follow the chain of indirects down to lastlbn creating a freework
6192 * structure for each.  This will be used to start indir_trunc() at
6193 * the right offset and create the journal records for the parrtial
6194 * truncation.  A second step will handle the truncated dependencies.
6195 */
6196static int
6197setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6198	struct freeblks *freeblks;
6199	struct inode *ip;
6200	ufs_lbn_t lbn;
6201	ufs_lbn_t lastlbn;
6202	ufs2_daddr_t blkno;
6203{
6204	struct indirdep *indirdep;
6205	struct indirdep *indirn;
6206	struct freework *freework;
6207	struct newblk *newblk;
6208	struct mount *mp;
6209	struct buf *bp;
6210	uint8_t *start;
6211	uint8_t *end;
6212	ufs_lbn_t lbnadd;
6213	int level;
6214	int error;
6215	int off;
6216
6217
6218	freework = NULL;
6219	if (blkno == 0)
6220		return (0);
6221	mp = freeblks->fb_list.wk_mp;
6222	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6223	if ((bp->b_flags & B_CACHE) == 0) {
6224		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6225		bp->b_iocmd = BIO_READ;
6226		bp->b_flags &= ~B_INVAL;
6227		bp->b_ioflags &= ~BIO_ERROR;
6228		vfs_busy_pages(bp, 0);
6229		bp->b_iooffset = dbtob(bp->b_blkno);
6230		bstrategy(bp);
6231		curthread->td_ru.ru_inblock++;
6232		error = bufwait(bp);
6233		if (error) {
6234			brelse(bp);
6235			return (error);
6236		}
6237	}
6238	level = lbn_level(lbn);
6239	lbnadd = lbn_offset(ip->i_fs, level);
6240	/*
6241	 * Compute the offset of the last block we want to keep.  Store
6242	 * in the freework the first block we want to completely free.
6243	 */
6244	off = (lastlbn - -(lbn + level)) / lbnadd;
6245	if (off + 1 == NINDIR(ip->i_fs))
6246		goto nowork;
6247	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6248	    0);
6249	/*
6250	 * Link the freework into the indirdep.  This will prevent any new
6251	 * allocations from proceeding until we are finished with the
6252	 * truncate and the block is written.
6253	 */
6254	ACQUIRE_LOCK(ip->i_ump);
6255	indirdep = indirdep_lookup(mp, ip, bp);
6256	if (indirdep->ir_freeblks)
6257		panic("setup_trunc_indir: indirdep already truncated.");
6258	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6259	freework->fw_indir = indirdep;
6260	/*
6261	 * Cancel any allocindirs that will not make it to disk.
6262	 * We have to do this for all copies of the indirdep that
6263	 * live on this newblk.
6264	 */
6265	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6266		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6267		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6268			trunc_indirdep(indirn, freeblks, bp, off);
6269	} else
6270		trunc_indirdep(indirdep, freeblks, bp, off);
6271	FREE_LOCK(ip->i_ump);
6272	/*
6273	 * Creation is protected by the buf lock. The saveddata is only
6274	 * needed if a full truncation follows a partial truncation but it
6275	 * is difficult to allocate in that case so we fetch it anyway.
6276	 */
6277	if (indirdep->ir_saveddata == NULL)
6278		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6279		    M_SOFTDEP_FLAGS);
6280nowork:
6281	/* Fetch the blkno of the child and the zero start offset. */
6282	if (ip->i_ump->um_fstype == UFS1) {
6283		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6284		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6285	} else {
6286		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6287		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6288	}
6289	if (freework) {
6290		/* Zero the truncated pointers. */
6291		end = bp->b_data + bp->b_bcount;
6292		bzero(start, end - start);
6293		bdwrite(bp);
6294	} else
6295		bqrelse(bp);
6296	if (level == 0)
6297		return (0);
6298	lbn++; /* adjust level */
6299	lbn -= (off * lbnadd);
6300	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6301}
6302
6303/*
6304 * Complete the partial truncation of an indirect block setup by
6305 * setup_trunc_indir().  This zeros the truncated pointers in the saved
6306 * copy and writes them to disk before the freeblks is allowed to complete.
6307 */
6308static void
6309complete_trunc_indir(freework)
6310	struct freework *freework;
6311{
6312	struct freework *fwn;
6313	struct indirdep *indirdep;
6314	struct ufsmount *ump;
6315	struct buf *bp;
6316	uintptr_t start;
6317	int count;
6318
6319	ump = VFSTOUFS(freework->fw_list.wk_mp);
6320	LOCK_OWNED(ump);
6321	indirdep = freework->fw_indir;
6322	for (;;) {
6323		bp = indirdep->ir_bp;
6324		/* See if the block was discarded. */
6325		if (bp == NULL)
6326			break;
6327		/* Inline part of getdirtybuf().  We dont want bremfree. */
6328		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6329			break;
6330		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6331		    LOCK_PTR(ump)) == 0)
6332			BUF_UNLOCK(bp);
6333		ACQUIRE_LOCK(ump);
6334	}
6335	freework->fw_state |= DEPCOMPLETE;
6336	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6337	/*
6338	 * Zero the pointers in the saved copy.
6339	 */
6340	if (indirdep->ir_state & UFS1FMT)
6341		start = sizeof(ufs1_daddr_t);
6342	else
6343		start = sizeof(ufs2_daddr_t);
6344	start *= freework->fw_start;
6345	count = indirdep->ir_savebp->b_bcount - start;
6346	start += (uintptr_t)indirdep->ir_savebp->b_data;
6347	bzero((char *)start, count);
6348	/*
6349	 * We need to start the next truncation in the list if it has not
6350	 * been started yet.
6351	 */
6352	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6353	if (fwn != NULL) {
6354		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6355			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6356		if ((fwn->fw_state & ONWORKLIST) == 0)
6357			freework_enqueue(fwn);
6358	}
6359	/*
6360	 * If bp is NULL the block was fully truncated, restore
6361	 * the saved block list otherwise free it if it is no
6362	 * longer needed.
6363	 */
6364	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6365		if (bp == NULL)
6366			bcopy(indirdep->ir_saveddata,
6367			    indirdep->ir_savebp->b_data,
6368			    indirdep->ir_savebp->b_bcount);
6369		free(indirdep->ir_saveddata, M_INDIRDEP);
6370		indirdep->ir_saveddata = NULL;
6371	}
6372	/*
6373	 * When bp is NULL there is a full truncation pending.  We
6374	 * must wait for this full truncation to be journaled before
6375	 * we can release this freework because the disk pointers will
6376	 * never be written as zero.
6377	 */
6378	if (bp == NULL)  {
6379		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6380			handle_written_freework(freework);
6381		else
6382			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6383			   &freework->fw_list);
6384	} else {
6385		/* Complete when the real copy is written. */
6386		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6387		BUF_UNLOCK(bp);
6388	}
6389}
6390
6391/*
6392 * Calculate the number of blocks we are going to release where datablocks
6393 * is the current total and length is the new file size.
6394 */
6395static ufs2_daddr_t
6396blkcount(fs, datablocks, length)
6397	struct fs *fs;
6398	ufs2_daddr_t datablocks;
6399	off_t length;
6400{
6401	off_t totblks, numblks;
6402
6403	totblks = 0;
6404	numblks = howmany(length, fs->fs_bsize);
6405	if (numblks <= NDADDR) {
6406		totblks = howmany(length, fs->fs_fsize);
6407		goto out;
6408	}
6409        totblks = blkstofrags(fs, numblks);
6410	numblks -= NDADDR;
6411	/*
6412	 * Count all single, then double, then triple indirects required.
6413	 * Subtracting one indirects worth of blocks for each pass
6414	 * acknowledges one of each pointed to by the inode.
6415	 */
6416	for (;;) {
6417		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6418		numblks -= NINDIR(fs);
6419		if (numblks <= 0)
6420			break;
6421		numblks = howmany(numblks, NINDIR(fs));
6422	}
6423out:
6424	totblks = fsbtodb(fs, totblks);
6425	/*
6426	 * Handle sparse files.  We can't reclaim more blocks than the inode
6427	 * references.  We will correct it later in handle_complete_freeblks()
6428	 * when we know the real count.
6429	 */
6430	if (totblks > datablocks)
6431		return (0);
6432	return (datablocks - totblks);
6433}
6434
6435/*
6436 * Handle freeblocks for journaled softupdate filesystems.
6437 *
6438 * Contrary to normal softupdates, we must preserve the block pointers in
6439 * indirects until their subordinates are free.  This is to avoid journaling
6440 * every block that is freed which may consume more space than the journal
6441 * itself.  The recovery program will see the free block journals at the
6442 * base of the truncated area and traverse them to reclaim space.  The
6443 * pointers in the inode may be cleared immediately after the journal
6444 * records are written because each direct and indirect pointer in the
6445 * inode is recorded in a journal.  This permits full truncation to proceed
6446 * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6447 *
6448 * The algorithm is as follows:
6449 * 1) Traverse the in-memory state and create journal entries to release
6450 *    the relevant blocks and full indirect trees.
6451 * 2) Traverse the indirect block chain adding partial truncation freework
6452 *    records to indirects in the path to lastlbn.  The freework will
6453 *    prevent new allocation dependencies from being satisfied in this
6454 *    indirect until the truncation completes.
6455 * 3) Read and lock the inode block, performing an update with the new size
6456 *    and pointers.  This prevents truncated data from becoming valid on
6457 *    disk through step 4.
6458 * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6459 *    eliminate journal work for those records that do not require it.
6460 * 5) Schedule the journal records to be written followed by the inode block.
6461 * 6) Allocate any necessary frags for the end of file.
6462 * 7) Zero any partially truncated blocks.
6463 *
6464 * From this truncation proceeds asynchronously using the freework and
6465 * indir_trunc machinery.  The file will not be extended again into a
6466 * partially truncated indirect block until all work is completed but
6467 * the normal dependency mechanism ensures that it is rolled back/forward
6468 * as appropriate.  Further truncation may occur without delay and is
6469 * serialized in indir_trunc().
6470 */
6471void
6472softdep_journal_freeblocks(ip, cred, length, flags)
6473	struct inode *ip;	/* The inode whose length is to be reduced */
6474	struct ucred *cred;
6475	off_t length;		/* The new length for the file */
6476	int flags;		/* IO_EXT and/or IO_NORMAL */
6477{
6478	struct freeblks *freeblks, *fbn;
6479	struct worklist *wk, *wkn;
6480	struct inodedep *inodedep;
6481	struct jblkdep *jblkdep;
6482	struct allocdirect *adp, *adpn;
6483	struct ufsmount *ump;
6484	struct fs *fs;
6485	struct buf *bp;
6486	struct vnode *vp;
6487	struct mount *mp;
6488	ufs2_daddr_t extblocks, datablocks;
6489	ufs_lbn_t tmpval, lbn, lastlbn;
6490	int frags, lastoff, iboff, allocblock, needj, error, i;
6491
6492	fs = ip->i_fs;
6493	ump = ip->i_ump;
6494	mp = UFSTOVFS(ump);
6495	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6496	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6497	vp = ITOV(ip);
6498	needj = 1;
6499	iboff = -1;
6500	allocblock = 0;
6501	extblocks = 0;
6502	datablocks = 0;
6503	frags = 0;
6504	freeblks = newfreeblks(mp, ip);
6505	ACQUIRE_LOCK(ump);
6506	/*
6507	 * If we're truncating a removed file that will never be written
6508	 * we don't need to journal the block frees.  The canceled journals
6509	 * for the allocations will suffice.
6510	 */
6511	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6512	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6513	    length == 0)
6514		needj = 0;
6515	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6516	    ip->i_number, length, needj);
6517	FREE_LOCK(ump);
6518	/*
6519	 * Calculate the lbn that we are truncating to.  This results in -1
6520	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6521	 * to keep, not the first lbn we want to truncate.
6522	 */
6523	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6524	lastoff = blkoff(fs, length);
6525	/*
6526	 * Compute frags we are keeping in lastlbn.  0 means all.
6527	 */
6528	if (lastlbn >= 0 && lastlbn < NDADDR) {
6529		frags = fragroundup(fs, lastoff);
6530		/* adp offset of last valid allocdirect. */
6531		iboff = lastlbn;
6532	} else if (lastlbn > 0)
6533		iboff = NDADDR;
6534	if (fs->fs_magic == FS_UFS2_MAGIC)
6535		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6536	/*
6537	 * Handle normal data blocks and indirects.  This section saves
6538	 * values used after the inode update to complete frag and indirect
6539	 * truncation.
6540	 */
6541	if ((flags & IO_NORMAL) != 0) {
6542		/*
6543		 * Handle truncation of whole direct and indirect blocks.
6544		 */
6545		for (i = iboff + 1; i < NDADDR; i++)
6546			setup_freedirect(freeblks, ip, i, needj);
6547		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6548		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6549			/* Release a whole indirect tree. */
6550			if (lbn > lastlbn) {
6551				setup_freeindir(freeblks, ip, i, -lbn -i,
6552				    needj);
6553				continue;
6554			}
6555			iboff = i + NDADDR;
6556			/*
6557			 * Traverse partially truncated indirect tree.
6558			 */
6559			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6560				setup_trunc_indir(freeblks, ip, -lbn - i,
6561				    lastlbn, DIP(ip, i_ib[i]));
6562		}
6563		/*
6564		 * Handle partial truncation to a frag boundary.
6565		 */
6566		if (frags) {
6567			ufs2_daddr_t blkno;
6568			long oldfrags;
6569
6570			oldfrags = blksize(fs, ip, lastlbn);
6571			blkno = DIP(ip, i_db[lastlbn]);
6572			if (blkno && oldfrags != frags) {
6573				oldfrags -= frags;
6574				oldfrags = numfrags(ip->i_fs, oldfrags);
6575				blkno += numfrags(ip->i_fs, frags);
6576				newfreework(ump, freeblks, NULL, lastlbn,
6577				    blkno, oldfrags, 0, needj);
6578				if (needj)
6579					adjust_newfreework(freeblks,
6580					    numfrags(ip->i_fs, frags));
6581			} else if (blkno == 0)
6582				allocblock = 1;
6583		}
6584		/*
6585		 * Add a journal record for partial truncate if we are
6586		 * handling indirect blocks.  Non-indirects need no extra
6587		 * journaling.
6588		 */
6589		if (length != 0 && lastlbn >= NDADDR) {
6590			ip->i_flag |= IN_TRUNCATED;
6591			newjtrunc(freeblks, length, 0);
6592		}
6593		ip->i_size = length;
6594		DIP_SET(ip, i_size, ip->i_size);
6595		datablocks = DIP(ip, i_blocks) - extblocks;
6596		if (length != 0)
6597			datablocks = blkcount(ip->i_fs, datablocks, length);
6598		freeblks->fb_len = length;
6599	}
6600	if ((flags & IO_EXT) != 0) {
6601		for (i = 0; i < NXADDR; i++)
6602			setup_freeext(freeblks, ip, i, needj);
6603		ip->i_din2->di_extsize = 0;
6604		datablocks += extblocks;
6605	}
6606#ifdef QUOTA
6607	/* Reference the quotas in case the block count is wrong in the end. */
6608	quotaref(vp, freeblks->fb_quota);
6609	(void) chkdq(ip, -datablocks, NOCRED, 0);
6610#endif
6611	freeblks->fb_chkcnt = -datablocks;
6612	UFS_LOCK(ump);
6613	fs->fs_pendingblocks += datablocks;
6614	UFS_UNLOCK(ump);
6615	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6616	/*
6617	 * Handle truncation of incomplete alloc direct dependencies.  We
6618	 * hold the inode block locked to prevent incomplete dependencies
6619	 * from reaching the disk while we are eliminating those that
6620	 * have been truncated.  This is a partially inlined ffs_update().
6621	 */
6622	ufs_itimes(vp);
6623	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6624	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6625	    (int)fs->fs_bsize, cred, &bp);
6626	if (error) {
6627		brelse(bp);
6628		softdep_error("softdep_journal_freeblocks", error);
6629		return;
6630	}
6631	if (bp->b_bufsize == fs->fs_bsize)
6632		bp->b_flags |= B_CLUSTEROK;
6633	softdep_update_inodeblock(ip, bp, 0);
6634	if (ump->um_fstype == UFS1)
6635		*((struct ufs1_dinode *)bp->b_data +
6636		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6637	else
6638		*((struct ufs2_dinode *)bp->b_data +
6639		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6640	ACQUIRE_LOCK(ump);
6641	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6642	if ((inodedep->id_state & IOSTARTED) != 0)
6643		panic("softdep_setup_freeblocks: inode busy");
6644	/*
6645	 * Add the freeblks structure to the list of operations that
6646	 * must await the zero'ed inode being written to disk. If we
6647	 * still have a bitmap dependency (needj), then the inode
6648	 * has never been written to disk, so we can process the
6649	 * freeblks below once we have deleted the dependencies.
6650	 */
6651	if (needj)
6652		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6653	else
6654		freeblks->fb_state |= COMPLETE;
6655	if ((flags & IO_NORMAL) != 0) {
6656		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6657			if (adp->ad_offset > iboff)
6658				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6659				    freeblks);
6660			/*
6661			 * Truncate the allocdirect.  We could eliminate
6662			 * or modify journal records as well.
6663			 */
6664			else if (adp->ad_offset == iboff && frags)
6665				adp->ad_newsize = frags;
6666		}
6667	}
6668	if ((flags & IO_EXT) != 0)
6669		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6670			cancel_allocdirect(&inodedep->id_extupdt, adp,
6671			    freeblks);
6672	/*
6673	 * Scan the bufwait list for newblock dependencies that will never
6674	 * make it to disk.
6675	 */
6676	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6677		if (wk->wk_type != D_ALLOCDIRECT)
6678			continue;
6679		adp = WK_ALLOCDIRECT(wk);
6680		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6681		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6682			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6683			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6684			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6685		}
6686	}
6687	/*
6688	 * Add journal work.
6689	 */
6690	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6691		add_to_journal(&jblkdep->jb_list);
6692	FREE_LOCK(ump);
6693	bdwrite(bp);
6694	/*
6695	 * Truncate dependency structures beyond length.
6696	 */
6697	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6698	/*
6699	 * This is only set when we need to allocate a fragment because
6700	 * none existed at the end of a frag-sized file.  It handles only
6701	 * allocating a new, zero filled block.
6702	 */
6703	if (allocblock) {
6704		ip->i_size = length - lastoff;
6705		DIP_SET(ip, i_size, ip->i_size);
6706		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6707		if (error != 0) {
6708			softdep_error("softdep_journal_freeblks", error);
6709			return;
6710		}
6711		ip->i_size = length;
6712		DIP_SET(ip, i_size, length);
6713		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6714		allocbuf(bp, frags);
6715		ffs_update(vp, 0);
6716		bawrite(bp);
6717	} else if (lastoff != 0 && vp->v_type != VDIR) {
6718		int size;
6719
6720		/*
6721		 * Zero the end of a truncated frag or block.
6722		 */
6723		size = sblksize(fs, length, lastlbn);
6724		error = bread(vp, lastlbn, size, cred, &bp);
6725		if (error) {
6726			softdep_error("softdep_journal_freeblks", error);
6727			return;
6728		}
6729		bzero((char *)bp->b_data + lastoff, size - lastoff);
6730		bawrite(bp);
6731
6732	}
6733	ACQUIRE_LOCK(ump);
6734	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6735	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6736	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6737	/*
6738	 * We zero earlier truncations so they don't erroneously
6739	 * update i_blocks.
6740	 */
6741	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6742		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6743			fbn->fb_len = 0;
6744	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6745	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6746		freeblks->fb_state |= INPROGRESS;
6747	else
6748		freeblks = NULL;
6749	FREE_LOCK(ump);
6750	if (freeblks)
6751		handle_workitem_freeblocks(freeblks, 0);
6752	trunc_pages(ip, length, extblocks, flags);
6753
6754}
6755
6756/*
6757 * Flush a JOP_SYNC to the journal.
6758 */
6759void
6760softdep_journal_fsync(ip)
6761	struct inode *ip;
6762{
6763	struct jfsync *jfsync;
6764
6765	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
6766	    ("softdep_journal_fsync called on non-softdep filesystem"));
6767	if ((ip->i_flag & IN_TRUNCATED) == 0)
6768		return;
6769	ip->i_flag &= ~IN_TRUNCATED;
6770	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6771	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6772	jfsync->jfs_size = ip->i_size;
6773	jfsync->jfs_ino = ip->i_number;
6774	ACQUIRE_LOCK(ip->i_ump);
6775	add_to_journal(&jfsync->jfs_list);
6776	jwait(&jfsync->jfs_list, MNT_WAIT);
6777	FREE_LOCK(ip->i_ump);
6778}
6779
6780/*
6781 * Block de-allocation dependencies.
6782 *
6783 * When blocks are de-allocated, the on-disk pointers must be nullified before
6784 * the blocks are made available for use by other files.  (The true
6785 * requirement is that old pointers must be nullified before new on-disk
6786 * pointers are set.  We chose this slightly more stringent requirement to
6787 * reduce complexity.) Our implementation handles this dependency by updating
6788 * the inode (or indirect block) appropriately but delaying the actual block
6789 * de-allocation (i.e., freemap and free space count manipulation) until
6790 * after the updated versions reach stable storage.  After the disk is
6791 * updated, the blocks can be safely de-allocated whenever it is convenient.
6792 * This implementation handles only the common case of reducing a file's
6793 * length to zero. Other cases are handled by the conventional synchronous
6794 * write approach.
6795 *
6796 * The ffs implementation with which we worked double-checks
6797 * the state of the block pointers and file size as it reduces
6798 * a file's length.  Some of this code is replicated here in our
6799 * soft updates implementation.  The freeblks->fb_chkcnt field is
6800 * used to transfer a part of this information to the procedure
6801 * that eventually de-allocates the blocks.
6802 *
6803 * This routine should be called from the routine that shortens
6804 * a file's length, before the inode's size or block pointers
6805 * are modified. It will save the block pointer information for
6806 * later release and zero the inode so that the calling routine
6807 * can release it.
6808 */
6809void
6810softdep_setup_freeblocks(ip, length, flags)
6811	struct inode *ip;	/* The inode whose length is to be reduced */
6812	off_t length;		/* The new length for the file */
6813	int flags;		/* IO_EXT and/or IO_NORMAL */
6814{
6815	struct ufs1_dinode *dp1;
6816	struct ufs2_dinode *dp2;
6817	struct freeblks *freeblks;
6818	struct inodedep *inodedep;
6819	struct allocdirect *adp;
6820	struct ufsmount *ump;
6821	struct buf *bp;
6822	struct fs *fs;
6823	ufs2_daddr_t extblocks, datablocks;
6824	struct mount *mp;
6825	int i, delay, error;
6826	ufs_lbn_t tmpval;
6827	ufs_lbn_t lbn;
6828
6829	ump = ip->i_ump;
6830	mp = UFSTOVFS(ump);
6831	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6832	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6833	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6834	    ip->i_number, length);
6835	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6836	fs = ip->i_fs;
6837	freeblks = newfreeblks(mp, ip);
6838	extblocks = 0;
6839	datablocks = 0;
6840	if (fs->fs_magic == FS_UFS2_MAGIC)
6841		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6842	if ((flags & IO_NORMAL) != 0) {
6843		for (i = 0; i < NDADDR; i++)
6844			setup_freedirect(freeblks, ip, i, 0);
6845		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6846		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6847			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6848		ip->i_size = 0;
6849		DIP_SET(ip, i_size, 0);
6850		datablocks = DIP(ip, i_blocks) - extblocks;
6851	}
6852	if ((flags & IO_EXT) != 0) {
6853		for (i = 0; i < NXADDR; i++)
6854			setup_freeext(freeblks, ip, i, 0);
6855		ip->i_din2->di_extsize = 0;
6856		datablocks += extblocks;
6857	}
6858#ifdef QUOTA
6859	/* Reference the quotas in case the block count is wrong in the end. */
6860	quotaref(ITOV(ip), freeblks->fb_quota);
6861	(void) chkdq(ip, -datablocks, NOCRED, 0);
6862#endif
6863	freeblks->fb_chkcnt = -datablocks;
6864	UFS_LOCK(ump);
6865	fs->fs_pendingblocks += datablocks;
6866	UFS_UNLOCK(ump);
6867	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6868	/*
6869	 * Push the zero'ed inode to to its disk buffer so that we are free
6870	 * to delete its dependencies below. Once the dependencies are gone
6871	 * the buffer can be safely released.
6872	 */
6873	if ((error = bread(ip->i_devvp,
6874	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6875	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6876		brelse(bp);
6877		softdep_error("softdep_setup_freeblocks", error);
6878	}
6879	if (ump->um_fstype == UFS1) {
6880		dp1 = ((struct ufs1_dinode *)bp->b_data +
6881		    ino_to_fsbo(fs, ip->i_number));
6882		ip->i_din1->di_freelink = dp1->di_freelink;
6883		*dp1 = *ip->i_din1;
6884	} else {
6885		dp2 = ((struct ufs2_dinode *)bp->b_data +
6886		    ino_to_fsbo(fs, ip->i_number));
6887		ip->i_din2->di_freelink = dp2->di_freelink;
6888		*dp2 = *ip->i_din2;
6889	}
6890	/*
6891	 * Find and eliminate any inode dependencies.
6892	 */
6893	ACQUIRE_LOCK(ump);
6894	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6895	if ((inodedep->id_state & IOSTARTED) != 0)
6896		panic("softdep_setup_freeblocks: inode busy");
6897	/*
6898	 * Add the freeblks structure to the list of operations that
6899	 * must await the zero'ed inode being written to disk. If we
6900	 * still have a bitmap dependency (delay == 0), then the inode
6901	 * has never been written to disk, so we can process the
6902	 * freeblks below once we have deleted the dependencies.
6903	 */
6904	delay = (inodedep->id_state & DEPCOMPLETE);
6905	if (delay)
6906		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6907	else
6908		freeblks->fb_state |= COMPLETE;
6909	/*
6910	 * Because the file length has been truncated to zero, any
6911	 * pending block allocation dependency structures associated
6912	 * with this inode are obsolete and can simply be de-allocated.
6913	 * We must first merge the two dependency lists to get rid of
6914	 * any duplicate freefrag structures, then purge the merged list.
6915	 * If we still have a bitmap dependency, then the inode has never
6916	 * been written to disk, so we can free any fragments without delay.
6917	 */
6918	if (flags & IO_NORMAL) {
6919		merge_inode_lists(&inodedep->id_newinoupdt,
6920		    &inodedep->id_inoupdt);
6921		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
6922			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6923			    freeblks);
6924	}
6925	if (flags & IO_EXT) {
6926		merge_inode_lists(&inodedep->id_newextupdt,
6927		    &inodedep->id_extupdt);
6928		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6929			cancel_allocdirect(&inodedep->id_extupdt, adp,
6930			    freeblks);
6931	}
6932	FREE_LOCK(ump);
6933	bdwrite(bp);
6934	trunc_dependencies(ip, freeblks, -1, 0, flags);
6935	ACQUIRE_LOCK(ump);
6936	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6937		(void) free_inodedep(inodedep);
6938	freeblks->fb_state |= DEPCOMPLETE;
6939	/*
6940	 * If the inode with zeroed block pointers is now on disk
6941	 * we can start freeing blocks.
6942	 */
6943	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6944		freeblks->fb_state |= INPROGRESS;
6945	else
6946		freeblks = NULL;
6947	FREE_LOCK(ump);
6948	if (freeblks)
6949		handle_workitem_freeblocks(freeblks, 0);
6950	trunc_pages(ip, length, extblocks, flags);
6951}
6952
6953/*
6954 * Eliminate pages from the page cache that back parts of this inode and
6955 * adjust the vnode pager's idea of our size.  This prevents stale data
6956 * from hanging around in the page cache.
6957 */
6958static void
6959trunc_pages(ip, length, extblocks, flags)
6960	struct inode *ip;
6961	off_t length;
6962	ufs2_daddr_t extblocks;
6963	int flags;
6964{
6965	struct vnode *vp;
6966	struct fs *fs;
6967	ufs_lbn_t lbn;
6968	off_t end, extend;
6969
6970	vp = ITOV(ip);
6971	fs = ip->i_fs;
6972	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6973	if ((flags & IO_EXT) != 0)
6974		vn_pages_remove(vp, extend, 0);
6975	if ((flags & IO_NORMAL) == 0)
6976		return;
6977	BO_LOCK(&vp->v_bufobj);
6978	drain_output(vp);
6979	BO_UNLOCK(&vp->v_bufobj);
6980	/*
6981	 * The vnode pager eliminates file pages we eliminate indirects
6982	 * below.
6983	 */
6984	vnode_pager_setsize(vp, length);
6985	/*
6986	 * Calculate the end based on the last indirect we want to keep.  If
6987	 * the block extends into indirects we can just use the negative of
6988	 * its lbn.  Doubles and triples exist at lower numbers so we must
6989	 * be careful not to remove those, if they exist.  double and triple
6990	 * indirect lbns do not overlap with others so it is not important
6991	 * to verify how many levels are required.
6992	 */
6993	lbn = lblkno(fs, length);
6994	if (lbn >= NDADDR) {
6995		/* Calculate the virtual lbn of the triple indirect. */
6996		lbn = -lbn - (NIADDR - 1);
6997		end = OFF_TO_IDX(lblktosize(fs, lbn));
6998	} else
6999		end = extend;
7000	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7001}
7002
7003/*
7004 * See if the buf bp is in the range eliminated by truncation.
7005 */
7006static int
7007trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7008	struct buf *bp;
7009	int *blkoffp;
7010	ufs_lbn_t lastlbn;
7011	int lastoff;
7012	int flags;
7013{
7014	ufs_lbn_t lbn;
7015
7016	*blkoffp = 0;
7017	/* Only match ext/normal blocks as appropriate. */
7018	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7019	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7020		return (0);
7021	/* ALTDATA is always a full truncation. */
7022	if ((bp->b_xflags & BX_ALTDATA) != 0)
7023		return (1);
7024	/* -1 is full truncation. */
7025	if (lastlbn == -1)
7026		return (1);
7027	/*
7028	 * If this is a partial truncate we only want those
7029	 * blocks and indirect blocks that cover the range
7030	 * we're after.
7031	 */
7032	lbn = bp->b_lblkno;
7033	if (lbn < 0)
7034		lbn = -(lbn + lbn_level(lbn));
7035	if (lbn < lastlbn)
7036		return (0);
7037	/* Here we only truncate lblkno if it's partial. */
7038	if (lbn == lastlbn) {
7039		if (lastoff == 0)
7040			return (0);
7041		*blkoffp = lastoff;
7042	}
7043	return (1);
7044}
7045
7046/*
7047 * Eliminate any dependencies that exist in memory beyond lblkno:off
7048 */
7049static void
7050trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7051	struct inode *ip;
7052	struct freeblks *freeblks;
7053	ufs_lbn_t lastlbn;
7054	int lastoff;
7055	int flags;
7056{
7057	struct bufobj *bo;
7058	struct vnode *vp;
7059	struct buf *bp;
7060	int blkoff;
7061
7062	/*
7063	 * We must wait for any I/O in progress to finish so that
7064	 * all potential buffers on the dirty list will be visible.
7065	 * Once they are all there, walk the list and get rid of
7066	 * any dependencies.
7067	 */
7068	vp = ITOV(ip);
7069	bo = &vp->v_bufobj;
7070	BO_LOCK(bo);
7071	drain_output(vp);
7072	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7073		bp->b_vflags &= ~BV_SCANNED;
7074restart:
7075	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7076		if (bp->b_vflags & BV_SCANNED)
7077			continue;
7078		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7079			bp->b_vflags |= BV_SCANNED;
7080			continue;
7081		}
7082		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7083		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7084			goto restart;
7085		BO_UNLOCK(bo);
7086		if (deallocate_dependencies(bp, freeblks, blkoff))
7087			bqrelse(bp);
7088		else
7089			brelse(bp);
7090		BO_LOCK(bo);
7091		goto restart;
7092	}
7093	/*
7094	 * Now do the work of vtruncbuf while also matching indirect blocks.
7095	 */
7096	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7097		bp->b_vflags &= ~BV_SCANNED;
7098cleanrestart:
7099	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7100		if (bp->b_vflags & BV_SCANNED)
7101			continue;
7102		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7103			bp->b_vflags |= BV_SCANNED;
7104			continue;
7105		}
7106		if (BUF_LOCK(bp,
7107		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7108		    BO_LOCKPTR(bo)) == ENOLCK) {
7109			BO_LOCK(bo);
7110			goto cleanrestart;
7111		}
7112		bp->b_vflags |= BV_SCANNED;
7113		bremfree(bp);
7114		if (blkoff != 0) {
7115			allocbuf(bp, blkoff);
7116			bqrelse(bp);
7117		} else {
7118			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7119			brelse(bp);
7120		}
7121		BO_LOCK(bo);
7122		goto cleanrestart;
7123	}
7124	drain_output(vp);
7125	BO_UNLOCK(bo);
7126}
7127
7128static int
7129cancel_pagedep(pagedep, freeblks, blkoff)
7130	struct pagedep *pagedep;
7131	struct freeblks *freeblks;
7132	int blkoff;
7133{
7134	struct jremref *jremref;
7135	struct jmvref *jmvref;
7136	struct dirrem *dirrem, *tmp;
7137	int i;
7138
7139	/*
7140	 * Copy any directory remove dependencies to the list
7141	 * to be processed after the freeblks proceeds.  If
7142	 * directory entry never made it to disk they
7143	 * can be dumped directly onto the work list.
7144	 */
7145	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7146		/* Skip this directory removal if it is intended to remain. */
7147		if (dirrem->dm_offset < blkoff)
7148			continue;
7149		/*
7150		 * If there are any dirrems we wait for the journal write
7151		 * to complete and then restart the buf scan as the lock
7152		 * has been dropped.
7153		 */
7154		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7155			jwait(&jremref->jr_list, MNT_WAIT);
7156			return (ERESTART);
7157		}
7158		LIST_REMOVE(dirrem, dm_next);
7159		dirrem->dm_dirinum = pagedep->pd_ino;
7160		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7161	}
7162	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7163		jwait(&jmvref->jm_list, MNT_WAIT);
7164		return (ERESTART);
7165	}
7166	/*
7167	 * When we're partially truncating a pagedep we just want to flush
7168	 * journal entries and return.  There can not be any adds in the
7169	 * truncated portion of the directory and newblk must remain if
7170	 * part of the block remains.
7171	 */
7172	if (blkoff != 0) {
7173		struct diradd *dap;
7174
7175		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7176			if (dap->da_offset > blkoff)
7177				panic("cancel_pagedep: diradd %p off %d > %d",
7178				    dap, dap->da_offset, blkoff);
7179		for (i = 0; i < DAHASHSZ; i++)
7180			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7181				if (dap->da_offset > blkoff)
7182					panic("cancel_pagedep: diradd %p off %d > %d",
7183					    dap, dap->da_offset, blkoff);
7184		return (0);
7185	}
7186	/*
7187	 * There should be no directory add dependencies present
7188	 * as the directory could not be truncated until all
7189	 * children were removed.
7190	 */
7191	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7192	    ("deallocate_dependencies: pendinghd != NULL"));
7193	for (i = 0; i < DAHASHSZ; i++)
7194		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7195		    ("deallocate_dependencies: diraddhd != NULL"));
7196	if ((pagedep->pd_state & NEWBLOCK) != 0)
7197		free_newdirblk(pagedep->pd_newdirblk);
7198	if (free_pagedep(pagedep) == 0)
7199		panic("Failed to free pagedep %p", pagedep);
7200	return (0);
7201}
7202
7203/*
7204 * Reclaim any dependency structures from a buffer that is about to
7205 * be reallocated to a new vnode. The buffer must be locked, thus,
7206 * no I/O completion operations can occur while we are manipulating
7207 * its associated dependencies. The mutex is held so that other I/O's
7208 * associated with related dependencies do not occur.
7209 */
7210static int
7211deallocate_dependencies(bp, freeblks, off)
7212	struct buf *bp;
7213	struct freeblks *freeblks;
7214	int off;
7215{
7216	struct indirdep *indirdep;
7217	struct pagedep *pagedep;
7218	struct worklist *wk, *wkn;
7219	struct ufsmount *ump;
7220
7221	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7222		goto done;
7223	ump = VFSTOUFS(wk->wk_mp);
7224	ACQUIRE_LOCK(ump);
7225	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7226		switch (wk->wk_type) {
7227		case D_INDIRDEP:
7228			indirdep = WK_INDIRDEP(wk);
7229			if (bp->b_lblkno >= 0 ||
7230			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7231				panic("deallocate_dependencies: not indir");
7232			cancel_indirdep(indirdep, bp, freeblks);
7233			continue;
7234
7235		case D_PAGEDEP:
7236			pagedep = WK_PAGEDEP(wk);
7237			if (cancel_pagedep(pagedep, freeblks, off)) {
7238				FREE_LOCK(ump);
7239				return (ERESTART);
7240			}
7241			continue;
7242
7243		case D_ALLOCINDIR:
7244			/*
7245			 * Simply remove the allocindir, we'll find it via
7246			 * the indirdep where we can clear pointers if
7247			 * needed.
7248			 */
7249			WORKLIST_REMOVE(wk);
7250			continue;
7251
7252		case D_FREEWORK:
7253			/*
7254			 * A truncation is waiting for the zero'd pointers
7255			 * to be written.  It can be freed when the freeblks
7256			 * is journaled.
7257			 */
7258			WORKLIST_REMOVE(wk);
7259			wk->wk_state |= ONDEPLIST;
7260			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7261			break;
7262
7263		case D_ALLOCDIRECT:
7264			if (off != 0)
7265				continue;
7266			/* FALLTHROUGH */
7267		default:
7268			panic("deallocate_dependencies: Unexpected type %s",
7269			    TYPENAME(wk->wk_type));
7270			/* NOTREACHED */
7271		}
7272	}
7273	FREE_LOCK(ump);
7274done:
7275	/*
7276	 * Don't throw away this buf, we were partially truncating and
7277	 * some deps may always remain.
7278	 */
7279	if (off) {
7280		allocbuf(bp, off);
7281		bp->b_vflags |= BV_SCANNED;
7282		return (EBUSY);
7283	}
7284	bp->b_flags |= B_INVAL | B_NOCACHE;
7285
7286	return (0);
7287}
7288
7289/*
7290 * An allocdirect is being canceled due to a truncate.  We must make sure
7291 * the journal entry is released in concert with the blkfree that releases
7292 * the storage.  Completed journal entries must not be released until the
7293 * space is no longer pointed to by the inode or in the bitmap.
7294 */
7295static void
7296cancel_allocdirect(adphead, adp, freeblks)
7297	struct allocdirectlst *adphead;
7298	struct allocdirect *adp;
7299	struct freeblks *freeblks;
7300{
7301	struct freework *freework;
7302	struct newblk *newblk;
7303	struct worklist *wk;
7304
7305	TAILQ_REMOVE(adphead, adp, ad_next);
7306	newblk = (struct newblk *)adp;
7307	freework = NULL;
7308	/*
7309	 * Find the correct freework structure.
7310	 */
7311	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7312		if (wk->wk_type != D_FREEWORK)
7313			continue;
7314		freework = WK_FREEWORK(wk);
7315		if (freework->fw_blkno == newblk->nb_newblkno)
7316			break;
7317	}
7318	if (freework == NULL)
7319		panic("cancel_allocdirect: Freework not found");
7320	/*
7321	 * If a newblk exists at all we still have the journal entry that
7322	 * initiated the allocation so we do not need to journal the free.
7323	 */
7324	cancel_jfreeblk(freeblks, freework->fw_blkno);
7325	/*
7326	 * If the journal hasn't been written the jnewblk must be passed
7327	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7328	 * this by linking the journal dependency into the freework to be
7329	 * freed when freework_freeblock() is called.  If the journal has
7330	 * been written we can simply reclaim the journal space when the
7331	 * freeblks work is complete.
7332	 */
7333	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7334	    &freeblks->fb_jwork);
7335	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7336}
7337
7338
7339/*
7340 * Cancel a new block allocation.  May be an indirect or direct block.  We
7341 * remove it from various lists and return any journal record that needs to
7342 * be resolved by the caller.
7343 *
7344 * A special consideration is made for indirects which were never pointed
7345 * at on disk and will never be found once this block is released.
7346 */
7347static struct jnewblk *
7348cancel_newblk(newblk, wk, wkhd)
7349	struct newblk *newblk;
7350	struct worklist *wk;
7351	struct workhead *wkhd;
7352{
7353	struct jnewblk *jnewblk;
7354
7355	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7356
7357	newblk->nb_state |= GOINGAWAY;
7358	/*
7359	 * Previously we traversed the completedhd on each indirdep
7360	 * attached to this newblk to cancel them and gather journal
7361	 * work.  Since we need only the oldest journal segment and
7362	 * the lowest point on the tree will always have the oldest
7363	 * journal segment we are free to release the segments
7364	 * of any subordinates and may leave the indirdep list to
7365	 * indirdep_complete() when this newblk is freed.
7366	 */
7367	if (newblk->nb_state & ONDEPLIST) {
7368		newblk->nb_state &= ~ONDEPLIST;
7369		LIST_REMOVE(newblk, nb_deps);
7370	}
7371	if (newblk->nb_state & ONWORKLIST)
7372		WORKLIST_REMOVE(&newblk->nb_list);
7373	/*
7374	 * If the journal entry hasn't been written we save a pointer to
7375	 * the dependency that frees it until it is written or the
7376	 * superseding operation completes.
7377	 */
7378	jnewblk = newblk->nb_jnewblk;
7379	if (jnewblk != NULL && wk != NULL) {
7380		newblk->nb_jnewblk = NULL;
7381		jnewblk->jn_dep = wk;
7382	}
7383	if (!LIST_EMPTY(&newblk->nb_jwork))
7384		jwork_move(wkhd, &newblk->nb_jwork);
7385	/*
7386	 * When truncating we must free the newdirblk early to remove
7387	 * the pagedep from the hash before returning.
7388	 */
7389	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7390		free_newdirblk(WK_NEWDIRBLK(wk));
7391	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7392		panic("cancel_newblk: extra newdirblk");
7393
7394	return (jnewblk);
7395}
7396
7397/*
7398 * Schedule the freefrag associated with a newblk to be released once
7399 * the pointers are written and the previous block is no longer needed.
7400 */
7401static void
7402newblk_freefrag(newblk)
7403	struct newblk *newblk;
7404{
7405	struct freefrag *freefrag;
7406
7407	if (newblk->nb_freefrag == NULL)
7408		return;
7409	freefrag = newblk->nb_freefrag;
7410	newblk->nb_freefrag = NULL;
7411	freefrag->ff_state |= COMPLETE;
7412	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7413		add_to_worklist(&freefrag->ff_list, 0);
7414}
7415
7416/*
7417 * Free a newblk. Generate a new freefrag work request if appropriate.
7418 * This must be called after the inode pointer and any direct block pointers
7419 * are valid or fully removed via truncate or frag extension.
7420 */
7421static void
7422free_newblk(newblk)
7423	struct newblk *newblk;
7424{
7425	struct indirdep *indirdep;
7426	struct worklist *wk;
7427
7428	KASSERT(newblk->nb_jnewblk == NULL,
7429	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7430	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7431	    ("free_newblk: unclaimed newblk"));
7432	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7433	newblk_freefrag(newblk);
7434	if (newblk->nb_state & ONDEPLIST)
7435		LIST_REMOVE(newblk, nb_deps);
7436	if (newblk->nb_state & ONWORKLIST)
7437		WORKLIST_REMOVE(&newblk->nb_list);
7438	LIST_REMOVE(newblk, nb_hash);
7439	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7440		free_newdirblk(WK_NEWDIRBLK(wk));
7441	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7442		panic("free_newblk: extra newdirblk");
7443	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7444		indirdep_complete(indirdep);
7445	handle_jwork(&newblk->nb_jwork);
7446	WORKITEM_FREE(newblk, D_NEWBLK);
7447}
7448
7449/*
7450 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7451 * This routine must be called with splbio interrupts blocked.
7452 */
7453static void
7454free_newdirblk(newdirblk)
7455	struct newdirblk *newdirblk;
7456{
7457	struct pagedep *pagedep;
7458	struct diradd *dap;
7459	struct worklist *wk;
7460
7461	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7462	WORKLIST_REMOVE(&newdirblk->db_list);
7463	/*
7464	 * If the pagedep is still linked onto the directory buffer
7465	 * dependency chain, then some of the entries on the
7466	 * pd_pendinghd list may not be committed to disk yet. In
7467	 * this case, we will simply clear the NEWBLOCK flag and
7468	 * let the pd_pendinghd list be processed when the pagedep
7469	 * is next written. If the pagedep is no longer on the buffer
7470	 * dependency chain, then all the entries on the pd_pending
7471	 * list are committed to disk and we can free them here.
7472	 */
7473	pagedep = newdirblk->db_pagedep;
7474	pagedep->pd_state &= ~NEWBLOCK;
7475	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7476		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7477			free_diradd(dap, NULL);
7478		/*
7479		 * If no dependencies remain, the pagedep will be freed.
7480		 */
7481		free_pagedep(pagedep);
7482	}
7483	/* Should only ever be one item in the list. */
7484	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7485		WORKLIST_REMOVE(wk);
7486		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7487	}
7488	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7489}
7490
7491/*
7492 * Prepare an inode to be freed. The actual free operation is not
7493 * done until the zero'ed inode has been written to disk.
7494 */
7495void
7496softdep_freefile(pvp, ino, mode)
7497	struct vnode *pvp;
7498	ino_t ino;
7499	int mode;
7500{
7501	struct inode *ip = VTOI(pvp);
7502	struct inodedep *inodedep;
7503	struct freefile *freefile;
7504	struct freeblks *freeblks;
7505	struct ufsmount *ump;
7506
7507	ump = ip->i_ump;
7508	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7509	    ("softdep_freefile called on non-softdep filesystem"));
7510	/*
7511	 * This sets up the inode de-allocation dependency.
7512	 */
7513	freefile = malloc(sizeof(struct freefile),
7514		M_FREEFILE, M_SOFTDEP_FLAGS);
7515	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7516	freefile->fx_mode = mode;
7517	freefile->fx_oldinum = ino;
7518	freefile->fx_devvp = ip->i_devvp;
7519	LIST_INIT(&freefile->fx_jwork);
7520	UFS_LOCK(ump);
7521	ip->i_fs->fs_pendinginodes += 1;
7522	UFS_UNLOCK(ump);
7523
7524	/*
7525	 * If the inodedep does not exist, then the zero'ed inode has
7526	 * been written to disk. If the allocated inode has never been
7527	 * written to disk, then the on-disk inode is zero'ed. In either
7528	 * case we can free the file immediately.  If the journal was
7529	 * canceled before being written the inode will never make it to
7530	 * disk and we must send the canceled journal entrys to
7531	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7532	 * Any blocks waiting on the inode to write can be safely freed
7533	 * here as it will never been written.
7534	 */
7535	ACQUIRE_LOCK(ump);
7536	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7537	if (inodedep) {
7538		/*
7539		 * Clear out freeblks that no longer need to reference
7540		 * this inode.
7541		 */
7542		while ((freeblks =
7543		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7544			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7545			    fb_next);
7546			freeblks->fb_state &= ~ONDEPLIST;
7547		}
7548		/*
7549		 * Remove this inode from the unlinked list.
7550		 */
7551		if (inodedep->id_state & UNLINKED) {
7552			/*
7553			 * Save the journal work to be freed with the bitmap
7554			 * before we clear UNLINKED.  Otherwise it can be lost
7555			 * if the inode block is written.
7556			 */
7557			handle_bufwait(inodedep, &freefile->fx_jwork);
7558			clear_unlinked_inodedep(inodedep);
7559			/*
7560			 * Re-acquire inodedep as we've dropped the
7561			 * per-filesystem lock in clear_unlinked_inodedep().
7562			 */
7563			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7564		}
7565	}
7566	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7567		FREE_LOCK(ump);
7568		handle_workitem_freefile(freefile);
7569		return;
7570	}
7571	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7572		inodedep->id_state |= GOINGAWAY;
7573	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7574	FREE_LOCK(ump);
7575	if (ip->i_number == ino)
7576		ip->i_flag |= IN_MODIFIED;
7577}
7578
7579/*
7580 * Check to see if an inode has never been written to disk. If
7581 * so free the inodedep and return success, otherwise return failure.
7582 * This routine must be called with splbio interrupts blocked.
7583 *
7584 * If we still have a bitmap dependency, then the inode has never
7585 * been written to disk. Drop the dependency as it is no longer
7586 * necessary since the inode is being deallocated. We set the
7587 * ALLCOMPLETE flags since the bitmap now properly shows that the
7588 * inode is not allocated. Even if the inode is actively being
7589 * written, it has been rolled back to its zero'ed state, so we
7590 * are ensured that a zero inode is what is on the disk. For short
7591 * lived files, this change will usually result in removing all the
7592 * dependencies from the inode so that it can be freed immediately.
7593 */
7594static int
7595check_inode_unwritten(inodedep)
7596	struct inodedep *inodedep;
7597{
7598
7599	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7600
7601	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7602	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7603	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7604	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7605	    !LIST_EMPTY(&inodedep->id_inowait) ||
7606	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7607	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7608	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7609	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7610	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7611	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7612	    inodedep->id_mkdiradd != NULL ||
7613	    inodedep->id_nlinkdelta != 0)
7614		return (0);
7615	/*
7616	 * Another process might be in initiate_write_inodeblock_ufs[12]
7617	 * trying to allocate memory without holding "Softdep Lock".
7618	 */
7619	if ((inodedep->id_state & IOSTARTED) != 0 &&
7620	    inodedep->id_savedino1 == NULL)
7621		return (0);
7622
7623	if (inodedep->id_state & ONDEPLIST)
7624		LIST_REMOVE(inodedep, id_deps);
7625	inodedep->id_state &= ~ONDEPLIST;
7626	inodedep->id_state |= ALLCOMPLETE;
7627	inodedep->id_bmsafemap = NULL;
7628	if (inodedep->id_state & ONWORKLIST)
7629		WORKLIST_REMOVE(&inodedep->id_list);
7630	if (inodedep->id_savedino1 != NULL) {
7631		free(inodedep->id_savedino1, M_SAVEDINO);
7632		inodedep->id_savedino1 = NULL;
7633	}
7634	if (free_inodedep(inodedep) == 0)
7635		panic("check_inode_unwritten: busy inode");
7636	return (1);
7637}
7638
7639static int
7640check_inodedep_free(inodedep)
7641	struct inodedep *inodedep;
7642{
7643
7644	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7645	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7646	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7647	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7648	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7649	    !LIST_EMPTY(&inodedep->id_inowait) ||
7650	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7651	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7652	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7653	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7654	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7655	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7656	    inodedep->id_mkdiradd != NULL ||
7657	    inodedep->id_nlinkdelta != 0 ||
7658	    inodedep->id_savedino1 != NULL)
7659		return (0);
7660	return (1);
7661}
7662
7663/*
7664 * Try to free an inodedep structure. Return 1 if it could be freed.
7665 */
7666static int
7667free_inodedep(inodedep)
7668	struct inodedep *inodedep;
7669{
7670
7671	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7672	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7673	    !check_inodedep_free(inodedep))
7674		return (0);
7675	if (inodedep->id_state & ONDEPLIST)
7676		LIST_REMOVE(inodedep, id_deps);
7677	LIST_REMOVE(inodedep, id_hash);
7678	WORKITEM_FREE(inodedep, D_INODEDEP);
7679	return (1);
7680}
7681
7682/*
7683 * Free the block referenced by a freework structure.  The parent freeblks
7684 * structure is released and completed when the final cg bitmap reaches
7685 * the disk.  This routine may be freeing a jnewblk which never made it to
7686 * disk in which case we do not have to wait as the operation is undone
7687 * in memory immediately.
7688 */
7689static void
7690freework_freeblock(freework)
7691	struct freework *freework;
7692{
7693	struct freeblks *freeblks;
7694	struct jnewblk *jnewblk;
7695	struct ufsmount *ump;
7696	struct workhead wkhd;
7697	struct fs *fs;
7698	int bsize;
7699	int needj;
7700
7701	ump = VFSTOUFS(freework->fw_list.wk_mp);
7702	LOCK_OWNED(ump);
7703	/*
7704	 * Handle partial truncate separately.
7705	 */
7706	if (freework->fw_indir) {
7707		complete_trunc_indir(freework);
7708		return;
7709	}
7710	freeblks = freework->fw_freeblks;
7711	fs = ump->um_fs;
7712	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7713	bsize = lfragtosize(fs, freework->fw_frags);
7714	LIST_INIT(&wkhd);
7715	/*
7716	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7717	 * on the indirblk hashtable and prevents premature freeing.
7718	 */
7719	freework->fw_state |= DEPCOMPLETE;
7720	/*
7721	 * SUJ needs to wait for the segment referencing freed indirect
7722	 * blocks to expire so that we know the checker will not confuse
7723	 * a re-allocated indirect block with its old contents.
7724	 */
7725	if (needj && freework->fw_lbn <= -NDADDR)
7726		indirblk_insert(freework);
7727	/*
7728	 * If we are canceling an existing jnewblk pass it to the free
7729	 * routine, otherwise pass the freeblk which will ultimately
7730	 * release the freeblks.  If we're not journaling, we can just
7731	 * free the freeblks immediately.
7732	 */
7733	jnewblk = freework->fw_jnewblk;
7734	if (jnewblk != NULL) {
7735		cancel_jnewblk(jnewblk, &wkhd);
7736		needj = 0;
7737	} else if (needj) {
7738		freework->fw_state |= DELAYEDFREE;
7739		freeblks->fb_cgwait++;
7740		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7741	}
7742	FREE_LOCK(ump);
7743	freeblks_free(ump, freeblks, btodb(bsize));
7744	CTR4(KTR_SUJ,
7745	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7746	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7747	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7748	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7749	ACQUIRE_LOCK(ump);
7750	/*
7751	 * The jnewblk will be discarded and the bits in the map never
7752	 * made it to disk.  We can immediately free the freeblk.
7753	 */
7754	if (needj == 0)
7755		handle_written_freework(freework);
7756}
7757
7758/*
7759 * We enqueue freework items that need processing back on the freeblks and
7760 * add the freeblks to the worklist.  This makes it easier to find all work
7761 * required to flush a truncation in process_truncates().
7762 */
7763static void
7764freework_enqueue(freework)
7765	struct freework *freework;
7766{
7767	struct freeblks *freeblks;
7768
7769	freeblks = freework->fw_freeblks;
7770	if ((freework->fw_state & INPROGRESS) == 0)
7771		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7772	if ((freeblks->fb_state &
7773	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7774	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7775		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7776}
7777
7778/*
7779 * Start, continue, or finish the process of freeing an indirect block tree.
7780 * The free operation may be paused at any point with fw_off containing the
7781 * offset to restart from.  This enables us to implement some flow control
7782 * for large truncates which may fan out and generate a huge number of
7783 * dependencies.
7784 */
7785static void
7786handle_workitem_indirblk(freework)
7787	struct freework *freework;
7788{
7789	struct freeblks *freeblks;
7790	struct ufsmount *ump;
7791	struct fs *fs;
7792
7793	freeblks = freework->fw_freeblks;
7794	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7795	fs = ump->um_fs;
7796	if (freework->fw_state & DEPCOMPLETE) {
7797		handle_written_freework(freework);
7798		return;
7799	}
7800	if (freework->fw_off == NINDIR(fs)) {
7801		freework_freeblock(freework);
7802		return;
7803	}
7804	freework->fw_state |= INPROGRESS;
7805	FREE_LOCK(ump);
7806	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7807	    freework->fw_lbn);
7808	ACQUIRE_LOCK(ump);
7809}
7810
7811/*
7812 * Called when a freework structure attached to a cg buf is written.  The
7813 * ref on either the parent or the freeblks structure is released and
7814 * the freeblks is added back to the worklist if there is more work to do.
7815 */
7816static void
7817handle_written_freework(freework)
7818	struct freework *freework;
7819{
7820	struct freeblks *freeblks;
7821	struct freework *parent;
7822
7823	freeblks = freework->fw_freeblks;
7824	parent = freework->fw_parent;
7825	if (freework->fw_state & DELAYEDFREE)
7826		freeblks->fb_cgwait--;
7827	freework->fw_state |= COMPLETE;
7828	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7829		WORKITEM_FREE(freework, D_FREEWORK);
7830	if (parent) {
7831		if (--parent->fw_ref == 0)
7832			freework_enqueue(parent);
7833		return;
7834	}
7835	if (--freeblks->fb_ref != 0)
7836		return;
7837	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7838	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7839		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7840}
7841
7842/*
7843 * This workitem routine performs the block de-allocation.
7844 * The workitem is added to the pending list after the updated
7845 * inode block has been written to disk.  As mentioned above,
7846 * checks regarding the number of blocks de-allocated (compared
7847 * to the number of blocks allocated for the file) are also
7848 * performed in this function.
7849 */
7850static int
7851handle_workitem_freeblocks(freeblks, flags)
7852	struct freeblks *freeblks;
7853	int flags;
7854{
7855	struct freework *freework;
7856	struct newblk *newblk;
7857	struct allocindir *aip;
7858	struct ufsmount *ump;
7859	struct worklist *wk;
7860
7861	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7862	    ("handle_workitem_freeblocks: Journal entries not written."));
7863	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7864	ACQUIRE_LOCK(ump);
7865	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7866		WORKLIST_REMOVE(wk);
7867		switch (wk->wk_type) {
7868		case D_DIRREM:
7869			wk->wk_state |= COMPLETE;
7870			add_to_worklist(wk, 0);
7871			continue;
7872
7873		case D_ALLOCDIRECT:
7874			free_newblk(WK_NEWBLK(wk));
7875			continue;
7876
7877		case D_ALLOCINDIR:
7878			aip = WK_ALLOCINDIR(wk);
7879			freework = NULL;
7880			if (aip->ai_state & DELAYEDFREE) {
7881				FREE_LOCK(ump);
7882				freework = newfreework(ump, freeblks, NULL,
7883				    aip->ai_lbn, aip->ai_newblkno,
7884				    ump->um_fs->fs_frag, 0, 0);
7885				ACQUIRE_LOCK(ump);
7886			}
7887			newblk = WK_NEWBLK(wk);
7888			if (newblk->nb_jnewblk) {
7889				freework->fw_jnewblk = newblk->nb_jnewblk;
7890				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7891				newblk->nb_jnewblk = NULL;
7892			}
7893			free_newblk(newblk);
7894			continue;
7895
7896		case D_FREEWORK:
7897			freework = WK_FREEWORK(wk);
7898			if (freework->fw_lbn <= -NDADDR)
7899				handle_workitem_indirblk(freework);
7900			else
7901				freework_freeblock(freework);
7902			continue;
7903		default:
7904			panic("handle_workitem_freeblocks: Unknown type %s",
7905			    TYPENAME(wk->wk_type));
7906		}
7907	}
7908	if (freeblks->fb_ref != 0) {
7909		freeblks->fb_state &= ~INPROGRESS;
7910		wake_worklist(&freeblks->fb_list);
7911		freeblks = NULL;
7912	}
7913	FREE_LOCK(ump);
7914	if (freeblks)
7915		return handle_complete_freeblocks(freeblks, flags);
7916	return (0);
7917}
7918
7919/*
7920 * Handle completion of block free via truncate.  This allows fs_pending
7921 * to track the actual free block count more closely than if we only updated
7922 * it at the end.  We must be careful to handle cases where the block count
7923 * on free was incorrect.
7924 */
7925static void
7926freeblks_free(ump, freeblks, blocks)
7927	struct ufsmount *ump;
7928	struct freeblks *freeblks;
7929	int blocks;
7930{
7931	struct fs *fs;
7932	ufs2_daddr_t remain;
7933
7934	UFS_LOCK(ump);
7935	remain = -freeblks->fb_chkcnt;
7936	freeblks->fb_chkcnt += blocks;
7937	if (remain > 0) {
7938		if (remain < blocks)
7939			blocks = remain;
7940		fs = ump->um_fs;
7941		fs->fs_pendingblocks -= blocks;
7942	}
7943	UFS_UNLOCK(ump);
7944}
7945
7946/*
7947 * Once all of the freework workitems are complete we can retire the
7948 * freeblocks dependency and any journal work awaiting completion.  This
7949 * can not be called until all other dependencies are stable on disk.
7950 */
7951static int
7952handle_complete_freeblocks(freeblks, flags)
7953	struct freeblks *freeblks;
7954	int flags;
7955{
7956	struct inodedep *inodedep;
7957	struct inode *ip;
7958	struct vnode *vp;
7959	struct fs *fs;
7960	struct ufsmount *ump;
7961	ufs2_daddr_t spare;
7962
7963	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7964	fs = ump->um_fs;
7965	flags = LK_EXCLUSIVE | flags;
7966	spare = freeblks->fb_chkcnt;
7967
7968	/*
7969	 * If we did not release the expected number of blocks we may have
7970	 * to adjust the inode block count here.  Only do so if it wasn't
7971	 * a truncation to zero and the modrev still matches.
7972	 */
7973	if (spare && freeblks->fb_len != 0) {
7974		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7975		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7976			return (EBUSY);
7977		ip = VTOI(vp);
7978		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7979			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7980			ip->i_flag |= IN_CHANGE;
7981			/*
7982			 * We must wait so this happens before the
7983			 * journal is reclaimed.
7984			 */
7985			ffs_update(vp, 1);
7986		}
7987		vput(vp);
7988	}
7989	if (spare < 0) {
7990		UFS_LOCK(ump);
7991		fs->fs_pendingblocks += spare;
7992		UFS_UNLOCK(ump);
7993	}
7994#ifdef QUOTA
7995	/* Handle spare. */
7996	if (spare)
7997		quotaadj(freeblks->fb_quota, ump, -spare);
7998	quotarele(freeblks->fb_quota);
7999#endif
8000	ACQUIRE_LOCK(ump);
8001	if (freeblks->fb_state & ONDEPLIST) {
8002		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8003		    0, &inodedep);
8004		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8005		freeblks->fb_state &= ~ONDEPLIST;
8006		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8007			free_inodedep(inodedep);
8008	}
8009	/*
8010	 * All of the freeblock deps must be complete prior to this call
8011	 * so it's now safe to complete earlier outstanding journal entries.
8012	 */
8013	handle_jwork(&freeblks->fb_jwork);
8014	WORKITEM_FREE(freeblks, D_FREEBLKS);
8015	FREE_LOCK(ump);
8016	return (0);
8017}
8018
8019/*
8020 * Release blocks associated with the freeblks and stored in the indirect
8021 * block dbn. If level is greater than SINGLE, the block is an indirect block
8022 * and recursive calls to indirtrunc must be used to cleanse other indirect
8023 * blocks.
8024 *
8025 * This handles partial and complete truncation of blocks.  Partial is noted
8026 * with goingaway == 0.  In this case the freework is completed after the
8027 * zero'd indirects are written to disk.  For full truncation the freework
8028 * is completed after the block is freed.
8029 */
8030static void
8031indir_trunc(freework, dbn, lbn)
8032	struct freework *freework;
8033	ufs2_daddr_t dbn;
8034	ufs_lbn_t lbn;
8035{
8036	struct freework *nfreework;
8037	struct workhead wkhd;
8038	struct freeblks *freeblks;
8039	struct buf *bp;
8040	struct fs *fs;
8041	struct indirdep *indirdep;
8042	struct ufsmount *ump;
8043	ufs1_daddr_t *bap1;
8044	ufs2_daddr_t nb, nnb, *bap2;
8045	ufs_lbn_t lbnadd, nlbn;
8046	int i, nblocks, ufs1fmt;
8047	int freedblocks;
8048	int goingaway;
8049	int freedeps;
8050	int needj;
8051	int level;
8052	int cnt;
8053
8054	freeblks = freework->fw_freeblks;
8055	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8056	fs = ump->um_fs;
8057	/*
8058	 * Get buffer of block pointers to be freed.  There are three cases:
8059	 *
8060	 * 1) Partial truncate caches the indirdep pointer in the freework
8061	 *    which provides us a back copy to the save bp which holds the
8062	 *    pointers we want to clear.  When this completes the zero
8063	 *    pointers are written to the real copy.
8064	 * 2) The indirect is being completely truncated, cancel_indirdep()
8065	 *    eliminated the real copy and placed the indirdep on the saved
8066	 *    copy.  The indirdep and buf are discarded when this completes.
8067	 * 3) The indirect was not in memory, we read a copy off of the disk
8068	 *    using the devvp and drop and invalidate the buffer when we're
8069	 *    done.
8070	 */
8071	goingaway = 1;
8072	indirdep = NULL;
8073	if (freework->fw_indir != NULL) {
8074		goingaway = 0;
8075		indirdep = freework->fw_indir;
8076		bp = indirdep->ir_savebp;
8077		if (bp == NULL || bp->b_blkno != dbn)
8078			panic("indir_trunc: Bad saved buf %p blkno %jd",
8079			    bp, (intmax_t)dbn);
8080	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8081		/*
8082		 * The lock prevents the buf dep list from changing and
8083	 	 * indirects on devvp should only ever have one dependency.
8084		 */
8085		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8086		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8087			panic("indir_trunc: Bad indirdep %p from buf %p",
8088			    indirdep, bp);
8089	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8090	    NOCRED, &bp) != 0) {
8091		brelse(bp);
8092		return;
8093	}
8094	ACQUIRE_LOCK(ump);
8095	/* Protects against a race with complete_trunc_indir(). */
8096	freework->fw_state &= ~INPROGRESS;
8097	/*
8098	 * If we have an indirdep we need to enforce the truncation order
8099	 * and discard it when it is complete.
8100	 */
8101	if (indirdep) {
8102		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8103		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8104			/*
8105			 * Add the complete truncate to the list on the
8106			 * indirdep to enforce in-order processing.
8107			 */
8108			if (freework->fw_indir == NULL)
8109				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8110				    freework, fw_next);
8111			FREE_LOCK(ump);
8112			return;
8113		}
8114		/*
8115		 * If we're goingaway, free the indirdep.  Otherwise it will
8116		 * linger until the write completes.
8117		 */
8118		if (goingaway)
8119			free_indirdep(indirdep);
8120	}
8121	FREE_LOCK(ump);
8122	/* Initialize pointers depending on block size. */
8123	if (ump->um_fstype == UFS1) {
8124		bap1 = (ufs1_daddr_t *)bp->b_data;
8125		nb = bap1[freework->fw_off];
8126		ufs1fmt = 1;
8127		bap2 = NULL;
8128	} else {
8129		bap2 = (ufs2_daddr_t *)bp->b_data;
8130		nb = bap2[freework->fw_off];
8131		ufs1fmt = 0;
8132		bap1 = NULL;
8133	}
8134	level = lbn_level(lbn);
8135	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8136	lbnadd = lbn_offset(fs, level);
8137	nblocks = btodb(fs->fs_bsize);
8138	nfreework = freework;
8139	freedeps = 0;
8140	cnt = 0;
8141	/*
8142	 * Reclaim blocks.  Traverses into nested indirect levels and
8143	 * arranges for the current level to be freed when subordinates
8144	 * are free when journaling.
8145	 */
8146	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8147		if (i != NINDIR(fs) - 1) {
8148			if (ufs1fmt)
8149				nnb = bap1[i+1];
8150			else
8151				nnb = bap2[i+1];
8152		} else
8153			nnb = 0;
8154		if (nb == 0)
8155			continue;
8156		cnt++;
8157		if (level != 0) {
8158			nlbn = (lbn + 1) - (i * lbnadd);
8159			if (needj != 0) {
8160				nfreework = newfreework(ump, freeblks, freework,
8161				    nlbn, nb, fs->fs_frag, 0, 0);
8162				freedeps++;
8163			}
8164			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8165		} else {
8166			struct freedep *freedep;
8167
8168			/*
8169			 * Attempt to aggregate freedep dependencies for
8170			 * all blocks being released to the same CG.
8171			 */
8172			LIST_INIT(&wkhd);
8173			if (needj != 0 &&
8174			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8175				freedep = newfreedep(freework);
8176				WORKLIST_INSERT_UNLOCKED(&wkhd,
8177				    &freedep->fd_list);
8178				freedeps++;
8179			}
8180			CTR3(KTR_SUJ,
8181			    "indir_trunc: ino %d blkno %jd size %ld",
8182			    freeblks->fb_inum, nb, fs->fs_bsize);
8183			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8184			    fs->fs_bsize, freeblks->fb_inum,
8185			    freeblks->fb_vtype, &wkhd);
8186		}
8187	}
8188	if (goingaway) {
8189		bp->b_flags |= B_INVAL | B_NOCACHE;
8190		brelse(bp);
8191	}
8192	freedblocks = 0;
8193	if (level == 0)
8194		freedblocks = (nblocks * cnt);
8195	if (needj == 0)
8196		freedblocks += nblocks;
8197	freeblks_free(ump, freeblks, freedblocks);
8198	/*
8199	 * If we are journaling set up the ref counts and offset so this
8200	 * indirect can be completed when its children are free.
8201	 */
8202	if (needj) {
8203		ACQUIRE_LOCK(ump);
8204		freework->fw_off = i;
8205		freework->fw_ref += freedeps;
8206		freework->fw_ref -= NINDIR(fs) + 1;
8207		if (level == 0)
8208			freeblks->fb_cgwait += freedeps;
8209		if (freework->fw_ref == 0)
8210			freework_freeblock(freework);
8211		FREE_LOCK(ump);
8212		return;
8213	}
8214	/*
8215	 * If we're not journaling we can free the indirect now.
8216	 */
8217	dbn = dbtofsb(fs, dbn);
8218	CTR3(KTR_SUJ,
8219	    "indir_trunc 2: ino %d blkno %jd size %ld",
8220	    freeblks->fb_inum, dbn, fs->fs_bsize);
8221	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8222	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8223	/* Non SUJ softdep does single-threaded truncations. */
8224	if (freework->fw_blkno == dbn) {
8225		freework->fw_state |= ALLCOMPLETE;
8226		ACQUIRE_LOCK(ump);
8227		handle_written_freework(freework);
8228		FREE_LOCK(ump);
8229	}
8230	return;
8231}
8232
8233/*
8234 * Cancel an allocindir when it is removed via truncation.  When bp is not
8235 * NULL the indirect never appeared on disk and is scheduled to be freed
8236 * independently of the indir so we can more easily track journal work.
8237 */
8238static void
8239cancel_allocindir(aip, bp, freeblks, trunc)
8240	struct allocindir *aip;
8241	struct buf *bp;
8242	struct freeblks *freeblks;
8243	int trunc;
8244{
8245	struct indirdep *indirdep;
8246	struct freefrag *freefrag;
8247	struct newblk *newblk;
8248
8249	newblk = (struct newblk *)aip;
8250	LIST_REMOVE(aip, ai_next);
8251	/*
8252	 * We must eliminate the pointer in bp if it must be freed on its
8253	 * own due to partial truncate or pending journal work.
8254	 */
8255	if (bp && (trunc || newblk->nb_jnewblk)) {
8256		/*
8257		 * Clear the pointer and mark the aip to be freed
8258		 * directly if it never existed on disk.
8259		 */
8260		aip->ai_state |= DELAYEDFREE;
8261		indirdep = aip->ai_indirdep;
8262		if (indirdep->ir_state & UFS1FMT)
8263			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8264		else
8265			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8266	}
8267	/*
8268	 * When truncating the previous pointer will be freed via
8269	 * savedbp.  Eliminate the freefrag which would dup free.
8270	 */
8271	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8272		newblk->nb_freefrag = NULL;
8273		if (freefrag->ff_jdep)
8274			cancel_jfreefrag(
8275			    WK_JFREEFRAG(freefrag->ff_jdep));
8276		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8277		WORKITEM_FREE(freefrag, D_FREEFRAG);
8278	}
8279	/*
8280	 * If the journal hasn't been written the jnewblk must be passed
8281	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8282	 * this by leaving the journal dependency on the newblk to be freed
8283	 * when a freework is created in handle_workitem_freeblocks().
8284	 */
8285	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8286	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8287}
8288
8289/*
8290 * Create the mkdir dependencies for . and .. in a new directory.  Link them
8291 * in to a newdirblk so any subsequent additions are tracked properly.  The
8292 * caller is responsible for adding the mkdir1 dependency to the journal
8293 * and updating id_mkdiradd.  This function returns with the per-filesystem
8294 * lock held.
8295 */
8296static struct mkdir *
8297setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8298	struct diradd *dap;
8299	ino_t newinum;
8300	ino_t dinum;
8301	struct buf *newdirbp;
8302	struct mkdir **mkdirp;
8303{
8304	struct newblk *newblk;
8305	struct pagedep *pagedep;
8306	struct inodedep *inodedep;
8307	struct newdirblk *newdirblk;
8308	struct mkdir *mkdir1, *mkdir2;
8309	struct worklist *wk;
8310	struct jaddref *jaddref;
8311	struct ufsmount *ump;
8312	struct mount *mp;
8313
8314	mp = dap->da_list.wk_mp;
8315	ump = VFSTOUFS(mp);
8316	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8317	    M_SOFTDEP_FLAGS);
8318	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8319	LIST_INIT(&newdirblk->db_mkdir);
8320	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8321	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8322	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8323	mkdir1->md_diradd = dap;
8324	mkdir1->md_jaddref = NULL;
8325	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8326	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8327	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8328	mkdir2->md_diradd = dap;
8329	mkdir2->md_jaddref = NULL;
8330	if (MOUNTEDSUJ(mp) == 0) {
8331		mkdir1->md_state |= DEPCOMPLETE;
8332		mkdir2->md_state |= DEPCOMPLETE;
8333	}
8334	/*
8335	 * Dependency on "." and ".." being written to disk.
8336	 */
8337	mkdir1->md_buf = newdirbp;
8338	ACQUIRE_LOCK(VFSTOUFS(mp));
8339	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8340	/*
8341	 * We must link the pagedep, allocdirect, and newdirblk for
8342	 * the initial file page so the pointer to the new directory
8343	 * is not written until the directory contents are live and
8344	 * any subsequent additions are not marked live until the
8345	 * block is reachable via the inode.
8346	 */
8347	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8348		panic("setup_newdir: lost pagedep");
8349	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8350		if (wk->wk_type == D_ALLOCDIRECT)
8351			break;
8352	if (wk == NULL)
8353		panic("setup_newdir: lost allocdirect");
8354	if (pagedep->pd_state & NEWBLOCK)
8355		panic("setup_newdir: NEWBLOCK already set");
8356	newblk = WK_NEWBLK(wk);
8357	pagedep->pd_state |= NEWBLOCK;
8358	pagedep->pd_newdirblk = newdirblk;
8359	newdirblk->db_pagedep = pagedep;
8360	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8361	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8362	/*
8363	 * Look up the inodedep for the parent directory so that we
8364	 * can link mkdir2 into the pending dotdot jaddref or
8365	 * the inode write if there is none.  If the inode is
8366	 * ALLCOMPLETE and no jaddref is present all dependencies have
8367	 * been satisfied and mkdir2 can be freed.
8368	 */
8369	inodedep_lookup(mp, dinum, 0, &inodedep);
8370	if (MOUNTEDSUJ(mp)) {
8371		if (inodedep == NULL)
8372			panic("setup_newdir: Lost parent.");
8373		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8374		    inoreflst);
8375		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8376		    (jaddref->ja_state & MKDIR_PARENT),
8377		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8378		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8379		mkdir2->md_jaddref = jaddref;
8380		jaddref->ja_mkdir = mkdir2;
8381	} else if (inodedep == NULL ||
8382	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8383		dap->da_state &= ~MKDIR_PARENT;
8384		WORKITEM_FREE(mkdir2, D_MKDIR);
8385		mkdir2 = NULL;
8386	} else {
8387		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8388		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8389	}
8390	*mkdirp = mkdir2;
8391
8392	return (mkdir1);
8393}
8394
8395/*
8396 * Directory entry addition dependencies.
8397 *
8398 * When adding a new directory entry, the inode (with its incremented link
8399 * count) must be written to disk before the directory entry's pointer to it.
8400 * Also, if the inode is newly allocated, the corresponding freemap must be
8401 * updated (on disk) before the directory entry's pointer. These requirements
8402 * are met via undo/redo on the directory entry's pointer, which consists
8403 * simply of the inode number.
8404 *
8405 * As directory entries are added and deleted, the free space within a
8406 * directory block can become fragmented.  The ufs filesystem will compact
8407 * a fragmented directory block to make space for a new entry. When this
8408 * occurs, the offsets of previously added entries change. Any "diradd"
8409 * dependency structures corresponding to these entries must be updated with
8410 * the new offsets.
8411 */
8412
8413/*
8414 * This routine is called after the in-memory inode's link
8415 * count has been incremented, but before the directory entry's
8416 * pointer to the inode has been set.
8417 */
8418int
8419softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8420	struct buf *bp;		/* buffer containing directory block */
8421	struct inode *dp;	/* inode for directory */
8422	off_t diroffset;	/* offset of new entry in directory */
8423	ino_t newinum;		/* inode referenced by new directory entry */
8424	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8425	int isnewblk;		/* entry is in a newly allocated block */
8426{
8427	int offset;		/* offset of new entry within directory block */
8428	ufs_lbn_t lbn;		/* block in directory containing new entry */
8429	struct fs *fs;
8430	struct diradd *dap;
8431	struct newblk *newblk;
8432	struct pagedep *pagedep;
8433	struct inodedep *inodedep;
8434	struct newdirblk *newdirblk;
8435	struct mkdir *mkdir1, *mkdir2;
8436	struct jaddref *jaddref;
8437	struct ufsmount *ump;
8438	struct mount *mp;
8439	int isindir;
8440
8441	ump = dp->i_ump;
8442	mp = UFSTOVFS(ump);
8443	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8444	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8445	/*
8446	 * Whiteouts have no dependencies.
8447	 */
8448	if (newinum == WINO) {
8449		if (newdirbp != NULL)
8450			bdwrite(newdirbp);
8451		return (0);
8452	}
8453	jaddref = NULL;
8454	mkdir1 = mkdir2 = NULL;
8455	fs = dp->i_fs;
8456	lbn = lblkno(fs, diroffset);
8457	offset = blkoff(fs, diroffset);
8458	dap = malloc(sizeof(struct diradd), M_DIRADD,
8459		M_SOFTDEP_FLAGS|M_ZERO);
8460	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8461	dap->da_offset = offset;
8462	dap->da_newinum = newinum;
8463	dap->da_state = ATTACHED;
8464	LIST_INIT(&dap->da_jwork);
8465	isindir = bp->b_lblkno >= NDADDR;
8466	newdirblk = NULL;
8467	if (isnewblk &&
8468	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8469		newdirblk = malloc(sizeof(struct newdirblk),
8470		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8471		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8472		LIST_INIT(&newdirblk->db_mkdir);
8473	}
8474	/*
8475	 * If we're creating a new directory setup the dependencies and set
8476	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8477	 * we can move on.
8478	 */
8479	if (newdirbp == NULL) {
8480		dap->da_state |= DEPCOMPLETE;
8481		ACQUIRE_LOCK(ump);
8482	} else {
8483		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8484		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8485		    &mkdir2);
8486	}
8487	/*
8488	 * Link into parent directory pagedep to await its being written.
8489	 */
8490	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8491#ifdef DEBUG
8492	if (diradd_lookup(pagedep, offset) != NULL)
8493		panic("softdep_setup_directory_add: %p already at off %d\n",
8494		    diradd_lookup(pagedep, offset), offset);
8495#endif
8496	dap->da_pagedep = pagedep;
8497	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8498	    da_pdlist);
8499	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8500	/*
8501	 * If we're journaling, link the diradd into the jaddref so it
8502	 * may be completed after the journal entry is written.  Otherwise,
8503	 * link the diradd into its inodedep.  If the inode is not yet
8504	 * written place it on the bufwait list, otherwise do the post-inode
8505	 * write processing to put it on the id_pendinghd list.
8506	 */
8507	if (MOUNTEDSUJ(mp)) {
8508		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8509		    inoreflst);
8510		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8511		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8512		jaddref->ja_diroff = diroffset;
8513		jaddref->ja_diradd = dap;
8514		add_to_journal(&jaddref->ja_list);
8515	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8516		diradd_inode_written(dap, inodedep);
8517	else
8518		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8519	/*
8520	 * Add the journal entries for . and .. links now that the primary
8521	 * link is written.
8522	 */
8523	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8524		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8525		    inoreflst, if_deps);
8526		KASSERT(jaddref != NULL &&
8527		    jaddref->ja_ino == jaddref->ja_parent &&
8528		    (jaddref->ja_state & MKDIR_BODY),
8529		    ("softdep_setup_directory_add: bad dot jaddref %p",
8530		    jaddref));
8531		mkdir1->md_jaddref = jaddref;
8532		jaddref->ja_mkdir = mkdir1;
8533		/*
8534		 * It is important that the dotdot journal entry
8535		 * is added prior to the dot entry since dot writes
8536		 * both the dot and dotdot links.  These both must
8537		 * be added after the primary link for the journal
8538		 * to remain consistent.
8539		 */
8540		add_to_journal(&mkdir2->md_jaddref->ja_list);
8541		add_to_journal(&jaddref->ja_list);
8542	}
8543	/*
8544	 * If we are adding a new directory remember this diradd so that if
8545	 * we rename it we can keep the dot and dotdot dependencies.  If
8546	 * we are adding a new name for an inode that has a mkdiradd we
8547	 * must be in rename and we have to move the dot and dotdot
8548	 * dependencies to this new name.  The old name is being orphaned
8549	 * soon.
8550	 */
8551	if (mkdir1 != NULL) {
8552		if (inodedep->id_mkdiradd != NULL)
8553			panic("softdep_setup_directory_add: Existing mkdir");
8554		inodedep->id_mkdiradd = dap;
8555	} else if (inodedep->id_mkdiradd)
8556		merge_diradd(inodedep, dap);
8557	if (newdirblk != NULL) {
8558		/*
8559		 * There is nothing to do if we are already tracking
8560		 * this block.
8561		 */
8562		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8563			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8564			FREE_LOCK(ump);
8565			return (0);
8566		}
8567		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8568		    == 0)
8569			panic("softdep_setup_directory_add: lost entry");
8570		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8571		pagedep->pd_state |= NEWBLOCK;
8572		pagedep->pd_newdirblk = newdirblk;
8573		newdirblk->db_pagedep = pagedep;
8574		FREE_LOCK(ump);
8575		/*
8576		 * If we extended into an indirect signal direnter to sync.
8577		 */
8578		if (isindir)
8579			return (1);
8580		return (0);
8581	}
8582	FREE_LOCK(ump);
8583	return (0);
8584}
8585
8586/*
8587 * This procedure is called to change the offset of a directory
8588 * entry when compacting a directory block which must be owned
8589 * exclusively by the caller. Note that the actual entry movement
8590 * must be done in this procedure to ensure that no I/O completions
8591 * occur while the move is in progress.
8592 */
8593void
8594softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8595	struct buf *bp;		/* Buffer holding directory block. */
8596	struct inode *dp;	/* inode for directory */
8597	caddr_t base;		/* address of dp->i_offset */
8598	caddr_t oldloc;		/* address of old directory location */
8599	caddr_t newloc;		/* address of new directory location */
8600	int entrysize;		/* size of directory entry */
8601{
8602	int offset, oldoffset, newoffset;
8603	struct pagedep *pagedep;
8604	struct jmvref *jmvref;
8605	struct diradd *dap;
8606	struct direct *de;
8607	struct mount *mp;
8608	ufs_lbn_t lbn;
8609	int flags;
8610
8611	mp = UFSTOVFS(dp->i_ump);
8612	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8613	    ("softdep_change_directoryentry_offset called on "
8614	     "non-softdep filesystem"));
8615	de = (struct direct *)oldloc;
8616	jmvref = NULL;
8617	flags = 0;
8618	/*
8619	 * Moves are always journaled as it would be too complex to
8620	 * determine if any affected adds or removes are present in the
8621	 * journal.
8622	 */
8623	if (MOUNTEDSUJ(mp)) {
8624		flags = DEPALLOC;
8625		jmvref = newjmvref(dp, de->d_ino,
8626		    dp->i_offset + (oldloc - base),
8627		    dp->i_offset + (newloc - base));
8628	}
8629	lbn = lblkno(dp->i_fs, dp->i_offset);
8630	offset = blkoff(dp->i_fs, dp->i_offset);
8631	oldoffset = offset + (oldloc - base);
8632	newoffset = offset + (newloc - base);
8633	ACQUIRE_LOCK(dp->i_ump);
8634	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8635		goto done;
8636	dap = diradd_lookup(pagedep, oldoffset);
8637	if (dap) {
8638		dap->da_offset = newoffset;
8639		newoffset = DIRADDHASH(newoffset);
8640		oldoffset = DIRADDHASH(oldoffset);
8641		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8642		    newoffset != oldoffset) {
8643			LIST_REMOVE(dap, da_pdlist);
8644			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8645			    dap, da_pdlist);
8646		}
8647	}
8648done:
8649	if (jmvref) {
8650		jmvref->jm_pagedep = pagedep;
8651		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8652		add_to_journal(&jmvref->jm_list);
8653	}
8654	bcopy(oldloc, newloc, entrysize);
8655	FREE_LOCK(dp->i_ump);
8656}
8657
8658/*
8659 * Move the mkdir dependencies and journal work from one diradd to another
8660 * when renaming a directory.  The new name must depend on the mkdir deps
8661 * completing as the old name did.  Directories can only have one valid link
8662 * at a time so one must be canonical.
8663 */
8664static void
8665merge_diradd(inodedep, newdap)
8666	struct inodedep *inodedep;
8667	struct diradd *newdap;
8668{
8669	struct diradd *olddap;
8670	struct mkdir *mkdir, *nextmd;
8671	struct ufsmount *ump;
8672	short state;
8673
8674	olddap = inodedep->id_mkdiradd;
8675	inodedep->id_mkdiradd = newdap;
8676	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8677		newdap->da_state &= ~DEPCOMPLETE;
8678		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8679		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8680		     mkdir = nextmd) {
8681			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8682			if (mkdir->md_diradd != olddap)
8683				continue;
8684			mkdir->md_diradd = newdap;
8685			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8686			newdap->da_state |= state;
8687			olddap->da_state &= ~state;
8688			if ((olddap->da_state &
8689			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8690				break;
8691		}
8692		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8693			panic("merge_diradd: unfound ref");
8694	}
8695	/*
8696	 * Any mkdir related journal items are not safe to be freed until
8697	 * the new name is stable.
8698	 */
8699	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8700	olddap->da_state |= DEPCOMPLETE;
8701	complete_diradd(olddap);
8702}
8703
8704/*
8705 * Move the diradd to the pending list when all diradd dependencies are
8706 * complete.
8707 */
8708static void
8709complete_diradd(dap)
8710	struct diradd *dap;
8711{
8712	struct pagedep *pagedep;
8713
8714	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8715		if (dap->da_state & DIRCHG)
8716			pagedep = dap->da_previous->dm_pagedep;
8717		else
8718			pagedep = dap->da_pagedep;
8719		LIST_REMOVE(dap, da_pdlist);
8720		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8721	}
8722}
8723
8724/*
8725 * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8726 * add entries and conditonally journal the remove.
8727 */
8728static void
8729cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8730	struct diradd *dap;
8731	struct dirrem *dirrem;
8732	struct jremref *jremref;
8733	struct jremref *dotremref;
8734	struct jremref *dotdotremref;
8735{
8736	struct inodedep *inodedep;
8737	struct jaddref *jaddref;
8738	struct inoref *inoref;
8739	struct ufsmount *ump;
8740	struct mkdir *mkdir;
8741
8742	/*
8743	 * If no remove references were allocated we're on a non-journaled
8744	 * filesystem and can skip the cancel step.
8745	 */
8746	if (jremref == NULL) {
8747		free_diradd(dap, NULL);
8748		return;
8749	}
8750	/*
8751	 * Cancel the primary name an free it if it does not require
8752	 * journaling.
8753	 */
8754	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8755	    0, &inodedep) != 0) {
8756		/* Abort the addref that reference this diradd.  */
8757		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8758			if (inoref->if_list.wk_type != D_JADDREF)
8759				continue;
8760			jaddref = (struct jaddref *)inoref;
8761			if (jaddref->ja_diradd != dap)
8762				continue;
8763			if (cancel_jaddref(jaddref, inodedep,
8764			    &dirrem->dm_jwork) == 0) {
8765				free_jremref(jremref);
8766				jremref = NULL;
8767			}
8768			break;
8769		}
8770	}
8771	/*
8772	 * Cancel subordinate names and free them if they do not require
8773	 * journaling.
8774	 */
8775	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8776		ump = VFSTOUFS(dap->da_list.wk_mp);
8777		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8778			if (mkdir->md_diradd != dap)
8779				continue;
8780			if ((jaddref = mkdir->md_jaddref) == NULL)
8781				continue;
8782			mkdir->md_jaddref = NULL;
8783			if (mkdir->md_state & MKDIR_PARENT) {
8784				if (cancel_jaddref(jaddref, NULL,
8785				    &dirrem->dm_jwork) == 0) {
8786					free_jremref(dotdotremref);
8787					dotdotremref = NULL;
8788				}
8789			} else {
8790				if (cancel_jaddref(jaddref, inodedep,
8791				    &dirrem->dm_jwork) == 0) {
8792					free_jremref(dotremref);
8793					dotremref = NULL;
8794				}
8795			}
8796		}
8797	}
8798
8799	if (jremref)
8800		journal_jremref(dirrem, jremref, inodedep);
8801	if (dotremref)
8802		journal_jremref(dirrem, dotremref, inodedep);
8803	if (dotdotremref)
8804		journal_jremref(dirrem, dotdotremref, NULL);
8805	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8806	free_diradd(dap, &dirrem->dm_jwork);
8807}
8808
8809/*
8810 * Free a diradd dependency structure. This routine must be called
8811 * with splbio interrupts blocked.
8812 */
8813static void
8814free_diradd(dap, wkhd)
8815	struct diradd *dap;
8816	struct workhead *wkhd;
8817{
8818	struct dirrem *dirrem;
8819	struct pagedep *pagedep;
8820	struct inodedep *inodedep;
8821	struct mkdir *mkdir, *nextmd;
8822	struct ufsmount *ump;
8823
8824	ump = VFSTOUFS(dap->da_list.wk_mp);
8825	LOCK_OWNED(ump);
8826	LIST_REMOVE(dap, da_pdlist);
8827	if (dap->da_state & ONWORKLIST)
8828		WORKLIST_REMOVE(&dap->da_list);
8829	if ((dap->da_state & DIRCHG) == 0) {
8830		pagedep = dap->da_pagedep;
8831	} else {
8832		dirrem = dap->da_previous;
8833		pagedep = dirrem->dm_pagedep;
8834		dirrem->dm_dirinum = pagedep->pd_ino;
8835		dirrem->dm_state |= COMPLETE;
8836		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8837			add_to_worklist(&dirrem->dm_list, 0);
8838	}
8839	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8840	    0, &inodedep) != 0)
8841		if (inodedep->id_mkdiradd == dap)
8842			inodedep->id_mkdiradd = NULL;
8843	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8844		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8845		     mkdir = nextmd) {
8846			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8847			if (mkdir->md_diradd != dap)
8848				continue;
8849			dap->da_state &=
8850			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8851			LIST_REMOVE(mkdir, md_mkdirs);
8852			if (mkdir->md_state & ONWORKLIST)
8853				WORKLIST_REMOVE(&mkdir->md_list);
8854			if (mkdir->md_jaddref != NULL)
8855				panic("free_diradd: Unexpected jaddref");
8856			WORKITEM_FREE(mkdir, D_MKDIR);
8857			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8858				break;
8859		}
8860		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8861			panic("free_diradd: unfound ref");
8862	}
8863	if (inodedep)
8864		free_inodedep(inodedep);
8865	/*
8866	 * Free any journal segments waiting for the directory write.
8867	 */
8868	handle_jwork(&dap->da_jwork);
8869	WORKITEM_FREE(dap, D_DIRADD);
8870}
8871
8872/*
8873 * Directory entry removal dependencies.
8874 *
8875 * When removing a directory entry, the entry's inode pointer must be
8876 * zero'ed on disk before the corresponding inode's link count is decremented
8877 * (possibly freeing the inode for re-use). This dependency is handled by
8878 * updating the directory entry but delaying the inode count reduction until
8879 * after the directory block has been written to disk. After this point, the
8880 * inode count can be decremented whenever it is convenient.
8881 */
8882
8883/*
8884 * This routine should be called immediately after removing
8885 * a directory entry.  The inode's link count should not be
8886 * decremented by the calling procedure -- the soft updates
8887 * code will do this task when it is safe.
8888 */
8889void
8890softdep_setup_remove(bp, dp, ip, isrmdir)
8891	struct buf *bp;		/* buffer containing directory block */
8892	struct inode *dp;	/* inode for the directory being modified */
8893	struct inode *ip;	/* inode for directory entry being removed */
8894	int isrmdir;		/* indicates if doing RMDIR */
8895{
8896	struct dirrem *dirrem, *prevdirrem;
8897	struct inodedep *inodedep;
8898	int direct;
8899
8900	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
8901	    ("softdep_setup_remove called on non-softdep filesystem"));
8902	/*
8903	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8904	 * newdirrem() to setup the full directory remove which requires
8905	 * isrmdir > 1.
8906	 */
8907	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8908	/*
8909	 * Add the dirrem to the inodedep's pending remove list for quick
8910	 * discovery later.
8911	 */
8912	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8913	    &inodedep) == 0)
8914		panic("softdep_setup_remove: Lost inodedep.");
8915	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8916	dirrem->dm_state |= ONDEPLIST;
8917	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8918
8919	/*
8920	 * If the COMPLETE flag is clear, then there were no active
8921	 * entries and we want to roll back to a zeroed entry until
8922	 * the new inode is committed to disk. If the COMPLETE flag is
8923	 * set then we have deleted an entry that never made it to
8924	 * disk. If the entry we deleted resulted from a name change,
8925	 * then the old name still resides on disk. We cannot delete
8926	 * its inode (returned to us in prevdirrem) until the zeroed
8927	 * directory entry gets to disk. The new inode has never been
8928	 * referenced on the disk, so can be deleted immediately.
8929	 */
8930	if ((dirrem->dm_state & COMPLETE) == 0) {
8931		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8932		    dm_next);
8933		FREE_LOCK(ip->i_ump);
8934	} else {
8935		if (prevdirrem != NULL)
8936			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8937			    prevdirrem, dm_next);
8938		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8939		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8940		FREE_LOCK(ip->i_ump);
8941		if (direct)
8942			handle_workitem_remove(dirrem, 0);
8943	}
8944}
8945
8946/*
8947 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8948 * pd_pendinghd list of a pagedep.
8949 */
8950static struct diradd *
8951diradd_lookup(pagedep, offset)
8952	struct pagedep *pagedep;
8953	int offset;
8954{
8955	struct diradd *dap;
8956
8957	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8958		if (dap->da_offset == offset)
8959			return (dap);
8960	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8961		if (dap->da_offset == offset)
8962			return (dap);
8963	return (NULL);
8964}
8965
8966/*
8967 * Search for a .. diradd dependency in a directory that is being removed.
8968 * If the directory was renamed to a new parent we have a diradd rather
8969 * than a mkdir for the .. entry.  We need to cancel it now before
8970 * it is found in truncate().
8971 */
8972static struct jremref *
8973cancel_diradd_dotdot(ip, dirrem, jremref)
8974	struct inode *ip;
8975	struct dirrem *dirrem;
8976	struct jremref *jremref;
8977{
8978	struct pagedep *pagedep;
8979	struct diradd *dap;
8980	struct worklist *wk;
8981
8982	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8983	    &pagedep) == 0)
8984		return (jremref);
8985	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8986	if (dap == NULL)
8987		return (jremref);
8988	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8989	/*
8990	 * Mark any journal work as belonging to the parent so it is freed
8991	 * with the .. reference.
8992	 */
8993	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8994		wk->wk_state |= MKDIR_PARENT;
8995	return (NULL);
8996}
8997
8998/*
8999 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9000 * replace it with a dirrem/diradd pair as a result of re-parenting a
9001 * directory.  This ensures that we don't simultaneously have a mkdir and
9002 * a diradd for the same .. entry.
9003 */
9004static struct jremref *
9005cancel_mkdir_dotdot(ip, dirrem, jremref)
9006	struct inode *ip;
9007	struct dirrem *dirrem;
9008	struct jremref *jremref;
9009{
9010	struct inodedep *inodedep;
9011	struct jaddref *jaddref;
9012	struct ufsmount *ump;
9013	struct mkdir *mkdir;
9014	struct diradd *dap;
9015
9016	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
9017	    &inodedep) == 0)
9018		return (jremref);
9019	dap = inodedep->id_mkdiradd;
9020	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9021		return (jremref);
9022	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9023	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9024	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9025		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9026			break;
9027	if (mkdir == NULL)
9028		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9029	if ((jaddref = mkdir->md_jaddref) != NULL) {
9030		mkdir->md_jaddref = NULL;
9031		jaddref->ja_state &= ~MKDIR_PARENT;
9032		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
9033		    &inodedep) == 0)
9034			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9035		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9036			journal_jremref(dirrem, jremref, inodedep);
9037			jremref = NULL;
9038		}
9039	}
9040	if (mkdir->md_state & ONWORKLIST)
9041		WORKLIST_REMOVE(&mkdir->md_list);
9042	mkdir->md_state |= ALLCOMPLETE;
9043	complete_mkdir(mkdir);
9044	return (jremref);
9045}
9046
9047static void
9048journal_jremref(dirrem, jremref, inodedep)
9049	struct dirrem *dirrem;
9050	struct jremref *jremref;
9051	struct inodedep *inodedep;
9052{
9053
9054	if (inodedep == NULL)
9055		if (inodedep_lookup(jremref->jr_list.wk_mp,
9056		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9057			panic("journal_jremref: Lost inodedep");
9058	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9059	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9060	add_to_journal(&jremref->jr_list);
9061}
9062
9063static void
9064dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9065	struct dirrem *dirrem;
9066	struct jremref *jremref;
9067	struct jremref *dotremref;
9068	struct jremref *dotdotremref;
9069{
9070	struct inodedep *inodedep;
9071
9072
9073	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9074	    &inodedep) == 0)
9075		panic("dirrem_journal: Lost inodedep");
9076	journal_jremref(dirrem, jremref, inodedep);
9077	if (dotremref)
9078		journal_jremref(dirrem, dotremref, inodedep);
9079	if (dotdotremref)
9080		journal_jremref(dirrem, dotdotremref, NULL);
9081}
9082
9083/*
9084 * Allocate a new dirrem if appropriate and return it along with
9085 * its associated pagedep. Called without a lock, returns with lock.
9086 */
9087static struct dirrem *
9088newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9089	struct buf *bp;		/* buffer containing directory block */
9090	struct inode *dp;	/* inode for the directory being modified */
9091	struct inode *ip;	/* inode for directory entry being removed */
9092	int isrmdir;		/* indicates if doing RMDIR */
9093	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9094{
9095	int offset;
9096	ufs_lbn_t lbn;
9097	struct diradd *dap;
9098	struct dirrem *dirrem;
9099	struct pagedep *pagedep;
9100	struct jremref *jremref;
9101	struct jremref *dotremref;
9102	struct jremref *dotdotremref;
9103	struct vnode *dvp;
9104
9105	/*
9106	 * Whiteouts have no deletion dependencies.
9107	 */
9108	if (ip == NULL)
9109		panic("newdirrem: whiteout");
9110	dvp = ITOV(dp);
9111	/*
9112	 * If the system is over its limit and our filesystem is
9113	 * responsible for more than our share of that usage and
9114	 * we are not a snapshot, request some inodedep cleanup.
9115	 * Limiting the number of dirrem structures will also limit
9116	 * the number of freefile and freeblks structures.
9117	 */
9118	ACQUIRE_LOCK(ip->i_ump);
9119	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ip->i_ump, D_DIRREM))
9120		schedule_cleanup(ITOV(dp)->v_mount);
9121	else
9122		FREE_LOCK(ip->i_ump);
9123	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9124	    M_ZERO);
9125	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9126	LIST_INIT(&dirrem->dm_jremrefhd);
9127	LIST_INIT(&dirrem->dm_jwork);
9128	dirrem->dm_state = isrmdir ? RMDIR : 0;
9129	dirrem->dm_oldinum = ip->i_number;
9130	*prevdirremp = NULL;
9131	/*
9132	 * Allocate remove reference structures to track journal write
9133	 * dependencies.  We will always have one for the link and
9134	 * when doing directories we will always have one more for dot.
9135	 * When renaming a directory we skip the dotdot link change so
9136	 * this is not needed.
9137	 */
9138	jremref = dotremref = dotdotremref = NULL;
9139	if (DOINGSUJ(dvp)) {
9140		if (isrmdir) {
9141			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9142			    ip->i_effnlink + 2);
9143			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9144			    ip->i_effnlink + 1);
9145			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9146			    dp->i_effnlink + 1);
9147			dotdotremref->jr_state |= MKDIR_PARENT;
9148		} else
9149			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9150			    ip->i_effnlink + 1);
9151	}
9152	ACQUIRE_LOCK(ip->i_ump);
9153	lbn = lblkno(dp->i_fs, dp->i_offset);
9154	offset = blkoff(dp->i_fs, dp->i_offset);
9155	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
9156	    &pagedep);
9157	dirrem->dm_pagedep = pagedep;
9158	dirrem->dm_offset = offset;
9159	/*
9160	 * If we're renaming a .. link to a new directory, cancel any
9161	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9162	 * the jremref is preserved for any potential diradd in this
9163	 * location.  This can not coincide with a rmdir.
9164	 */
9165	if (dp->i_offset == DOTDOT_OFFSET) {
9166		if (isrmdir)
9167			panic("newdirrem: .. directory change during remove?");
9168		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9169	}
9170	/*
9171	 * If we're removing a directory search for the .. dependency now and
9172	 * cancel it.  Any pending journal work will be added to the dirrem
9173	 * to be completed when the workitem remove completes.
9174	 */
9175	if (isrmdir)
9176		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9177	/*
9178	 * Check for a diradd dependency for the same directory entry.
9179	 * If present, then both dependencies become obsolete and can
9180	 * be de-allocated.
9181	 */
9182	dap = diradd_lookup(pagedep, offset);
9183	if (dap == NULL) {
9184		/*
9185		 * Link the jremref structures into the dirrem so they are
9186		 * written prior to the pagedep.
9187		 */
9188		if (jremref)
9189			dirrem_journal(dirrem, jremref, dotremref,
9190			    dotdotremref);
9191		return (dirrem);
9192	}
9193	/*
9194	 * Must be ATTACHED at this point.
9195	 */
9196	if ((dap->da_state & ATTACHED) == 0)
9197		panic("newdirrem: not ATTACHED");
9198	if (dap->da_newinum != ip->i_number)
9199		panic("newdirrem: inum %ju should be %ju",
9200		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9201	/*
9202	 * If we are deleting a changed name that never made it to disk,
9203	 * then return the dirrem describing the previous inode (which
9204	 * represents the inode currently referenced from this entry on disk).
9205	 */
9206	if ((dap->da_state & DIRCHG) != 0) {
9207		*prevdirremp = dap->da_previous;
9208		dap->da_state &= ~DIRCHG;
9209		dap->da_pagedep = pagedep;
9210	}
9211	/*
9212	 * We are deleting an entry that never made it to disk.
9213	 * Mark it COMPLETE so we can delete its inode immediately.
9214	 */
9215	dirrem->dm_state |= COMPLETE;
9216	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9217#ifdef SUJ_DEBUG
9218	if (isrmdir == 0) {
9219		struct worklist *wk;
9220
9221		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9222			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9223				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9224	}
9225#endif
9226
9227	return (dirrem);
9228}
9229
9230/*
9231 * Directory entry change dependencies.
9232 *
9233 * Changing an existing directory entry requires that an add operation
9234 * be completed first followed by a deletion. The semantics for the addition
9235 * are identical to the description of adding a new entry above except
9236 * that the rollback is to the old inode number rather than zero. Once
9237 * the addition dependency is completed, the removal is done as described
9238 * in the removal routine above.
9239 */
9240
9241/*
9242 * This routine should be called immediately after changing
9243 * a directory entry.  The inode's link count should not be
9244 * decremented by the calling procedure -- the soft updates
9245 * code will perform this task when it is safe.
9246 */
9247void
9248softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9249	struct buf *bp;		/* buffer containing directory block */
9250	struct inode *dp;	/* inode for the directory being modified */
9251	struct inode *ip;	/* inode for directory entry being removed */
9252	ino_t newinum;		/* new inode number for changed entry */
9253	int isrmdir;		/* indicates if doing RMDIR */
9254{
9255	int offset;
9256	struct diradd *dap = NULL;
9257	struct dirrem *dirrem, *prevdirrem;
9258	struct pagedep *pagedep;
9259	struct inodedep *inodedep;
9260	struct jaddref *jaddref;
9261	struct mount *mp;
9262
9263	offset = blkoff(dp->i_fs, dp->i_offset);
9264	mp = UFSTOVFS(dp->i_ump);
9265	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9266	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9267
9268	/*
9269	 * Whiteouts do not need diradd dependencies.
9270	 */
9271	if (newinum != WINO) {
9272		dap = malloc(sizeof(struct diradd),
9273		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9274		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9275		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9276		dap->da_offset = offset;
9277		dap->da_newinum = newinum;
9278		LIST_INIT(&dap->da_jwork);
9279	}
9280
9281	/*
9282	 * Allocate a new dirrem and ACQUIRE_LOCK.
9283	 */
9284	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9285	pagedep = dirrem->dm_pagedep;
9286	/*
9287	 * The possible values for isrmdir:
9288	 *	0 - non-directory file rename
9289	 *	1 - directory rename within same directory
9290	 *   inum - directory rename to new directory of given inode number
9291	 * When renaming to a new directory, we are both deleting and
9292	 * creating a new directory entry, so the link count on the new
9293	 * directory should not change. Thus we do not need the followup
9294	 * dirrem which is usually done in handle_workitem_remove. We set
9295	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9296	 * followup dirrem.
9297	 */
9298	if (isrmdir > 1)
9299		dirrem->dm_state |= DIRCHG;
9300
9301	/*
9302	 * Whiteouts have no additional dependencies,
9303	 * so just put the dirrem on the correct list.
9304	 */
9305	if (newinum == WINO) {
9306		if ((dirrem->dm_state & COMPLETE) == 0) {
9307			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9308			    dm_next);
9309		} else {
9310			dirrem->dm_dirinum = pagedep->pd_ino;
9311			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9312				add_to_worklist(&dirrem->dm_list, 0);
9313		}
9314		FREE_LOCK(dp->i_ump);
9315		return;
9316	}
9317	/*
9318	 * Add the dirrem to the inodedep's pending remove list for quick
9319	 * discovery later.  A valid nlinkdelta ensures that this lookup
9320	 * will not fail.
9321	 */
9322	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9323		panic("softdep_setup_directory_change: Lost inodedep.");
9324	dirrem->dm_state |= ONDEPLIST;
9325	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9326
9327	/*
9328	 * If the COMPLETE flag is clear, then there were no active
9329	 * entries and we want to roll back to the previous inode until
9330	 * the new inode is committed to disk. If the COMPLETE flag is
9331	 * set, then we have deleted an entry that never made it to disk.
9332	 * If the entry we deleted resulted from a name change, then the old
9333	 * inode reference still resides on disk. Any rollback that we do
9334	 * needs to be to that old inode (returned to us in prevdirrem). If
9335	 * the entry we deleted resulted from a create, then there is
9336	 * no entry on the disk, so we want to roll back to zero rather
9337	 * than the uncommitted inode. In either of the COMPLETE cases we
9338	 * want to immediately free the unwritten and unreferenced inode.
9339	 */
9340	if ((dirrem->dm_state & COMPLETE) == 0) {
9341		dap->da_previous = dirrem;
9342	} else {
9343		if (prevdirrem != NULL) {
9344			dap->da_previous = prevdirrem;
9345		} else {
9346			dap->da_state &= ~DIRCHG;
9347			dap->da_pagedep = pagedep;
9348		}
9349		dirrem->dm_dirinum = pagedep->pd_ino;
9350		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9351			add_to_worklist(&dirrem->dm_list, 0);
9352	}
9353	/*
9354	 * Lookup the jaddref for this journal entry.  We must finish
9355	 * initializing it and make the diradd write dependent on it.
9356	 * If we're not journaling, put it on the id_bufwait list if the
9357	 * inode is not yet written. If it is written, do the post-inode
9358	 * write processing to put it on the id_pendinghd list.
9359	 */
9360	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9361	if (MOUNTEDSUJ(mp)) {
9362		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9363		    inoreflst);
9364		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9365		    ("softdep_setup_directory_change: bad jaddref %p",
9366		    jaddref));
9367		jaddref->ja_diroff = dp->i_offset;
9368		jaddref->ja_diradd = dap;
9369		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9370		    dap, da_pdlist);
9371		add_to_journal(&jaddref->ja_list);
9372	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9373		dap->da_state |= COMPLETE;
9374		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9375		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9376	} else {
9377		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9378		    dap, da_pdlist);
9379		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9380	}
9381	/*
9382	 * If we're making a new name for a directory that has not been
9383	 * committed when need to move the dot and dotdot references to
9384	 * this new name.
9385	 */
9386	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9387		merge_diradd(inodedep, dap);
9388	FREE_LOCK(dp->i_ump);
9389}
9390
9391/*
9392 * Called whenever the link count on an inode is changed.
9393 * It creates an inode dependency so that the new reference(s)
9394 * to the inode cannot be committed to disk until the updated
9395 * inode has been written.
9396 */
9397void
9398softdep_change_linkcnt(ip)
9399	struct inode *ip;	/* the inode with the increased link count */
9400{
9401	struct inodedep *inodedep;
9402
9403	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
9404	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9405	ACQUIRE_LOCK(ip->i_ump);
9406	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC,
9407	    &inodedep);
9408	if (ip->i_nlink < ip->i_effnlink)
9409		panic("softdep_change_linkcnt: bad delta");
9410	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9411	FREE_LOCK(ip->i_ump);
9412}
9413
9414/*
9415 * Attach a sbdep dependency to the superblock buf so that we can keep
9416 * track of the head of the linked list of referenced but unlinked inodes.
9417 */
9418void
9419softdep_setup_sbupdate(ump, fs, bp)
9420	struct ufsmount *ump;
9421	struct fs *fs;
9422	struct buf *bp;
9423{
9424	struct sbdep *sbdep;
9425	struct worklist *wk;
9426
9427	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9428	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9429	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9430		if (wk->wk_type == D_SBDEP)
9431			break;
9432	if (wk != NULL)
9433		return;
9434	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9435	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9436	sbdep->sb_fs = fs;
9437	sbdep->sb_ump = ump;
9438	ACQUIRE_LOCK(ump);
9439	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9440	FREE_LOCK(ump);
9441}
9442
9443/*
9444 * Return the first unlinked inodedep which is ready to be the head of the
9445 * list.  The inodedep and all those after it must have valid next pointers.
9446 */
9447static struct inodedep *
9448first_unlinked_inodedep(ump)
9449	struct ufsmount *ump;
9450{
9451	struct inodedep *inodedep;
9452	struct inodedep *idp;
9453
9454	LOCK_OWNED(ump);
9455	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9456	    inodedep; inodedep = idp) {
9457		if ((inodedep->id_state & UNLINKNEXT) == 0)
9458			return (NULL);
9459		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9460		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9461			break;
9462		if ((inodedep->id_state & UNLINKPREV) == 0)
9463			break;
9464	}
9465	return (inodedep);
9466}
9467
9468/*
9469 * Set the sujfree unlinked head pointer prior to writing a superblock.
9470 */
9471static void
9472initiate_write_sbdep(sbdep)
9473	struct sbdep *sbdep;
9474{
9475	struct inodedep *inodedep;
9476	struct fs *bpfs;
9477	struct fs *fs;
9478
9479	bpfs = sbdep->sb_fs;
9480	fs = sbdep->sb_ump->um_fs;
9481	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9482	if (inodedep) {
9483		fs->fs_sujfree = inodedep->id_ino;
9484		inodedep->id_state |= UNLINKPREV;
9485	} else
9486		fs->fs_sujfree = 0;
9487	bpfs->fs_sujfree = fs->fs_sujfree;
9488}
9489
9490/*
9491 * After a superblock is written determine whether it must be written again
9492 * due to a changing unlinked list head.
9493 */
9494static int
9495handle_written_sbdep(sbdep, bp)
9496	struct sbdep *sbdep;
9497	struct buf *bp;
9498{
9499	struct inodedep *inodedep;
9500	struct fs *fs;
9501
9502	LOCK_OWNED(sbdep->sb_ump);
9503	fs = sbdep->sb_fs;
9504	/*
9505	 * If the superblock doesn't match the in-memory list start over.
9506	 */
9507	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9508	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9509	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9510		bdirty(bp);
9511		return (1);
9512	}
9513	WORKITEM_FREE(sbdep, D_SBDEP);
9514	if (fs->fs_sujfree == 0)
9515		return (0);
9516	/*
9517	 * Now that we have a record of this inode in stable store allow it
9518	 * to be written to free up pending work.  Inodes may see a lot of
9519	 * write activity after they are unlinked which we must not hold up.
9520	 */
9521	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9522		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9523			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9524			    inodedep, inodedep->id_state);
9525		if (inodedep->id_state & UNLINKONLIST)
9526			break;
9527		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9528	}
9529
9530	return (0);
9531}
9532
9533/*
9534 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9535 */
9536static void
9537unlinked_inodedep(mp, inodedep)
9538	struct mount *mp;
9539	struct inodedep *inodedep;
9540{
9541	struct ufsmount *ump;
9542
9543	ump = VFSTOUFS(mp);
9544	LOCK_OWNED(ump);
9545	if (MOUNTEDSUJ(mp) == 0)
9546		return;
9547	ump->um_fs->fs_fmod = 1;
9548	if (inodedep->id_state & UNLINKED)
9549		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9550	inodedep->id_state |= UNLINKED;
9551	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9552}
9553
9554/*
9555 * Remove an inodedep from the unlinked inodedep list.  This may require
9556 * disk writes if the inode has made it that far.
9557 */
9558static void
9559clear_unlinked_inodedep(inodedep)
9560	struct inodedep *inodedep;
9561{
9562	struct ufsmount *ump;
9563	struct inodedep *idp;
9564	struct inodedep *idn;
9565	struct fs *fs;
9566	struct buf *bp;
9567	ino_t ino;
9568	ino_t nino;
9569	ino_t pino;
9570	int error;
9571
9572	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9573	fs = ump->um_fs;
9574	ino = inodedep->id_ino;
9575	error = 0;
9576	for (;;) {
9577		LOCK_OWNED(ump);
9578		KASSERT((inodedep->id_state & UNLINKED) != 0,
9579		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9580		    inodedep));
9581		/*
9582		 * If nothing has yet been written simply remove us from
9583		 * the in memory list and return.  This is the most common
9584		 * case where handle_workitem_remove() loses the final
9585		 * reference.
9586		 */
9587		if ((inodedep->id_state & UNLINKLINKS) == 0)
9588			break;
9589		/*
9590		 * If we have a NEXT pointer and no PREV pointer we can simply
9591		 * clear NEXT's PREV and remove ourselves from the list.  Be
9592		 * careful not to clear PREV if the superblock points at
9593		 * next as well.
9594		 */
9595		idn = TAILQ_NEXT(inodedep, id_unlinked);
9596		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9597			if (idn && fs->fs_sujfree != idn->id_ino)
9598				idn->id_state &= ~UNLINKPREV;
9599			break;
9600		}
9601		/*
9602		 * Here we have an inodedep which is actually linked into
9603		 * the list.  We must remove it by forcing a write to the
9604		 * link before us, whether it be the superblock or an inode.
9605		 * Unfortunately the list may change while we're waiting
9606		 * on the buf lock for either resource so we must loop until
9607		 * we lock the right one.  If both the superblock and an
9608		 * inode point to this inode we must clear the inode first
9609		 * followed by the superblock.
9610		 */
9611		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9612		pino = 0;
9613		if (idp && (idp->id_state & UNLINKNEXT))
9614			pino = idp->id_ino;
9615		FREE_LOCK(ump);
9616		if (pino == 0) {
9617			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9618			    (int)fs->fs_sbsize, 0, 0, 0);
9619		} else {
9620			error = bread(ump->um_devvp,
9621			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9622			    (int)fs->fs_bsize, NOCRED, &bp);
9623			if (error)
9624				brelse(bp);
9625		}
9626		ACQUIRE_LOCK(ump);
9627		if (error)
9628			break;
9629		/* If the list has changed restart the loop. */
9630		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9631		nino = 0;
9632		if (idp && (idp->id_state & UNLINKNEXT))
9633			nino = idp->id_ino;
9634		if (nino != pino ||
9635		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9636			FREE_LOCK(ump);
9637			brelse(bp);
9638			ACQUIRE_LOCK(ump);
9639			continue;
9640		}
9641		nino = 0;
9642		idn = TAILQ_NEXT(inodedep, id_unlinked);
9643		if (idn)
9644			nino = idn->id_ino;
9645		/*
9646		 * Remove us from the in memory list.  After this we cannot
9647		 * access the inodedep.
9648		 */
9649		KASSERT((inodedep->id_state & UNLINKED) != 0,
9650		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9651		    inodedep));
9652		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9653		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9654		FREE_LOCK(ump);
9655		/*
9656		 * The predecessor's next pointer is manually updated here
9657		 * so that the NEXT flag is never cleared for an element
9658		 * that is in the list.
9659		 */
9660		if (pino == 0) {
9661			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9662			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9663			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9664			    bp);
9665		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9666			((struct ufs1_dinode *)bp->b_data +
9667			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9668		else
9669			((struct ufs2_dinode *)bp->b_data +
9670			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9671		/*
9672		 * If the bwrite fails we have no recourse to recover.  The
9673		 * filesystem is corrupted already.
9674		 */
9675		bwrite(bp);
9676		ACQUIRE_LOCK(ump);
9677		/*
9678		 * If the superblock pointer still needs to be cleared force
9679		 * a write here.
9680		 */
9681		if (fs->fs_sujfree == ino) {
9682			FREE_LOCK(ump);
9683			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9684			    (int)fs->fs_sbsize, 0, 0, 0);
9685			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9686			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9687			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9688			    bp);
9689			bwrite(bp);
9690			ACQUIRE_LOCK(ump);
9691		}
9692
9693		if (fs->fs_sujfree != ino)
9694			return;
9695		panic("clear_unlinked_inodedep: Failed to clear free head");
9696	}
9697	if (inodedep->id_ino == fs->fs_sujfree)
9698		panic("clear_unlinked_inodedep: Freeing head of free list");
9699	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9700	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9701	return;
9702}
9703
9704/*
9705 * This workitem decrements the inode's link count.
9706 * If the link count reaches zero, the file is removed.
9707 */
9708static int
9709handle_workitem_remove(dirrem, flags)
9710	struct dirrem *dirrem;
9711	int flags;
9712{
9713	struct inodedep *inodedep;
9714	struct workhead dotdotwk;
9715	struct worklist *wk;
9716	struct ufsmount *ump;
9717	struct mount *mp;
9718	struct vnode *vp;
9719	struct inode *ip;
9720	ino_t oldinum;
9721
9722	if (dirrem->dm_state & ONWORKLIST)
9723		panic("handle_workitem_remove: dirrem %p still on worklist",
9724		    dirrem);
9725	oldinum = dirrem->dm_oldinum;
9726	mp = dirrem->dm_list.wk_mp;
9727	ump = VFSTOUFS(mp);
9728	flags |= LK_EXCLUSIVE;
9729	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9730		return (EBUSY);
9731	ip = VTOI(vp);
9732	ACQUIRE_LOCK(ump);
9733	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9734		panic("handle_workitem_remove: lost inodedep");
9735	if (dirrem->dm_state & ONDEPLIST)
9736		LIST_REMOVE(dirrem, dm_inonext);
9737	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9738	    ("handle_workitem_remove:  Journal entries not written."));
9739
9740	/*
9741	 * Move all dependencies waiting on the remove to complete
9742	 * from the dirrem to the inode inowait list to be completed
9743	 * after the inode has been updated and written to disk.  Any
9744	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9745	 * is removed.
9746	 */
9747	LIST_INIT(&dotdotwk);
9748	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9749		WORKLIST_REMOVE(wk);
9750		if (wk->wk_state & MKDIR_PARENT) {
9751			wk->wk_state &= ~MKDIR_PARENT;
9752			WORKLIST_INSERT(&dotdotwk, wk);
9753			continue;
9754		}
9755		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9756	}
9757	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9758	/*
9759	 * Normal file deletion.
9760	 */
9761	if ((dirrem->dm_state & RMDIR) == 0) {
9762		ip->i_nlink--;
9763		DIP_SET(ip, i_nlink, ip->i_nlink);
9764		ip->i_flag |= IN_CHANGE;
9765		if (ip->i_nlink < ip->i_effnlink)
9766			panic("handle_workitem_remove: bad file delta");
9767		if (ip->i_nlink == 0)
9768			unlinked_inodedep(mp, inodedep);
9769		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9770		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9771		    ("handle_workitem_remove: worklist not empty. %s",
9772		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9773		WORKITEM_FREE(dirrem, D_DIRREM);
9774		FREE_LOCK(ump);
9775		goto out;
9776	}
9777	/*
9778	 * Directory deletion. Decrement reference count for both the
9779	 * just deleted parent directory entry and the reference for ".".
9780	 * Arrange to have the reference count on the parent decremented
9781	 * to account for the loss of "..".
9782	 */
9783	ip->i_nlink -= 2;
9784	DIP_SET(ip, i_nlink, ip->i_nlink);
9785	ip->i_flag |= IN_CHANGE;
9786	if (ip->i_nlink < ip->i_effnlink)
9787		panic("handle_workitem_remove: bad dir delta");
9788	if (ip->i_nlink == 0)
9789		unlinked_inodedep(mp, inodedep);
9790	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9791	/*
9792	 * Rename a directory to a new parent. Since, we are both deleting
9793	 * and creating a new directory entry, the link count on the new
9794	 * directory should not change. Thus we skip the followup dirrem.
9795	 */
9796	if (dirrem->dm_state & DIRCHG) {
9797		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9798		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9799		WORKITEM_FREE(dirrem, D_DIRREM);
9800		FREE_LOCK(ump);
9801		goto out;
9802	}
9803	dirrem->dm_state = ONDEPLIST;
9804	dirrem->dm_oldinum = dirrem->dm_dirinum;
9805	/*
9806	 * Place the dirrem on the parent's diremhd list.
9807	 */
9808	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9809		panic("handle_workitem_remove: lost dir inodedep");
9810	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9811	/*
9812	 * If the allocated inode has never been written to disk, then
9813	 * the on-disk inode is zero'ed and we can remove the file
9814	 * immediately.  When journaling if the inode has been marked
9815	 * unlinked and not DEPCOMPLETE we know it can never be written.
9816	 */
9817	inodedep_lookup(mp, oldinum, 0, &inodedep);
9818	if (inodedep == NULL ||
9819	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9820	    check_inode_unwritten(inodedep)) {
9821		FREE_LOCK(ump);
9822		vput(vp);
9823		return handle_workitem_remove(dirrem, flags);
9824	}
9825	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9826	FREE_LOCK(ump);
9827	ip->i_flag |= IN_CHANGE;
9828out:
9829	ffs_update(vp, 0);
9830	vput(vp);
9831	return (0);
9832}
9833
9834/*
9835 * Inode de-allocation dependencies.
9836 *
9837 * When an inode's link count is reduced to zero, it can be de-allocated. We
9838 * found it convenient to postpone de-allocation until after the inode is
9839 * written to disk with its new link count (zero).  At this point, all of the
9840 * on-disk inode's block pointers are nullified and, with careful dependency
9841 * list ordering, all dependencies related to the inode will be satisfied and
9842 * the corresponding dependency structures de-allocated.  So, if/when the
9843 * inode is reused, there will be no mixing of old dependencies with new
9844 * ones.  This artificial dependency is set up by the block de-allocation
9845 * procedure above (softdep_setup_freeblocks) and completed by the
9846 * following procedure.
9847 */
9848static void
9849handle_workitem_freefile(freefile)
9850	struct freefile *freefile;
9851{
9852	struct workhead wkhd;
9853	struct fs *fs;
9854	struct inodedep *idp;
9855	struct ufsmount *ump;
9856	int error;
9857
9858	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9859	fs = ump->um_fs;
9860#ifdef DEBUG
9861	ACQUIRE_LOCK(ump);
9862	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9863	FREE_LOCK(ump);
9864	if (error)
9865		panic("handle_workitem_freefile: inodedep %p survived", idp);
9866#endif
9867	UFS_LOCK(ump);
9868	fs->fs_pendinginodes -= 1;
9869	UFS_UNLOCK(ump);
9870	LIST_INIT(&wkhd);
9871	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9872	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9873	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9874		softdep_error("handle_workitem_freefile", error);
9875	ACQUIRE_LOCK(ump);
9876	WORKITEM_FREE(freefile, D_FREEFILE);
9877	FREE_LOCK(ump);
9878}
9879
9880
9881/*
9882 * Helper function which unlinks marker element from work list and returns
9883 * the next element on the list.
9884 */
9885static __inline struct worklist *
9886markernext(struct worklist *marker)
9887{
9888	struct worklist *next;
9889
9890	next = LIST_NEXT(marker, wk_list);
9891	LIST_REMOVE(marker, wk_list);
9892	return next;
9893}
9894
9895/*
9896 * Disk writes.
9897 *
9898 * The dependency structures constructed above are most actively used when file
9899 * system blocks are written to disk.  No constraints are placed on when a
9900 * block can be written, but unsatisfied update dependencies are made safe by
9901 * modifying (or replacing) the source memory for the duration of the disk
9902 * write.  When the disk write completes, the memory block is again brought
9903 * up-to-date.
9904 *
9905 * In-core inode structure reclamation.
9906 *
9907 * Because there are a finite number of "in-core" inode structures, they are
9908 * reused regularly.  By transferring all inode-related dependencies to the
9909 * in-memory inode block and indexing them separately (via "inodedep"s), we
9910 * can allow "in-core" inode structures to be reused at any time and avoid
9911 * any increase in contention.
9912 *
9913 * Called just before entering the device driver to initiate a new disk I/O.
9914 * The buffer must be locked, thus, no I/O completion operations can occur
9915 * while we are manipulating its associated dependencies.
9916 */
9917static void
9918softdep_disk_io_initiation(bp)
9919	struct buf *bp;		/* structure describing disk write to occur */
9920{
9921	struct worklist *wk;
9922	struct worklist marker;
9923	struct inodedep *inodedep;
9924	struct freeblks *freeblks;
9925	struct jblkdep *jblkdep;
9926	struct newblk *newblk;
9927	struct ufsmount *ump;
9928
9929	/*
9930	 * We only care about write operations. There should never
9931	 * be dependencies for reads.
9932	 */
9933	if (bp->b_iocmd != BIO_WRITE)
9934		panic("softdep_disk_io_initiation: not write");
9935
9936	if (bp->b_vflags & BV_BKGRDINPROG)
9937		panic("softdep_disk_io_initiation: Writing buffer with "
9938		    "background write in progress: %p", bp);
9939
9940	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9941		return;
9942	ump = VFSTOUFS(wk->wk_mp);
9943
9944	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9945	PHOLD(curproc);			/* Don't swap out kernel stack */
9946	ACQUIRE_LOCK(ump);
9947	/*
9948	 * Do any necessary pre-I/O processing.
9949	 */
9950	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9951	     wk = markernext(&marker)) {
9952		LIST_INSERT_AFTER(wk, &marker, wk_list);
9953		switch (wk->wk_type) {
9954
9955		case D_PAGEDEP:
9956			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9957			continue;
9958
9959		case D_INODEDEP:
9960			inodedep = WK_INODEDEP(wk);
9961			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9962				initiate_write_inodeblock_ufs1(inodedep, bp);
9963			else
9964				initiate_write_inodeblock_ufs2(inodedep, bp);
9965			continue;
9966
9967		case D_INDIRDEP:
9968			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9969			continue;
9970
9971		case D_BMSAFEMAP:
9972			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9973			continue;
9974
9975		case D_JSEG:
9976			WK_JSEG(wk)->js_buf = NULL;
9977			continue;
9978
9979		case D_FREEBLKS:
9980			freeblks = WK_FREEBLKS(wk);
9981			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9982			/*
9983			 * We have to wait for the freeblks to be journaled
9984			 * before we can write an inodeblock with updated
9985			 * pointers.  Be careful to arrange the marker so
9986			 * we revisit the freeblks if it's not removed by
9987			 * the first jwait().
9988			 */
9989			if (jblkdep != NULL) {
9990				LIST_REMOVE(&marker, wk_list);
9991				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9992				jwait(&jblkdep->jb_list, MNT_WAIT);
9993			}
9994			continue;
9995		case D_ALLOCDIRECT:
9996		case D_ALLOCINDIR:
9997			/*
9998			 * We have to wait for the jnewblk to be journaled
9999			 * before we can write to a block if the contents
10000			 * may be confused with an earlier file's indirect
10001			 * at recovery time.  Handle the marker as described
10002			 * above.
10003			 */
10004			newblk = WK_NEWBLK(wk);
10005			if (newblk->nb_jnewblk != NULL &&
10006			    indirblk_lookup(newblk->nb_list.wk_mp,
10007			    newblk->nb_newblkno)) {
10008				LIST_REMOVE(&marker, wk_list);
10009				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10010				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10011			}
10012			continue;
10013
10014		case D_SBDEP:
10015			initiate_write_sbdep(WK_SBDEP(wk));
10016			continue;
10017
10018		case D_MKDIR:
10019		case D_FREEWORK:
10020		case D_FREEDEP:
10021		case D_JSEGDEP:
10022			continue;
10023
10024		default:
10025			panic("handle_disk_io_initiation: Unexpected type %s",
10026			    TYPENAME(wk->wk_type));
10027			/* NOTREACHED */
10028		}
10029	}
10030	FREE_LOCK(ump);
10031	PRELE(curproc);			/* Allow swapout of kernel stack */
10032}
10033
10034/*
10035 * Called from within the procedure above to deal with unsatisfied
10036 * allocation dependencies in a directory. The buffer must be locked,
10037 * thus, no I/O completion operations can occur while we are
10038 * manipulating its associated dependencies.
10039 */
10040static void
10041initiate_write_filepage(pagedep, bp)
10042	struct pagedep *pagedep;
10043	struct buf *bp;
10044{
10045	struct jremref *jremref;
10046	struct jmvref *jmvref;
10047	struct dirrem *dirrem;
10048	struct diradd *dap;
10049	struct direct *ep;
10050	int i;
10051
10052	if (pagedep->pd_state & IOSTARTED) {
10053		/*
10054		 * This can only happen if there is a driver that does not
10055		 * understand chaining. Here biodone will reissue the call
10056		 * to strategy for the incomplete buffers.
10057		 */
10058		printf("initiate_write_filepage: already started\n");
10059		return;
10060	}
10061	pagedep->pd_state |= IOSTARTED;
10062	/*
10063	 * Wait for all journal remove dependencies to hit the disk.
10064	 * We can not allow any potentially conflicting directory adds
10065	 * to be visible before removes and rollback is too difficult.
10066	 * The per-filesystem lock may be dropped and re-acquired, however
10067	 * we hold the buf locked so the dependency can not go away.
10068	 */
10069	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10070		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10071			jwait(&jremref->jr_list, MNT_WAIT);
10072	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10073		jwait(&jmvref->jm_list, MNT_WAIT);
10074	for (i = 0; i < DAHASHSZ; i++) {
10075		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10076			ep = (struct direct *)
10077			    ((char *)bp->b_data + dap->da_offset);
10078			if (ep->d_ino != dap->da_newinum)
10079				panic("%s: dir inum %ju != new %ju",
10080				    "initiate_write_filepage",
10081				    (uintmax_t)ep->d_ino,
10082				    (uintmax_t)dap->da_newinum);
10083			if (dap->da_state & DIRCHG)
10084				ep->d_ino = dap->da_previous->dm_oldinum;
10085			else
10086				ep->d_ino = 0;
10087			dap->da_state &= ~ATTACHED;
10088			dap->da_state |= UNDONE;
10089		}
10090	}
10091}
10092
10093/*
10094 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10095 * Note that any bug fixes made to this routine must be done in the
10096 * version found below.
10097 *
10098 * Called from within the procedure above to deal with unsatisfied
10099 * allocation dependencies in an inodeblock. The buffer must be
10100 * locked, thus, no I/O completion operations can occur while we
10101 * are manipulating its associated dependencies.
10102 */
10103static void
10104initiate_write_inodeblock_ufs1(inodedep, bp)
10105	struct inodedep *inodedep;
10106	struct buf *bp;			/* The inode block */
10107{
10108	struct allocdirect *adp, *lastadp;
10109	struct ufs1_dinode *dp;
10110	struct ufs1_dinode *sip;
10111	struct inoref *inoref;
10112	struct ufsmount *ump;
10113	struct fs *fs;
10114	ufs_lbn_t i;
10115#ifdef INVARIANTS
10116	ufs_lbn_t prevlbn = 0;
10117#endif
10118	int deplist;
10119
10120	if (inodedep->id_state & IOSTARTED)
10121		panic("initiate_write_inodeblock_ufs1: already started");
10122	inodedep->id_state |= IOSTARTED;
10123	fs = inodedep->id_fs;
10124	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10125	LOCK_OWNED(ump);
10126	dp = (struct ufs1_dinode *)bp->b_data +
10127	    ino_to_fsbo(fs, inodedep->id_ino);
10128
10129	/*
10130	 * If we're on the unlinked list but have not yet written our
10131	 * next pointer initialize it here.
10132	 */
10133	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10134		struct inodedep *inon;
10135
10136		inon = TAILQ_NEXT(inodedep, id_unlinked);
10137		dp->di_freelink = inon ? inon->id_ino : 0;
10138	}
10139	/*
10140	 * If the bitmap is not yet written, then the allocated
10141	 * inode cannot be written to disk.
10142	 */
10143	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10144		if (inodedep->id_savedino1 != NULL)
10145			panic("initiate_write_inodeblock_ufs1: I/O underway");
10146		FREE_LOCK(ump);
10147		sip = malloc(sizeof(struct ufs1_dinode),
10148		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10149		ACQUIRE_LOCK(ump);
10150		inodedep->id_savedino1 = sip;
10151		*inodedep->id_savedino1 = *dp;
10152		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10153		dp->di_gen = inodedep->id_savedino1->di_gen;
10154		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10155		return;
10156	}
10157	/*
10158	 * If no dependencies, then there is nothing to roll back.
10159	 */
10160	inodedep->id_savedsize = dp->di_size;
10161	inodedep->id_savedextsize = 0;
10162	inodedep->id_savednlink = dp->di_nlink;
10163	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10164	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10165		return;
10166	/*
10167	 * Revert the link count to that of the first unwritten journal entry.
10168	 */
10169	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10170	if (inoref)
10171		dp->di_nlink = inoref->if_nlink;
10172	/*
10173	 * Set the dependencies to busy.
10174	 */
10175	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10176	     adp = TAILQ_NEXT(adp, ad_next)) {
10177#ifdef INVARIANTS
10178		if (deplist != 0 && prevlbn >= adp->ad_offset)
10179			panic("softdep_write_inodeblock: lbn order");
10180		prevlbn = adp->ad_offset;
10181		if (adp->ad_offset < NDADDR &&
10182		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10183			panic("%s: direct pointer #%jd mismatch %d != %jd",
10184			    "softdep_write_inodeblock",
10185			    (intmax_t)adp->ad_offset,
10186			    dp->di_db[adp->ad_offset],
10187			    (intmax_t)adp->ad_newblkno);
10188		if (adp->ad_offset >= NDADDR &&
10189		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10190			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10191			    "softdep_write_inodeblock",
10192			    (intmax_t)adp->ad_offset - NDADDR,
10193			    dp->di_ib[adp->ad_offset - NDADDR],
10194			    (intmax_t)adp->ad_newblkno);
10195		deplist |= 1 << adp->ad_offset;
10196		if ((adp->ad_state & ATTACHED) == 0)
10197			panic("softdep_write_inodeblock: Unknown state 0x%x",
10198			    adp->ad_state);
10199#endif /* INVARIANTS */
10200		adp->ad_state &= ~ATTACHED;
10201		adp->ad_state |= UNDONE;
10202	}
10203	/*
10204	 * The on-disk inode cannot claim to be any larger than the last
10205	 * fragment that has been written. Otherwise, the on-disk inode
10206	 * might have fragments that were not the last block in the file
10207	 * which would corrupt the filesystem.
10208	 */
10209	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10210	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10211		if (adp->ad_offset >= NDADDR)
10212			break;
10213		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10214		/* keep going until hitting a rollback to a frag */
10215		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10216			continue;
10217		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10218		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10219#ifdef INVARIANTS
10220			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10221				panic("softdep_write_inodeblock: lost dep1");
10222#endif /* INVARIANTS */
10223			dp->di_db[i] = 0;
10224		}
10225		for (i = 0; i < NIADDR; i++) {
10226#ifdef INVARIANTS
10227			if (dp->di_ib[i] != 0 &&
10228			    (deplist & ((1 << NDADDR) << i)) == 0)
10229				panic("softdep_write_inodeblock: lost dep2");
10230#endif /* INVARIANTS */
10231			dp->di_ib[i] = 0;
10232		}
10233		return;
10234	}
10235	/*
10236	 * If we have zero'ed out the last allocated block of the file,
10237	 * roll back the size to the last currently allocated block.
10238	 * We know that this last allocated block is a full-sized as
10239	 * we already checked for fragments in the loop above.
10240	 */
10241	if (lastadp != NULL &&
10242	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10243		for (i = lastadp->ad_offset; i >= 0; i--)
10244			if (dp->di_db[i] != 0)
10245				break;
10246		dp->di_size = (i + 1) * fs->fs_bsize;
10247	}
10248	/*
10249	 * The only dependencies are for indirect blocks.
10250	 *
10251	 * The file size for indirect block additions is not guaranteed.
10252	 * Such a guarantee would be non-trivial to achieve. The conventional
10253	 * synchronous write implementation also does not make this guarantee.
10254	 * Fsck should catch and fix discrepancies. Arguably, the file size
10255	 * can be over-estimated without destroying integrity when the file
10256	 * moves into the indirect blocks (i.e., is large). If we want to
10257	 * postpone fsck, we are stuck with this argument.
10258	 */
10259	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10260		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10261}
10262
10263/*
10264 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10265 * Note that any bug fixes made to this routine must be done in the
10266 * version found above.
10267 *
10268 * Called from within the procedure above to deal with unsatisfied
10269 * allocation dependencies in an inodeblock. The buffer must be
10270 * locked, thus, no I/O completion operations can occur while we
10271 * are manipulating its associated dependencies.
10272 */
10273static void
10274initiate_write_inodeblock_ufs2(inodedep, bp)
10275	struct inodedep *inodedep;
10276	struct buf *bp;			/* The inode block */
10277{
10278	struct allocdirect *adp, *lastadp;
10279	struct ufs2_dinode *dp;
10280	struct ufs2_dinode *sip;
10281	struct inoref *inoref;
10282	struct ufsmount *ump;
10283	struct fs *fs;
10284	ufs_lbn_t i;
10285#ifdef INVARIANTS
10286	ufs_lbn_t prevlbn = 0;
10287#endif
10288	int deplist;
10289
10290	if (inodedep->id_state & IOSTARTED)
10291		panic("initiate_write_inodeblock_ufs2: already started");
10292	inodedep->id_state |= IOSTARTED;
10293	fs = inodedep->id_fs;
10294	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10295	LOCK_OWNED(ump);
10296	dp = (struct ufs2_dinode *)bp->b_data +
10297	    ino_to_fsbo(fs, inodedep->id_ino);
10298
10299	/*
10300	 * If we're on the unlinked list but have not yet written our
10301	 * next pointer initialize it here.
10302	 */
10303	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10304		struct inodedep *inon;
10305
10306		inon = TAILQ_NEXT(inodedep, id_unlinked);
10307		dp->di_freelink = inon ? inon->id_ino : 0;
10308	}
10309	/*
10310	 * If the bitmap is not yet written, then the allocated
10311	 * inode cannot be written to disk.
10312	 */
10313	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10314		if (inodedep->id_savedino2 != NULL)
10315			panic("initiate_write_inodeblock_ufs2: I/O underway");
10316		FREE_LOCK(ump);
10317		sip = malloc(sizeof(struct ufs2_dinode),
10318		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10319		ACQUIRE_LOCK(ump);
10320		inodedep->id_savedino2 = sip;
10321		*inodedep->id_savedino2 = *dp;
10322		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10323		dp->di_gen = inodedep->id_savedino2->di_gen;
10324		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10325		return;
10326	}
10327	/*
10328	 * If no dependencies, then there is nothing to roll back.
10329	 */
10330	inodedep->id_savedsize = dp->di_size;
10331	inodedep->id_savedextsize = dp->di_extsize;
10332	inodedep->id_savednlink = dp->di_nlink;
10333	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10334	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10335	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10336		return;
10337	/*
10338	 * Revert the link count to that of the first unwritten journal entry.
10339	 */
10340	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10341	if (inoref)
10342		dp->di_nlink = inoref->if_nlink;
10343
10344	/*
10345	 * Set the ext data dependencies to busy.
10346	 */
10347	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10348	     adp = TAILQ_NEXT(adp, ad_next)) {
10349#ifdef INVARIANTS
10350		if (deplist != 0 && prevlbn >= adp->ad_offset)
10351			panic("softdep_write_inodeblock: lbn order");
10352		prevlbn = adp->ad_offset;
10353		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10354			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10355			    "softdep_write_inodeblock",
10356			    (intmax_t)adp->ad_offset,
10357			    (intmax_t)dp->di_extb[adp->ad_offset],
10358			    (intmax_t)adp->ad_newblkno);
10359		deplist |= 1 << adp->ad_offset;
10360		if ((adp->ad_state & ATTACHED) == 0)
10361			panic("softdep_write_inodeblock: Unknown state 0x%x",
10362			    adp->ad_state);
10363#endif /* INVARIANTS */
10364		adp->ad_state &= ~ATTACHED;
10365		adp->ad_state |= UNDONE;
10366	}
10367	/*
10368	 * The on-disk inode cannot claim to be any larger than the last
10369	 * fragment that has been written. Otherwise, the on-disk inode
10370	 * might have fragments that were not the last block in the ext
10371	 * data which would corrupt the filesystem.
10372	 */
10373	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10374	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10375		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10376		/* keep going until hitting a rollback to a frag */
10377		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10378			continue;
10379		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10380		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10381#ifdef INVARIANTS
10382			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10383				panic("softdep_write_inodeblock: lost dep1");
10384#endif /* INVARIANTS */
10385			dp->di_extb[i] = 0;
10386		}
10387		lastadp = NULL;
10388		break;
10389	}
10390	/*
10391	 * If we have zero'ed out the last allocated block of the ext
10392	 * data, roll back the size to the last currently allocated block.
10393	 * We know that this last allocated block is a full-sized as
10394	 * we already checked for fragments in the loop above.
10395	 */
10396	if (lastadp != NULL &&
10397	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10398		for (i = lastadp->ad_offset; i >= 0; i--)
10399			if (dp->di_extb[i] != 0)
10400				break;
10401		dp->di_extsize = (i + 1) * fs->fs_bsize;
10402	}
10403	/*
10404	 * Set the file data dependencies to busy.
10405	 */
10406	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10407	     adp = TAILQ_NEXT(adp, ad_next)) {
10408#ifdef INVARIANTS
10409		if (deplist != 0 && prevlbn >= adp->ad_offset)
10410			panic("softdep_write_inodeblock: lbn order");
10411		if ((adp->ad_state & ATTACHED) == 0)
10412			panic("inodedep %p and adp %p not attached", inodedep, adp);
10413		prevlbn = adp->ad_offset;
10414		if (adp->ad_offset < NDADDR &&
10415		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10416			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10417			    "softdep_write_inodeblock",
10418			    (intmax_t)adp->ad_offset,
10419			    (intmax_t)dp->di_db[adp->ad_offset],
10420			    (intmax_t)adp->ad_newblkno);
10421		if (adp->ad_offset >= NDADDR &&
10422		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10423			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10424			    "softdep_write_inodeblock:",
10425			    (intmax_t)adp->ad_offset - NDADDR,
10426			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10427			    (intmax_t)adp->ad_newblkno);
10428		deplist |= 1 << adp->ad_offset;
10429		if ((adp->ad_state & ATTACHED) == 0)
10430			panic("softdep_write_inodeblock: Unknown state 0x%x",
10431			    adp->ad_state);
10432#endif /* INVARIANTS */
10433		adp->ad_state &= ~ATTACHED;
10434		adp->ad_state |= UNDONE;
10435	}
10436	/*
10437	 * The on-disk inode cannot claim to be any larger than the last
10438	 * fragment that has been written. Otherwise, the on-disk inode
10439	 * might have fragments that were not the last block in the file
10440	 * which would corrupt the filesystem.
10441	 */
10442	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10443	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10444		if (adp->ad_offset >= NDADDR)
10445			break;
10446		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10447		/* keep going until hitting a rollback to a frag */
10448		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10449			continue;
10450		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10451		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10452#ifdef INVARIANTS
10453			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10454				panic("softdep_write_inodeblock: lost dep2");
10455#endif /* INVARIANTS */
10456			dp->di_db[i] = 0;
10457		}
10458		for (i = 0; i < NIADDR; i++) {
10459#ifdef INVARIANTS
10460			if (dp->di_ib[i] != 0 &&
10461			    (deplist & ((1 << NDADDR) << i)) == 0)
10462				panic("softdep_write_inodeblock: lost dep3");
10463#endif /* INVARIANTS */
10464			dp->di_ib[i] = 0;
10465		}
10466		return;
10467	}
10468	/*
10469	 * If we have zero'ed out the last allocated block of the file,
10470	 * roll back the size to the last currently allocated block.
10471	 * We know that this last allocated block is a full-sized as
10472	 * we already checked for fragments in the loop above.
10473	 */
10474	if (lastadp != NULL &&
10475	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10476		for (i = lastadp->ad_offset; i >= 0; i--)
10477			if (dp->di_db[i] != 0)
10478				break;
10479		dp->di_size = (i + 1) * fs->fs_bsize;
10480	}
10481	/*
10482	 * The only dependencies are for indirect blocks.
10483	 *
10484	 * The file size for indirect block additions is not guaranteed.
10485	 * Such a guarantee would be non-trivial to achieve. The conventional
10486	 * synchronous write implementation also does not make this guarantee.
10487	 * Fsck should catch and fix discrepancies. Arguably, the file size
10488	 * can be over-estimated without destroying integrity when the file
10489	 * moves into the indirect blocks (i.e., is large). If we want to
10490	 * postpone fsck, we are stuck with this argument.
10491	 */
10492	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10493		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10494}
10495
10496/*
10497 * Cancel an indirdep as a result of truncation.  Release all of the
10498 * children allocindirs and place their journal work on the appropriate
10499 * list.
10500 */
10501static void
10502cancel_indirdep(indirdep, bp, freeblks)
10503	struct indirdep *indirdep;
10504	struct buf *bp;
10505	struct freeblks *freeblks;
10506{
10507	struct allocindir *aip;
10508
10509	/*
10510	 * None of the indirect pointers will ever be visible,
10511	 * so they can simply be tossed. GOINGAWAY ensures
10512	 * that allocated pointers will be saved in the buffer
10513	 * cache until they are freed. Note that they will
10514	 * only be able to be found by their physical address
10515	 * since the inode mapping the logical address will
10516	 * be gone. The save buffer used for the safe copy
10517	 * was allocated in setup_allocindir_phase2 using
10518	 * the physical address so it could be used for this
10519	 * purpose. Hence we swap the safe copy with the real
10520	 * copy, allowing the safe copy to be freed and holding
10521	 * on to the real copy for later use in indir_trunc.
10522	 */
10523	if (indirdep->ir_state & GOINGAWAY)
10524		panic("cancel_indirdep: already gone");
10525	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10526		indirdep->ir_state |= DEPCOMPLETE;
10527		LIST_REMOVE(indirdep, ir_next);
10528	}
10529	indirdep->ir_state |= GOINGAWAY;
10530	/*
10531	 * Pass in bp for blocks still have journal writes
10532	 * pending so we can cancel them on their own.
10533	 */
10534	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10535		cancel_allocindir(aip, bp, freeblks, 0);
10536	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10537		cancel_allocindir(aip, NULL, freeblks, 0);
10538	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10539		cancel_allocindir(aip, NULL, freeblks, 0);
10540	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10541		cancel_allocindir(aip, NULL, freeblks, 0);
10542	/*
10543	 * If there are pending partial truncations we need to keep the
10544	 * old block copy around until they complete.  This is because
10545	 * the current b_data is not a perfect superset of the available
10546	 * blocks.
10547	 */
10548	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10549		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10550	else
10551		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10552	WORKLIST_REMOVE(&indirdep->ir_list);
10553	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10554	indirdep->ir_bp = NULL;
10555	indirdep->ir_freeblks = freeblks;
10556}
10557
10558/*
10559 * Free an indirdep once it no longer has new pointers to track.
10560 */
10561static void
10562free_indirdep(indirdep)
10563	struct indirdep *indirdep;
10564{
10565
10566	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10567	    ("free_indirdep: Indir trunc list not empty."));
10568	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10569	    ("free_indirdep: Complete head not empty."));
10570	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10571	    ("free_indirdep: write head not empty."));
10572	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10573	    ("free_indirdep: done head not empty."));
10574	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10575	    ("free_indirdep: deplist head not empty."));
10576	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10577	    ("free_indirdep: %p still on newblk list.", indirdep));
10578	KASSERT(indirdep->ir_saveddata == NULL,
10579	    ("free_indirdep: %p still has saved data.", indirdep));
10580	if (indirdep->ir_state & ONWORKLIST)
10581		WORKLIST_REMOVE(&indirdep->ir_list);
10582	WORKITEM_FREE(indirdep, D_INDIRDEP);
10583}
10584
10585/*
10586 * Called before a write to an indirdep.  This routine is responsible for
10587 * rolling back pointers to a safe state which includes only those
10588 * allocindirs which have been completed.
10589 */
10590static void
10591initiate_write_indirdep(indirdep, bp)
10592	struct indirdep *indirdep;
10593	struct buf *bp;
10594{
10595	struct ufsmount *ump;
10596
10597	indirdep->ir_state |= IOSTARTED;
10598	if (indirdep->ir_state & GOINGAWAY)
10599		panic("disk_io_initiation: indirdep gone");
10600	/*
10601	 * If there are no remaining dependencies, this will be writing
10602	 * the real pointers.
10603	 */
10604	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10605	    TAILQ_EMPTY(&indirdep->ir_trunc))
10606		return;
10607	/*
10608	 * Replace up-to-date version with safe version.
10609	 */
10610	if (indirdep->ir_saveddata == NULL) {
10611		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10612		LOCK_OWNED(ump);
10613		FREE_LOCK(ump);
10614		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10615		    M_SOFTDEP_FLAGS);
10616		ACQUIRE_LOCK(ump);
10617	}
10618	indirdep->ir_state &= ~ATTACHED;
10619	indirdep->ir_state |= UNDONE;
10620	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10621	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10622	    bp->b_bcount);
10623}
10624
10625/*
10626 * Called when an inode has been cleared in a cg bitmap.  This finally
10627 * eliminates any canceled jaddrefs
10628 */
10629void
10630softdep_setup_inofree(mp, bp, ino, wkhd)
10631	struct mount *mp;
10632	struct buf *bp;
10633	ino_t ino;
10634	struct workhead *wkhd;
10635{
10636	struct worklist *wk, *wkn;
10637	struct inodedep *inodedep;
10638	struct ufsmount *ump;
10639	uint8_t *inosused;
10640	struct cg *cgp;
10641	struct fs *fs;
10642
10643	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10644	    ("softdep_setup_inofree called on non-softdep filesystem"));
10645	ump = VFSTOUFS(mp);
10646	ACQUIRE_LOCK(ump);
10647	fs = ump->um_fs;
10648	cgp = (struct cg *)bp->b_data;
10649	inosused = cg_inosused(cgp);
10650	if (isset(inosused, ino % fs->fs_ipg))
10651		panic("softdep_setup_inofree: inode %ju not freed.",
10652		    (uintmax_t)ino);
10653	if (inodedep_lookup(mp, ino, 0, &inodedep))
10654		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10655		    (uintmax_t)ino, inodedep);
10656	if (wkhd) {
10657		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10658			if (wk->wk_type != D_JADDREF)
10659				continue;
10660			WORKLIST_REMOVE(wk);
10661			/*
10662			 * We can free immediately even if the jaddref
10663			 * isn't attached in a background write as now
10664			 * the bitmaps are reconciled.
10665			 */
10666			wk->wk_state |= COMPLETE | ATTACHED;
10667			free_jaddref(WK_JADDREF(wk));
10668		}
10669		jwork_move(&bp->b_dep, wkhd);
10670	}
10671	FREE_LOCK(ump);
10672}
10673
10674
10675/*
10676 * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10677 * map.  Any dependencies waiting for the write to clear are added to the
10678 * buf's list and any jnewblks that are being canceled are discarded
10679 * immediately.
10680 */
10681void
10682softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10683	struct mount *mp;
10684	struct buf *bp;
10685	ufs2_daddr_t blkno;
10686	int frags;
10687	struct workhead *wkhd;
10688{
10689	struct bmsafemap *bmsafemap;
10690	struct jnewblk *jnewblk;
10691	struct ufsmount *ump;
10692	struct worklist *wk;
10693	struct fs *fs;
10694#ifdef SUJ_DEBUG
10695	uint8_t *blksfree;
10696	struct cg *cgp;
10697	ufs2_daddr_t jstart;
10698	ufs2_daddr_t jend;
10699	ufs2_daddr_t end;
10700	long bno;
10701	int i;
10702#endif
10703
10704	CTR3(KTR_SUJ,
10705	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10706	    blkno, frags, wkhd);
10707
10708	ump = VFSTOUFS(mp);
10709	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10710	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10711	ACQUIRE_LOCK(ump);
10712	/* Lookup the bmsafemap so we track when it is dirty. */
10713	fs = ump->um_fs;
10714	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10715	/*
10716	 * Detach any jnewblks which have been canceled.  They must linger
10717	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10718	 * an unjournaled allocation from hitting the disk.
10719	 */
10720	if (wkhd) {
10721		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10722			CTR2(KTR_SUJ,
10723			    "softdep_setup_blkfree: blkno %jd wk type %d",
10724			    blkno, wk->wk_type);
10725			WORKLIST_REMOVE(wk);
10726			if (wk->wk_type != D_JNEWBLK) {
10727				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10728				continue;
10729			}
10730			jnewblk = WK_JNEWBLK(wk);
10731			KASSERT(jnewblk->jn_state & GOINGAWAY,
10732			    ("softdep_setup_blkfree: jnewblk not canceled."));
10733#ifdef SUJ_DEBUG
10734			/*
10735			 * Assert that this block is free in the bitmap
10736			 * before we discard the jnewblk.
10737			 */
10738			cgp = (struct cg *)bp->b_data;
10739			blksfree = cg_blksfree(cgp);
10740			bno = dtogd(fs, jnewblk->jn_blkno);
10741			for (i = jnewblk->jn_oldfrags;
10742			    i < jnewblk->jn_frags; i++) {
10743				if (isset(blksfree, bno + i))
10744					continue;
10745				panic("softdep_setup_blkfree: not free");
10746			}
10747#endif
10748			/*
10749			 * Even if it's not attached we can free immediately
10750			 * as the new bitmap is correct.
10751			 */
10752			wk->wk_state |= COMPLETE | ATTACHED;
10753			free_jnewblk(jnewblk);
10754		}
10755	}
10756
10757#ifdef SUJ_DEBUG
10758	/*
10759	 * Assert that we are not freeing a block which has an outstanding
10760	 * allocation dependency.
10761	 */
10762	fs = VFSTOUFS(mp)->um_fs;
10763	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10764	end = blkno + frags;
10765	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10766		/*
10767		 * Don't match against blocks that will be freed when the
10768		 * background write is done.
10769		 */
10770		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10771		    (COMPLETE | DEPCOMPLETE))
10772			continue;
10773		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10774		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10775		if ((blkno >= jstart && blkno < jend) ||
10776		    (end > jstart && end <= jend)) {
10777			printf("state 0x%X %jd - %d %d dep %p\n",
10778			    jnewblk->jn_state, jnewblk->jn_blkno,
10779			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10780			    jnewblk->jn_dep);
10781			panic("softdep_setup_blkfree: "
10782			    "%jd-%jd(%d) overlaps with %jd-%jd",
10783			    blkno, end, frags, jstart, jend);
10784		}
10785	}
10786#endif
10787	FREE_LOCK(ump);
10788}
10789
10790/*
10791 * Revert a block allocation when the journal record that describes it
10792 * is not yet written.
10793 */
10794static int
10795jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10796	struct jnewblk *jnewblk;
10797	struct fs *fs;
10798	struct cg *cgp;
10799	uint8_t *blksfree;
10800{
10801	ufs1_daddr_t fragno;
10802	long cgbno, bbase;
10803	int frags, blk;
10804	int i;
10805
10806	frags = 0;
10807	cgbno = dtogd(fs, jnewblk->jn_blkno);
10808	/*
10809	 * We have to test which frags need to be rolled back.  We may
10810	 * be operating on a stale copy when doing background writes.
10811	 */
10812	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10813		if (isclr(blksfree, cgbno + i))
10814			frags++;
10815	if (frags == 0)
10816		return (0);
10817	/*
10818	 * This is mostly ffs_blkfree() sans some validation and
10819	 * superblock updates.
10820	 */
10821	if (frags == fs->fs_frag) {
10822		fragno = fragstoblks(fs, cgbno);
10823		ffs_setblock(fs, blksfree, fragno);
10824		ffs_clusteracct(fs, cgp, fragno, 1);
10825		cgp->cg_cs.cs_nbfree++;
10826	} else {
10827		cgbno += jnewblk->jn_oldfrags;
10828		bbase = cgbno - fragnum(fs, cgbno);
10829		/* Decrement the old frags.  */
10830		blk = blkmap(fs, blksfree, bbase);
10831		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10832		/* Deallocate the fragment */
10833		for (i = 0; i < frags; i++)
10834			setbit(blksfree, cgbno + i);
10835		cgp->cg_cs.cs_nffree += frags;
10836		/* Add back in counts associated with the new frags */
10837		blk = blkmap(fs, blksfree, bbase);
10838		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10839		/* If a complete block has been reassembled, account for it. */
10840		fragno = fragstoblks(fs, bbase);
10841		if (ffs_isblock(fs, blksfree, fragno)) {
10842			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10843			ffs_clusteracct(fs, cgp, fragno, 1);
10844			cgp->cg_cs.cs_nbfree++;
10845		}
10846	}
10847	stat_jnewblk++;
10848	jnewblk->jn_state &= ~ATTACHED;
10849	jnewblk->jn_state |= UNDONE;
10850
10851	return (frags);
10852}
10853
10854static void
10855initiate_write_bmsafemap(bmsafemap, bp)
10856	struct bmsafemap *bmsafemap;
10857	struct buf *bp;			/* The cg block. */
10858{
10859	struct jaddref *jaddref;
10860	struct jnewblk *jnewblk;
10861	uint8_t *inosused;
10862	uint8_t *blksfree;
10863	struct cg *cgp;
10864	struct fs *fs;
10865	ino_t ino;
10866
10867	/*
10868	 * If this is a background write, we did this at the time that
10869	 * the copy was made, so do not need to do it again.
10870	 */
10871	if (bmsafemap->sm_state & IOSTARTED)
10872		return;
10873	bmsafemap->sm_state |= IOSTARTED;
10874	/*
10875	 * Clear any inode allocations which are pending journal writes.
10876	 */
10877	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10878		cgp = (struct cg *)bp->b_data;
10879		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10880		inosused = cg_inosused(cgp);
10881		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10882			ino = jaddref->ja_ino % fs->fs_ipg;
10883			if (isset(inosused, ino)) {
10884				if ((jaddref->ja_mode & IFMT) == IFDIR)
10885					cgp->cg_cs.cs_ndir--;
10886				cgp->cg_cs.cs_nifree++;
10887				clrbit(inosused, ino);
10888				jaddref->ja_state &= ~ATTACHED;
10889				jaddref->ja_state |= UNDONE;
10890				stat_jaddref++;
10891			} else
10892				panic("initiate_write_bmsafemap: inode %ju "
10893				    "marked free", (uintmax_t)jaddref->ja_ino);
10894		}
10895	}
10896	/*
10897	 * Clear any block allocations which are pending journal writes.
10898	 */
10899	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10900		cgp = (struct cg *)bp->b_data;
10901		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10902		blksfree = cg_blksfree(cgp);
10903		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10904			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10905				continue;
10906			panic("initiate_write_bmsafemap: block %jd "
10907			    "marked free", jnewblk->jn_blkno);
10908		}
10909	}
10910	/*
10911	 * Move allocation lists to the written lists so they can be
10912	 * cleared once the block write is complete.
10913	 */
10914	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10915	    inodedep, id_deps);
10916	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10917	    newblk, nb_deps);
10918	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10919	    wk_list);
10920}
10921
10922/*
10923 * This routine is called during the completion interrupt
10924 * service routine for a disk write (from the procedure called
10925 * by the device driver to inform the filesystem caches of
10926 * a request completion).  It should be called early in this
10927 * procedure, before the block is made available to other
10928 * processes or other routines are called.
10929 *
10930 */
10931static void
10932softdep_disk_write_complete(bp)
10933	struct buf *bp;		/* describes the completed disk write */
10934{
10935	struct worklist *wk;
10936	struct worklist *owk;
10937	struct ufsmount *ump;
10938	struct workhead reattach;
10939	struct freeblks *freeblks;
10940	struct buf *sbp;
10941
10942	/*
10943	 * If an error occurred while doing the write, then the data
10944	 * has not hit the disk and the dependencies cannot be processed.
10945	 * But we do have to go through and roll forward any dependencies
10946	 * that were rolled back before the disk write.
10947	 */
10948	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
10949		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
10950			switch (wk->wk_type) {
10951
10952			case D_PAGEDEP:
10953				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
10954				continue;
10955
10956			case D_INODEDEP:
10957				handle_written_inodeblock(WK_INODEDEP(wk),
10958				    bp, 0);
10959				continue;
10960
10961			case D_BMSAFEMAP:
10962				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
10963				    bp, 0);
10964				continue;
10965
10966			case D_INDIRDEP:
10967				handle_written_indirdep(WK_INDIRDEP(wk),
10968				    bp, &sbp, 0);
10969				continue;
10970			default:
10971				/* nothing to roll forward */
10972				continue;
10973			}
10974		}
10975		return;
10976	}
10977	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
10978		return;
10979	ump = VFSTOUFS(wk->wk_mp);
10980	LIST_INIT(&reattach);
10981	/*
10982	 * This lock must not be released anywhere in this code segment.
10983	 */
10984	sbp = NULL;
10985	owk = NULL;
10986	ACQUIRE_LOCK(ump);
10987	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10988		WORKLIST_REMOVE(wk);
10989		atomic_add_long(&dep_write[wk->wk_type], 1);
10990		if (wk == owk)
10991			panic("duplicate worklist: %p\n", wk);
10992		owk = wk;
10993		switch (wk->wk_type) {
10994
10995		case D_PAGEDEP:
10996			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
10997			    WRITESUCCEEDED))
10998				WORKLIST_INSERT(&reattach, wk);
10999			continue;
11000
11001		case D_INODEDEP:
11002			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11003			    WRITESUCCEEDED))
11004				WORKLIST_INSERT(&reattach, wk);
11005			continue;
11006
11007		case D_BMSAFEMAP:
11008			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11009			    WRITESUCCEEDED))
11010				WORKLIST_INSERT(&reattach, wk);
11011			continue;
11012
11013		case D_MKDIR:
11014			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11015			continue;
11016
11017		case D_ALLOCDIRECT:
11018			wk->wk_state |= COMPLETE;
11019			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11020			continue;
11021
11022		case D_ALLOCINDIR:
11023			wk->wk_state |= COMPLETE;
11024			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11025			continue;
11026
11027		case D_INDIRDEP:
11028			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11029			    WRITESUCCEEDED))
11030				WORKLIST_INSERT(&reattach, wk);
11031			continue;
11032
11033		case D_FREEBLKS:
11034			wk->wk_state |= COMPLETE;
11035			freeblks = WK_FREEBLKS(wk);
11036			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11037			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11038				add_to_worklist(wk, WK_NODELAY);
11039			continue;
11040
11041		case D_FREEWORK:
11042			handle_written_freework(WK_FREEWORK(wk));
11043			break;
11044
11045		case D_JSEGDEP:
11046			free_jsegdep(WK_JSEGDEP(wk));
11047			continue;
11048
11049		case D_JSEG:
11050			handle_written_jseg(WK_JSEG(wk), bp);
11051			continue;
11052
11053		case D_SBDEP:
11054			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11055				WORKLIST_INSERT(&reattach, wk);
11056			continue;
11057
11058		case D_FREEDEP:
11059			free_freedep(WK_FREEDEP(wk));
11060			continue;
11061
11062		default:
11063			panic("handle_disk_write_complete: Unknown type %s",
11064			    TYPENAME(wk->wk_type));
11065			/* NOTREACHED */
11066		}
11067	}
11068	/*
11069	 * Reattach any requests that must be redone.
11070	 */
11071	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11072		WORKLIST_REMOVE(wk);
11073		WORKLIST_INSERT(&bp->b_dep, wk);
11074	}
11075	FREE_LOCK(ump);
11076	if (sbp)
11077		brelse(sbp);
11078}
11079
11080/*
11081 * Called from within softdep_disk_write_complete above. Note that
11082 * this routine is always called from interrupt level with further
11083 * splbio interrupts blocked.
11084 */
11085static void
11086handle_allocdirect_partdone(adp, wkhd)
11087	struct allocdirect *adp;	/* the completed allocdirect */
11088	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11089{
11090	struct allocdirectlst *listhead;
11091	struct allocdirect *listadp;
11092	struct inodedep *inodedep;
11093	long bsize;
11094
11095	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11096		return;
11097	/*
11098	 * The on-disk inode cannot claim to be any larger than the last
11099	 * fragment that has been written. Otherwise, the on-disk inode
11100	 * might have fragments that were not the last block in the file
11101	 * which would corrupt the filesystem. Thus, we cannot free any
11102	 * allocdirects after one whose ad_oldblkno claims a fragment as
11103	 * these blocks must be rolled back to zero before writing the inode.
11104	 * We check the currently active set of allocdirects in id_inoupdt
11105	 * or id_extupdt as appropriate.
11106	 */
11107	inodedep = adp->ad_inodedep;
11108	bsize = inodedep->id_fs->fs_bsize;
11109	if (adp->ad_state & EXTDATA)
11110		listhead = &inodedep->id_extupdt;
11111	else
11112		listhead = &inodedep->id_inoupdt;
11113	TAILQ_FOREACH(listadp, listhead, ad_next) {
11114		/* found our block */
11115		if (listadp == adp)
11116			break;
11117		/* continue if ad_oldlbn is not a fragment */
11118		if (listadp->ad_oldsize == 0 ||
11119		    listadp->ad_oldsize == bsize)
11120			continue;
11121		/* hit a fragment */
11122		return;
11123	}
11124	/*
11125	 * If we have reached the end of the current list without
11126	 * finding the just finished dependency, then it must be
11127	 * on the future dependency list. Future dependencies cannot
11128	 * be freed until they are moved to the current list.
11129	 */
11130	if (listadp == NULL) {
11131#ifdef DEBUG
11132		if (adp->ad_state & EXTDATA)
11133			listhead = &inodedep->id_newextupdt;
11134		else
11135			listhead = &inodedep->id_newinoupdt;
11136		TAILQ_FOREACH(listadp, listhead, ad_next)
11137			/* found our block */
11138			if (listadp == adp)
11139				break;
11140		if (listadp == NULL)
11141			panic("handle_allocdirect_partdone: lost dep");
11142#endif /* DEBUG */
11143		return;
11144	}
11145	/*
11146	 * If we have found the just finished dependency, then queue
11147	 * it along with anything that follows it that is complete.
11148	 * Since the pointer has not yet been written in the inode
11149	 * as the dependency prevents it, place the allocdirect on the
11150	 * bufwait list where it will be freed once the pointer is
11151	 * valid.
11152	 */
11153	if (wkhd == NULL)
11154		wkhd = &inodedep->id_bufwait;
11155	for (; adp; adp = listadp) {
11156		listadp = TAILQ_NEXT(adp, ad_next);
11157		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11158			return;
11159		TAILQ_REMOVE(listhead, adp, ad_next);
11160		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11161	}
11162}
11163
11164/*
11165 * Called from within softdep_disk_write_complete above.  This routine
11166 * completes successfully written allocindirs.
11167 */
11168static void
11169handle_allocindir_partdone(aip)
11170	struct allocindir *aip;		/* the completed allocindir */
11171{
11172	struct indirdep *indirdep;
11173
11174	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11175		return;
11176	indirdep = aip->ai_indirdep;
11177	LIST_REMOVE(aip, ai_next);
11178	/*
11179	 * Don't set a pointer while the buffer is undergoing IO or while
11180	 * we have active truncations.
11181	 */
11182	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11183		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11184		return;
11185	}
11186	if (indirdep->ir_state & UFS1FMT)
11187		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11188		    aip->ai_newblkno;
11189	else
11190		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11191		    aip->ai_newblkno;
11192	/*
11193	 * Await the pointer write before freeing the allocindir.
11194	 */
11195	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11196}
11197
11198/*
11199 * Release segments held on a jwork list.
11200 */
11201static void
11202handle_jwork(wkhd)
11203	struct workhead *wkhd;
11204{
11205	struct worklist *wk;
11206
11207	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11208		WORKLIST_REMOVE(wk);
11209		switch (wk->wk_type) {
11210		case D_JSEGDEP:
11211			free_jsegdep(WK_JSEGDEP(wk));
11212			continue;
11213		case D_FREEDEP:
11214			free_freedep(WK_FREEDEP(wk));
11215			continue;
11216		case D_FREEFRAG:
11217			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11218			WORKITEM_FREE(wk, D_FREEFRAG);
11219			continue;
11220		case D_FREEWORK:
11221			handle_written_freework(WK_FREEWORK(wk));
11222			continue;
11223		default:
11224			panic("handle_jwork: Unknown type %s\n",
11225			    TYPENAME(wk->wk_type));
11226		}
11227	}
11228}
11229
11230/*
11231 * Handle the bufwait list on an inode when it is safe to release items
11232 * held there.  This normally happens after an inode block is written but
11233 * may be delayed and handled later if there are pending journal items that
11234 * are not yet safe to be released.
11235 */
11236static struct freefile *
11237handle_bufwait(inodedep, refhd)
11238	struct inodedep *inodedep;
11239	struct workhead *refhd;
11240{
11241	struct jaddref *jaddref;
11242	struct freefile *freefile;
11243	struct worklist *wk;
11244
11245	freefile = NULL;
11246	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11247		WORKLIST_REMOVE(wk);
11248		switch (wk->wk_type) {
11249		case D_FREEFILE:
11250			/*
11251			 * We defer adding freefile to the worklist
11252			 * until all other additions have been made to
11253			 * ensure that it will be done after all the
11254			 * old blocks have been freed.
11255			 */
11256			if (freefile != NULL)
11257				panic("handle_bufwait: freefile");
11258			freefile = WK_FREEFILE(wk);
11259			continue;
11260
11261		case D_MKDIR:
11262			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11263			continue;
11264
11265		case D_DIRADD:
11266			diradd_inode_written(WK_DIRADD(wk), inodedep);
11267			continue;
11268
11269		case D_FREEFRAG:
11270			wk->wk_state |= COMPLETE;
11271			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11272				add_to_worklist(wk, 0);
11273			continue;
11274
11275		case D_DIRREM:
11276			wk->wk_state |= COMPLETE;
11277			add_to_worklist(wk, 0);
11278			continue;
11279
11280		case D_ALLOCDIRECT:
11281		case D_ALLOCINDIR:
11282			free_newblk(WK_NEWBLK(wk));
11283			continue;
11284
11285		case D_JNEWBLK:
11286			wk->wk_state |= COMPLETE;
11287			free_jnewblk(WK_JNEWBLK(wk));
11288			continue;
11289
11290		/*
11291		 * Save freed journal segments and add references on
11292		 * the supplied list which will delay their release
11293		 * until the cg bitmap is cleared on disk.
11294		 */
11295		case D_JSEGDEP:
11296			if (refhd == NULL)
11297				free_jsegdep(WK_JSEGDEP(wk));
11298			else
11299				WORKLIST_INSERT(refhd, wk);
11300			continue;
11301
11302		case D_JADDREF:
11303			jaddref = WK_JADDREF(wk);
11304			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11305			    if_deps);
11306			/*
11307			 * Transfer any jaddrefs to the list to be freed with
11308			 * the bitmap if we're handling a removed file.
11309			 */
11310			if (refhd == NULL) {
11311				wk->wk_state |= COMPLETE;
11312				free_jaddref(jaddref);
11313			} else
11314				WORKLIST_INSERT(refhd, wk);
11315			continue;
11316
11317		default:
11318			panic("handle_bufwait: Unknown type %p(%s)",
11319			    wk, TYPENAME(wk->wk_type));
11320			/* NOTREACHED */
11321		}
11322	}
11323	return (freefile);
11324}
11325/*
11326 * Called from within softdep_disk_write_complete above to restore
11327 * in-memory inode block contents to their most up-to-date state. Note
11328 * that this routine is always called from interrupt level with further
11329 * interrupts from this device blocked.
11330 *
11331 * If the write did not succeed, we will do all the roll-forward
11332 * operations, but we will not take the actions that will allow its
11333 * dependencies to be processed.
11334 */
11335static int
11336handle_written_inodeblock(inodedep, bp, flags)
11337	struct inodedep *inodedep;
11338	struct buf *bp;		/* buffer containing the inode block */
11339	int flags;
11340{
11341	struct freefile *freefile;
11342	struct allocdirect *adp, *nextadp;
11343	struct ufs1_dinode *dp1 = NULL;
11344	struct ufs2_dinode *dp2 = NULL;
11345	struct workhead wkhd;
11346	int hadchanges, fstype;
11347	ino_t freelink;
11348
11349	LIST_INIT(&wkhd);
11350	hadchanges = 0;
11351	freefile = NULL;
11352	if ((inodedep->id_state & IOSTARTED) == 0)
11353		panic("handle_written_inodeblock: not started");
11354	inodedep->id_state &= ~IOSTARTED;
11355	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11356		fstype = UFS1;
11357		dp1 = (struct ufs1_dinode *)bp->b_data +
11358		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11359		freelink = dp1->di_freelink;
11360	} else {
11361		fstype = UFS2;
11362		dp2 = (struct ufs2_dinode *)bp->b_data +
11363		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11364		freelink = dp2->di_freelink;
11365	}
11366	/*
11367	 * Leave this inodeblock dirty until it's in the list.
11368	 */
11369	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11370	    (flags & WRITESUCCEEDED)) {
11371		struct inodedep *inon;
11372
11373		inon = TAILQ_NEXT(inodedep, id_unlinked);
11374		if ((inon == NULL && freelink == 0) ||
11375		    (inon && inon->id_ino == freelink)) {
11376			if (inon)
11377				inon->id_state |= UNLINKPREV;
11378			inodedep->id_state |= UNLINKNEXT;
11379		}
11380		hadchanges = 1;
11381	}
11382	/*
11383	 * If we had to rollback the inode allocation because of
11384	 * bitmaps being incomplete, then simply restore it.
11385	 * Keep the block dirty so that it will not be reclaimed until
11386	 * all associated dependencies have been cleared and the
11387	 * corresponding updates written to disk.
11388	 */
11389	if (inodedep->id_savedino1 != NULL) {
11390		hadchanges = 1;
11391		if (fstype == UFS1)
11392			*dp1 = *inodedep->id_savedino1;
11393		else
11394			*dp2 = *inodedep->id_savedino2;
11395		free(inodedep->id_savedino1, M_SAVEDINO);
11396		inodedep->id_savedino1 = NULL;
11397		if ((bp->b_flags & B_DELWRI) == 0)
11398			stat_inode_bitmap++;
11399		bdirty(bp);
11400		/*
11401		 * If the inode is clear here and GOINGAWAY it will never
11402		 * be written.  Process the bufwait and clear any pending
11403		 * work which may include the freefile.
11404		 */
11405		if (inodedep->id_state & GOINGAWAY)
11406			goto bufwait;
11407		return (1);
11408	}
11409	if (flags & WRITESUCCEEDED)
11410		inodedep->id_state |= COMPLETE;
11411	/*
11412	 * Roll forward anything that had to be rolled back before
11413	 * the inode could be updated.
11414	 */
11415	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11416		nextadp = TAILQ_NEXT(adp, ad_next);
11417		if (adp->ad_state & ATTACHED)
11418			panic("handle_written_inodeblock: new entry");
11419		if (fstype == UFS1) {
11420			if (adp->ad_offset < NDADDR) {
11421				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11422					panic("%s %s #%jd mismatch %d != %jd",
11423					    "handle_written_inodeblock:",
11424					    "direct pointer",
11425					    (intmax_t)adp->ad_offset,
11426					    dp1->di_db[adp->ad_offset],
11427					    (intmax_t)adp->ad_oldblkno);
11428				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11429			} else {
11430				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11431					panic("%s: %s #%jd allocated as %d",
11432					    "handle_written_inodeblock",
11433					    "indirect pointer",
11434					    (intmax_t)adp->ad_offset - NDADDR,
11435					    dp1->di_ib[adp->ad_offset - NDADDR]);
11436				dp1->di_ib[adp->ad_offset - NDADDR] =
11437				    adp->ad_newblkno;
11438			}
11439		} else {
11440			if (adp->ad_offset < NDADDR) {
11441				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11442					panic("%s: %s #%jd %s %jd != %jd",
11443					    "handle_written_inodeblock",
11444					    "direct pointer",
11445					    (intmax_t)adp->ad_offset, "mismatch",
11446					    (intmax_t)dp2->di_db[adp->ad_offset],
11447					    (intmax_t)adp->ad_oldblkno);
11448				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11449			} else {
11450				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11451					panic("%s: %s #%jd allocated as %jd",
11452					    "handle_written_inodeblock",
11453					    "indirect pointer",
11454					    (intmax_t)adp->ad_offset - NDADDR,
11455					    (intmax_t)
11456					    dp2->di_ib[adp->ad_offset - NDADDR]);
11457				dp2->di_ib[adp->ad_offset - NDADDR] =
11458				    adp->ad_newblkno;
11459			}
11460		}
11461		adp->ad_state &= ~UNDONE;
11462		adp->ad_state |= ATTACHED;
11463		hadchanges = 1;
11464	}
11465	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11466		nextadp = TAILQ_NEXT(adp, ad_next);
11467		if (adp->ad_state & ATTACHED)
11468			panic("handle_written_inodeblock: new entry");
11469		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11470			panic("%s: direct pointers #%jd %s %jd != %jd",
11471			    "handle_written_inodeblock",
11472			    (intmax_t)adp->ad_offset, "mismatch",
11473			    (intmax_t)dp2->di_extb[adp->ad_offset],
11474			    (intmax_t)adp->ad_oldblkno);
11475		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11476		adp->ad_state &= ~UNDONE;
11477		adp->ad_state |= ATTACHED;
11478		hadchanges = 1;
11479	}
11480	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11481		stat_direct_blk_ptrs++;
11482	/*
11483	 * Reset the file size to its most up-to-date value.
11484	 */
11485	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11486		panic("handle_written_inodeblock: bad size");
11487	if (inodedep->id_savednlink > LINK_MAX)
11488		panic("handle_written_inodeblock: Invalid link count "
11489		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11490	if (fstype == UFS1) {
11491		if (dp1->di_nlink != inodedep->id_savednlink) {
11492			dp1->di_nlink = inodedep->id_savednlink;
11493			hadchanges = 1;
11494		}
11495		if (dp1->di_size != inodedep->id_savedsize) {
11496			dp1->di_size = inodedep->id_savedsize;
11497			hadchanges = 1;
11498		}
11499	} else {
11500		if (dp2->di_nlink != inodedep->id_savednlink) {
11501			dp2->di_nlink = inodedep->id_savednlink;
11502			hadchanges = 1;
11503		}
11504		if (dp2->di_size != inodedep->id_savedsize) {
11505			dp2->di_size = inodedep->id_savedsize;
11506			hadchanges = 1;
11507		}
11508		if (dp2->di_extsize != inodedep->id_savedextsize) {
11509			dp2->di_extsize = inodedep->id_savedextsize;
11510			hadchanges = 1;
11511		}
11512	}
11513	inodedep->id_savedsize = -1;
11514	inodedep->id_savedextsize = -1;
11515	inodedep->id_savednlink = -1;
11516	/*
11517	 * If there were any rollbacks in the inode block, then it must be
11518	 * marked dirty so that its will eventually get written back in
11519	 * its correct form.
11520	 */
11521	if (hadchanges)
11522		bdirty(bp);
11523bufwait:
11524	/*
11525	 * If the write did not succeed, we have done all the roll-forward
11526	 * operations, but we cannot take the actions that will allow its
11527	 * dependencies to be processed.
11528	 */
11529	if ((flags & WRITESUCCEEDED) == 0)
11530		return (hadchanges);
11531	/*
11532	 * Process any allocdirects that completed during the update.
11533	 */
11534	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11535		handle_allocdirect_partdone(adp, &wkhd);
11536	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11537		handle_allocdirect_partdone(adp, &wkhd);
11538	/*
11539	 * Process deallocations that were held pending until the
11540	 * inode had been written to disk. Freeing of the inode
11541	 * is delayed until after all blocks have been freed to
11542	 * avoid creation of new <vfsid, inum, lbn> triples
11543	 * before the old ones have been deleted.  Completely
11544	 * unlinked inodes are not processed until the unlinked
11545	 * inode list is written or the last reference is removed.
11546	 */
11547	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11548		freefile = handle_bufwait(inodedep, NULL);
11549		if (freefile && !LIST_EMPTY(&wkhd)) {
11550			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11551			freefile = NULL;
11552		}
11553	}
11554	/*
11555	 * Move rolled forward dependency completions to the bufwait list
11556	 * now that those that were already written have been processed.
11557	 */
11558	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11559		panic("handle_written_inodeblock: bufwait but no changes");
11560	jwork_move(&inodedep->id_bufwait, &wkhd);
11561
11562	if (freefile != NULL) {
11563		/*
11564		 * If the inode is goingaway it was never written.  Fake up
11565		 * the state here so free_inodedep() can succeed.
11566		 */
11567		if (inodedep->id_state & GOINGAWAY)
11568			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11569		if (free_inodedep(inodedep) == 0)
11570			panic("handle_written_inodeblock: live inodedep %p",
11571			    inodedep);
11572		add_to_worklist(&freefile->fx_list, 0);
11573		return (0);
11574	}
11575
11576	/*
11577	 * If no outstanding dependencies, free it.
11578	 */
11579	if (free_inodedep(inodedep) ||
11580	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11581	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11582	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11583	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11584		return (0);
11585	return (hadchanges);
11586}
11587
11588/*
11589 * Perform needed roll-forwards and kick off any dependencies that
11590 * can now be processed.
11591 *
11592 * If the write did not succeed, we will do all the roll-forward
11593 * operations, but we will not take the actions that will allow its
11594 * dependencies to be processed.
11595 */
11596static int
11597handle_written_indirdep(indirdep, bp, bpp, flags)
11598	struct indirdep *indirdep;
11599	struct buf *bp;
11600	struct buf **bpp;
11601	int flags;
11602{
11603	struct allocindir *aip;
11604	struct buf *sbp;
11605	int chgs;
11606
11607	if (indirdep->ir_state & GOINGAWAY)
11608		panic("handle_written_indirdep: indirdep gone");
11609	if ((indirdep->ir_state & IOSTARTED) == 0)
11610		panic("handle_written_indirdep: IO not started");
11611	chgs = 0;
11612	/*
11613	 * If there were rollbacks revert them here.
11614	 */
11615	if (indirdep->ir_saveddata) {
11616		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11617		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11618			free(indirdep->ir_saveddata, M_INDIRDEP);
11619			indirdep->ir_saveddata = NULL;
11620		}
11621		chgs = 1;
11622	}
11623	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11624	indirdep->ir_state |= ATTACHED;
11625	/*
11626	 * If the write did not succeed, we have done all the roll-forward
11627	 * operations, but we cannot take the actions that will allow its
11628	 * dependencies to be processed.
11629	 */
11630	if ((flags & WRITESUCCEEDED) == 0) {
11631		stat_indir_blk_ptrs++;
11632		bdirty(bp);
11633		return (1);
11634	}
11635	/*
11636	 * Move allocindirs with written pointers to the completehd if
11637	 * the indirdep's pointer is not yet written.  Otherwise
11638	 * free them here.
11639	 */
11640	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11641		LIST_REMOVE(aip, ai_next);
11642		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11643			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11644			    ai_next);
11645			newblk_freefrag(&aip->ai_block);
11646			continue;
11647		}
11648		free_newblk(&aip->ai_block);
11649	}
11650	/*
11651	 * Move allocindirs that have finished dependency processing from
11652	 * the done list to the write list after updating the pointers.
11653	 */
11654	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11655		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11656			handle_allocindir_partdone(aip);
11657			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11658				panic("disk_write_complete: not gone");
11659			chgs = 1;
11660		}
11661	}
11662	/*
11663	 * Preserve the indirdep if there were any changes or if it is not
11664	 * yet valid on disk.
11665	 */
11666	if (chgs) {
11667		stat_indir_blk_ptrs++;
11668		bdirty(bp);
11669		return (1);
11670	}
11671	/*
11672	 * If there were no changes we can discard the savedbp and detach
11673	 * ourselves from the buf.  We are only carrying completed pointers
11674	 * in this case.
11675	 */
11676	sbp = indirdep->ir_savebp;
11677	sbp->b_flags |= B_INVAL | B_NOCACHE;
11678	indirdep->ir_savebp = NULL;
11679	indirdep->ir_bp = NULL;
11680	if (*bpp != NULL)
11681		panic("handle_written_indirdep: bp already exists.");
11682	*bpp = sbp;
11683	/*
11684	 * The indirdep may not be freed until its parent points at it.
11685	 */
11686	if (indirdep->ir_state & DEPCOMPLETE)
11687		free_indirdep(indirdep);
11688
11689	return (0);
11690}
11691
11692/*
11693 * Process a diradd entry after its dependent inode has been written.
11694 * This routine must be called with splbio interrupts blocked.
11695 */
11696static void
11697diradd_inode_written(dap, inodedep)
11698	struct diradd *dap;
11699	struct inodedep *inodedep;
11700{
11701
11702	dap->da_state |= COMPLETE;
11703	complete_diradd(dap);
11704	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11705}
11706
11707/*
11708 * Returns true if the bmsafemap will have rollbacks when written.  Must only
11709 * be called with the per-filesystem lock and the buf lock on the cg held.
11710 */
11711static int
11712bmsafemap_backgroundwrite(bmsafemap, bp)
11713	struct bmsafemap *bmsafemap;
11714	struct buf *bp;
11715{
11716	int dirty;
11717
11718	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11719	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11720	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11721	/*
11722	 * If we're initiating a background write we need to process the
11723	 * rollbacks as they exist now, not as they exist when IO starts.
11724	 * No other consumers will look at the contents of the shadowed
11725	 * buf so this is safe to do here.
11726	 */
11727	if (bp->b_xflags & BX_BKGRDMARKER)
11728		initiate_write_bmsafemap(bmsafemap, bp);
11729
11730	return (dirty);
11731}
11732
11733/*
11734 * Re-apply an allocation when a cg write is complete.
11735 */
11736static int
11737jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11738	struct jnewblk *jnewblk;
11739	struct fs *fs;
11740	struct cg *cgp;
11741	uint8_t *blksfree;
11742{
11743	ufs1_daddr_t fragno;
11744	ufs2_daddr_t blkno;
11745	long cgbno, bbase;
11746	int frags, blk;
11747	int i;
11748
11749	frags = 0;
11750	cgbno = dtogd(fs, jnewblk->jn_blkno);
11751	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11752		if (isclr(blksfree, cgbno + i))
11753			panic("jnewblk_rollforward: re-allocated fragment");
11754		frags++;
11755	}
11756	if (frags == fs->fs_frag) {
11757		blkno = fragstoblks(fs, cgbno);
11758		ffs_clrblock(fs, blksfree, (long)blkno);
11759		ffs_clusteracct(fs, cgp, blkno, -1);
11760		cgp->cg_cs.cs_nbfree--;
11761	} else {
11762		bbase = cgbno - fragnum(fs, cgbno);
11763		cgbno += jnewblk->jn_oldfrags;
11764                /* If a complete block had been reassembled, account for it. */
11765		fragno = fragstoblks(fs, bbase);
11766		if (ffs_isblock(fs, blksfree, fragno)) {
11767			cgp->cg_cs.cs_nffree += fs->fs_frag;
11768			ffs_clusteracct(fs, cgp, fragno, -1);
11769			cgp->cg_cs.cs_nbfree--;
11770		}
11771		/* Decrement the old frags.  */
11772		blk = blkmap(fs, blksfree, bbase);
11773		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11774		/* Allocate the fragment */
11775		for (i = 0; i < frags; i++)
11776			clrbit(blksfree, cgbno + i);
11777		cgp->cg_cs.cs_nffree -= frags;
11778		/* Add back in counts associated with the new frags */
11779		blk = blkmap(fs, blksfree, bbase);
11780		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11781	}
11782	return (frags);
11783}
11784
11785/*
11786 * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11787 * changes if it's not a background write.  Set all written dependencies
11788 * to DEPCOMPLETE and free the structure if possible.
11789 *
11790 * If the write did not succeed, we will do all the roll-forward
11791 * operations, but we will not take the actions that will allow its
11792 * dependencies to be processed.
11793 */
11794static int
11795handle_written_bmsafemap(bmsafemap, bp, flags)
11796	struct bmsafemap *bmsafemap;
11797	struct buf *bp;
11798	int flags;
11799{
11800	struct newblk *newblk;
11801	struct inodedep *inodedep;
11802	struct jaddref *jaddref, *jatmp;
11803	struct jnewblk *jnewblk, *jntmp;
11804	struct ufsmount *ump;
11805	uint8_t *inosused;
11806	uint8_t *blksfree;
11807	struct cg *cgp;
11808	struct fs *fs;
11809	ino_t ino;
11810	int foreground;
11811	int chgs;
11812
11813	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11814		panic("handle_written_bmsafemap: Not started\n");
11815	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11816	chgs = 0;
11817	bmsafemap->sm_state &= ~IOSTARTED;
11818	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11819	/*
11820	 * If write was successful, release journal work that was waiting
11821	 * on the write. Otherwise move the work back.
11822	 */
11823	if (flags & WRITESUCCEEDED)
11824		handle_jwork(&bmsafemap->sm_freewr);
11825	else
11826		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11827		    worklist, wk_list);
11828
11829	/*
11830	 * Restore unwritten inode allocation pending jaddref writes.
11831	 */
11832	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11833		cgp = (struct cg *)bp->b_data;
11834		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11835		inosused = cg_inosused(cgp);
11836		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11837		    ja_bmdeps, jatmp) {
11838			if ((jaddref->ja_state & UNDONE) == 0)
11839				continue;
11840			ino = jaddref->ja_ino % fs->fs_ipg;
11841			if (isset(inosused, ino))
11842				panic("handle_written_bmsafemap: "
11843				    "re-allocated inode");
11844			/* Do the roll-forward only if it's a real copy. */
11845			if (foreground) {
11846				if ((jaddref->ja_mode & IFMT) == IFDIR)
11847					cgp->cg_cs.cs_ndir++;
11848				cgp->cg_cs.cs_nifree--;
11849				setbit(inosused, ino);
11850				chgs = 1;
11851			}
11852			jaddref->ja_state &= ~UNDONE;
11853			jaddref->ja_state |= ATTACHED;
11854			free_jaddref(jaddref);
11855		}
11856	}
11857	/*
11858	 * Restore any block allocations which are pending journal writes.
11859	 */
11860	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11861		cgp = (struct cg *)bp->b_data;
11862		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11863		blksfree = cg_blksfree(cgp);
11864		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11865		    jntmp) {
11866			if ((jnewblk->jn_state & UNDONE) == 0)
11867				continue;
11868			/* Do the roll-forward only if it's a real copy. */
11869			if (foreground &&
11870			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11871				chgs = 1;
11872			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11873			jnewblk->jn_state |= ATTACHED;
11874			free_jnewblk(jnewblk);
11875		}
11876	}
11877	/*
11878	 * If the write did not succeed, we have done all the roll-forward
11879	 * operations, but we cannot take the actions that will allow its
11880	 * dependencies to be processed.
11881	 */
11882	if ((flags & WRITESUCCEEDED) == 0) {
11883		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11884		    newblk, nb_deps);
11885		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11886		    worklist, wk_list);
11887		if (foreground)
11888			bdirty(bp);
11889		return (1);
11890	}
11891	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11892		newblk->nb_state |= DEPCOMPLETE;
11893		newblk->nb_state &= ~ONDEPLIST;
11894		newblk->nb_bmsafemap = NULL;
11895		LIST_REMOVE(newblk, nb_deps);
11896		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11897			handle_allocdirect_partdone(
11898			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11899		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11900			handle_allocindir_partdone(
11901			    WK_ALLOCINDIR(&newblk->nb_list));
11902		else if (newblk->nb_list.wk_type != D_NEWBLK)
11903			panic("handle_written_bmsafemap: Unexpected type: %s",
11904			    TYPENAME(newblk->nb_list.wk_type));
11905	}
11906	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11907		inodedep->id_state |= DEPCOMPLETE;
11908		inodedep->id_state &= ~ONDEPLIST;
11909		LIST_REMOVE(inodedep, id_deps);
11910		inodedep->id_bmsafemap = NULL;
11911	}
11912	LIST_REMOVE(bmsafemap, sm_next);
11913	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11914	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11915	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11916	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11917	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11918		LIST_REMOVE(bmsafemap, sm_hash);
11919		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11920		return (0);
11921	}
11922	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11923	if (foreground)
11924		bdirty(bp);
11925	return (1);
11926}
11927
11928/*
11929 * Try to free a mkdir dependency.
11930 */
11931static void
11932complete_mkdir(mkdir)
11933	struct mkdir *mkdir;
11934{
11935	struct diradd *dap;
11936
11937	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11938		return;
11939	LIST_REMOVE(mkdir, md_mkdirs);
11940	dap = mkdir->md_diradd;
11941	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11942	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11943		dap->da_state |= DEPCOMPLETE;
11944		complete_diradd(dap);
11945	}
11946	WORKITEM_FREE(mkdir, D_MKDIR);
11947}
11948
11949/*
11950 * Handle the completion of a mkdir dependency.
11951 */
11952static void
11953handle_written_mkdir(mkdir, type)
11954	struct mkdir *mkdir;
11955	int type;
11956{
11957
11958	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11959		panic("handle_written_mkdir: bad type");
11960	mkdir->md_state |= COMPLETE;
11961	complete_mkdir(mkdir);
11962}
11963
11964static int
11965free_pagedep(pagedep)
11966	struct pagedep *pagedep;
11967{
11968	int i;
11969
11970	if (pagedep->pd_state & NEWBLOCK)
11971		return (0);
11972	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11973		return (0);
11974	for (i = 0; i < DAHASHSZ; i++)
11975		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11976			return (0);
11977	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11978		return (0);
11979	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11980		return (0);
11981	if (pagedep->pd_state & ONWORKLIST)
11982		WORKLIST_REMOVE(&pagedep->pd_list);
11983	LIST_REMOVE(pagedep, pd_hash);
11984	WORKITEM_FREE(pagedep, D_PAGEDEP);
11985
11986	return (1);
11987}
11988
11989/*
11990 * Called from within softdep_disk_write_complete above.
11991 * A write operation was just completed. Removed inodes can
11992 * now be freed and associated block pointers may be committed.
11993 * Note that this routine is always called from interrupt level
11994 * with further interrupts from this device blocked.
11995 *
11996 * If the write did not succeed, we will do all the roll-forward
11997 * operations, but we will not take the actions that will allow its
11998 * dependencies to be processed.
11999 */
12000static int
12001handle_written_filepage(pagedep, bp, flags)
12002	struct pagedep *pagedep;
12003	struct buf *bp;		/* buffer containing the written page */
12004	int flags;
12005{
12006	struct dirrem *dirrem;
12007	struct diradd *dap, *nextdap;
12008	struct direct *ep;
12009	int i, chgs;
12010
12011	if ((pagedep->pd_state & IOSTARTED) == 0)
12012		panic("handle_written_filepage: not started");
12013	pagedep->pd_state &= ~IOSTARTED;
12014	if ((flags & WRITESUCCEEDED) == 0)
12015		goto rollforward;
12016	/*
12017	 * Process any directory removals that have been committed.
12018	 */
12019	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12020		LIST_REMOVE(dirrem, dm_next);
12021		dirrem->dm_state |= COMPLETE;
12022		dirrem->dm_dirinum = pagedep->pd_ino;
12023		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12024		    ("handle_written_filepage: Journal entries not written."));
12025		add_to_worklist(&dirrem->dm_list, 0);
12026	}
12027	/*
12028	 * Free any directory additions that have been committed.
12029	 * If it is a newly allocated block, we have to wait until
12030	 * the on-disk directory inode claims the new block.
12031	 */
12032	if ((pagedep->pd_state & NEWBLOCK) == 0)
12033		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12034			free_diradd(dap, NULL);
12035rollforward:
12036	/*
12037	 * Uncommitted directory entries must be restored.
12038	 */
12039	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12040		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12041		     dap = nextdap) {
12042			nextdap = LIST_NEXT(dap, da_pdlist);
12043			if (dap->da_state & ATTACHED)
12044				panic("handle_written_filepage: attached");
12045			ep = (struct direct *)
12046			    ((char *)bp->b_data + dap->da_offset);
12047			ep->d_ino = dap->da_newinum;
12048			dap->da_state &= ~UNDONE;
12049			dap->da_state |= ATTACHED;
12050			chgs = 1;
12051			/*
12052			 * If the inode referenced by the directory has
12053			 * been written out, then the dependency can be
12054			 * moved to the pending list.
12055			 */
12056			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12057				LIST_REMOVE(dap, da_pdlist);
12058				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12059				    da_pdlist);
12060			}
12061		}
12062	}
12063	/*
12064	 * If there were any rollbacks in the directory, then it must be
12065	 * marked dirty so that its will eventually get written back in
12066	 * its correct form.
12067	 */
12068	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12069		if ((bp->b_flags & B_DELWRI) == 0)
12070			stat_dir_entry++;
12071		bdirty(bp);
12072		return (1);
12073	}
12074	/*
12075	 * If we are not waiting for a new directory block to be
12076	 * claimed by its inode, then the pagedep will be freed.
12077	 * Otherwise it will remain to track any new entries on
12078	 * the page in case they are fsync'ed.
12079	 */
12080	free_pagedep(pagedep);
12081	return (0);
12082}
12083
12084/*
12085 * Writing back in-core inode structures.
12086 *
12087 * The filesystem only accesses an inode's contents when it occupies an
12088 * "in-core" inode structure.  These "in-core" structures are separate from
12089 * the page frames used to cache inode blocks.  Only the latter are
12090 * transferred to/from the disk.  So, when the updated contents of the
12091 * "in-core" inode structure are copied to the corresponding in-memory inode
12092 * block, the dependencies are also transferred.  The following procedure is
12093 * called when copying a dirty "in-core" inode to a cached inode block.
12094 */
12095
12096/*
12097 * Called when an inode is loaded from disk. If the effective link count
12098 * differed from the actual link count when it was last flushed, then we
12099 * need to ensure that the correct effective link count is put back.
12100 */
12101void
12102softdep_load_inodeblock(ip)
12103	struct inode *ip;	/* the "in_core" copy of the inode */
12104{
12105	struct inodedep *inodedep;
12106
12107	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12108	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12109	/*
12110	 * Check for alternate nlink count.
12111	 */
12112	ip->i_effnlink = ip->i_nlink;
12113	ACQUIRE_LOCK(ip->i_ump);
12114	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
12115	    &inodedep) == 0) {
12116		FREE_LOCK(ip->i_ump);
12117		return;
12118	}
12119	ip->i_effnlink -= inodedep->id_nlinkdelta;
12120	FREE_LOCK(ip->i_ump);
12121}
12122
12123/*
12124 * This routine is called just before the "in-core" inode
12125 * information is to be copied to the in-memory inode block.
12126 * Recall that an inode block contains several inodes. If
12127 * the force flag is set, then the dependencies will be
12128 * cleared so that the update can always be made. Note that
12129 * the buffer is locked when this routine is called, so we
12130 * will never be in the middle of writing the inode block
12131 * to disk.
12132 */
12133void
12134softdep_update_inodeblock(ip, bp, waitfor)
12135	struct inode *ip;	/* the "in_core" copy of the inode */
12136	struct buf *bp;		/* the buffer containing the inode block */
12137	int waitfor;		/* nonzero => update must be allowed */
12138{
12139	struct inodedep *inodedep;
12140	struct inoref *inoref;
12141	struct ufsmount *ump;
12142	struct worklist *wk;
12143	struct mount *mp;
12144	struct buf *ibp;
12145	struct fs *fs;
12146	int error;
12147
12148	ump = ip->i_ump;
12149	mp = UFSTOVFS(ump);
12150	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12151	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12152	fs = ip->i_fs;
12153	/*
12154	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12155	 * does not have access to the in-core ip so must write directly into
12156	 * the inode block buffer when setting freelink.
12157	 */
12158	if (fs->fs_magic == FS_UFS1_MAGIC)
12159		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12160		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12161	else
12162		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12163		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12164	/*
12165	 * If the effective link count is not equal to the actual link
12166	 * count, then we must track the difference in an inodedep while
12167	 * the inode is (potentially) tossed out of the cache. Otherwise,
12168	 * if there is no existing inodedep, then there are no dependencies
12169	 * to track.
12170	 */
12171	ACQUIRE_LOCK(ump);
12172again:
12173	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12174		FREE_LOCK(ump);
12175		if (ip->i_effnlink != ip->i_nlink)
12176			panic("softdep_update_inodeblock: bad link count");
12177		return;
12178	}
12179	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12180		panic("softdep_update_inodeblock: bad delta");
12181	/*
12182	 * If we're flushing all dependencies we must also move any waiting
12183	 * for journal writes onto the bufwait list prior to I/O.
12184	 */
12185	if (waitfor) {
12186		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12187			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12188			    == DEPCOMPLETE) {
12189				jwait(&inoref->if_list, MNT_WAIT);
12190				goto again;
12191			}
12192		}
12193	}
12194	/*
12195	 * Changes have been initiated. Anything depending on these
12196	 * changes cannot occur until this inode has been written.
12197	 */
12198	inodedep->id_state &= ~COMPLETE;
12199	if ((inodedep->id_state & ONWORKLIST) == 0)
12200		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12201	/*
12202	 * Any new dependencies associated with the incore inode must
12203	 * now be moved to the list associated with the buffer holding
12204	 * the in-memory copy of the inode. Once merged process any
12205	 * allocdirects that are completed by the merger.
12206	 */
12207	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12208	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12209		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12210		    NULL);
12211	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12212	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12213		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12214		    NULL);
12215	/*
12216	 * Now that the inode has been pushed into the buffer, the
12217	 * operations dependent on the inode being written to disk
12218	 * can be moved to the id_bufwait so that they will be
12219	 * processed when the buffer I/O completes.
12220	 */
12221	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12222		WORKLIST_REMOVE(wk);
12223		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12224	}
12225	/*
12226	 * Newly allocated inodes cannot be written until the bitmap
12227	 * that allocates them have been written (indicated by
12228	 * DEPCOMPLETE being set in id_state). If we are doing a
12229	 * forced sync (e.g., an fsync on a file), we force the bitmap
12230	 * to be written so that the update can be done.
12231	 */
12232	if (waitfor == 0) {
12233		FREE_LOCK(ump);
12234		return;
12235	}
12236retry:
12237	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12238		FREE_LOCK(ump);
12239		return;
12240	}
12241	ibp = inodedep->id_bmsafemap->sm_buf;
12242	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12243	if (ibp == NULL) {
12244		/*
12245		 * If ibp came back as NULL, the dependency could have been
12246		 * freed while we slept.  Look it up again, and check to see
12247		 * that it has completed.
12248		 */
12249		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12250			goto retry;
12251		FREE_LOCK(ump);
12252		return;
12253	}
12254	FREE_LOCK(ump);
12255	if ((error = bwrite(ibp)) != 0)
12256		softdep_error("softdep_update_inodeblock: bwrite", error);
12257}
12258
12259/*
12260 * Merge the a new inode dependency list (such as id_newinoupdt) into an
12261 * old inode dependency list (such as id_inoupdt). This routine must be
12262 * called with splbio interrupts blocked.
12263 */
12264static void
12265merge_inode_lists(newlisthead, oldlisthead)
12266	struct allocdirectlst *newlisthead;
12267	struct allocdirectlst *oldlisthead;
12268{
12269	struct allocdirect *listadp, *newadp;
12270
12271	newadp = TAILQ_FIRST(newlisthead);
12272	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12273		if (listadp->ad_offset < newadp->ad_offset) {
12274			listadp = TAILQ_NEXT(listadp, ad_next);
12275			continue;
12276		}
12277		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12278		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12279		if (listadp->ad_offset == newadp->ad_offset) {
12280			allocdirect_merge(oldlisthead, newadp,
12281			    listadp);
12282			listadp = newadp;
12283		}
12284		newadp = TAILQ_FIRST(newlisthead);
12285	}
12286	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12287		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12288		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12289	}
12290}
12291
12292/*
12293 * If we are doing an fsync, then we must ensure that any directory
12294 * entries for the inode have been written after the inode gets to disk.
12295 */
12296int
12297softdep_fsync(vp)
12298	struct vnode *vp;	/* the "in_core" copy of the inode */
12299{
12300	struct inodedep *inodedep;
12301	struct pagedep *pagedep;
12302	struct inoref *inoref;
12303	struct ufsmount *ump;
12304	struct worklist *wk;
12305	struct diradd *dap;
12306	struct mount *mp;
12307	struct vnode *pvp;
12308	struct inode *ip;
12309	struct buf *bp;
12310	struct fs *fs;
12311	struct thread *td = curthread;
12312	int error, flushparent, pagedep_new_block;
12313	ino_t parentino;
12314	ufs_lbn_t lbn;
12315
12316	ip = VTOI(vp);
12317	fs = ip->i_fs;
12318	ump = ip->i_ump;
12319	mp = vp->v_mount;
12320	if (MOUNTEDSOFTDEP(mp) == 0)
12321		return (0);
12322	ACQUIRE_LOCK(ump);
12323restart:
12324	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12325		FREE_LOCK(ump);
12326		return (0);
12327	}
12328	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12329		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12330		    == DEPCOMPLETE) {
12331			jwait(&inoref->if_list, MNT_WAIT);
12332			goto restart;
12333		}
12334	}
12335	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12336	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12337	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12338	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12339	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12340		panic("softdep_fsync: pending ops %p", inodedep);
12341	for (error = 0, flushparent = 0; ; ) {
12342		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12343			break;
12344		if (wk->wk_type != D_DIRADD)
12345			panic("softdep_fsync: Unexpected type %s",
12346			    TYPENAME(wk->wk_type));
12347		dap = WK_DIRADD(wk);
12348		/*
12349		 * Flush our parent if this directory entry has a MKDIR_PARENT
12350		 * dependency or is contained in a newly allocated block.
12351		 */
12352		if (dap->da_state & DIRCHG)
12353			pagedep = dap->da_previous->dm_pagedep;
12354		else
12355			pagedep = dap->da_pagedep;
12356		parentino = pagedep->pd_ino;
12357		lbn = pagedep->pd_lbn;
12358		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12359			panic("softdep_fsync: dirty");
12360		if ((dap->da_state & MKDIR_PARENT) ||
12361		    (pagedep->pd_state & NEWBLOCK))
12362			flushparent = 1;
12363		else
12364			flushparent = 0;
12365		/*
12366		 * If we are being fsync'ed as part of vgone'ing this vnode,
12367		 * then we will not be able to release and recover the
12368		 * vnode below, so we just have to give up on writing its
12369		 * directory entry out. It will eventually be written, just
12370		 * not now, but then the user was not asking to have it
12371		 * written, so we are not breaking any promises.
12372		 */
12373		if (vp->v_iflag & VI_DOOMED)
12374			break;
12375		/*
12376		 * We prevent deadlock by always fetching inodes from the
12377		 * root, moving down the directory tree. Thus, when fetching
12378		 * our parent directory, we first try to get the lock. If
12379		 * that fails, we must unlock ourselves before requesting
12380		 * the lock on our parent. See the comment in ufs_lookup
12381		 * for details on possible races.
12382		 */
12383		FREE_LOCK(ump);
12384		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12385		    FFSV_FORCEINSMQ)) {
12386			error = vfs_busy(mp, MBF_NOWAIT);
12387			if (error != 0) {
12388				vfs_ref(mp);
12389				VOP_UNLOCK(vp, 0);
12390				error = vfs_busy(mp, 0);
12391				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12392				vfs_rel(mp);
12393				if (error != 0)
12394					return (ENOENT);
12395				if (vp->v_iflag & VI_DOOMED) {
12396					vfs_unbusy(mp);
12397					return (ENOENT);
12398				}
12399			}
12400			VOP_UNLOCK(vp, 0);
12401			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12402			    &pvp, FFSV_FORCEINSMQ);
12403			vfs_unbusy(mp);
12404			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12405			if (vp->v_iflag & VI_DOOMED) {
12406				if (error == 0)
12407					vput(pvp);
12408				error = ENOENT;
12409			}
12410			if (error != 0)
12411				return (error);
12412		}
12413		/*
12414		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12415		 * that are contained in direct blocks will be resolved by
12416		 * doing a ffs_update. Pagedeps contained in indirect blocks
12417		 * may require a complete sync'ing of the directory. So, we
12418		 * try the cheap and fast ffs_update first, and if that fails,
12419		 * then we do the slower ffs_syncvnode of the directory.
12420		 */
12421		if (flushparent) {
12422			int locked;
12423
12424			if ((error = ffs_update(pvp, 1)) != 0) {
12425				vput(pvp);
12426				return (error);
12427			}
12428			ACQUIRE_LOCK(ump);
12429			locked = 1;
12430			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12431				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12432					if (wk->wk_type != D_DIRADD)
12433						panic("softdep_fsync: Unexpected type %s",
12434						      TYPENAME(wk->wk_type));
12435					dap = WK_DIRADD(wk);
12436					if (dap->da_state & DIRCHG)
12437						pagedep = dap->da_previous->dm_pagedep;
12438					else
12439						pagedep = dap->da_pagedep;
12440					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12441					FREE_LOCK(ump);
12442					locked = 0;
12443					if (pagedep_new_block && (error =
12444					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12445						vput(pvp);
12446						return (error);
12447					}
12448				}
12449			}
12450			if (locked)
12451				FREE_LOCK(ump);
12452		}
12453		/*
12454		 * Flush directory page containing the inode's name.
12455		 */
12456		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12457		    &bp);
12458		if (error == 0)
12459			error = bwrite(bp);
12460		else
12461			brelse(bp);
12462		vput(pvp);
12463		if (error != 0)
12464			return (error);
12465		ACQUIRE_LOCK(ump);
12466		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12467			break;
12468	}
12469	FREE_LOCK(ump);
12470	return (0);
12471}
12472
12473/*
12474 * Flush all the dirty bitmaps associated with the block device
12475 * before flushing the rest of the dirty blocks so as to reduce
12476 * the number of dependencies that will have to be rolled back.
12477 *
12478 * XXX Unused?
12479 */
12480void
12481softdep_fsync_mountdev(vp)
12482	struct vnode *vp;
12483{
12484	struct buf *bp, *nbp;
12485	struct worklist *wk;
12486	struct bufobj *bo;
12487
12488	if (!vn_isdisk(vp, NULL))
12489		panic("softdep_fsync_mountdev: vnode not a disk");
12490	bo = &vp->v_bufobj;
12491restart:
12492	BO_LOCK(bo);
12493	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12494		/*
12495		 * If it is already scheduled, skip to the next buffer.
12496		 */
12497		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12498			continue;
12499
12500		if ((bp->b_flags & B_DELWRI) == 0)
12501			panic("softdep_fsync_mountdev: not dirty");
12502		/*
12503		 * We are only interested in bitmaps with outstanding
12504		 * dependencies.
12505		 */
12506		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12507		    wk->wk_type != D_BMSAFEMAP ||
12508		    (bp->b_vflags & BV_BKGRDINPROG)) {
12509			BUF_UNLOCK(bp);
12510			continue;
12511		}
12512		BO_UNLOCK(bo);
12513		bremfree(bp);
12514		(void) bawrite(bp);
12515		goto restart;
12516	}
12517	drain_output(vp);
12518	BO_UNLOCK(bo);
12519}
12520
12521/*
12522 * Sync all cylinder groups that were dirty at the time this function is
12523 * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12524 * is used to flush freedep activity that may be holding up writes to a
12525 * indirect block.
12526 */
12527static int
12528sync_cgs(mp, waitfor)
12529	struct mount *mp;
12530	int waitfor;
12531{
12532	struct bmsafemap *bmsafemap;
12533	struct bmsafemap *sentinel;
12534	struct ufsmount *ump;
12535	struct buf *bp;
12536	int error;
12537
12538	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12539	sentinel->sm_cg = -1;
12540	ump = VFSTOUFS(mp);
12541	error = 0;
12542	ACQUIRE_LOCK(ump);
12543	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12544	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12545	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12546		/* Skip sentinels and cgs with no work to release. */
12547		if (bmsafemap->sm_cg == -1 ||
12548		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12549		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12550			LIST_REMOVE(sentinel, sm_next);
12551			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12552			continue;
12553		}
12554		/*
12555		 * If we don't get the lock and we're waiting try again, if
12556		 * not move on to the next buf and try to sync it.
12557		 */
12558		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12559		if (bp == NULL && waitfor == MNT_WAIT)
12560			continue;
12561		LIST_REMOVE(sentinel, sm_next);
12562		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12563		if (bp == NULL)
12564			continue;
12565		FREE_LOCK(ump);
12566		if (waitfor == MNT_NOWAIT)
12567			bawrite(bp);
12568		else
12569			error = bwrite(bp);
12570		ACQUIRE_LOCK(ump);
12571		if (error)
12572			break;
12573	}
12574	LIST_REMOVE(sentinel, sm_next);
12575	FREE_LOCK(ump);
12576	free(sentinel, M_BMSAFEMAP);
12577	return (error);
12578}
12579
12580/*
12581 * This routine is called when we are trying to synchronously flush a
12582 * file. This routine must eliminate any filesystem metadata dependencies
12583 * so that the syncing routine can succeed.
12584 */
12585int
12586softdep_sync_metadata(struct vnode *vp)
12587{
12588	struct inode *ip;
12589	int error;
12590
12591	ip = VTOI(vp);
12592	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12593	    ("softdep_sync_metadata called on non-softdep filesystem"));
12594	/*
12595	 * Ensure that any direct block dependencies have been cleared,
12596	 * truncations are started, and inode references are journaled.
12597	 */
12598	ACQUIRE_LOCK(ip->i_ump);
12599	/*
12600	 * Write all journal records to prevent rollbacks on devvp.
12601	 */
12602	if (vp->v_type == VCHR)
12603		softdep_flushjournal(vp->v_mount);
12604	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12605	/*
12606	 * Ensure that all truncates are written so we won't find deps on
12607	 * indirect blocks.
12608	 */
12609	process_truncates(vp);
12610	FREE_LOCK(ip->i_ump);
12611
12612	return (error);
12613}
12614
12615/*
12616 * This routine is called when we are attempting to sync a buf with
12617 * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12618 * other IO it can but returns EBUSY if the buffer is not yet able to
12619 * be written.  Dependencies which will not cause rollbacks will always
12620 * return 0.
12621 */
12622int
12623softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12624{
12625	struct indirdep *indirdep;
12626	struct pagedep *pagedep;
12627	struct allocindir *aip;
12628	struct newblk *newblk;
12629	struct ufsmount *ump;
12630	struct buf *nbp;
12631	struct worklist *wk;
12632	int i, error;
12633
12634	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12635	    ("softdep_sync_buf called on non-softdep filesystem"));
12636	/*
12637	 * For VCHR we just don't want to force flush any dependencies that
12638	 * will cause rollbacks.
12639	 */
12640	if (vp->v_type == VCHR) {
12641		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12642			return (EBUSY);
12643		return (0);
12644	}
12645	ump = VTOI(vp)->i_ump;
12646	ACQUIRE_LOCK(ump);
12647	/*
12648	 * As we hold the buffer locked, none of its dependencies
12649	 * will disappear.
12650	 */
12651	error = 0;
12652top:
12653	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12654		switch (wk->wk_type) {
12655
12656		case D_ALLOCDIRECT:
12657		case D_ALLOCINDIR:
12658			newblk = WK_NEWBLK(wk);
12659			if (newblk->nb_jnewblk != NULL) {
12660				if (waitfor == MNT_NOWAIT) {
12661					error = EBUSY;
12662					goto out_unlock;
12663				}
12664				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12665				goto top;
12666			}
12667			if (newblk->nb_state & DEPCOMPLETE ||
12668			    waitfor == MNT_NOWAIT)
12669				continue;
12670			nbp = newblk->nb_bmsafemap->sm_buf;
12671			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12672			if (nbp == NULL)
12673				goto top;
12674			FREE_LOCK(ump);
12675			if ((error = bwrite(nbp)) != 0)
12676				goto out;
12677			ACQUIRE_LOCK(ump);
12678			continue;
12679
12680		case D_INDIRDEP:
12681			indirdep = WK_INDIRDEP(wk);
12682			if (waitfor == MNT_NOWAIT) {
12683				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12684				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12685					error = EBUSY;
12686					goto out_unlock;
12687				}
12688			}
12689			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12690				panic("softdep_sync_buf: truncation pending.");
12691		restart:
12692			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12693				newblk = (struct newblk *)aip;
12694				if (newblk->nb_jnewblk != NULL) {
12695					jwait(&newblk->nb_jnewblk->jn_list,
12696					    waitfor);
12697					goto restart;
12698				}
12699				if (newblk->nb_state & DEPCOMPLETE)
12700					continue;
12701				nbp = newblk->nb_bmsafemap->sm_buf;
12702				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12703				if (nbp == NULL)
12704					goto restart;
12705				FREE_LOCK(ump);
12706				if ((error = bwrite(nbp)) != 0)
12707					goto out;
12708				ACQUIRE_LOCK(ump);
12709				goto restart;
12710			}
12711			continue;
12712
12713		case D_PAGEDEP:
12714			/*
12715			 * Only flush directory entries in synchronous passes.
12716			 */
12717			if (waitfor != MNT_WAIT) {
12718				error = EBUSY;
12719				goto out_unlock;
12720			}
12721			/*
12722			 * While syncing snapshots, we must allow recursive
12723			 * lookups.
12724			 */
12725			BUF_AREC(bp);
12726			/*
12727			 * We are trying to sync a directory that may
12728			 * have dependencies on both its own metadata
12729			 * and/or dependencies on the inodes of any
12730			 * recently allocated files. We walk its diradd
12731			 * lists pushing out the associated inode.
12732			 */
12733			pagedep = WK_PAGEDEP(wk);
12734			for (i = 0; i < DAHASHSZ; i++) {
12735				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12736					continue;
12737				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12738				    &pagedep->pd_diraddhd[i]))) {
12739					BUF_NOREC(bp);
12740					goto out_unlock;
12741				}
12742			}
12743			BUF_NOREC(bp);
12744			continue;
12745
12746		case D_FREEWORK:
12747		case D_FREEDEP:
12748		case D_JSEGDEP:
12749		case D_JNEWBLK:
12750			continue;
12751
12752		default:
12753			panic("softdep_sync_buf: Unknown type %s",
12754			    TYPENAME(wk->wk_type));
12755			/* NOTREACHED */
12756		}
12757	}
12758out_unlock:
12759	FREE_LOCK(ump);
12760out:
12761	return (error);
12762}
12763
12764/*
12765 * Flush the dependencies associated with an inodedep.
12766 * Called with splbio blocked.
12767 */
12768static int
12769flush_inodedep_deps(vp, mp, ino)
12770	struct vnode *vp;
12771	struct mount *mp;
12772	ino_t ino;
12773{
12774	struct inodedep *inodedep;
12775	struct inoref *inoref;
12776	struct ufsmount *ump;
12777	int error, waitfor;
12778
12779	/*
12780	 * This work is done in two passes. The first pass grabs most
12781	 * of the buffers and begins asynchronously writing them. The
12782	 * only way to wait for these asynchronous writes is to sleep
12783	 * on the filesystem vnode which may stay busy for a long time
12784	 * if the filesystem is active. So, instead, we make a second
12785	 * pass over the dependencies blocking on each write. In the
12786	 * usual case we will be blocking against a write that we
12787	 * initiated, so when it is done the dependency will have been
12788	 * resolved. Thus the second pass is expected to end quickly.
12789	 * We give a brief window at the top of the loop to allow
12790	 * any pending I/O to complete.
12791	 */
12792	ump = VFSTOUFS(mp);
12793	LOCK_OWNED(ump);
12794	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12795		if (error)
12796			return (error);
12797		FREE_LOCK(ump);
12798		ACQUIRE_LOCK(ump);
12799restart:
12800		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12801			return (0);
12802		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12803			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12804			    == DEPCOMPLETE) {
12805				jwait(&inoref->if_list, MNT_WAIT);
12806				goto restart;
12807			}
12808		}
12809		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12810		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12811		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12812		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12813			continue;
12814		/*
12815		 * If pass2, we are done, otherwise do pass 2.
12816		 */
12817		if (waitfor == MNT_WAIT)
12818			break;
12819		waitfor = MNT_WAIT;
12820	}
12821	/*
12822	 * Try freeing inodedep in case all dependencies have been removed.
12823	 */
12824	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12825		(void) free_inodedep(inodedep);
12826	return (0);
12827}
12828
12829/*
12830 * Flush an inode dependency list.
12831 * Called with splbio blocked.
12832 */
12833static int
12834flush_deplist(listhead, waitfor, errorp)
12835	struct allocdirectlst *listhead;
12836	int waitfor;
12837	int *errorp;
12838{
12839	struct allocdirect *adp;
12840	struct newblk *newblk;
12841	struct ufsmount *ump;
12842	struct buf *bp;
12843
12844	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12845		return (0);
12846	ump = VFSTOUFS(adp->ad_list.wk_mp);
12847	LOCK_OWNED(ump);
12848	TAILQ_FOREACH(adp, listhead, ad_next) {
12849		newblk = (struct newblk *)adp;
12850		if (newblk->nb_jnewblk != NULL) {
12851			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12852			return (1);
12853		}
12854		if (newblk->nb_state & DEPCOMPLETE)
12855			continue;
12856		bp = newblk->nb_bmsafemap->sm_buf;
12857		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12858		if (bp == NULL) {
12859			if (waitfor == MNT_NOWAIT)
12860				continue;
12861			return (1);
12862		}
12863		FREE_LOCK(ump);
12864		if (waitfor == MNT_NOWAIT)
12865			bawrite(bp);
12866		else
12867			*errorp = bwrite(bp);
12868		ACQUIRE_LOCK(ump);
12869		return (1);
12870	}
12871	return (0);
12872}
12873
12874/*
12875 * Flush dependencies associated with an allocdirect block.
12876 */
12877static int
12878flush_newblk_dep(vp, mp, lbn)
12879	struct vnode *vp;
12880	struct mount *mp;
12881	ufs_lbn_t lbn;
12882{
12883	struct newblk *newblk;
12884	struct ufsmount *ump;
12885	struct bufobj *bo;
12886	struct inode *ip;
12887	struct buf *bp;
12888	ufs2_daddr_t blkno;
12889	int error;
12890
12891	error = 0;
12892	bo = &vp->v_bufobj;
12893	ip = VTOI(vp);
12894	blkno = DIP(ip, i_db[lbn]);
12895	if (blkno == 0)
12896		panic("flush_newblk_dep: Missing block");
12897	ump = VFSTOUFS(mp);
12898	ACQUIRE_LOCK(ump);
12899	/*
12900	 * Loop until all dependencies related to this block are satisfied.
12901	 * We must be careful to restart after each sleep in case a write
12902	 * completes some part of this process for us.
12903	 */
12904	for (;;) {
12905		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12906			FREE_LOCK(ump);
12907			break;
12908		}
12909		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12910			panic("flush_newblk_deps: Bad newblk %p", newblk);
12911		/*
12912		 * Flush the journal.
12913		 */
12914		if (newblk->nb_jnewblk != NULL) {
12915			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12916			continue;
12917		}
12918		/*
12919		 * Write the bitmap dependency.
12920		 */
12921		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12922			bp = newblk->nb_bmsafemap->sm_buf;
12923			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12924			if (bp == NULL)
12925				continue;
12926			FREE_LOCK(ump);
12927			error = bwrite(bp);
12928			if (error)
12929				break;
12930			ACQUIRE_LOCK(ump);
12931			continue;
12932		}
12933		/*
12934		 * Write the buffer.
12935		 */
12936		FREE_LOCK(ump);
12937		BO_LOCK(bo);
12938		bp = gbincore(bo, lbn);
12939		if (bp != NULL) {
12940			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12941			    LK_INTERLOCK, BO_LOCKPTR(bo));
12942			if (error == ENOLCK) {
12943				ACQUIRE_LOCK(ump);
12944				error = 0;
12945				continue; /* Slept, retry */
12946			}
12947			if (error != 0)
12948				break;	/* Failed */
12949			if (bp->b_flags & B_DELWRI) {
12950				bremfree(bp);
12951				error = bwrite(bp);
12952				if (error)
12953					break;
12954			} else
12955				BUF_UNLOCK(bp);
12956		} else
12957			BO_UNLOCK(bo);
12958		/*
12959		 * We have to wait for the direct pointers to
12960		 * point at the newdirblk before the dependency
12961		 * will go away.
12962		 */
12963		error = ffs_update(vp, 1);
12964		if (error)
12965			break;
12966		ACQUIRE_LOCK(ump);
12967	}
12968	return (error);
12969}
12970
12971/*
12972 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12973 * Called with splbio blocked.
12974 */
12975static int
12976flush_pagedep_deps(pvp, mp, diraddhdp)
12977	struct vnode *pvp;
12978	struct mount *mp;
12979	struct diraddhd *diraddhdp;
12980{
12981	struct inodedep *inodedep;
12982	struct inoref *inoref;
12983	struct ufsmount *ump;
12984	struct diradd *dap;
12985	struct vnode *vp;
12986	int error = 0;
12987	struct buf *bp;
12988	ino_t inum;
12989	struct diraddhd unfinished;
12990
12991	LIST_INIT(&unfinished);
12992	ump = VFSTOUFS(mp);
12993	LOCK_OWNED(ump);
12994restart:
12995	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12996		/*
12997		 * Flush ourselves if this directory entry
12998		 * has a MKDIR_PARENT dependency.
12999		 */
13000		if (dap->da_state & MKDIR_PARENT) {
13001			FREE_LOCK(ump);
13002			if ((error = ffs_update(pvp, 1)) != 0)
13003				break;
13004			ACQUIRE_LOCK(ump);
13005			/*
13006			 * If that cleared dependencies, go on to next.
13007			 */
13008			if (dap != LIST_FIRST(diraddhdp))
13009				continue;
13010			/*
13011			 * All MKDIR_PARENT dependencies and all the
13012			 * NEWBLOCK pagedeps that are contained in direct
13013			 * blocks were resolved by doing above ffs_update.
13014			 * Pagedeps contained in indirect blocks may
13015			 * require a complete sync'ing of the directory.
13016			 * We are in the midst of doing a complete sync,
13017			 * so if they are not resolved in this pass we
13018			 * defer them for now as they will be sync'ed by
13019			 * our caller shortly.
13020			 */
13021			LIST_REMOVE(dap, da_pdlist);
13022			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13023			continue;
13024		}
13025		/*
13026		 * A newly allocated directory must have its "." and
13027		 * ".." entries written out before its name can be
13028		 * committed in its parent.
13029		 */
13030		inum = dap->da_newinum;
13031		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13032			panic("flush_pagedep_deps: lost inode1");
13033		/*
13034		 * Wait for any pending journal adds to complete so we don't
13035		 * cause rollbacks while syncing.
13036		 */
13037		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13038			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13039			    == DEPCOMPLETE) {
13040				jwait(&inoref->if_list, MNT_WAIT);
13041				goto restart;
13042			}
13043		}
13044		if (dap->da_state & MKDIR_BODY) {
13045			FREE_LOCK(ump);
13046			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13047			    FFSV_FORCEINSMQ)))
13048				break;
13049			error = flush_newblk_dep(vp, mp, 0);
13050			/*
13051			 * If we still have the dependency we might need to
13052			 * update the vnode to sync the new link count to
13053			 * disk.
13054			 */
13055			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13056				error = ffs_update(vp, 1);
13057			vput(vp);
13058			if (error != 0)
13059				break;
13060			ACQUIRE_LOCK(ump);
13061			/*
13062			 * If that cleared dependencies, go on to next.
13063			 */
13064			if (dap != LIST_FIRST(diraddhdp))
13065				continue;
13066			if (dap->da_state & MKDIR_BODY) {
13067				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13068				    &inodedep);
13069				panic("flush_pagedep_deps: MKDIR_BODY "
13070				    "inodedep %p dap %p vp %p",
13071				    inodedep, dap, vp);
13072			}
13073		}
13074		/*
13075		 * Flush the inode on which the directory entry depends.
13076		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13077		 * the only remaining dependency is that the updated inode
13078		 * count must get pushed to disk. The inode has already
13079		 * been pushed into its inode buffer (via VOP_UPDATE) at
13080		 * the time of the reference count change. So we need only
13081		 * locate that buffer, ensure that there will be no rollback
13082		 * caused by a bitmap dependency, then write the inode buffer.
13083		 */
13084retry:
13085		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13086			panic("flush_pagedep_deps: lost inode");
13087		/*
13088		 * If the inode still has bitmap dependencies,
13089		 * push them to disk.
13090		 */
13091		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13092			bp = inodedep->id_bmsafemap->sm_buf;
13093			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13094			if (bp == NULL)
13095				goto retry;
13096			FREE_LOCK(ump);
13097			if ((error = bwrite(bp)) != 0)
13098				break;
13099			ACQUIRE_LOCK(ump);
13100			if (dap != LIST_FIRST(diraddhdp))
13101				continue;
13102		}
13103		/*
13104		 * If the inode is still sitting in a buffer waiting
13105		 * to be written or waiting for the link count to be
13106		 * adjusted update it here to flush it to disk.
13107		 */
13108		if (dap == LIST_FIRST(diraddhdp)) {
13109			FREE_LOCK(ump);
13110			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13111			    FFSV_FORCEINSMQ)))
13112				break;
13113			error = ffs_update(vp, 1);
13114			vput(vp);
13115			if (error)
13116				break;
13117			ACQUIRE_LOCK(ump);
13118		}
13119		/*
13120		 * If we have failed to get rid of all the dependencies
13121		 * then something is seriously wrong.
13122		 */
13123		if (dap == LIST_FIRST(diraddhdp)) {
13124			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13125			panic("flush_pagedep_deps: failed to flush "
13126			    "inodedep %p ino %ju dap %p",
13127			    inodedep, (uintmax_t)inum, dap);
13128		}
13129	}
13130	if (error)
13131		ACQUIRE_LOCK(ump);
13132	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13133		LIST_REMOVE(dap, da_pdlist);
13134		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13135	}
13136	return (error);
13137}
13138
13139/*
13140 * A large burst of file addition or deletion activity can drive the
13141 * memory load excessively high. First attempt to slow things down
13142 * using the techniques below. If that fails, this routine requests
13143 * the offending operations to fall back to running synchronously
13144 * until the memory load returns to a reasonable level.
13145 */
13146int
13147softdep_slowdown(vp)
13148	struct vnode *vp;
13149{
13150	struct ufsmount *ump;
13151	int jlow;
13152	int max_softdeps_hard;
13153
13154	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13155	    ("softdep_slowdown called on non-softdep filesystem"));
13156	ump = VFSTOUFS(vp->v_mount);
13157	ACQUIRE_LOCK(ump);
13158	jlow = 0;
13159	/*
13160	 * Check for journal space if needed.
13161	 */
13162	if (DOINGSUJ(vp)) {
13163		if (journal_space(ump, 0) == 0)
13164			jlow = 1;
13165	}
13166	/*
13167	 * If the system is under its limits and our filesystem is
13168	 * not responsible for more than our share of the usage and
13169	 * we are not low on journal space, then no need to slow down.
13170	 */
13171	max_softdeps_hard = max_softdeps * 11 / 10;
13172	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13173	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13174	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13175	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13176	    ump->softdep_curdeps[D_DIRREM] <
13177	    (max_softdeps_hard / 2) / stat_flush_threads &&
13178	    ump->softdep_curdeps[D_INODEDEP] <
13179	    max_softdeps_hard / stat_flush_threads &&
13180	    ump->softdep_curdeps[D_INDIRDEP] <
13181	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13182	    ump->softdep_curdeps[D_FREEBLKS] <
13183	    max_softdeps_hard / stat_flush_threads) {
13184		FREE_LOCK(ump);
13185  		return (0);
13186	}
13187	/*
13188	 * If the journal is low or our filesystem is over its limit
13189	 * then speedup the cleanup.
13190	 */
13191	if (ump->softdep_curdeps[D_INDIRDEP] <
13192	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13193		softdep_speedup(ump);
13194	stat_sync_limit_hit += 1;
13195	FREE_LOCK(ump);
13196	/*
13197	 * We only slow down the rate at which new dependencies are
13198	 * generated if we are not using journaling. With journaling,
13199	 * the cleanup should always be sufficient to keep things
13200	 * under control.
13201	 */
13202	if (DOINGSUJ(vp))
13203		return (0);
13204	return (1);
13205}
13206
13207/*
13208 * Called by the allocation routines when they are about to fail
13209 * in the hope that we can free up the requested resource (inodes
13210 * or disk space).
13211 *
13212 * First check to see if the work list has anything on it. If it has,
13213 * clean up entries until we successfully free the requested resource.
13214 * Because this process holds inodes locked, we cannot handle any remove
13215 * requests that might block on a locked inode as that could lead to
13216 * deadlock. If the worklist yields none of the requested resource,
13217 * start syncing out vnodes to free up the needed space.
13218 */
13219int
13220softdep_request_cleanup(fs, vp, cred, resource)
13221	struct fs *fs;
13222	struct vnode *vp;
13223	struct ucred *cred;
13224	int resource;
13225{
13226	struct ufsmount *ump;
13227	struct mount *mp;
13228	struct vnode *lvp, *mvp;
13229	long starttime;
13230	ufs2_daddr_t needed;
13231	int error;
13232
13233	/*
13234	 * If we are being called because of a process doing a
13235	 * copy-on-write, then it is not safe to process any
13236	 * worklist items as we will recurse into the copyonwrite
13237	 * routine.  This will result in an incoherent snapshot.
13238	 * If the vnode that we hold is a snapshot, we must avoid
13239	 * handling other resources that could cause deadlock.
13240	 */
13241	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13242		return (0);
13243
13244	if (resource == FLUSH_BLOCKS_WAIT)
13245		stat_cleanup_blkrequests += 1;
13246	else
13247		stat_cleanup_inorequests += 1;
13248
13249	mp = vp->v_mount;
13250	ump = VFSTOUFS(mp);
13251	mtx_assert(UFS_MTX(ump), MA_OWNED);
13252	UFS_UNLOCK(ump);
13253	error = ffs_update(vp, 1);
13254	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13255		UFS_LOCK(ump);
13256		return (0);
13257	}
13258	/*
13259	 * If we are in need of resources, start by cleaning up
13260	 * any block removals associated with our inode.
13261	 */
13262	ACQUIRE_LOCK(ump);
13263	process_removes(vp);
13264	process_truncates(vp);
13265	FREE_LOCK(ump);
13266	/*
13267	 * Now clean up at least as many resources as we will need.
13268	 *
13269	 * When requested to clean up inodes, the number that are needed
13270	 * is set by the number of simultaneous writers (mnt_writeopcount)
13271	 * plus a bit of slop (2) in case some more writers show up while
13272	 * we are cleaning.
13273	 *
13274	 * When requested to free up space, the amount of space that
13275	 * we need is enough blocks to allocate a full-sized segment
13276	 * (fs_contigsumsize). The number of such segments that will
13277	 * be needed is set by the number of simultaneous writers
13278	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13279	 * writers show up while we are cleaning.
13280	 *
13281	 * Additionally, if we are unpriviledged and allocating space,
13282	 * we need to ensure that we clean up enough blocks to get the
13283	 * needed number of blocks over the threshhold of the minimum
13284	 * number of blocks required to be kept free by the filesystem
13285	 * (fs_minfree).
13286	 */
13287	if (resource == FLUSH_INODES_WAIT) {
13288		needed = vp->v_mount->mnt_writeopcount + 2;
13289	} else if (resource == FLUSH_BLOCKS_WAIT) {
13290		needed = (vp->v_mount->mnt_writeopcount + 2) *
13291		    fs->fs_contigsumsize;
13292		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13293			needed += fragstoblks(fs,
13294			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13295			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13296	} else {
13297		UFS_LOCK(ump);
13298		printf("softdep_request_cleanup: Unknown resource type %d\n",
13299		    resource);
13300		return (0);
13301	}
13302	starttime = time_second;
13303retry:
13304	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13305	    fs->fs_cstotal.cs_nbfree <= needed) ||
13306	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13307	    fs->fs_cstotal.cs_nifree <= needed)) {
13308		ACQUIRE_LOCK(ump);
13309		if (ump->softdep_on_worklist > 0 &&
13310		    process_worklist_item(UFSTOVFS(ump),
13311		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13312			stat_worklist_push += 1;
13313		FREE_LOCK(ump);
13314	}
13315	/*
13316	 * If we still need resources and there are no more worklist
13317	 * entries to process to obtain them, we have to start flushing
13318	 * the dirty vnodes to force the release of additional requests
13319	 * to the worklist that we can then process to reap addition
13320	 * resources. We walk the vnodes associated with the mount point
13321	 * until we get the needed worklist requests that we can reap.
13322	 */
13323	if ((resource == FLUSH_BLOCKS_WAIT &&
13324	     fs->fs_cstotal.cs_nbfree <= needed) ||
13325	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13326	     fs->fs_cstotal.cs_nifree <= needed)) {
13327		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13328			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13329				VI_UNLOCK(lvp);
13330				continue;
13331			}
13332			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13333			    curthread))
13334				continue;
13335			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13336				vput(lvp);
13337				continue;
13338			}
13339			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13340			vput(lvp);
13341		}
13342		lvp = ump->um_devvp;
13343		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13344			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13345			VOP_UNLOCK(lvp, 0);
13346		}
13347		if (ump->softdep_on_worklist > 0) {
13348			stat_cleanup_retries += 1;
13349			goto retry;
13350		}
13351		stat_cleanup_failures += 1;
13352	}
13353	if (time_second - starttime > stat_cleanup_high_delay)
13354		stat_cleanup_high_delay = time_second - starttime;
13355	UFS_LOCK(ump);
13356	return (1);
13357}
13358
13359static bool
13360softdep_excess_items(struct ufsmount *ump, int item)
13361{
13362
13363	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13364	return (dep_current[item] > max_softdeps &&
13365	    ump->softdep_curdeps[item] > max_softdeps /
13366	    stat_flush_threads);
13367}
13368
13369static void
13370schedule_cleanup(struct mount *mp)
13371{
13372	struct ufsmount *ump;
13373	struct thread *td;
13374
13375	ump = VFSTOUFS(mp);
13376	LOCK_OWNED(ump);
13377	FREE_LOCK(ump);
13378	td = curthread;
13379	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13380	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13381		/*
13382		 * No ast is delivered to kernel threads, so nobody
13383		 * would deref the mp.  Some kernel threads
13384		 * explicitely check for AST, e.g. NFS daemon does
13385		 * this in the serving loop.
13386		 */
13387		return;
13388	}
13389	if (td->td_su != NULL)
13390		vfs_rel(td->td_su);
13391	vfs_ref(mp);
13392	td->td_su = mp;
13393	thread_lock(td);
13394	td->td_flags |= TDF_ASTPENDING;
13395	thread_unlock(td);
13396}
13397
13398static void
13399softdep_ast_cleanup_proc(void)
13400{
13401	struct thread *td;
13402	struct mount *mp;
13403	struct ufsmount *ump;
13404	int error;
13405	bool req;
13406
13407	td = curthread;
13408	while ((mp = td->td_su) != NULL) {
13409		td->td_su = NULL;
13410		error = vfs_busy(mp, MBF_NOWAIT);
13411		vfs_rel(mp);
13412		if (error != 0)
13413			return;
13414		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13415			ump = VFSTOUFS(mp);
13416			for (;;) {
13417				req = false;
13418				ACQUIRE_LOCK(ump);
13419				if (softdep_excess_items(ump, D_INODEDEP)) {
13420					req = true;
13421					request_cleanup(mp, FLUSH_INODES);
13422				}
13423				if (softdep_excess_items(ump, D_DIRREM)) {
13424					req = true;
13425					request_cleanup(mp, FLUSH_BLOCKS);
13426				}
13427				FREE_LOCK(ump);
13428				if (softdep_excess_items(ump, D_NEWBLK) ||
13429				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13430				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13431					error = vn_start_write(NULL, &mp,
13432					    V_WAIT);
13433					if (error == 0) {
13434						req = true;
13435						VFS_SYNC(mp, MNT_WAIT);
13436						vn_finished_write(mp);
13437					}
13438				}
13439				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13440					break;
13441			}
13442		}
13443		vfs_unbusy(mp);
13444	}
13445}
13446
13447/*
13448 * If memory utilization has gotten too high, deliberately slow things
13449 * down and speed up the I/O processing.
13450 */
13451static int
13452request_cleanup(mp, resource)
13453	struct mount *mp;
13454	int resource;
13455{
13456	struct thread *td = curthread;
13457	struct ufsmount *ump;
13458
13459	ump = VFSTOUFS(mp);
13460	LOCK_OWNED(ump);
13461	/*
13462	 * We never hold up the filesystem syncer or buf daemon.
13463	 */
13464	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13465		return (0);
13466	/*
13467	 * First check to see if the work list has gotten backlogged.
13468	 * If it has, co-opt this process to help clean up two entries.
13469	 * Because this process may hold inodes locked, we cannot
13470	 * handle any remove requests that might block on a locked
13471	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13472	 * to avoid recursively processing the worklist.
13473	 */
13474	if (ump->softdep_on_worklist > max_softdeps / 10) {
13475		td->td_pflags |= TDP_SOFTDEP;
13476		process_worklist_item(mp, 2, LK_NOWAIT);
13477		td->td_pflags &= ~TDP_SOFTDEP;
13478		stat_worklist_push += 2;
13479		return(1);
13480	}
13481	/*
13482	 * Next, we attempt to speed up the syncer process. If that
13483	 * is successful, then we allow the process to continue.
13484	 */
13485	if (softdep_speedup(ump) &&
13486	    resource != FLUSH_BLOCKS_WAIT &&
13487	    resource != FLUSH_INODES_WAIT)
13488		return(0);
13489	/*
13490	 * If we are resource constrained on inode dependencies, try
13491	 * flushing some dirty inodes. Otherwise, we are constrained
13492	 * by file deletions, so try accelerating flushes of directories
13493	 * with removal dependencies. We would like to do the cleanup
13494	 * here, but we probably hold an inode locked at this point and
13495	 * that might deadlock against one that we try to clean. So,
13496	 * the best that we can do is request the syncer daemon to do
13497	 * the cleanup for us.
13498	 */
13499	switch (resource) {
13500
13501	case FLUSH_INODES:
13502	case FLUSH_INODES_WAIT:
13503		ACQUIRE_GBLLOCK(&lk);
13504		stat_ino_limit_push += 1;
13505		req_clear_inodedeps += 1;
13506		FREE_GBLLOCK(&lk);
13507		stat_countp = &stat_ino_limit_hit;
13508		break;
13509
13510	case FLUSH_BLOCKS:
13511	case FLUSH_BLOCKS_WAIT:
13512		ACQUIRE_GBLLOCK(&lk);
13513		stat_blk_limit_push += 1;
13514		req_clear_remove += 1;
13515		FREE_GBLLOCK(&lk);
13516		stat_countp = &stat_blk_limit_hit;
13517		break;
13518
13519	default:
13520		panic("request_cleanup: unknown type");
13521	}
13522	/*
13523	 * Hopefully the syncer daemon will catch up and awaken us.
13524	 * We wait at most tickdelay before proceeding in any case.
13525	 */
13526	ACQUIRE_GBLLOCK(&lk);
13527	FREE_LOCK(ump);
13528	proc_waiting += 1;
13529	if (callout_pending(&softdep_callout) == FALSE)
13530		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13531		    pause_timer, 0);
13532
13533	if ((td->td_pflags & TDP_KTHREAD) == 0)
13534		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13535	proc_waiting -= 1;
13536	FREE_GBLLOCK(&lk);
13537	ACQUIRE_LOCK(ump);
13538	return (1);
13539}
13540
13541/*
13542 * Awaken processes pausing in request_cleanup and clear proc_waiting
13543 * to indicate that there is no longer a timer running. Pause_timer
13544 * will be called with the global softdep mutex (&lk) locked.
13545 */
13546static void
13547pause_timer(arg)
13548	void *arg;
13549{
13550
13551	GBLLOCK_OWNED(&lk);
13552	/*
13553	 * The callout_ API has acquired mtx and will hold it around this
13554	 * function call.
13555	 */
13556	*stat_countp += proc_waiting;
13557	wakeup(&proc_waiting);
13558}
13559
13560/*
13561 * If requested, try removing inode or removal dependencies.
13562 */
13563static void
13564check_clear_deps(mp)
13565	struct mount *mp;
13566{
13567
13568	/*
13569	 * If we are suspended, it may be because of our using
13570	 * too many inodedeps, so help clear them out.
13571	 */
13572	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13573		clear_inodedeps(mp);
13574	/*
13575	 * General requests for cleanup of backed up dependencies
13576	 */
13577	ACQUIRE_GBLLOCK(&lk);
13578	if (req_clear_inodedeps) {
13579		req_clear_inodedeps -= 1;
13580		FREE_GBLLOCK(&lk);
13581		clear_inodedeps(mp);
13582		ACQUIRE_GBLLOCK(&lk);
13583		wakeup(&proc_waiting);
13584	}
13585	if (req_clear_remove) {
13586		req_clear_remove -= 1;
13587		FREE_GBLLOCK(&lk);
13588		clear_remove(mp);
13589		ACQUIRE_GBLLOCK(&lk);
13590		wakeup(&proc_waiting);
13591	}
13592	FREE_GBLLOCK(&lk);
13593}
13594
13595/*
13596 * Flush out a directory with at least one removal dependency in an effort to
13597 * reduce the number of dirrem, freefile, and freeblks dependency structures.
13598 */
13599static void
13600clear_remove(mp)
13601	struct mount *mp;
13602{
13603	struct pagedep_hashhead *pagedephd;
13604	struct pagedep *pagedep;
13605	struct ufsmount *ump;
13606	struct vnode *vp;
13607	struct bufobj *bo;
13608	int error, cnt;
13609	ino_t ino;
13610
13611	ump = VFSTOUFS(mp);
13612	LOCK_OWNED(ump);
13613
13614	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13615		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13616		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13617			ump->pagedep_nextclean = 0;
13618		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13619			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13620				continue;
13621			ino = pagedep->pd_ino;
13622			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13623				continue;
13624			FREE_LOCK(ump);
13625
13626			/*
13627			 * Let unmount clear deps
13628			 */
13629			error = vfs_busy(mp, MBF_NOWAIT);
13630			if (error != 0)
13631				goto finish_write;
13632			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13633			     FFSV_FORCEINSMQ);
13634			vfs_unbusy(mp);
13635			if (error != 0) {
13636				softdep_error("clear_remove: vget", error);
13637				goto finish_write;
13638			}
13639			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13640				softdep_error("clear_remove: fsync", error);
13641			bo = &vp->v_bufobj;
13642			BO_LOCK(bo);
13643			drain_output(vp);
13644			BO_UNLOCK(bo);
13645			vput(vp);
13646		finish_write:
13647			vn_finished_write(mp);
13648			ACQUIRE_LOCK(ump);
13649			return;
13650		}
13651	}
13652}
13653
13654/*
13655 * Clear out a block of dirty inodes in an effort to reduce
13656 * the number of inodedep dependency structures.
13657 */
13658static void
13659clear_inodedeps(mp)
13660	struct mount *mp;
13661{
13662	struct inodedep_hashhead *inodedephd;
13663	struct inodedep *inodedep;
13664	struct ufsmount *ump;
13665	struct vnode *vp;
13666	struct fs *fs;
13667	int error, cnt;
13668	ino_t firstino, lastino, ino;
13669
13670	ump = VFSTOUFS(mp);
13671	fs = ump->um_fs;
13672	LOCK_OWNED(ump);
13673	/*
13674	 * Pick a random inode dependency to be cleared.
13675	 * We will then gather up all the inodes in its block
13676	 * that have dependencies and flush them out.
13677	 */
13678	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13679		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13680		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13681			ump->inodedep_nextclean = 0;
13682		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13683			break;
13684	}
13685	if (inodedep == NULL)
13686		return;
13687	/*
13688	 * Find the last inode in the block with dependencies.
13689	 */
13690	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13691	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13692		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13693			break;
13694	/*
13695	 * Asynchronously push all but the last inode with dependencies.
13696	 * Synchronously push the last inode with dependencies to ensure
13697	 * that the inode block gets written to free up the inodedeps.
13698	 */
13699	for (ino = firstino; ino <= lastino; ino++) {
13700		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13701			continue;
13702		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13703			continue;
13704		FREE_LOCK(ump);
13705		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13706		if (error != 0) {
13707			vn_finished_write(mp);
13708			ACQUIRE_LOCK(ump);
13709			return;
13710		}
13711		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13712		    FFSV_FORCEINSMQ)) != 0) {
13713			softdep_error("clear_inodedeps: vget", error);
13714			vfs_unbusy(mp);
13715			vn_finished_write(mp);
13716			ACQUIRE_LOCK(ump);
13717			return;
13718		}
13719		vfs_unbusy(mp);
13720		if (ino == lastino) {
13721			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13722				softdep_error("clear_inodedeps: fsync1", error);
13723		} else {
13724			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13725				softdep_error("clear_inodedeps: fsync2", error);
13726			BO_LOCK(&vp->v_bufobj);
13727			drain_output(vp);
13728			BO_UNLOCK(&vp->v_bufobj);
13729		}
13730		vput(vp);
13731		vn_finished_write(mp);
13732		ACQUIRE_LOCK(ump);
13733	}
13734}
13735
13736void
13737softdep_buf_append(bp, wkhd)
13738	struct buf *bp;
13739	struct workhead *wkhd;
13740{
13741	struct worklist *wk;
13742	struct ufsmount *ump;
13743
13744	if ((wk = LIST_FIRST(wkhd)) == NULL)
13745		return;
13746	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13747	    ("softdep_buf_append called on non-softdep filesystem"));
13748	ump = VFSTOUFS(wk->wk_mp);
13749	ACQUIRE_LOCK(ump);
13750	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13751		WORKLIST_REMOVE(wk);
13752		WORKLIST_INSERT(&bp->b_dep, wk);
13753	}
13754	FREE_LOCK(ump);
13755
13756}
13757
13758void
13759softdep_inode_append(ip, cred, wkhd)
13760	struct inode *ip;
13761	struct ucred *cred;
13762	struct workhead *wkhd;
13763{
13764	struct buf *bp;
13765	struct fs *fs;
13766	int error;
13767
13768	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
13769	    ("softdep_inode_append called on non-softdep filesystem"));
13770	fs = ip->i_fs;
13771	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13772	    (int)fs->fs_bsize, cred, &bp);
13773	if (error) {
13774		bqrelse(bp);
13775		softdep_freework(wkhd);
13776		return;
13777	}
13778	softdep_buf_append(bp, wkhd);
13779	bqrelse(bp);
13780}
13781
13782void
13783softdep_freework(wkhd)
13784	struct workhead *wkhd;
13785{
13786	struct worklist *wk;
13787	struct ufsmount *ump;
13788
13789	if ((wk = LIST_FIRST(wkhd)) == NULL)
13790		return;
13791	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13792	    ("softdep_freework called on non-softdep filesystem"));
13793	ump = VFSTOUFS(wk->wk_mp);
13794	ACQUIRE_LOCK(ump);
13795	handle_jwork(wkhd);
13796	FREE_LOCK(ump);
13797}
13798
13799/*
13800 * Function to determine if the buffer has outstanding dependencies
13801 * that will cause a roll-back if the buffer is written. If wantcount
13802 * is set, return number of dependencies, otherwise just yes or no.
13803 */
13804static int
13805softdep_count_dependencies(bp, wantcount)
13806	struct buf *bp;
13807	int wantcount;
13808{
13809	struct worklist *wk;
13810	struct ufsmount *ump;
13811	struct bmsafemap *bmsafemap;
13812	struct freework *freework;
13813	struct inodedep *inodedep;
13814	struct indirdep *indirdep;
13815	struct freeblks *freeblks;
13816	struct allocindir *aip;
13817	struct pagedep *pagedep;
13818	struct dirrem *dirrem;
13819	struct newblk *newblk;
13820	struct mkdir *mkdir;
13821	struct diradd *dap;
13822	int i, retval;
13823
13824	retval = 0;
13825	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13826		return (0);
13827	ump = VFSTOUFS(wk->wk_mp);
13828	ACQUIRE_LOCK(ump);
13829	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13830		switch (wk->wk_type) {
13831
13832		case D_INODEDEP:
13833			inodedep = WK_INODEDEP(wk);
13834			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13835				/* bitmap allocation dependency */
13836				retval += 1;
13837				if (!wantcount)
13838					goto out;
13839			}
13840			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13841				/* direct block pointer dependency */
13842				retval += 1;
13843				if (!wantcount)
13844					goto out;
13845			}
13846			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13847				/* direct block pointer dependency */
13848				retval += 1;
13849				if (!wantcount)
13850					goto out;
13851			}
13852			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13853				/* Add reference dependency. */
13854				retval += 1;
13855				if (!wantcount)
13856					goto out;
13857			}
13858			continue;
13859
13860		case D_INDIRDEP:
13861			indirdep = WK_INDIRDEP(wk);
13862
13863			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13864				/* indirect truncation dependency */
13865				retval += 1;
13866				if (!wantcount)
13867					goto out;
13868			}
13869
13870			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13871				/* indirect block pointer dependency */
13872				retval += 1;
13873				if (!wantcount)
13874					goto out;
13875			}
13876			continue;
13877
13878		case D_PAGEDEP:
13879			pagedep = WK_PAGEDEP(wk);
13880			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13881				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13882					/* Journal remove ref dependency. */
13883					retval += 1;
13884					if (!wantcount)
13885						goto out;
13886				}
13887			}
13888			for (i = 0; i < DAHASHSZ; i++) {
13889
13890				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13891					/* directory entry dependency */
13892					retval += 1;
13893					if (!wantcount)
13894						goto out;
13895				}
13896			}
13897			continue;
13898
13899		case D_BMSAFEMAP:
13900			bmsafemap = WK_BMSAFEMAP(wk);
13901			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13902				/* Add reference dependency. */
13903				retval += 1;
13904				if (!wantcount)
13905					goto out;
13906			}
13907			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13908				/* Allocate block dependency. */
13909				retval += 1;
13910				if (!wantcount)
13911					goto out;
13912			}
13913			continue;
13914
13915		case D_FREEBLKS:
13916			freeblks = WK_FREEBLKS(wk);
13917			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13918				/* Freeblk journal dependency. */
13919				retval += 1;
13920				if (!wantcount)
13921					goto out;
13922			}
13923			continue;
13924
13925		case D_ALLOCDIRECT:
13926		case D_ALLOCINDIR:
13927			newblk = WK_NEWBLK(wk);
13928			if (newblk->nb_jnewblk) {
13929				/* Journal allocate dependency. */
13930				retval += 1;
13931				if (!wantcount)
13932					goto out;
13933			}
13934			continue;
13935
13936		case D_MKDIR:
13937			mkdir = WK_MKDIR(wk);
13938			if (mkdir->md_jaddref) {
13939				/* Journal reference dependency. */
13940				retval += 1;
13941				if (!wantcount)
13942					goto out;
13943			}
13944			continue;
13945
13946		case D_FREEWORK:
13947		case D_FREEDEP:
13948		case D_JSEGDEP:
13949		case D_JSEG:
13950		case D_SBDEP:
13951			/* never a dependency on these blocks */
13952			continue;
13953
13954		default:
13955			panic("softdep_count_dependencies: Unexpected type %s",
13956			    TYPENAME(wk->wk_type));
13957			/* NOTREACHED */
13958		}
13959	}
13960out:
13961	FREE_LOCK(ump);
13962	return retval;
13963}
13964
13965/*
13966 * Acquire exclusive access to a buffer.
13967 * Must be called with a locked mtx parameter.
13968 * Return acquired buffer or NULL on failure.
13969 */
13970static struct buf *
13971getdirtybuf(bp, lock, waitfor)
13972	struct buf *bp;
13973	struct rwlock *lock;
13974	int waitfor;
13975{
13976	int error;
13977
13978	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13979		if (waitfor != MNT_WAIT)
13980			return (NULL);
13981		error = BUF_LOCK(bp,
13982		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13983		/*
13984		 * Even if we sucessfully acquire bp here, we have dropped
13985		 * lock, which may violates our guarantee.
13986		 */
13987		if (error == 0)
13988			BUF_UNLOCK(bp);
13989		else if (error != ENOLCK)
13990			panic("getdirtybuf: inconsistent lock: %d", error);
13991		rw_wlock(lock);
13992		return (NULL);
13993	}
13994	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13995		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
13996			rw_wunlock(lock);
13997			BO_LOCK(bp->b_bufobj);
13998			BUF_UNLOCK(bp);
13999			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14000				bp->b_vflags |= BV_BKGRDWAIT;
14001				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14002				       PRIBIO | PDROP, "getbuf", 0);
14003			} else
14004				BO_UNLOCK(bp->b_bufobj);
14005			rw_wlock(lock);
14006			return (NULL);
14007		}
14008		BUF_UNLOCK(bp);
14009		if (waitfor != MNT_WAIT)
14010			return (NULL);
14011		/*
14012		 * The lock argument must be bp->b_vp's mutex in
14013		 * this case.
14014		 */
14015#ifdef	DEBUG_VFS_LOCKS
14016		if (bp->b_vp->v_type != VCHR)
14017			ASSERT_BO_WLOCKED(bp->b_bufobj);
14018#endif
14019		bp->b_vflags |= BV_BKGRDWAIT;
14020		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14021		return (NULL);
14022	}
14023	if ((bp->b_flags & B_DELWRI) == 0) {
14024		BUF_UNLOCK(bp);
14025		return (NULL);
14026	}
14027	bremfree(bp);
14028	return (bp);
14029}
14030
14031
14032/*
14033 * Check if it is safe to suspend the file system now.  On entry,
14034 * the vnode interlock for devvp should be held.  Return 0 with
14035 * the mount interlock held if the file system can be suspended now,
14036 * otherwise return EAGAIN with the mount interlock held.
14037 */
14038int
14039softdep_check_suspend(struct mount *mp,
14040		      struct vnode *devvp,
14041		      int softdep_depcnt,
14042		      int softdep_accdepcnt,
14043		      int secondary_writes,
14044		      int secondary_accwrites)
14045{
14046	struct bufobj *bo;
14047	struct ufsmount *ump;
14048	struct inodedep *inodedep;
14049	int error, unlinked;
14050
14051	bo = &devvp->v_bufobj;
14052	ASSERT_BO_WLOCKED(bo);
14053
14054	/*
14055	 * If we are not running with soft updates, then we need only
14056	 * deal with secondary writes as we try to suspend.
14057	 */
14058	if (MOUNTEDSOFTDEP(mp) == 0) {
14059		MNT_ILOCK(mp);
14060		while (mp->mnt_secondary_writes != 0) {
14061			BO_UNLOCK(bo);
14062			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14063			    (PUSER - 1) | PDROP, "secwr", 0);
14064			BO_LOCK(bo);
14065			MNT_ILOCK(mp);
14066		}
14067
14068		/*
14069		 * Reasons for needing more work before suspend:
14070		 * - Dirty buffers on devvp.
14071		 * - Secondary writes occurred after start of vnode sync loop
14072		 */
14073		error = 0;
14074		if (bo->bo_numoutput > 0 ||
14075		    bo->bo_dirty.bv_cnt > 0 ||
14076		    secondary_writes != 0 ||
14077		    mp->mnt_secondary_writes != 0 ||
14078		    secondary_accwrites != mp->mnt_secondary_accwrites)
14079			error = EAGAIN;
14080		BO_UNLOCK(bo);
14081		return (error);
14082	}
14083
14084	/*
14085	 * If we are running with soft updates, then we need to coordinate
14086	 * with them as we try to suspend.
14087	 */
14088	ump = VFSTOUFS(mp);
14089	for (;;) {
14090		if (!TRY_ACQUIRE_LOCK(ump)) {
14091			BO_UNLOCK(bo);
14092			ACQUIRE_LOCK(ump);
14093			FREE_LOCK(ump);
14094			BO_LOCK(bo);
14095			continue;
14096		}
14097		MNT_ILOCK(mp);
14098		if (mp->mnt_secondary_writes != 0) {
14099			FREE_LOCK(ump);
14100			BO_UNLOCK(bo);
14101			msleep(&mp->mnt_secondary_writes,
14102			       MNT_MTX(mp),
14103			       (PUSER - 1) | PDROP, "secwr", 0);
14104			BO_LOCK(bo);
14105			continue;
14106		}
14107		break;
14108	}
14109
14110	unlinked = 0;
14111	if (MOUNTEDSUJ(mp)) {
14112		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14113		    inodedep != NULL;
14114		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14115			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14116			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14117			    UNLINKONLIST) ||
14118			    !check_inodedep_free(inodedep))
14119				continue;
14120			unlinked++;
14121		}
14122	}
14123
14124	/*
14125	 * Reasons for needing more work before suspend:
14126	 * - Dirty buffers on devvp.
14127	 * - Softdep activity occurred after start of vnode sync loop
14128	 * - Secondary writes occurred after start of vnode sync loop
14129	 */
14130	error = 0;
14131	if (bo->bo_numoutput > 0 ||
14132	    bo->bo_dirty.bv_cnt > 0 ||
14133	    softdep_depcnt != unlinked ||
14134	    ump->softdep_deps != unlinked ||
14135	    softdep_accdepcnt != ump->softdep_accdeps ||
14136	    secondary_writes != 0 ||
14137	    mp->mnt_secondary_writes != 0 ||
14138	    secondary_accwrites != mp->mnt_secondary_accwrites)
14139		error = EAGAIN;
14140	FREE_LOCK(ump);
14141	BO_UNLOCK(bo);
14142	return (error);
14143}
14144
14145
14146/*
14147 * Get the number of dependency structures for the file system, both
14148 * the current number and the total number allocated.  These will
14149 * later be used to detect that softdep processing has occurred.
14150 */
14151void
14152softdep_get_depcounts(struct mount *mp,
14153		      int *softdep_depsp,
14154		      int *softdep_accdepsp)
14155{
14156	struct ufsmount *ump;
14157
14158	if (MOUNTEDSOFTDEP(mp) == 0) {
14159		*softdep_depsp = 0;
14160		*softdep_accdepsp = 0;
14161		return;
14162	}
14163	ump = VFSTOUFS(mp);
14164	ACQUIRE_LOCK(ump);
14165	*softdep_depsp = ump->softdep_deps;
14166	*softdep_accdepsp = ump->softdep_accdeps;
14167	FREE_LOCK(ump);
14168}
14169
14170/*
14171 * Wait for pending output on a vnode to complete.
14172 * Must be called with vnode lock and interlock locked.
14173 *
14174 * XXX: Should just be a call to bufobj_wwait().
14175 */
14176static void
14177drain_output(vp)
14178	struct vnode *vp;
14179{
14180	struct bufobj *bo;
14181
14182	bo = &vp->v_bufobj;
14183	ASSERT_VOP_LOCKED(vp, "drain_output");
14184	ASSERT_BO_WLOCKED(bo);
14185
14186	while (bo->bo_numoutput) {
14187		bo->bo_flag |= BO_WWAIT;
14188		msleep((caddr_t)&bo->bo_numoutput,
14189		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
14190	}
14191}
14192
14193/*
14194 * Called whenever a buffer that is being invalidated or reallocated
14195 * contains dependencies. This should only happen if an I/O error has
14196 * occurred. The routine is called with the buffer locked.
14197 */
14198static void
14199softdep_deallocate_dependencies(bp)
14200	struct buf *bp;
14201{
14202
14203	if ((bp->b_ioflags & BIO_ERROR) == 0)
14204		panic("softdep_deallocate_dependencies: dangling deps");
14205	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14206		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14207	else
14208		printf("softdep_deallocate_dependencies: "
14209		    "got error %d while accessing filesystem\n", bp->b_error);
14210	if (bp->b_error != ENXIO)
14211		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14212}
14213
14214/*
14215 * Function to handle asynchronous write errors in the filesystem.
14216 */
14217static void
14218softdep_error(func, error)
14219	char *func;
14220	int error;
14221{
14222
14223	/* XXX should do something better! */
14224	printf("%s: got error %d while accessing filesystem\n", func, error);
14225}
14226
14227#ifdef DDB
14228
14229static void
14230inodedep_print(struct inodedep *inodedep, int verbose)
14231{
14232	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
14233	    " saveino %p\n",
14234	    inodedep, inodedep->id_fs, inodedep->id_state,
14235	    (intmax_t)inodedep->id_ino,
14236	    (intmax_t)fsbtodb(inodedep->id_fs,
14237	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14238	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
14239	    inodedep->id_savedino1);
14240
14241	if (verbose == 0)
14242		return;
14243
14244	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
14245	    "mkdiradd %p\n",
14246	    LIST_FIRST(&inodedep->id_pendinghd),
14247	    LIST_FIRST(&inodedep->id_bufwait),
14248	    LIST_FIRST(&inodedep->id_inowait),
14249	    TAILQ_FIRST(&inodedep->id_inoreflst),
14250	    inodedep->id_mkdiradd);
14251	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
14252	    TAILQ_FIRST(&inodedep->id_inoupdt),
14253	    TAILQ_FIRST(&inodedep->id_newinoupdt),
14254	    TAILQ_FIRST(&inodedep->id_extupdt),
14255	    TAILQ_FIRST(&inodedep->id_newextupdt));
14256}
14257
14258DB_SHOW_COMMAND(inodedep, db_show_inodedep)
14259{
14260
14261	if (have_addr == 0) {
14262		db_printf("Address required\n");
14263		return;
14264	}
14265	inodedep_print((struct inodedep*)addr, 1);
14266}
14267
14268DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
14269{
14270	struct inodedep_hashhead *inodedephd;
14271	struct inodedep *inodedep;
14272	struct ufsmount *ump;
14273	int cnt;
14274
14275	if (have_addr == 0) {
14276		db_printf("Address required\n");
14277		return;
14278	}
14279	ump = (struct ufsmount *)addr;
14280	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14281		inodedephd = &ump->inodedep_hashtbl[cnt];
14282		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14283			inodedep_print(inodedep, 0);
14284		}
14285	}
14286}
14287
14288DB_SHOW_COMMAND(worklist, db_show_worklist)
14289{
14290	struct worklist *wk;
14291
14292	if (have_addr == 0) {
14293		db_printf("Address required\n");
14294		return;
14295	}
14296	wk = (struct worklist *)addr;
14297	printf("worklist: %p type %s state 0x%X\n",
14298	    wk, TYPENAME(wk->wk_type), wk->wk_state);
14299}
14300
14301DB_SHOW_COMMAND(workhead, db_show_workhead)
14302{
14303	struct workhead *wkhd;
14304	struct worklist *wk;
14305	int i;
14306
14307	if (have_addr == 0) {
14308		db_printf("Address required\n");
14309		return;
14310	}
14311	wkhd = (struct workhead *)addr;
14312	wk = LIST_FIRST(wkhd);
14313	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
14314		db_printf("worklist: %p type %s state 0x%X",
14315		    wk, TYPENAME(wk->wk_type), wk->wk_state);
14316	if (i == 100)
14317		db_printf("workhead overflow");
14318	printf("\n");
14319}
14320
14321
14322DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
14323{
14324	struct mkdirlist *mkdirlisthd;
14325	struct jaddref *jaddref;
14326	struct diradd *diradd;
14327	struct mkdir *mkdir;
14328
14329	if (have_addr == 0) {
14330		db_printf("Address required\n");
14331		return;
14332	}
14333	mkdirlisthd = (struct mkdirlist *)addr;
14334	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14335		diradd = mkdir->md_diradd;
14336		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
14337		    mkdir, mkdir->md_state, diradd, diradd->da_state);
14338		if ((jaddref = mkdir->md_jaddref) != NULL)
14339			db_printf(" jaddref %p jaddref state 0x%X",
14340			    jaddref, jaddref->ja_state);
14341		db_printf("\n");
14342	}
14343}
14344
14345/* exported to ffs_vfsops.c */
14346extern void db_print_ffs(struct ufsmount *ump);
14347void
14348db_print_ffs(struct ufsmount *ump)
14349{
14350	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
14351	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
14352	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
14353	    ump->softdep_deps, ump->softdep_req);
14354}
14355
14356#endif /* DDB */
14357
14358#endif /* SOFTUPDATES */
14359