ffs_softdep.c revision 284021
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick.
3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4 * All rights reserved.
5 *
6 * The soft updates code is derived from the appendix of a University
7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8 * "Soft Updates: A Solution to the Metadata Update Problem in File
9 * Systems", CSE-TR-254-95, August 1995).
10 *
11 * Further information about soft updates can be obtained from:
12 *
13 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14 *	1614 Oxford Street		mckusick@mckusick.com
15 *	Berkeley, CA 94709-1608		+1-510-843-9542
16 *	USA
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 *
39 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40 */
41
42#include <sys/cdefs.h>
43__FBSDID("$FreeBSD: stable/10/sys/ufs/ffs/ffs_softdep.c 284021 2015-06-05 08:36:25Z kib $");
44
45#include "opt_ffs.h"
46#include "opt_quota.h"
47#include "opt_ddb.h"
48
49/*
50 * For now we want the safety net that the DEBUG flag provides.
51 */
52#ifndef DEBUG
53#define DEBUG
54#endif
55
56#include <sys/param.h>
57#include <sys/kernel.h>
58#include <sys/systm.h>
59#include <sys/bio.h>
60#include <sys/buf.h>
61#include <sys/kdb.h>
62#include <sys/kthread.h>
63#include <sys/ktr.h>
64#include <sys/limits.h>
65#include <sys/lock.h>
66#include <sys/malloc.h>
67#include <sys/mount.h>
68#include <sys/mutex.h>
69#include <sys/namei.h>
70#include <sys/priv.h>
71#include <sys/proc.h>
72#include <sys/rwlock.h>
73#include <sys/stat.h>
74#include <sys/sysctl.h>
75#include <sys/syslog.h>
76#include <sys/vnode.h>
77#include <sys/conf.h>
78
79#include <ufs/ufs/dir.h>
80#include <ufs/ufs/extattr.h>
81#include <ufs/ufs/quota.h>
82#include <ufs/ufs/inode.h>
83#include <ufs/ufs/ufsmount.h>
84#include <ufs/ffs/fs.h>
85#include <ufs/ffs/softdep.h>
86#include <ufs/ffs/ffs_extern.h>
87#include <ufs/ufs/ufs_extern.h>
88
89#include <vm/vm.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_object.h>
92
93#include <geom/geom.h>
94
95#include <ddb/ddb.h>
96
97#define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98
99#ifndef SOFTUPDATES
100
101int
102softdep_flushfiles(oldmnt, flags, td)
103	struct mount *oldmnt;
104	int flags;
105	struct thread *td;
106{
107
108	panic("softdep_flushfiles called");
109}
110
111int
112softdep_mount(devvp, mp, fs, cred)
113	struct vnode *devvp;
114	struct mount *mp;
115	struct fs *fs;
116	struct ucred *cred;
117{
118
119	return (0);
120}
121
122void
123softdep_initialize()
124{
125
126	return;
127}
128
129void
130softdep_uninitialize()
131{
132
133	return;
134}
135
136void
137softdep_unmount(mp)
138	struct mount *mp;
139{
140
141	panic("softdep_unmount called");
142}
143
144void
145softdep_setup_sbupdate(ump, fs, bp)
146	struct ufsmount *ump;
147	struct fs *fs;
148	struct buf *bp;
149{
150
151	panic("softdep_setup_sbupdate called");
152}
153
154void
155softdep_setup_inomapdep(bp, ip, newinum, mode)
156	struct buf *bp;
157	struct inode *ip;
158	ino_t newinum;
159	int mode;
160{
161
162	panic("softdep_setup_inomapdep called");
163}
164
165void
166softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
167	struct buf *bp;
168	struct mount *mp;
169	ufs2_daddr_t newblkno;
170	int frags;
171	int oldfrags;
172{
173
174	panic("softdep_setup_blkmapdep called");
175}
176
177void
178softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
179	struct inode *ip;
180	ufs_lbn_t lbn;
181	ufs2_daddr_t newblkno;
182	ufs2_daddr_t oldblkno;
183	long newsize;
184	long oldsize;
185	struct buf *bp;
186{
187
188	panic("softdep_setup_allocdirect called");
189}
190
191void
192softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
193	struct inode *ip;
194	ufs_lbn_t lbn;
195	ufs2_daddr_t newblkno;
196	ufs2_daddr_t oldblkno;
197	long newsize;
198	long oldsize;
199	struct buf *bp;
200{
201
202	panic("softdep_setup_allocext called");
203}
204
205void
206softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
207	struct inode *ip;
208	ufs_lbn_t lbn;
209	struct buf *bp;
210	int ptrno;
211	ufs2_daddr_t newblkno;
212	ufs2_daddr_t oldblkno;
213	struct buf *nbp;
214{
215
216	panic("softdep_setup_allocindir_page called");
217}
218
219void
220softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
221	struct buf *nbp;
222	struct inode *ip;
223	struct buf *bp;
224	int ptrno;
225	ufs2_daddr_t newblkno;
226{
227
228	panic("softdep_setup_allocindir_meta called");
229}
230
231void
232softdep_journal_freeblocks(ip, cred, length, flags)
233	struct inode *ip;
234	struct ucred *cred;
235	off_t length;
236	int flags;
237{
238
239	panic("softdep_journal_freeblocks called");
240}
241
242void
243softdep_journal_fsync(ip)
244	struct inode *ip;
245{
246
247	panic("softdep_journal_fsync called");
248}
249
250void
251softdep_setup_freeblocks(ip, length, flags)
252	struct inode *ip;
253	off_t length;
254	int flags;
255{
256
257	panic("softdep_setup_freeblocks called");
258}
259
260void
261softdep_freefile(pvp, ino, mode)
262		struct vnode *pvp;
263		ino_t ino;
264		int mode;
265{
266
267	panic("softdep_freefile called");
268}
269
270int
271softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
272	struct buf *bp;
273	struct inode *dp;
274	off_t diroffset;
275	ino_t newinum;
276	struct buf *newdirbp;
277	int isnewblk;
278{
279
280	panic("softdep_setup_directory_add called");
281}
282
283void
284softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
285	struct buf *bp;
286	struct inode *dp;
287	caddr_t base;
288	caddr_t oldloc;
289	caddr_t newloc;
290	int entrysize;
291{
292
293	panic("softdep_change_directoryentry_offset called");
294}
295
296void
297softdep_setup_remove(bp, dp, ip, isrmdir)
298	struct buf *bp;
299	struct inode *dp;
300	struct inode *ip;
301	int isrmdir;
302{
303
304	panic("softdep_setup_remove called");
305}
306
307void
308softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
309	struct buf *bp;
310	struct inode *dp;
311	struct inode *ip;
312	ino_t newinum;
313	int isrmdir;
314{
315
316	panic("softdep_setup_directory_change called");
317}
318
319void
320softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
321	struct mount *mp;
322	struct buf *bp;
323	ufs2_daddr_t blkno;
324	int frags;
325	struct workhead *wkhd;
326{
327
328	panic("%s called", __FUNCTION__);
329}
330
331void
332softdep_setup_inofree(mp, bp, ino, wkhd)
333	struct mount *mp;
334	struct buf *bp;
335	ino_t ino;
336	struct workhead *wkhd;
337{
338
339	panic("%s called", __FUNCTION__);
340}
341
342void
343softdep_setup_unlink(dp, ip)
344	struct inode *dp;
345	struct inode *ip;
346{
347
348	panic("%s called", __FUNCTION__);
349}
350
351void
352softdep_setup_link(dp, ip)
353	struct inode *dp;
354	struct inode *ip;
355{
356
357	panic("%s called", __FUNCTION__);
358}
359
360void
361softdep_revert_link(dp, ip)
362	struct inode *dp;
363	struct inode *ip;
364{
365
366	panic("%s called", __FUNCTION__);
367}
368
369void
370softdep_setup_rmdir(dp, ip)
371	struct inode *dp;
372	struct inode *ip;
373{
374
375	panic("%s called", __FUNCTION__);
376}
377
378void
379softdep_revert_rmdir(dp, ip)
380	struct inode *dp;
381	struct inode *ip;
382{
383
384	panic("%s called", __FUNCTION__);
385}
386
387void
388softdep_setup_create(dp, ip)
389	struct inode *dp;
390	struct inode *ip;
391{
392
393	panic("%s called", __FUNCTION__);
394}
395
396void
397softdep_revert_create(dp, ip)
398	struct inode *dp;
399	struct inode *ip;
400{
401
402	panic("%s called", __FUNCTION__);
403}
404
405void
406softdep_setup_mkdir(dp, ip)
407	struct inode *dp;
408	struct inode *ip;
409{
410
411	panic("%s called", __FUNCTION__);
412}
413
414void
415softdep_revert_mkdir(dp, ip)
416	struct inode *dp;
417	struct inode *ip;
418{
419
420	panic("%s called", __FUNCTION__);
421}
422
423void
424softdep_setup_dotdot_link(dp, ip)
425	struct inode *dp;
426	struct inode *ip;
427{
428
429	panic("%s called", __FUNCTION__);
430}
431
432int
433softdep_prealloc(vp, waitok)
434	struct vnode *vp;
435	int waitok;
436{
437
438	panic("%s called", __FUNCTION__);
439}
440
441int
442softdep_journal_lookup(mp, vpp)
443	struct mount *mp;
444	struct vnode **vpp;
445{
446
447	return (ENOENT);
448}
449
450void
451softdep_change_linkcnt(ip)
452	struct inode *ip;
453{
454
455	panic("softdep_change_linkcnt called");
456}
457
458void
459softdep_load_inodeblock(ip)
460	struct inode *ip;
461{
462
463	panic("softdep_load_inodeblock called");
464}
465
466void
467softdep_update_inodeblock(ip, bp, waitfor)
468	struct inode *ip;
469	struct buf *bp;
470	int waitfor;
471{
472
473	panic("softdep_update_inodeblock called");
474}
475
476int
477softdep_fsync(vp)
478	struct vnode *vp;	/* the "in_core" copy of the inode */
479{
480
481	return (0);
482}
483
484void
485softdep_fsync_mountdev(vp)
486	struct vnode *vp;
487{
488
489	return;
490}
491
492int
493softdep_flushworklist(oldmnt, countp, td)
494	struct mount *oldmnt;
495	int *countp;
496	struct thread *td;
497{
498
499	*countp = 0;
500	return (0);
501}
502
503int
504softdep_sync_metadata(struct vnode *vp)
505{
506
507	panic("softdep_sync_metadata called");
508}
509
510int
511softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
512{
513
514	panic("softdep_sync_buf called");
515}
516
517int
518softdep_slowdown(vp)
519	struct vnode *vp;
520{
521
522	panic("softdep_slowdown called");
523}
524
525int
526softdep_request_cleanup(fs, vp, cred, resource)
527	struct fs *fs;
528	struct vnode *vp;
529	struct ucred *cred;
530	int resource;
531{
532
533	return (0);
534}
535
536int
537softdep_check_suspend(struct mount *mp,
538		      struct vnode *devvp,
539		      int softdep_depcnt,
540		      int softdep_accdepcnt,
541		      int secondary_writes,
542		      int secondary_accwrites)
543{
544	struct bufobj *bo;
545	int error;
546
547	(void) softdep_depcnt,
548	(void) softdep_accdepcnt;
549
550	bo = &devvp->v_bufobj;
551	ASSERT_BO_WLOCKED(bo);
552
553	MNT_ILOCK(mp);
554	while (mp->mnt_secondary_writes != 0) {
555		BO_UNLOCK(bo);
556		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557		    (PUSER - 1) | PDROP, "secwr", 0);
558		BO_LOCK(bo);
559		MNT_ILOCK(mp);
560	}
561
562	/*
563	 * Reasons for needing more work before suspend:
564	 * - Dirty buffers on devvp.
565	 * - Secondary writes occurred after start of vnode sync loop
566	 */
567	error = 0;
568	if (bo->bo_numoutput > 0 ||
569	    bo->bo_dirty.bv_cnt > 0 ||
570	    secondary_writes != 0 ||
571	    mp->mnt_secondary_writes != 0 ||
572	    secondary_accwrites != mp->mnt_secondary_accwrites)
573		error = EAGAIN;
574	BO_UNLOCK(bo);
575	return (error);
576}
577
578void
579softdep_get_depcounts(struct mount *mp,
580		      int *softdepactivep,
581		      int *softdepactiveaccp)
582{
583	(void) mp;
584	*softdepactivep = 0;
585	*softdepactiveaccp = 0;
586}
587
588void
589softdep_buf_append(bp, wkhd)
590	struct buf *bp;
591	struct workhead *wkhd;
592{
593
594	panic("softdep_buf_appendwork called");
595}
596
597void
598softdep_inode_append(ip, cred, wkhd)
599	struct inode *ip;
600	struct ucred *cred;
601	struct workhead *wkhd;
602{
603
604	panic("softdep_inode_appendwork called");
605}
606
607void
608softdep_freework(wkhd)
609	struct workhead *wkhd;
610{
611
612	panic("softdep_freework called");
613}
614
615#else
616
617FEATURE(softupdates, "FFS soft-updates support");
618
619static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
620    "soft updates stats");
621static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
622    "total dependencies allocated");
623static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
624    "high use dependencies allocated");
625static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
626    "current dependencies allocated");
627static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
628    "current dependencies written");
629
630unsigned long dep_current[D_LAST + 1];
631unsigned long dep_highuse[D_LAST + 1];
632unsigned long dep_total[D_LAST + 1];
633unsigned long dep_write[D_LAST + 1];
634
635#define	SOFTDEP_TYPE(type, str, long)					\
636    static MALLOC_DEFINE(M_ ## type, #str, long);			\
637    SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
638	&dep_total[D_ ## type], 0, "");					\
639    SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
640	&dep_current[D_ ## type], 0, "");				\
641    SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
642	&dep_highuse[D_ ## type], 0, "");				\
643    SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
644	&dep_write[D_ ## type], 0, "");
645
646SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
647SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
648SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
649    "Block or frag allocated from cyl group map");
650SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
651SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
652SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
653SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
654SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
655SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
656SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
657SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
658SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
659SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
660SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
661SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
662SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
663SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
664SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
665SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
666SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
667SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
668SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
669SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
670SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
671SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
672SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
673SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
674
675static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
676
677static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
678static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
679static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
680
681#define M_SOFTDEP_FLAGS	(M_WAITOK)
682
683/*
684 * translate from workitem type to memory type
685 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
686 */
687static struct malloc_type *memtype[] = {
688	M_PAGEDEP,
689	M_INODEDEP,
690	M_BMSAFEMAP,
691	M_NEWBLK,
692	M_ALLOCDIRECT,
693	M_INDIRDEP,
694	M_ALLOCINDIR,
695	M_FREEFRAG,
696	M_FREEBLKS,
697	M_FREEFILE,
698	M_DIRADD,
699	M_MKDIR,
700	M_DIRREM,
701	M_NEWDIRBLK,
702	M_FREEWORK,
703	M_FREEDEP,
704	M_JADDREF,
705	M_JREMREF,
706	M_JMVREF,
707	M_JNEWBLK,
708	M_JFREEBLK,
709	M_JFREEFRAG,
710	M_JSEG,
711	M_JSEGDEP,
712	M_SBDEP,
713	M_JTRUNC,
714	M_JFSYNC,
715	M_SENTINEL
716};
717
718#define DtoM(type) (memtype[type])
719
720/*
721 * Names of malloc types.
722 */
723#define TYPENAME(type)  \
724	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
725/*
726 * End system adaptation definitions.
727 */
728
729#define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
730#define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
731
732/*
733 * Internal function prototypes.
734 */
735static	void check_clear_deps(struct mount *);
736static	void softdep_error(char *, int);
737static	int softdep_process_worklist(struct mount *, int);
738static	int softdep_waitidle(struct mount *, int);
739static	void drain_output(struct vnode *);
740static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
741static	int check_inodedep_free(struct inodedep *);
742static	void clear_remove(struct mount *);
743static	void clear_inodedeps(struct mount *);
744static	void unlinked_inodedep(struct mount *, struct inodedep *);
745static	void clear_unlinked_inodedep(struct inodedep *);
746static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
747static	int flush_pagedep_deps(struct vnode *, struct mount *,
748	    struct diraddhd *);
749static	int free_pagedep(struct pagedep *);
750static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
751static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
752static	int flush_deplist(struct allocdirectlst *, int, int *);
753static	int sync_cgs(struct mount *, int);
754static	int handle_written_filepage(struct pagedep *, struct buf *);
755static	int handle_written_sbdep(struct sbdep *, struct buf *);
756static	void initiate_write_sbdep(struct sbdep *);
757static	void diradd_inode_written(struct diradd *, struct inodedep *);
758static	int handle_written_indirdep(struct indirdep *, struct buf *,
759	    struct buf**);
760static	int handle_written_inodeblock(struct inodedep *, struct buf *);
761static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
762	    uint8_t *);
763static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
764static	void handle_written_jaddref(struct jaddref *);
765static	void handle_written_jremref(struct jremref *);
766static	void handle_written_jseg(struct jseg *, struct buf *);
767static	void handle_written_jnewblk(struct jnewblk *);
768static	void handle_written_jblkdep(struct jblkdep *);
769static	void handle_written_jfreefrag(struct jfreefrag *);
770static	void complete_jseg(struct jseg *);
771static	void complete_jsegs(struct jseg *);
772static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
773static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
774static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
775static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
776static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
777static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
778static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
779static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
780static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
781static	inline void inoref_write(struct inoref *, struct jseg *,
782	    struct jrefrec *);
783static	void handle_allocdirect_partdone(struct allocdirect *,
784	    struct workhead *);
785static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
786	    struct workhead *);
787static	void indirdep_complete(struct indirdep *);
788static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
789static	void indirblk_insert(struct freework *);
790static	void indirblk_remove(struct freework *);
791static	void handle_allocindir_partdone(struct allocindir *);
792static	void initiate_write_filepage(struct pagedep *, struct buf *);
793static	void initiate_write_indirdep(struct indirdep*, struct buf *);
794static	void handle_written_mkdir(struct mkdir *, int);
795static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
796	    uint8_t *);
797static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
798static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
799static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
800static	void handle_workitem_freefile(struct freefile *);
801static	int handle_workitem_remove(struct dirrem *, int);
802static	struct dirrem *newdirrem(struct buf *, struct inode *,
803	    struct inode *, int, struct dirrem **);
804static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
805	    struct buf *);
806static	void cancel_indirdep(struct indirdep *, struct buf *,
807	    struct freeblks *);
808static	void free_indirdep(struct indirdep *);
809static	void free_diradd(struct diradd *, struct workhead *);
810static	void merge_diradd(struct inodedep *, struct diradd *);
811static	void complete_diradd(struct diradd *);
812static	struct diradd *diradd_lookup(struct pagedep *, int);
813static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
814	    struct jremref *);
815static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
816	    struct jremref *);
817static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
818	    struct jremref *, struct jremref *);
819static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
820	    struct jremref *);
821static	void cancel_allocindir(struct allocindir *, struct buf *bp,
822	    struct freeblks *, int);
823static	int setup_trunc_indir(struct freeblks *, struct inode *,
824	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
825static	void complete_trunc_indir(struct freework *);
826static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
827	    int);
828static	void complete_mkdir(struct mkdir *);
829static	void free_newdirblk(struct newdirblk *);
830static	void free_jremref(struct jremref *);
831static	void free_jaddref(struct jaddref *);
832static	void free_jsegdep(struct jsegdep *);
833static	void free_jsegs(struct jblocks *);
834static	void rele_jseg(struct jseg *);
835static	void free_jseg(struct jseg *, struct jblocks *);
836static	void free_jnewblk(struct jnewblk *);
837static	void free_jblkdep(struct jblkdep *);
838static	void free_jfreefrag(struct jfreefrag *);
839static	void free_freedep(struct freedep *);
840static	void journal_jremref(struct dirrem *, struct jremref *,
841	    struct inodedep *);
842static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
843static	int cancel_jaddref(struct jaddref *, struct inodedep *,
844	    struct workhead *);
845static	void cancel_jfreefrag(struct jfreefrag *);
846static	inline void setup_freedirect(struct freeblks *, struct inode *,
847	    int, int);
848static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
849static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
850	    ufs_lbn_t, int);
851static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
852static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
853static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
854static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
855static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
856static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
857	    int, int);
858static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
859static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
860static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
861static	void newblk_freefrag(struct newblk*);
862static	void free_newblk(struct newblk *);
863static	void cancel_allocdirect(struct allocdirectlst *,
864	    struct allocdirect *, struct freeblks *);
865static	int check_inode_unwritten(struct inodedep *);
866static	int free_inodedep(struct inodedep *);
867static	void freework_freeblock(struct freework *);
868static	void freework_enqueue(struct freework *);
869static	int handle_workitem_freeblocks(struct freeblks *, int);
870static	int handle_complete_freeblocks(struct freeblks *, int);
871static	void handle_workitem_indirblk(struct freework *);
872static	void handle_written_freework(struct freework *);
873static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
874static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
875	    struct workhead *);
876static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
877	    struct inodedep *, struct allocindir *, ufs_lbn_t);
878static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
879	    ufs2_daddr_t, ufs_lbn_t);
880static	void handle_workitem_freefrag(struct freefrag *);
881static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
882	    ufs_lbn_t);
883static	void allocdirect_merge(struct allocdirectlst *,
884	    struct allocdirect *, struct allocdirect *);
885static	struct freefrag *allocindir_merge(struct allocindir *,
886	    struct allocindir *);
887static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
888	    struct bmsafemap **);
889static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
890	    int cg, struct bmsafemap *);
891static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
892	    struct newblk **);
893static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
894static	int inodedep_find(struct inodedep_hashhead *, ino_t,
895	    struct inodedep **);
896static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
897static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
898	    int, struct pagedep **);
899static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
900	    struct pagedep **);
901static	void pause_timer(void *);
902static	int request_cleanup(struct mount *, int);
903static	int process_worklist_item(struct mount *, int, int);
904static	void process_removes(struct vnode *);
905static	void process_truncates(struct vnode *);
906static	void jwork_move(struct workhead *, struct workhead *);
907static	void jwork_insert(struct workhead *, struct jsegdep *);
908static	void add_to_worklist(struct worklist *, int);
909static	void wake_worklist(struct worklist *);
910static	void wait_worklist(struct worklist *, char *);
911static	void remove_from_worklist(struct worklist *);
912static	void softdep_flush(void *);
913static	void softdep_flushjournal(struct mount *);
914static	int softdep_speedup(struct ufsmount *);
915static	void worklist_speedup(struct mount *);
916static	int journal_mount(struct mount *, struct fs *, struct ucred *);
917static	void journal_unmount(struct ufsmount *);
918static	int journal_space(struct ufsmount *, int);
919static	void journal_suspend(struct ufsmount *);
920static	int journal_unsuspend(struct ufsmount *ump);
921static	void softdep_prelink(struct vnode *, struct vnode *);
922static	void add_to_journal(struct worklist *);
923static	void remove_from_journal(struct worklist *);
924static	void softdep_process_journal(struct mount *, struct worklist *, int);
925static	struct jremref *newjremref(struct dirrem *, struct inode *,
926	    struct inode *ip, off_t, nlink_t);
927static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
928	    uint16_t);
929static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
930	    uint16_t);
931static	inline struct jsegdep *inoref_jseg(struct inoref *);
932static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
933static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
934	    ufs2_daddr_t, int);
935static	void adjust_newfreework(struct freeblks *, int);
936static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
937static	void move_newblock_dep(struct jaddref *, struct inodedep *);
938static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
939static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
940	    ufs2_daddr_t, long, ufs_lbn_t);
941static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
942	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
943static	int jwait(struct worklist *, int);
944static	struct inodedep *inodedep_lookup_ip(struct inode *);
945static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
946static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
947static	void handle_jwork(struct workhead *);
948static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
949	    struct mkdir **);
950static	struct jblocks *jblocks_create(void);
951static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
952static	void jblocks_free(struct jblocks *, struct mount *, int);
953static	void jblocks_destroy(struct jblocks *);
954static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
955
956/*
957 * Exported softdep operations.
958 */
959static	void softdep_disk_io_initiation(struct buf *);
960static	void softdep_disk_write_complete(struct buf *);
961static	void softdep_deallocate_dependencies(struct buf *);
962static	int softdep_count_dependencies(struct buf *bp, int);
963
964/*
965 * Global lock over all of soft updates.
966 */
967static struct mtx lk;
968MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
969
970#define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
971#define FREE_GBLLOCK(lk)	mtx_unlock(lk)
972#define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
973
974/*
975 * Per-filesystem soft-updates locking.
976 */
977#define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
978#define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
979#define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
980#define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
981#define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
982				    RA_WLOCKED)
983
984#define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
985#define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
986
987/*
988 * Worklist queue management.
989 * These routines require that the lock be held.
990 */
991#ifndef /* NOT */ DEBUG
992#define WORKLIST_INSERT(head, item) do {	\
993	(item)->wk_state |= ONWORKLIST;		\
994	LIST_INSERT_HEAD(head, item, wk_list);	\
995} while (0)
996#define WORKLIST_REMOVE(item) do {		\
997	(item)->wk_state &= ~ONWORKLIST;	\
998	LIST_REMOVE(item, wk_list);		\
999} while (0)
1000#define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1001#define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1002
1003#else /* DEBUG */
1004static	void worklist_insert(struct workhead *, struct worklist *, int);
1005static	void worklist_remove(struct worklist *, int);
1006
1007#define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1008#define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1009#define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1010#define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1011
1012static void
1013worklist_insert(head, item, locked)
1014	struct workhead *head;
1015	struct worklist *item;
1016	int locked;
1017{
1018
1019	if (locked)
1020		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1021	if (item->wk_state & ONWORKLIST)
1022		panic("worklist_insert: %p %s(0x%X) already on list",
1023		    item, TYPENAME(item->wk_type), item->wk_state);
1024	item->wk_state |= ONWORKLIST;
1025	LIST_INSERT_HEAD(head, item, wk_list);
1026}
1027
1028static void
1029worklist_remove(item, locked)
1030	struct worklist *item;
1031	int locked;
1032{
1033
1034	if (locked)
1035		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1036	if ((item->wk_state & ONWORKLIST) == 0)
1037		panic("worklist_remove: %p %s(0x%X) not on list",
1038		    item, TYPENAME(item->wk_type), item->wk_state);
1039	item->wk_state &= ~ONWORKLIST;
1040	LIST_REMOVE(item, wk_list);
1041}
1042#endif /* DEBUG */
1043
1044/*
1045 * Merge two jsegdeps keeping only the oldest one as newer references
1046 * can't be discarded until after older references.
1047 */
1048static inline struct jsegdep *
1049jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1050{
1051	struct jsegdep *swp;
1052
1053	if (two == NULL)
1054		return (one);
1055
1056	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1057		swp = one;
1058		one = two;
1059		two = swp;
1060	}
1061	WORKLIST_REMOVE(&two->jd_list);
1062	free_jsegdep(two);
1063
1064	return (one);
1065}
1066
1067/*
1068 * If two freedeps are compatible free one to reduce list size.
1069 */
1070static inline struct freedep *
1071freedep_merge(struct freedep *one, struct freedep *two)
1072{
1073	if (two == NULL)
1074		return (one);
1075
1076	if (one->fd_freework == two->fd_freework) {
1077		WORKLIST_REMOVE(&two->fd_list);
1078		free_freedep(two);
1079	}
1080	return (one);
1081}
1082
1083/*
1084 * Move journal work from one list to another.  Duplicate freedeps and
1085 * jsegdeps are coalesced to keep the lists as small as possible.
1086 */
1087static void
1088jwork_move(dst, src)
1089	struct workhead *dst;
1090	struct workhead *src;
1091{
1092	struct freedep *freedep;
1093	struct jsegdep *jsegdep;
1094	struct worklist *wkn;
1095	struct worklist *wk;
1096
1097	KASSERT(dst != src,
1098	    ("jwork_move: dst == src"));
1099	freedep = NULL;
1100	jsegdep = NULL;
1101	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1102		if (wk->wk_type == D_JSEGDEP)
1103			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1104		if (wk->wk_type == D_FREEDEP)
1105			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1106	}
1107
1108	while ((wk = LIST_FIRST(src)) != NULL) {
1109		WORKLIST_REMOVE(wk);
1110		WORKLIST_INSERT(dst, wk);
1111		if (wk->wk_type == D_JSEGDEP) {
1112			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1113			continue;
1114		}
1115		if (wk->wk_type == D_FREEDEP)
1116			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1117	}
1118}
1119
1120static void
1121jwork_insert(dst, jsegdep)
1122	struct workhead *dst;
1123	struct jsegdep *jsegdep;
1124{
1125	struct jsegdep *jsegdepn;
1126	struct worklist *wk;
1127
1128	LIST_FOREACH(wk, dst, wk_list)
1129		if (wk->wk_type == D_JSEGDEP)
1130			break;
1131	if (wk == NULL) {
1132		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1133		return;
1134	}
1135	jsegdepn = WK_JSEGDEP(wk);
1136	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1137		WORKLIST_REMOVE(wk);
1138		free_jsegdep(jsegdepn);
1139		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1140	} else
1141		free_jsegdep(jsegdep);
1142}
1143
1144/*
1145 * Routines for tracking and managing workitems.
1146 */
1147static	void workitem_free(struct worklist *, int);
1148static	void workitem_alloc(struct worklist *, int, struct mount *);
1149static	void workitem_reassign(struct worklist *, int);
1150
1151#define	WORKITEM_FREE(item, type) \
1152	workitem_free((struct worklist *)(item), (type))
1153#define	WORKITEM_REASSIGN(item, type) \
1154	workitem_reassign((struct worklist *)(item), (type))
1155
1156static void
1157workitem_free(item, type)
1158	struct worklist *item;
1159	int type;
1160{
1161	struct ufsmount *ump;
1162
1163#ifdef DEBUG
1164	if (item->wk_state & ONWORKLIST)
1165		panic("workitem_free: %s(0x%X) still on list",
1166		    TYPENAME(item->wk_type), item->wk_state);
1167	if (item->wk_type != type && type != D_NEWBLK)
1168		panic("workitem_free: type mismatch %s != %s",
1169		    TYPENAME(item->wk_type), TYPENAME(type));
1170#endif
1171	if (item->wk_state & IOWAITING)
1172		wakeup(item);
1173	ump = VFSTOUFS(item->wk_mp);
1174	LOCK_OWNED(ump);
1175	KASSERT(ump->softdep_deps > 0,
1176	    ("workitem_free: %s: softdep_deps going negative",
1177	    ump->um_fs->fs_fsmnt));
1178	if (--ump->softdep_deps == 0 && ump->softdep_req)
1179		wakeup(&ump->softdep_deps);
1180	KASSERT(dep_current[item->wk_type] > 0,
1181	    ("workitem_free: %s: dep_current[%s] going negative",
1182	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1183	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1184	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1185	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1186	atomic_subtract_long(&dep_current[item->wk_type], 1);
1187	ump->softdep_curdeps[item->wk_type] -= 1;
1188	free(item, DtoM(type));
1189}
1190
1191static void
1192workitem_alloc(item, type, mp)
1193	struct worklist *item;
1194	int type;
1195	struct mount *mp;
1196{
1197	struct ufsmount *ump;
1198
1199	item->wk_type = type;
1200	item->wk_mp = mp;
1201	item->wk_state = 0;
1202
1203	ump = VFSTOUFS(mp);
1204	ACQUIRE_GBLLOCK(&lk);
1205	dep_current[type]++;
1206	if (dep_current[type] > dep_highuse[type])
1207		dep_highuse[type] = dep_current[type];
1208	dep_total[type]++;
1209	FREE_GBLLOCK(&lk);
1210	ACQUIRE_LOCK(ump);
1211	ump->softdep_curdeps[type] += 1;
1212	ump->softdep_deps++;
1213	ump->softdep_accdeps++;
1214	FREE_LOCK(ump);
1215}
1216
1217static void
1218workitem_reassign(item, newtype)
1219	struct worklist *item;
1220	int newtype;
1221{
1222	struct ufsmount *ump;
1223
1224	ump = VFSTOUFS(item->wk_mp);
1225	LOCK_OWNED(ump);
1226	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1227	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1228	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1229	ump->softdep_curdeps[item->wk_type] -= 1;
1230	ump->softdep_curdeps[newtype] += 1;
1231	KASSERT(dep_current[item->wk_type] > 0,
1232	    ("workitem_reassign: %s: dep_current[%s] going negative",
1233	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1234	ACQUIRE_GBLLOCK(&lk);
1235	dep_current[newtype]++;
1236	dep_current[item->wk_type]--;
1237	if (dep_current[newtype] > dep_highuse[newtype])
1238		dep_highuse[newtype] = dep_current[newtype];
1239	dep_total[newtype]++;
1240	FREE_GBLLOCK(&lk);
1241	item->wk_type = newtype;
1242}
1243
1244/*
1245 * Workitem queue management
1246 */
1247static int max_softdeps;	/* maximum number of structs before slowdown */
1248static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1249static int proc_waiting;	/* tracks whether we have a timeout posted */
1250static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1251static struct callout softdep_callout;
1252static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1253static int req_clear_remove;	/* syncer process flush some freeblks */
1254static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1255
1256/*
1257 * runtime statistics
1258 */
1259static int stat_flush_threads;	/* number of softdep flushing threads */
1260static int stat_worklist_push;	/* number of worklist cleanups */
1261static int stat_blk_limit_push;	/* number of times block limit neared */
1262static int stat_ino_limit_push;	/* number of times inode limit neared */
1263static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1264static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1265static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1266static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1267static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1268static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1269static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1270static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1271static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1272static int stat_journal_min;	/* Times hit journal min threshold */
1273static int stat_journal_low;	/* Times hit journal low threshold */
1274static int stat_journal_wait;	/* Times blocked in jwait(). */
1275static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1276static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1277static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1278static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1279static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1280static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1281static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1282static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1283static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1284static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1285
1286SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1287    &max_softdeps, 0, "");
1288SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1289    &tickdelay, 0, "");
1290SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1291    &stat_flush_threads, 0, "");
1292SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1293    &stat_worklist_push, 0,"");
1294SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1295    &stat_blk_limit_push, 0,"");
1296SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1297    &stat_ino_limit_push, 0,"");
1298SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1299    &stat_blk_limit_hit, 0, "");
1300SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1301    &stat_ino_limit_hit, 0, "");
1302SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1303    &stat_sync_limit_hit, 0, "");
1304SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1305    &stat_indir_blk_ptrs, 0, "");
1306SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1307    &stat_inode_bitmap, 0, "");
1308SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1309    &stat_direct_blk_ptrs, 0, "");
1310SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1311    &stat_dir_entry, 0, "");
1312SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1313    &stat_jaddref, 0, "");
1314SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1315    &stat_jnewblk, 0, "");
1316SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1317    &stat_journal_low, 0, "");
1318SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1319    &stat_journal_min, 0, "");
1320SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1321    &stat_journal_wait, 0, "");
1322SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1323    &stat_jwait_filepage, 0, "");
1324SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1325    &stat_jwait_freeblks, 0, "");
1326SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1327    &stat_jwait_inode, 0, "");
1328SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1329    &stat_jwait_newblk, 0, "");
1330SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1331    &stat_cleanup_blkrequests, 0, "");
1332SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1333    &stat_cleanup_inorequests, 0, "");
1334SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1335    &stat_cleanup_high_delay, 0, "");
1336SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1337    &stat_cleanup_retries, 0, "");
1338SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1339    &stat_cleanup_failures, 0, "");
1340SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1341    &softdep_flushcache, 0, "");
1342SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1343    &stat_emptyjblocks, 0, "");
1344
1345SYSCTL_DECL(_vfs_ffs);
1346
1347/* Whether to recompute the summary at mount time */
1348static int compute_summary_at_mount = 0;
1349SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1350	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1351static int print_threads = 0;
1352SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1353    &print_threads, 0, "Notify flusher thread start/stop");
1354
1355/* List of all filesystems mounted with soft updates */
1356static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1357
1358/*
1359 * This function cleans the worklist for a filesystem.
1360 * Each filesystem running with soft dependencies gets its own
1361 * thread to run in this function. The thread is started up in
1362 * softdep_mount and shutdown in softdep_unmount. They show up
1363 * as part of the kernel "bufdaemon" process whose process
1364 * entry is available in bufdaemonproc.
1365 */
1366static int searchfailed;
1367extern struct proc *bufdaemonproc;
1368static void
1369softdep_flush(addr)
1370	void *addr;
1371{
1372	struct mount *mp;
1373	struct thread *td;
1374	struct ufsmount *ump;
1375
1376	td = curthread;
1377	td->td_pflags |= TDP_NORUNNINGBUF;
1378	mp = (struct mount *)addr;
1379	ump = VFSTOUFS(mp);
1380	atomic_add_int(&stat_flush_threads, 1);
1381	ACQUIRE_LOCK(ump);
1382	ump->softdep_flags &= ~FLUSH_STARTING;
1383	wakeup(&ump->softdep_flushtd);
1384	FREE_LOCK(ump);
1385	if (print_threads) {
1386		if (stat_flush_threads == 1)
1387			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1388			    bufdaemonproc->p_pid);
1389		printf("Start thread %s\n", td->td_name);
1390	}
1391	for (;;) {
1392		while (softdep_process_worklist(mp, 0) > 0 ||
1393		    (MOUNTEDSUJ(mp) &&
1394		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1395			kthread_suspend_check();
1396		ACQUIRE_LOCK(ump);
1397		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1398			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1399			    "sdflush", hz / 2);
1400		ump->softdep_flags &= ~FLUSH_CLEANUP;
1401		/*
1402		 * Check to see if we are done and need to exit.
1403		 */
1404		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1405			FREE_LOCK(ump);
1406			continue;
1407		}
1408		ump->softdep_flags &= ~FLUSH_EXIT;
1409		FREE_LOCK(ump);
1410		wakeup(&ump->softdep_flags);
1411		if (print_threads)
1412			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1413		atomic_subtract_int(&stat_flush_threads, 1);
1414		kthread_exit();
1415		panic("kthread_exit failed\n");
1416	}
1417}
1418
1419static void
1420worklist_speedup(mp)
1421	struct mount *mp;
1422{
1423	struct ufsmount *ump;
1424
1425	ump = VFSTOUFS(mp);
1426	LOCK_OWNED(ump);
1427	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1428		ump->softdep_flags |= FLUSH_CLEANUP;
1429	wakeup(&ump->softdep_flushtd);
1430}
1431
1432static int
1433softdep_speedup(ump)
1434	struct ufsmount *ump;
1435{
1436	struct ufsmount *altump;
1437	struct mount_softdeps *sdp;
1438
1439	LOCK_OWNED(ump);
1440	worklist_speedup(ump->um_mountp);
1441	bd_speedup();
1442	/*
1443	 * If we have global shortages, then we need other
1444	 * filesystems to help with the cleanup. Here we wakeup a
1445	 * flusher thread for a filesystem that is over its fair
1446	 * share of resources.
1447	 */
1448	if (req_clear_inodedeps || req_clear_remove) {
1449		ACQUIRE_GBLLOCK(&lk);
1450		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1451			if ((altump = sdp->sd_ump) == ump)
1452				continue;
1453			if (((req_clear_inodedeps &&
1454			    altump->softdep_curdeps[D_INODEDEP] >
1455			    max_softdeps / stat_flush_threads) ||
1456			    (req_clear_remove &&
1457			    altump->softdep_curdeps[D_DIRREM] >
1458			    (max_softdeps / 2) / stat_flush_threads)) &&
1459			    TRY_ACQUIRE_LOCK(altump))
1460				break;
1461		}
1462		if (sdp == NULL) {
1463			searchfailed++;
1464			FREE_GBLLOCK(&lk);
1465		} else {
1466			/*
1467			 * Move to the end of the list so we pick a
1468			 * different one on out next try.
1469			 */
1470			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1471			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1472			FREE_GBLLOCK(&lk);
1473			if ((altump->softdep_flags &
1474			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1475				altump->softdep_flags |= FLUSH_CLEANUP;
1476			altump->um_softdep->sd_cleanups++;
1477			wakeup(&altump->softdep_flushtd);
1478			FREE_LOCK(altump);
1479		}
1480	}
1481	return (speedup_syncer());
1482}
1483
1484/*
1485 * Add an item to the end of the work queue.
1486 * This routine requires that the lock be held.
1487 * This is the only routine that adds items to the list.
1488 * The following routine is the only one that removes items
1489 * and does so in order from first to last.
1490 */
1491
1492#define	WK_HEAD		0x0001	/* Add to HEAD. */
1493#define	WK_NODELAY	0x0002	/* Process immediately. */
1494
1495static void
1496add_to_worklist(wk, flags)
1497	struct worklist *wk;
1498	int flags;
1499{
1500	struct ufsmount *ump;
1501
1502	ump = VFSTOUFS(wk->wk_mp);
1503	LOCK_OWNED(ump);
1504	if (wk->wk_state & ONWORKLIST)
1505		panic("add_to_worklist: %s(0x%X) already on list",
1506		    TYPENAME(wk->wk_type), wk->wk_state);
1507	wk->wk_state |= ONWORKLIST;
1508	if (ump->softdep_on_worklist == 0) {
1509		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1510		ump->softdep_worklist_tail = wk;
1511	} else if (flags & WK_HEAD) {
1512		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1513	} else {
1514		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1515		ump->softdep_worklist_tail = wk;
1516	}
1517	ump->softdep_on_worklist += 1;
1518	if (flags & WK_NODELAY)
1519		worklist_speedup(wk->wk_mp);
1520}
1521
1522/*
1523 * Remove the item to be processed. If we are removing the last
1524 * item on the list, we need to recalculate the tail pointer.
1525 */
1526static void
1527remove_from_worklist(wk)
1528	struct worklist *wk;
1529{
1530	struct ufsmount *ump;
1531
1532	ump = VFSTOUFS(wk->wk_mp);
1533	WORKLIST_REMOVE(wk);
1534	if (ump->softdep_worklist_tail == wk)
1535		ump->softdep_worklist_tail =
1536		    (struct worklist *)wk->wk_list.le_prev;
1537	ump->softdep_on_worklist -= 1;
1538}
1539
1540static void
1541wake_worklist(wk)
1542	struct worklist *wk;
1543{
1544	if (wk->wk_state & IOWAITING) {
1545		wk->wk_state &= ~IOWAITING;
1546		wakeup(wk);
1547	}
1548}
1549
1550static void
1551wait_worklist(wk, wmesg)
1552	struct worklist *wk;
1553	char *wmesg;
1554{
1555	struct ufsmount *ump;
1556
1557	ump = VFSTOUFS(wk->wk_mp);
1558	wk->wk_state |= IOWAITING;
1559	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1560}
1561
1562/*
1563 * Process that runs once per second to handle items in the background queue.
1564 *
1565 * Note that we ensure that everything is done in the order in which they
1566 * appear in the queue. The code below depends on this property to ensure
1567 * that blocks of a file are freed before the inode itself is freed. This
1568 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1569 * until all the old ones have been purged from the dependency lists.
1570 */
1571static int
1572softdep_process_worklist(mp, full)
1573	struct mount *mp;
1574	int full;
1575{
1576	int cnt, matchcnt;
1577	struct ufsmount *ump;
1578	long starttime;
1579
1580	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1581	if (MOUNTEDSOFTDEP(mp) == 0)
1582		return (0);
1583	matchcnt = 0;
1584	ump = VFSTOUFS(mp);
1585	ACQUIRE_LOCK(ump);
1586	starttime = time_second;
1587	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1588	check_clear_deps(mp);
1589	while (ump->softdep_on_worklist > 0) {
1590		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1591			break;
1592		else
1593			matchcnt += cnt;
1594		check_clear_deps(mp);
1595		/*
1596		 * We do not generally want to stop for buffer space, but if
1597		 * we are really being a buffer hog, we will stop and wait.
1598		 */
1599		if (should_yield()) {
1600			FREE_LOCK(ump);
1601			kern_yield(PRI_USER);
1602			bwillwrite();
1603			ACQUIRE_LOCK(ump);
1604		}
1605		/*
1606		 * Never allow processing to run for more than one
1607		 * second. This gives the syncer thread the opportunity
1608		 * to pause if appropriate.
1609		 */
1610		if (!full && starttime != time_second)
1611			break;
1612	}
1613	if (full == 0)
1614		journal_unsuspend(ump);
1615	FREE_LOCK(ump);
1616	return (matchcnt);
1617}
1618
1619/*
1620 * Process all removes associated with a vnode if we are running out of
1621 * journal space.  Any other process which attempts to flush these will
1622 * be unable as we have the vnodes locked.
1623 */
1624static void
1625process_removes(vp)
1626	struct vnode *vp;
1627{
1628	struct inodedep *inodedep;
1629	struct dirrem *dirrem;
1630	struct ufsmount *ump;
1631	struct mount *mp;
1632	ino_t inum;
1633
1634	mp = vp->v_mount;
1635	ump = VFSTOUFS(mp);
1636	LOCK_OWNED(ump);
1637	inum = VTOI(vp)->i_number;
1638	for (;;) {
1639top:
1640		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1641			return;
1642		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1643			/*
1644			 * If another thread is trying to lock this vnode
1645			 * it will fail but we must wait for it to do so
1646			 * before we can proceed.
1647			 */
1648			if (dirrem->dm_state & INPROGRESS) {
1649				wait_worklist(&dirrem->dm_list, "pwrwait");
1650				goto top;
1651			}
1652			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1653			    (COMPLETE | ONWORKLIST))
1654				break;
1655		}
1656		if (dirrem == NULL)
1657			return;
1658		remove_from_worklist(&dirrem->dm_list);
1659		FREE_LOCK(ump);
1660		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1661			panic("process_removes: suspended filesystem");
1662		handle_workitem_remove(dirrem, 0);
1663		vn_finished_secondary_write(mp);
1664		ACQUIRE_LOCK(ump);
1665	}
1666}
1667
1668/*
1669 * Process all truncations associated with a vnode if we are running out
1670 * of journal space.  This is called when the vnode lock is already held
1671 * and no other process can clear the truncation.  This function returns
1672 * a value greater than zero if it did any work.
1673 */
1674static void
1675process_truncates(vp)
1676	struct vnode *vp;
1677{
1678	struct inodedep *inodedep;
1679	struct freeblks *freeblks;
1680	struct ufsmount *ump;
1681	struct mount *mp;
1682	ino_t inum;
1683	int cgwait;
1684
1685	mp = vp->v_mount;
1686	ump = VFSTOUFS(mp);
1687	LOCK_OWNED(ump);
1688	inum = VTOI(vp)->i_number;
1689	for (;;) {
1690		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1691			return;
1692		cgwait = 0;
1693		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1694			/* Journal entries not yet written.  */
1695			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1696				jwait(&LIST_FIRST(
1697				    &freeblks->fb_jblkdephd)->jb_list,
1698				    MNT_WAIT);
1699				break;
1700			}
1701			/* Another thread is executing this item. */
1702			if (freeblks->fb_state & INPROGRESS) {
1703				wait_worklist(&freeblks->fb_list, "ptrwait");
1704				break;
1705			}
1706			/* Freeblks is waiting on a inode write. */
1707			if ((freeblks->fb_state & COMPLETE) == 0) {
1708				FREE_LOCK(ump);
1709				ffs_update(vp, 1);
1710				ACQUIRE_LOCK(ump);
1711				break;
1712			}
1713			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1714			    (ALLCOMPLETE | ONWORKLIST)) {
1715				remove_from_worklist(&freeblks->fb_list);
1716				freeblks->fb_state |= INPROGRESS;
1717				FREE_LOCK(ump);
1718				if (vn_start_secondary_write(NULL, &mp,
1719				    V_NOWAIT))
1720					panic("process_truncates: "
1721					    "suspended filesystem");
1722				handle_workitem_freeblocks(freeblks, 0);
1723				vn_finished_secondary_write(mp);
1724				ACQUIRE_LOCK(ump);
1725				break;
1726			}
1727			if (freeblks->fb_cgwait)
1728				cgwait++;
1729		}
1730		if (cgwait) {
1731			FREE_LOCK(ump);
1732			sync_cgs(mp, MNT_WAIT);
1733			ffs_sync_snap(mp, MNT_WAIT);
1734			ACQUIRE_LOCK(ump);
1735			continue;
1736		}
1737		if (freeblks == NULL)
1738			break;
1739	}
1740	return;
1741}
1742
1743/*
1744 * Process one item on the worklist.
1745 */
1746static int
1747process_worklist_item(mp, target, flags)
1748	struct mount *mp;
1749	int target;
1750	int flags;
1751{
1752	struct worklist sentinel;
1753	struct worklist *wk;
1754	struct ufsmount *ump;
1755	int matchcnt;
1756	int error;
1757
1758	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1759	/*
1760	 * If we are being called because of a process doing a
1761	 * copy-on-write, then it is not safe to write as we may
1762	 * recurse into the copy-on-write routine.
1763	 */
1764	if (curthread->td_pflags & TDP_COWINPROGRESS)
1765		return (-1);
1766	PHOLD(curproc);	/* Don't let the stack go away. */
1767	ump = VFSTOUFS(mp);
1768	LOCK_OWNED(ump);
1769	matchcnt = 0;
1770	sentinel.wk_mp = NULL;
1771	sentinel.wk_type = D_SENTINEL;
1772	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1773	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1774	    wk = LIST_NEXT(&sentinel, wk_list)) {
1775		if (wk->wk_type == D_SENTINEL) {
1776			LIST_REMOVE(&sentinel, wk_list);
1777			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1778			continue;
1779		}
1780		if (wk->wk_state & INPROGRESS)
1781			panic("process_worklist_item: %p already in progress.",
1782			    wk);
1783		wk->wk_state |= INPROGRESS;
1784		remove_from_worklist(wk);
1785		FREE_LOCK(ump);
1786		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1787			panic("process_worklist_item: suspended filesystem");
1788		switch (wk->wk_type) {
1789		case D_DIRREM:
1790			/* removal of a directory entry */
1791			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1792			break;
1793
1794		case D_FREEBLKS:
1795			/* releasing blocks and/or fragments from a file */
1796			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1797			    flags);
1798			break;
1799
1800		case D_FREEFRAG:
1801			/* releasing a fragment when replaced as a file grows */
1802			handle_workitem_freefrag(WK_FREEFRAG(wk));
1803			error = 0;
1804			break;
1805
1806		case D_FREEFILE:
1807			/* releasing an inode when its link count drops to 0 */
1808			handle_workitem_freefile(WK_FREEFILE(wk));
1809			error = 0;
1810			break;
1811
1812		default:
1813			panic("%s_process_worklist: Unknown type %s",
1814			    "softdep", TYPENAME(wk->wk_type));
1815			/* NOTREACHED */
1816		}
1817		vn_finished_secondary_write(mp);
1818		ACQUIRE_LOCK(ump);
1819		if (error == 0) {
1820			if (++matchcnt == target)
1821				break;
1822			continue;
1823		}
1824		/*
1825		 * We have to retry the worklist item later.  Wake up any
1826		 * waiters who may be able to complete it immediately and
1827		 * add the item back to the head so we don't try to execute
1828		 * it again.
1829		 */
1830		wk->wk_state &= ~INPROGRESS;
1831		wake_worklist(wk);
1832		add_to_worklist(wk, WK_HEAD);
1833	}
1834	LIST_REMOVE(&sentinel, wk_list);
1835	/* Sentinal could've become the tail from remove_from_worklist. */
1836	if (ump->softdep_worklist_tail == &sentinel)
1837		ump->softdep_worklist_tail =
1838		    (struct worklist *)sentinel.wk_list.le_prev;
1839	PRELE(curproc);
1840	return (matchcnt);
1841}
1842
1843/*
1844 * Move dependencies from one buffer to another.
1845 */
1846int
1847softdep_move_dependencies(oldbp, newbp)
1848	struct buf *oldbp;
1849	struct buf *newbp;
1850{
1851	struct worklist *wk, *wktail;
1852	struct ufsmount *ump;
1853	int dirty;
1854
1855	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1856		return (0);
1857	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1858	    ("softdep_move_dependencies called on non-softdep filesystem"));
1859	dirty = 0;
1860	wktail = NULL;
1861	ump = VFSTOUFS(wk->wk_mp);
1862	ACQUIRE_LOCK(ump);
1863	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1864		LIST_REMOVE(wk, wk_list);
1865		if (wk->wk_type == D_BMSAFEMAP &&
1866		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1867			dirty = 1;
1868		if (wktail == 0)
1869			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1870		else
1871			LIST_INSERT_AFTER(wktail, wk, wk_list);
1872		wktail = wk;
1873	}
1874	FREE_LOCK(ump);
1875
1876	return (dirty);
1877}
1878
1879/*
1880 * Purge the work list of all items associated with a particular mount point.
1881 */
1882int
1883softdep_flushworklist(oldmnt, countp, td)
1884	struct mount *oldmnt;
1885	int *countp;
1886	struct thread *td;
1887{
1888	struct vnode *devvp;
1889	struct ufsmount *ump;
1890	int count, error;
1891
1892	/*
1893	 * Alternately flush the block device associated with the mount
1894	 * point and process any dependencies that the flushing
1895	 * creates. We continue until no more worklist dependencies
1896	 * are found.
1897	 */
1898	*countp = 0;
1899	error = 0;
1900	ump = VFSTOUFS(oldmnt);
1901	devvp = ump->um_devvp;
1902	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1903		*countp += count;
1904		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1905		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1906		VOP_UNLOCK(devvp, 0);
1907		if (error != 0)
1908			break;
1909	}
1910	return (error);
1911}
1912
1913#define	SU_WAITIDLE_RETRIES	20
1914static int
1915softdep_waitidle(struct mount *mp, int flags __unused)
1916{
1917	struct ufsmount *ump;
1918	struct vnode *devvp;
1919	struct thread *td;
1920	int error, i;
1921
1922	ump = VFSTOUFS(mp);
1923	devvp = ump->um_devvp;
1924	td = curthread;
1925	error = 0;
1926	ACQUIRE_LOCK(ump);
1927	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1928		ump->softdep_req = 1;
1929		KASSERT((flags & FORCECLOSE) == 0 ||
1930		    ump->softdep_on_worklist == 0,
1931		    ("softdep_waitidle: work added after flush"));
1932		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1933		    "softdeps", 10 * hz);
1934		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1935		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1936		VOP_UNLOCK(devvp, 0);
1937		if (error != 0)
1938			break;
1939		ACQUIRE_LOCK(ump);
1940	}
1941	ump->softdep_req = 0;
1942	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1943		error = EBUSY;
1944		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1945		    mp);
1946	}
1947	FREE_LOCK(ump);
1948	return (error);
1949}
1950
1951/*
1952 * Flush all vnodes and worklist items associated with a specified mount point.
1953 */
1954int
1955softdep_flushfiles(oldmnt, flags, td)
1956	struct mount *oldmnt;
1957	int flags;
1958	struct thread *td;
1959{
1960#ifdef QUOTA
1961	struct ufsmount *ump;
1962	int i;
1963#endif
1964	int error, early, depcount, loopcnt, retry_flush_count, retry;
1965	int morework;
1966
1967	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1968	    ("softdep_flushfiles called on non-softdep filesystem"));
1969	loopcnt = 10;
1970	retry_flush_count = 3;
1971retry_flush:
1972	error = 0;
1973
1974	/*
1975	 * Alternately flush the vnodes associated with the mount
1976	 * point and process any dependencies that the flushing
1977	 * creates. In theory, this loop can happen at most twice,
1978	 * but we give it a few extra just to be sure.
1979	 */
1980	for (; loopcnt > 0; loopcnt--) {
1981		/*
1982		 * Do another flush in case any vnodes were brought in
1983		 * as part of the cleanup operations.
1984		 */
1985		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1986		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1987		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1988			break;
1989		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1990		    depcount == 0)
1991			break;
1992	}
1993	/*
1994	 * If we are unmounting then it is an error to fail. If we
1995	 * are simply trying to downgrade to read-only, then filesystem
1996	 * activity can keep us busy forever, so we just fail with EBUSY.
1997	 */
1998	if (loopcnt == 0) {
1999		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2000			panic("softdep_flushfiles: looping");
2001		error = EBUSY;
2002	}
2003	if (!error)
2004		error = softdep_waitidle(oldmnt, flags);
2005	if (!error) {
2006		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2007			retry = 0;
2008			MNT_ILOCK(oldmnt);
2009			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
2010			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2011			morework = oldmnt->mnt_nvnodelistsize > 0;
2012#ifdef QUOTA
2013			ump = VFSTOUFS(oldmnt);
2014			UFS_LOCK(ump);
2015			for (i = 0; i < MAXQUOTAS; i++) {
2016				if (ump->um_quotas[i] != NULLVP)
2017					morework = 1;
2018			}
2019			UFS_UNLOCK(ump);
2020#endif
2021			if (morework) {
2022				if (--retry_flush_count > 0) {
2023					retry = 1;
2024					loopcnt = 3;
2025				} else
2026					error = EBUSY;
2027			}
2028			MNT_IUNLOCK(oldmnt);
2029			if (retry)
2030				goto retry_flush;
2031		}
2032	}
2033	return (error);
2034}
2035
2036/*
2037 * Structure hashing.
2038 *
2039 * There are four types of structures that can be looked up:
2040 *	1) pagedep structures identified by mount point, inode number,
2041 *	   and logical block.
2042 *	2) inodedep structures identified by mount point and inode number.
2043 *	3) newblk structures identified by mount point and
2044 *	   physical block number.
2045 *	4) bmsafemap structures identified by mount point and
2046 *	   cylinder group number.
2047 *
2048 * The "pagedep" and "inodedep" dependency structures are hashed
2049 * separately from the file blocks and inodes to which they correspond.
2050 * This separation helps when the in-memory copy of an inode or
2051 * file block must be replaced. It also obviates the need to access
2052 * an inode or file page when simply updating (or de-allocating)
2053 * dependency structures. Lookup of newblk structures is needed to
2054 * find newly allocated blocks when trying to associate them with
2055 * their allocdirect or allocindir structure.
2056 *
2057 * The lookup routines optionally create and hash a new instance when
2058 * an existing entry is not found. The bmsafemap lookup routine always
2059 * allocates a new structure if an existing one is not found.
2060 */
2061#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2062#define NODELAY		0x0002	/* cannot do background work */
2063
2064/*
2065 * Structures and routines associated with pagedep caching.
2066 */
2067#define	PAGEDEP_HASH(ump, inum, lbn) \
2068	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2069
2070static int
2071pagedep_find(pagedephd, ino, lbn, pagedeppp)
2072	struct pagedep_hashhead *pagedephd;
2073	ino_t ino;
2074	ufs_lbn_t lbn;
2075	struct pagedep **pagedeppp;
2076{
2077	struct pagedep *pagedep;
2078
2079	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2080		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2081			*pagedeppp = pagedep;
2082			return (1);
2083		}
2084	}
2085	*pagedeppp = NULL;
2086	return (0);
2087}
2088/*
2089 * Look up a pagedep. Return 1 if found, 0 otherwise.
2090 * If not found, allocate if DEPALLOC flag is passed.
2091 * Found or allocated entry is returned in pagedeppp.
2092 * This routine must be called with splbio interrupts blocked.
2093 */
2094static int
2095pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2096	struct mount *mp;
2097	struct buf *bp;
2098	ino_t ino;
2099	ufs_lbn_t lbn;
2100	int flags;
2101	struct pagedep **pagedeppp;
2102{
2103	struct pagedep *pagedep;
2104	struct pagedep_hashhead *pagedephd;
2105	struct worklist *wk;
2106	struct ufsmount *ump;
2107	int ret;
2108	int i;
2109
2110	ump = VFSTOUFS(mp);
2111	LOCK_OWNED(ump);
2112	if (bp) {
2113		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2114			if (wk->wk_type == D_PAGEDEP) {
2115				*pagedeppp = WK_PAGEDEP(wk);
2116				return (1);
2117			}
2118		}
2119	}
2120	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2121	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2122	if (ret) {
2123		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2124			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2125		return (1);
2126	}
2127	if ((flags & DEPALLOC) == 0)
2128		return (0);
2129	FREE_LOCK(ump);
2130	pagedep = malloc(sizeof(struct pagedep),
2131	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2132	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2133	ACQUIRE_LOCK(ump);
2134	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2135	if (*pagedeppp) {
2136		/*
2137		 * This should never happen since we only create pagedeps
2138		 * with the vnode lock held.  Could be an assert.
2139		 */
2140		WORKITEM_FREE(pagedep, D_PAGEDEP);
2141		return (ret);
2142	}
2143	pagedep->pd_ino = ino;
2144	pagedep->pd_lbn = lbn;
2145	LIST_INIT(&pagedep->pd_dirremhd);
2146	LIST_INIT(&pagedep->pd_pendinghd);
2147	for (i = 0; i < DAHASHSZ; i++)
2148		LIST_INIT(&pagedep->pd_diraddhd[i]);
2149	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2150	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2151	*pagedeppp = pagedep;
2152	return (0);
2153}
2154
2155/*
2156 * Structures and routines associated with inodedep caching.
2157 */
2158#define	INODEDEP_HASH(ump, inum) \
2159      (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2160
2161static int
2162inodedep_find(inodedephd, inum, inodedeppp)
2163	struct inodedep_hashhead *inodedephd;
2164	ino_t inum;
2165	struct inodedep **inodedeppp;
2166{
2167	struct inodedep *inodedep;
2168
2169	LIST_FOREACH(inodedep, inodedephd, id_hash)
2170		if (inum == inodedep->id_ino)
2171			break;
2172	if (inodedep) {
2173		*inodedeppp = inodedep;
2174		return (1);
2175	}
2176	*inodedeppp = NULL;
2177
2178	return (0);
2179}
2180/*
2181 * Look up an inodedep. Return 1 if found, 0 if not found.
2182 * If not found, allocate if DEPALLOC flag is passed.
2183 * Found or allocated entry is returned in inodedeppp.
2184 * This routine must be called with splbio interrupts blocked.
2185 */
2186static int
2187inodedep_lookup(mp, inum, flags, inodedeppp)
2188	struct mount *mp;
2189	ino_t inum;
2190	int flags;
2191	struct inodedep **inodedeppp;
2192{
2193	struct inodedep *inodedep;
2194	struct inodedep_hashhead *inodedephd;
2195	struct ufsmount *ump;
2196	struct fs *fs;
2197
2198	ump = VFSTOUFS(mp);
2199	LOCK_OWNED(ump);
2200	fs = ump->um_fs;
2201	inodedephd = INODEDEP_HASH(ump, inum);
2202
2203	if (inodedep_find(inodedephd, inum, inodedeppp))
2204		return (1);
2205	if ((flags & DEPALLOC) == 0)
2206		return (0);
2207	/*
2208	 * If the system is over its limit and our filesystem is
2209	 * responsible for more than our share of that usage and
2210	 * we are not in a rush, request some inodedep cleanup.
2211	 */
2212	while (dep_current[D_INODEDEP] > max_softdeps &&
2213	    (flags & NODELAY) == 0 &&
2214	    ump->softdep_curdeps[D_INODEDEP] >
2215	    max_softdeps / stat_flush_threads)
2216		request_cleanup(mp, FLUSH_INODES);
2217	FREE_LOCK(ump);
2218	inodedep = malloc(sizeof(struct inodedep),
2219		M_INODEDEP, M_SOFTDEP_FLAGS);
2220	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2221	ACQUIRE_LOCK(ump);
2222	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2223		WORKITEM_FREE(inodedep, D_INODEDEP);
2224		return (1);
2225	}
2226	inodedep->id_fs = fs;
2227	inodedep->id_ino = inum;
2228	inodedep->id_state = ALLCOMPLETE;
2229	inodedep->id_nlinkdelta = 0;
2230	inodedep->id_savedino1 = NULL;
2231	inodedep->id_savedsize = -1;
2232	inodedep->id_savedextsize = -1;
2233	inodedep->id_savednlink = -1;
2234	inodedep->id_bmsafemap = NULL;
2235	inodedep->id_mkdiradd = NULL;
2236	LIST_INIT(&inodedep->id_dirremhd);
2237	LIST_INIT(&inodedep->id_pendinghd);
2238	LIST_INIT(&inodedep->id_inowait);
2239	LIST_INIT(&inodedep->id_bufwait);
2240	TAILQ_INIT(&inodedep->id_inoreflst);
2241	TAILQ_INIT(&inodedep->id_inoupdt);
2242	TAILQ_INIT(&inodedep->id_newinoupdt);
2243	TAILQ_INIT(&inodedep->id_extupdt);
2244	TAILQ_INIT(&inodedep->id_newextupdt);
2245	TAILQ_INIT(&inodedep->id_freeblklst);
2246	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2247	*inodedeppp = inodedep;
2248	return (0);
2249}
2250
2251/*
2252 * Structures and routines associated with newblk caching.
2253 */
2254#define	NEWBLK_HASH(ump, inum) \
2255	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2256
2257static int
2258newblk_find(newblkhd, newblkno, flags, newblkpp)
2259	struct newblk_hashhead *newblkhd;
2260	ufs2_daddr_t newblkno;
2261	int flags;
2262	struct newblk **newblkpp;
2263{
2264	struct newblk *newblk;
2265
2266	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2267		if (newblkno != newblk->nb_newblkno)
2268			continue;
2269		/*
2270		 * If we're creating a new dependency don't match those that
2271		 * have already been converted to allocdirects.  This is for
2272		 * a frag extend.
2273		 */
2274		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2275			continue;
2276		break;
2277	}
2278	if (newblk) {
2279		*newblkpp = newblk;
2280		return (1);
2281	}
2282	*newblkpp = NULL;
2283	return (0);
2284}
2285
2286/*
2287 * Look up a newblk. Return 1 if found, 0 if not found.
2288 * If not found, allocate if DEPALLOC flag is passed.
2289 * Found or allocated entry is returned in newblkpp.
2290 */
2291static int
2292newblk_lookup(mp, newblkno, flags, newblkpp)
2293	struct mount *mp;
2294	ufs2_daddr_t newblkno;
2295	int flags;
2296	struct newblk **newblkpp;
2297{
2298	struct newblk *newblk;
2299	struct newblk_hashhead *newblkhd;
2300	struct ufsmount *ump;
2301
2302	ump = VFSTOUFS(mp);
2303	LOCK_OWNED(ump);
2304	newblkhd = NEWBLK_HASH(ump, newblkno);
2305	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2306		return (1);
2307	if ((flags & DEPALLOC) == 0)
2308		return (0);
2309	FREE_LOCK(ump);
2310	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2311	    M_SOFTDEP_FLAGS | M_ZERO);
2312	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2313	ACQUIRE_LOCK(ump);
2314	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2315		WORKITEM_FREE(newblk, D_NEWBLK);
2316		return (1);
2317	}
2318	newblk->nb_freefrag = NULL;
2319	LIST_INIT(&newblk->nb_indirdeps);
2320	LIST_INIT(&newblk->nb_newdirblk);
2321	LIST_INIT(&newblk->nb_jwork);
2322	newblk->nb_state = ATTACHED;
2323	newblk->nb_newblkno = newblkno;
2324	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2325	*newblkpp = newblk;
2326	return (0);
2327}
2328
2329/*
2330 * Structures and routines associated with freed indirect block caching.
2331 */
2332#define	INDIR_HASH(ump, blkno) \
2333	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2334
2335/*
2336 * Lookup an indirect block in the indir hash table.  The freework is
2337 * removed and potentially freed.  The caller must do a blocking journal
2338 * write before writing to the blkno.
2339 */
2340static int
2341indirblk_lookup(mp, blkno)
2342	struct mount *mp;
2343	ufs2_daddr_t blkno;
2344{
2345	struct freework *freework;
2346	struct indir_hashhead *wkhd;
2347	struct ufsmount *ump;
2348
2349	ump = VFSTOUFS(mp);
2350	wkhd = INDIR_HASH(ump, blkno);
2351	TAILQ_FOREACH(freework, wkhd, fw_next) {
2352		if (freework->fw_blkno != blkno)
2353			continue;
2354		indirblk_remove(freework);
2355		return (1);
2356	}
2357	return (0);
2358}
2359
2360/*
2361 * Insert an indirect block represented by freework into the indirblk
2362 * hash table so that it may prevent the block from being re-used prior
2363 * to the journal being written.
2364 */
2365static void
2366indirblk_insert(freework)
2367	struct freework *freework;
2368{
2369	struct jblocks *jblocks;
2370	struct jseg *jseg;
2371	struct ufsmount *ump;
2372
2373	ump = VFSTOUFS(freework->fw_list.wk_mp);
2374	jblocks = ump->softdep_jblocks;
2375	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2376	if (jseg == NULL)
2377		return;
2378
2379	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2380	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2381	    fw_next);
2382	freework->fw_state &= ~DEPCOMPLETE;
2383}
2384
2385static void
2386indirblk_remove(freework)
2387	struct freework *freework;
2388{
2389	struct ufsmount *ump;
2390
2391	ump = VFSTOUFS(freework->fw_list.wk_mp);
2392	LIST_REMOVE(freework, fw_segs);
2393	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2394	freework->fw_state |= DEPCOMPLETE;
2395	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2396		WORKITEM_FREE(freework, D_FREEWORK);
2397}
2398
2399/*
2400 * Executed during filesystem system initialization before
2401 * mounting any filesystems.
2402 */
2403void
2404softdep_initialize()
2405{
2406
2407	TAILQ_INIT(&softdepmounts);
2408	max_softdeps = desiredvnodes * 4;
2409
2410	/* initialise bioops hack */
2411	bioops.io_start = softdep_disk_io_initiation;
2412	bioops.io_complete = softdep_disk_write_complete;
2413	bioops.io_deallocate = softdep_deallocate_dependencies;
2414	bioops.io_countdeps = softdep_count_dependencies;
2415
2416	/* Initialize the callout with an mtx. */
2417	callout_init_mtx(&softdep_callout, &lk, 0);
2418}
2419
2420/*
2421 * Executed after all filesystems have been unmounted during
2422 * filesystem module unload.
2423 */
2424void
2425softdep_uninitialize()
2426{
2427
2428	/* clear bioops hack */
2429	bioops.io_start = NULL;
2430	bioops.io_complete = NULL;
2431	bioops.io_deallocate = NULL;
2432	bioops.io_countdeps = NULL;
2433
2434	callout_drain(&softdep_callout);
2435}
2436
2437/*
2438 * Called at mount time to notify the dependency code that a
2439 * filesystem wishes to use it.
2440 */
2441int
2442softdep_mount(devvp, mp, fs, cred)
2443	struct vnode *devvp;
2444	struct mount *mp;
2445	struct fs *fs;
2446	struct ucred *cred;
2447{
2448	struct csum_total cstotal;
2449	struct mount_softdeps *sdp;
2450	struct ufsmount *ump;
2451	struct cg *cgp;
2452	struct buf *bp;
2453	int i, error, cyl;
2454
2455	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2456	    M_WAITOK | M_ZERO);
2457	MNT_ILOCK(mp);
2458	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2459	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2460		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2461			MNTK_SOFTDEP | MNTK_NOASYNC;
2462	}
2463	ump = VFSTOUFS(mp);
2464	ump->um_softdep = sdp;
2465	MNT_IUNLOCK(mp);
2466	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2467	sdp->sd_ump = ump;
2468	LIST_INIT(&ump->softdep_workitem_pending);
2469	LIST_INIT(&ump->softdep_journal_pending);
2470	TAILQ_INIT(&ump->softdep_unlinked);
2471	LIST_INIT(&ump->softdep_dirtycg);
2472	ump->softdep_worklist_tail = NULL;
2473	ump->softdep_on_worklist = 0;
2474	ump->softdep_deps = 0;
2475	LIST_INIT(&ump->softdep_mkdirlisthd);
2476	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2477	    &ump->pagedep_hash_size);
2478	ump->pagedep_nextclean = 0;
2479	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2480	    &ump->inodedep_hash_size);
2481	ump->inodedep_nextclean = 0;
2482	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2483	    &ump->newblk_hash_size);
2484	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2485	    &ump->bmsafemap_hash_size);
2486	i = 1 << (ffs(desiredvnodes / 10) - 1);
2487	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2488	    M_FREEWORK, M_WAITOK);
2489	ump->indir_hash_size = i - 1;
2490	for (i = 0; i <= ump->indir_hash_size; i++)
2491		TAILQ_INIT(&ump->indir_hashtbl[i]);
2492	ACQUIRE_GBLLOCK(&lk);
2493	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2494	FREE_GBLLOCK(&lk);
2495	if ((fs->fs_flags & FS_SUJ) &&
2496	    (error = journal_mount(mp, fs, cred)) != 0) {
2497		printf("Failed to start journal: %d\n", error);
2498		softdep_unmount(mp);
2499		return (error);
2500	}
2501	/*
2502	 * Start our flushing thread in the bufdaemon process.
2503	 */
2504	ACQUIRE_LOCK(ump);
2505	ump->softdep_flags |= FLUSH_STARTING;
2506	FREE_LOCK(ump);
2507	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2508	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2509	    mp->mnt_stat.f_mntonname);
2510	ACQUIRE_LOCK(ump);
2511	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2512		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2513		    hz / 2);
2514	}
2515	FREE_LOCK(ump);
2516	/*
2517	 * When doing soft updates, the counters in the
2518	 * superblock may have gotten out of sync. Recomputation
2519	 * can take a long time and can be deferred for background
2520	 * fsck.  However, the old behavior of scanning the cylinder
2521	 * groups and recalculating them at mount time is available
2522	 * by setting vfs.ffs.compute_summary_at_mount to one.
2523	 */
2524	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2525		return (0);
2526	bzero(&cstotal, sizeof cstotal);
2527	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2528		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2529		    fs->fs_cgsize, cred, &bp)) != 0) {
2530			brelse(bp);
2531			softdep_unmount(mp);
2532			return (error);
2533		}
2534		cgp = (struct cg *)bp->b_data;
2535		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2536		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2537		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2538		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2539		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2540		brelse(bp);
2541	}
2542#ifdef DEBUG
2543	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2544		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2545#endif
2546	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2547	return (0);
2548}
2549
2550void
2551softdep_unmount(mp)
2552	struct mount *mp;
2553{
2554	struct ufsmount *ump;
2555#ifdef INVARIANTS
2556	int i;
2557#endif
2558
2559	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2560	    ("softdep_unmount called on non-softdep filesystem"));
2561	ump = VFSTOUFS(mp);
2562	MNT_ILOCK(mp);
2563	mp->mnt_flag &= ~MNT_SOFTDEP;
2564	if (MOUNTEDSUJ(mp) == 0) {
2565		MNT_IUNLOCK(mp);
2566	} else {
2567		mp->mnt_flag &= ~MNT_SUJ;
2568		MNT_IUNLOCK(mp);
2569		journal_unmount(ump);
2570	}
2571	/*
2572	 * Shut down our flushing thread. Check for NULL is if
2573	 * softdep_mount errors out before the thread has been created.
2574	 */
2575	if (ump->softdep_flushtd != NULL) {
2576		ACQUIRE_LOCK(ump);
2577		ump->softdep_flags |= FLUSH_EXIT;
2578		wakeup(&ump->softdep_flushtd);
2579		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2580		    "sdwait", 0);
2581		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2582		    ("Thread shutdown failed"));
2583	}
2584	/*
2585	 * Free up our resources.
2586	 */
2587	ACQUIRE_GBLLOCK(&lk);
2588	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2589	FREE_GBLLOCK(&lk);
2590	rw_destroy(LOCK_PTR(ump));
2591	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2592	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2593	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2594	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2595	    ump->bmsafemap_hash_size);
2596	free(ump->indir_hashtbl, M_FREEWORK);
2597#ifdef INVARIANTS
2598	for (i = 0; i <= D_LAST; i++)
2599		KASSERT(ump->softdep_curdeps[i] == 0,
2600		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2601		    TYPENAME(i), ump->softdep_curdeps[i]));
2602#endif
2603	free(ump->um_softdep, M_MOUNTDATA);
2604}
2605
2606static struct jblocks *
2607jblocks_create(void)
2608{
2609	struct jblocks *jblocks;
2610
2611	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2612	TAILQ_INIT(&jblocks->jb_segs);
2613	jblocks->jb_avail = 10;
2614	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2615	    M_JBLOCKS, M_WAITOK | M_ZERO);
2616
2617	return (jblocks);
2618}
2619
2620static ufs2_daddr_t
2621jblocks_alloc(jblocks, bytes, actual)
2622	struct jblocks *jblocks;
2623	int bytes;
2624	int *actual;
2625{
2626	ufs2_daddr_t daddr;
2627	struct jextent *jext;
2628	int freecnt;
2629	int blocks;
2630
2631	blocks = bytes / DEV_BSIZE;
2632	jext = &jblocks->jb_extent[jblocks->jb_head];
2633	freecnt = jext->je_blocks - jblocks->jb_off;
2634	if (freecnt == 0) {
2635		jblocks->jb_off = 0;
2636		if (++jblocks->jb_head > jblocks->jb_used)
2637			jblocks->jb_head = 0;
2638		jext = &jblocks->jb_extent[jblocks->jb_head];
2639		freecnt = jext->je_blocks;
2640	}
2641	if (freecnt > blocks)
2642		freecnt = blocks;
2643	*actual = freecnt * DEV_BSIZE;
2644	daddr = jext->je_daddr + jblocks->jb_off;
2645	jblocks->jb_off += freecnt;
2646	jblocks->jb_free -= freecnt;
2647
2648	return (daddr);
2649}
2650
2651static void
2652jblocks_free(jblocks, mp, bytes)
2653	struct jblocks *jblocks;
2654	struct mount *mp;
2655	int bytes;
2656{
2657
2658	LOCK_OWNED(VFSTOUFS(mp));
2659	jblocks->jb_free += bytes / DEV_BSIZE;
2660	if (jblocks->jb_suspended)
2661		worklist_speedup(mp);
2662	wakeup(jblocks);
2663}
2664
2665static void
2666jblocks_destroy(jblocks)
2667	struct jblocks *jblocks;
2668{
2669
2670	if (jblocks->jb_extent)
2671		free(jblocks->jb_extent, M_JBLOCKS);
2672	free(jblocks, M_JBLOCKS);
2673}
2674
2675static void
2676jblocks_add(jblocks, daddr, blocks)
2677	struct jblocks *jblocks;
2678	ufs2_daddr_t daddr;
2679	int blocks;
2680{
2681	struct jextent *jext;
2682
2683	jblocks->jb_blocks += blocks;
2684	jblocks->jb_free += blocks;
2685	jext = &jblocks->jb_extent[jblocks->jb_used];
2686	/* Adding the first block. */
2687	if (jext->je_daddr == 0) {
2688		jext->je_daddr = daddr;
2689		jext->je_blocks = blocks;
2690		return;
2691	}
2692	/* Extending the last extent. */
2693	if (jext->je_daddr + jext->je_blocks == daddr) {
2694		jext->je_blocks += blocks;
2695		return;
2696	}
2697	/* Adding a new extent. */
2698	if (++jblocks->jb_used == jblocks->jb_avail) {
2699		jblocks->jb_avail *= 2;
2700		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2701		    M_JBLOCKS, M_WAITOK | M_ZERO);
2702		memcpy(jext, jblocks->jb_extent,
2703		    sizeof(struct jextent) * jblocks->jb_used);
2704		free(jblocks->jb_extent, M_JBLOCKS);
2705		jblocks->jb_extent = jext;
2706	}
2707	jext = &jblocks->jb_extent[jblocks->jb_used];
2708	jext->je_daddr = daddr;
2709	jext->je_blocks = blocks;
2710	return;
2711}
2712
2713int
2714softdep_journal_lookup(mp, vpp)
2715	struct mount *mp;
2716	struct vnode **vpp;
2717{
2718	struct componentname cnp;
2719	struct vnode *dvp;
2720	ino_t sujournal;
2721	int error;
2722
2723	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2724	if (error)
2725		return (error);
2726	bzero(&cnp, sizeof(cnp));
2727	cnp.cn_nameiop = LOOKUP;
2728	cnp.cn_flags = ISLASTCN;
2729	cnp.cn_thread = curthread;
2730	cnp.cn_cred = curthread->td_ucred;
2731	cnp.cn_pnbuf = SUJ_FILE;
2732	cnp.cn_nameptr = SUJ_FILE;
2733	cnp.cn_namelen = strlen(SUJ_FILE);
2734	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2735	vput(dvp);
2736	if (error != 0)
2737		return (error);
2738	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2739	return (error);
2740}
2741
2742/*
2743 * Open and verify the journal file.
2744 */
2745static int
2746journal_mount(mp, fs, cred)
2747	struct mount *mp;
2748	struct fs *fs;
2749	struct ucred *cred;
2750{
2751	struct jblocks *jblocks;
2752	struct ufsmount *ump;
2753	struct vnode *vp;
2754	struct inode *ip;
2755	ufs2_daddr_t blkno;
2756	int bcount;
2757	int error;
2758	int i;
2759
2760	ump = VFSTOUFS(mp);
2761	ump->softdep_journal_tail = NULL;
2762	ump->softdep_on_journal = 0;
2763	ump->softdep_accdeps = 0;
2764	ump->softdep_req = 0;
2765	ump->softdep_jblocks = NULL;
2766	error = softdep_journal_lookup(mp, &vp);
2767	if (error != 0) {
2768		printf("Failed to find journal.  Use tunefs to create one\n");
2769		return (error);
2770	}
2771	ip = VTOI(vp);
2772	if (ip->i_size < SUJ_MIN) {
2773		error = ENOSPC;
2774		goto out;
2775	}
2776	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2777	jblocks = jblocks_create();
2778	for (i = 0; i < bcount; i++) {
2779		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2780		if (error)
2781			break;
2782		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2783	}
2784	if (error) {
2785		jblocks_destroy(jblocks);
2786		goto out;
2787	}
2788	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2789	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2790	ump->softdep_jblocks = jblocks;
2791out:
2792	if (error == 0) {
2793		MNT_ILOCK(mp);
2794		mp->mnt_flag |= MNT_SUJ;
2795		mp->mnt_flag &= ~MNT_SOFTDEP;
2796		MNT_IUNLOCK(mp);
2797		/*
2798		 * Only validate the journal contents if the
2799		 * filesystem is clean, otherwise we write the logs
2800		 * but they'll never be used.  If the filesystem was
2801		 * still dirty when we mounted it the journal is
2802		 * invalid and a new journal can only be valid if it
2803		 * starts from a clean mount.
2804		 */
2805		if (fs->fs_clean) {
2806			DIP_SET(ip, i_modrev, fs->fs_mtime);
2807			ip->i_flags |= IN_MODIFIED;
2808			ffs_update(vp, 1);
2809		}
2810	}
2811	vput(vp);
2812	return (error);
2813}
2814
2815static void
2816journal_unmount(ump)
2817	struct ufsmount *ump;
2818{
2819
2820	if (ump->softdep_jblocks)
2821		jblocks_destroy(ump->softdep_jblocks);
2822	ump->softdep_jblocks = NULL;
2823}
2824
2825/*
2826 * Called when a journal record is ready to be written.  Space is allocated
2827 * and the journal entry is created when the journal is flushed to stable
2828 * store.
2829 */
2830static void
2831add_to_journal(wk)
2832	struct worklist *wk;
2833{
2834	struct ufsmount *ump;
2835
2836	ump = VFSTOUFS(wk->wk_mp);
2837	LOCK_OWNED(ump);
2838	if (wk->wk_state & ONWORKLIST)
2839		panic("add_to_journal: %s(0x%X) already on list",
2840		    TYPENAME(wk->wk_type), wk->wk_state);
2841	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2842	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2843		ump->softdep_jblocks->jb_age = ticks;
2844		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2845	} else
2846		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2847	ump->softdep_journal_tail = wk;
2848	ump->softdep_on_journal += 1;
2849}
2850
2851/*
2852 * Remove an arbitrary item for the journal worklist maintain the tail
2853 * pointer.  This happens when a new operation obviates the need to
2854 * journal an old operation.
2855 */
2856static void
2857remove_from_journal(wk)
2858	struct worklist *wk;
2859{
2860	struct ufsmount *ump;
2861
2862	ump = VFSTOUFS(wk->wk_mp);
2863	LOCK_OWNED(ump);
2864#ifdef SUJ_DEBUG
2865	{
2866		struct worklist *wkn;
2867
2868		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2869			if (wkn == wk)
2870				break;
2871		if (wkn == NULL)
2872			panic("remove_from_journal: %p is not in journal", wk);
2873	}
2874#endif
2875	/*
2876	 * We emulate a TAILQ to save space in most structures which do not
2877	 * require TAILQ semantics.  Here we must update the tail position
2878	 * when removing the tail which is not the final entry. This works
2879	 * only if the worklist linkage are at the beginning of the structure.
2880	 */
2881	if (ump->softdep_journal_tail == wk)
2882		ump->softdep_journal_tail =
2883		    (struct worklist *)wk->wk_list.le_prev;
2884
2885	WORKLIST_REMOVE(wk);
2886	ump->softdep_on_journal -= 1;
2887}
2888
2889/*
2890 * Check for journal space as well as dependency limits so the prelink
2891 * code can throttle both journaled and non-journaled filesystems.
2892 * Threshold is 0 for low and 1 for min.
2893 */
2894static int
2895journal_space(ump, thresh)
2896	struct ufsmount *ump;
2897	int thresh;
2898{
2899	struct jblocks *jblocks;
2900	int limit, avail;
2901
2902	jblocks = ump->softdep_jblocks;
2903	if (jblocks == NULL)
2904		return (1);
2905	/*
2906	 * We use a tighter restriction here to prevent request_cleanup()
2907	 * running in threads from running into locks we currently hold.
2908	 * We have to be over the limit and our filesystem has to be
2909	 * responsible for more than our share of that usage.
2910	 */
2911	limit = (max_softdeps / 10) * 9;
2912	if (dep_current[D_INODEDEP] > limit &&
2913	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2914		return (0);
2915	if (thresh)
2916		thresh = jblocks->jb_min;
2917	else
2918		thresh = jblocks->jb_low;
2919	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2920	avail = jblocks->jb_free - avail;
2921
2922	return (avail > thresh);
2923}
2924
2925static void
2926journal_suspend(ump)
2927	struct ufsmount *ump;
2928{
2929	struct jblocks *jblocks;
2930	struct mount *mp;
2931
2932	mp = UFSTOVFS(ump);
2933	jblocks = ump->softdep_jblocks;
2934	MNT_ILOCK(mp);
2935	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2936		stat_journal_min++;
2937		mp->mnt_kern_flag |= MNTK_SUSPEND;
2938		mp->mnt_susp_owner = ump->softdep_flushtd;
2939	}
2940	jblocks->jb_suspended = 1;
2941	MNT_IUNLOCK(mp);
2942}
2943
2944static int
2945journal_unsuspend(struct ufsmount *ump)
2946{
2947	struct jblocks *jblocks;
2948	struct mount *mp;
2949
2950	mp = UFSTOVFS(ump);
2951	jblocks = ump->softdep_jblocks;
2952
2953	if (jblocks != NULL && jblocks->jb_suspended &&
2954	    journal_space(ump, jblocks->jb_min)) {
2955		jblocks->jb_suspended = 0;
2956		FREE_LOCK(ump);
2957		mp->mnt_susp_owner = curthread;
2958		vfs_write_resume(mp, 0);
2959		ACQUIRE_LOCK(ump);
2960		return (1);
2961	}
2962	return (0);
2963}
2964
2965/*
2966 * Called before any allocation function to be certain that there is
2967 * sufficient space in the journal prior to creating any new records.
2968 * Since in the case of block allocation we may have multiple locked
2969 * buffers at the time of the actual allocation we can not block
2970 * when the journal records are created.  Doing so would create a deadlock
2971 * if any of these buffers needed to be flushed to reclaim space.  Instead
2972 * we require a sufficiently large amount of available space such that
2973 * each thread in the system could have passed this allocation check and
2974 * still have sufficient free space.  With 20% of a minimum journal size
2975 * of 1MB we have 6553 records available.
2976 */
2977int
2978softdep_prealloc(vp, waitok)
2979	struct vnode *vp;
2980	int waitok;
2981{
2982	struct ufsmount *ump;
2983
2984	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2985	    ("softdep_prealloc called on non-softdep filesystem"));
2986	/*
2987	 * Nothing to do if we are not running journaled soft updates.
2988	 * If we currently hold the snapshot lock, we must avoid handling
2989	 * other resources that could cause deadlock.
2990	 */
2991	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2992		return (0);
2993	ump = VFSTOUFS(vp->v_mount);
2994	ACQUIRE_LOCK(ump);
2995	if (journal_space(ump, 0)) {
2996		FREE_LOCK(ump);
2997		return (0);
2998	}
2999	stat_journal_low++;
3000	FREE_LOCK(ump);
3001	if (waitok == MNT_NOWAIT)
3002		return (ENOSPC);
3003	/*
3004	 * Attempt to sync this vnode once to flush any journal
3005	 * work attached to it.
3006	 */
3007	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3008		ffs_syncvnode(vp, waitok, 0);
3009	ACQUIRE_LOCK(ump);
3010	process_removes(vp);
3011	process_truncates(vp);
3012	if (journal_space(ump, 0) == 0) {
3013		softdep_speedup(ump);
3014		if (journal_space(ump, 1) == 0)
3015			journal_suspend(ump);
3016	}
3017	FREE_LOCK(ump);
3018
3019	return (0);
3020}
3021
3022/*
3023 * Before adjusting a link count on a vnode verify that we have sufficient
3024 * journal space.  If not, process operations that depend on the currently
3025 * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3026 * and softdep flush threads can not acquire these locks to reclaim space.
3027 */
3028static void
3029softdep_prelink(dvp, vp)
3030	struct vnode *dvp;
3031	struct vnode *vp;
3032{
3033	struct ufsmount *ump;
3034
3035	ump = VFSTOUFS(dvp->v_mount);
3036	LOCK_OWNED(ump);
3037	/*
3038	 * Nothing to do if we have sufficient journal space.
3039	 * If we currently hold the snapshot lock, we must avoid
3040	 * handling other resources that could cause deadlock.
3041	 */
3042	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3043		return;
3044	stat_journal_low++;
3045	FREE_LOCK(ump);
3046	if (vp)
3047		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3048	ffs_syncvnode(dvp, MNT_WAIT, 0);
3049	ACQUIRE_LOCK(ump);
3050	/* Process vp before dvp as it may create .. removes. */
3051	if (vp) {
3052		process_removes(vp);
3053		process_truncates(vp);
3054	}
3055	process_removes(dvp);
3056	process_truncates(dvp);
3057	softdep_speedup(ump);
3058	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3059	if (journal_space(ump, 0) == 0) {
3060		softdep_speedup(ump);
3061		if (journal_space(ump, 1) == 0)
3062			journal_suspend(ump);
3063	}
3064}
3065
3066static void
3067jseg_write(ump, jseg, data)
3068	struct ufsmount *ump;
3069	struct jseg *jseg;
3070	uint8_t *data;
3071{
3072	struct jsegrec *rec;
3073
3074	rec = (struct jsegrec *)data;
3075	rec->jsr_seq = jseg->js_seq;
3076	rec->jsr_oldest = jseg->js_oldseq;
3077	rec->jsr_cnt = jseg->js_cnt;
3078	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3079	rec->jsr_crc = 0;
3080	rec->jsr_time = ump->um_fs->fs_mtime;
3081}
3082
3083static inline void
3084inoref_write(inoref, jseg, rec)
3085	struct inoref *inoref;
3086	struct jseg *jseg;
3087	struct jrefrec *rec;
3088{
3089
3090	inoref->if_jsegdep->jd_seg = jseg;
3091	rec->jr_ino = inoref->if_ino;
3092	rec->jr_parent = inoref->if_parent;
3093	rec->jr_nlink = inoref->if_nlink;
3094	rec->jr_mode = inoref->if_mode;
3095	rec->jr_diroff = inoref->if_diroff;
3096}
3097
3098static void
3099jaddref_write(jaddref, jseg, data)
3100	struct jaddref *jaddref;
3101	struct jseg *jseg;
3102	uint8_t *data;
3103{
3104	struct jrefrec *rec;
3105
3106	rec = (struct jrefrec *)data;
3107	rec->jr_op = JOP_ADDREF;
3108	inoref_write(&jaddref->ja_ref, jseg, rec);
3109}
3110
3111static void
3112jremref_write(jremref, jseg, data)
3113	struct jremref *jremref;
3114	struct jseg *jseg;
3115	uint8_t *data;
3116{
3117	struct jrefrec *rec;
3118
3119	rec = (struct jrefrec *)data;
3120	rec->jr_op = JOP_REMREF;
3121	inoref_write(&jremref->jr_ref, jseg, rec);
3122}
3123
3124static void
3125jmvref_write(jmvref, jseg, data)
3126	struct jmvref *jmvref;
3127	struct jseg *jseg;
3128	uint8_t *data;
3129{
3130	struct jmvrec *rec;
3131
3132	rec = (struct jmvrec *)data;
3133	rec->jm_op = JOP_MVREF;
3134	rec->jm_ino = jmvref->jm_ino;
3135	rec->jm_parent = jmvref->jm_parent;
3136	rec->jm_oldoff = jmvref->jm_oldoff;
3137	rec->jm_newoff = jmvref->jm_newoff;
3138}
3139
3140static void
3141jnewblk_write(jnewblk, jseg, data)
3142	struct jnewblk *jnewblk;
3143	struct jseg *jseg;
3144	uint8_t *data;
3145{
3146	struct jblkrec *rec;
3147
3148	jnewblk->jn_jsegdep->jd_seg = jseg;
3149	rec = (struct jblkrec *)data;
3150	rec->jb_op = JOP_NEWBLK;
3151	rec->jb_ino = jnewblk->jn_ino;
3152	rec->jb_blkno = jnewblk->jn_blkno;
3153	rec->jb_lbn = jnewblk->jn_lbn;
3154	rec->jb_frags = jnewblk->jn_frags;
3155	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3156}
3157
3158static void
3159jfreeblk_write(jfreeblk, jseg, data)
3160	struct jfreeblk *jfreeblk;
3161	struct jseg *jseg;
3162	uint8_t *data;
3163{
3164	struct jblkrec *rec;
3165
3166	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3167	rec = (struct jblkrec *)data;
3168	rec->jb_op = JOP_FREEBLK;
3169	rec->jb_ino = jfreeblk->jf_ino;
3170	rec->jb_blkno = jfreeblk->jf_blkno;
3171	rec->jb_lbn = jfreeblk->jf_lbn;
3172	rec->jb_frags = jfreeblk->jf_frags;
3173	rec->jb_oldfrags = 0;
3174}
3175
3176static void
3177jfreefrag_write(jfreefrag, jseg, data)
3178	struct jfreefrag *jfreefrag;
3179	struct jseg *jseg;
3180	uint8_t *data;
3181{
3182	struct jblkrec *rec;
3183
3184	jfreefrag->fr_jsegdep->jd_seg = jseg;
3185	rec = (struct jblkrec *)data;
3186	rec->jb_op = JOP_FREEBLK;
3187	rec->jb_ino = jfreefrag->fr_ino;
3188	rec->jb_blkno = jfreefrag->fr_blkno;
3189	rec->jb_lbn = jfreefrag->fr_lbn;
3190	rec->jb_frags = jfreefrag->fr_frags;
3191	rec->jb_oldfrags = 0;
3192}
3193
3194static void
3195jtrunc_write(jtrunc, jseg, data)
3196	struct jtrunc *jtrunc;
3197	struct jseg *jseg;
3198	uint8_t *data;
3199{
3200	struct jtrncrec *rec;
3201
3202	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3203	rec = (struct jtrncrec *)data;
3204	rec->jt_op = JOP_TRUNC;
3205	rec->jt_ino = jtrunc->jt_ino;
3206	rec->jt_size = jtrunc->jt_size;
3207	rec->jt_extsize = jtrunc->jt_extsize;
3208}
3209
3210static void
3211jfsync_write(jfsync, jseg, data)
3212	struct jfsync *jfsync;
3213	struct jseg *jseg;
3214	uint8_t *data;
3215{
3216	struct jtrncrec *rec;
3217
3218	rec = (struct jtrncrec *)data;
3219	rec->jt_op = JOP_SYNC;
3220	rec->jt_ino = jfsync->jfs_ino;
3221	rec->jt_size = jfsync->jfs_size;
3222	rec->jt_extsize = jfsync->jfs_extsize;
3223}
3224
3225static void
3226softdep_flushjournal(mp)
3227	struct mount *mp;
3228{
3229	struct jblocks *jblocks;
3230	struct ufsmount *ump;
3231
3232	if (MOUNTEDSUJ(mp) == 0)
3233		return;
3234	ump = VFSTOUFS(mp);
3235	jblocks = ump->softdep_jblocks;
3236	ACQUIRE_LOCK(ump);
3237	while (ump->softdep_on_journal) {
3238		jblocks->jb_needseg = 1;
3239		softdep_process_journal(mp, NULL, MNT_WAIT);
3240	}
3241	FREE_LOCK(ump);
3242}
3243
3244static void softdep_synchronize_completed(struct bio *);
3245static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3246
3247static void
3248softdep_synchronize_completed(bp)
3249        struct bio *bp;
3250{
3251	struct jseg *oldest;
3252	struct jseg *jseg;
3253	struct ufsmount *ump;
3254
3255	/*
3256	 * caller1 marks the last segment written before we issued the
3257	 * synchronize cache.
3258	 */
3259	jseg = bp->bio_caller1;
3260	if (jseg == NULL) {
3261		g_destroy_bio(bp);
3262		return;
3263	}
3264	ump = VFSTOUFS(jseg->js_list.wk_mp);
3265	ACQUIRE_LOCK(ump);
3266	oldest = NULL;
3267	/*
3268	 * Mark all the journal entries waiting on the synchronize cache
3269	 * as completed so they may continue on.
3270	 */
3271	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3272		jseg->js_state |= COMPLETE;
3273		oldest = jseg;
3274		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3275	}
3276	/*
3277	 * Restart deferred journal entry processing from the oldest
3278	 * completed jseg.
3279	 */
3280	if (oldest)
3281		complete_jsegs(oldest);
3282
3283	FREE_LOCK(ump);
3284	g_destroy_bio(bp);
3285}
3286
3287/*
3288 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3289 * barriers.  The journal must be written prior to any blocks that depend
3290 * on it and the journal can not be released until the blocks have be
3291 * written.  This code handles both barriers simultaneously.
3292 */
3293static void
3294softdep_synchronize(bp, ump, caller1)
3295	struct bio *bp;
3296	struct ufsmount *ump;
3297	void *caller1;
3298{
3299
3300	bp->bio_cmd = BIO_FLUSH;
3301	bp->bio_flags |= BIO_ORDERED;
3302	bp->bio_data = NULL;
3303	bp->bio_offset = ump->um_cp->provider->mediasize;
3304	bp->bio_length = 0;
3305	bp->bio_done = softdep_synchronize_completed;
3306	bp->bio_caller1 = caller1;
3307	g_io_request(bp,
3308	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3309}
3310
3311/*
3312 * Flush some journal records to disk.
3313 */
3314static void
3315softdep_process_journal(mp, needwk, flags)
3316	struct mount *mp;
3317	struct worklist *needwk;
3318	int flags;
3319{
3320	struct jblocks *jblocks;
3321	struct ufsmount *ump;
3322	struct worklist *wk;
3323	struct jseg *jseg;
3324	struct buf *bp;
3325	struct bio *bio;
3326	uint8_t *data;
3327	struct fs *fs;
3328	int shouldflush;
3329	int segwritten;
3330	int jrecmin;	/* Minimum records per block. */
3331	int jrecmax;	/* Maximum records per block. */
3332	int size;
3333	int cnt;
3334	int off;
3335	int devbsize;
3336
3337	if (MOUNTEDSUJ(mp) == 0)
3338		return;
3339	shouldflush = softdep_flushcache;
3340	bio = NULL;
3341	jseg = NULL;
3342	ump = VFSTOUFS(mp);
3343	LOCK_OWNED(ump);
3344	fs = ump->um_fs;
3345	jblocks = ump->softdep_jblocks;
3346	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3347	/*
3348	 * We write anywhere between a disk block and fs block.  The upper
3349	 * bound is picked to prevent buffer cache fragmentation and limit
3350	 * processing time per I/O.
3351	 */
3352	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3353	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3354	segwritten = 0;
3355	for (;;) {
3356		cnt = ump->softdep_on_journal;
3357		/*
3358		 * Criteria for writing a segment:
3359		 * 1) We have a full block.
3360		 * 2) We're called from jwait() and haven't found the
3361		 *    journal item yet.
3362		 * 3) Always write if needseg is set.
3363		 * 4) If we are called from process_worklist and have
3364		 *    not yet written anything we write a partial block
3365		 *    to enforce a 1 second maximum latency on journal
3366		 *    entries.
3367		 */
3368		if (cnt < (jrecmax - 1) && needwk == NULL &&
3369		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3370			break;
3371		cnt++;
3372		/*
3373		 * Verify some free journal space.  softdep_prealloc() should
3374		 * guarantee that we don't run out so this is indicative of
3375		 * a problem with the flow control.  Try to recover
3376		 * gracefully in any event.
3377		 */
3378		while (jblocks->jb_free == 0) {
3379			if (flags != MNT_WAIT)
3380				break;
3381			printf("softdep: Out of journal space!\n");
3382			softdep_speedup(ump);
3383			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3384		}
3385		FREE_LOCK(ump);
3386		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3387		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3388		LIST_INIT(&jseg->js_entries);
3389		LIST_INIT(&jseg->js_indirs);
3390		jseg->js_state = ATTACHED;
3391		if (shouldflush == 0)
3392			jseg->js_state |= COMPLETE;
3393		else if (bio == NULL)
3394			bio = g_alloc_bio();
3395		jseg->js_jblocks = jblocks;
3396		bp = geteblk(fs->fs_bsize, 0);
3397		ACQUIRE_LOCK(ump);
3398		/*
3399		 * If there was a race while we were allocating the block
3400		 * and jseg the entry we care about was likely written.
3401		 * We bail out in both the WAIT and NOWAIT case and assume
3402		 * the caller will loop if the entry it cares about is
3403		 * not written.
3404		 */
3405		cnt = ump->softdep_on_journal;
3406		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3407			bp->b_flags |= B_INVAL | B_NOCACHE;
3408			WORKITEM_FREE(jseg, D_JSEG);
3409			FREE_LOCK(ump);
3410			brelse(bp);
3411			ACQUIRE_LOCK(ump);
3412			break;
3413		}
3414		/*
3415		 * Calculate the disk block size required for the available
3416		 * records rounded to the min size.
3417		 */
3418		if (cnt == 0)
3419			size = devbsize;
3420		else if (cnt < jrecmax)
3421			size = howmany(cnt, jrecmin) * devbsize;
3422		else
3423			size = fs->fs_bsize;
3424		/*
3425		 * Allocate a disk block for this journal data and account
3426		 * for truncation of the requested size if enough contiguous
3427		 * space was not available.
3428		 */
3429		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3430		bp->b_lblkno = bp->b_blkno;
3431		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3432		bp->b_bcount = size;
3433		bp->b_flags &= ~B_INVAL;
3434		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3435		/*
3436		 * Initialize our jseg with cnt records.  Assign the next
3437		 * sequence number to it and link it in-order.
3438		 */
3439		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3440		jseg->js_buf = bp;
3441		jseg->js_cnt = cnt;
3442		jseg->js_refs = cnt + 1;	/* Self ref. */
3443		jseg->js_size = size;
3444		jseg->js_seq = jblocks->jb_nextseq++;
3445		if (jblocks->jb_oldestseg == NULL)
3446			jblocks->jb_oldestseg = jseg;
3447		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3448		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3449		if (jblocks->jb_writeseg == NULL)
3450			jblocks->jb_writeseg = jseg;
3451		/*
3452		 * Start filling in records from the pending list.
3453		 */
3454		data = bp->b_data;
3455		off = 0;
3456
3457		/*
3458		 * Always put a header on the first block.
3459		 * XXX As with below, there might not be a chance to get
3460		 * into the loop.  Ensure that something valid is written.
3461		 */
3462		jseg_write(ump, jseg, data);
3463		off += JREC_SIZE;
3464		data = bp->b_data + off;
3465
3466		/*
3467		 * XXX Something is wrong here.  There's no work to do,
3468		 * but we need to perform and I/O and allow it to complete
3469		 * anyways.
3470		 */
3471		if (LIST_EMPTY(&ump->softdep_journal_pending))
3472			stat_emptyjblocks++;
3473
3474		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3475		    != NULL) {
3476			if (cnt == 0)
3477				break;
3478			/* Place a segment header on every device block. */
3479			if ((off % devbsize) == 0) {
3480				jseg_write(ump, jseg, data);
3481				off += JREC_SIZE;
3482				data = bp->b_data + off;
3483			}
3484			if (wk == needwk)
3485				needwk = NULL;
3486			remove_from_journal(wk);
3487			wk->wk_state |= INPROGRESS;
3488			WORKLIST_INSERT(&jseg->js_entries, wk);
3489			switch (wk->wk_type) {
3490			case D_JADDREF:
3491				jaddref_write(WK_JADDREF(wk), jseg, data);
3492				break;
3493			case D_JREMREF:
3494				jremref_write(WK_JREMREF(wk), jseg, data);
3495				break;
3496			case D_JMVREF:
3497				jmvref_write(WK_JMVREF(wk), jseg, data);
3498				break;
3499			case D_JNEWBLK:
3500				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3501				break;
3502			case D_JFREEBLK:
3503				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3504				break;
3505			case D_JFREEFRAG:
3506				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3507				break;
3508			case D_JTRUNC:
3509				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3510				break;
3511			case D_JFSYNC:
3512				jfsync_write(WK_JFSYNC(wk), jseg, data);
3513				break;
3514			default:
3515				panic("process_journal: Unknown type %s",
3516				    TYPENAME(wk->wk_type));
3517				/* NOTREACHED */
3518			}
3519			off += JREC_SIZE;
3520			data = bp->b_data + off;
3521			cnt--;
3522		}
3523
3524		/* Clear any remaining space so we don't leak kernel data */
3525		if (size > off)
3526			bzero(data, size - off);
3527
3528		/*
3529		 * Write this one buffer and continue.
3530		 */
3531		segwritten = 1;
3532		jblocks->jb_needseg = 0;
3533		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3534		FREE_LOCK(ump);
3535		pbgetvp(ump->um_devvp, bp);
3536		/*
3537		 * We only do the blocking wait once we find the journal
3538		 * entry we're looking for.
3539		 */
3540		if (needwk == NULL && flags == MNT_WAIT)
3541			bwrite(bp);
3542		else
3543			bawrite(bp);
3544		ACQUIRE_LOCK(ump);
3545	}
3546	/*
3547	 * If we wrote a segment issue a synchronize cache so the journal
3548	 * is reflected on disk before the data is written.  Since reclaiming
3549	 * journal space also requires writing a journal record this
3550	 * process also enforces a barrier before reclamation.
3551	 */
3552	if (segwritten && shouldflush) {
3553		softdep_synchronize(bio, ump,
3554		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3555	} else if (bio)
3556		g_destroy_bio(bio);
3557	/*
3558	 * If we've suspended the filesystem because we ran out of journal
3559	 * space either try to sync it here to make some progress or
3560	 * unsuspend it if we already have.
3561	 */
3562	if (flags == 0 && jblocks->jb_suspended) {
3563		if (journal_unsuspend(ump))
3564			return;
3565		FREE_LOCK(ump);
3566		VFS_SYNC(mp, MNT_NOWAIT);
3567		ffs_sbupdate(ump, MNT_WAIT, 0);
3568		ACQUIRE_LOCK(ump);
3569	}
3570}
3571
3572/*
3573 * Complete a jseg, allowing all dependencies awaiting journal writes
3574 * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3575 * structures so that the journal segment can be freed to reclaim space.
3576 */
3577static void
3578complete_jseg(jseg)
3579	struct jseg *jseg;
3580{
3581	struct worklist *wk;
3582	struct jmvref *jmvref;
3583	int waiting;
3584#ifdef INVARIANTS
3585	int i = 0;
3586#endif
3587
3588	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3589		WORKLIST_REMOVE(wk);
3590		waiting = wk->wk_state & IOWAITING;
3591		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3592		wk->wk_state |= COMPLETE;
3593		KASSERT(i++ < jseg->js_cnt,
3594		    ("handle_written_jseg: overflow %d >= %d",
3595		    i - 1, jseg->js_cnt));
3596		switch (wk->wk_type) {
3597		case D_JADDREF:
3598			handle_written_jaddref(WK_JADDREF(wk));
3599			break;
3600		case D_JREMREF:
3601			handle_written_jremref(WK_JREMREF(wk));
3602			break;
3603		case D_JMVREF:
3604			rele_jseg(jseg);	/* No jsegdep. */
3605			jmvref = WK_JMVREF(wk);
3606			LIST_REMOVE(jmvref, jm_deps);
3607			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3608				free_pagedep(jmvref->jm_pagedep);
3609			WORKITEM_FREE(jmvref, D_JMVREF);
3610			break;
3611		case D_JNEWBLK:
3612			handle_written_jnewblk(WK_JNEWBLK(wk));
3613			break;
3614		case D_JFREEBLK:
3615			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3616			break;
3617		case D_JTRUNC:
3618			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3619			break;
3620		case D_JFSYNC:
3621			rele_jseg(jseg);	/* No jsegdep. */
3622			WORKITEM_FREE(wk, D_JFSYNC);
3623			break;
3624		case D_JFREEFRAG:
3625			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3626			break;
3627		default:
3628			panic("handle_written_jseg: Unknown type %s",
3629			    TYPENAME(wk->wk_type));
3630			/* NOTREACHED */
3631		}
3632		if (waiting)
3633			wakeup(wk);
3634	}
3635	/* Release the self reference so the structure may be freed. */
3636	rele_jseg(jseg);
3637}
3638
3639/*
3640 * Determine which jsegs are ready for completion processing.  Waits for
3641 * synchronize cache to complete as well as forcing in-order completion
3642 * of journal entries.
3643 */
3644static void
3645complete_jsegs(jseg)
3646	struct jseg *jseg;
3647{
3648	struct jblocks *jblocks;
3649	struct jseg *jsegn;
3650
3651	jblocks = jseg->js_jblocks;
3652	/*
3653	 * Don't allow out of order completions.  If this isn't the first
3654	 * block wait for it to write before we're done.
3655	 */
3656	if (jseg != jblocks->jb_writeseg)
3657		return;
3658	/* Iterate through available jsegs processing their entries. */
3659	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3660		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3661		jsegn = TAILQ_NEXT(jseg, js_next);
3662		complete_jseg(jseg);
3663		jseg = jsegn;
3664	}
3665	jblocks->jb_writeseg = jseg;
3666	/*
3667	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3668	 */
3669	free_jsegs(jblocks);
3670}
3671
3672/*
3673 * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3674 * the final completions.
3675 */
3676static void
3677handle_written_jseg(jseg, bp)
3678	struct jseg *jseg;
3679	struct buf *bp;
3680{
3681
3682	if (jseg->js_refs == 0)
3683		panic("handle_written_jseg: No self-reference on %p", jseg);
3684	jseg->js_state |= DEPCOMPLETE;
3685	/*
3686	 * We'll never need this buffer again, set flags so it will be
3687	 * discarded.
3688	 */
3689	bp->b_flags |= B_INVAL | B_NOCACHE;
3690	pbrelvp(bp);
3691	complete_jsegs(jseg);
3692}
3693
3694static inline struct jsegdep *
3695inoref_jseg(inoref)
3696	struct inoref *inoref;
3697{
3698	struct jsegdep *jsegdep;
3699
3700	jsegdep = inoref->if_jsegdep;
3701	inoref->if_jsegdep = NULL;
3702
3703	return (jsegdep);
3704}
3705
3706/*
3707 * Called once a jremref has made it to stable store.  The jremref is marked
3708 * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3709 * for the jremref to complete will be awoken by free_jremref.
3710 */
3711static void
3712handle_written_jremref(jremref)
3713	struct jremref *jremref;
3714{
3715	struct inodedep *inodedep;
3716	struct jsegdep *jsegdep;
3717	struct dirrem *dirrem;
3718
3719	/* Grab the jsegdep. */
3720	jsegdep = inoref_jseg(&jremref->jr_ref);
3721	/*
3722	 * Remove us from the inoref list.
3723	 */
3724	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3725	    0, &inodedep) == 0)
3726		panic("handle_written_jremref: Lost inodedep");
3727	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3728	/*
3729	 * Complete the dirrem.
3730	 */
3731	dirrem = jremref->jr_dirrem;
3732	jremref->jr_dirrem = NULL;
3733	LIST_REMOVE(jremref, jr_deps);
3734	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3735	jwork_insert(&dirrem->dm_jwork, jsegdep);
3736	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3737	    (dirrem->dm_state & COMPLETE) != 0)
3738		add_to_worklist(&dirrem->dm_list, 0);
3739	free_jremref(jremref);
3740}
3741
3742/*
3743 * Called once a jaddref has made it to stable store.  The dependency is
3744 * marked complete and any dependent structures are added to the inode
3745 * bufwait list to be completed as soon as it is written.  If a bitmap write
3746 * depends on this entry we move the inode into the inodedephd of the
3747 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3748 */
3749static void
3750handle_written_jaddref(jaddref)
3751	struct jaddref *jaddref;
3752{
3753	struct jsegdep *jsegdep;
3754	struct inodedep *inodedep;
3755	struct diradd *diradd;
3756	struct mkdir *mkdir;
3757
3758	/* Grab the jsegdep. */
3759	jsegdep = inoref_jseg(&jaddref->ja_ref);
3760	mkdir = NULL;
3761	diradd = NULL;
3762	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3763	    0, &inodedep) == 0)
3764		panic("handle_written_jaddref: Lost inodedep.");
3765	if (jaddref->ja_diradd == NULL)
3766		panic("handle_written_jaddref: No dependency");
3767	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3768		diradd = jaddref->ja_diradd;
3769		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3770	} else if (jaddref->ja_state & MKDIR_PARENT) {
3771		mkdir = jaddref->ja_mkdir;
3772		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3773	} else if (jaddref->ja_state & MKDIR_BODY)
3774		mkdir = jaddref->ja_mkdir;
3775	else
3776		panic("handle_written_jaddref: Unknown dependency %p",
3777		    jaddref->ja_diradd);
3778	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3779	/*
3780	 * Remove us from the inode list.
3781	 */
3782	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3783	/*
3784	 * The mkdir may be waiting on the jaddref to clear before freeing.
3785	 */
3786	if (mkdir) {
3787		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3788		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3789		    TYPENAME(mkdir->md_list.wk_type)));
3790		mkdir->md_jaddref = NULL;
3791		diradd = mkdir->md_diradd;
3792		mkdir->md_state |= DEPCOMPLETE;
3793		complete_mkdir(mkdir);
3794	}
3795	jwork_insert(&diradd->da_jwork, jsegdep);
3796	if (jaddref->ja_state & NEWBLOCK) {
3797		inodedep->id_state |= ONDEPLIST;
3798		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3799		    inodedep, id_deps);
3800	}
3801	free_jaddref(jaddref);
3802}
3803
3804/*
3805 * Called once a jnewblk journal is written.  The allocdirect or allocindir
3806 * is placed in the bmsafemap to await notification of a written bitmap.  If
3807 * the operation was canceled we add the segdep to the appropriate
3808 * dependency to free the journal space once the canceling operation
3809 * completes.
3810 */
3811static void
3812handle_written_jnewblk(jnewblk)
3813	struct jnewblk *jnewblk;
3814{
3815	struct bmsafemap *bmsafemap;
3816	struct freefrag *freefrag;
3817	struct freework *freework;
3818	struct jsegdep *jsegdep;
3819	struct newblk *newblk;
3820
3821	/* Grab the jsegdep. */
3822	jsegdep = jnewblk->jn_jsegdep;
3823	jnewblk->jn_jsegdep = NULL;
3824	if (jnewblk->jn_dep == NULL)
3825		panic("handle_written_jnewblk: No dependency for the segdep.");
3826	switch (jnewblk->jn_dep->wk_type) {
3827	case D_NEWBLK:
3828	case D_ALLOCDIRECT:
3829	case D_ALLOCINDIR:
3830		/*
3831		 * Add the written block to the bmsafemap so it can
3832		 * be notified when the bitmap is on disk.
3833		 */
3834		newblk = WK_NEWBLK(jnewblk->jn_dep);
3835		newblk->nb_jnewblk = NULL;
3836		if ((newblk->nb_state & GOINGAWAY) == 0) {
3837			bmsafemap = newblk->nb_bmsafemap;
3838			newblk->nb_state |= ONDEPLIST;
3839			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3840			    nb_deps);
3841		}
3842		jwork_insert(&newblk->nb_jwork, jsegdep);
3843		break;
3844	case D_FREEFRAG:
3845		/*
3846		 * A newblock being removed by a freefrag when replaced by
3847		 * frag extension.
3848		 */
3849		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3850		freefrag->ff_jdep = NULL;
3851		jwork_insert(&freefrag->ff_jwork, jsegdep);
3852		break;
3853	case D_FREEWORK:
3854		/*
3855		 * A direct block was removed by truncate.
3856		 */
3857		freework = WK_FREEWORK(jnewblk->jn_dep);
3858		freework->fw_jnewblk = NULL;
3859		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3860		break;
3861	default:
3862		panic("handle_written_jnewblk: Unknown type %d.",
3863		    jnewblk->jn_dep->wk_type);
3864	}
3865	jnewblk->jn_dep = NULL;
3866	free_jnewblk(jnewblk);
3867}
3868
3869/*
3870 * Cancel a jfreefrag that won't be needed, probably due to colliding with
3871 * an in-flight allocation that has not yet been committed.  Divorce us
3872 * from the freefrag and mark it DEPCOMPLETE so that it may be added
3873 * to the worklist.
3874 */
3875static void
3876cancel_jfreefrag(jfreefrag)
3877	struct jfreefrag *jfreefrag;
3878{
3879	struct freefrag *freefrag;
3880
3881	if (jfreefrag->fr_jsegdep) {
3882		free_jsegdep(jfreefrag->fr_jsegdep);
3883		jfreefrag->fr_jsegdep = NULL;
3884	}
3885	freefrag = jfreefrag->fr_freefrag;
3886	jfreefrag->fr_freefrag = NULL;
3887	free_jfreefrag(jfreefrag);
3888	freefrag->ff_state |= DEPCOMPLETE;
3889	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3890}
3891
3892/*
3893 * Free a jfreefrag when the parent freefrag is rendered obsolete.
3894 */
3895static void
3896free_jfreefrag(jfreefrag)
3897	struct jfreefrag *jfreefrag;
3898{
3899
3900	if (jfreefrag->fr_state & INPROGRESS)
3901		WORKLIST_REMOVE(&jfreefrag->fr_list);
3902	else if (jfreefrag->fr_state & ONWORKLIST)
3903		remove_from_journal(&jfreefrag->fr_list);
3904	if (jfreefrag->fr_freefrag != NULL)
3905		panic("free_jfreefrag:  Still attached to a freefrag.");
3906	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3907}
3908
3909/*
3910 * Called when the journal write for a jfreefrag completes.  The parent
3911 * freefrag is added to the worklist if this completes its dependencies.
3912 */
3913static void
3914handle_written_jfreefrag(jfreefrag)
3915	struct jfreefrag *jfreefrag;
3916{
3917	struct jsegdep *jsegdep;
3918	struct freefrag *freefrag;
3919
3920	/* Grab the jsegdep. */
3921	jsegdep = jfreefrag->fr_jsegdep;
3922	jfreefrag->fr_jsegdep = NULL;
3923	freefrag = jfreefrag->fr_freefrag;
3924	if (freefrag == NULL)
3925		panic("handle_written_jfreefrag: No freefrag.");
3926	freefrag->ff_state |= DEPCOMPLETE;
3927	freefrag->ff_jdep = NULL;
3928	jwork_insert(&freefrag->ff_jwork, jsegdep);
3929	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3930		add_to_worklist(&freefrag->ff_list, 0);
3931	jfreefrag->fr_freefrag = NULL;
3932	free_jfreefrag(jfreefrag);
3933}
3934
3935/*
3936 * Called when the journal write for a jfreeblk completes.  The jfreeblk
3937 * is removed from the freeblks list of pending journal writes and the
3938 * jsegdep is moved to the freeblks jwork to be completed when all blocks
3939 * have been reclaimed.
3940 */
3941static void
3942handle_written_jblkdep(jblkdep)
3943	struct jblkdep *jblkdep;
3944{
3945	struct freeblks *freeblks;
3946	struct jsegdep *jsegdep;
3947
3948	/* Grab the jsegdep. */
3949	jsegdep = jblkdep->jb_jsegdep;
3950	jblkdep->jb_jsegdep = NULL;
3951	freeblks = jblkdep->jb_freeblks;
3952	LIST_REMOVE(jblkdep, jb_deps);
3953	jwork_insert(&freeblks->fb_jwork, jsegdep);
3954	/*
3955	 * If the freeblks is all journaled, we can add it to the worklist.
3956	 */
3957	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3958	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3959		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3960
3961	free_jblkdep(jblkdep);
3962}
3963
3964static struct jsegdep *
3965newjsegdep(struct worklist *wk)
3966{
3967	struct jsegdep *jsegdep;
3968
3969	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3970	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3971	jsegdep->jd_seg = NULL;
3972
3973	return (jsegdep);
3974}
3975
3976static struct jmvref *
3977newjmvref(dp, ino, oldoff, newoff)
3978	struct inode *dp;
3979	ino_t ino;
3980	off_t oldoff;
3981	off_t newoff;
3982{
3983	struct jmvref *jmvref;
3984
3985	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3986	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3987	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3988	jmvref->jm_parent = dp->i_number;
3989	jmvref->jm_ino = ino;
3990	jmvref->jm_oldoff = oldoff;
3991	jmvref->jm_newoff = newoff;
3992
3993	return (jmvref);
3994}
3995
3996/*
3997 * Allocate a new jremref that tracks the removal of ip from dp with the
3998 * directory entry offset of diroff.  Mark the entry as ATTACHED and
3999 * DEPCOMPLETE as we have all the information required for the journal write
4000 * and the directory has already been removed from the buffer.  The caller
4001 * is responsible for linking the jremref into the pagedep and adding it
4002 * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4003 * a DOTDOT addition so handle_workitem_remove() can properly assign
4004 * the jsegdep when we're done.
4005 */
4006static struct jremref *
4007newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4008    off_t diroff, nlink_t nlink)
4009{
4010	struct jremref *jremref;
4011
4012	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4013	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
4014	jremref->jr_state = ATTACHED;
4015	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4016	   nlink, ip->i_mode);
4017	jremref->jr_dirrem = dirrem;
4018
4019	return (jremref);
4020}
4021
4022static inline void
4023newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4024    nlink_t nlink, uint16_t mode)
4025{
4026
4027	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4028	inoref->if_diroff = diroff;
4029	inoref->if_ino = ino;
4030	inoref->if_parent = parent;
4031	inoref->if_nlink = nlink;
4032	inoref->if_mode = mode;
4033}
4034
4035/*
4036 * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4037 * directory offset may not be known until later.  The caller is responsible
4038 * adding the entry to the journal when this information is available.  nlink
4039 * should be the link count prior to the addition and mode is only required
4040 * to have the correct FMT.
4041 */
4042static struct jaddref *
4043newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4044    uint16_t mode)
4045{
4046	struct jaddref *jaddref;
4047
4048	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4049	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
4050	jaddref->ja_state = ATTACHED;
4051	jaddref->ja_mkdir = NULL;
4052	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4053
4054	return (jaddref);
4055}
4056
4057/*
4058 * Create a new free dependency for a freework.  The caller is responsible
4059 * for adjusting the reference count when it has the lock held.  The freedep
4060 * will track an outstanding bitmap write that will ultimately clear the
4061 * freework to continue.
4062 */
4063static struct freedep *
4064newfreedep(struct freework *freework)
4065{
4066	struct freedep *freedep;
4067
4068	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4069	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4070	freedep->fd_freework = freework;
4071
4072	return (freedep);
4073}
4074
4075/*
4076 * Free a freedep structure once the buffer it is linked to is written.  If
4077 * this is the last reference to the freework schedule it for completion.
4078 */
4079static void
4080free_freedep(freedep)
4081	struct freedep *freedep;
4082{
4083	struct freework *freework;
4084
4085	freework = freedep->fd_freework;
4086	freework->fw_freeblks->fb_cgwait--;
4087	if (--freework->fw_ref == 0)
4088		freework_enqueue(freework);
4089	WORKITEM_FREE(freedep, D_FREEDEP);
4090}
4091
4092/*
4093 * Allocate a new freework structure that may be a level in an indirect
4094 * when parent is not NULL or a top level block when it is.  The top level
4095 * freework structures are allocated without the per-filesystem lock held
4096 * and before the freeblks is visible outside of softdep_setup_freeblocks().
4097 */
4098static struct freework *
4099newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4100	struct ufsmount *ump;
4101	struct freeblks *freeblks;
4102	struct freework *parent;
4103	ufs_lbn_t lbn;
4104	ufs2_daddr_t nb;
4105	int frags;
4106	int off;
4107	int journal;
4108{
4109	struct freework *freework;
4110
4111	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4112	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4113	freework->fw_state = ATTACHED;
4114	freework->fw_jnewblk = NULL;
4115	freework->fw_freeblks = freeblks;
4116	freework->fw_parent = parent;
4117	freework->fw_lbn = lbn;
4118	freework->fw_blkno = nb;
4119	freework->fw_frags = frags;
4120	freework->fw_indir = NULL;
4121	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
4122		? 0 : NINDIR(ump->um_fs) + 1;
4123	freework->fw_start = freework->fw_off = off;
4124	if (journal)
4125		newjfreeblk(freeblks, lbn, nb, frags);
4126	if (parent == NULL) {
4127		ACQUIRE_LOCK(ump);
4128		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4129		freeblks->fb_ref++;
4130		FREE_LOCK(ump);
4131	}
4132
4133	return (freework);
4134}
4135
4136/*
4137 * Eliminate a jfreeblk for a block that does not need journaling.
4138 */
4139static void
4140cancel_jfreeblk(freeblks, blkno)
4141	struct freeblks *freeblks;
4142	ufs2_daddr_t blkno;
4143{
4144	struct jfreeblk *jfreeblk;
4145	struct jblkdep *jblkdep;
4146
4147	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4148		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4149			continue;
4150		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4151		if (jfreeblk->jf_blkno == blkno)
4152			break;
4153	}
4154	if (jblkdep == NULL)
4155		return;
4156	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4157	free_jsegdep(jblkdep->jb_jsegdep);
4158	LIST_REMOVE(jblkdep, jb_deps);
4159	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4160}
4161
4162/*
4163 * Allocate a new jfreeblk to journal top level block pointer when truncating
4164 * a file.  The caller must add this to the worklist when the per-filesystem
4165 * lock is held.
4166 */
4167static struct jfreeblk *
4168newjfreeblk(freeblks, lbn, blkno, frags)
4169	struct freeblks *freeblks;
4170	ufs_lbn_t lbn;
4171	ufs2_daddr_t blkno;
4172	int frags;
4173{
4174	struct jfreeblk *jfreeblk;
4175
4176	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4177	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4178	    freeblks->fb_list.wk_mp);
4179	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4180	jfreeblk->jf_dep.jb_freeblks = freeblks;
4181	jfreeblk->jf_ino = freeblks->fb_inum;
4182	jfreeblk->jf_lbn = lbn;
4183	jfreeblk->jf_blkno = blkno;
4184	jfreeblk->jf_frags = frags;
4185	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4186
4187	return (jfreeblk);
4188}
4189
4190/*
4191 * The journal is only prepared to handle full-size block numbers, so we
4192 * have to adjust the record to reflect the change to a full-size block.
4193 * For example, suppose we have a block made up of fragments 8-15 and
4194 * want to free its last two fragments. We are given a request that says:
4195 *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4196 * where frags are the number of fragments to free and oldfrags are the
4197 * number of fragments to keep. To block align it, we have to change it to
4198 * have a valid full-size blkno, so it becomes:
4199 *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4200 */
4201static void
4202adjust_newfreework(freeblks, frag_offset)
4203	struct freeblks *freeblks;
4204	int frag_offset;
4205{
4206	struct jfreeblk *jfreeblk;
4207
4208	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4209	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4210	    ("adjust_newfreework: Missing freeblks dependency"));
4211
4212	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4213	jfreeblk->jf_blkno -= frag_offset;
4214	jfreeblk->jf_frags += frag_offset;
4215}
4216
4217/*
4218 * Allocate a new jtrunc to track a partial truncation.
4219 */
4220static struct jtrunc *
4221newjtrunc(freeblks, size, extsize)
4222	struct freeblks *freeblks;
4223	off_t size;
4224	int extsize;
4225{
4226	struct jtrunc *jtrunc;
4227
4228	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4229	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4230	    freeblks->fb_list.wk_mp);
4231	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4232	jtrunc->jt_dep.jb_freeblks = freeblks;
4233	jtrunc->jt_ino = freeblks->fb_inum;
4234	jtrunc->jt_size = size;
4235	jtrunc->jt_extsize = extsize;
4236	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4237
4238	return (jtrunc);
4239}
4240
4241/*
4242 * If we're canceling a new bitmap we have to search for another ref
4243 * to move into the bmsafemap dep.  This might be better expressed
4244 * with another structure.
4245 */
4246static void
4247move_newblock_dep(jaddref, inodedep)
4248	struct jaddref *jaddref;
4249	struct inodedep *inodedep;
4250{
4251	struct inoref *inoref;
4252	struct jaddref *jaddrefn;
4253
4254	jaddrefn = NULL;
4255	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4256	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4257		if ((jaddref->ja_state & NEWBLOCK) &&
4258		    inoref->if_list.wk_type == D_JADDREF) {
4259			jaddrefn = (struct jaddref *)inoref;
4260			break;
4261		}
4262	}
4263	if (jaddrefn == NULL)
4264		return;
4265	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4266	jaddrefn->ja_state |= jaddref->ja_state &
4267	    (ATTACHED | UNDONE | NEWBLOCK);
4268	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4269	jaddref->ja_state |= ATTACHED;
4270	LIST_REMOVE(jaddref, ja_bmdeps);
4271	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4272	    ja_bmdeps);
4273}
4274
4275/*
4276 * Cancel a jaddref either before it has been written or while it is being
4277 * written.  This happens when a link is removed before the add reaches
4278 * the disk.  The jaddref dependency is kept linked into the bmsafemap
4279 * and inode to prevent the link count or bitmap from reaching the disk
4280 * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4281 * required.
4282 *
4283 * Returns 1 if the canceled addref requires journaling of the remove and
4284 * 0 otherwise.
4285 */
4286static int
4287cancel_jaddref(jaddref, inodedep, wkhd)
4288	struct jaddref *jaddref;
4289	struct inodedep *inodedep;
4290	struct workhead *wkhd;
4291{
4292	struct inoref *inoref;
4293	struct jsegdep *jsegdep;
4294	int needsj;
4295
4296	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4297	    ("cancel_jaddref: Canceling complete jaddref"));
4298	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4299		needsj = 1;
4300	else
4301		needsj = 0;
4302	if (inodedep == NULL)
4303		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4304		    0, &inodedep) == 0)
4305			panic("cancel_jaddref: Lost inodedep");
4306	/*
4307	 * We must adjust the nlink of any reference operation that follows
4308	 * us so that it is consistent with the in-memory reference.  This
4309	 * ensures that inode nlink rollbacks always have the correct link.
4310	 */
4311	if (needsj == 0) {
4312		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4313		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4314			if (inoref->if_state & GOINGAWAY)
4315				break;
4316			inoref->if_nlink--;
4317		}
4318	}
4319	jsegdep = inoref_jseg(&jaddref->ja_ref);
4320	if (jaddref->ja_state & NEWBLOCK)
4321		move_newblock_dep(jaddref, inodedep);
4322	wake_worklist(&jaddref->ja_list);
4323	jaddref->ja_mkdir = NULL;
4324	if (jaddref->ja_state & INPROGRESS) {
4325		jaddref->ja_state &= ~INPROGRESS;
4326		WORKLIST_REMOVE(&jaddref->ja_list);
4327		jwork_insert(wkhd, jsegdep);
4328	} else {
4329		free_jsegdep(jsegdep);
4330		if (jaddref->ja_state & DEPCOMPLETE)
4331			remove_from_journal(&jaddref->ja_list);
4332	}
4333	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4334	/*
4335	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4336	 * can arrange for them to be freed with the bitmap.  Otherwise we
4337	 * no longer need this addref attached to the inoreflst and it
4338	 * will incorrectly adjust nlink if we leave it.
4339	 */
4340	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4341		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4342		    if_deps);
4343		jaddref->ja_state |= COMPLETE;
4344		free_jaddref(jaddref);
4345		return (needsj);
4346	}
4347	/*
4348	 * Leave the head of the list for jsegdeps for fast merging.
4349	 */
4350	if (LIST_FIRST(wkhd) != NULL) {
4351		jaddref->ja_state |= ONWORKLIST;
4352		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4353	} else
4354		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4355
4356	return (needsj);
4357}
4358
4359/*
4360 * Attempt to free a jaddref structure when some work completes.  This
4361 * should only succeed once the entry is written and all dependencies have
4362 * been notified.
4363 */
4364static void
4365free_jaddref(jaddref)
4366	struct jaddref *jaddref;
4367{
4368
4369	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4370		return;
4371	if (jaddref->ja_ref.if_jsegdep)
4372		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4373		    jaddref, jaddref->ja_state);
4374	if (jaddref->ja_state & NEWBLOCK)
4375		LIST_REMOVE(jaddref, ja_bmdeps);
4376	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4377		panic("free_jaddref: Bad state %p(0x%X)",
4378		    jaddref, jaddref->ja_state);
4379	if (jaddref->ja_mkdir != NULL)
4380		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4381	WORKITEM_FREE(jaddref, D_JADDREF);
4382}
4383
4384/*
4385 * Free a jremref structure once it has been written or discarded.
4386 */
4387static void
4388free_jremref(jremref)
4389	struct jremref *jremref;
4390{
4391
4392	if (jremref->jr_ref.if_jsegdep)
4393		free_jsegdep(jremref->jr_ref.if_jsegdep);
4394	if (jremref->jr_state & INPROGRESS)
4395		panic("free_jremref: IO still pending");
4396	WORKITEM_FREE(jremref, D_JREMREF);
4397}
4398
4399/*
4400 * Free a jnewblk structure.
4401 */
4402static void
4403free_jnewblk(jnewblk)
4404	struct jnewblk *jnewblk;
4405{
4406
4407	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4408		return;
4409	LIST_REMOVE(jnewblk, jn_deps);
4410	if (jnewblk->jn_dep != NULL)
4411		panic("free_jnewblk: Dependency still attached.");
4412	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4413}
4414
4415/*
4416 * Cancel a jnewblk which has been been made redundant by frag extension.
4417 */
4418static void
4419cancel_jnewblk(jnewblk, wkhd)
4420	struct jnewblk *jnewblk;
4421	struct workhead *wkhd;
4422{
4423	struct jsegdep *jsegdep;
4424
4425	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4426	jsegdep = jnewblk->jn_jsegdep;
4427	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4428		panic("cancel_jnewblk: Invalid state");
4429	jnewblk->jn_jsegdep  = NULL;
4430	jnewblk->jn_dep = NULL;
4431	jnewblk->jn_state |= GOINGAWAY;
4432	if (jnewblk->jn_state & INPROGRESS) {
4433		jnewblk->jn_state &= ~INPROGRESS;
4434		WORKLIST_REMOVE(&jnewblk->jn_list);
4435		jwork_insert(wkhd, jsegdep);
4436	} else {
4437		free_jsegdep(jsegdep);
4438		remove_from_journal(&jnewblk->jn_list);
4439	}
4440	wake_worklist(&jnewblk->jn_list);
4441	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4442}
4443
4444static void
4445free_jblkdep(jblkdep)
4446	struct jblkdep *jblkdep;
4447{
4448
4449	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4450		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4451	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4452		WORKITEM_FREE(jblkdep, D_JTRUNC);
4453	else
4454		panic("free_jblkdep: Unexpected type %s",
4455		    TYPENAME(jblkdep->jb_list.wk_type));
4456}
4457
4458/*
4459 * Free a single jseg once it is no longer referenced in memory or on
4460 * disk.  Reclaim journal blocks and dependencies waiting for the segment
4461 * to disappear.
4462 */
4463static void
4464free_jseg(jseg, jblocks)
4465	struct jseg *jseg;
4466	struct jblocks *jblocks;
4467{
4468	struct freework *freework;
4469
4470	/*
4471	 * Free freework structures that were lingering to indicate freed
4472	 * indirect blocks that forced journal write ordering on reallocate.
4473	 */
4474	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4475		indirblk_remove(freework);
4476	if (jblocks->jb_oldestseg == jseg)
4477		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4478	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4479	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4480	KASSERT(LIST_EMPTY(&jseg->js_entries),
4481	    ("free_jseg: Freed jseg has valid entries."));
4482	WORKITEM_FREE(jseg, D_JSEG);
4483}
4484
4485/*
4486 * Free all jsegs that meet the criteria for being reclaimed and update
4487 * oldestseg.
4488 */
4489static void
4490free_jsegs(jblocks)
4491	struct jblocks *jblocks;
4492{
4493	struct jseg *jseg;
4494
4495	/*
4496	 * Free only those jsegs which have none allocated before them to
4497	 * preserve the journal space ordering.
4498	 */
4499	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4500		/*
4501		 * Only reclaim space when nothing depends on this journal
4502		 * set and another set has written that it is no longer
4503		 * valid.
4504		 */
4505		if (jseg->js_refs != 0) {
4506			jblocks->jb_oldestseg = jseg;
4507			return;
4508		}
4509		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4510			break;
4511		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4512			break;
4513		/*
4514		 * We can free jsegs that didn't write entries when
4515		 * oldestwrseq == js_seq.
4516		 */
4517		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4518		    jseg->js_cnt != 0)
4519			break;
4520		free_jseg(jseg, jblocks);
4521	}
4522	/*
4523	 * If we exited the loop above we still must discover the
4524	 * oldest valid segment.
4525	 */
4526	if (jseg)
4527		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4528		     jseg = TAILQ_NEXT(jseg, js_next))
4529			if (jseg->js_refs != 0)
4530				break;
4531	jblocks->jb_oldestseg = jseg;
4532	/*
4533	 * The journal has no valid records but some jsegs may still be
4534	 * waiting on oldestwrseq to advance.  We force a small record
4535	 * out to permit these lingering records to be reclaimed.
4536	 */
4537	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4538		jblocks->jb_needseg = 1;
4539}
4540
4541/*
4542 * Release one reference to a jseg and free it if the count reaches 0.  This
4543 * should eventually reclaim journal space as well.
4544 */
4545static void
4546rele_jseg(jseg)
4547	struct jseg *jseg;
4548{
4549
4550	KASSERT(jseg->js_refs > 0,
4551	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4552	if (--jseg->js_refs != 0)
4553		return;
4554	free_jsegs(jseg->js_jblocks);
4555}
4556
4557/*
4558 * Release a jsegdep and decrement the jseg count.
4559 */
4560static void
4561free_jsegdep(jsegdep)
4562	struct jsegdep *jsegdep;
4563{
4564
4565	if (jsegdep->jd_seg)
4566		rele_jseg(jsegdep->jd_seg);
4567	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4568}
4569
4570/*
4571 * Wait for a journal item to make it to disk.  Initiate journal processing
4572 * if required.
4573 */
4574static int
4575jwait(wk, waitfor)
4576	struct worklist *wk;
4577	int waitfor;
4578{
4579
4580	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4581	/*
4582	 * Blocking journal waits cause slow synchronous behavior.  Record
4583	 * stats on the frequency of these blocking operations.
4584	 */
4585	if (waitfor == MNT_WAIT) {
4586		stat_journal_wait++;
4587		switch (wk->wk_type) {
4588		case D_JREMREF:
4589		case D_JMVREF:
4590			stat_jwait_filepage++;
4591			break;
4592		case D_JTRUNC:
4593		case D_JFREEBLK:
4594			stat_jwait_freeblks++;
4595			break;
4596		case D_JNEWBLK:
4597			stat_jwait_newblk++;
4598			break;
4599		case D_JADDREF:
4600			stat_jwait_inode++;
4601			break;
4602		default:
4603			break;
4604		}
4605	}
4606	/*
4607	 * If IO has not started we process the journal.  We can't mark the
4608	 * worklist item as IOWAITING because we drop the lock while
4609	 * processing the journal and the worklist entry may be freed after
4610	 * this point.  The caller may call back in and re-issue the request.
4611	 */
4612	if ((wk->wk_state & INPROGRESS) == 0) {
4613		softdep_process_journal(wk->wk_mp, wk, waitfor);
4614		if (waitfor != MNT_WAIT)
4615			return (EBUSY);
4616		return (0);
4617	}
4618	if (waitfor != MNT_WAIT)
4619		return (EBUSY);
4620	wait_worklist(wk, "jwait");
4621	return (0);
4622}
4623
4624/*
4625 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4626 * appropriate.  This is a convenience function to reduce duplicate code
4627 * for the setup and revert functions below.
4628 */
4629static struct inodedep *
4630inodedep_lookup_ip(ip)
4631	struct inode *ip;
4632{
4633	struct inodedep *inodedep;
4634	int dflags;
4635
4636	KASSERT(ip->i_nlink >= ip->i_effnlink,
4637	    ("inodedep_lookup_ip: bad delta"));
4638	dflags = DEPALLOC;
4639	if (IS_SNAPSHOT(ip))
4640		dflags |= NODELAY;
4641	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4642	    &inodedep);
4643	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4644	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4645
4646	return (inodedep);
4647}
4648
4649/*
4650 * Called prior to creating a new inode and linking it to a directory.  The
4651 * jaddref structure must already be allocated by softdep_setup_inomapdep
4652 * and it is discovered here so we can initialize the mode and update
4653 * nlinkdelta.
4654 */
4655void
4656softdep_setup_create(dp, ip)
4657	struct inode *dp;
4658	struct inode *ip;
4659{
4660	struct inodedep *inodedep;
4661	struct jaddref *jaddref;
4662	struct vnode *dvp;
4663
4664	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4665	    ("softdep_setup_create called on non-softdep filesystem"));
4666	KASSERT(ip->i_nlink == 1,
4667	    ("softdep_setup_create: Invalid link count."));
4668	dvp = ITOV(dp);
4669	ACQUIRE_LOCK(dp->i_ump);
4670	inodedep = inodedep_lookup_ip(ip);
4671	if (DOINGSUJ(dvp)) {
4672		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4673		    inoreflst);
4674		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4675		    ("softdep_setup_create: No addref structure present."));
4676	}
4677	softdep_prelink(dvp, NULL);
4678	FREE_LOCK(dp->i_ump);
4679}
4680
4681/*
4682 * Create a jaddref structure to track the addition of a DOTDOT link when
4683 * we are reparenting an inode as part of a rename.  This jaddref will be
4684 * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4685 * non-journaling softdep.
4686 */
4687void
4688softdep_setup_dotdot_link(dp, ip)
4689	struct inode *dp;
4690	struct inode *ip;
4691{
4692	struct inodedep *inodedep;
4693	struct jaddref *jaddref;
4694	struct vnode *dvp;
4695
4696	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4697	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4698	dvp = ITOV(dp);
4699	jaddref = NULL;
4700	/*
4701	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4702	 * is used as a normal link would be.
4703	 */
4704	if (DOINGSUJ(dvp))
4705		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4706		    dp->i_effnlink - 1, dp->i_mode);
4707	ACQUIRE_LOCK(dp->i_ump);
4708	inodedep = inodedep_lookup_ip(dp);
4709	if (jaddref)
4710		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4711		    if_deps);
4712	softdep_prelink(dvp, ITOV(ip));
4713	FREE_LOCK(dp->i_ump);
4714}
4715
4716/*
4717 * Create a jaddref structure to track a new link to an inode.  The directory
4718 * offset is not known until softdep_setup_directory_add or
4719 * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4720 * softdep.
4721 */
4722void
4723softdep_setup_link(dp, ip)
4724	struct inode *dp;
4725	struct inode *ip;
4726{
4727	struct inodedep *inodedep;
4728	struct jaddref *jaddref;
4729	struct vnode *dvp;
4730
4731	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4732	    ("softdep_setup_link called on non-softdep filesystem"));
4733	dvp = ITOV(dp);
4734	jaddref = NULL;
4735	if (DOINGSUJ(dvp))
4736		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4737		    ip->i_mode);
4738	ACQUIRE_LOCK(dp->i_ump);
4739	inodedep = inodedep_lookup_ip(ip);
4740	if (jaddref)
4741		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4742		    if_deps);
4743	softdep_prelink(dvp, ITOV(ip));
4744	FREE_LOCK(dp->i_ump);
4745}
4746
4747/*
4748 * Called to create the jaddref structures to track . and .. references as
4749 * well as lookup and further initialize the incomplete jaddref created
4750 * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4751 * nlinkdelta for non-journaling softdep.
4752 */
4753void
4754softdep_setup_mkdir(dp, ip)
4755	struct inode *dp;
4756	struct inode *ip;
4757{
4758	struct inodedep *inodedep;
4759	struct jaddref *dotdotaddref;
4760	struct jaddref *dotaddref;
4761	struct jaddref *jaddref;
4762	struct vnode *dvp;
4763
4764	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4765	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4766	dvp = ITOV(dp);
4767	dotaddref = dotdotaddref = NULL;
4768	if (DOINGSUJ(dvp)) {
4769		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4770		    ip->i_mode);
4771		dotaddref->ja_state |= MKDIR_BODY;
4772		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4773		    dp->i_effnlink - 1, dp->i_mode);
4774		dotdotaddref->ja_state |= MKDIR_PARENT;
4775	}
4776	ACQUIRE_LOCK(dp->i_ump);
4777	inodedep = inodedep_lookup_ip(ip);
4778	if (DOINGSUJ(dvp)) {
4779		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4780		    inoreflst);
4781		KASSERT(jaddref != NULL,
4782		    ("softdep_setup_mkdir: No addref structure present."));
4783		KASSERT(jaddref->ja_parent == dp->i_number,
4784		    ("softdep_setup_mkdir: bad parent %ju",
4785		    (uintmax_t)jaddref->ja_parent));
4786		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4787		    if_deps);
4788	}
4789	inodedep = inodedep_lookup_ip(dp);
4790	if (DOINGSUJ(dvp))
4791		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4792		    &dotdotaddref->ja_ref, if_deps);
4793	softdep_prelink(ITOV(dp), NULL);
4794	FREE_LOCK(dp->i_ump);
4795}
4796
4797/*
4798 * Called to track nlinkdelta of the inode and parent directories prior to
4799 * unlinking a directory.
4800 */
4801void
4802softdep_setup_rmdir(dp, ip)
4803	struct inode *dp;
4804	struct inode *ip;
4805{
4806	struct vnode *dvp;
4807
4808	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4809	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4810	dvp = ITOV(dp);
4811	ACQUIRE_LOCK(dp->i_ump);
4812	(void) inodedep_lookup_ip(ip);
4813	(void) inodedep_lookup_ip(dp);
4814	softdep_prelink(dvp, ITOV(ip));
4815	FREE_LOCK(dp->i_ump);
4816}
4817
4818/*
4819 * Called to track nlinkdelta of the inode and parent directories prior to
4820 * unlink.
4821 */
4822void
4823softdep_setup_unlink(dp, ip)
4824	struct inode *dp;
4825	struct inode *ip;
4826{
4827	struct vnode *dvp;
4828
4829	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4830	    ("softdep_setup_unlink called on non-softdep filesystem"));
4831	dvp = ITOV(dp);
4832	ACQUIRE_LOCK(dp->i_ump);
4833	(void) inodedep_lookup_ip(ip);
4834	(void) inodedep_lookup_ip(dp);
4835	softdep_prelink(dvp, ITOV(ip));
4836	FREE_LOCK(dp->i_ump);
4837}
4838
4839/*
4840 * Called to release the journal structures created by a failed non-directory
4841 * creation.  Adjusts nlinkdelta for non-journaling softdep.
4842 */
4843void
4844softdep_revert_create(dp, ip)
4845	struct inode *dp;
4846	struct inode *ip;
4847{
4848	struct inodedep *inodedep;
4849	struct jaddref *jaddref;
4850	struct vnode *dvp;
4851
4852	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4853	    ("softdep_revert_create called on non-softdep filesystem"));
4854	dvp = ITOV(dp);
4855	ACQUIRE_LOCK(dp->i_ump);
4856	inodedep = inodedep_lookup_ip(ip);
4857	if (DOINGSUJ(dvp)) {
4858		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4859		    inoreflst);
4860		KASSERT(jaddref->ja_parent == dp->i_number,
4861		    ("softdep_revert_create: addref parent mismatch"));
4862		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4863	}
4864	FREE_LOCK(dp->i_ump);
4865}
4866
4867/*
4868 * Called to release the journal structures created by a failed link
4869 * addition.  Adjusts nlinkdelta for non-journaling softdep.
4870 */
4871void
4872softdep_revert_link(dp, ip)
4873	struct inode *dp;
4874	struct inode *ip;
4875{
4876	struct inodedep *inodedep;
4877	struct jaddref *jaddref;
4878	struct vnode *dvp;
4879
4880	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4881	    ("softdep_revert_link called on non-softdep filesystem"));
4882	dvp = ITOV(dp);
4883	ACQUIRE_LOCK(dp->i_ump);
4884	inodedep = inodedep_lookup_ip(ip);
4885	if (DOINGSUJ(dvp)) {
4886		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4887		    inoreflst);
4888		KASSERT(jaddref->ja_parent == dp->i_number,
4889		    ("softdep_revert_link: addref parent mismatch"));
4890		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4891	}
4892	FREE_LOCK(dp->i_ump);
4893}
4894
4895/*
4896 * Called to release the journal structures created by a failed mkdir
4897 * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4898 */
4899void
4900softdep_revert_mkdir(dp, ip)
4901	struct inode *dp;
4902	struct inode *ip;
4903{
4904	struct inodedep *inodedep;
4905	struct jaddref *jaddref;
4906	struct jaddref *dotaddref;
4907	struct vnode *dvp;
4908
4909	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4910	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4911	dvp = ITOV(dp);
4912
4913	ACQUIRE_LOCK(dp->i_ump);
4914	inodedep = inodedep_lookup_ip(dp);
4915	if (DOINGSUJ(dvp)) {
4916		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4917		    inoreflst);
4918		KASSERT(jaddref->ja_parent == ip->i_number,
4919		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4920		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4921	}
4922	inodedep = inodedep_lookup_ip(ip);
4923	if (DOINGSUJ(dvp)) {
4924		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4925		    inoreflst);
4926		KASSERT(jaddref->ja_parent == dp->i_number,
4927		    ("softdep_revert_mkdir: addref parent mismatch"));
4928		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4929		    inoreflst, if_deps);
4930		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4931		KASSERT(dotaddref->ja_parent == ip->i_number,
4932		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4933		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4934	}
4935	FREE_LOCK(dp->i_ump);
4936}
4937
4938/*
4939 * Called to correct nlinkdelta after a failed rmdir.
4940 */
4941void
4942softdep_revert_rmdir(dp, ip)
4943	struct inode *dp;
4944	struct inode *ip;
4945{
4946
4947	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4948	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4949	ACQUIRE_LOCK(dp->i_ump);
4950	(void) inodedep_lookup_ip(ip);
4951	(void) inodedep_lookup_ip(dp);
4952	FREE_LOCK(dp->i_ump);
4953}
4954
4955/*
4956 * Protecting the freemaps (or bitmaps).
4957 *
4958 * To eliminate the need to execute fsck before mounting a filesystem
4959 * after a power failure, one must (conservatively) guarantee that the
4960 * on-disk copy of the bitmaps never indicate that a live inode or block is
4961 * free.  So, when a block or inode is allocated, the bitmap should be
4962 * updated (on disk) before any new pointers.  When a block or inode is
4963 * freed, the bitmap should not be updated until all pointers have been
4964 * reset.  The latter dependency is handled by the delayed de-allocation
4965 * approach described below for block and inode de-allocation.  The former
4966 * dependency is handled by calling the following procedure when a block or
4967 * inode is allocated. When an inode is allocated an "inodedep" is created
4968 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4969 * Each "inodedep" is also inserted into the hash indexing structure so
4970 * that any additional link additions can be made dependent on the inode
4971 * allocation.
4972 *
4973 * The ufs filesystem maintains a number of free block counts (e.g., per
4974 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4975 * in addition to the bitmaps.  These counts are used to improve efficiency
4976 * during allocation and therefore must be consistent with the bitmaps.
4977 * There is no convenient way to guarantee post-crash consistency of these
4978 * counts with simple update ordering, for two main reasons: (1) The counts
4979 * and bitmaps for a single cylinder group block are not in the same disk
4980 * sector.  If a disk write is interrupted (e.g., by power failure), one may
4981 * be written and the other not.  (2) Some of the counts are located in the
4982 * superblock rather than the cylinder group block. So, we focus our soft
4983 * updates implementation on protecting the bitmaps. When mounting a
4984 * filesystem, we recompute the auxiliary counts from the bitmaps.
4985 */
4986
4987/*
4988 * Called just after updating the cylinder group block to allocate an inode.
4989 */
4990void
4991softdep_setup_inomapdep(bp, ip, newinum, mode)
4992	struct buf *bp;		/* buffer for cylgroup block with inode map */
4993	struct inode *ip;	/* inode related to allocation */
4994	ino_t newinum;		/* new inode number being allocated */
4995	int mode;
4996{
4997	struct inodedep *inodedep;
4998	struct bmsafemap *bmsafemap;
4999	struct jaddref *jaddref;
5000	struct mount *mp;
5001	struct fs *fs;
5002
5003	mp = UFSTOVFS(ip->i_ump);
5004	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5005	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5006	fs = ip->i_ump->um_fs;
5007	jaddref = NULL;
5008
5009	/*
5010	 * Allocate the journal reference add structure so that the bitmap
5011	 * can be dependent on it.
5012	 */
5013	if (MOUNTEDSUJ(mp)) {
5014		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5015		jaddref->ja_state |= NEWBLOCK;
5016	}
5017
5018	/*
5019	 * Create a dependency for the newly allocated inode.
5020	 * Panic if it already exists as something is seriously wrong.
5021	 * Otherwise add it to the dependency list for the buffer holding
5022	 * the cylinder group map from which it was allocated.
5023	 *
5024	 * We have to preallocate a bmsafemap entry in case it is needed
5025	 * in bmsafemap_lookup since once we allocate the inodedep, we
5026	 * have to finish initializing it before we can FREE_LOCK().
5027	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5028	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5029	 * creating the inodedep as it can be freed during the time
5030	 * that we FREE_LOCK() while allocating the inodedep. We must
5031	 * call workitem_alloc() before entering the locked section as
5032	 * it also acquires the lock and we must avoid trying doing so
5033	 * recursively.
5034	 */
5035	bmsafemap = malloc(sizeof(struct bmsafemap),
5036	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5037	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5038	ACQUIRE_LOCK(ip->i_ump);
5039	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
5040		panic("softdep_setup_inomapdep: dependency %p for new"
5041		    "inode already exists", inodedep);
5042	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5043	if (jaddref) {
5044		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5045		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5046		    if_deps);
5047	} else {
5048		inodedep->id_state |= ONDEPLIST;
5049		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5050	}
5051	inodedep->id_bmsafemap = bmsafemap;
5052	inodedep->id_state &= ~DEPCOMPLETE;
5053	FREE_LOCK(ip->i_ump);
5054}
5055
5056/*
5057 * Called just after updating the cylinder group block to
5058 * allocate block or fragment.
5059 */
5060void
5061softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5062	struct buf *bp;		/* buffer for cylgroup block with block map */
5063	struct mount *mp;	/* filesystem doing allocation */
5064	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5065	int frags;		/* Number of fragments. */
5066	int oldfrags;		/* Previous number of fragments for extend. */
5067{
5068	struct newblk *newblk;
5069	struct bmsafemap *bmsafemap;
5070	struct jnewblk *jnewblk;
5071	struct ufsmount *ump;
5072	struct fs *fs;
5073
5074	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5075	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5076	ump = VFSTOUFS(mp);
5077	fs = ump->um_fs;
5078	jnewblk = NULL;
5079	/*
5080	 * Create a dependency for the newly allocated block.
5081	 * Add it to the dependency list for the buffer holding
5082	 * the cylinder group map from which it was allocated.
5083	 */
5084	if (MOUNTEDSUJ(mp)) {
5085		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5086		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5087		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5088		jnewblk->jn_state = ATTACHED;
5089		jnewblk->jn_blkno = newblkno;
5090		jnewblk->jn_frags = frags;
5091		jnewblk->jn_oldfrags = oldfrags;
5092#ifdef SUJ_DEBUG
5093		{
5094			struct cg *cgp;
5095			uint8_t *blksfree;
5096			long bno;
5097			int i;
5098
5099			cgp = (struct cg *)bp->b_data;
5100			blksfree = cg_blksfree(cgp);
5101			bno = dtogd(fs, jnewblk->jn_blkno);
5102			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5103			    i++) {
5104				if (isset(blksfree, bno + i))
5105					panic("softdep_setup_blkmapdep: "
5106					    "free fragment %d from %d-%d "
5107					    "state 0x%X dep %p", i,
5108					    jnewblk->jn_oldfrags,
5109					    jnewblk->jn_frags,
5110					    jnewblk->jn_state,
5111					    jnewblk->jn_dep);
5112			}
5113		}
5114#endif
5115	}
5116
5117	CTR3(KTR_SUJ,
5118	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5119	    newblkno, frags, oldfrags);
5120	ACQUIRE_LOCK(ump);
5121	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5122		panic("softdep_setup_blkmapdep: found block");
5123	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5124	    dtog(fs, newblkno), NULL);
5125	if (jnewblk) {
5126		jnewblk->jn_dep = (struct worklist *)newblk;
5127		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5128	} else {
5129		newblk->nb_state |= ONDEPLIST;
5130		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5131	}
5132	newblk->nb_bmsafemap = bmsafemap;
5133	newblk->nb_jnewblk = jnewblk;
5134	FREE_LOCK(ump);
5135}
5136
5137#define	BMSAFEMAP_HASH(ump, cg) \
5138      (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5139
5140static int
5141bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5142	struct bmsafemap_hashhead *bmsafemaphd;
5143	int cg;
5144	struct bmsafemap **bmsafemapp;
5145{
5146	struct bmsafemap *bmsafemap;
5147
5148	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5149		if (bmsafemap->sm_cg == cg)
5150			break;
5151	if (bmsafemap) {
5152		*bmsafemapp = bmsafemap;
5153		return (1);
5154	}
5155	*bmsafemapp = NULL;
5156
5157	return (0);
5158}
5159
5160/*
5161 * Find the bmsafemap associated with a cylinder group buffer.
5162 * If none exists, create one. The buffer must be locked when
5163 * this routine is called and this routine must be called with
5164 * the softdep lock held. To avoid giving up the lock while
5165 * allocating a new bmsafemap, a preallocated bmsafemap may be
5166 * provided. If it is provided but not needed, it is freed.
5167 */
5168static struct bmsafemap *
5169bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5170	struct mount *mp;
5171	struct buf *bp;
5172	int cg;
5173	struct bmsafemap *newbmsafemap;
5174{
5175	struct bmsafemap_hashhead *bmsafemaphd;
5176	struct bmsafemap *bmsafemap, *collision;
5177	struct worklist *wk;
5178	struct ufsmount *ump;
5179
5180	ump = VFSTOUFS(mp);
5181	LOCK_OWNED(ump);
5182	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5183	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5184		if (wk->wk_type == D_BMSAFEMAP) {
5185			if (newbmsafemap)
5186				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5187			return (WK_BMSAFEMAP(wk));
5188		}
5189	}
5190	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5191	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5192		if (newbmsafemap)
5193			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5194		return (bmsafemap);
5195	}
5196	if (newbmsafemap) {
5197		bmsafemap = newbmsafemap;
5198	} else {
5199		FREE_LOCK(ump);
5200		bmsafemap = malloc(sizeof(struct bmsafemap),
5201			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5202		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5203		ACQUIRE_LOCK(ump);
5204	}
5205	bmsafemap->sm_buf = bp;
5206	LIST_INIT(&bmsafemap->sm_inodedephd);
5207	LIST_INIT(&bmsafemap->sm_inodedepwr);
5208	LIST_INIT(&bmsafemap->sm_newblkhd);
5209	LIST_INIT(&bmsafemap->sm_newblkwr);
5210	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5211	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5212	LIST_INIT(&bmsafemap->sm_freehd);
5213	LIST_INIT(&bmsafemap->sm_freewr);
5214	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5215		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5216		return (collision);
5217	}
5218	bmsafemap->sm_cg = cg;
5219	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5220	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5221	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5222	return (bmsafemap);
5223}
5224
5225/*
5226 * Direct block allocation dependencies.
5227 *
5228 * When a new block is allocated, the corresponding disk locations must be
5229 * initialized (with zeros or new data) before the on-disk inode points to
5230 * them.  Also, the freemap from which the block was allocated must be
5231 * updated (on disk) before the inode's pointer. These two dependencies are
5232 * independent of each other and are needed for all file blocks and indirect
5233 * blocks that are pointed to directly by the inode.  Just before the
5234 * "in-core" version of the inode is updated with a newly allocated block
5235 * number, a procedure (below) is called to setup allocation dependency
5236 * structures.  These structures are removed when the corresponding
5237 * dependencies are satisfied or when the block allocation becomes obsolete
5238 * (i.e., the file is deleted, the block is de-allocated, or the block is a
5239 * fragment that gets upgraded).  All of these cases are handled in
5240 * procedures described later.
5241 *
5242 * When a file extension causes a fragment to be upgraded, either to a larger
5243 * fragment or to a full block, the on-disk location may change (if the
5244 * previous fragment could not simply be extended). In this case, the old
5245 * fragment must be de-allocated, but not until after the inode's pointer has
5246 * been updated. In most cases, this is handled by later procedures, which
5247 * will construct a "freefrag" structure to be added to the workitem queue
5248 * when the inode update is complete (or obsolete).  The main exception to
5249 * this is when an allocation occurs while a pending allocation dependency
5250 * (for the same block pointer) remains.  This case is handled in the main
5251 * allocation dependency setup procedure by immediately freeing the
5252 * unreferenced fragments.
5253 */
5254void
5255softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5256	struct inode *ip;	/* inode to which block is being added */
5257	ufs_lbn_t off;		/* block pointer within inode */
5258	ufs2_daddr_t newblkno;	/* disk block number being added */
5259	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5260	long newsize;		/* size of new block */
5261	long oldsize;		/* size of new block */
5262	struct buf *bp;		/* bp for allocated block */
5263{
5264	struct allocdirect *adp, *oldadp;
5265	struct allocdirectlst *adphead;
5266	struct freefrag *freefrag;
5267	struct inodedep *inodedep;
5268	struct pagedep *pagedep;
5269	struct jnewblk *jnewblk;
5270	struct newblk *newblk;
5271	struct mount *mp;
5272	ufs_lbn_t lbn;
5273
5274	lbn = bp->b_lblkno;
5275	mp = UFSTOVFS(ip->i_ump);
5276	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5277	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5278	if (oldblkno && oldblkno != newblkno)
5279		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5280	else
5281		freefrag = NULL;
5282
5283	CTR6(KTR_SUJ,
5284	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5285	    "off %jd newsize %ld oldsize %d",
5286	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5287	ACQUIRE_LOCK(ip->i_ump);
5288	if (off >= NDADDR) {
5289		if (lbn > 0)
5290			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5291			    lbn, off);
5292		/* allocating an indirect block */
5293		if (oldblkno != 0)
5294			panic("softdep_setup_allocdirect: non-zero indir");
5295	} else {
5296		if (off != lbn)
5297			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5298			    lbn, off);
5299		/*
5300		 * Allocating a direct block.
5301		 *
5302		 * If we are allocating a directory block, then we must
5303		 * allocate an associated pagedep to track additions and
5304		 * deletions.
5305		 */
5306		if ((ip->i_mode & IFMT) == IFDIR)
5307			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5308			    &pagedep);
5309	}
5310	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5311		panic("softdep_setup_allocdirect: lost block");
5312	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5313	    ("softdep_setup_allocdirect: newblk already initialized"));
5314	/*
5315	 * Convert the newblk to an allocdirect.
5316	 */
5317	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5318	adp = (struct allocdirect *)newblk;
5319	newblk->nb_freefrag = freefrag;
5320	adp->ad_offset = off;
5321	adp->ad_oldblkno = oldblkno;
5322	adp->ad_newsize = newsize;
5323	adp->ad_oldsize = oldsize;
5324
5325	/*
5326	 * Finish initializing the journal.
5327	 */
5328	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5329		jnewblk->jn_ino = ip->i_number;
5330		jnewblk->jn_lbn = lbn;
5331		add_to_journal(&jnewblk->jn_list);
5332	}
5333	if (freefrag && freefrag->ff_jdep != NULL &&
5334	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5335		add_to_journal(freefrag->ff_jdep);
5336	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5337	adp->ad_inodedep = inodedep;
5338
5339	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5340	/*
5341	 * The list of allocdirects must be kept in sorted and ascending
5342	 * order so that the rollback routines can quickly determine the
5343	 * first uncommitted block (the size of the file stored on disk
5344	 * ends at the end of the lowest committed fragment, or if there
5345	 * are no fragments, at the end of the highest committed block).
5346	 * Since files generally grow, the typical case is that the new
5347	 * block is to be added at the end of the list. We speed this
5348	 * special case by checking against the last allocdirect in the
5349	 * list before laboriously traversing the list looking for the
5350	 * insertion point.
5351	 */
5352	adphead = &inodedep->id_newinoupdt;
5353	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5354	if (oldadp == NULL || oldadp->ad_offset <= off) {
5355		/* insert at end of list */
5356		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5357		if (oldadp != NULL && oldadp->ad_offset == off)
5358			allocdirect_merge(adphead, adp, oldadp);
5359		FREE_LOCK(ip->i_ump);
5360		return;
5361	}
5362	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5363		if (oldadp->ad_offset >= off)
5364			break;
5365	}
5366	if (oldadp == NULL)
5367		panic("softdep_setup_allocdirect: lost entry");
5368	/* insert in middle of list */
5369	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5370	if (oldadp->ad_offset == off)
5371		allocdirect_merge(adphead, adp, oldadp);
5372
5373	FREE_LOCK(ip->i_ump);
5374}
5375
5376/*
5377 * Merge a newer and older journal record to be stored either in a
5378 * newblock or freefrag.  This handles aggregating journal records for
5379 * fragment allocation into a second record as well as replacing a
5380 * journal free with an aborted journal allocation.  A segment for the
5381 * oldest record will be placed on wkhd if it has been written.  If not
5382 * the segment for the newer record will suffice.
5383 */
5384static struct worklist *
5385jnewblk_merge(new, old, wkhd)
5386	struct worklist *new;
5387	struct worklist *old;
5388	struct workhead *wkhd;
5389{
5390	struct jnewblk *njnewblk;
5391	struct jnewblk *jnewblk;
5392
5393	/* Handle NULLs to simplify callers. */
5394	if (new == NULL)
5395		return (old);
5396	if (old == NULL)
5397		return (new);
5398	/* Replace a jfreefrag with a jnewblk. */
5399	if (new->wk_type == D_JFREEFRAG) {
5400		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5401			panic("jnewblk_merge: blkno mismatch: %p, %p",
5402			    old, new);
5403		cancel_jfreefrag(WK_JFREEFRAG(new));
5404		return (old);
5405	}
5406	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5407		panic("jnewblk_merge: Bad type: old %d new %d\n",
5408		    old->wk_type, new->wk_type);
5409	/*
5410	 * Handle merging of two jnewblk records that describe
5411	 * different sets of fragments in the same block.
5412	 */
5413	jnewblk = WK_JNEWBLK(old);
5414	njnewblk = WK_JNEWBLK(new);
5415	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5416		panic("jnewblk_merge: Merging disparate blocks.");
5417	/*
5418	 * The record may be rolled back in the cg.
5419	 */
5420	if (jnewblk->jn_state & UNDONE) {
5421		jnewblk->jn_state &= ~UNDONE;
5422		njnewblk->jn_state |= UNDONE;
5423		njnewblk->jn_state &= ~ATTACHED;
5424	}
5425	/*
5426	 * We modify the newer addref and free the older so that if neither
5427	 * has been written the most up-to-date copy will be on disk.  If
5428	 * both have been written but rolled back we only temporarily need
5429	 * one of them to fix the bits when the cg write completes.
5430	 */
5431	jnewblk->jn_state |= ATTACHED | COMPLETE;
5432	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5433	cancel_jnewblk(jnewblk, wkhd);
5434	WORKLIST_REMOVE(&jnewblk->jn_list);
5435	free_jnewblk(jnewblk);
5436	return (new);
5437}
5438
5439/*
5440 * Replace an old allocdirect dependency with a newer one.
5441 * This routine must be called with splbio interrupts blocked.
5442 */
5443static void
5444allocdirect_merge(adphead, newadp, oldadp)
5445	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5446	struct allocdirect *newadp;	/* allocdirect being added */
5447	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5448{
5449	struct worklist *wk;
5450	struct freefrag *freefrag;
5451
5452	freefrag = NULL;
5453	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5454	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5455	    newadp->ad_oldsize != oldadp->ad_newsize ||
5456	    newadp->ad_offset >= NDADDR)
5457		panic("%s %jd != new %jd || old size %ld != new %ld",
5458		    "allocdirect_merge: old blkno",
5459		    (intmax_t)newadp->ad_oldblkno,
5460		    (intmax_t)oldadp->ad_newblkno,
5461		    newadp->ad_oldsize, oldadp->ad_newsize);
5462	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5463	newadp->ad_oldsize = oldadp->ad_oldsize;
5464	/*
5465	 * If the old dependency had a fragment to free or had never
5466	 * previously had a block allocated, then the new dependency
5467	 * can immediately post its freefrag and adopt the old freefrag.
5468	 * This action is done by swapping the freefrag dependencies.
5469	 * The new dependency gains the old one's freefrag, and the
5470	 * old one gets the new one and then immediately puts it on
5471	 * the worklist when it is freed by free_newblk. It is
5472	 * not possible to do this swap when the old dependency had a
5473	 * non-zero size but no previous fragment to free. This condition
5474	 * arises when the new block is an extension of the old block.
5475	 * Here, the first part of the fragment allocated to the new
5476	 * dependency is part of the block currently claimed on disk by
5477	 * the old dependency, so cannot legitimately be freed until the
5478	 * conditions for the new dependency are fulfilled.
5479	 */
5480	freefrag = newadp->ad_freefrag;
5481	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5482		newadp->ad_freefrag = oldadp->ad_freefrag;
5483		oldadp->ad_freefrag = freefrag;
5484	}
5485	/*
5486	 * If we are tracking a new directory-block allocation,
5487	 * move it from the old allocdirect to the new allocdirect.
5488	 */
5489	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5490		WORKLIST_REMOVE(wk);
5491		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5492			panic("allocdirect_merge: extra newdirblk");
5493		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5494	}
5495	TAILQ_REMOVE(adphead, oldadp, ad_next);
5496	/*
5497	 * We need to move any journal dependencies over to the freefrag
5498	 * that releases this block if it exists.  Otherwise we are
5499	 * extending an existing block and we'll wait until that is
5500	 * complete to release the journal space and extend the
5501	 * new journal to cover this old space as well.
5502	 */
5503	if (freefrag == NULL) {
5504		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5505			panic("allocdirect_merge: %jd != %jd",
5506			    oldadp->ad_newblkno, newadp->ad_newblkno);
5507		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5508		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5509		    &oldadp->ad_block.nb_jnewblk->jn_list,
5510		    &newadp->ad_block.nb_jwork);
5511		oldadp->ad_block.nb_jnewblk = NULL;
5512		cancel_newblk(&oldadp->ad_block, NULL,
5513		    &newadp->ad_block.nb_jwork);
5514	} else {
5515		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5516		    &freefrag->ff_list, &freefrag->ff_jwork);
5517		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5518		    &freefrag->ff_jwork);
5519	}
5520	free_newblk(&oldadp->ad_block);
5521}
5522
5523/*
5524 * Allocate a jfreefrag structure to journal a single block free.
5525 */
5526static struct jfreefrag *
5527newjfreefrag(freefrag, ip, blkno, size, lbn)
5528	struct freefrag *freefrag;
5529	struct inode *ip;
5530	ufs2_daddr_t blkno;
5531	long size;
5532	ufs_lbn_t lbn;
5533{
5534	struct jfreefrag *jfreefrag;
5535	struct fs *fs;
5536
5537	fs = ip->i_fs;
5538	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5539	    M_SOFTDEP_FLAGS);
5540	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5541	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5542	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5543	jfreefrag->fr_ino = ip->i_number;
5544	jfreefrag->fr_lbn = lbn;
5545	jfreefrag->fr_blkno = blkno;
5546	jfreefrag->fr_frags = numfrags(fs, size);
5547	jfreefrag->fr_freefrag = freefrag;
5548
5549	return (jfreefrag);
5550}
5551
5552/*
5553 * Allocate a new freefrag structure.
5554 */
5555static struct freefrag *
5556newfreefrag(ip, blkno, size, lbn)
5557	struct inode *ip;
5558	ufs2_daddr_t blkno;
5559	long size;
5560	ufs_lbn_t lbn;
5561{
5562	struct freefrag *freefrag;
5563	struct fs *fs;
5564
5565	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5566	    ip->i_number, blkno, size, lbn);
5567	fs = ip->i_fs;
5568	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5569		panic("newfreefrag: frag size");
5570	freefrag = malloc(sizeof(struct freefrag),
5571	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5572	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5573	freefrag->ff_state = ATTACHED;
5574	LIST_INIT(&freefrag->ff_jwork);
5575	freefrag->ff_inum = ip->i_number;
5576	freefrag->ff_vtype = ITOV(ip)->v_type;
5577	freefrag->ff_blkno = blkno;
5578	freefrag->ff_fragsize = size;
5579
5580	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5581		freefrag->ff_jdep = (struct worklist *)
5582		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5583	} else {
5584		freefrag->ff_state |= DEPCOMPLETE;
5585		freefrag->ff_jdep = NULL;
5586	}
5587
5588	return (freefrag);
5589}
5590
5591/*
5592 * This workitem de-allocates fragments that were replaced during
5593 * file block allocation.
5594 */
5595static void
5596handle_workitem_freefrag(freefrag)
5597	struct freefrag *freefrag;
5598{
5599	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5600	struct workhead wkhd;
5601
5602	CTR3(KTR_SUJ,
5603	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5604	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5605	/*
5606	 * It would be illegal to add new completion items to the
5607	 * freefrag after it was schedule to be done so it must be
5608	 * safe to modify the list head here.
5609	 */
5610	LIST_INIT(&wkhd);
5611	ACQUIRE_LOCK(ump);
5612	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5613	/*
5614	 * If the journal has not been written we must cancel it here.
5615	 */
5616	if (freefrag->ff_jdep) {
5617		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5618			panic("handle_workitem_freefrag: Unexpected type %d\n",
5619			    freefrag->ff_jdep->wk_type);
5620		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5621	}
5622	FREE_LOCK(ump);
5623	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5624	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5625	ACQUIRE_LOCK(ump);
5626	WORKITEM_FREE(freefrag, D_FREEFRAG);
5627	FREE_LOCK(ump);
5628}
5629
5630/*
5631 * Set up a dependency structure for an external attributes data block.
5632 * This routine follows much of the structure of softdep_setup_allocdirect.
5633 * See the description of softdep_setup_allocdirect above for details.
5634 */
5635void
5636softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5637	struct inode *ip;
5638	ufs_lbn_t off;
5639	ufs2_daddr_t newblkno;
5640	ufs2_daddr_t oldblkno;
5641	long newsize;
5642	long oldsize;
5643	struct buf *bp;
5644{
5645	struct allocdirect *adp, *oldadp;
5646	struct allocdirectlst *adphead;
5647	struct freefrag *freefrag;
5648	struct inodedep *inodedep;
5649	struct jnewblk *jnewblk;
5650	struct newblk *newblk;
5651	struct mount *mp;
5652	ufs_lbn_t lbn;
5653
5654	mp = UFSTOVFS(ip->i_ump);
5655	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5656	    ("softdep_setup_allocext called on non-softdep filesystem"));
5657	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5658		    (long long)off));
5659
5660	lbn = bp->b_lblkno;
5661	if (oldblkno && oldblkno != newblkno)
5662		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5663	else
5664		freefrag = NULL;
5665
5666	ACQUIRE_LOCK(ip->i_ump);
5667	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5668		panic("softdep_setup_allocext: lost block");
5669	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5670	    ("softdep_setup_allocext: newblk already initialized"));
5671	/*
5672	 * Convert the newblk to an allocdirect.
5673	 */
5674	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5675	adp = (struct allocdirect *)newblk;
5676	newblk->nb_freefrag = freefrag;
5677	adp->ad_offset = off;
5678	adp->ad_oldblkno = oldblkno;
5679	adp->ad_newsize = newsize;
5680	adp->ad_oldsize = oldsize;
5681	adp->ad_state |=  EXTDATA;
5682
5683	/*
5684	 * Finish initializing the journal.
5685	 */
5686	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5687		jnewblk->jn_ino = ip->i_number;
5688		jnewblk->jn_lbn = lbn;
5689		add_to_journal(&jnewblk->jn_list);
5690	}
5691	if (freefrag && freefrag->ff_jdep != NULL &&
5692	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5693		add_to_journal(freefrag->ff_jdep);
5694	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5695	adp->ad_inodedep = inodedep;
5696
5697	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5698	/*
5699	 * The list of allocdirects must be kept in sorted and ascending
5700	 * order so that the rollback routines can quickly determine the
5701	 * first uncommitted block (the size of the file stored on disk
5702	 * ends at the end of the lowest committed fragment, or if there
5703	 * are no fragments, at the end of the highest committed block).
5704	 * Since files generally grow, the typical case is that the new
5705	 * block is to be added at the end of the list. We speed this
5706	 * special case by checking against the last allocdirect in the
5707	 * list before laboriously traversing the list looking for the
5708	 * insertion point.
5709	 */
5710	adphead = &inodedep->id_newextupdt;
5711	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5712	if (oldadp == NULL || oldadp->ad_offset <= off) {
5713		/* insert at end of list */
5714		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5715		if (oldadp != NULL && oldadp->ad_offset == off)
5716			allocdirect_merge(adphead, adp, oldadp);
5717		FREE_LOCK(ip->i_ump);
5718		return;
5719	}
5720	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5721		if (oldadp->ad_offset >= off)
5722			break;
5723	}
5724	if (oldadp == NULL)
5725		panic("softdep_setup_allocext: lost entry");
5726	/* insert in middle of list */
5727	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5728	if (oldadp->ad_offset == off)
5729		allocdirect_merge(adphead, adp, oldadp);
5730	FREE_LOCK(ip->i_ump);
5731}
5732
5733/*
5734 * Indirect block allocation dependencies.
5735 *
5736 * The same dependencies that exist for a direct block also exist when
5737 * a new block is allocated and pointed to by an entry in a block of
5738 * indirect pointers. The undo/redo states described above are also
5739 * used here. Because an indirect block contains many pointers that
5740 * may have dependencies, a second copy of the entire in-memory indirect
5741 * block is kept. The buffer cache copy is always completely up-to-date.
5742 * The second copy, which is used only as a source for disk writes,
5743 * contains only the safe pointers (i.e., those that have no remaining
5744 * update dependencies). The second copy is freed when all pointers
5745 * are safe. The cache is not allowed to replace indirect blocks with
5746 * pending update dependencies. If a buffer containing an indirect
5747 * block with dependencies is written, these routines will mark it
5748 * dirty again. It can only be successfully written once all the
5749 * dependencies are removed. The ffs_fsync routine in conjunction with
5750 * softdep_sync_metadata work together to get all the dependencies
5751 * removed so that a file can be successfully written to disk. Three
5752 * procedures are used when setting up indirect block pointer
5753 * dependencies. The division is necessary because of the organization
5754 * of the "balloc" routine and because of the distinction between file
5755 * pages and file metadata blocks.
5756 */
5757
5758/*
5759 * Allocate a new allocindir structure.
5760 */
5761static struct allocindir *
5762newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5763	struct inode *ip;	/* inode for file being extended */
5764	int ptrno;		/* offset of pointer in indirect block */
5765	ufs2_daddr_t newblkno;	/* disk block number being added */
5766	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5767	ufs_lbn_t lbn;
5768{
5769	struct newblk *newblk;
5770	struct allocindir *aip;
5771	struct freefrag *freefrag;
5772	struct jnewblk *jnewblk;
5773
5774	if (oldblkno)
5775		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5776	else
5777		freefrag = NULL;
5778	ACQUIRE_LOCK(ip->i_ump);
5779	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5780		panic("new_allocindir: lost block");
5781	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5782	    ("newallocindir: newblk already initialized"));
5783	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5784	newblk->nb_freefrag = freefrag;
5785	aip = (struct allocindir *)newblk;
5786	aip->ai_offset = ptrno;
5787	aip->ai_oldblkno = oldblkno;
5788	aip->ai_lbn = lbn;
5789	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5790		jnewblk->jn_ino = ip->i_number;
5791		jnewblk->jn_lbn = lbn;
5792		add_to_journal(&jnewblk->jn_list);
5793	}
5794	if (freefrag && freefrag->ff_jdep != NULL &&
5795	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5796		add_to_journal(freefrag->ff_jdep);
5797	return (aip);
5798}
5799
5800/*
5801 * Called just before setting an indirect block pointer
5802 * to a newly allocated file page.
5803 */
5804void
5805softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5806	struct inode *ip;	/* inode for file being extended */
5807	ufs_lbn_t lbn;		/* allocated block number within file */
5808	struct buf *bp;		/* buffer with indirect blk referencing page */
5809	int ptrno;		/* offset of pointer in indirect block */
5810	ufs2_daddr_t newblkno;	/* disk block number being added */
5811	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5812	struct buf *nbp;	/* buffer holding allocated page */
5813{
5814	struct inodedep *inodedep;
5815	struct freefrag *freefrag;
5816	struct allocindir *aip;
5817	struct pagedep *pagedep;
5818	struct mount *mp;
5819	int dflags;
5820
5821	mp = UFSTOVFS(ip->i_ump);
5822	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5823	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5824	KASSERT(lbn == nbp->b_lblkno,
5825	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5826	    lbn, bp->b_lblkno));
5827	CTR4(KTR_SUJ,
5828	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5829	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5830	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5831	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5832	dflags = DEPALLOC;
5833	if (IS_SNAPSHOT(ip))
5834		dflags |= NODELAY;
5835	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5836	/*
5837	 * If we are allocating a directory page, then we must
5838	 * allocate an associated pagedep to track additions and
5839	 * deletions.
5840	 */
5841	if ((ip->i_mode & IFMT) == IFDIR)
5842		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5843	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5844	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5845	FREE_LOCK(ip->i_ump);
5846	if (freefrag)
5847		handle_workitem_freefrag(freefrag);
5848}
5849
5850/*
5851 * Called just before setting an indirect block pointer to a
5852 * newly allocated indirect block.
5853 */
5854void
5855softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5856	struct buf *nbp;	/* newly allocated indirect block */
5857	struct inode *ip;	/* inode for file being extended */
5858	struct buf *bp;		/* indirect block referencing allocated block */
5859	int ptrno;		/* offset of pointer in indirect block */
5860	ufs2_daddr_t newblkno;	/* disk block number being added */
5861{
5862	struct inodedep *inodedep;
5863	struct allocindir *aip;
5864	ufs_lbn_t lbn;
5865	int dflags;
5866
5867	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
5868	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5869	CTR3(KTR_SUJ,
5870	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5871	    ip->i_number, newblkno, ptrno);
5872	lbn = nbp->b_lblkno;
5873	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5874	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5875	dflags = DEPALLOC;
5876	if (IS_SNAPSHOT(ip))
5877		dflags |= NODELAY;
5878	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5879	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5880	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5881		panic("softdep_setup_allocindir_meta: Block already existed");
5882	FREE_LOCK(ip->i_ump);
5883}
5884
5885static void
5886indirdep_complete(indirdep)
5887	struct indirdep *indirdep;
5888{
5889	struct allocindir *aip;
5890
5891	LIST_REMOVE(indirdep, ir_next);
5892	indirdep->ir_state |= DEPCOMPLETE;
5893
5894	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5895		LIST_REMOVE(aip, ai_next);
5896		free_newblk(&aip->ai_block);
5897	}
5898	/*
5899	 * If this indirdep is not attached to a buf it was simply waiting
5900	 * on completion to clear completehd.  free_indirdep() asserts
5901	 * that nothing is dangling.
5902	 */
5903	if ((indirdep->ir_state & ONWORKLIST) == 0)
5904		free_indirdep(indirdep);
5905}
5906
5907static struct indirdep *
5908indirdep_lookup(mp, ip, bp)
5909	struct mount *mp;
5910	struct inode *ip;
5911	struct buf *bp;
5912{
5913	struct indirdep *indirdep, *newindirdep;
5914	struct newblk *newblk;
5915	struct ufsmount *ump;
5916	struct worklist *wk;
5917	struct fs *fs;
5918	ufs2_daddr_t blkno;
5919
5920	ump = VFSTOUFS(mp);
5921	LOCK_OWNED(ump);
5922	indirdep = NULL;
5923	newindirdep = NULL;
5924	fs = ip->i_fs;
5925	for (;;) {
5926		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5927			if (wk->wk_type != D_INDIRDEP)
5928				continue;
5929			indirdep = WK_INDIRDEP(wk);
5930			break;
5931		}
5932		/* Found on the buffer worklist, no new structure to free. */
5933		if (indirdep != NULL && newindirdep == NULL)
5934			return (indirdep);
5935		if (indirdep != NULL && newindirdep != NULL)
5936			panic("indirdep_lookup: simultaneous create");
5937		/* None found on the buffer and a new structure is ready. */
5938		if (indirdep == NULL && newindirdep != NULL)
5939			break;
5940		/* None found and no new structure available. */
5941		FREE_LOCK(ump);
5942		newindirdep = malloc(sizeof(struct indirdep),
5943		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5944		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5945		newindirdep->ir_state = ATTACHED;
5946		if (ip->i_ump->um_fstype == UFS1)
5947			newindirdep->ir_state |= UFS1FMT;
5948		TAILQ_INIT(&newindirdep->ir_trunc);
5949		newindirdep->ir_saveddata = NULL;
5950		LIST_INIT(&newindirdep->ir_deplisthd);
5951		LIST_INIT(&newindirdep->ir_donehd);
5952		LIST_INIT(&newindirdep->ir_writehd);
5953		LIST_INIT(&newindirdep->ir_completehd);
5954		if (bp->b_blkno == bp->b_lblkno) {
5955			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5956			    NULL, NULL);
5957			bp->b_blkno = blkno;
5958		}
5959		newindirdep->ir_freeblks = NULL;
5960		newindirdep->ir_savebp =
5961		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5962		newindirdep->ir_bp = bp;
5963		BUF_KERNPROC(newindirdep->ir_savebp);
5964		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5965		ACQUIRE_LOCK(ump);
5966	}
5967	indirdep = newindirdep;
5968	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5969	/*
5970	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5971	 * that we don't free dependencies until the pointers are valid.
5972	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5973	 * than using the hash.
5974	 */
5975	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5976		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5977	else
5978		indirdep->ir_state |= DEPCOMPLETE;
5979	return (indirdep);
5980}
5981
5982/*
5983 * Called to finish the allocation of the "aip" allocated
5984 * by one of the two routines above.
5985 */
5986static struct freefrag *
5987setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5988	struct buf *bp;		/* in-memory copy of the indirect block */
5989	struct inode *ip;	/* inode for file being extended */
5990	struct inodedep *inodedep; /* Inodedep for ip */
5991	struct allocindir *aip;	/* allocindir allocated by the above routines */
5992	ufs_lbn_t lbn;		/* Logical block number for this block. */
5993{
5994	struct fs *fs;
5995	struct indirdep *indirdep;
5996	struct allocindir *oldaip;
5997	struct freefrag *freefrag;
5998	struct mount *mp;
5999
6000	LOCK_OWNED(ip->i_ump);
6001	mp = UFSTOVFS(ip->i_ump);
6002	fs = ip->i_fs;
6003	if (bp->b_lblkno >= 0)
6004		panic("setup_allocindir_phase2: not indir blk");
6005	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6006	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6007	indirdep = indirdep_lookup(mp, ip, bp);
6008	KASSERT(indirdep->ir_savebp != NULL,
6009	    ("setup_allocindir_phase2 NULL ir_savebp"));
6010	aip->ai_indirdep = indirdep;
6011	/*
6012	 * Check for an unwritten dependency for this indirect offset.  If
6013	 * there is, merge the old dependency into the new one.  This happens
6014	 * as a result of reallocblk only.
6015	 */
6016	freefrag = NULL;
6017	if (aip->ai_oldblkno != 0) {
6018		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6019			if (oldaip->ai_offset == aip->ai_offset) {
6020				freefrag = allocindir_merge(aip, oldaip);
6021				goto done;
6022			}
6023		}
6024		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6025			if (oldaip->ai_offset == aip->ai_offset) {
6026				freefrag = allocindir_merge(aip, oldaip);
6027				goto done;
6028			}
6029		}
6030	}
6031done:
6032	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6033	return (freefrag);
6034}
6035
6036/*
6037 * Merge two allocindirs which refer to the same block.  Move newblock
6038 * dependencies and setup the freefrags appropriately.
6039 */
6040static struct freefrag *
6041allocindir_merge(aip, oldaip)
6042	struct allocindir *aip;
6043	struct allocindir *oldaip;
6044{
6045	struct freefrag *freefrag;
6046	struct worklist *wk;
6047
6048	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6049		panic("allocindir_merge: blkno");
6050	aip->ai_oldblkno = oldaip->ai_oldblkno;
6051	freefrag = aip->ai_freefrag;
6052	aip->ai_freefrag = oldaip->ai_freefrag;
6053	oldaip->ai_freefrag = NULL;
6054	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6055	/*
6056	 * If we are tracking a new directory-block allocation,
6057	 * move it from the old allocindir to the new allocindir.
6058	 */
6059	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6060		WORKLIST_REMOVE(wk);
6061		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6062			panic("allocindir_merge: extra newdirblk");
6063		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6064	}
6065	/*
6066	 * We can skip journaling for this freefrag and just complete
6067	 * any pending journal work for the allocindir that is being
6068	 * removed after the freefrag completes.
6069	 */
6070	if (freefrag->ff_jdep)
6071		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6072	LIST_REMOVE(oldaip, ai_next);
6073	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6074	    &freefrag->ff_list, &freefrag->ff_jwork);
6075	free_newblk(&oldaip->ai_block);
6076
6077	return (freefrag);
6078}
6079
6080static inline void
6081setup_freedirect(freeblks, ip, i, needj)
6082	struct freeblks *freeblks;
6083	struct inode *ip;
6084	int i;
6085	int needj;
6086{
6087	ufs2_daddr_t blkno;
6088	int frags;
6089
6090	blkno = DIP(ip, i_db[i]);
6091	if (blkno == 0)
6092		return;
6093	DIP_SET(ip, i_db[i], 0);
6094	frags = sblksize(ip->i_fs, ip->i_size, i);
6095	frags = numfrags(ip->i_fs, frags);
6096	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
6097}
6098
6099static inline void
6100setup_freeext(freeblks, ip, i, needj)
6101	struct freeblks *freeblks;
6102	struct inode *ip;
6103	int i;
6104	int needj;
6105{
6106	ufs2_daddr_t blkno;
6107	int frags;
6108
6109	blkno = ip->i_din2->di_extb[i];
6110	if (blkno == 0)
6111		return;
6112	ip->i_din2->di_extb[i] = 0;
6113	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
6114	frags = numfrags(ip->i_fs, frags);
6115	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6116}
6117
6118static inline void
6119setup_freeindir(freeblks, ip, i, lbn, needj)
6120	struct freeblks *freeblks;
6121	struct inode *ip;
6122	int i;
6123	ufs_lbn_t lbn;
6124	int needj;
6125{
6126	ufs2_daddr_t blkno;
6127
6128	blkno = DIP(ip, i_ib[i]);
6129	if (blkno == 0)
6130		return;
6131	DIP_SET(ip, i_ib[i], 0);
6132	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
6133	    0, needj);
6134}
6135
6136static inline struct freeblks *
6137newfreeblks(mp, ip)
6138	struct mount *mp;
6139	struct inode *ip;
6140{
6141	struct freeblks *freeblks;
6142
6143	freeblks = malloc(sizeof(struct freeblks),
6144		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6145	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6146	LIST_INIT(&freeblks->fb_jblkdephd);
6147	LIST_INIT(&freeblks->fb_jwork);
6148	freeblks->fb_ref = 0;
6149	freeblks->fb_cgwait = 0;
6150	freeblks->fb_state = ATTACHED;
6151	freeblks->fb_uid = ip->i_uid;
6152	freeblks->fb_inum = ip->i_number;
6153	freeblks->fb_vtype = ITOV(ip)->v_type;
6154	freeblks->fb_modrev = DIP(ip, i_modrev);
6155	freeblks->fb_devvp = ip->i_devvp;
6156	freeblks->fb_chkcnt = 0;
6157	freeblks->fb_len = 0;
6158
6159	return (freeblks);
6160}
6161
6162static void
6163trunc_indirdep(indirdep, freeblks, bp, off)
6164	struct indirdep *indirdep;
6165	struct freeblks *freeblks;
6166	struct buf *bp;
6167	int off;
6168{
6169	struct allocindir *aip, *aipn;
6170
6171	/*
6172	 * The first set of allocindirs won't be in savedbp.
6173	 */
6174	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6175		if (aip->ai_offset > off)
6176			cancel_allocindir(aip, bp, freeblks, 1);
6177	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6178		if (aip->ai_offset > off)
6179			cancel_allocindir(aip, bp, freeblks, 1);
6180	/*
6181	 * These will exist in savedbp.
6182	 */
6183	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6184		if (aip->ai_offset > off)
6185			cancel_allocindir(aip, NULL, freeblks, 0);
6186	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6187		if (aip->ai_offset > off)
6188			cancel_allocindir(aip, NULL, freeblks, 0);
6189}
6190
6191/*
6192 * Follow the chain of indirects down to lastlbn creating a freework
6193 * structure for each.  This will be used to start indir_trunc() at
6194 * the right offset and create the journal records for the parrtial
6195 * truncation.  A second step will handle the truncated dependencies.
6196 */
6197static int
6198setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6199	struct freeblks *freeblks;
6200	struct inode *ip;
6201	ufs_lbn_t lbn;
6202	ufs_lbn_t lastlbn;
6203	ufs2_daddr_t blkno;
6204{
6205	struct indirdep *indirdep;
6206	struct indirdep *indirn;
6207	struct freework *freework;
6208	struct newblk *newblk;
6209	struct mount *mp;
6210	struct buf *bp;
6211	uint8_t *start;
6212	uint8_t *end;
6213	ufs_lbn_t lbnadd;
6214	int level;
6215	int error;
6216	int off;
6217
6218
6219	freework = NULL;
6220	if (blkno == 0)
6221		return (0);
6222	mp = freeblks->fb_list.wk_mp;
6223	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6224	if ((bp->b_flags & B_CACHE) == 0) {
6225		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6226		bp->b_iocmd = BIO_READ;
6227		bp->b_flags &= ~B_INVAL;
6228		bp->b_ioflags &= ~BIO_ERROR;
6229		vfs_busy_pages(bp, 0);
6230		bp->b_iooffset = dbtob(bp->b_blkno);
6231		bstrategy(bp);
6232		curthread->td_ru.ru_inblock++;
6233		error = bufwait(bp);
6234		if (error) {
6235			brelse(bp);
6236			return (error);
6237		}
6238	}
6239	level = lbn_level(lbn);
6240	lbnadd = lbn_offset(ip->i_fs, level);
6241	/*
6242	 * Compute the offset of the last block we want to keep.  Store
6243	 * in the freework the first block we want to completely free.
6244	 */
6245	off = (lastlbn - -(lbn + level)) / lbnadd;
6246	if (off + 1 == NINDIR(ip->i_fs))
6247		goto nowork;
6248	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6249	    0);
6250	/*
6251	 * Link the freework into the indirdep.  This will prevent any new
6252	 * allocations from proceeding until we are finished with the
6253	 * truncate and the block is written.
6254	 */
6255	ACQUIRE_LOCK(ip->i_ump);
6256	indirdep = indirdep_lookup(mp, ip, bp);
6257	if (indirdep->ir_freeblks)
6258		panic("setup_trunc_indir: indirdep already truncated.");
6259	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6260	freework->fw_indir = indirdep;
6261	/*
6262	 * Cancel any allocindirs that will not make it to disk.
6263	 * We have to do this for all copies of the indirdep that
6264	 * live on this newblk.
6265	 */
6266	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6267		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6268		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6269			trunc_indirdep(indirn, freeblks, bp, off);
6270	} else
6271		trunc_indirdep(indirdep, freeblks, bp, off);
6272	FREE_LOCK(ip->i_ump);
6273	/*
6274	 * Creation is protected by the buf lock. The saveddata is only
6275	 * needed if a full truncation follows a partial truncation but it
6276	 * is difficult to allocate in that case so we fetch it anyway.
6277	 */
6278	if (indirdep->ir_saveddata == NULL)
6279		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6280		    M_SOFTDEP_FLAGS);
6281nowork:
6282	/* Fetch the blkno of the child and the zero start offset. */
6283	if (ip->i_ump->um_fstype == UFS1) {
6284		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6285		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6286	} else {
6287		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6288		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6289	}
6290	if (freework) {
6291		/* Zero the truncated pointers. */
6292		end = bp->b_data + bp->b_bcount;
6293		bzero(start, end - start);
6294		bdwrite(bp);
6295	} else
6296		bqrelse(bp);
6297	if (level == 0)
6298		return (0);
6299	lbn++; /* adjust level */
6300	lbn -= (off * lbnadd);
6301	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6302}
6303
6304/*
6305 * Complete the partial truncation of an indirect block setup by
6306 * setup_trunc_indir().  This zeros the truncated pointers in the saved
6307 * copy and writes them to disk before the freeblks is allowed to complete.
6308 */
6309static void
6310complete_trunc_indir(freework)
6311	struct freework *freework;
6312{
6313	struct freework *fwn;
6314	struct indirdep *indirdep;
6315	struct ufsmount *ump;
6316	struct buf *bp;
6317	uintptr_t start;
6318	int count;
6319
6320	ump = VFSTOUFS(freework->fw_list.wk_mp);
6321	LOCK_OWNED(ump);
6322	indirdep = freework->fw_indir;
6323	for (;;) {
6324		bp = indirdep->ir_bp;
6325		/* See if the block was discarded. */
6326		if (bp == NULL)
6327			break;
6328		/* Inline part of getdirtybuf().  We dont want bremfree. */
6329		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6330			break;
6331		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6332		    LOCK_PTR(ump)) == 0)
6333			BUF_UNLOCK(bp);
6334		ACQUIRE_LOCK(ump);
6335	}
6336	freework->fw_state |= DEPCOMPLETE;
6337	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6338	/*
6339	 * Zero the pointers in the saved copy.
6340	 */
6341	if (indirdep->ir_state & UFS1FMT)
6342		start = sizeof(ufs1_daddr_t);
6343	else
6344		start = sizeof(ufs2_daddr_t);
6345	start *= freework->fw_start;
6346	count = indirdep->ir_savebp->b_bcount - start;
6347	start += (uintptr_t)indirdep->ir_savebp->b_data;
6348	bzero((char *)start, count);
6349	/*
6350	 * We need to start the next truncation in the list if it has not
6351	 * been started yet.
6352	 */
6353	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6354	if (fwn != NULL) {
6355		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6356			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6357		if ((fwn->fw_state & ONWORKLIST) == 0)
6358			freework_enqueue(fwn);
6359	}
6360	/*
6361	 * If bp is NULL the block was fully truncated, restore
6362	 * the saved block list otherwise free it if it is no
6363	 * longer needed.
6364	 */
6365	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6366		if (bp == NULL)
6367			bcopy(indirdep->ir_saveddata,
6368			    indirdep->ir_savebp->b_data,
6369			    indirdep->ir_savebp->b_bcount);
6370		free(indirdep->ir_saveddata, M_INDIRDEP);
6371		indirdep->ir_saveddata = NULL;
6372	}
6373	/*
6374	 * When bp is NULL there is a full truncation pending.  We
6375	 * must wait for this full truncation to be journaled before
6376	 * we can release this freework because the disk pointers will
6377	 * never be written as zero.
6378	 */
6379	if (bp == NULL)  {
6380		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6381			handle_written_freework(freework);
6382		else
6383			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6384			   &freework->fw_list);
6385	} else {
6386		/* Complete when the real copy is written. */
6387		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6388		BUF_UNLOCK(bp);
6389	}
6390}
6391
6392/*
6393 * Calculate the number of blocks we are going to release where datablocks
6394 * is the current total and length is the new file size.
6395 */
6396static ufs2_daddr_t
6397blkcount(fs, datablocks, length)
6398	struct fs *fs;
6399	ufs2_daddr_t datablocks;
6400	off_t length;
6401{
6402	off_t totblks, numblks;
6403
6404	totblks = 0;
6405	numblks = howmany(length, fs->fs_bsize);
6406	if (numblks <= NDADDR) {
6407		totblks = howmany(length, fs->fs_fsize);
6408		goto out;
6409	}
6410        totblks = blkstofrags(fs, numblks);
6411	numblks -= NDADDR;
6412	/*
6413	 * Count all single, then double, then triple indirects required.
6414	 * Subtracting one indirects worth of blocks for each pass
6415	 * acknowledges one of each pointed to by the inode.
6416	 */
6417	for (;;) {
6418		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6419		numblks -= NINDIR(fs);
6420		if (numblks <= 0)
6421			break;
6422		numblks = howmany(numblks, NINDIR(fs));
6423	}
6424out:
6425	totblks = fsbtodb(fs, totblks);
6426	/*
6427	 * Handle sparse files.  We can't reclaim more blocks than the inode
6428	 * references.  We will correct it later in handle_complete_freeblks()
6429	 * when we know the real count.
6430	 */
6431	if (totblks > datablocks)
6432		return (0);
6433	return (datablocks - totblks);
6434}
6435
6436/*
6437 * Handle freeblocks for journaled softupdate filesystems.
6438 *
6439 * Contrary to normal softupdates, we must preserve the block pointers in
6440 * indirects until their subordinates are free.  This is to avoid journaling
6441 * every block that is freed which may consume more space than the journal
6442 * itself.  The recovery program will see the free block journals at the
6443 * base of the truncated area and traverse them to reclaim space.  The
6444 * pointers in the inode may be cleared immediately after the journal
6445 * records are written because each direct and indirect pointer in the
6446 * inode is recorded in a journal.  This permits full truncation to proceed
6447 * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6448 *
6449 * The algorithm is as follows:
6450 * 1) Traverse the in-memory state and create journal entries to release
6451 *    the relevant blocks and full indirect trees.
6452 * 2) Traverse the indirect block chain adding partial truncation freework
6453 *    records to indirects in the path to lastlbn.  The freework will
6454 *    prevent new allocation dependencies from being satisfied in this
6455 *    indirect until the truncation completes.
6456 * 3) Read and lock the inode block, performing an update with the new size
6457 *    and pointers.  This prevents truncated data from becoming valid on
6458 *    disk through step 4.
6459 * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6460 *    eliminate journal work for those records that do not require it.
6461 * 5) Schedule the journal records to be written followed by the inode block.
6462 * 6) Allocate any necessary frags for the end of file.
6463 * 7) Zero any partially truncated blocks.
6464 *
6465 * From this truncation proceeds asynchronously using the freework and
6466 * indir_trunc machinery.  The file will not be extended again into a
6467 * partially truncated indirect block until all work is completed but
6468 * the normal dependency mechanism ensures that it is rolled back/forward
6469 * as appropriate.  Further truncation may occur without delay and is
6470 * serialized in indir_trunc().
6471 */
6472void
6473softdep_journal_freeblocks(ip, cred, length, flags)
6474	struct inode *ip;	/* The inode whose length is to be reduced */
6475	struct ucred *cred;
6476	off_t length;		/* The new length for the file */
6477	int flags;		/* IO_EXT and/or IO_NORMAL */
6478{
6479	struct freeblks *freeblks, *fbn;
6480	struct worklist *wk, *wkn;
6481	struct inodedep *inodedep;
6482	struct jblkdep *jblkdep;
6483	struct allocdirect *adp, *adpn;
6484	struct ufsmount *ump;
6485	struct fs *fs;
6486	struct buf *bp;
6487	struct vnode *vp;
6488	struct mount *mp;
6489	ufs2_daddr_t extblocks, datablocks;
6490	ufs_lbn_t tmpval, lbn, lastlbn;
6491	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6492
6493	fs = ip->i_fs;
6494	ump = ip->i_ump;
6495	mp = UFSTOVFS(ump);
6496	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6497	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6498	vp = ITOV(ip);
6499	needj = 1;
6500	iboff = -1;
6501	allocblock = 0;
6502	extblocks = 0;
6503	datablocks = 0;
6504	frags = 0;
6505	freeblks = newfreeblks(mp, ip);
6506	ACQUIRE_LOCK(ump);
6507	/*
6508	 * If we're truncating a removed file that will never be written
6509	 * we don't need to journal the block frees.  The canceled journals
6510	 * for the allocations will suffice.
6511	 */
6512	dflags = DEPALLOC;
6513	if (IS_SNAPSHOT(ip))
6514		dflags |= NODELAY;
6515	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6516	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6517	    length == 0)
6518		needj = 0;
6519	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6520	    ip->i_number, length, needj);
6521	FREE_LOCK(ump);
6522	/*
6523	 * Calculate the lbn that we are truncating to.  This results in -1
6524	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6525	 * to keep, not the first lbn we want to truncate.
6526	 */
6527	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6528	lastoff = blkoff(fs, length);
6529	/*
6530	 * Compute frags we are keeping in lastlbn.  0 means all.
6531	 */
6532	if (lastlbn >= 0 && lastlbn < NDADDR) {
6533		frags = fragroundup(fs, lastoff);
6534		/* adp offset of last valid allocdirect. */
6535		iboff = lastlbn;
6536	} else if (lastlbn > 0)
6537		iboff = NDADDR;
6538	if (fs->fs_magic == FS_UFS2_MAGIC)
6539		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6540	/*
6541	 * Handle normal data blocks and indirects.  This section saves
6542	 * values used after the inode update to complete frag and indirect
6543	 * truncation.
6544	 */
6545	if ((flags & IO_NORMAL) != 0) {
6546		/*
6547		 * Handle truncation of whole direct and indirect blocks.
6548		 */
6549		for (i = iboff + 1; i < NDADDR; i++)
6550			setup_freedirect(freeblks, ip, i, needj);
6551		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6552		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6553			/* Release a whole indirect tree. */
6554			if (lbn > lastlbn) {
6555				setup_freeindir(freeblks, ip, i, -lbn -i,
6556				    needj);
6557				continue;
6558			}
6559			iboff = i + NDADDR;
6560			/*
6561			 * Traverse partially truncated indirect tree.
6562			 */
6563			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6564				setup_trunc_indir(freeblks, ip, -lbn - i,
6565				    lastlbn, DIP(ip, i_ib[i]));
6566		}
6567		/*
6568		 * Handle partial truncation to a frag boundary.
6569		 */
6570		if (frags) {
6571			ufs2_daddr_t blkno;
6572			long oldfrags;
6573
6574			oldfrags = blksize(fs, ip, lastlbn);
6575			blkno = DIP(ip, i_db[lastlbn]);
6576			if (blkno && oldfrags != frags) {
6577				oldfrags -= frags;
6578				oldfrags = numfrags(ip->i_fs, oldfrags);
6579				blkno += numfrags(ip->i_fs, frags);
6580				newfreework(ump, freeblks, NULL, lastlbn,
6581				    blkno, oldfrags, 0, needj);
6582				if (needj)
6583					adjust_newfreework(freeblks,
6584					    numfrags(ip->i_fs, frags));
6585			} else if (blkno == 0)
6586				allocblock = 1;
6587		}
6588		/*
6589		 * Add a journal record for partial truncate if we are
6590		 * handling indirect blocks.  Non-indirects need no extra
6591		 * journaling.
6592		 */
6593		if (length != 0 && lastlbn >= NDADDR) {
6594			ip->i_flag |= IN_TRUNCATED;
6595			newjtrunc(freeblks, length, 0);
6596		}
6597		ip->i_size = length;
6598		DIP_SET(ip, i_size, ip->i_size);
6599		datablocks = DIP(ip, i_blocks) - extblocks;
6600		if (length != 0)
6601			datablocks = blkcount(ip->i_fs, datablocks, length);
6602		freeblks->fb_len = length;
6603	}
6604	if ((flags & IO_EXT) != 0) {
6605		for (i = 0; i < NXADDR; i++)
6606			setup_freeext(freeblks, ip, i, needj);
6607		ip->i_din2->di_extsize = 0;
6608		datablocks += extblocks;
6609	}
6610#ifdef QUOTA
6611	/* Reference the quotas in case the block count is wrong in the end. */
6612	quotaref(vp, freeblks->fb_quota);
6613	(void) chkdq(ip, -datablocks, NOCRED, 0);
6614#endif
6615	freeblks->fb_chkcnt = -datablocks;
6616	UFS_LOCK(ump);
6617	fs->fs_pendingblocks += datablocks;
6618	UFS_UNLOCK(ump);
6619	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6620	/*
6621	 * Handle truncation of incomplete alloc direct dependencies.  We
6622	 * hold the inode block locked to prevent incomplete dependencies
6623	 * from reaching the disk while we are eliminating those that
6624	 * have been truncated.  This is a partially inlined ffs_update().
6625	 */
6626	ufs_itimes(vp);
6627	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6628	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6629	    (int)fs->fs_bsize, cred, &bp);
6630	if (error) {
6631		brelse(bp);
6632		softdep_error("softdep_journal_freeblocks", error);
6633		return;
6634	}
6635	if (bp->b_bufsize == fs->fs_bsize)
6636		bp->b_flags |= B_CLUSTEROK;
6637	softdep_update_inodeblock(ip, bp, 0);
6638	if (ump->um_fstype == UFS1)
6639		*((struct ufs1_dinode *)bp->b_data +
6640		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6641	else
6642		*((struct ufs2_dinode *)bp->b_data +
6643		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6644	ACQUIRE_LOCK(ump);
6645	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6646	if ((inodedep->id_state & IOSTARTED) != 0)
6647		panic("softdep_setup_freeblocks: inode busy");
6648	/*
6649	 * Add the freeblks structure to the list of operations that
6650	 * must await the zero'ed inode being written to disk. If we
6651	 * still have a bitmap dependency (needj), then the inode
6652	 * has never been written to disk, so we can process the
6653	 * freeblks below once we have deleted the dependencies.
6654	 */
6655	if (needj)
6656		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6657	else
6658		freeblks->fb_state |= COMPLETE;
6659	if ((flags & IO_NORMAL) != 0) {
6660		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6661			if (adp->ad_offset > iboff)
6662				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6663				    freeblks);
6664			/*
6665			 * Truncate the allocdirect.  We could eliminate
6666			 * or modify journal records as well.
6667			 */
6668			else if (adp->ad_offset == iboff && frags)
6669				adp->ad_newsize = frags;
6670		}
6671	}
6672	if ((flags & IO_EXT) != 0)
6673		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6674			cancel_allocdirect(&inodedep->id_extupdt, adp,
6675			    freeblks);
6676	/*
6677	 * Scan the bufwait list for newblock dependencies that will never
6678	 * make it to disk.
6679	 */
6680	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6681		if (wk->wk_type != D_ALLOCDIRECT)
6682			continue;
6683		adp = WK_ALLOCDIRECT(wk);
6684		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6685		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6686			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6687			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6688			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6689		}
6690	}
6691	/*
6692	 * Add journal work.
6693	 */
6694	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6695		add_to_journal(&jblkdep->jb_list);
6696	FREE_LOCK(ump);
6697	bdwrite(bp);
6698	/*
6699	 * Truncate dependency structures beyond length.
6700	 */
6701	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6702	/*
6703	 * This is only set when we need to allocate a fragment because
6704	 * none existed at the end of a frag-sized file.  It handles only
6705	 * allocating a new, zero filled block.
6706	 */
6707	if (allocblock) {
6708		ip->i_size = length - lastoff;
6709		DIP_SET(ip, i_size, ip->i_size);
6710		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6711		if (error != 0) {
6712			softdep_error("softdep_journal_freeblks", error);
6713			return;
6714		}
6715		ip->i_size = length;
6716		DIP_SET(ip, i_size, length);
6717		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6718		allocbuf(bp, frags);
6719		ffs_update(vp, 0);
6720		bawrite(bp);
6721	} else if (lastoff != 0 && vp->v_type != VDIR) {
6722		int size;
6723
6724		/*
6725		 * Zero the end of a truncated frag or block.
6726		 */
6727		size = sblksize(fs, length, lastlbn);
6728		error = bread(vp, lastlbn, size, cred, &bp);
6729		if (error) {
6730			softdep_error("softdep_journal_freeblks", error);
6731			return;
6732		}
6733		bzero((char *)bp->b_data + lastoff, size - lastoff);
6734		bawrite(bp);
6735
6736	}
6737	ACQUIRE_LOCK(ump);
6738	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6739	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6740	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6741	/*
6742	 * We zero earlier truncations so they don't erroneously
6743	 * update i_blocks.
6744	 */
6745	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6746		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6747			fbn->fb_len = 0;
6748	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6749	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6750		freeblks->fb_state |= INPROGRESS;
6751	else
6752		freeblks = NULL;
6753	FREE_LOCK(ump);
6754	if (freeblks)
6755		handle_workitem_freeblocks(freeblks, 0);
6756	trunc_pages(ip, length, extblocks, flags);
6757
6758}
6759
6760/*
6761 * Flush a JOP_SYNC to the journal.
6762 */
6763void
6764softdep_journal_fsync(ip)
6765	struct inode *ip;
6766{
6767	struct jfsync *jfsync;
6768
6769	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
6770	    ("softdep_journal_fsync called on non-softdep filesystem"));
6771	if ((ip->i_flag & IN_TRUNCATED) == 0)
6772		return;
6773	ip->i_flag &= ~IN_TRUNCATED;
6774	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6775	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6776	jfsync->jfs_size = ip->i_size;
6777	jfsync->jfs_ino = ip->i_number;
6778	ACQUIRE_LOCK(ip->i_ump);
6779	add_to_journal(&jfsync->jfs_list);
6780	jwait(&jfsync->jfs_list, MNT_WAIT);
6781	FREE_LOCK(ip->i_ump);
6782}
6783
6784/*
6785 * Block de-allocation dependencies.
6786 *
6787 * When blocks are de-allocated, the on-disk pointers must be nullified before
6788 * the blocks are made available for use by other files.  (The true
6789 * requirement is that old pointers must be nullified before new on-disk
6790 * pointers are set.  We chose this slightly more stringent requirement to
6791 * reduce complexity.) Our implementation handles this dependency by updating
6792 * the inode (or indirect block) appropriately but delaying the actual block
6793 * de-allocation (i.e., freemap and free space count manipulation) until
6794 * after the updated versions reach stable storage.  After the disk is
6795 * updated, the blocks can be safely de-allocated whenever it is convenient.
6796 * This implementation handles only the common case of reducing a file's
6797 * length to zero. Other cases are handled by the conventional synchronous
6798 * write approach.
6799 *
6800 * The ffs implementation with which we worked double-checks
6801 * the state of the block pointers and file size as it reduces
6802 * a file's length.  Some of this code is replicated here in our
6803 * soft updates implementation.  The freeblks->fb_chkcnt field is
6804 * used to transfer a part of this information to the procedure
6805 * that eventually de-allocates the blocks.
6806 *
6807 * This routine should be called from the routine that shortens
6808 * a file's length, before the inode's size or block pointers
6809 * are modified. It will save the block pointer information for
6810 * later release and zero the inode so that the calling routine
6811 * can release it.
6812 */
6813void
6814softdep_setup_freeblocks(ip, length, flags)
6815	struct inode *ip;	/* The inode whose length is to be reduced */
6816	off_t length;		/* The new length for the file */
6817	int flags;		/* IO_EXT and/or IO_NORMAL */
6818{
6819	struct ufs1_dinode *dp1;
6820	struct ufs2_dinode *dp2;
6821	struct freeblks *freeblks;
6822	struct inodedep *inodedep;
6823	struct allocdirect *adp;
6824	struct ufsmount *ump;
6825	struct buf *bp;
6826	struct fs *fs;
6827	ufs2_daddr_t extblocks, datablocks;
6828	struct mount *mp;
6829	int i, delay, error, dflags;
6830	ufs_lbn_t tmpval;
6831	ufs_lbn_t lbn;
6832
6833	ump = ip->i_ump;
6834	mp = UFSTOVFS(ump);
6835	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6836	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6837	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6838	    ip->i_number, length);
6839	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6840	fs = ip->i_fs;
6841	freeblks = newfreeblks(mp, ip);
6842	extblocks = 0;
6843	datablocks = 0;
6844	if (fs->fs_magic == FS_UFS2_MAGIC)
6845		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6846	if ((flags & IO_NORMAL) != 0) {
6847		for (i = 0; i < NDADDR; i++)
6848			setup_freedirect(freeblks, ip, i, 0);
6849		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6850		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6851			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6852		ip->i_size = 0;
6853		DIP_SET(ip, i_size, 0);
6854		datablocks = DIP(ip, i_blocks) - extblocks;
6855	}
6856	if ((flags & IO_EXT) != 0) {
6857		for (i = 0; i < NXADDR; i++)
6858			setup_freeext(freeblks, ip, i, 0);
6859		ip->i_din2->di_extsize = 0;
6860		datablocks += extblocks;
6861	}
6862#ifdef QUOTA
6863	/* Reference the quotas in case the block count is wrong in the end. */
6864	quotaref(ITOV(ip), freeblks->fb_quota);
6865	(void) chkdq(ip, -datablocks, NOCRED, 0);
6866#endif
6867	freeblks->fb_chkcnt = -datablocks;
6868	UFS_LOCK(ump);
6869	fs->fs_pendingblocks += datablocks;
6870	UFS_UNLOCK(ump);
6871	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6872	/*
6873	 * Push the zero'ed inode to to its disk buffer so that we are free
6874	 * to delete its dependencies below. Once the dependencies are gone
6875	 * the buffer can be safely released.
6876	 */
6877	if ((error = bread(ip->i_devvp,
6878	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6879	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6880		brelse(bp);
6881		softdep_error("softdep_setup_freeblocks", error);
6882	}
6883	if (ump->um_fstype == UFS1) {
6884		dp1 = ((struct ufs1_dinode *)bp->b_data +
6885		    ino_to_fsbo(fs, ip->i_number));
6886		ip->i_din1->di_freelink = dp1->di_freelink;
6887		*dp1 = *ip->i_din1;
6888	} else {
6889		dp2 = ((struct ufs2_dinode *)bp->b_data +
6890		    ino_to_fsbo(fs, ip->i_number));
6891		ip->i_din2->di_freelink = dp2->di_freelink;
6892		*dp2 = *ip->i_din2;
6893	}
6894	/*
6895	 * Find and eliminate any inode dependencies.
6896	 */
6897	ACQUIRE_LOCK(ump);
6898	dflags = DEPALLOC;
6899	if (IS_SNAPSHOT(ip))
6900		dflags |= NODELAY;
6901	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6902	if ((inodedep->id_state & IOSTARTED) != 0)
6903		panic("softdep_setup_freeblocks: inode busy");
6904	/*
6905	 * Add the freeblks structure to the list of operations that
6906	 * must await the zero'ed inode being written to disk. If we
6907	 * still have a bitmap dependency (delay == 0), then the inode
6908	 * has never been written to disk, so we can process the
6909	 * freeblks below once we have deleted the dependencies.
6910	 */
6911	delay = (inodedep->id_state & DEPCOMPLETE);
6912	if (delay)
6913		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6914	else
6915		freeblks->fb_state |= COMPLETE;
6916	/*
6917	 * Because the file length has been truncated to zero, any
6918	 * pending block allocation dependency structures associated
6919	 * with this inode are obsolete and can simply be de-allocated.
6920	 * We must first merge the two dependency lists to get rid of
6921	 * any duplicate freefrag structures, then purge the merged list.
6922	 * If we still have a bitmap dependency, then the inode has never
6923	 * been written to disk, so we can free any fragments without delay.
6924	 */
6925	if (flags & IO_NORMAL) {
6926		merge_inode_lists(&inodedep->id_newinoupdt,
6927		    &inodedep->id_inoupdt);
6928		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6929			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6930			    freeblks);
6931	}
6932	if (flags & IO_EXT) {
6933		merge_inode_lists(&inodedep->id_newextupdt,
6934		    &inodedep->id_extupdt);
6935		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6936			cancel_allocdirect(&inodedep->id_extupdt, adp,
6937			    freeblks);
6938	}
6939	FREE_LOCK(ump);
6940	bdwrite(bp);
6941	trunc_dependencies(ip, freeblks, -1, 0, flags);
6942	ACQUIRE_LOCK(ump);
6943	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6944		(void) free_inodedep(inodedep);
6945	freeblks->fb_state |= DEPCOMPLETE;
6946	/*
6947	 * If the inode with zeroed block pointers is now on disk
6948	 * we can start freeing blocks.
6949	 */
6950	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6951		freeblks->fb_state |= INPROGRESS;
6952	else
6953		freeblks = NULL;
6954	FREE_LOCK(ump);
6955	if (freeblks)
6956		handle_workitem_freeblocks(freeblks, 0);
6957	trunc_pages(ip, length, extblocks, flags);
6958}
6959
6960/*
6961 * Eliminate pages from the page cache that back parts of this inode and
6962 * adjust the vnode pager's idea of our size.  This prevents stale data
6963 * from hanging around in the page cache.
6964 */
6965static void
6966trunc_pages(ip, length, extblocks, flags)
6967	struct inode *ip;
6968	off_t length;
6969	ufs2_daddr_t extblocks;
6970	int flags;
6971{
6972	struct vnode *vp;
6973	struct fs *fs;
6974	ufs_lbn_t lbn;
6975	off_t end, extend;
6976
6977	vp = ITOV(ip);
6978	fs = ip->i_fs;
6979	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6980	if ((flags & IO_EXT) != 0)
6981		vn_pages_remove(vp, extend, 0);
6982	if ((flags & IO_NORMAL) == 0)
6983		return;
6984	BO_LOCK(&vp->v_bufobj);
6985	drain_output(vp);
6986	BO_UNLOCK(&vp->v_bufobj);
6987	/*
6988	 * The vnode pager eliminates file pages we eliminate indirects
6989	 * below.
6990	 */
6991	vnode_pager_setsize(vp, length);
6992	/*
6993	 * Calculate the end based on the last indirect we want to keep.  If
6994	 * the block extends into indirects we can just use the negative of
6995	 * its lbn.  Doubles and triples exist at lower numbers so we must
6996	 * be careful not to remove those, if they exist.  double and triple
6997	 * indirect lbns do not overlap with others so it is not important
6998	 * to verify how many levels are required.
6999	 */
7000	lbn = lblkno(fs, length);
7001	if (lbn >= NDADDR) {
7002		/* Calculate the virtual lbn of the triple indirect. */
7003		lbn = -lbn - (NIADDR - 1);
7004		end = OFF_TO_IDX(lblktosize(fs, lbn));
7005	} else
7006		end = extend;
7007	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7008}
7009
7010/*
7011 * See if the buf bp is in the range eliminated by truncation.
7012 */
7013static int
7014trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7015	struct buf *bp;
7016	int *blkoffp;
7017	ufs_lbn_t lastlbn;
7018	int lastoff;
7019	int flags;
7020{
7021	ufs_lbn_t lbn;
7022
7023	*blkoffp = 0;
7024	/* Only match ext/normal blocks as appropriate. */
7025	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7026	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7027		return (0);
7028	/* ALTDATA is always a full truncation. */
7029	if ((bp->b_xflags & BX_ALTDATA) != 0)
7030		return (1);
7031	/* -1 is full truncation. */
7032	if (lastlbn == -1)
7033		return (1);
7034	/*
7035	 * If this is a partial truncate we only want those
7036	 * blocks and indirect blocks that cover the range
7037	 * we're after.
7038	 */
7039	lbn = bp->b_lblkno;
7040	if (lbn < 0)
7041		lbn = -(lbn + lbn_level(lbn));
7042	if (lbn < lastlbn)
7043		return (0);
7044	/* Here we only truncate lblkno if it's partial. */
7045	if (lbn == lastlbn) {
7046		if (lastoff == 0)
7047			return (0);
7048		*blkoffp = lastoff;
7049	}
7050	return (1);
7051}
7052
7053/*
7054 * Eliminate any dependencies that exist in memory beyond lblkno:off
7055 */
7056static void
7057trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7058	struct inode *ip;
7059	struct freeblks *freeblks;
7060	ufs_lbn_t lastlbn;
7061	int lastoff;
7062	int flags;
7063{
7064	struct bufobj *bo;
7065	struct vnode *vp;
7066	struct buf *bp;
7067	int blkoff;
7068
7069	/*
7070	 * We must wait for any I/O in progress to finish so that
7071	 * all potential buffers on the dirty list will be visible.
7072	 * Once they are all there, walk the list and get rid of
7073	 * any dependencies.
7074	 */
7075	vp = ITOV(ip);
7076	bo = &vp->v_bufobj;
7077	BO_LOCK(bo);
7078	drain_output(vp);
7079	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7080		bp->b_vflags &= ~BV_SCANNED;
7081restart:
7082	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7083		if (bp->b_vflags & BV_SCANNED)
7084			continue;
7085		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7086			bp->b_vflags |= BV_SCANNED;
7087			continue;
7088		}
7089		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7090		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7091			goto restart;
7092		BO_UNLOCK(bo);
7093		if (deallocate_dependencies(bp, freeblks, blkoff))
7094			bqrelse(bp);
7095		else
7096			brelse(bp);
7097		BO_LOCK(bo);
7098		goto restart;
7099	}
7100	/*
7101	 * Now do the work of vtruncbuf while also matching indirect blocks.
7102	 */
7103	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7104		bp->b_vflags &= ~BV_SCANNED;
7105cleanrestart:
7106	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7107		if (bp->b_vflags & BV_SCANNED)
7108			continue;
7109		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7110			bp->b_vflags |= BV_SCANNED;
7111			continue;
7112		}
7113		if (BUF_LOCK(bp,
7114		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7115		    BO_LOCKPTR(bo)) == ENOLCK) {
7116			BO_LOCK(bo);
7117			goto cleanrestart;
7118		}
7119		bp->b_vflags |= BV_SCANNED;
7120		bremfree(bp);
7121		if (blkoff != 0) {
7122			allocbuf(bp, blkoff);
7123			bqrelse(bp);
7124		} else {
7125			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7126			brelse(bp);
7127		}
7128		BO_LOCK(bo);
7129		goto cleanrestart;
7130	}
7131	drain_output(vp);
7132	BO_UNLOCK(bo);
7133}
7134
7135static int
7136cancel_pagedep(pagedep, freeblks, blkoff)
7137	struct pagedep *pagedep;
7138	struct freeblks *freeblks;
7139	int blkoff;
7140{
7141	struct jremref *jremref;
7142	struct jmvref *jmvref;
7143	struct dirrem *dirrem, *tmp;
7144	int i;
7145
7146	/*
7147	 * Copy any directory remove dependencies to the list
7148	 * to be processed after the freeblks proceeds.  If
7149	 * directory entry never made it to disk they
7150	 * can be dumped directly onto the work list.
7151	 */
7152	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7153		/* Skip this directory removal if it is intended to remain. */
7154		if (dirrem->dm_offset < blkoff)
7155			continue;
7156		/*
7157		 * If there are any dirrems we wait for the journal write
7158		 * to complete and then restart the buf scan as the lock
7159		 * has been dropped.
7160		 */
7161		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7162			jwait(&jremref->jr_list, MNT_WAIT);
7163			return (ERESTART);
7164		}
7165		LIST_REMOVE(dirrem, dm_next);
7166		dirrem->dm_dirinum = pagedep->pd_ino;
7167		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7168	}
7169	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7170		jwait(&jmvref->jm_list, MNT_WAIT);
7171		return (ERESTART);
7172	}
7173	/*
7174	 * When we're partially truncating a pagedep we just want to flush
7175	 * journal entries and return.  There can not be any adds in the
7176	 * truncated portion of the directory and newblk must remain if
7177	 * part of the block remains.
7178	 */
7179	if (blkoff != 0) {
7180		struct diradd *dap;
7181
7182		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7183			if (dap->da_offset > blkoff)
7184				panic("cancel_pagedep: diradd %p off %d > %d",
7185				    dap, dap->da_offset, blkoff);
7186		for (i = 0; i < DAHASHSZ; i++)
7187			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7188				if (dap->da_offset > blkoff)
7189					panic("cancel_pagedep: diradd %p off %d > %d",
7190					    dap, dap->da_offset, blkoff);
7191		return (0);
7192	}
7193	/*
7194	 * There should be no directory add dependencies present
7195	 * as the directory could not be truncated until all
7196	 * children were removed.
7197	 */
7198	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7199	    ("deallocate_dependencies: pendinghd != NULL"));
7200	for (i = 0; i < DAHASHSZ; i++)
7201		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7202		    ("deallocate_dependencies: diraddhd != NULL"));
7203	if ((pagedep->pd_state & NEWBLOCK) != 0)
7204		free_newdirblk(pagedep->pd_newdirblk);
7205	if (free_pagedep(pagedep) == 0)
7206		panic("Failed to free pagedep %p", pagedep);
7207	return (0);
7208}
7209
7210/*
7211 * Reclaim any dependency structures from a buffer that is about to
7212 * be reallocated to a new vnode. The buffer must be locked, thus,
7213 * no I/O completion operations can occur while we are manipulating
7214 * its associated dependencies. The mutex is held so that other I/O's
7215 * associated with related dependencies do not occur.
7216 */
7217static int
7218deallocate_dependencies(bp, freeblks, off)
7219	struct buf *bp;
7220	struct freeblks *freeblks;
7221	int off;
7222{
7223	struct indirdep *indirdep;
7224	struct pagedep *pagedep;
7225	struct allocdirect *adp;
7226	struct worklist *wk, *wkn;
7227	struct ufsmount *ump;
7228
7229	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7230		goto done;
7231	ump = VFSTOUFS(wk->wk_mp);
7232	ACQUIRE_LOCK(ump);
7233	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7234		switch (wk->wk_type) {
7235		case D_INDIRDEP:
7236			indirdep = WK_INDIRDEP(wk);
7237			if (bp->b_lblkno >= 0 ||
7238			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7239				panic("deallocate_dependencies: not indir");
7240			cancel_indirdep(indirdep, bp, freeblks);
7241			continue;
7242
7243		case D_PAGEDEP:
7244			pagedep = WK_PAGEDEP(wk);
7245			if (cancel_pagedep(pagedep, freeblks, off)) {
7246				FREE_LOCK(ump);
7247				return (ERESTART);
7248			}
7249			continue;
7250
7251		case D_ALLOCINDIR:
7252			/*
7253			 * Simply remove the allocindir, we'll find it via
7254			 * the indirdep where we can clear pointers if
7255			 * needed.
7256			 */
7257			WORKLIST_REMOVE(wk);
7258			continue;
7259
7260		case D_FREEWORK:
7261			/*
7262			 * A truncation is waiting for the zero'd pointers
7263			 * to be written.  It can be freed when the freeblks
7264			 * is journaled.
7265			 */
7266			WORKLIST_REMOVE(wk);
7267			wk->wk_state |= ONDEPLIST;
7268			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7269			break;
7270
7271		case D_ALLOCDIRECT:
7272			adp = WK_ALLOCDIRECT(wk);
7273			if (off != 0)
7274				continue;
7275			/* FALLTHROUGH */
7276		default:
7277			panic("deallocate_dependencies: Unexpected type %s",
7278			    TYPENAME(wk->wk_type));
7279			/* NOTREACHED */
7280		}
7281	}
7282	FREE_LOCK(ump);
7283done:
7284	/*
7285	 * Don't throw away this buf, we were partially truncating and
7286	 * some deps may always remain.
7287	 */
7288	if (off) {
7289		allocbuf(bp, off);
7290		bp->b_vflags |= BV_SCANNED;
7291		return (EBUSY);
7292	}
7293	bp->b_flags |= B_INVAL | B_NOCACHE;
7294
7295	return (0);
7296}
7297
7298/*
7299 * An allocdirect is being canceled due to a truncate.  We must make sure
7300 * the journal entry is released in concert with the blkfree that releases
7301 * the storage.  Completed journal entries must not be released until the
7302 * space is no longer pointed to by the inode or in the bitmap.
7303 */
7304static void
7305cancel_allocdirect(adphead, adp, freeblks)
7306	struct allocdirectlst *adphead;
7307	struct allocdirect *adp;
7308	struct freeblks *freeblks;
7309{
7310	struct freework *freework;
7311	struct newblk *newblk;
7312	struct worklist *wk;
7313
7314	TAILQ_REMOVE(adphead, adp, ad_next);
7315	newblk = (struct newblk *)adp;
7316	freework = NULL;
7317	/*
7318	 * Find the correct freework structure.
7319	 */
7320	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7321		if (wk->wk_type != D_FREEWORK)
7322			continue;
7323		freework = WK_FREEWORK(wk);
7324		if (freework->fw_blkno == newblk->nb_newblkno)
7325			break;
7326	}
7327	if (freework == NULL)
7328		panic("cancel_allocdirect: Freework not found");
7329	/*
7330	 * If a newblk exists at all we still have the journal entry that
7331	 * initiated the allocation so we do not need to journal the free.
7332	 */
7333	cancel_jfreeblk(freeblks, freework->fw_blkno);
7334	/*
7335	 * If the journal hasn't been written the jnewblk must be passed
7336	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7337	 * this by linking the journal dependency into the freework to be
7338	 * freed when freework_freeblock() is called.  If the journal has
7339	 * been written we can simply reclaim the journal space when the
7340	 * freeblks work is complete.
7341	 */
7342	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7343	    &freeblks->fb_jwork);
7344	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7345}
7346
7347
7348/*
7349 * Cancel a new block allocation.  May be an indirect or direct block.  We
7350 * remove it from various lists and return any journal record that needs to
7351 * be resolved by the caller.
7352 *
7353 * A special consideration is made for indirects which were never pointed
7354 * at on disk and will never be found once this block is released.
7355 */
7356static struct jnewblk *
7357cancel_newblk(newblk, wk, wkhd)
7358	struct newblk *newblk;
7359	struct worklist *wk;
7360	struct workhead *wkhd;
7361{
7362	struct jnewblk *jnewblk;
7363
7364	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7365
7366	newblk->nb_state |= GOINGAWAY;
7367	/*
7368	 * Previously we traversed the completedhd on each indirdep
7369	 * attached to this newblk to cancel them and gather journal
7370	 * work.  Since we need only the oldest journal segment and
7371	 * the lowest point on the tree will always have the oldest
7372	 * journal segment we are free to release the segments
7373	 * of any subordinates and may leave the indirdep list to
7374	 * indirdep_complete() when this newblk is freed.
7375	 */
7376	if (newblk->nb_state & ONDEPLIST) {
7377		newblk->nb_state &= ~ONDEPLIST;
7378		LIST_REMOVE(newblk, nb_deps);
7379	}
7380	if (newblk->nb_state & ONWORKLIST)
7381		WORKLIST_REMOVE(&newblk->nb_list);
7382	/*
7383	 * If the journal entry hasn't been written we save a pointer to
7384	 * the dependency that frees it until it is written or the
7385	 * superseding operation completes.
7386	 */
7387	jnewblk = newblk->nb_jnewblk;
7388	if (jnewblk != NULL && wk != NULL) {
7389		newblk->nb_jnewblk = NULL;
7390		jnewblk->jn_dep = wk;
7391	}
7392	if (!LIST_EMPTY(&newblk->nb_jwork))
7393		jwork_move(wkhd, &newblk->nb_jwork);
7394	/*
7395	 * When truncating we must free the newdirblk early to remove
7396	 * the pagedep from the hash before returning.
7397	 */
7398	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7399		free_newdirblk(WK_NEWDIRBLK(wk));
7400	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7401		panic("cancel_newblk: extra newdirblk");
7402
7403	return (jnewblk);
7404}
7405
7406/*
7407 * Schedule the freefrag associated with a newblk to be released once
7408 * the pointers are written and the previous block is no longer needed.
7409 */
7410static void
7411newblk_freefrag(newblk)
7412	struct newblk *newblk;
7413{
7414	struct freefrag *freefrag;
7415
7416	if (newblk->nb_freefrag == NULL)
7417		return;
7418	freefrag = newblk->nb_freefrag;
7419	newblk->nb_freefrag = NULL;
7420	freefrag->ff_state |= COMPLETE;
7421	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7422		add_to_worklist(&freefrag->ff_list, 0);
7423}
7424
7425/*
7426 * Free a newblk. Generate a new freefrag work request if appropriate.
7427 * This must be called after the inode pointer and any direct block pointers
7428 * are valid or fully removed via truncate or frag extension.
7429 */
7430static void
7431free_newblk(newblk)
7432	struct newblk *newblk;
7433{
7434	struct indirdep *indirdep;
7435	struct worklist *wk;
7436
7437	KASSERT(newblk->nb_jnewblk == NULL,
7438	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7439	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7440	    ("free_newblk: unclaimed newblk"));
7441	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7442	newblk_freefrag(newblk);
7443	if (newblk->nb_state & ONDEPLIST)
7444		LIST_REMOVE(newblk, nb_deps);
7445	if (newblk->nb_state & ONWORKLIST)
7446		WORKLIST_REMOVE(&newblk->nb_list);
7447	LIST_REMOVE(newblk, nb_hash);
7448	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7449		free_newdirblk(WK_NEWDIRBLK(wk));
7450	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7451		panic("free_newblk: extra newdirblk");
7452	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7453		indirdep_complete(indirdep);
7454	handle_jwork(&newblk->nb_jwork);
7455	WORKITEM_FREE(newblk, D_NEWBLK);
7456}
7457
7458/*
7459 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7460 * This routine must be called with splbio interrupts blocked.
7461 */
7462static void
7463free_newdirblk(newdirblk)
7464	struct newdirblk *newdirblk;
7465{
7466	struct pagedep *pagedep;
7467	struct diradd *dap;
7468	struct worklist *wk;
7469
7470	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7471	WORKLIST_REMOVE(&newdirblk->db_list);
7472	/*
7473	 * If the pagedep is still linked onto the directory buffer
7474	 * dependency chain, then some of the entries on the
7475	 * pd_pendinghd list may not be committed to disk yet. In
7476	 * this case, we will simply clear the NEWBLOCK flag and
7477	 * let the pd_pendinghd list be processed when the pagedep
7478	 * is next written. If the pagedep is no longer on the buffer
7479	 * dependency chain, then all the entries on the pd_pending
7480	 * list are committed to disk and we can free them here.
7481	 */
7482	pagedep = newdirblk->db_pagedep;
7483	pagedep->pd_state &= ~NEWBLOCK;
7484	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7485		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7486			free_diradd(dap, NULL);
7487		/*
7488		 * If no dependencies remain, the pagedep will be freed.
7489		 */
7490		free_pagedep(pagedep);
7491	}
7492	/* Should only ever be one item in the list. */
7493	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7494		WORKLIST_REMOVE(wk);
7495		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7496	}
7497	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7498}
7499
7500/*
7501 * Prepare an inode to be freed. The actual free operation is not
7502 * done until the zero'ed inode has been written to disk.
7503 */
7504void
7505softdep_freefile(pvp, ino, mode)
7506	struct vnode *pvp;
7507	ino_t ino;
7508	int mode;
7509{
7510	struct inode *ip = VTOI(pvp);
7511	struct inodedep *inodedep;
7512	struct freefile *freefile;
7513	struct freeblks *freeblks;
7514	struct ufsmount *ump;
7515
7516	ump = ip->i_ump;
7517	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7518	    ("softdep_freefile called on non-softdep filesystem"));
7519	/*
7520	 * This sets up the inode de-allocation dependency.
7521	 */
7522	freefile = malloc(sizeof(struct freefile),
7523		M_FREEFILE, M_SOFTDEP_FLAGS);
7524	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7525	freefile->fx_mode = mode;
7526	freefile->fx_oldinum = ino;
7527	freefile->fx_devvp = ip->i_devvp;
7528	LIST_INIT(&freefile->fx_jwork);
7529	UFS_LOCK(ump);
7530	ip->i_fs->fs_pendinginodes += 1;
7531	UFS_UNLOCK(ump);
7532
7533	/*
7534	 * If the inodedep does not exist, then the zero'ed inode has
7535	 * been written to disk. If the allocated inode has never been
7536	 * written to disk, then the on-disk inode is zero'ed. In either
7537	 * case we can free the file immediately.  If the journal was
7538	 * canceled before being written the inode will never make it to
7539	 * disk and we must send the canceled journal entrys to
7540	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7541	 * Any blocks waiting on the inode to write can be safely freed
7542	 * here as it will never been written.
7543	 */
7544	ACQUIRE_LOCK(ump);
7545	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7546	if (inodedep) {
7547		/*
7548		 * Clear out freeblks that no longer need to reference
7549		 * this inode.
7550		 */
7551		while ((freeblks =
7552		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7553			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7554			    fb_next);
7555			freeblks->fb_state &= ~ONDEPLIST;
7556		}
7557		/*
7558		 * Remove this inode from the unlinked list.
7559		 */
7560		if (inodedep->id_state & UNLINKED) {
7561			/*
7562			 * Save the journal work to be freed with the bitmap
7563			 * before we clear UNLINKED.  Otherwise it can be lost
7564			 * if the inode block is written.
7565			 */
7566			handle_bufwait(inodedep, &freefile->fx_jwork);
7567			clear_unlinked_inodedep(inodedep);
7568			/*
7569			 * Re-acquire inodedep as we've dropped the
7570			 * per-filesystem lock in clear_unlinked_inodedep().
7571			 */
7572			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7573		}
7574	}
7575	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7576		FREE_LOCK(ump);
7577		handle_workitem_freefile(freefile);
7578		return;
7579	}
7580	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7581		inodedep->id_state |= GOINGAWAY;
7582	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7583	FREE_LOCK(ump);
7584	if (ip->i_number == ino)
7585		ip->i_flag |= IN_MODIFIED;
7586}
7587
7588/*
7589 * Check to see if an inode has never been written to disk. If
7590 * so free the inodedep and return success, otherwise return failure.
7591 * This routine must be called with splbio interrupts blocked.
7592 *
7593 * If we still have a bitmap dependency, then the inode has never
7594 * been written to disk. Drop the dependency as it is no longer
7595 * necessary since the inode is being deallocated. We set the
7596 * ALLCOMPLETE flags since the bitmap now properly shows that the
7597 * inode is not allocated. Even if the inode is actively being
7598 * written, it has been rolled back to its zero'ed state, so we
7599 * are ensured that a zero inode is what is on the disk. For short
7600 * lived files, this change will usually result in removing all the
7601 * dependencies from the inode so that it can be freed immediately.
7602 */
7603static int
7604check_inode_unwritten(inodedep)
7605	struct inodedep *inodedep;
7606{
7607
7608	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7609
7610	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7611	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7612	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7613	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7614	    !LIST_EMPTY(&inodedep->id_inowait) ||
7615	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7616	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7617	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7618	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7619	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7620	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7621	    inodedep->id_mkdiradd != NULL ||
7622	    inodedep->id_nlinkdelta != 0)
7623		return (0);
7624	/*
7625	 * Another process might be in initiate_write_inodeblock_ufs[12]
7626	 * trying to allocate memory without holding "Softdep Lock".
7627	 */
7628	if ((inodedep->id_state & IOSTARTED) != 0 &&
7629	    inodedep->id_savedino1 == NULL)
7630		return (0);
7631
7632	if (inodedep->id_state & ONDEPLIST)
7633		LIST_REMOVE(inodedep, id_deps);
7634	inodedep->id_state &= ~ONDEPLIST;
7635	inodedep->id_state |= ALLCOMPLETE;
7636	inodedep->id_bmsafemap = NULL;
7637	if (inodedep->id_state & ONWORKLIST)
7638		WORKLIST_REMOVE(&inodedep->id_list);
7639	if (inodedep->id_savedino1 != NULL) {
7640		free(inodedep->id_savedino1, M_SAVEDINO);
7641		inodedep->id_savedino1 = NULL;
7642	}
7643	if (free_inodedep(inodedep) == 0)
7644		panic("check_inode_unwritten: busy inode");
7645	return (1);
7646}
7647
7648static int
7649check_inodedep_free(inodedep)
7650	struct inodedep *inodedep;
7651{
7652
7653	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7654	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7655	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7656	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7657	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7658	    !LIST_EMPTY(&inodedep->id_inowait) ||
7659	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7660	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7661	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7662	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7663	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7664	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7665	    inodedep->id_mkdiradd != NULL ||
7666	    inodedep->id_nlinkdelta != 0 ||
7667	    inodedep->id_savedino1 != NULL)
7668		return (0);
7669	return (1);
7670}
7671
7672/*
7673 * Try to free an inodedep structure. Return 1 if it could be freed.
7674 */
7675static int
7676free_inodedep(inodedep)
7677	struct inodedep *inodedep;
7678{
7679
7680	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7681	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7682	    !check_inodedep_free(inodedep))
7683		return (0);
7684	if (inodedep->id_state & ONDEPLIST)
7685		LIST_REMOVE(inodedep, id_deps);
7686	LIST_REMOVE(inodedep, id_hash);
7687	WORKITEM_FREE(inodedep, D_INODEDEP);
7688	return (1);
7689}
7690
7691/*
7692 * Free the block referenced by a freework structure.  The parent freeblks
7693 * structure is released and completed when the final cg bitmap reaches
7694 * the disk.  This routine may be freeing a jnewblk which never made it to
7695 * disk in which case we do not have to wait as the operation is undone
7696 * in memory immediately.
7697 */
7698static void
7699freework_freeblock(freework)
7700	struct freework *freework;
7701{
7702	struct freeblks *freeblks;
7703	struct jnewblk *jnewblk;
7704	struct ufsmount *ump;
7705	struct workhead wkhd;
7706	struct fs *fs;
7707	int bsize;
7708	int needj;
7709
7710	ump = VFSTOUFS(freework->fw_list.wk_mp);
7711	LOCK_OWNED(ump);
7712	/*
7713	 * Handle partial truncate separately.
7714	 */
7715	if (freework->fw_indir) {
7716		complete_trunc_indir(freework);
7717		return;
7718	}
7719	freeblks = freework->fw_freeblks;
7720	fs = ump->um_fs;
7721	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7722	bsize = lfragtosize(fs, freework->fw_frags);
7723	LIST_INIT(&wkhd);
7724	/*
7725	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7726	 * on the indirblk hashtable and prevents premature freeing.
7727	 */
7728	freework->fw_state |= DEPCOMPLETE;
7729	/*
7730	 * SUJ needs to wait for the segment referencing freed indirect
7731	 * blocks to expire so that we know the checker will not confuse
7732	 * a re-allocated indirect block with its old contents.
7733	 */
7734	if (needj && freework->fw_lbn <= -NDADDR)
7735		indirblk_insert(freework);
7736	/*
7737	 * If we are canceling an existing jnewblk pass it to the free
7738	 * routine, otherwise pass the freeblk which will ultimately
7739	 * release the freeblks.  If we're not journaling, we can just
7740	 * free the freeblks immediately.
7741	 */
7742	jnewblk = freework->fw_jnewblk;
7743	if (jnewblk != NULL) {
7744		cancel_jnewblk(jnewblk, &wkhd);
7745		needj = 0;
7746	} else if (needj) {
7747		freework->fw_state |= DELAYEDFREE;
7748		freeblks->fb_cgwait++;
7749		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7750	}
7751	FREE_LOCK(ump);
7752	freeblks_free(ump, freeblks, btodb(bsize));
7753	CTR4(KTR_SUJ,
7754	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7755	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7756	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7757	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7758	ACQUIRE_LOCK(ump);
7759	/*
7760	 * The jnewblk will be discarded and the bits in the map never
7761	 * made it to disk.  We can immediately free the freeblk.
7762	 */
7763	if (needj == 0)
7764		handle_written_freework(freework);
7765}
7766
7767/*
7768 * We enqueue freework items that need processing back on the freeblks and
7769 * add the freeblks to the worklist.  This makes it easier to find all work
7770 * required to flush a truncation in process_truncates().
7771 */
7772static void
7773freework_enqueue(freework)
7774	struct freework *freework;
7775{
7776	struct freeblks *freeblks;
7777
7778	freeblks = freework->fw_freeblks;
7779	if ((freework->fw_state & INPROGRESS) == 0)
7780		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7781	if ((freeblks->fb_state &
7782	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7783	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7784		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7785}
7786
7787/*
7788 * Start, continue, or finish the process of freeing an indirect block tree.
7789 * The free operation may be paused at any point with fw_off containing the
7790 * offset to restart from.  This enables us to implement some flow control
7791 * for large truncates which may fan out and generate a huge number of
7792 * dependencies.
7793 */
7794static void
7795handle_workitem_indirblk(freework)
7796	struct freework *freework;
7797{
7798	struct freeblks *freeblks;
7799	struct ufsmount *ump;
7800	struct fs *fs;
7801
7802	freeblks = freework->fw_freeblks;
7803	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7804	fs = ump->um_fs;
7805	if (freework->fw_state & DEPCOMPLETE) {
7806		handle_written_freework(freework);
7807		return;
7808	}
7809	if (freework->fw_off == NINDIR(fs)) {
7810		freework_freeblock(freework);
7811		return;
7812	}
7813	freework->fw_state |= INPROGRESS;
7814	FREE_LOCK(ump);
7815	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7816	    freework->fw_lbn);
7817	ACQUIRE_LOCK(ump);
7818}
7819
7820/*
7821 * Called when a freework structure attached to a cg buf is written.  The
7822 * ref on either the parent or the freeblks structure is released and
7823 * the freeblks is added back to the worklist if there is more work to do.
7824 */
7825static void
7826handle_written_freework(freework)
7827	struct freework *freework;
7828{
7829	struct freeblks *freeblks;
7830	struct freework *parent;
7831
7832	freeblks = freework->fw_freeblks;
7833	parent = freework->fw_parent;
7834	if (freework->fw_state & DELAYEDFREE)
7835		freeblks->fb_cgwait--;
7836	freework->fw_state |= COMPLETE;
7837	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7838		WORKITEM_FREE(freework, D_FREEWORK);
7839	if (parent) {
7840		if (--parent->fw_ref == 0)
7841			freework_enqueue(parent);
7842		return;
7843	}
7844	if (--freeblks->fb_ref != 0)
7845		return;
7846	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7847	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7848		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7849}
7850
7851/*
7852 * This workitem routine performs the block de-allocation.
7853 * The workitem is added to the pending list after the updated
7854 * inode block has been written to disk.  As mentioned above,
7855 * checks regarding the number of blocks de-allocated (compared
7856 * to the number of blocks allocated for the file) are also
7857 * performed in this function.
7858 */
7859static int
7860handle_workitem_freeblocks(freeblks, flags)
7861	struct freeblks *freeblks;
7862	int flags;
7863{
7864	struct freework *freework;
7865	struct newblk *newblk;
7866	struct allocindir *aip;
7867	struct ufsmount *ump;
7868	struct worklist *wk;
7869
7870	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7871	    ("handle_workitem_freeblocks: Journal entries not written."));
7872	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7873	ACQUIRE_LOCK(ump);
7874	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7875		WORKLIST_REMOVE(wk);
7876		switch (wk->wk_type) {
7877		case D_DIRREM:
7878			wk->wk_state |= COMPLETE;
7879			add_to_worklist(wk, 0);
7880			continue;
7881
7882		case D_ALLOCDIRECT:
7883			free_newblk(WK_NEWBLK(wk));
7884			continue;
7885
7886		case D_ALLOCINDIR:
7887			aip = WK_ALLOCINDIR(wk);
7888			freework = NULL;
7889			if (aip->ai_state & DELAYEDFREE) {
7890				FREE_LOCK(ump);
7891				freework = newfreework(ump, freeblks, NULL,
7892				    aip->ai_lbn, aip->ai_newblkno,
7893				    ump->um_fs->fs_frag, 0, 0);
7894				ACQUIRE_LOCK(ump);
7895			}
7896			newblk = WK_NEWBLK(wk);
7897			if (newblk->nb_jnewblk) {
7898				freework->fw_jnewblk = newblk->nb_jnewblk;
7899				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7900				newblk->nb_jnewblk = NULL;
7901			}
7902			free_newblk(newblk);
7903			continue;
7904
7905		case D_FREEWORK:
7906			freework = WK_FREEWORK(wk);
7907			if (freework->fw_lbn <= -NDADDR)
7908				handle_workitem_indirblk(freework);
7909			else
7910				freework_freeblock(freework);
7911			continue;
7912		default:
7913			panic("handle_workitem_freeblocks: Unknown type %s",
7914			    TYPENAME(wk->wk_type));
7915		}
7916	}
7917	if (freeblks->fb_ref != 0) {
7918		freeblks->fb_state &= ~INPROGRESS;
7919		wake_worklist(&freeblks->fb_list);
7920		freeblks = NULL;
7921	}
7922	FREE_LOCK(ump);
7923	if (freeblks)
7924		return handle_complete_freeblocks(freeblks, flags);
7925	return (0);
7926}
7927
7928/*
7929 * Handle completion of block free via truncate.  This allows fs_pending
7930 * to track the actual free block count more closely than if we only updated
7931 * it at the end.  We must be careful to handle cases where the block count
7932 * on free was incorrect.
7933 */
7934static void
7935freeblks_free(ump, freeblks, blocks)
7936	struct ufsmount *ump;
7937	struct freeblks *freeblks;
7938	int blocks;
7939{
7940	struct fs *fs;
7941	ufs2_daddr_t remain;
7942
7943	UFS_LOCK(ump);
7944	remain = -freeblks->fb_chkcnt;
7945	freeblks->fb_chkcnt += blocks;
7946	if (remain > 0) {
7947		if (remain < blocks)
7948			blocks = remain;
7949		fs = ump->um_fs;
7950		fs->fs_pendingblocks -= blocks;
7951	}
7952	UFS_UNLOCK(ump);
7953}
7954
7955/*
7956 * Once all of the freework workitems are complete we can retire the
7957 * freeblocks dependency and any journal work awaiting completion.  This
7958 * can not be called until all other dependencies are stable on disk.
7959 */
7960static int
7961handle_complete_freeblocks(freeblks, flags)
7962	struct freeblks *freeblks;
7963	int flags;
7964{
7965	struct inodedep *inodedep;
7966	struct inode *ip;
7967	struct vnode *vp;
7968	struct fs *fs;
7969	struct ufsmount *ump;
7970	ufs2_daddr_t spare;
7971
7972	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7973	fs = ump->um_fs;
7974	flags = LK_EXCLUSIVE | flags;
7975	spare = freeblks->fb_chkcnt;
7976
7977	/*
7978	 * If we did not release the expected number of blocks we may have
7979	 * to adjust the inode block count here.  Only do so if it wasn't
7980	 * a truncation to zero and the modrev still matches.
7981	 */
7982	if (spare && freeblks->fb_len != 0) {
7983		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7984		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7985			return (EBUSY);
7986		ip = VTOI(vp);
7987		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7988			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7989			ip->i_flag |= IN_CHANGE;
7990			/*
7991			 * We must wait so this happens before the
7992			 * journal is reclaimed.
7993			 */
7994			ffs_update(vp, 1);
7995		}
7996		vput(vp);
7997	}
7998	if (spare < 0) {
7999		UFS_LOCK(ump);
8000		fs->fs_pendingblocks += spare;
8001		UFS_UNLOCK(ump);
8002	}
8003#ifdef QUOTA
8004	/* Handle spare. */
8005	if (spare)
8006		quotaadj(freeblks->fb_quota, ump, -spare);
8007	quotarele(freeblks->fb_quota);
8008#endif
8009	ACQUIRE_LOCK(ump);
8010	if (freeblks->fb_state & ONDEPLIST) {
8011		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8012		    0, &inodedep);
8013		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8014		freeblks->fb_state &= ~ONDEPLIST;
8015		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8016			free_inodedep(inodedep);
8017	}
8018	/*
8019	 * All of the freeblock deps must be complete prior to this call
8020	 * so it's now safe to complete earlier outstanding journal entries.
8021	 */
8022	handle_jwork(&freeblks->fb_jwork);
8023	WORKITEM_FREE(freeblks, D_FREEBLKS);
8024	FREE_LOCK(ump);
8025	return (0);
8026}
8027
8028/*
8029 * Release blocks associated with the freeblks and stored in the indirect
8030 * block dbn. If level is greater than SINGLE, the block is an indirect block
8031 * and recursive calls to indirtrunc must be used to cleanse other indirect
8032 * blocks.
8033 *
8034 * This handles partial and complete truncation of blocks.  Partial is noted
8035 * with goingaway == 0.  In this case the freework is completed after the
8036 * zero'd indirects are written to disk.  For full truncation the freework
8037 * is completed after the block is freed.
8038 */
8039static void
8040indir_trunc(freework, dbn, lbn)
8041	struct freework *freework;
8042	ufs2_daddr_t dbn;
8043	ufs_lbn_t lbn;
8044{
8045	struct freework *nfreework;
8046	struct workhead wkhd;
8047	struct freeblks *freeblks;
8048	struct buf *bp;
8049	struct fs *fs;
8050	struct indirdep *indirdep;
8051	struct ufsmount *ump;
8052	ufs1_daddr_t *bap1 = 0;
8053	ufs2_daddr_t nb, nnb, *bap2 = 0;
8054	ufs_lbn_t lbnadd, nlbn;
8055	int i, nblocks, ufs1fmt;
8056	int freedblocks;
8057	int goingaway;
8058	int freedeps;
8059	int needj;
8060	int level;
8061	int cnt;
8062
8063	freeblks = freework->fw_freeblks;
8064	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8065	fs = ump->um_fs;
8066	/*
8067	 * Get buffer of block pointers to be freed.  There are three cases:
8068	 *
8069	 * 1) Partial truncate caches the indirdep pointer in the freework
8070	 *    which provides us a back copy to the save bp which holds the
8071	 *    pointers we want to clear.  When this completes the zero
8072	 *    pointers are written to the real copy.
8073	 * 2) The indirect is being completely truncated, cancel_indirdep()
8074	 *    eliminated the real copy and placed the indirdep on the saved
8075	 *    copy.  The indirdep and buf are discarded when this completes.
8076	 * 3) The indirect was not in memory, we read a copy off of the disk
8077	 *    using the devvp and drop and invalidate the buffer when we're
8078	 *    done.
8079	 */
8080	goingaway = 1;
8081	indirdep = NULL;
8082	if (freework->fw_indir != NULL) {
8083		goingaway = 0;
8084		indirdep = freework->fw_indir;
8085		bp = indirdep->ir_savebp;
8086		if (bp == NULL || bp->b_blkno != dbn)
8087			panic("indir_trunc: Bad saved buf %p blkno %jd",
8088			    bp, (intmax_t)dbn);
8089	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8090		/*
8091		 * The lock prevents the buf dep list from changing and
8092	 	 * indirects on devvp should only ever have one dependency.
8093		 */
8094		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8095		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8096			panic("indir_trunc: Bad indirdep %p from buf %p",
8097			    indirdep, bp);
8098	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8099	    NOCRED, &bp) != 0) {
8100		brelse(bp);
8101		return;
8102	}
8103	ACQUIRE_LOCK(ump);
8104	/* Protects against a race with complete_trunc_indir(). */
8105	freework->fw_state &= ~INPROGRESS;
8106	/*
8107	 * If we have an indirdep we need to enforce the truncation order
8108	 * and discard it when it is complete.
8109	 */
8110	if (indirdep) {
8111		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8112		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8113			/*
8114			 * Add the complete truncate to the list on the
8115			 * indirdep to enforce in-order processing.
8116			 */
8117			if (freework->fw_indir == NULL)
8118				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8119				    freework, fw_next);
8120			FREE_LOCK(ump);
8121			return;
8122		}
8123		/*
8124		 * If we're goingaway, free the indirdep.  Otherwise it will
8125		 * linger until the write completes.
8126		 */
8127		if (goingaway)
8128			free_indirdep(indirdep);
8129	}
8130	FREE_LOCK(ump);
8131	/* Initialize pointers depending on block size. */
8132	if (ump->um_fstype == UFS1) {
8133		bap1 = (ufs1_daddr_t *)bp->b_data;
8134		nb = bap1[freework->fw_off];
8135		ufs1fmt = 1;
8136	} else {
8137		bap2 = (ufs2_daddr_t *)bp->b_data;
8138		nb = bap2[freework->fw_off];
8139		ufs1fmt = 0;
8140	}
8141	level = lbn_level(lbn);
8142	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8143	lbnadd = lbn_offset(fs, level);
8144	nblocks = btodb(fs->fs_bsize);
8145	nfreework = freework;
8146	freedeps = 0;
8147	cnt = 0;
8148	/*
8149	 * Reclaim blocks.  Traverses into nested indirect levels and
8150	 * arranges for the current level to be freed when subordinates
8151	 * are free when journaling.
8152	 */
8153	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8154		if (i != NINDIR(fs) - 1) {
8155			if (ufs1fmt)
8156				nnb = bap1[i+1];
8157			else
8158				nnb = bap2[i+1];
8159		} else
8160			nnb = 0;
8161		if (nb == 0)
8162			continue;
8163		cnt++;
8164		if (level != 0) {
8165			nlbn = (lbn + 1) - (i * lbnadd);
8166			if (needj != 0) {
8167				nfreework = newfreework(ump, freeblks, freework,
8168				    nlbn, nb, fs->fs_frag, 0, 0);
8169				freedeps++;
8170			}
8171			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8172		} else {
8173			struct freedep *freedep;
8174
8175			/*
8176			 * Attempt to aggregate freedep dependencies for
8177			 * all blocks being released to the same CG.
8178			 */
8179			LIST_INIT(&wkhd);
8180			if (needj != 0 &&
8181			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8182				freedep = newfreedep(freework);
8183				WORKLIST_INSERT_UNLOCKED(&wkhd,
8184				    &freedep->fd_list);
8185				freedeps++;
8186			}
8187			CTR3(KTR_SUJ,
8188			    "indir_trunc: ino %d blkno %jd size %ld",
8189			    freeblks->fb_inum, nb, fs->fs_bsize);
8190			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8191			    fs->fs_bsize, freeblks->fb_inum,
8192			    freeblks->fb_vtype, &wkhd);
8193		}
8194	}
8195	if (goingaway) {
8196		bp->b_flags |= B_INVAL | B_NOCACHE;
8197		brelse(bp);
8198	}
8199	freedblocks = 0;
8200	if (level == 0)
8201		freedblocks = (nblocks * cnt);
8202	if (needj == 0)
8203		freedblocks += nblocks;
8204	freeblks_free(ump, freeblks, freedblocks);
8205	/*
8206	 * If we are journaling set up the ref counts and offset so this
8207	 * indirect can be completed when its children are free.
8208	 */
8209	if (needj) {
8210		ACQUIRE_LOCK(ump);
8211		freework->fw_off = i;
8212		freework->fw_ref += freedeps;
8213		freework->fw_ref -= NINDIR(fs) + 1;
8214		if (level == 0)
8215			freeblks->fb_cgwait += freedeps;
8216		if (freework->fw_ref == 0)
8217			freework_freeblock(freework);
8218		FREE_LOCK(ump);
8219		return;
8220	}
8221	/*
8222	 * If we're not journaling we can free the indirect now.
8223	 */
8224	dbn = dbtofsb(fs, dbn);
8225	CTR3(KTR_SUJ,
8226	    "indir_trunc 2: ino %d blkno %jd size %ld",
8227	    freeblks->fb_inum, dbn, fs->fs_bsize);
8228	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8229	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8230	/* Non SUJ softdep does single-threaded truncations. */
8231	if (freework->fw_blkno == dbn) {
8232		freework->fw_state |= ALLCOMPLETE;
8233		ACQUIRE_LOCK(ump);
8234		handle_written_freework(freework);
8235		FREE_LOCK(ump);
8236	}
8237	return;
8238}
8239
8240/*
8241 * Cancel an allocindir when it is removed via truncation.  When bp is not
8242 * NULL the indirect never appeared on disk and is scheduled to be freed
8243 * independently of the indir so we can more easily track journal work.
8244 */
8245static void
8246cancel_allocindir(aip, bp, freeblks, trunc)
8247	struct allocindir *aip;
8248	struct buf *bp;
8249	struct freeblks *freeblks;
8250	int trunc;
8251{
8252	struct indirdep *indirdep;
8253	struct freefrag *freefrag;
8254	struct newblk *newblk;
8255
8256	newblk = (struct newblk *)aip;
8257	LIST_REMOVE(aip, ai_next);
8258	/*
8259	 * We must eliminate the pointer in bp if it must be freed on its
8260	 * own due to partial truncate or pending journal work.
8261	 */
8262	if (bp && (trunc || newblk->nb_jnewblk)) {
8263		/*
8264		 * Clear the pointer and mark the aip to be freed
8265		 * directly if it never existed on disk.
8266		 */
8267		aip->ai_state |= DELAYEDFREE;
8268		indirdep = aip->ai_indirdep;
8269		if (indirdep->ir_state & UFS1FMT)
8270			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8271		else
8272			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8273	}
8274	/*
8275	 * When truncating the previous pointer will be freed via
8276	 * savedbp.  Eliminate the freefrag which would dup free.
8277	 */
8278	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8279		newblk->nb_freefrag = NULL;
8280		if (freefrag->ff_jdep)
8281			cancel_jfreefrag(
8282			    WK_JFREEFRAG(freefrag->ff_jdep));
8283		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8284		WORKITEM_FREE(freefrag, D_FREEFRAG);
8285	}
8286	/*
8287	 * If the journal hasn't been written the jnewblk must be passed
8288	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8289	 * this by leaving the journal dependency on the newblk to be freed
8290	 * when a freework is created in handle_workitem_freeblocks().
8291	 */
8292	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8293	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8294}
8295
8296/*
8297 * Create the mkdir dependencies for . and .. in a new directory.  Link them
8298 * in to a newdirblk so any subsequent additions are tracked properly.  The
8299 * caller is responsible for adding the mkdir1 dependency to the journal
8300 * and updating id_mkdiradd.  This function returns with the per-filesystem
8301 * lock held.
8302 */
8303static struct mkdir *
8304setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8305	struct diradd *dap;
8306	ino_t newinum;
8307	ino_t dinum;
8308	struct buf *newdirbp;
8309	struct mkdir **mkdirp;
8310{
8311	struct newblk *newblk;
8312	struct pagedep *pagedep;
8313	struct inodedep *inodedep;
8314	struct newdirblk *newdirblk = 0;
8315	struct mkdir *mkdir1, *mkdir2;
8316	struct worklist *wk;
8317	struct jaddref *jaddref;
8318	struct ufsmount *ump;
8319	struct mount *mp;
8320
8321	mp = dap->da_list.wk_mp;
8322	ump = VFSTOUFS(mp);
8323	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8324	    M_SOFTDEP_FLAGS);
8325	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8326	LIST_INIT(&newdirblk->db_mkdir);
8327	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8328	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8329	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8330	mkdir1->md_diradd = dap;
8331	mkdir1->md_jaddref = NULL;
8332	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8333	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8334	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8335	mkdir2->md_diradd = dap;
8336	mkdir2->md_jaddref = NULL;
8337	if (MOUNTEDSUJ(mp) == 0) {
8338		mkdir1->md_state |= DEPCOMPLETE;
8339		mkdir2->md_state |= DEPCOMPLETE;
8340	}
8341	/*
8342	 * Dependency on "." and ".." being written to disk.
8343	 */
8344	mkdir1->md_buf = newdirbp;
8345	ACQUIRE_LOCK(VFSTOUFS(mp));
8346	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8347	/*
8348	 * We must link the pagedep, allocdirect, and newdirblk for
8349	 * the initial file page so the pointer to the new directory
8350	 * is not written until the directory contents are live and
8351	 * any subsequent additions are not marked live until the
8352	 * block is reachable via the inode.
8353	 */
8354	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8355		panic("setup_newdir: lost pagedep");
8356	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8357		if (wk->wk_type == D_ALLOCDIRECT)
8358			break;
8359	if (wk == NULL)
8360		panic("setup_newdir: lost allocdirect");
8361	if (pagedep->pd_state & NEWBLOCK)
8362		panic("setup_newdir: NEWBLOCK already set");
8363	newblk = WK_NEWBLK(wk);
8364	pagedep->pd_state |= NEWBLOCK;
8365	pagedep->pd_newdirblk = newdirblk;
8366	newdirblk->db_pagedep = pagedep;
8367	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8368	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8369	/*
8370	 * Look up the inodedep for the parent directory so that we
8371	 * can link mkdir2 into the pending dotdot jaddref or
8372	 * the inode write if there is none.  If the inode is
8373	 * ALLCOMPLETE and no jaddref is present all dependencies have
8374	 * been satisfied and mkdir2 can be freed.
8375	 */
8376	inodedep_lookup(mp, dinum, 0, &inodedep);
8377	if (MOUNTEDSUJ(mp)) {
8378		if (inodedep == NULL)
8379			panic("setup_newdir: Lost parent.");
8380		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8381		    inoreflst);
8382		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8383		    (jaddref->ja_state & MKDIR_PARENT),
8384		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8385		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8386		mkdir2->md_jaddref = jaddref;
8387		jaddref->ja_mkdir = mkdir2;
8388	} else if (inodedep == NULL ||
8389	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8390		dap->da_state &= ~MKDIR_PARENT;
8391		WORKITEM_FREE(mkdir2, D_MKDIR);
8392		mkdir2 = NULL;
8393	} else {
8394		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8395		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8396	}
8397	*mkdirp = mkdir2;
8398
8399	return (mkdir1);
8400}
8401
8402/*
8403 * Directory entry addition dependencies.
8404 *
8405 * When adding a new directory entry, the inode (with its incremented link
8406 * count) must be written to disk before the directory entry's pointer to it.
8407 * Also, if the inode is newly allocated, the corresponding freemap must be
8408 * updated (on disk) before the directory entry's pointer. These requirements
8409 * are met via undo/redo on the directory entry's pointer, which consists
8410 * simply of the inode number.
8411 *
8412 * As directory entries are added and deleted, the free space within a
8413 * directory block can become fragmented.  The ufs filesystem will compact
8414 * a fragmented directory block to make space for a new entry. When this
8415 * occurs, the offsets of previously added entries change. Any "diradd"
8416 * dependency structures corresponding to these entries must be updated with
8417 * the new offsets.
8418 */
8419
8420/*
8421 * This routine is called after the in-memory inode's link
8422 * count has been incremented, but before the directory entry's
8423 * pointer to the inode has been set.
8424 */
8425int
8426softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8427	struct buf *bp;		/* buffer containing directory block */
8428	struct inode *dp;	/* inode for directory */
8429	off_t diroffset;	/* offset of new entry in directory */
8430	ino_t newinum;		/* inode referenced by new directory entry */
8431	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8432	int isnewblk;		/* entry is in a newly allocated block */
8433{
8434	int offset;		/* offset of new entry within directory block */
8435	ufs_lbn_t lbn;		/* block in directory containing new entry */
8436	struct fs *fs;
8437	struct diradd *dap;
8438	struct newblk *newblk;
8439	struct pagedep *pagedep;
8440	struct inodedep *inodedep;
8441	struct newdirblk *newdirblk = 0;
8442	struct mkdir *mkdir1, *mkdir2;
8443	struct jaddref *jaddref;
8444	struct ufsmount *ump;
8445	struct mount *mp;
8446	int isindir;
8447
8448	ump = dp->i_ump;
8449	mp = UFSTOVFS(ump);
8450	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8451	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8452	/*
8453	 * Whiteouts have no dependencies.
8454	 */
8455	if (newinum == WINO) {
8456		if (newdirbp != NULL)
8457			bdwrite(newdirbp);
8458		return (0);
8459	}
8460	jaddref = NULL;
8461	mkdir1 = mkdir2 = NULL;
8462	fs = dp->i_fs;
8463	lbn = lblkno(fs, diroffset);
8464	offset = blkoff(fs, diroffset);
8465	dap = malloc(sizeof(struct diradd), M_DIRADD,
8466		M_SOFTDEP_FLAGS|M_ZERO);
8467	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8468	dap->da_offset = offset;
8469	dap->da_newinum = newinum;
8470	dap->da_state = ATTACHED;
8471	LIST_INIT(&dap->da_jwork);
8472	isindir = bp->b_lblkno >= NDADDR;
8473	if (isnewblk &&
8474	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8475		newdirblk = malloc(sizeof(struct newdirblk),
8476		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8477		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8478		LIST_INIT(&newdirblk->db_mkdir);
8479	}
8480	/*
8481	 * If we're creating a new directory setup the dependencies and set
8482	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8483	 * we can move on.
8484	 */
8485	if (newdirbp == NULL) {
8486		dap->da_state |= DEPCOMPLETE;
8487		ACQUIRE_LOCK(ump);
8488	} else {
8489		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8490		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8491		    &mkdir2);
8492	}
8493	/*
8494	 * Link into parent directory pagedep to await its being written.
8495	 */
8496	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8497#ifdef DEBUG
8498	if (diradd_lookup(pagedep, offset) != NULL)
8499		panic("softdep_setup_directory_add: %p already at off %d\n",
8500		    diradd_lookup(pagedep, offset), offset);
8501#endif
8502	dap->da_pagedep = pagedep;
8503	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8504	    da_pdlist);
8505	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8506	/*
8507	 * If we're journaling, link the diradd into the jaddref so it
8508	 * may be completed after the journal entry is written.  Otherwise,
8509	 * link the diradd into its inodedep.  If the inode is not yet
8510	 * written place it on the bufwait list, otherwise do the post-inode
8511	 * write processing to put it on the id_pendinghd list.
8512	 */
8513	if (MOUNTEDSUJ(mp)) {
8514		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8515		    inoreflst);
8516		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8517		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8518		jaddref->ja_diroff = diroffset;
8519		jaddref->ja_diradd = dap;
8520		add_to_journal(&jaddref->ja_list);
8521	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8522		diradd_inode_written(dap, inodedep);
8523	else
8524		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8525	/*
8526	 * Add the journal entries for . and .. links now that the primary
8527	 * link is written.
8528	 */
8529	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8530		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8531		    inoreflst, if_deps);
8532		KASSERT(jaddref != NULL &&
8533		    jaddref->ja_ino == jaddref->ja_parent &&
8534		    (jaddref->ja_state & MKDIR_BODY),
8535		    ("softdep_setup_directory_add: bad dot jaddref %p",
8536		    jaddref));
8537		mkdir1->md_jaddref = jaddref;
8538		jaddref->ja_mkdir = mkdir1;
8539		/*
8540		 * It is important that the dotdot journal entry
8541		 * is added prior to the dot entry since dot writes
8542		 * both the dot and dotdot links.  These both must
8543		 * be added after the primary link for the journal
8544		 * to remain consistent.
8545		 */
8546		add_to_journal(&mkdir2->md_jaddref->ja_list);
8547		add_to_journal(&jaddref->ja_list);
8548	}
8549	/*
8550	 * If we are adding a new directory remember this diradd so that if
8551	 * we rename it we can keep the dot and dotdot dependencies.  If
8552	 * we are adding a new name for an inode that has a mkdiradd we
8553	 * must be in rename and we have to move the dot and dotdot
8554	 * dependencies to this new name.  The old name is being orphaned
8555	 * soon.
8556	 */
8557	if (mkdir1 != NULL) {
8558		if (inodedep->id_mkdiradd != NULL)
8559			panic("softdep_setup_directory_add: Existing mkdir");
8560		inodedep->id_mkdiradd = dap;
8561	} else if (inodedep->id_mkdiradd)
8562		merge_diradd(inodedep, dap);
8563	if (newdirblk) {
8564		/*
8565		 * There is nothing to do if we are already tracking
8566		 * this block.
8567		 */
8568		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8569			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8570			FREE_LOCK(ump);
8571			return (0);
8572		}
8573		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8574		    == 0)
8575			panic("softdep_setup_directory_add: lost entry");
8576		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8577		pagedep->pd_state |= NEWBLOCK;
8578		pagedep->pd_newdirblk = newdirblk;
8579		newdirblk->db_pagedep = pagedep;
8580		FREE_LOCK(ump);
8581		/*
8582		 * If we extended into an indirect signal direnter to sync.
8583		 */
8584		if (isindir)
8585			return (1);
8586		return (0);
8587	}
8588	FREE_LOCK(ump);
8589	return (0);
8590}
8591
8592/*
8593 * This procedure is called to change the offset of a directory
8594 * entry when compacting a directory block which must be owned
8595 * exclusively by the caller. Note that the actual entry movement
8596 * must be done in this procedure to ensure that no I/O completions
8597 * occur while the move is in progress.
8598 */
8599void
8600softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8601	struct buf *bp;		/* Buffer holding directory block. */
8602	struct inode *dp;	/* inode for directory */
8603	caddr_t base;		/* address of dp->i_offset */
8604	caddr_t oldloc;		/* address of old directory location */
8605	caddr_t newloc;		/* address of new directory location */
8606	int entrysize;		/* size of directory entry */
8607{
8608	int offset, oldoffset, newoffset;
8609	struct pagedep *pagedep;
8610	struct jmvref *jmvref;
8611	struct diradd *dap;
8612	struct direct *de;
8613	struct mount *mp;
8614	ufs_lbn_t lbn;
8615	int flags;
8616
8617	mp = UFSTOVFS(dp->i_ump);
8618	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8619	    ("softdep_change_directoryentry_offset called on "
8620	     "non-softdep filesystem"));
8621	de = (struct direct *)oldloc;
8622	jmvref = NULL;
8623	flags = 0;
8624	/*
8625	 * Moves are always journaled as it would be too complex to
8626	 * determine if any affected adds or removes are present in the
8627	 * journal.
8628	 */
8629	if (MOUNTEDSUJ(mp)) {
8630		flags = DEPALLOC;
8631		jmvref = newjmvref(dp, de->d_ino,
8632		    dp->i_offset + (oldloc - base),
8633		    dp->i_offset + (newloc - base));
8634	}
8635	lbn = lblkno(dp->i_fs, dp->i_offset);
8636	offset = blkoff(dp->i_fs, dp->i_offset);
8637	oldoffset = offset + (oldloc - base);
8638	newoffset = offset + (newloc - base);
8639	ACQUIRE_LOCK(dp->i_ump);
8640	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8641		goto done;
8642	dap = diradd_lookup(pagedep, oldoffset);
8643	if (dap) {
8644		dap->da_offset = newoffset;
8645		newoffset = DIRADDHASH(newoffset);
8646		oldoffset = DIRADDHASH(oldoffset);
8647		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8648		    newoffset != oldoffset) {
8649			LIST_REMOVE(dap, da_pdlist);
8650			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8651			    dap, da_pdlist);
8652		}
8653	}
8654done:
8655	if (jmvref) {
8656		jmvref->jm_pagedep = pagedep;
8657		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8658		add_to_journal(&jmvref->jm_list);
8659	}
8660	bcopy(oldloc, newloc, entrysize);
8661	FREE_LOCK(dp->i_ump);
8662}
8663
8664/*
8665 * Move the mkdir dependencies and journal work from one diradd to another
8666 * when renaming a directory.  The new name must depend on the mkdir deps
8667 * completing as the old name did.  Directories can only have one valid link
8668 * at a time so one must be canonical.
8669 */
8670static void
8671merge_diradd(inodedep, newdap)
8672	struct inodedep *inodedep;
8673	struct diradd *newdap;
8674{
8675	struct diradd *olddap;
8676	struct mkdir *mkdir, *nextmd;
8677	struct ufsmount *ump;
8678	short state;
8679
8680	olddap = inodedep->id_mkdiradd;
8681	inodedep->id_mkdiradd = newdap;
8682	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8683		newdap->da_state &= ~DEPCOMPLETE;
8684		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8685		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8686		     mkdir = nextmd) {
8687			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8688			if (mkdir->md_diradd != olddap)
8689				continue;
8690			mkdir->md_diradd = newdap;
8691			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8692			newdap->da_state |= state;
8693			olddap->da_state &= ~state;
8694			if ((olddap->da_state &
8695			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8696				break;
8697		}
8698		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8699			panic("merge_diradd: unfound ref");
8700	}
8701	/*
8702	 * Any mkdir related journal items are not safe to be freed until
8703	 * the new name is stable.
8704	 */
8705	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8706	olddap->da_state |= DEPCOMPLETE;
8707	complete_diradd(olddap);
8708}
8709
8710/*
8711 * Move the diradd to the pending list when all diradd dependencies are
8712 * complete.
8713 */
8714static void
8715complete_diradd(dap)
8716	struct diradd *dap;
8717{
8718	struct pagedep *pagedep;
8719
8720	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8721		if (dap->da_state & DIRCHG)
8722			pagedep = dap->da_previous->dm_pagedep;
8723		else
8724			pagedep = dap->da_pagedep;
8725		LIST_REMOVE(dap, da_pdlist);
8726		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8727	}
8728}
8729
8730/*
8731 * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8732 * add entries and conditonally journal the remove.
8733 */
8734static void
8735cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8736	struct diradd *dap;
8737	struct dirrem *dirrem;
8738	struct jremref *jremref;
8739	struct jremref *dotremref;
8740	struct jremref *dotdotremref;
8741{
8742	struct inodedep *inodedep;
8743	struct jaddref *jaddref;
8744	struct inoref *inoref;
8745	struct ufsmount *ump;
8746	struct mkdir *mkdir;
8747
8748	/*
8749	 * If no remove references were allocated we're on a non-journaled
8750	 * filesystem and can skip the cancel step.
8751	 */
8752	if (jremref == NULL) {
8753		free_diradd(dap, NULL);
8754		return;
8755	}
8756	/*
8757	 * Cancel the primary name an free it if it does not require
8758	 * journaling.
8759	 */
8760	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8761	    0, &inodedep) != 0) {
8762		/* Abort the addref that reference this diradd.  */
8763		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8764			if (inoref->if_list.wk_type != D_JADDREF)
8765				continue;
8766			jaddref = (struct jaddref *)inoref;
8767			if (jaddref->ja_diradd != dap)
8768				continue;
8769			if (cancel_jaddref(jaddref, inodedep,
8770			    &dirrem->dm_jwork) == 0) {
8771				free_jremref(jremref);
8772				jremref = NULL;
8773			}
8774			break;
8775		}
8776	}
8777	/*
8778	 * Cancel subordinate names and free them if they do not require
8779	 * journaling.
8780	 */
8781	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8782		ump = VFSTOUFS(dap->da_list.wk_mp);
8783		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8784			if (mkdir->md_diradd != dap)
8785				continue;
8786			if ((jaddref = mkdir->md_jaddref) == NULL)
8787				continue;
8788			mkdir->md_jaddref = NULL;
8789			if (mkdir->md_state & MKDIR_PARENT) {
8790				if (cancel_jaddref(jaddref, NULL,
8791				    &dirrem->dm_jwork) == 0) {
8792					free_jremref(dotdotremref);
8793					dotdotremref = NULL;
8794				}
8795			} else {
8796				if (cancel_jaddref(jaddref, inodedep,
8797				    &dirrem->dm_jwork) == 0) {
8798					free_jremref(dotremref);
8799					dotremref = NULL;
8800				}
8801			}
8802		}
8803	}
8804
8805	if (jremref)
8806		journal_jremref(dirrem, jremref, inodedep);
8807	if (dotremref)
8808		journal_jremref(dirrem, dotremref, inodedep);
8809	if (dotdotremref)
8810		journal_jremref(dirrem, dotdotremref, NULL);
8811	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8812	free_diradd(dap, &dirrem->dm_jwork);
8813}
8814
8815/*
8816 * Free a diradd dependency structure. This routine must be called
8817 * with splbio interrupts blocked.
8818 */
8819static void
8820free_diradd(dap, wkhd)
8821	struct diradd *dap;
8822	struct workhead *wkhd;
8823{
8824	struct dirrem *dirrem;
8825	struct pagedep *pagedep;
8826	struct inodedep *inodedep;
8827	struct mkdir *mkdir, *nextmd;
8828	struct ufsmount *ump;
8829
8830	ump = VFSTOUFS(dap->da_list.wk_mp);
8831	LOCK_OWNED(ump);
8832	LIST_REMOVE(dap, da_pdlist);
8833	if (dap->da_state & ONWORKLIST)
8834		WORKLIST_REMOVE(&dap->da_list);
8835	if ((dap->da_state & DIRCHG) == 0) {
8836		pagedep = dap->da_pagedep;
8837	} else {
8838		dirrem = dap->da_previous;
8839		pagedep = dirrem->dm_pagedep;
8840		dirrem->dm_dirinum = pagedep->pd_ino;
8841		dirrem->dm_state |= COMPLETE;
8842		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8843			add_to_worklist(&dirrem->dm_list, 0);
8844	}
8845	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8846	    0, &inodedep) != 0)
8847		if (inodedep->id_mkdiradd == dap)
8848			inodedep->id_mkdiradd = NULL;
8849	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8850		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8851		     mkdir = nextmd) {
8852			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8853			if (mkdir->md_diradd != dap)
8854				continue;
8855			dap->da_state &=
8856			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8857			LIST_REMOVE(mkdir, md_mkdirs);
8858			if (mkdir->md_state & ONWORKLIST)
8859				WORKLIST_REMOVE(&mkdir->md_list);
8860			if (mkdir->md_jaddref != NULL)
8861				panic("free_diradd: Unexpected jaddref");
8862			WORKITEM_FREE(mkdir, D_MKDIR);
8863			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8864				break;
8865		}
8866		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8867			panic("free_diradd: unfound ref");
8868	}
8869	if (inodedep)
8870		free_inodedep(inodedep);
8871	/*
8872	 * Free any journal segments waiting for the directory write.
8873	 */
8874	handle_jwork(&dap->da_jwork);
8875	WORKITEM_FREE(dap, D_DIRADD);
8876}
8877
8878/*
8879 * Directory entry removal dependencies.
8880 *
8881 * When removing a directory entry, the entry's inode pointer must be
8882 * zero'ed on disk before the corresponding inode's link count is decremented
8883 * (possibly freeing the inode for re-use). This dependency is handled by
8884 * updating the directory entry but delaying the inode count reduction until
8885 * after the directory block has been written to disk. After this point, the
8886 * inode count can be decremented whenever it is convenient.
8887 */
8888
8889/*
8890 * This routine should be called immediately after removing
8891 * a directory entry.  The inode's link count should not be
8892 * decremented by the calling procedure -- the soft updates
8893 * code will do this task when it is safe.
8894 */
8895void
8896softdep_setup_remove(bp, dp, ip, isrmdir)
8897	struct buf *bp;		/* buffer containing directory block */
8898	struct inode *dp;	/* inode for the directory being modified */
8899	struct inode *ip;	/* inode for directory entry being removed */
8900	int isrmdir;		/* indicates if doing RMDIR */
8901{
8902	struct dirrem *dirrem, *prevdirrem;
8903	struct inodedep *inodedep;
8904	int direct;
8905
8906	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
8907	    ("softdep_setup_remove called on non-softdep filesystem"));
8908	/*
8909	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8910	 * newdirrem() to setup the full directory remove which requires
8911	 * isrmdir > 1.
8912	 */
8913	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8914	/*
8915	 * Add the dirrem to the inodedep's pending remove list for quick
8916	 * discovery later.
8917	 */
8918	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8919	    &inodedep) == 0)
8920		panic("softdep_setup_remove: Lost inodedep.");
8921	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8922	dirrem->dm_state |= ONDEPLIST;
8923	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8924
8925	/*
8926	 * If the COMPLETE flag is clear, then there were no active
8927	 * entries and we want to roll back to a zeroed entry until
8928	 * the new inode is committed to disk. If the COMPLETE flag is
8929	 * set then we have deleted an entry that never made it to
8930	 * disk. If the entry we deleted resulted from a name change,
8931	 * then the old name still resides on disk. We cannot delete
8932	 * its inode (returned to us in prevdirrem) until the zeroed
8933	 * directory entry gets to disk. The new inode has never been
8934	 * referenced on the disk, so can be deleted immediately.
8935	 */
8936	if ((dirrem->dm_state & COMPLETE) == 0) {
8937		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8938		    dm_next);
8939		FREE_LOCK(ip->i_ump);
8940	} else {
8941		if (prevdirrem != NULL)
8942			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8943			    prevdirrem, dm_next);
8944		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8945		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8946		FREE_LOCK(ip->i_ump);
8947		if (direct)
8948			handle_workitem_remove(dirrem, 0);
8949	}
8950}
8951
8952/*
8953 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8954 * pd_pendinghd list of a pagedep.
8955 */
8956static struct diradd *
8957diradd_lookup(pagedep, offset)
8958	struct pagedep *pagedep;
8959	int offset;
8960{
8961	struct diradd *dap;
8962
8963	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8964		if (dap->da_offset == offset)
8965			return (dap);
8966	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8967		if (dap->da_offset == offset)
8968			return (dap);
8969	return (NULL);
8970}
8971
8972/*
8973 * Search for a .. diradd dependency in a directory that is being removed.
8974 * If the directory was renamed to a new parent we have a diradd rather
8975 * than a mkdir for the .. entry.  We need to cancel it now before
8976 * it is found in truncate().
8977 */
8978static struct jremref *
8979cancel_diradd_dotdot(ip, dirrem, jremref)
8980	struct inode *ip;
8981	struct dirrem *dirrem;
8982	struct jremref *jremref;
8983{
8984	struct pagedep *pagedep;
8985	struct diradd *dap;
8986	struct worklist *wk;
8987
8988	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8989	    &pagedep) == 0)
8990		return (jremref);
8991	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8992	if (dap == NULL)
8993		return (jremref);
8994	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8995	/*
8996	 * Mark any journal work as belonging to the parent so it is freed
8997	 * with the .. reference.
8998	 */
8999	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9000		wk->wk_state |= MKDIR_PARENT;
9001	return (NULL);
9002}
9003
9004/*
9005 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9006 * replace it with a dirrem/diradd pair as a result of re-parenting a
9007 * directory.  This ensures that we don't simultaneously have a mkdir and
9008 * a diradd for the same .. entry.
9009 */
9010static struct jremref *
9011cancel_mkdir_dotdot(ip, dirrem, jremref)
9012	struct inode *ip;
9013	struct dirrem *dirrem;
9014	struct jremref *jremref;
9015{
9016	struct inodedep *inodedep;
9017	struct jaddref *jaddref;
9018	struct ufsmount *ump;
9019	struct mkdir *mkdir;
9020	struct diradd *dap;
9021
9022	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
9023	    &inodedep) == 0)
9024		return (jremref);
9025	dap = inodedep->id_mkdiradd;
9026	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9027		return (jremref);
9028	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9029	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9030	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9031		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9032			break;
9033	if (mkdir == NULL)
9034		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9035	if ((jaddref = mkdir->md_jaddref) != NULL) {
9036		mkdir->md_jaddref = NULL;
9037		jaddref->ja_state &= ~MKDIR_PARENT;
9038		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
9039		    &inodedep) == 0)
9040			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9041		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9042			journal_jremref(dirrem, jremref, inodedep);
9043			jremref = NULL;
9044		}
9045	}
9046	if (mkdir->md_state & ONWORKLIST)
9047		WORKLIST_REMOVE(&mkdir->md_list);
9048	mkdir->md_state |= ALLCOMPLETE;
9049	complete_mkdir(mkdir);
9050	return (jremref);
9051}
9052
9053static void
9054journal_jremref(dirrem, jremref, inodedep)
9055	struct dirrem *dirrem;
9056	struct jremref *jremref;
9057	struct inodedep *inodedep;
9058{
9059
9060	if (inodedep == NULL)
9061		if (inodedep_lookup(jremref->jr_list.wk_mp,
9062		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9063			panic("journal_jremref: Lost inodedep");
9064	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9065	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9066	add_to_journal(&jremref->jr_list);
9067}
9068
9069static void
9070dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9071	struct dirrem *dirrem;
9072	struct jremref *jremref;
9073	struct jremref *dotremref;
9074	struct jremref *dotdotremref;
9075{
9076	struct inodedep *inodedep;
9077
9078
9079	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9080	    &inodedep) == 0)
9081		panic("dirrem_journal: Lost inodedep");
9082	journal_jremref(dirrem, jremref, inodedep);
9083	if (dotremref)
9084		journal_jremref(dirrem, dotremref, inodedep);
9085	if (dotdotremref)
9086		journal_jremref(dirrem, dotdotremref, NULL);
9087}
9088
9089/*
9090 * Allocate a new dirrem if appropriate and return it along with
9091 * its associated pagedep. Called without a lock, returns with lock.
9092 */
9093static struct dirrem *
9094newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9095	struct buf *bp;		/* buffer containing directory block */
9096	struct inode *dp;	/* inode for the directory being modified */
9097	struct inode *ip;	/* inode for directory entry being removed */
9098	int isrmdir;		/* indicates if doing RMDIR */
9099	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9100{
9101	int offset;
9102	ufs_lbn_t lbn;
9103	struct diradd *dap;
9104	struct dirrem *dirrem;
9105	struct pagedep *pagedep;
9106	struct jremref *jremref;
9107	struct jremref *dotremref;
9108	struct jremref *dotdotremref;
9109	struct vnode *dvp;
9110
9111	/*
9112	 * Whiteouts have no deletion dependencies.
9113	 */
9114	if (ip == NULL)
9115		panic("newdirrem: whiteout");
9116	dvp = ITOV(dp);
9117	/*
9118	 * If the system is over its limit and our filesystem is
9119	 * responsible for more than our share of that usage and
9120	 * we are not a snapshot, request some inodedep cleanup.
9121	 * Limiting the number of dirrem structures will also limit
9122	 * the number of freefile and freeblks structures.
9123	 */
9124	ACQUIRE_LOCK(ip->i_ump);
9125	while (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2 &&
9126	    ip->i_ump->softdep_curdeps[D_DIRREM] >
9127	    (max_softdeps / 2) / stat_flush_threads)
9128		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
9129	FREE_LOCK(ip->i_ump);
9130	dirrem = malloc(sizeof(struct dirrem),
9131		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
9132	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9133	LIST_INIT(&dirrem->dm_jremrefhd);
9134	LIST_INIT(&dirrem->dm_jwork);
9135	dirrem->dm_state = isrmdir ? RMDIR : 0;
9136	dirrem->dm_oldinum = ip->i_number;
9137	*prevdirremp = NULL;
9138	/*
9139	 * Allocate remove reference structures to track journal write
9140	 * dependencies.  We will always have one for the link and
9141	 * when doing directories we will always have one more for dot.
9142	 * When renaming a directory we skip the dotdot link change so
9143	 * this is not needed.
9144	 */
9145	jremref = dotremref = dotdotremref = NULL;
9146	if (DOINGSUJ(dvp)) {
9147		if (isrmdir) {
9148			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9149			    ip->i_effnlink + 2);
9150			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9151			    ip->i_effnlink + 1);
9152			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9153			    dp->i_effnlink + 1);
9154			dotdotremref->jr_state |= MKDIR_PARENT;
9155		} else
9156			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9157			    ip->i_effnlink + 1);
9158	}
9159	ACQUIRE_LOCK(ip->i_ump);
9160	lbn = lblkno(dp->i_fs, dp->i_offset);
9161	offset = blkoff(dp->i_fs, dp->i_offset);
9162	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
9163	    &pagedep);
9164	dirrem->dm_pagedep = pagedep;
9165	dirrem->dm_offset = offset;
9166	/*
9167	 * If we're renaming a .. link to a new directory, cancel any
9168	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9169	 * the jremref is preserved for any potential diradd in this
9170	 * location.  This can not coincide with a rmdir.
9171	 */
9172	if (dp->i_offset == DOTDOT_OFFSET) {
9173		if (isrmdir)
9174			panic("newdirrem: .. directory change during remove?");
9175		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9176	}
9177	/*
9178	 * If we're removing a directory search for the .. dependency now and
9179	 * cancel it.  Any pending journal work will be added to the dirrem
9180	 * to be completed when the workitem remove completes.
9181	 */
9182	if (isrmdir)
9183		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9184	/*
9185	 * Check for a diradd dependency for the same directory entry.
9186	 * If present, then both dependencies become obsolete and can
9187	 * be de-allocated.
9188	 */
9189	dap = diradd_lookup(pagedep, offset);
9190	if (dap == NULL) {
9191		/*
9192		 * Link the jremref structures into the dirrem so they are
9193		 * written prior to the pagedep.
9194		 */
9195		if (jremref)
9196			dirrem_journal(dirrem, jremref, dotremref,
9197			    dotdotremref);
9198		return (dirrem);
9199	}
9200	/*
9201	 * Must be ATTACHED at this point.
9202	 */
9203	if ((dap->da_state & ATTACHED) == 0)
9204		panic("newdirrem: not ATTACHED");
9205	if (dap->da_newinum != ip->i_number)
9206		panic("newdirrem: inum %ju should be %ju",
9207		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9208	/*
9209	 * If we are deleting a changed name that never made it to disk,
9210	 * then return the dirrem describing the previous inode (which
9211	 * represents the inode currently referenced from this entry on disk).
9212	 */
9213	if ((dap->da_state & DIRCHG) != 0) {
9214		*prevdirremp = dap->da_previous;
9215		dap->da_state &= ~DIRCHG;
9216		dap->da_pagedep = pagedep;
9217	}
9218	/*
9219	 * We are deleting an entry that never made it to disk.
9220	 * Mark it COMPLETE so we can delete its inode immediately.
9221	 */
9222	dirrem->dm_state |= COMPLETE;
9223	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9224#ifdef SUJ_DEBUG
9225	if (isrmdir == 0) {
9226		struct worklist *wk;
9227
9228		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9229			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9230				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9231	}
9232#endif
9233
9234	return (dirrem);
9235}
9236
9237/*
9238 * Directory entry change dependencies.
9239 *
9240 * Changing an existing directory entry requires that an add operation
9241 * be completed first followed by a deletion. The semantics for the addition
9242 * are identical to the description of adding a new entry above except
9243 * that the rollback is to the old inode number rather than zero. Once
9244 * the addition dependency is completed, the removal is done as described
9245 * in the removal routine above.
9246 */
9247
9248/*
9249 * This routine should be called immediately after changing
9250 * a directory entry.  The inode's link count should not be
9251 * decremented by the calling procedure -- the soft updates
9252 * code will perform this task when it is safe.
9253 */
9254void
9255softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9256	struct buf *bp;		/* buffer containing directory block */
9257	struct inode *dp;	/* inode for the directory being modified */
9258	struct inode *ip;	/* inode for directory entry being removed */
9259	ino_t newinum;		/* new inode number for changed entry */
9260	int isrmdir;		/* indicates if doing RMDIR */
9261{
9262	int offset;
9263	struct diradd *dap = NULL;
9264	struct dirrem *dirrem, *prevdirrem;
9265	struct pagedep *pagedep;
9266	struct inodedep *inodedep;
9267	struct jaddref *jaddref;
9268	struct mount *mp;
9269
9270	offset = blkoff(dp->i_fs, dp->i_offset);
9271	mp = UFSTOVFS(dp->i_ump);
9272	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9273	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9274
9275	/*
9276	 * Whiteouts do not need diradd dependencies.
9277	 */
9278	if (newinum != WINO) {
9279		dap = malloc(sizeof(struct diradd),
9280		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9281		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9282		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9283		dap->da_offset = offset;
9284		dap->da_newinum = newinum;
9285		LIST_INIT(&dap->da_jwork);
9286	}
9287
9288	/*
9289	 * Allocate a new dirrem and ACQUIRE_LOCK.
9290	 */
9291	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9292	pagedep = dirrem->dm_pagedep;
9293	/*
9294	 * The possible values for isrmdir:
9295	 *	0 - non-directory file rename
9296	 *	1 - directory rename within same directory
9297	 *   inum - directory rename to new directory of given inode number
9298	 * When renaming to a new directory, we are both deleting and
9299	 * creating a new directory entry, so the link count on the new
9300	 * directory should not change. Thus we do not need the followup
9301	 * dirrem which is usually done in handle_workitem_remove. We set
9302	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9303	 * followup dirrem.
9304	 */
9305	if (isrmdir > 1)
9306		dirrem->dm_state |= DIRCHG;
9307
9308	/*
9309	 * Whiteouts have no additional dependencies,
9310	 * so just put the dirrem on the correct list.
9311	 */
9312	if (newinum == WINO) {
9313		if ((dirrem->dm_state & COMPLETE) == 0) {
9314			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9315			    dm_next);
9316		} else {
9317			dirrem->dm_dirinum = pagedep->pd_ino;
9318			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9319				add_to_worklist(&dirrem->dm_list, 0);
9320		}
9321		FREE_LOCK(dp->i_ump);
9322		return;
9323	}
9324	/*
9325	 * Add the dirrem to the inodedep's pending remove list for quick
9326	 * discovery later.  A valid nlinkdelta ensures that this lookup
9327	 * will not fail.
9328	 */
9329	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9330		panic("softdep_setup_directory_change: Lost inodedep.");
9331	dirrem->dm_state |= ONDEPLIST;
9332	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9333
9334	/*
9335	 * If the COMPLETE flag is clear, then there were no active
9336	 * entries and we want to roll back to the previous inode until
9337	 * the new inode is committed to disk. If the COMPLETE flag is
9338	 * set, then we have deleted an entry that never made it to disk.
9339	 * If the entry we deleted resulted from a name change, then the old
9340	 * inode reference still resides on disk. Any rollback that we do
9341	 * needs to be to that old inode (returned to us in prevdirrem). If
9342	 * the entry we deleted resulted from a create, then there is
9343	 * no entry on the disk, so we want to roll back to zero rather
9344	 * than the uncommitted inode. In either of the COMPLETE cases we
9345	 * want to immediately free the unwritten and unreferenced inode.
9346	 */
9347	if ((dirrem->dm_state & COMPLETE) == 0) {
9348		dap->da_previous = dirrem;
9349	} else {
9350		if (prevdirrem != NULL) {
9351			dap->da_previous = prevdirrem;
9352		} else {
9353			dap->da_state &= ~DIRCHG;
9354			dap->da_pagedep = pagedep;
9355		}
9356		dirrem->dm_dirinum = pagedep->pd_ino;
9357		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9358			add_to_worklist(&dirrem->dm_list, 0);
9359	}
9360	/*
9361	 * Lookup the jaddref for this journal entry.  We must finish
9362	 * initializing it and make the diradd write dependent on it.
9363	 * If we're not journaling, put it on the id_bufwait list if the
9364	 * inode is not yet written. If it is written, do the post-inode
9365	 * write processing to put it on the id_pendinghd list.
9366	 */
9367	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9368	if (MOUNTEDSUJ(mp)) {
9369		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9370		    inoreflst);
9371		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9372		    ("softdep_setup_directory_change: bad jaddref %p",
9373		    jaddref));
9374		jaddref->ja_diroff = dp->i_offset;
9375		jaddref->ja_diradd = dap;
9376		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9377		    dap, da_pdlist);
9378		add_to_journal(&jaddref->ja_list);
9379	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9380		dap->da_state |= COMPLETE;
9381		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9382		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9383	} else {
9384		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9385		    dap, da_pdlist);
9386		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9387	}
9388	/*
9389	 * If we're making a new name for a directory that has not been
9390	 * committed when need to move the dot and dotdot references to
9391	 * this new name.
9392	 */
9393	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9394		merge_diradd(inodedep, dap);
9395	FREE_LOCK(dp->i_ump);
9396}
9397
9398/*
9399 * Called whenever the link count on an inode is changed.
9400 * It creates an inode dependency so that the new reference(s)
9401 * to the inode cannot be committed to disk until the updated
9402 * inode has been written.
9403 */
9404void
9405softdep_change_linkcnt(ip)
9406	struct inode *ip;	/* the inode with the increased link count */
9407{
9408	struct inodedep *inodedep;
9409	int dflags;
9410
9411	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
9412	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9413	ACQUIRE_LOCK(ip->i_ump);
9414	dflags = DEPALLOC;
9415	if (IS_SNAPSHOT(ip))
9416		dflags |= NODELAY;
9417	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9418	if (ip->i_nlink < ip->i_effnlink)
9419		panic("softdep_change_linkcnt: bad delta");
9420	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9421	FREE_LOCK(ip->i_ump);
9422}
9423
9424/*
9425 * Attach a sbdep dependency to the superblock buf so that we can keep
9426 * track of the head of the linked list of referenced but unlinked inodes.
9427 */
9428void
9429softdep_setup_sbupdate(ump, fs, bp)
9430	struct ufsmount *ump;
9431	struct fs *fs;
9432	struct buf *bp;
9433{
9434	struct sbdep *sbdep;
9435	struct worklist *wk;
9436
9437	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9438	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9439	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9440		if (wk->wk_type == D_SBDEP)
9441			break;
9442	if (wk != NULL)
9443		return;
9444	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9445	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9446	sbdep->sb_fs = fs;
9447	sbdep->sb_ump = ump;
9448	ACQUIRE_LOCK(ump);
9449	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9450	FREE_LOCK(ump);
9451}
9452
9453/*
9454 * Return the first unlinked inodedep which is ready to be the head of the
9455 * list.  The inodedep and all those after it must have valid next pointers.
9456 */
9457static struct inodedep *
9458first_unlinked_inodedep(ump)
9459	struct ufsmount *ump;
9460{
9461	struct inodedep *inodedep;
9462	struct inodedep *idp;
9463
9464	LOCK_OWNED(ump);
9465	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9466	    inodedep; inodedep = idp) {
9467		if ((inodedep->id_state & UNLINKNEXT) == 0)
9468			return (NULL);
9469		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9470		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9471			break;
9472		if ((inodedep->id_state & UNLINKPREV) == 0)
9473			break;
9474	}
9475	return (inodedep);
9476}
9477
9478/*
9479 * Set the sujfree unlinked head pointer prior to writing a superblock.
9480 */
9481static void
9482initiate_write_sbdep(sbdep)
9483	struct sbdep *sbdep;
9484{
9485	struct inodedep *inodedep;
9486	struct fs *bpfs;
9487	struct fs *fs;
9488
9489	bpfs = sbdep->sb_fs;
9490	fs = sbdep->sb_ump->um_fs;
9491	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9492	if (inodedep) {
9493		fs->fs_sujfree = inodedep->id_ino;
9494		inodedep->id_state |= UNLINKPREV;
9495	} else
9496		fs->fs_sujfree = 0;
9497	bpfs->fs_sujfree = fs->fs_sujfree;
9498}
9499
9500/*
9501 * After a superblock is written determine whether it must be written again
9502 * due to a changing unlinked list head.
9503 */
9504static int
9505handle_written_sbdep(sbdep, bp)
9506	struct sbdep *sbdep;
9507	struct buf *bp;
9508{
9509	struct inodedep *inodedep;
9510	struct fs *fs;
9511
9512	LOCK_OWNED(sbdep->sb_ump);
9513	fs = sbdep->sb_fs;
9514	/*
9515	 * If the superblock doesn't match the in-memory list start over.
9516	 */
9517	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9518	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9519	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9520		bdirty(bp);
9521		return (1);
9522	}
9523	WORKITEM_FREE(sbdep, D_SBDEP);
9524	if (fs->fs_sujfree == 0)
9525		return (0);
9526	/*
9527	 * Now that we have a record of this inode in stable store allow it
9528	 * to be written to free up pending work.  Inodes may see a lot of
9529	 * write activity after they are unlinked which we must not hold up.
9530	 */
9531	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9532		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9533			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9534			    inodedep, inodedep->id_state);
9535		if (inodedep->id_state & UNLINKONLIST)
9536			break;
9537		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9538	}
9539
9540	return (0);
9541}
9542
9543/*
9544 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9545 */
9546static void
9547unlinked_inodedep(mp, inodedep)
9548	struct mount *mp;
9549	struct inodedep *inodedep;
9550{
9551	struct ufsmount *ump;
9552
9553	ump = VFSTOUFS(mp);
9554	LOCK_OWNED(ump);
9555	if (MOUNTEDSUJ(mp) == 0)
9556		return;
9557	ump->um_fs->fs_fmod = 1;
9558	if (inodedep->id_state & UNLINKED)
9559		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9560	inodedep->id_state |= UNLINKED;
9561	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9562}
9563
9564/*
9565 * Remove an inodedep from the unlinked inodedep list.  This may require
9566 * disk writes if the inode has made it that far.
9567 */
9568static void
9569clear_unlinked_inodedep(inodedep)
9570	struct inodedep *inodedep;
9571{
9572	struct ufsmount *ump;
9573	struct inodedep *idp;
9574	struct inodedep *idn;
9575	struct fs *fs;
9576	struct buf *bp;
9577	ino_t ino;
9578	ino_t nino;
9579	ino_t pino;
9580	int error;
9581
9582	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9583	fs = ump->um_fs;
9584	ino = inodedep->id_ino;
9585	error = 0;
9586	for (;;) {
9587		LOCK_OWNED(ump);
9588		KASSERT((inodedep->id_state & UNLINKED) != 0,
9589		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9590		    inodedep));
9591		/*
9592		 * If nothing has yet been written simply remove us from
9593		 * the in memory list and return.  This is the most common
9594		 * case where handle_workitem_remove() loses the final
9595		 * reference.
9596		 */
9597		if ((inodedep->id_state & UNLINKLINKS) == 0)
9598			break;
9599		/*
9600		 * If we have a NEXT pointer and no PREV pointer we can simply
9601		 * clear NEXT's PREV and remove ourselves from the list.  Be
9602		 * careful not to clear PREV if the superblock points at
9603		 * next as well.
9604		 */
9605		idn = TAILQ_NEXT(inodedep, id_unlinked);
9606		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9607			if (idn && fs->fs_sujfree != idn->id_ino)
9608				idn->id_state &= ~UNLINKPREV;
9609			break;
9610		}
9611		/*
9612		 * Here we have an inodedep which is actually linked into
9613		 * the list.  We must remove it by forcing a write to the
9614		 * link before us, whether it be the superblock or an inode.
9615		 * Unfortunately the list may change while we're waiting
9616		 * on the buf lock for either resource so we must loop until
9617		 * we lock the right one.  If both the superblock and an
9618		 * inode point to this inode we must clear the inode first
9619		 * followed by the superblock.
9620		 */
9621		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9622		pino = 0;
9623		if (idp && (idp->id_state & UNLINKNEXT))
9624			pino = idp->id_ino;
9625		FREE_LOCK(ump);
9626		if (pino == 0) {
9627			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9628			    (int)fs->fs_sbsize, 0, 0, 0);
9629		} else {
9630			error = bread(ump->um_devvp,
9631			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9632			    (int)fs->fs_bsize, NOCRED, &bp);
9633			if (error)
9634				brelse(bp);
9635		}
9636		ACQUIRE_LOCK(ump);
9637		if (error)
9638			break;
9639		/* If the list has changed restart the loop. */
9640		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9641		nino = 0;
9642		if (idp && (idp->id_state & UNLINKNEXT))
9643			nino = idp->id_ino;
9644		if (nino != pino ||
9645		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9646			FREE_LOCK(ump);
9647			brelse(bp);
9648			ACQUIRE_LOCK(ump);
9649			continue;
9650		}
9651		nino = 0;
9652		idn = TAILQ_NEXT(inodedep, id_unlinked);
9653		if (idn)
9654			nino = idn->id_ino;
9655		/*
9656		 * Remove us from the in memory list.  After this we cannot
9657		 * access the inodedep.
9658		 */
9659		KASSERT((inodedep->id_state & UNLINKED) != 0,
9660		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9661		    inodedep));
9662		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9663		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9664		FREE_LOCK(ump);
9665		/*
9666		 * The predecessor's next pointer is manually updated here
9667		 * so that the NEXT flag is never cleared for an element
9668		 * that is in the list.
9669		 */
9670		if (pino == 0) {
9671			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9672			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9673			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9674			    bp);
9675		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9676			((struct ufs1_dinode *)bp->b_data +
9677			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9678		else
9679			((struct ufs2_dinode *)bp->b_data +
9680			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9681		/*
9682		 * If the bwrite fails we have no recourse to recover.  The
9683		 * filesystem is corrupted already.
9684		 */
9685		bwrite(bp);
9686		ACQUIRE_LOCK(ump);
9687		/*
9688		 * If the superblock pointer still needs to be cleared force
9689		 * a write here.
9690		 */
9691		if (fs->fs_sujfree == ino) {
9692			FREE_LOCK(ump);
9693			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9694			    (int)fs->fs_sbsize, 0, 0, 0);
9695			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9696			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9697			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9698			    bp);
9699			bwrite(bp);
9700			ACQUIRE_LOCK(ump);
9701		}
9702
9703		if (fs->fs_sujfree != ino)
9704			return;
9705		panic("clear_unlinked_inodedep: Failed to clear free head");
9706	}
9707	if (inodedep->id_ino == fs->fs_sujfree)
9708		panic("clear_unlinked_inodedep: Freeing head of free list");
9709	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9710	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9711	return;
9712}
9713
9714/*
9715 * This workitem decrements the inode's link count.
9716 * If the link count reaches zero, the file is removed.
9717 */
9718static int
9719handle_workitem_remove(dirrem, flags)
9720	struct dirrem *dirrem;
9721	int flags;
9722{
9723	struct inodedep *inodedep;
9724	struct workhead dotdotwk;
9725	struct worklist *wk;
9726	struct ufsmount *ump;
9727	struct mount *mp;
9728	struct vnode *vp;
9729	struct inode *ip;
9730	ino_t oldinum;
9731
9732	if (dirrem->dm_state & ONWORKLIST)
9733		panic("handle_workitem_remove: dirrem %p still on worklist",
9734		    dirrem);
9735	oldinum = dirrem->dm_oldinum;
9736	mp = dirrem->dm_list.wk_mp;
9737	ump = VFSTOUFS(mp);
9738	flags |= LK_EXCLUSIVE;
9739	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9740		return (EBUSY);
9741	ip = VTOI(vp);
9742	ACQUIRE_LOCK(ump);
9743	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9744		panic("handle_workitem_remove: lost inodedep");
9745	if (dirrem->dm_state & ONDEPLIST)
9746		LIST_REMOVE(dirrem, dm_inonext);
9747	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9748	    ("handle_workitem_remove:  Journal entries not written."));
9749
9750	/*
9751	 * Move all dependencies waiting on the remove to complete
9752	 * from the dirrem to the inode inowait list to be completed
9753	 * after the inode has been updated and written to disk.  Any
9754	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9755	 * is removed.
9756	 */
9757	LIST_INIT(&dotdotwk);
9758	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9759		WORKLIST_REMOVE(wk);
9760		if (wk->wk_state & MKDIR_PARENT) {
9761			wk->wk_state &= ~MKDIR_PARENT;
9762			WORKLIST_INSERT(&dotdotwk, wk);
9763			continue;
9764		}
9765		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9766	}
9767	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9768	/*
9769	 * Normal file deletion.
9770	 */
9771	if ((dirrem->dm_state & RMDIR) == 0) {
9772		ip->i_nlink--;
9773		DIP_SET(ip, i_nlink, ip->i_nlink);
9774		ip->i_flag |= IN_CHANGE;
9775		if (ip->i_nlink < ip->i_effnlink)
9776			panic("handle_workitem_remove: bad file delta");
9777		if (ip->i_nlink == 0)
9778			unlinked_inodedep(mp, inodedep);
9779		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9780		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9781		    ("handle_workitem_remove: worklist not empty. %s",
9782		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9783		WORKITEM_FREE(dirrem, D_DIRREM);
9784		FREE_LOCK(ump);
9785		goto out;
9786	}
9787	/*
9788	 * Directory deletion. Decrement reference count for both the
9789	 * just deleted parent directory entry and the reference for ".".
9790	 * Arrange to have the reference count on the parent decremented
9791	 * to account for the loss of "..".
9792	 */
9793	ip->i_nlink -= 2;
9794	DIP_SET(ip, i_nlink, ip->i_nlink);
9795	ip->i_flag |= IN_CHANGE;
9796	if (ip->i_nlink < ip->i_effnlink)
9797		panic("handle_workitem_remove: bad dir delta");
9798	if (ip->i_nlink == 0)
9799		unlinked_inodedep(mp, inodedep);
9800	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9801	/*
9802	 * Rename a directory to a new parent. Since, we are both deleting
9803	 * and creating a new directory entry, the link count on the new
9804	 * directory should not change. Thus we skip the followup dirrem.
9805	 */
9806	if (dirrem->dm_state & DIRCHG) {
9807		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9808		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9809		WORKITEM_FREE(dirrem, D_DIRREM);
9810		FREE_LOCK(ump);
9811		goto out;
9812	}
9813	dirrem->dm_state = ONDEPLIST;
9814	dirrem->dm_oldinum = dirrem->dm_dirinum;
9815	/*
9816	 * Place the dirrem on the parent's diremhd list.
9817	 */
9818	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9819		panic("handle_workitem_remove: lost dir inodedep");
9820	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9821	/*
9822	 * If the allocated inode has never been written to disk, then
9823	 * the on-disk inode is zero'ed and we can remove the file
9824	 * immediately.  When journaling if the inode has been marked
9825	 * unlinked and not DEPCOMPLETE we know it can never be written.
9826	 */
9827	inodedep_lookup(mp, oldinum, 0, &inodedep);
9828	if (inodedep == NULL ||
9829	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9830	    check_inode_unwritten(inodedep)) {
9831		FREE_LOCK(ump);
9832		vput(vp);
9833		return handle_workitem_remove(dirrem, flags);
9834	}
9835	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9836	FREE_LOCK(ump);
9837	ip->i_flag |= IN_CHANGE;
9838out:
9839	ffs_update(vp, 0);
9840	vput(vp);
9841	return (0);
9842}
9843
9844/*
9845 * Inode de-allocation dependencies.
9846 *
9847 * When an inode's link count is reduced to zero, it can be de-allocated. We
9848 * found it convenient to postpone de-allocation until after the inode is
9849 * written to disk with its new link count (zero).  At this point, all of the
9850 * on-disk inode's block pointers are nullified and, with careful dependency
9851 * list ordering, all dependencies related to the inode will be satisfied and
9852 * the corresponding dependency structures de-allocated.  So, if/when the
9853 * inode is reused, there will be no mixing of old dependencies with new
9854 * ones.  This artificial dependency is set up by the block de-allocation
9855 * procedure above (softdep_setup_freeblocks) and completed by the
9856 * following procedure.
9857 */
9858static void
9859handle_workitem_freefile(freefile)
9860	struct freefile *freefile;
9861{
9862	struct workhead wkhd;
9863	struct fs *fs;
9864	struct inodedep *idp;
9865	struct ufsmount *ump;
9866	int error;
9867
9868	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9869	fs = ump->um_fs;
9870#ifdef DEBUG
9871	ACQUIRE_LOCK(ump);
9872	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9873	FREE_LOCK(ump);
9874	if (error)
9875		panic("handle_workitem_freefile: inodedep %p survived", idp);
9876#endif
9877	UFS_LOCK(ump);
9878	fs->fs_pendinginodes -= 1;
9879	UFS_UNLOCK(ump);
9880	LIST_INIT(&wkhd);
9881	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9882	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9883	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9884		softdep_error("handle_workitem_freefile", error);
9885	ACQUIRE_LOCK(ump);
9886	WORKITEM_FREE(freefile, D_FREEFILE);
9887	FREE_LOCK(ump);
9888}
9889
9890
9891/*
9892 * Helper function which unlinks marker element from work list and returns
9893 * the next element on the list.
9894 */
9895static __inline struct worklist *
9896markernext(struct worklist *marker)
9897{
9898	struct worklist *next;
9899
9900	next = LIST_NEXT(marker, wk_list);
9901	LIST_REMOVE(marker, wk_list);
9902	return next;
9903}
9904
9905/*
9906 * Disk writes.
9907 *
9908 * The dependency structures constructed above are most actively used when file
9909 * system blocks are written to disk.  No constraints are placed on when a
9910 * block can be written, but unsatisfied update dependencies are made safe by
9911 * modifying (or replacing) the source memory for the duration of the disk
9912 * write.  When the disk write completes, the memory block is again brought
9913 * up-to-date.
9914 *
9915 * In-core inode structure reclamation.
9916 *
9917 * Because there are a finite number of "in-core" inode structures, they are
9918 * reused regularly.  By transferring all inode-related dependencies to the
9919 * in-memory inode block and indexing them separately (via "inodedep"s), we
9920 * can allow "in-core" inode structures to be reused at any time and avoid
9921 * any increase in contention.
9922 *
9923 * Called just before entering the device driver to initiate a new disk I/O.
9924 * The buffer must be locked, thus, no I/O completion operations can occur
9925 * while we are manipulating its associated dependencies.
9926 */
9927static void
9928softdep_disk_io_initiation(bp)
9929	struct buf *bp;		/* structure describing disk write to occur */
9930{
9931	struct worklist *wk;
9932	struct worklist marker;
9933	struct inodedep *inodedep;
9934	struct freeblks *freeblks;
9935	struct jblkdep *jblkdep;
9936	struct newblk *newblk;
9937	struct ufsmount *ump;
9938
9939	/*
9940	 * We only care about write operations. There should never
9941	 * be dependencies for reads.
9942	 */
9943	if (bp->b_iocmd != BIO_WRITE)
9944		panic("softdep_disk_io_initiation: not write");
9945
9946	if (bp->b_vflags & BV_BKGRDINPROG)
9947		panic("softdep_disk_io_initiation: Writing buffer with "
9948		    "background write in progress: %p", bp);
9949
9950	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9951		return;
9952	ump = VFSTOUFS(wk->wk_mp);
9953
9954	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9955	PHOLD(curproc);			/* Don't swap out kernel stack */
9956	ACQUIRE_LOCK(ump);
9957	/*
9958	 * Do any necessary pre-I/O processing.
9959	 */
9960	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9961	     wk = markernext(&marker)) {
9962		LIST_INSERT_AFTER(wk, &marker, wk_list);
9963		switch (wk->wk_type) {
9964
9965		case D_PAGEDEP:
9966			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9967			continue;
9968
9969		case D_INODEDEP:
9970			inodedep = WK_INODEDEP(wk);
9971			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9972				initiate_write_inodeblock_ufs1(inodedep, bp);
9973			else
9974				initiate_write_inodeblock_ufs2(inodedep, bp);
9975			continue;
9976
9977		case D_INDIRDEP:
9978			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9979			continue;
9980
9981		case D_BMSAFEMAP:
9982			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9983			continue;
9984
9985		case D_JSEG:
9986			WK_JSEG(wk)->js_buf = NULL;
9987			continue;
9988
9989		case D_FREEBLKS:
9990			freeblks = WK_FREEBLKS(wk);
9991			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9992			/*
9993			 * We have to wait for the freeblks to be journaled
9994			 * before we can write an inodeblock with updated
9995			 * pointers.  Be careful to arrange the marker so
9996			 * we revisit the freeblks if it's not removed by
9997			 * the first jwait().
9998			 */
9999			if (jblkdep != NULL) {
10000				LIST_REMOVE(&marker, wk_list);
10001				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10002				jwait(&jblkdep->jb_list, MNT_WAIT);
10003			}
10004			continue;
10005		case D_ALLOCDIRECT:
10006		case D_ALLOCINDIR:
10007			/*
10008			 * We have to wait for the jnewblk to be journaled
10009			 * before we can write to a block if the contents
10010			 * may be confused with an earlier file's indirect
10011			 * at recovery time.  Handle the marker as described
10012			 * above.
10013			 */
10014			newblk = WK_NEWBLK(wk);
10015			if (newblk->nb_jnewblk != NULL &&
10016			    indirblk_lookup(newblk->nb_list.wk_mp,
10017			    newblk->nb_newblkno)) {
10018				LIST_REMOVE(&marker, wk_list);
10019				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10020				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10021			}
10022			continue;
10023
10024		case D_SBDEP:
10025			initiate_write_sbdep(WK_SBDEP(wk));
10026			continue;
10027
10028		case D_MKDIR:
10029		case D_FREEWORK:
10030		case D_FREEDEP:
10031		case D_JSEGDEP:
10032			continue;
10033
10034		default:
10035			panic("handle_disk_io_initiation: Unexpected type %s",
10036			    TYPENAME(wk->wk_type));
10037			/* NOTREACHED */
10038		}
10039	}
10040	FREE_LOCK(ump);
10041	PRELE(curproc);			/* Allow swapout of kernel stack */
10042}
10043
10044/*
10045 * Called from within the procedure above to deal with unsatisfied
10046 * allocation dependencies in a directory. The buffer must be locked,
10047 * thus, no I/O completion operations can occur while we are
10048 * manipulating its associated dependencies.
10049 */
10050static void
10051initiate_write_filepage(pagedep, bp)
10052	struct pagedep *pagedep;
10053	struct buf *bp;
10054{
10055	struct jremref *jremref;
10056	struct jmvref *jmvref;
10057	struct dirrem *dirrem;
10058	struct diradd *dap;
10059	struct direct *ep;
10060	int i;
10061
10062	if (pagedep->pd_state & IOSTARTED) {
10063		/*
10064		 * This can only happen if there is a driver that does not
10065		 * understand chaining. Here biodone will reissue the call
10066		 * to strategy for the incomplete buffers.
10067		 */
10068		printf("initiate_write_filepage: already started\n");
10069		return;
10070	}
10071	pagedep->pd_state |= IOSTARTED;
10072	/*
10073	 * Wait for all journal remove dependencies to hit the disk.
10074	 * We can not allow any potentially conflicting directory adds
10075	 * to be visible before removes and rollback is too difficult.
10076	 * The per-filesystem lock may be dropped and re-acquired, however
10077	 * we hold the buf locked so the dependency can not go away.
10078	 */
10079	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10080		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10081			jwait(&jremref->jr_list, MNT_WAIT);
10082	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10083		jwait(&jmvref->jm_list, MNT_WAIT);
10084	for (i = 0; i < DAHASHSZ; i++) {
10085		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10086			ep = (struct direct *)
10087			    ((char *)bp->b_data + dap->da_offset);
10088			if (ep->d_ino != dap->da_newinum)
10089				panic("%s: dir inum %ju != new %ju",
10090				    "initiate_write_filepage",
10091				    (uintmax_t)ep->d_ino,
10092				    (uintmax_t)dap->da_newinum);
10093			if (dap->da_state & DIRCHG)
10094				ep->d_ino = dap->da_previous->dm_oldinum;
10095			else
10096				ep->d_ino = 0;
10097			dap->da_state &= ~ATTACHED;
10098			dap->da_state |= UNDONE;
10099		}
10100	}
10101}
10102
10103/*
10104 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10105 * Note that any bug fixes made to this routine must be done in the
10106 * version found below.
10107 *
10108 * Called from within the procedure above to deal with unsatisfied
10109 * allocation dependencies in an inodeblock. The buffer must be
10110 * locked, thus, no I/O completion operations can occur while we
10111 * are manipulating its associated dependencies.
10112 */
10113static void
10114initiate_write_inodeblock_ufs1(inodedep, bp)
10115	struct inodedep *inodedep;
10116	struct buf *bp;			/* The inode block */
10117{
10118	struct allocdirect *adp, *lastadp;
10119	struct ufs1_dinode *dp;
10120	struct ufs1_dinode *sip;
10121	struct inoref *inoref;
10122	struct ufsmount *ump;
10123	struct fs *fs;
10124	ufs_lbn_t i;
10125#ifdef INVARIANTS
10126	ufs_lbn_t prevlbn = 0;
10127#endif
10128	int deplist;
10129
10130	if (inodedep->id_state & IOSTARTED)
10131		panic("initiate_write_inodeblock_ufs1: already started");
10132	inodedep->id_state |= IOSTARTED;
10133	fs = inodedep->id_fs;
10134	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10135	LOCK_OWNED(ump);
10136	dp = (struct ufs1_dinode *)bp->b_data +
10137	    ino_to_fsbo(fs, inodedep->id_ino);
10138
10139	/*
10140	 * If we're on the unlinked list but have not yet written our
10141	 * next pointer initialize it here.
10142	 */
10143	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10144		struct inodedep *inon;
10145
10146		inon = TAILQ_NEXT(inodedep, id_unlinked);
10147		dp->di_freelink = inon ? inon->id_ino : 0;
10148	}
10149	/*
10150	 * If the bitmap is not yet written, then the allocated
10151	 * inode cannot be written to disk.
10152	 */
10153	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10154		if (inodedep->id_savedino1 != NULL)
10155			panic("initiate_write_inodeblock_ufs1: I/O underway");
10156		FREE_LOCK(ump);
10157		sip = malloc(sizeof(struct ufs1_dinode),
10158		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10159		ACQUIRE_LOCK(ump);
10160		inodedep->id_savedino1 = sip;
10161		*inodedep->id_savedino1 = *dp;
10162		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10163		dp->di_gen = inodedep->id_savedino1->di_gen;
10164		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10165		return;
10166	}
10167	/*
10168	 * If no dependencies, then there is nothing to roll back.
10169	 */
10170	inodedep->id_savedsize = dp->di_size;
10171	inodedep->id_savedextsize = 0;
10172	inodedep->id_savednlink = dp->di_nlink;
10173	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10174	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10175		return;
10176	/*
10177	 * Revert the link count to that of the first unwritten journal entry.
10178	 */
10179	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10180	if (inoref)
10181		dp->di_nlink = inoref->if_nlink;
10182	/*
10183	 * Set the dependencies to busy.
10184	 */
10185	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10186	     adp = TAILQ_NEXT(adp, ad_next)) {
10187#ifdef INVARIANTS
10188		if (deplist != 0 && prevlbn >= adp->ad_offset)
10189			panic("softdep_write_inodeblock: lbn order");
10190		prevlbn = adp->ad_offset;
10191		if (adp->ad_offset < NDADDR &&
10192		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10193			panic("%s: direct pointer #%jd mismatch %d != %jd",
10194			    "softdep_write_inodeblock",
10195			    (intmax_t)adp->ad_offset,
10196			    dp->di_db[adp->ad_offset],
10197			    (intmax_t)adp->ad_newblkno);
10198		if (adp->ad_offset >= NDADDR &&
10199		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10200			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10201			    "softdep_write_inodeblock",
10202			    (intmax_t)adp->ad_offset - NDADDR,
10203			    dp->di_ib[adp->ad_offset - NDADDR],
10204			    (intmax_t)adp->ad_newblkno);
10205		deplist |= 1 << adp->ad_offset;
10206		if ((adp->ad_state & ATTACHED) == 0)
10207			panic("softdep_write_inodeblock: Unknown state 0x%x",
10208			    adp->ad_state);
10209#endif /* INVARIANTS */
10210		adp->ad_state &= ~ATTACHED;
10211		adp->ad_state |= UNDONE;
10212	}
10213	/*
10214	 * The on-disk inode cannot claim to be any larger than the last
10215	 * fragment that has been written. Otherwise, the on-disk inode
10216	 * might have fragments that were not the last block in the file
10217	 * which would corrupt the filesystem.
10218	 */
10219	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10220	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10221		if (adp->ad_offset >= NDADDR)
10222			break;
10223		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10224		/* keep going until hitting a rollback to a frag */
10225		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10226			continue;
10227		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10228		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10229#ifdef INVARIANTS
10230			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10231				panic("softdep_write_inodeblock: lost dep1");
10232#endif /* INVARIANTS */
10233			dp->di_db[i] = 0;
10234		}
10235		for (i = 0; i < NIADDR; i++) {
10236#ifdef INVARIANTS
10237			if (dp->di_ib[i] != 0 &&
10238			    (deplist & ((1 << NDADDR) << i)) == 0)
10239				panic("softdep_write_inodeblock: lost dep2");
10240#endif /* INVARIANTS */
10241			dp->di_ib[i] = 0;
10242		}
10243		return;
10244	}
10245	/*
10246	 * If we have zero'ed out the last allocated block of the file,
10247	 * roll back the size to the last currently allocated block.
10248	 * We know that this last allocated block is a full-sized as
10249	 * we already checked for fragments in the loop above.
10250	 */
10251	if (lastadp != NULL &&
10252	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10253		for (i = lastadp->ad_offset; i >= 0; i--)
10254			if (dp->di_db[i] != 0)
10255				break;
10256		dp->di_size = (i + 1) * fs->fs_bsize;
10257	}
10258	/*
10259	 * The only dependencies are for indirect blocks.
10260	 *
10261	 * The file size for indirect block additions is not guaranteed.
10262	 * Such a guarantee would be non-trivial to achieve. The conventional
10263	 * synchronous write implementation also does not make this guarantee.
10264	 * Fsck should catch and fix discrepancies. Arguably, the file size
10265	 * can be over-estimated without destroying integrity when the file
10266	 * moves into the indirect blocks (i.e., is large). If we want to
10267	 * postpone fsck, we are stuck with this argument.
10268	 */
10269	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10270		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10271}
10272
10273/*
10274 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10275 * Note that any bug fixes made to this routine must be done in the
10276 * version found above.
10277 *
10278 * Called from within the procedure above to deal with unsatisfied
10279 * allocation dependencies in an inodeblock. The buffer must be
10280 * locked, thus, no I/O completion operations can occur while we
10281 * are manipulating its associated dependencies.
10282 */
10283static void
10284initiate_write_inodeblock_ufs2(inodedep, bp)
10285	struct inodedep *inodedep;
10286	struct buf *bp;			/* The inode block */
10287{
10288	struct allocdirect *adp, *lastadp;
10289	struct ufs2_dinode *dp;
10290	struct ufs2_dinode *sip;
10291	struct inoref *inoref;
10292	struct ufsmount *ump;
10293	struct fs *fs;
10294	ufs_lbn_t i;
10295#ifdef INVARIANTS
10296	ufs_lbn_t prevlbn = 0;
10297#endif
10298	int deplist;
10299
10300	if (inodedep->id_state & IOSTARTED)
10301		panic("initiate_write_inodeblock_ufs2: already started");
10302	inodedep->id_state |= IOSTARTED;
10303	fs = inodedep->id_fs;
10304	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10305	LOCK_OWNED(ump);
10306	dp = (struct ufs2_dinode *)bp->b_data +
10307	    ino_to_fsbo(fs, inodedep->id_ino);
10308
10309	/*
10310	 * If we're on the unlinked list but have not yet written our
10311	 * next pointer initialize it here.
10312	 */
10313	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10314		struct inodedep *inon;
10315
10316		inon = TAILQ_NEXT(inodedep, id_unlinked);
10317		dp->di_freelink = inon ? inon->id_ino : 0;
10318	}
10319	/*
10320	 * If the bitmap is not yet written, then the allocated
10321	 * inode cannot be written to disk.
10322	 */
10323	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10324		if (inodedep->id_savedino2 != NULL)
10325			panic("initiate_write_inodeblock_ufs2: I/O underway");
10326		FREE_LOCK(ump);
10327		sip = malloc(sizeof(struct ufs2_dinode),
10328		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10329		ACQUIRE_LOCK(ump);
10330		inodedep->id_savedino2 = sip;
10331		*inodedep->id_savedino2 = *dp;
10332		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10333		dp->di_gen = inodedep->id_savedino2->di_gen;
10334		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10335		return;
10336	}
10337	/*
10338	 * If no dependencies, then there is nothing to roll back.
10339	 */
10340	inodedep->id_savedsize = dp->di_size;
10341	inodedep->id_savedextsize = dp->di_extsize;
10342	inodedep->id_savednlink = dp->di_nlink;
10343	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10344	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10345	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10346		return;
10347	/*
10348	 * Revert the link count to that of the first unwritten journal entry.
10349	 */
10350	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10351	if (inoref)
10352		dp->di_nlink = inoref->if_nlink;
10353
10354	/*
10355	 * Set the ext data dependencies to busy.
10356	 */
10357	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10358	     adp = TAILQ_NEXT(adp, ad_next)) {
10359#ifdef INVARIANTS
10360		if (deplist != 0 && prevlbn >= adp->ad_offset)
10361			panic("softdep_write_inodeblock: lbn order");
10362		prevlbn = adp->ad_offset;
10363		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10364			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10365			    "softdep_write_inodeblock",
10366			    (intmax_t)adp->ad_offset,
10367			    (intmax_t)dp->di_extb[adp->ad_offset],
10368			    (intmax_t)adp->ad_newblkno);
10369		deplist |= 1 << adp->ad_offset;
10370		if ((adp->ad_state & ATTACHED) == 0)
10371			panic("softdep_write_inodeblock: Unknown state 0x%x",
10372			    adp->ad_state);
10373#endif /* INVARIANTS */
10374		adp->ad_state &= ~ATTACHED;
10375		adp->ad_state |= UNDONE;
10376	}
10377	/*
10378	 * The on-disk inode cannot claim to be any larger than the last
10379	 * fragment that has been written. Otherwise, the on-disk inode
10380	 * might have fragments that were not the last block in the ext
10381	 * data which would corrupt the filesystem.
10382	 */
10383	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10384	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10385		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10386		/* keep going until hitting a rollback to a frag */
10387		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10388			continue;
10389		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10390		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10391#ifdef INVARIANTS
10392			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10393				panic("softdep_write_inodeblock: lost dep1");
10394#endif /* INVARIANTS */
10395			dp->di_extb[i] = 0;
10396		}
10397		lastadp = NULL;
10398		break;
10399	}
10400	/*
10401	 * If we have zero'ed out the last allocated block of the ext
10402	 * data, roll back the size to the last currently allocated block.
10403	 * We know that this last allocated block is a full-sized as
10404	 * we already checked for fragments in the loop above.
10405	 */
10406	if (lastadp != NULL &&
10407	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10408		for (i = lastadp->ad_offset; i >= 0; i--)
10409			if (dp->di_extb[i] != 0)
10410				break;
10411		dp->di_extsize = (i + 1) * fs->fs_bsize;
10412	}
10413	/*
10414	 * Set the file data dependencies to busy.
10415	 */
10416	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10417	     adp = TAILQ_NEXT(adp, ad_next)) {
10418#ifdef INVARIANTS
10419		if (deplist != 0 && prevlbn >= adp->ad_offset)
10420			panic("softdep_write_inodeblock: lbn order");
10421		if ((adp->ad_state & ATTACHED) == 0)
10422			panic("inodedep %p and adp %p not attached", inodedep, adp);
10423		prevlbn = adp->ad_offset;
10424		if (adp->ad_offset < NDADDR &&
10425		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10426			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10427			    "softdep_write_inodeblock",
10428			    (intmax_t)adp->ad_offset,
10429			    (intmax_t)dp->di_db[adp->ad_offset],
10430			    (intmax_t)adp->ad_newblkno);
10431		if (adp->ad_offset >= NDADDR &&
10432		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10433			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10434			    "softdep_write_inodeblock:",
10435			    (intmax_t)adp->ad_offset - NDADDR,
10436			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10437			    (intmax_t)adp->ad_newblkno);
10438		deplist |= 1 << adp->ad_offset;
10439		if ((adp->ad_state & ATTACHED) == 0)
10440			panic("softdep_write_inodeblock: Unknown state 0x%x",
10441			    adp->ad_state);
10442#endif /* INVARIANTS */
10443		adp->ad_state &= ~ATTACHED;
10444		adp->ad_state |= UNDONE;
10445	}
10446	/*
10447	 * The on-disk inode cannot claim to be any larger than the last
10448	 * fragment that has been written. Otherwise, the on-disk inode
10449	 * might have fragments that were not the last block in the file
10450	 * which would corrupt the filesystem.
10451	 */
10452	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10453	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10454		if (adp->ad_offset >= NDADDR)
10455			break;
10456		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10457		/* keep going until hitting a rollback to a frag */
10458		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10459			continue;
10460		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10461		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10462#ifdef INVARIANTS
10463			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10464				panic("softdep_write_inodeblock: lost dep2");
10465#endif /* INVARIANTS */
10466			dp->di_db[i] = 0;
10467		}
10468		for (i = 0; i < NIADDR; i++) {
10469#ifdef INVARIANTS
10470			if (dp->di_ib[i] != 0 &&
10471			    (deplist & ((1 << NDADDR) << i)) == 0)
10472				panic("softdep_write_inodeblock: lost dep3");
10473#endif /* INVARIANTS */
10474			dp->di_ib[i] = 0;
10475		}
10476		return;
10477	}
10478	/*
10479	 * If we have zero'ed out the last allocated block of the file,
10480	 * roll back the size to the last currently allocated block.
10481	 * We know that this last allocated block is a full-sized as
10482	 * we already checked for fragments in the loop above.
10483	 */
10484	if (lastadp != NULL &&
10485	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10486		for (i = lastadp->ad_offset; i >= 0; i--)
10487			if (dp->di_db[i] != 0)
10488				break;
10489		dp->di_size = (i + 1) * fs->fs_bsize;
10490	}
10491	/*
10492	 * The only dependencies are for indirect blocks.
10493	 *
10494	 * The file size for indirect block additions is not guaranteed.
10495	 * Such a guarantee would be non-trivial to achieve. The conventional
10496	 * synchronous write implementation also does not make this guarantee.
10497	 * Fsck should catch and fix discrepancies. Arguably, the file size
10498	 * can be over-estimated without destroying integrity when the file
10499	 * moves into the indirect blocks (i.e., is large). If we want to
10500	 * postpone fsck, we are stuck with this argument.
10501	 */
10502	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10503		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10504}
10505
10506/*
10507 * Cancel an indirdep as a result of truncation.  Release all of the
10508 * children allocindirs and place their journal work on the appropriate
10509 * list.
10510 */
10511static void
10512cancel_indirdep(indirdep, bp, freeblks)
10513	struct indirdep *indirdep;
10514	struct buf *bp;
10515	struct freeblks *freeblks;
10516{
10517	struct allocindir *aip;
10518
10519	/*
10520	 * None of the indirect pointers will ever be visible,
10521	 * so they can simply be tossed. GOINGAWAY ensures
10522	 * that allocated pointers will be saved in the buffer
10523	 * cache until they are freed. Note that they will
10524	 * only be able to be found by their physical address
10525	 * since the inode mapping the logical address will
10526	 * be gone. The save buffer used for the safe copy
10527	 * was allocated in setup_allocindir_phase2 using
10528	 * the physical address so it could be used for this
10529	 * purpose. Hence we swap the safe copy with the real
10530	 * copy, allowing the safe copy to be freed and holding
10531	 * on to the real copy for later use in indir_trunc.
10532	 */
10533	if (indirdep->ir_state & GOINGAWAY)
10534		panic("cancel_indirdep: already gone");
10535	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10536		indirdep->ir_state |= DEPCOMPLETE;
10537		LIST_REMOVE(indirdep, ir_next);
10538	}
10539	indirdep->ir_state |= GOINGAWAY;
10540	/*
10541	 * Pass in bp for blocks still have journal writes
10542	 * pending so we can cancel them on their own.
10543	 */
10544	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10545		cancel_allocindir(aip, bp, freeblks, 0);
10546	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10547		cancel_allocindir(aip, NULL, freeblks, 0);
10548	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10549		cancel_allocindir(aip, NULL, freeblks, 0);
10550	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10551		cancel_allocindir(aip, NULL, freeblks, 0);
10552	/*
10553	 * If there are pending partial truncations we need to keep the
10554	 * old block copy around until they complete.  This is because
10555	 * the current b_data is not a perfect superset of the available
10556	 * blocks.
10557	 */
10558	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10559		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10560	else
10561		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10562	WORKLIST_REMOVE(&indirdep->ir_list);
10563	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10564	indirdep->ir_bp = NULL;
10565	indirdep->ir_freeblks = freeblks;
10566}
10567
10568/*
10569 * Free an indirdep once it no longer has new pointers to track.
10570 */
10571static void
10572free_indirdep(indirdep)
10573	struct indirdep *indirdep;
10574{
10575
10576	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10577	    ("free_indirdep: Indir trunc list not empty."));
10578	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10579	    ("free_indirdep: Complete head not empty."));
10580	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10581	    ("free_indirdep: write head not empty."));
10582	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10583	    ("free_indirdep: done head not empty."));
10584	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10585	    ("free_indirdep: deplist head not empty."));
10586	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10587	    ("free_indirdep: %p still on newblk list.", indirdep));
10588	KASSERT(indirdep->ir_saveddata == NULL,
10589	    ("free_indirdep: %p still has saved data.", indirdep));
10590	if (indirdep->ir_state & ONWORKLIST)
10591		WORKLIST_REMOVE(&indirdep->ir_list);
10592	WORKITEM_FREE(indirdep, D_INDIRDEP);
10593}
10594
10595/*
10596 * Called before a write to an indirdep.  This routine is responsible for
10597 * rolling back pointers to a safe state which includes only those
10598 * allocindirs which have been completed.
10599 */
10600static void
10601initiate_write_indirdep(indirdep, bp)
10602	struct indirdep *indirdep;
10603	struct buf *bp;
10604{
10605	struct ufsmount *ump;
10606
10607	indirdep->ir_state |= IOSTARTED;
10608	if (indirdep->ir_state & GOINGAWAY)
10609		panic("disk_io_initiation: indirdep gone");
10610	/*
10611	 * If there are no remaining dependencies, this will be writing
10612	 * the real pointers.
10613	 */
10614	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10615	    TAILQ_EMPTY(&indirdep->ir_trunc))
10616		return;
10617	/*
10618	 * Replace up-to-date version with safe version.
10619	 */
10620	if (indirdep->ir_saveddata == NULL) {
10621		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10622		LOCK_OWNED(ump);
10623		FREE_LOCK(ump);
10624		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10625		    M_SOFTDEP_FLAGS);
10626		ACQUIRE_LOCK(ump);
10627	}
10628	indirdep->ir_state &= ~ATTACHED;
10629	indirdep->ir_state |= UNDONE;
10630	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10631	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10632	    bp->b_bcount);
10633}
10634
10635/*
10636 * Called when an inode has been cleared in a cg bitmap.  This finally
10637 * eliminates any canceled jaddrefs
10638 */
10639void
10640softdep_setup_inofree(mp, bp, ino, wkhd)
10641	struct mount *mp;
10642	struct buf *bp;
10643	ino_t ino;
10644	struct workhead *wkhd;
10645{
10646	struct worklist *wk, *wkn;
10647	struct inodedep *inodedep;
10648	struct ufsmount *ump;
10649	uint8_t *inosused;
10650	struct cg *cgp;
10651	struct fs *fs;
10652
10653	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10654	    ("softdep_setup_inofree called on non-softdep filesystem"));
10655	ump = VFSTOUFS(mp);
10656	ACQUIRE_LOCK(ump);
10657	fs = ump->um_fs;
10658	cgp = (struct cg *)bp->b_data;
10659	inosused = cg_inosused(cgp);
10660	if (isset(inosused, ino % fs->fs_ipg))
10661		panic("softdep_setup_inofree: inode %ju not freed.",
10662		    (uintmax_t)ino);
10663	if (inodedep_lookup(mp, ino, 0, &inodedep))
10664		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10665		    (uintmax_t)ino, inodedep);
10666	if (wkhd) {
10667		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10668			if (wk->wk_type != D_JADDREF)
10669				continue;
10670			WORKLIST_REMOVE(wk);
10671			/*
10672			 * We can free immediately even if the jaddref
10673			 * isn't attached in a background write as now
10674			 * the bitmaps are reconciled.
10675			 */
10676			wk->wk_state |= COMPLETE | ATTACHED;
10677			free_jaddref(WK_JADDREF(wk));
10678		}
10679		jwork_move(&bp->b_dep, wkhd);
10680	}
10681	FREE_LOCK(ump);
10682}
10683
10684
10685/*
10686 * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10687 * map.  Any dependencies waiting for the write to clear are added to the
10688 * buf's list and any jnewblks that are being canceled are discarded
10689 * immediately.
10690 */
10691void
10692softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10693	struct mount *mp;
10694	struct buf *bp;
10695	ufs2_daddr_t blkno;
10696	int frags;
10697	struct workhead *wkhd;
10698{
10699	struct bmsafemap *bmsafemap;
10700	struct jnewblk *jnewblk;
10701	struct ufsmount *ump;
10702	struct worklist *wk;
10703	struct fs *fs;
10704#ifdef SUJ_DEBUG
10705	uint8_t *blksfree;
10706	struct cg *cgp;
10707	ufs2_daddr_t jstart;
10708	ufs2_daddr_t jend;
10709	ufs2_daddr_t end;
10710	long bno;
10711	int i;
10712#endif
10713
10714	CTR3(KTR_SUJ,
10715	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10716	    blkno, frags, wkhd);
10717
10718	ump = VFSTOUFS(mp);
10719	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10720	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10721	ACQUIRE_LOCK(ump);
10722	/* Lookup the bmsafemap so we track when it is dirty. */
10723	fs = ump->um_fs;
10724	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10725	/*
10726	 * Detach any jnewblks which have been canceled.  They must linger
10727	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10728	 * an unjournaled allocation from hitting the disk.
10729	 */
10730	if (wkhd) {
10731		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10732			CTR2(KTR_SUJ,
10733			    "softdep_setup_blkfree: blkno %jd wk type %d",
10734			    blkno, wk->wk_type);
10735			WORKLIST_REMOVE(wk);
10736			if (wk->wk_type != D_JNEWBLK) {
10737				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10738				continue;
10739			}
10740			jnewblk = WK_JNEWBLK(wk);
10741			KASSERT(jnewblk->jn_state & GOINGAWAY,
10742			    ("softdep_setup_blkfree: jnewblk not canceled."));
10743#ifdef SUJ_DEBUG
10744			/*
10745			 * Assert that this block is free in the bitmap
10746			 * before we discard the jnewblk.
10747			 */
10748			cgp = (struct cg *)bp->b_data;
10749			blksfree = cg_blksfree(cgp);
10750			bno = dtogd(fs, jnewblk->jn_blkno);
10751			for (i = jnewblk->jn_oldfrags;
10752			    i < jnewblk->jn_frags; i++) {
10753				if (isset(blksfree, bno + i))
10754					continue;
10755				panic("softdep_setup_blkfree: not free");
10756			}
10757#endif
10758			/*
10759			 * Even if it's not attached we can free immediately
10760			 * as the new bitmap is correct.
10761			 */
10762			wk->wk_state |= COMPLETE | ATTACHED;
10763			free_jnewblk(jnewblk);
10764		}
10765	}
10766
10767#ifdef SUJ_DEBUG
10768	/*
10769	 * Assert that we are not freeing a block which has an outstanding
10770	 * allocation dependency.
10771	 */
10772	fs = VFSTOUFS(mp)->um_fs;
10773	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10774	end = blkno + frags;
10775	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10776		/*
10777		 * Don't match against blocks that will be freed when the
10778		 * background write is done.
10779		 */
10780		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10781		    (COMPLETE | DEPCOMPLETE))
10782			continue;
10783		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10784		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10785		if ((blkno >= jstart && blkno < jend) ||
10786		    (end > jstart && end <= jend)) {
10787			printf("state 0x%X %jd - %d %d dep %p\n",
10788			    jnewblk->jn_state, jnewblk->jn_blkno,
10789			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10790			    jnewblk->jn_dep);
10791			panic("softdep_setup_blkfree: "
10792			    "%jd-%jd(%d) overlaps with %jd-%jd",
10793			    blkno, end, frags, jstart, jend);
10794		}
10795	}
10796#endif
10797	FREE_LOCK(ump);
10798}
10799
10800/*
10801 * Revert a block allocation when the journal record that describes it
10802 * is not yet written.
10803 */
10804static int
10805jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10806	struct jnewblk *jnewblk;
10807	struct fs *fs;
10808	struct cg *cgp;
10809	uint8_t *blksfree;
10810{
10811	ufs1_daddr_t fragno;
10812	long cgbno, bbase;
10813	int frags, blk;
10814	int i;
10815
10816	frags = 0;
10817	cgbno = dtogd(fs, jnewblk->jn_blkno);
10818	/*
10819	 * We have to test which frags need to be rolled back.  We may
10820	 * be operating on a stale copy when doing background writes.
10821	 */
10822	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10823		if (isclr(blksfree, cgbno + i))
10824			frags++;
10825	if (frags == 0)
10826		return (0);
10827	/*
10828	 * This is mostly ffs_blkfree() sans some validation and
10829	 * superblock updates.
10830	 */
10831	if (frags == fs->fs_frag) {
10832		fragno = fragstoblks(fs, cgbno);
10833		ffs_setblock(fs, blksfree, fragno);
10834		ffs_clusteracct(fs, cgp, fragno, 1);
10835		cgp->cg_cs.cs_nbfree++;
10836	} else {
10837		cgbno += jnewblk->jn_oldfrags;
10838		bbase = cgbno - fragnum(fs, cgbno);
10839		/* Decrement the old frags.  */
10840		blk = blkmap(fs, blksfree, bbase);
10841		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10842		/* Deallocate the fragment */
10843		for (i = 0; i < frags; i++)
10844			setbit(blksfree, cgbno + i);
10845		cgp->cg_cs.cs_nffree += frags;
10846		/* Add back in counts associated with the new frags */
10847		blk = blkmap(fs, blksfree, bbase);
10848		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10849		/* If a complete block has been reassembled, account for it. */
10850		fragno = fragstoblks(fs, bbase);
10851		if (ffs_isblock(fs, blksfree, fragno)) {
10852			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10853			ffs_clusteracct(fs, cgp, fragno, 1);
10854			cgp->cg_cs.cs_nbfree++;
10855		}
10856	}
10857	stat_jnewblk++;
10858	jnewblk->jn_state &= ~ATTACHED;
10859	jnewblk->jn_state |= UNDONE;
10860
10861	return (frags);
10862}
10863
10864static void
10865initiate_write_bmsafemap(bmsafemap, bp)
10866	struct bmsafemap *bmsafemap;
10867	struct buf *bp;			/* The cg block. */
10868{
10869	struct jaddref *jaddref;
10870	struct jnewblk *jnewblk;
10871	uint8_t *inosused;
10872	uint8_t *blksfree;
10873	struct cg *cgp;
10874	struct fs *fs;
10875	ino_t ino;
10876
10877	if (bmsafemap->sm_state & IOSTARTED)
10878		return;
10879	bmsafemap->sm_state |= IOSTARTED;
10880	/*
10881	 * Clear any inode allocations which are pending journal writes.
10882	 */
10883	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10884		cgp = (struct cg *)bp->b_data;
10885		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10886		inosused = cg_inosused(cgp);
10887		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10888			ino = jaddref->ja_ino % fs->fs_ipg;
10889			if (isset(inosused, ino)) {
10890				if ((jaddref->ja_mode & IFMT) == IFDIR)
10891					cgp->cg_cs.cs_ndir--;
10892				cgp->cg_cs.cs_nifree++;
10893				clrbit(inosused, ino);
10894				jaddref->ja_state &= ~ATTACHED;
10895				jaddref->ja_state |= UNDONE;
10896				stat_jaddref++;
10897			} else
10898				panic("initiate_write_bmsafemap: inode %ju "
10899				    "marked free", (uintmax_t)jaddref->ja_ino);
10900		}
10901	}
10902	/*
10903	 * Clear any block allocations which are pending journal writes.
10904	 */
10905	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10906		cgp = (struct cg *)bp->b_data;
10907		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10908		blksfree = cg_blksfree(cgp);
10909		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10910			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10911				continue;
10912			panic("initiate_write_bmsafemap: block %jd "
10913			    "marked free", jnewblk->jn_blkno);
10914		}
10915	}
10916	/*
10917	 * Move allocation lists to the written lists so they can be
10918	 * cleared once the block write is complete.
10919	 */
10920	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10921	    inodedep, id_deps);
10922	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10923	    newblk, nb_deps);
10924	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10925	    wk_list);
10926}
10927
10928/*
10929 * This routine is called during the completion interrupt
10930 * service routine for a disk write (from the procedure called
10931 * by the device driver to inform the filesystem caches of
10932 * a request completion).  It should be called early in this
10933 * procedure, before the block is made available to other
10934 * processes or other routines are called.
10935 *
10936 */
10937static void
10938softdep_disk_write_complete(bp)
10939	struct buf *bp;		/* describes the completed disk write */
10940{
10941	struct worklist *wk;
10942	struct worklist *owk;
10943	struct ufsmount *ump;
10944	struct workhead reattach;
10945	struct freeblks *freeblks;
10946	struct buf *sbp;
10947
10948	/*
10949	 * If an error occurred while doing the write, then the data
10950	 * has not hit the disk and the dependencies cannot be unrolled.
10951	 */
10952	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10953		return;
10954	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
10955		return;
10956	ump = VFSTOUFS(wk->wk_mp);
10957	LIST_INIT(&reattach);
10958	/*
10959	 * This lock must not be released anywhere in this code segment.
10960	 */
10961	sbp = NULL;
10962	owk = NULL;
10963	ACQUIRE_LOCK(ump);
10964	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10965		WORKLIST_REMOVE(wk);
10966		atomic_add_long(&dep_write[wk->wk_type], 1);
10967		if (wk == owk)
10968			panic("duplicate worklist: %p\n", wk);
10969		owk = wk;
10970		switch (wk->wk_type) {
10971
10972		case D_PAGEDEP:
10973			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10974				WORKLIST_INSERT(&reattach, wk);
10975			continue;
10976
10977		case D_INODEDEP:
10978			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10979				WORKLIST_INSERT(&reattach, wk);
10980			continue;
10981
10982		case D_BMSAFEMAP:
10983			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10984				WORKLIST_INSERT(&reattach, wk);
10985			continue;
10986
10987		case D_MKDIR:
10988			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10989			continue;
10990
10991		case D_ALLOCDIRECT:
10992			wk->wk_state |= COMPLETE;
10993			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10994			continue;
10995
10996		case D_ALLOCINDIR:
10997			wk->wk_state |= COMPLETE;
10998			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10999			continue;
11000
11001		case D_INDIRDEP:
11002			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
11003				WORKLIST_INSERT(&reattach, wk);
11004			continue;
11005
11006		case D_FREEBLKS:
11007			wk->wk_state |= COMPLETE;
11008			freeblks = WK_FREEBLKS(wk);
11009			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11010			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11011				add_to_worklist(wk, WK_NODELAY);
11012			continue;
11013
11014		case D_FREEWORK:
11015			handle_written_freework(WK_FREEWORK(wk));
11016			break;
11017
11018		case D_JSEGDEP:
11019			free_jsegdep(WK_JSEGDEP(wk));
11020			continue;
11021
11022		case D_JSEG:
11023			handle_written_jseg(WK_JSEG(wk), bp);
11024			continue;
11025
11026		case D_SBDEP:
11027			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11028				WORKLIST_INSERT(&reattach, wk);
11029			continue;
11030
11031		case D_FREEDEP:
11032			free_freedep(WK_FREEDEP(wk));
11033			continue;
11034
11035		default:
11036			panic("handle_disk_write_complete: Unknown type %s",
11037			    TYPENAME(wk->wk_type));
11038			/* NOTREACHED */
11039		}
11040	}
11041	/*
11042	 * Reattach any requests that must be redone.
11043	 */
11044	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11045		WORKLIST_REMOVE(wk);
11046		WORKLIST_INSERT(&bp->b_dep, wk);
11047	}
11048	FREE_LOCK(ump);
11049	if (sbp)
11050		brelse(sbp);
11051}
11052
11053/*
11054 * Called from within softdep_disk_write_complete above. Note that
11055 * this routine is always called from interrupt level with further
11056 * splbio interrupts blocked.
11057 */
11058static void
11059handle_allocdirect_partdone(adp, wkhd)
11060	struct allocdirect *adp;	/* the completed allocdirect */
11061	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11062{
11063	struct allocdirectlst *listhead;
11064	struct allocdirect *listadp;
11065	struct inodedep *inodedep;
11066	long bsize;
11067
11068	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11069		return;
11070	/*
11071	 * The on-disk inode cannot claim to be any larger than the last
11072	 * fragment that has been written. Otherwise, the on-disk inode
11073	 * might have fragments that were not the last block in the file
11074	 * which would corrupt the filesystem. Thus, we cannot free any
11075	 * allocdirects after one whose ad_oldblkno claims a fragment as
11076	 * these blocks must be rolled back to zero before writing the inode.
11077	 * We check the currently active set of allocdirects in id_inoupdt
11078	 * or id_extupdt as appropriate.
11079	 */
11080	inodedep = adp->ad_inodedep;
11081	bsize = inodedep->id_fs->fs_bsize;
11082	if (adp->ad_state & EXTDATA)
11083		listhead = &inodedep->id_extupdt;
11084	else
11085		listhead = &inodedep->id_inoupdt;
11086	TAILQ_FOREACH(listadp, listhead, ad_next) {
11087		/* found our block */
11088		if (listadp == adp)
11089			break;
11090		/* continue if ad_oldlbn is not a fragment */
11091		if (listadp->ad_oldsize == 0 ||
11092		    listadp->ad_oldsize == bsize)
11093			continue;
11094		/* hit a fragment */
11095		return;
11096	}
11097	/*
11098	 * If we have reached the end of the current list without
11099	 * finding the just finished dependency, then it must be
11100	 * on the future dependency list. Future dependencies cannot
11101	 * be freed until they are moved to the current list.
11102	 */
11103	if (listadp == NULL) {
11104#ifdef DEBUG
11105		if (adp->ad_state & EXTDATA)
11106			listhead = &inodedep->id_newextupdt;
11107		else
11108			listhead = &inodedep->id_newinoupdt;
11109		TAILQ_FOREACH(listadp, listhead, ad_next)
11110			/* found our block */
11111			if (listadp == adp)
11112				break;
11113		if (listadp == NULL)
11114			panic("handle_allocdirect_partdone: lost dep");
11115#endif /* DEBUG */
11116		return;
11117	}
11118	/*
11119	 * If we have found the just finished dependency, then queue
11120	 * it along with anything that follows it that is complete.
11121	 * Since the pointer has not yet been written in the inode
11122	 * as the dependency prevents it, place the allocdirect on the
11123	 * bufwait list where it will be freed once the pointer is
11124	 * valid.
11125	 */
11126	if (wkhd == NULL)
11127		wkhd = &inodedep->id_bufwait;
11128	for (; adp; adp = listadp) {
11129		listadp = TAILQ_NEXT(adp, ad_next);
11130		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11131			return;
11132		TAILQ_REMOVE(listhead, adp, ad_next);
11133		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11134	}
11135}
11136
11137/*
11138 * Called from within softdep_disk_write_complete above.  This routine
11139 * completes successfully written allocindirs.
11140 */
11141static void
11142handle_allocindir_partdone(aip)
11143	struct allocindir *aip;		/* the completed allocindir */
11144{
11145	struct indirdep *indirdep;
11146
11147	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11148		return;
11149	indirdep = aip->ai_indirdep;
11150	LIST_REMOVE(aip, ai_next);
11151	/*
11152	 * Don't set a pointer while the buffer is undergoing IO or while
11153	 * we have active truncations.
11154	 */
11155	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11156		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11157		return;
11158	}
11159	if (indirdep->ir_state & UFS1FMT)
11160		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11161		    aip->ai_newblkno;
11162	else
11163		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11164		    aip->ai_newblkno;
11165	/*
11166	 * Await the pointer write before freeing the allocindir.
11167	 */
11168	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11169}
11170
11171/*
11172 * Release segments held on a jwork list.
11173 */
11174static void
11175handle_jwork(wkhd)
11176	struct workhead *wkhd;
11177{
11178	struct worklist *wk;
11179
11180	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11181		WORKLIST_REMOVE(wk);
11182		switch (wk->wk_type) {
11183		case D_JSEGDEP:
11184			free_jsegdep(WK_JSEGDEP(wk));
11185			continue;
11186		case D_FREEDEP:
11187			free_freedep(WK_FREEDEP(wk));
11188			continue;
11189		case D_FREEFRAG:
11190			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11191			WORKITEM_FREE(wk, D_FREEFRAG);
11192			continue;
11193		case D_FREEWORK:
11194			handle_written_freework(WK_FREEWORK(wk));
11195			continue;
11196		default:
11197			panic("handle_jwork: Unknown type %s\n",
11198			    TYPENAME(wk->wk_type));
11199		}
11200	}
11201}
11202
11203/*
11204 * Handle the bufwait list on an inode when it is safe to release items
11205 * held there.  This normally happens after an inode block is written but
11206 * may be delayed and handled later if there are pending journal items that
11207 * are not yet safe to be released.
11208 */
11209static struct freefile *
11210handle_bufwait(inodedep, refhd)
11211	struct inodedep *inodedep;
11212	struct workhead *refhd;
11213{
11214	struct jaddref *jaddref;
11215	struct freefile *freefile;
11216	struct worklist *wk;
11217
11218	freefile = NULL;
11219	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11220		WORKLIST_REMOVE(wk);
11221		switch (wk->wk_type) {
11222		case D_FREEFILE:
11223			/*
11224			 * We defer adding freefile to the worklist
11225			 * until all other additions have been made to
11226			 * ensure that it will be done after all the
11227			 * old blocks have been freed.
11228			 */
11229			if (freefile != NULL)
11230				panic("handle_bufwait: freefile");
11231			freefile = WK_FREEFILE(wk);
11232			continue;
11233
11234		case D_MKDIR:
11235			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11236			continue;
11237
11238		case D_DIRADD:
11239			diradd_inode_written(WK_DIRADD(wk), inodedep);
11240			continue;
11241
11242		case D_FREEFRAG:
11243			wk->wk_state |= COMPLETE;
11244			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11245				add_to_worklist(wk, 0);
11246			continue;
11247
11248		case D_DIRREM:
11249			wk->wk_state |= COMPLETE;
11250			add_to_worklist(wk, 0);
11251			continue;
11252
11253		case D_ALLOCDIRECT:
11254		case D_ALLOCINDIR:
11255			free_newblk(WK_NEWBLK(wk));
11256			continue;
11257
11258		case D_JNEWBLK:
11259			wk->wk_state |= COMPLETE;
11260			free_jnewblk(WK_JNEWBLK(wk));
11261			continue;
11262
11263		/*
11264		 * Save freed journal segments and add references on
11265		 * the supplied list which will delay their release
11266		 * until the cg bitmap is cleared on disk.
11267		 */
11268		case D_JSEGDEP:
11269			if (refhd == NULL)
11270				free_jsegdep(WK_JSEGDEP(wk));
11271			else
11272				WORKLIST_INSERT(refhd, wk);
11273			continue;
11274
11275		case D_JADDREF:
11276			jaddref = WK_JADDREF(wk);
11277			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11278			    if_deps);
11279			/*
11280			 * Transfer any jaddrefs to the list to be freed with
11281			 * the bitmap if we're handling a removed file.
11282			 */
11283			if (refhd == NULL) {
11284				wk->wk_state |= COMPLETE;
11285				free_jaddref(jaddref);
11286			} else
11287				WORKLIST_INSERT(refhd, wk);
11288			continue;
11289
11290		default:
11291			panic("handle_bufwait: Unknown type %p(%s)",
11292			    wk, TYPENAME(wk->wk_type));
11293			/* NOTREACHED */
11294		}
11295	}
11296	return (freefile);
11297}
11298/*
11299 * Called from within softdep_disk_write_complete above to restore
11300 * in-memory inode block contents to their most up-to-date state. Note
11301 * that this routine is always called from interrupt level with further
11302 * splbio interrupts blocked.
11303 */
11304static int
11305handle_written_inodeblock(inodedep, bp)
11306	struct inodedep *inodedep;
11307	struct buf *bp;		/* buffer containing the inode block */
11308{
11309	struct freefile *freefile;
11310	struct allocdirect *adp, *nextadp;
11311	struct ufs1_dinode *dp1 = NULL;
11312	struct ufs2_dinode *dp2 = NULL;
11313	struct workhead wkhd;
11314	int hadchanges, fstype;
11315	ino_t freelink;
11316
11317	LIST_INIT(&wkhd);
11318	hadchanges = 0;
11319	freefile = NULL;
11320	if ((inodedep->id_state & IOSTARTED) == 0)
11321		panic("handle_written_inodeblock: not started");
11322	inodedep->id_state &= ~IOSTARTED;
11323	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11324		fstype = UFS1;
11325		dp1 = (struct ufs1_dinode *)bp->b_data +
11326		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11327		freelink = dp1->di_freelink;
11328	} else {
11329		fstype = UFS2;
11330		dp2 = (struct ufs2_dinode *)bp->b_data +
11331		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11332		freelink = dp2->di_freelink;
11333	}
11334	/*
11335	 * Leave this inodeblock dirty until it's in the list.
11336	 */
11337	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11338		struct inodedep *inon;
11339
11340		inon = TAILQ_NEXT(inodedep, id_unlinked);
11341		if ((inon == NULL && freelink == 0) ||
11342		    (inon && inon->id_ino == freelink)) {
11343			if (inon)
11344				inon->id_state |= UNLINKPREV;
11345			inodedep->id_state |= UNLINKNEXT;
11346		}
11347		hadchanges = 1;
11348	}
11349	/*
11350	 * If we had to rollback the inode allocation because of
11351	 * bitmaps being incomplete, then simply restore it.
11352	 * Keep the block dirty so that it will not be reclaimed until
11353	 * all associated dependencies have been cleared and the
11354	 * corresponding updates written to disk.
11355	 */
11356	if (inodedep->id_savedino1 != NULL) {
11357		hadchanges = 1;
11358		if (fstype == UFS1)
11359			*dp1 = *inodedep->id_savedino1;
11360		else
11361			*dp2 = *inodedep->id_savedino2;
11362		free(inodedep->id_savedino1, M_SAVEDINO);
11363		inodedep->id_savedino1 = NULL;
11364		if ((bp->b_flags & B_DELWRI) == 0)
11365			stat_inode_bitmap++;
11366		bdirty(bp);
11367		/*
11368		 * If the inode is clear here and GOINGAWAY it will never
11369		 * be written.  Process the bufwait and clear any pending
11370		 * work which may include the freefile.
11371		 */
11372		if (inodedep->id_state & GOINGAWAY)
11373			goto bufwait;
11374		return (1);
11375	}
11376	inodedep->id_state |= COMPLETE;
11377	/*
11378	 * Roll forward anything that had to be rolled back before
11379	 * the inode could be updated.
11380	 */
11381	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11382		nextadp = TAILQ_NEXT(adp, ad_next);
11383		if (adp->ad_state & ATTACHED)
11384			panic("handle_written_inodeblock: new entry");
11385		if (fstype == UFS1) {
11386			if (adp->ad_offset < NDADDR) {
11387				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11388					panic("%s %s #%jd mismatch %d != %jd",
11389					    "handle_written_inodeblock:",
11390					    "direct pointer",
11391					    (intmax_t)adp->ad_offset,
11392					    dp1->di_db[adp->ad_offset],
11393					    (intmax_t)adp->ad_oldblkno);
11394				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11395			} else {
11396				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11397					panic("%s: %s #%jd allocated as %d",
11398					    "handle_written_inodeblock",
11399					    "indirect pointer",
11400					    (intmax_t)adp->ad_offset - NDADDR,
11401					    dp1->di_ib[adp->ad_offset - NDADDR]);
11402				dp1->di_ib[adp->ad_offset - NDADDR] =
11403				    adp->ad_newblkno;
11404			}
11405		} else {
11406			if (adp->ad_offset < NDADDR) {
11407				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11408					panic("%s: %s #%jd %s %jd != %jd",
11409					    "handle_written_inodeblock",
11410					    "direct pointer",
11411					    (intmax_t)adp->ad_offset, "mismatch",
11412					    (intmax_t)dp2->di_db[adp->ad_offset],
11413					    (intmax_t)adp->ad_oldblkno);
11414				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11415			} else {
11416				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11417					panic("%s: %s #%jd allocated as %jd",
11418					    "handle_written_inodeblock",
11419					    "indirect pointer",
11420					    (intmax_t)adp->ad_offset - NDADDR,
11421					    (intmax_t)
11422					    dp2->di_ib[adp->ad_offset - NDADDR]);
11423				dp2->di_ib[adp->ad_offset - NDADDR] =
11424				    adp->ad_newblkno;
11425			}
11426		}
11427		adp->ad_state &= ~UNDONE;
11428		adp->ad_state |= ATTACHED;
11429		hadchanges = 1;
11430	}
11431	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11432		nextadp = TAILQ_NEXT(adp, ad_next);
11433		if (adp->ad_state & ATTACHED)
11434			panic("handle_written_inodeblock: new entry");
11435		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11436			panic("%s: direct pointers #%jd %s %jd != %jd",
11437			    "handle_written_inodeblock",
11438			    (intmax_t)adp->ad_offset, "mismatch",
11439			    (intmax_t)dp2->di_extb[adp->ad_offset],
11440			    (intmax_t)adp->ad_oldblkno);
11441		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11442		adp->ad_state &= ~UNDONE;
11443		adp->ad_state |= ATTACHED;
11444		hadchanges = 1;
11445	}
11446	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11447		stat_direct_blk_ptrs++;
11448	/*
11449	 * Reset the file size to its most up-to-date value.
11450	 */
11451	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11452		panic("handle_written_inodeblock: bad size");
11453	if (inodedep->id_savednlink > LINK_MAX)
11454		panic("handle_written_inodeblock: Invalid link count "
11455		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11456	if (fstype == UFS1) {
11457		if (dp1->di_nlink != inodedep->id_savednlink) {
11458			dp1->di_nlink = inodedep->id_savednlink;
11459			hadchanges = 1;
11460		}
11461		if (dp1->di_size != inodedep->id_savedsize) {
11462			dp1->di_size = inodedep->id_savedsize;
11463			hadchanges = 1;
11464		}
11465	} else {
11466		if (dp2->di_nlink != inodedep->id_savednlink) {
11467			dp2->di_nlink = inodedep->id_savednlink;
11468			hadchanges = 1;
11469		}
11470		if (dp2->di_size != inodedep->id_savedsize) {
11471			dp2->di_size = inodedep->id_savedsize;
11472			hadchanges = 1;
11473		}
11474		if (dp2->di_extsize != inodedep->id_savedextsize) {
11475			dp2->di_extsize = inodedep->id_savedextsize;
11476			hadchanges = 1;
11477		}
11478	}
11479	inodedep->id_savedsize = -1;
11480	inodedep->id_savedextsize = -1;
11481	inodedep->id_savednlink = -1;
11482	/*
11483	 * If there were any rollbacks in the inode block, then it must be
11484	 * marked dirty so that its will eventually get written back in
11485	 * its correct form.
11486	 */
11487	if (hadchanges)
11488		bdirty(bp);
11489bufwait:
11490	/*
11491	 * Process any allocdirects that completed during the update.
11492	 */
11493	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11494		handle_allocdirect_partdone(adp, &wkhd);
11495	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11496		handle_allocdirect_partdone(adp, &wkhd);
11497	/*
11498	 * Process deallocations that were held pending until the
11499	 * inode had been written to disk. Freeing of the inode
11500	 * is delayed until after all blocks have been freed to
11501	 * avoid creation of new <vfsid, inum, lbn> triples
11502	 * before the old ones have been deleted.  Completely
11503	 * unlinked inodes are not processed until the unlinked
11504	 * inode list is written or the last reference is removed.
11505	 */
11506	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11507		freefile = handle_bufwait(inodedep, NULL);
11508		if (freefile && !LIST_EMPTY(&wkhd)) {
11509			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11510			freefile = NULL;
11511		}
11512	}
11513	/*
11514	 * Move rolled forward dependency completions to the bufwait list
11515	 * now that those that were already written have been processed.
11516	 */
11517	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11518		panic("handle_written_inodeblock: bufwait but no changes");
11519	jwork_move(&inodedep->id_bufwait, &wkhd);
11520
11521	if (freefile != NULL) {
11522		/*
11523		 * If the inode is goingaway it was never written.  Fake up
11524		 * the state here so free_inodedep() can succeed.
11525		 */
11526		if (inodedep->id_state & GOINGAWAY)
11527			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11528		if (free_inodedep(inodedep) == 0)
11529			panic("handle_written_inodeblock: live inodedep %p",
11530			    inodedep);
11531		add_to_worklist(&freefile->fx_list, 0);
11532		return (0);
11533	}
11534
11535	/*
11536	 * If no outstanding dependencies, free it.
11537	 */
11538	if (free_inodedep(inodedep) ||
11539	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11540	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11541	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11542	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11543		return (0);
11544	return (hadchanges);
11545}
11546
11547static int
11548handle_written_indirdep(indirdep, bp, bpp)
11549	struct indirdep *indirdep;
11550	struct buf *bp;
11551	struct buf **bpp;
11552{
11553	struct allocindir *aip;
11554	struct buf *sbp;
11555	int chgs;
11556
11557	if (indirdep->ir_state & GOINGAWAY)
11558		panic("handle_written_indirdep: indirdep gone");
11559	if ((indirdep->ir_state & IOSTARTED) == 0)
11560		panic("handle_written_indirdep: IO not started");
11561	chgs = 0;
11562	/*
11563	 * If there were rollbacks revert them here.
11564	 */
11565	if (indirdep->ir_saveddata) {
11566		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11567		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11568			free(indirdep->ir_saveddata, M_INDIRDEP);
11569			indirdep->ir_saveddata = NULL;
11570		}
11571		chgs = 1;
11572	}
11573	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11574	indirdep->ir_state |= ATTACHED;
11575	/*
11576	 * Move allocindirs with written pointers to the completehd if
11577	 * the indirdep's pointer is not yet written.  Otherwise
11578	 * free them here.
11579	 */
11580	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11581		LIST_REMOVE(aip, ai_next);
11582		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11583			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11584			    ai_next);
11585			newblk_freefrag(&aip->ai_block);
11586			continue;
11587		}
11588		free_newblk(&aip->ai_block);
11589	}
11590	/*
11591	 * Move allocindirs that have finished dependency processing from
11592	 * the done list to the write list after updating the pointers.
11593	 */
11594	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11595		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11596			handle_allocindir_partdone(aip);
11597			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11598				panic("disk_write_complete: not gone");
11599			chgs = 1;
11600		}
11601	}
11602	/*
11603	 * Preserve the indirdep if there were any changes or if it is not
11604	 * yet valid on disk.
11605	 */
11606	if (chgs) {
11607		stat_indir_blk_ptrs++;
11608		bdirty(bp);
11609		return (1);
11610	}
11611	/*
11612	 * If there were no changes we can discard the savedbp and detach
11613	 * ourselves from the buf.  We are only carrying completed pointers
11614	 * in this case.
11615	 */
11616	sbp = indirdep->ir_savebp;
11617	sbp->b_flags |= B_INVAL | B_NOCACHE;
11618	indirdep->ir_savebp = NULL;
11619	indirdep->ir_bp = NULL;
11620	if (*bpp != NULL)
11621		panic("handle_written_indirdep: bp already exists.");
11622	*bpp = sbp;
11623	/*
11624	 * The indirdep may not be freed until its parent points at it.
11625	 */
11626	if (indirdep->ir_state & DEPCOMPLETE)
11627		free_indirdep(indirdep);
11628
11629	return (0);
11630}
11631
11632/*
11633 * Process a diradd entry after its dependent inode has been written.
11634 * This routine must be called with splbio interrupts blocked.
11635 */
11636static void
11637diradd_inode_written(dap, inodedep)
11638	struct diradd *dap;
11639	struct inodedep *inodedep;
11640{
11641
11642	dap->da_state |= COMPLETE;
11643	complete_diradd(dap);
11644	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11645}
11646
11647/*
11648 * Returns true if the bmsafemap will have rollbacks when written.  Must only
11649 * be called with the per-filesystem lock and the buf lock on the cg held.
11650 */
11651static int
11652bmsafemap_backgroundwrite(bmsafemap, bp)
11653	struct bmsafemap *bmsafemap;
11654	struct buf *bp;
11655{
11656	int dirty;
11657
11658	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11659	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11660	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11661	/*
11662	 * If we're initiating a background write we need to process the
11663	 * rollbacks as they exist now, not as they exist when IO starts.
11664	 * No other consumers will look at the contents of the shadowed
11665	 * buf so this is safe to do here.
11666	 */
11667	if (bp->b_xflags & BX_BKGRDMARKER)
11668		initiate_write_bmsafemap(bmsafemap, bp);
11669
11670	return (dirty);
11671}
11672
11673/*
11674 * Re-apply an allocation when a cg write is complete.
11675 */
11676static int
11677jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11678	struct jnewblk *jnewblk;
11679	struct fs *fs;
11680	struct cg *cgp;
11681	uint8_t *blksfree;
11682{
11683	ufs1_daddr_t fragno;
11684	ufs2_daddr_t blkno;
11685	long cgbno, bbase;
11686	int frags, blk;
11687	int i;
11688
11689	frags = 0;
11690	cgbno = dtogd(fs, jnewblk->jn_blkno);
11691	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11692		if (isclr(blksfree, cgbno + i))
11693			panic("jnewblk_rollforward: re-allocated fragment");
11694		frags++;
11695	}
11696	if (frags == fs->fs_frag) {
11697		blkno = fragstoblks(fs, cgbno);
11698		ffs_clrblock(fs, blksfree, (long)blkno);
11699		ffs_clusteracct(fs, cgp, blkno, -1);
11700		cgp->cg_cs.cs_nbfree--;
11701	} else {
11702		bbase = cgbno - fragnum(fs, cgbno);
11703		cgbno += jnewblk->jn_oldfrags;
11704                /* If a complete block had been reassembled, account for it. */
11705		fragno = fragstoblks(fs, bbase);
11706		if (ffs_isblock(fs, blksfree, fragno)) {
11707			cgp->cg_cs.cs_nffree += fs->fs_frag;
11708			ffs_clusteracct(fs, cgp, fragno, -1);
11709			cgp->cg_cs.cs_nbfree--;
11710		}
11711		/* Decrement the old frags.  */
11712		blk = blkmap(fs, blksfree, bbase);
11713		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11714		/* Allocate the fragment */
11715		for (i = 0; i < frags; i++)
11716			clrbit(blksfree, cgbno + i);
11717		cgp->cg_cs.cs_nffree -= frags;
11718		/* Add back in counts associated with the new frags */
11719		blk = blkmap(fs, blksfree, bbase);
11720		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11721	}
11722	return (frags);
11723}
11724
11725/*
11726 * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11727 * changes if it's not a background write.  Set all written dependencies
11728 * to DEPCOMPLETE and free the structure if possible.
11729 */
11730static int
11731handle_written_bmsafemap(bmsafemap, bp)
11732	struct bmsafemap *bmsafemap;
11733	struct buf *bp;
11734{
11735	struct newblk *newblk;
11736	struct inodedep *inodedep;
11737	struct jaddref *jaddref, *jatmp;
11738	struct jnewblk *jnewblk, *jntmp;
11739	struct ufsmount *ump;
11740	uint8_t *inosused;
11741	uint8_t *blksfree;
11742	struct cg *cgp;
11743	struct fs *fs;
11744	ino_t ino;
11745	int foreground;
11746	int chgs;
11747
11748	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11749		panic("initiate_write_bmsafemap: Not started\n");
11750	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11751	chgs = 0;
11752	bmsafemap->sm_state &= ~IOSTARTED;
11753	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11754	/*
11755	 * Release journal work that was waiting on the write.
11756	 */
11757	handle_jwork(&bmsafemap->sm_freewr);
11758
11759	/*
11760	 * Restore unwritten inode allocation pending jaddref writes.
11761	 */
11762	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11763		cgp = (struct cg *)bp->b_data;
11764		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11765		inosused = cg_inosused(cgp);
11766		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11767		    ja_bmdeps, jatmp) {
11768			if ((jaddref->ja_state & UNDONE) == 0)
11769				continue;
11770			ino = jaddref->ja_ino % fs->fs_ipg;
11771			if (isset(inosused, ino))
11772				panic("handle_written_bmsafemap: "
11773				    "re-allocated inode");
11774			/* Do the roll-forward only if it's a real copy. */
11775			if (foreground) {
11776				if ((jaddref->ja_mode & IFMT) == IFDIR)
11777					cgp->cg_cs.cs_ndir++;
11778				cgp->cg_cs.cs_nifree--;
11779				setbit(inosused, ino);
11780				chgs = 1;
11781			}
11782			jaddref->ja_state &= ~UNDONE;
11783			jaddref->ja_state |= ATTACHED;
11784			free_jaddref(jaddref);
11785		}
11786	}
11787	/*
11788	 * Restore any block allocations which are pending journal writes.
11789	 */
11790	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11791		cgp = (struct cg *)bp->b_data;
11792		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11793		blksfree = cg_blksfree(cgp);
11794		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11795		    jntmp) {
11796			if ((jnewblk->jn_state & UNDONE) == 0)
11797				continue;
11798			/* Do the roll-forward only if it's a real copy. */
11799			if (foreground &&
11800			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11801				chgs = 1;
11802			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11803			jnewblk->jn_state |= ATTACHED;
11804			free_jnewblk(jnewblk);
11805		}
11806	}
11807	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11808		newblk->nb_state |= DEPCOMPLETE;
11809		newblk->nb_state &= ~ONDEPLIST;
11810		newblk->nb_bmsafemap = NULL;
11811		LIST_REMOVE(newblk, nb_deps);
11812		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11813			handle_allocdirect_partdone(
11814			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11815		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11816			handle_allocindir_partdone(
11817			    WK_ALLOCINDIR(&newblk->nb_list));
11818		else if (newblk->nb_list.wk_type != D_NEWBLK)
11819			panic("handle_written_bmsafemap: Unexpected type: %s",
11820			    TYPENAME(newblk->nb_list.wk_type));
11821	}
11822	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11823		inodedep->id_state |= DEPCOMPLETE;
11824		inodedep->id_state &= ~ONDEPLIST;
11825		LIST_REMOVE(inodedep, id_deps);
11826		inodedep->id_bmsafemap = NULL;
11827	}
11828	LIST_REMOVE(bmsafemap, sm_next);
11829	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11830	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11831	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11832	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11833	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11834		LIST_REMOVE(bmsafemap, sm_hash);
11835		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11836		return (0);
11837	}
11838	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11839	if (foreground)
11840		bdirty(bp);
11841	return (1);
11842}
11843
11844/*
11845 * Try to free a mkdir dependency.
11846 */
11847static void
11848complete_mkdir(mkdir)
11849	struct mkdir *mkdir;
11850{
11851	struct diradd *dap;
11852
11853	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11854		return;
11855	LIST_REMOVE(mkdir, md_mkdirs);
11856	dap = mkdir->md_diradd;
11857	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11858	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11859		dap->da_state |= DEPCOMPLETE;
11860		complete_diradd(dap);
11861	}
11862	WORKITEM_FREE(mkdir, D_MKDIR);
11863}
11864
11865/*
11866 * Handle the completion of a mkdir dependency.
11867 */
11868static void
11869handle_written_mkdir(mkdir, type)
11870	struct mkdir *mkdir;
11871	int type;
11872{
11873
11874	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11875		panic("handle_written_mkdir: bad type");
11876	mkdir->md_state |= COMPLETE;
11877	complete_mkdir(mkdir);
11878}
11879
11880static int
11881free_pagedep(pagedep)
11882	struct pagedep *pagedep;
11883{
11884	int i;
11885
11886	if (pagedep->pd_state & NEWBLOCK)
11887		return (0);
11888	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11889		return (0);
11890	for (i = 0; i < DAHASHSZ; i++)
11891		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11892			return (0);
11893	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11894		return (0);
11895	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11896		return (0);
11897	if (pagedep->pd_state & ONWORKLIST)
11898		WORKLIST_REMOVE(&pagedep->pd_list);
11899	LIST_REMOVE(pagedep, pd_hash);
11900	WORKITEM_FREE(pagedep, D_PAGEDEP);
11901
11902	return (1);
11903}
11904
11905/*
11906 * Called from within softdep_disk_write_complete above.
11907 * A write operation was just completed. Removed inodes can
11908 * now be freed and associated block pointers may be committed.
11909 * Note that this routine is always called from interrupt level
11910 * with further splbio interrupts blocked.
11911 */
11912static int
11913handle_written_filepage(pagedep, bp)
11914	struct pagedep *pagedep;
11915	struct buf *bp;		/* buffer containing the written page */
11916{
11917	struct dirrem *dirrem;
11918	struct diradd *dap, *nextdap;
11919	struct direct *ep;
11920	int i, chgs;
11921
11922	if ((pagedep->pd_state & IOSTARTED) == 0)
11923		panic("handle_written_filepage: not started");
11924	pagedep->pd_state &= ~IOSTARTED;
11925	/*
11926	 * Process any directory removals that have been committed.
11927	 */
11928	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11929		LIST_REMOVE(dirrem, dm_next);
11930		dirrem->dm_state |= COMPLETE;
11931		dirrem->dm_dirinum = pagedep->pd_ino;
11932		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11933		    ("handle_written_filepage: Journal entries not written."));
11934		add_to_worklist(&dirrem->dm_list, 0);
11935	}
11936	/*
11937	 * Free any directory additions that have been committed.
11938	 * If it is a newly allocated block, we have to wait until
11939	 * the on-disk directory inode claims the new block.
11940	 */
11941	if ((pagedep->pd_state & NEWBLOCK) == 0)
11942		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11943			free_diradd(dap, NULL);
11944	/*
11945	 * Uncommitted directory entries must be restored.
11946	 */
11947	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11948		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11949		     dap = nextdap) {
11950			nextdap = LIST_NEXT(dap, da_pdlist);
11951			if (dap->da_state & ATTACHED)
11952				panic("handle_written_filepage: attached");
11953			ep = (struct direct *)
11954			    ((char *)bp->b_data + dap->da_offset);
11955			ep->d_ino = dap->da_newinum;
11956			dap->da_state &= ~UNDONE;
11957			dap->da_state |= ATTACHED;
11958			chgs = 1;
11959			/*
11960			 * If the inode referenced by the directory has
11961			 * been written out, then the dependency can be
11962			 * moved to the pending list.
11963			 */
11964			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11965				LIST_REMOVE(dap, da_pdlist);
11966				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11967				    da_pdlist);
11968			}
11969		}
11970	}
11971	/*
11972	 * If there were any rollbacks in the directory, then it must be
11973	 * marked dirty so that its will eventually get written back in
11974	 * its correct form.
11975	 */
11976	if (chgs) {
11977		if ((bp->b_flags & B_DELWRI) == 0)
11978			stat_dir_entry++;
11979		bdirty(bp);
11980		return (1);
11981	}
11982	/*
11983	 * If we are not waiting for a new directory block to be
11984	 * claimed by its inode, then the pagedep will be freed.
11985	 * Otherwise it will remain to track any new entries on
11986	 * the page in case they are fsync'ed.
11987	 */
11988	free_pagedep(pagedep);
11989	return (0);
11990}
11991
11992/*
11993 * Writing back in-core inode structures.
11994 *
11995 * The filesystem only accesses an inode's contents when it occupies an
11996 * "in-core" inode structure.  These "in-core" structures are separate from
11997 * the page frames used to cache inode blocks.  Only the latter are
11998 * transferred to/from the disk.  So, when the updated contents of the
11999 * "in-core" inode structure are copied to the corresponding in-memory inode
12000 * block, the dependencies are also transferred.  The following procedure is
12001 * called when copying a dirty "in-core" inode to a cached inode block.
12002 */
12003
12004/*
12005 * Called when an inode is loaded from disk. If the effective link count
12006 * differed from the actual link count when it was last flushed, then we
12007 * need to ensure that the correct effective link count is put back.
12008 */
12009void
12010softdep_load_inodeblock(ip)
12011	struct inode *ip;	/* the "in_core" copy of the inode */
12012{
12013	struct inodedep *inodedep;
12014
12015	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12016	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12017	/*
12018	 * Check for alternate nlink count.
12019	 */
12020	ip->i_effnlink = ip->i_nlink;
12021	ACQUIRE_LOCK(ip->i_ump);
12022	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
12023	    &inodedep) == 0) {
12024		FREE_LOCK(ip->i_ump);
12025		return;
12026	}
12027	ip->i_effnlink -= inodedep->id_nlinkdelta;
12028	FREE_LOCK(ip->i_ump);
12029}
12030
12031/*
12032 * This routine is called just before the "in-core" inode
12033 * information is to be copied to the in-memory inode block.
12034 * Recall that an inode block contains several inodes. If
12035 * the force flag is set, then the dependencies will be
12036 * cleared so that the update can always be made. Note that
12037 * the buffer is locked when this routine is called, so we
12038 * will never be in the middle of writing the inode block
12039 * to disk.
12040 */
12041void
12042softdep_update_inodeblock(ip, bp, waitfor)
12043	struct inode *ip;	/* the "in_core" copy of the inode */
12044	struct buf *bp;		/* the buffer containing the inode block */
12045	int waitfor;		/* nonzero => update must be allowed */
12046{
12047	struct inodedep *inodedep;
12048	struct inoref *inoref;
12049	struct ufsmount *ump;
12050	struct worklist *wk;
12051	struct mount *mp;
12052	struct buf *ibp;
12053	struct fs *fs;
12054	int error;
12055
12056	ump = ip->i_ump;
12057	mp = UFSTOVFS(ump);
12058	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12059	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12060	fs = ip->i_fs;
12061	/*
12062	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12063	 * does not have access to the in-core ip so must write directly into
12064	 * the inode block buffer when setting freelink.
12065	 */
12066	if (fs->fs_magic == FS_UFS1_MAGIC)
12067		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12068		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12069	else
12070		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12071		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12072	/*
12073	 * If the effective link count is not equal to the actual link
12074	 * count, then we must track the difference in an inodedep while
12075	 * the inode is (potentially) tossed out of the cache. Otherwise,
12076	 * if there is no existing inodedep, then there are no dependencies
12077	 * to track.
12078	 */
12079	ACQUIRE_LOCK(ump);
12080again:
12081	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12082		FREE_LOCK(ump);
12083		if (ip->i_effnlink != ip->i_nlink)
12084			panic("softdep_update_inodeblock: bad link count");
12085		return;
12086	}
12087	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12088		panic("softdep_update_inodeblock: bad delta");
12089	/*
12090	 * If we're flushing all dependencies we must also move any waiting
12091	 * for journal writes onto the bufwait list prior to I/O.
12092	 */
12093	if (waitfor) {
12094		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12095			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12096			    == DEPCOMPLETE) {
12097				jwait(&inoref->if_list, MNT_WAIT);
12098				goto again;
12099			}
12100		}
12101	}
12102	/*
12103	 * Changes have been initiated. Anything depending on these
12104	 * changes cannot occur until this inode has been written.
12105	 */
12106	inodedep->id_state &= ~COMPLETE;
12107	if ((inodedep->id_state & ONWORKLIST) == 0)
12108		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12109	/*
12110	 * Any new dependencies associated with the incore inode must
12111	 * now be moved to the list associated with the buffer holding
12112	 * the in-memory copy of the inode. Once merged process any
12113	 * allocdirects that are completed by the merger.
12114	 */
12115	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12116	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12117		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12118		    NULL);
12119	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12120	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12121		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12122		    NULL);
12123	/*
12124	 * Now that the inode has been pushed into the buffer, the
12125	 * operations dependent on the inode being written to disk
12126	 * can be moved to the id_bufwait so that they will be
12127	 * processed when the buffer I/O completes.
12128	 */
12129	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12130		WORKLIST_REMOVE(wk);
12131		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12132	}
12133	/*
12134	 * Newly allocated inodes cannot be written until the bitmap
12135	 * that allocates them have been written (indicated by
12136	 * DEPCOMPLETE being set in id_state). If we are doing a
12137	 * forced sync (e.g., an fsync on a file), we force the bitmap
12138	 * to be written so that the update can be done.
12139	 */
12140	if (waitfor == 0) {
12141		FREE_LOCK(ump);
12142		return;
12143	}
12144retry:
12145	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12146		FREE_LOCK(ump);
12147		return;
12148	}
12149	ibp = inodedep->id_bmsafemap->sm_buf;
12150	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12151	if (ibp == NULL) {
12152		/*
12153		 * If ibp came back as NULL, the dependency could have been
12154		 * freed while we slept.  Look it up again, and check to see
12155		 * that it has completed.
12156		 */
12157		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12158			goto retry;
12159		FREE_LOCK(ump);
12160		return;
12161	}
12162	FREE_LOCK(ump);
12163	if ((error = bwrite(ibp)) != 0)
12164		softdep_error("softdep_update_inodeblock: bwrite", error);
12165}
12166
12167/*
12168 * Merge the a new inode dependency list (such as id_newinoupdt) into an
12169 * old inode dependency list (such as id_inoupdt). This routine must be
12170 * called with splbio interrupts blocked.
12171 */
12172static void
12173merge_inode_lists(newlisthead, oldlisthead)
12174	struct allocdirectlst *newlisthead;
12175	struct allocdirectlst *oldlisthead;
12176{
12177	struct allocdirect *listadp, *newadp;
12178
12179	newadp = TAILQ_FIRST(newlisthead);
12180	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12181		if (listadp->ad_offset < newadp->ad_offset) {
12182			listadp = TAILQ_NEXT(listadp, ad_next);
12183			continue;
12184		}
12185		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12186		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12187		if (listadp->ad_offset == newadp->ad_offset) {
12188			allocdirect_merge(oldlisthead, newadp,
12189			    listadp);
12190			listadp = newadp;
12191		}
12192		newadp = TAILQ_FIRST(newlisthead);
12193	}
12194	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12195		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12196		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12197	}
12198}
12199
12200/*
12201 * If we are doing an fsync, then we must ensure that any directory
12202 * entries for the inode have been written after the inode gets to disk.
12203 */
12204int
12205softdep_fsync(vp)
12206	struct vnode *vp;	/* the "in_core" copy of the inode */
12207{
12208	struct inodedep *inodedep;
12209	struct pagedep *pagedep;
12210	struct inoref *inoref;
12211	struct ufsmount *ump;
12212	struct worklist *wk;
12213	struct diradd *dap;
12214	struct mount *mp;
12215	struct vnode *pvp;
12216	struct inode *ip;
12217	struct buf *bp;
12218	struct fs *fs;
12219	struct thread *td = curthread;
12220	int error, flushparent, pagedep_new_block;
12221	ino_t parentino;
12222	ufs_lbn_t lbn;
12223
12224	ip = VTOI(vp);
12225	fs = ip->i_fs;
12226	ump = ip->i_ump;
12227	mp = vp->v_mount;
12228	if (MOUNTEDSOFTDEP(mp) == 0)
12229		return (0);
12230	ACQUIRE_LOCK(ump);
12231restart:
12232	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12233		FREE_LOCK(ump);
12234		return (0);
12235	}
12236	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12237		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12238		    == DEPCOMPLETE) {
12239			jwait(&inoref->if_list, MNT_WAIT);
12240			goto restart;
12241		}
12242	}
12243	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12244	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12245	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12246	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12247	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12248		panic("softdep_fsync: pending ops %p", inodedep);
12249	for (error = 0, flushparent = 0; ; ) {
12250		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12251			break;
12252		if (wk->wk_type != D_DIRADD)
12253			panic("softdep_fsync: Unexpected type %s",
12254			    TYPENAME(wk->wk_type));
12255		dap = WK_DIRADD(wk);
12256		/*
12257		 * Flush our parent if this directory entry has a MKDIR_PARENT
12258		 * dependency or is contained in a newly allocated block.
12259		 */
12260		if (dap->da_state & DIRCHG)
12261			pagedep = dap->da_previous->dm_pagedep;
12262		else
12263			pagedep = dap->da_pagedep;
12264		parentino = pagedep->pd_ino;
12265		lbn = pagedep->pd_lbn;
12266		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12267			panic("softdep_fsync: dirty");
12268		if ((dap->da_state & MKDIR_PARENT) ||
12269		    (pagedep->pd_state & NEWBLOCK))
12270			flushparent = 1;
12271		else
12272			flushparent = 0;
12273		/*
12274		 * If we are being fsync'ed as part of vgone'ing this vnode,
12275		 * then we will not be able to release and recover the
12276		 * vnode below, so we just have to give up on writing its
12277		 * directory entry out. It will eventually be written, just
12278		 * not now, but then the user was not asking to have it
12279		 * written, so we are not breaking any promises.
12280		 */
12281		if (vp->v_iflag & VI_DOOMED)
12282			break;
12283		/*
12284		 * We prevent deadlock by always fetching inodes from the
12285		 * root, moving down the directory tree. Thus, when fetching
12286		 * our parent directory, we first try to get the lock. If
12287		 * that fails, we must unlock ourselves before requesting
12288		 * the lock on our parent. See the comment in ufs_lookup
12289		 * for details on possible races.
12290		 */
12291		FREE_LOCK(ump);
12292		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12293		    FFSV_FORCEINSMQ)) {
12294			error = vfs_busy(mp, MBF_NOWAIT);
12295			if (error != 0) {
12296				vfs_ref(mp);
12297				VOP_UNLOCK(vp, 0);
12298				error = vfs_busy(mp, 0);
12299				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12300				vfs_rel(mp);
12301				if (error != 0)
12302					return (ENOENT);
12303				if (vp->v_iflag & VI_DOOMED) {
12304					vfs_unbusy(mp);
12305					return (ENOENT);
12306				}
12307			}
12308			VOP_UNLOCK(vp, 0);
12309			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12310			    &pvp, FFSV_FORCEINSMQ);
12311			vfs_unbusy(mp);
12312			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12313			if (vp->v_iflag & VI_DOOMED) {
12314				if (error == 0)
12315					vput(pvp);
12316				error = ENOENT;
12317			}
12318			if (error != 0)
12319				return (error);
12320		}
12321		/*
12322		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12323		 * that are contained in direct blocks will be resolved by
12324		 * doing a ffs_update. Pagedeps contained in indirect blocks
12325		 * may require a complete sync'ing of the directory. So, we
12326		 * try the cheap and fast ffs_update first, and if that fails,
12327		 * then we do the slower ffs_syncvnode of the directory.
12328		 */
12329		if (flushparent) {
12330			int locked;
12331
12332			if ((error = ffs_update(pvp, 1)) != 0) {
12333				vput(pvp);
12334				return (error);
12335			}
12336			ACQUIRE_LOCK(ump);
12337			locked = 1;
12338			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12339				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12340					if (wk->wk_type != D_DIRADD)
12341						panic("softdep_fsync: Unexpected type %s",
12342						      TYPENAME(wk->wk_type));
12343					dap = WK_DIRADD(wk);
12344					if (dap->da_state & DIRCHG)
12345						pagedep = dap->da_previous->dm_pagedep;
12346					else
12347						pagedep = dap->da_pagedep;
12348					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12349					FREE_LOCK(ump);
12350					locked = 0;
12351					if (pagedep_new_block && (error =
12352					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12353						vput(pvp);
12354						return (error);
12355					}
12356				}
12357			}
12358			if (locked)
12359				FREE_LOCK(ump);
12360		}
12361		/*
12362		 * Flush directory page containing the inode's name.
12363		 */
12364		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12365		    &bp);
12366		if (error == 0)
12367			error = bwrite(bp);
12368		else
12369			brelse(bp);
12370		vput(pvp);
12371		if (error != 0)
12372			return (error);
12373		ACQUIRE_LOCK(ump);
12374		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12375			break;
12376	}
12377	FREE_LOCK(ump);
12378	return (0);
12379}
12380
12381/*
12382 * Flush all the dirty bitmaps associated with the block device
12383 * before flushing the rest of the dirty blocks so as to reduce
12384 * the number of dependencies that will have to be rolled back.
12385 *
12386 * XXX Unused?
12387 */
12388void
12389softdep_fsync_mountdev(vp)
12390	struct vnode *vp;
12391{
12392	struct buf *bp, *nbp;
12393	struct worklist *wk;
12394	struct bufobj *bo;
12395
12396	if (!vn_isdisk(vp, NULL))
12397		panic("softdep_fsync_mountdev: vnode not a disk");
12398	bo = &vp->v_bufobj;
12399restart:
12400	BO_LOCK(bo);
12401	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12402		/*
12403		 * If it is already scheduled, skip to the next buffer.
12404		 */
12405		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12406			continue;
12407
12408		if ((bp->b_flags & B_DELWRI) == 0)
12409			panic("softdep_fsync_mountdev: not dirty");
12410		/*
12411		 * We are only interested in bitmaps with outstanding
12412		 * dependencies.
12413		 */
12414		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12415		    wk->wk_type != D_BMSAFEMAP ||
12416		    (bp->b_vflags & BV_BKGRDINPROG)) {
12417			BUF_UNLOCK(bp);
12418			continue;
12419		}
12420		BO_UNLOCK(bo);
12421		bremfree(bp);
12422		(void) bawrite(bp);
12423		goto restart;
12424	}
12425	drain_output(vp);
12426	BO_UNLOCK(bo);
12427}
12428
12429/*
12430 * Sync all cylinder groups that were dirty at the time this function is
12431 * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12432 * is used to flush freedep activity that may be holding up writes to a
12433 * indirect block.
12434 */
12435static int
12436sync_cgs(mp, waitfor)
12437	struct mount *mp;
12438	int waitfor;
12439{
12440	struct bmsafemap *bmsafemap;
12441	struct bmsafemap *sentinel;
12442	struct ufsmount *ump;
12443	struct buf *bp;
12444	int error;
12445
12446	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12447	sentinel->sm_cg = -1;
12448	ump = VFSTOUFS(mp);
12449	error = 0;
12450	ACQUIRE_LOCK(ump);
12451	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12452	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12453	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12454		/* Skip sentinels and cgs with no work to release. */
12455		if (bmsafemap->sm_cg == -1 ||
12456		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12457		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12458			LIST_REMOVE(sentinel, sm_next);
12459			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12460			continue;
12461		}
12462		/*
12463		 * If we don't get the lock and we're waiting try again, if
12464		 * not move on to the next buf and try to sync it.
12465		 */
12466		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12467		if (bp == NULL && waitfor == MNT_WAIT)
12468			continue;
12469		LIST_REMOVE(sentinel, sm_next);
12470		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12471		if (bp == NULL)
12472			continue;
12473		FREE_LOCK(ump);
12474		if (waitfor == MNT_NOWAIT)
12475			bawrite(bp);
12476		else
12477			error = bwrite(bp);
12478		ACQUIRE_LOCK(ump);
12479		if (error)
12480			break;
12481	}
12482	LIST_REMOVE(sentinel, sm_next);
12483	FREE_LOCK(ump);
12484	free(sentinel, M_BMSAFEMAP);
12485	return (error);
12486}
12487
12488/*
12489 * This routine is called when we are trying to synchronously flush a
12490 * file. This routine must eliminate any filesystem metadata dependencies
12491 * so that the syncing routine can succeed.
12492 */
12493int
12494softdep_sync_metadata(struct vnode *vp)
12495{
12496	struct inode *ip;
12497	int error;
12498
12499	ip = VTOI(vp);
12500	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12501	    ("softdep_sync_metadata called on non-softdep filesystem"));
12502	/*
12503	 * Ensure that any direct block dependencies have been cleared,
12504	 * truncations are started, and inode references are journaled.
12505	 */
12506	ACQUIRE_LOCK(ip->i_ump);
12507	/*
12508	 * Write all journal records to prevent rollbacks on devvp.
12509	 */
12510	if (vp->v_type == VCHR)
12511		softdep_flushjournal(vp->v_mount);
12512	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12513	/*
12514	 * Ensure that all truncates are written so we won't find deps on
12515	 * indirect blocks.
12516	 */
12517	process_truncates(vp);
12518	FREE_LOCK(ip->i_ump);
12519
12520	return (error);
12521}
12522
12523/*
12524 * This routine is called when we are attempting to sync a buf with
12525 * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12526 * other IO it can but returns EBUSY if the buffer is not yet able to
12527 * be written.  Dependencies which will not cause rollbacks will always
12528 * return 0.
12529 */
12530int
12531softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12532{
12533	struct indirdep *indirdep;
12534	struct pagedep *pagedep;
12535	struct allocindir *aip;
12536	struct newblk *newblk;
12537	struct ufsmount *ump;
12538	struct buf *nbp;
12539	struct worklist *wk;
12540	int i, error;
12541
12542	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12543	    ("softdep_sync_buf called on non-softdep filesystem"));
12544	/*
12545	 * For VCHR we just don't want to force flush any dependencies that
12546	 * will cause rollbacks.
12547	 */
12548	if (vp->v_type == VCHR) {
12549		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12550			return (EBUSY);
12551		return (0);
12552	}
12553	ump = VTOI(vp)->i_ump;
12554	ACQUIRE_LOCK(ump);
12555	/*
12556	 * As we hold the buffer locked, none of its dependencies
12557	 * will disappear.
12558	 */
12559	error = 0;
12560top:
12561	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12562		switch (wk->wk_type) {
12563
12564		case D_ALLOCDIRECT:
12565		case D_ALLOCINDIR:
12566			newblk = WK_NEWBLK(wk);
12567			if (newblk->nb_jnewblk != NULL) {
12568				if (waitfor == MNT_NOWAIT) {
12569					error = EBUSY;
12570					goto out_unlock;
12571				}
12572				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12573				goto top;
12574			}
12575			if (newblk->nb_state & DEPCOMPLETE ||
12576			    waitfor == MNT_NOWAIT)
12577				continue;
12578			nbp = newblk->nb_bmsafemap->sm_buf;
12579			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12580			if (nbp == NULL)
12581				goto top;
12582			FREE_LOCK(ump);
12583			if ((error = bwrite(nbp)) != 0)
12584				goto out;
12585			ACQUIRE_LOCK(ump);
12586			continue;
12587
12588		case D_INDIRDEP:
12589			indirdep = WK_INDIRDEP(wk);
12590			if (waitfor == MNT_NOWAIT) {
12591				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12592				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12593					error = EBUSY;
12594					goto out_unlock;
12595				}
12596			}
12597			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12598				panic("softdep_sync_buf: truncation pending.");
12599		restart:
12600			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12601				newblk = (struct newblk *)aip;
12602				if (newblk->nb_jnewblk != NULL) {
12603					jwait(&newblk->nb_jnewblk->jn_list,
12604					    waitfor);
12605					goto restart;
12606				}
12607				if (newblk->nb_state & DEPCOMPLETE)
12608					continue;
12609				nbp = newblk->nb_bmsafemap->sm_buf;
12610				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12611				if (nbp == NULL)
12612					goto restart;
12613				FREE_LOCK(ump);
12614				if ((error = bwrite(nbp)) != 0)
12615					goto out;
12616				ACQUIRE_LOCK(ump);
12617				goto restart;
12618			}
12619			continue;
12620
12621		case D_PAGEDEP:
12622			/*
12623			 * Only flush directory entries in synchronous passes.
12624			 */
12625			if (waitfor != MNT_WAIT) {
12626				error = EBUSY;
12627				goto out_unlock;
12628			}
12629			/*
12630			 * While syncing snapshots, we must allow recursive
12631			 * lookups.
12632			 */
12633			BUF_AREC(bp);
12634			/*
12635			 * We are trying to sync a directory that may
12636			 * have dependencies on both its own metadata
12637			 * and/or dependencies on the inodes of any
12638			 * recently allocated files. We walk its diradd
12639			 * lists pushing out the associated inode.
12640			 */
12641			pagedep = WK_PAGEDEP(wk);
12642			for (i = 0; i < DAHASHSZ; i++) {
12643				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12644					continue;
12645				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12646				    &pagedep->pd_diraddhd[i]))) {
12647					BUF_NOREC(bp);
12648					goto out_unlock;
12649				}
12650			}
12651			BUF_NOREC(bp);
12652			continue;
12653
12654		case D_FREEWORK:
12655		case D_FREEDEP:
12656		case D_JSEGDEP:
12657		case D_JNEWBLK:
12658			continue;
12659
12660		default:
12661			panic("softdep_sync_buf: Unknown type %s",
12662			    TYPENAME(wk->wk_type));
12663			/* NOTREACHED */
12664		}
12665	}
12666out_unlock:
12667	FREE_LOCK(ump);
12668out:
12669	return (error);
12670}
12671
12672/*
12673 * Flush the dependencies associated with an inodedep.
12674 * Called with splbio blocked.
12675 */
12676static int
12677flush_inodedep_deps(vp, mp, ino)
12678	struct vnode *vp;
12679	struct mount *mp;
12680	ino_t ino;
12681{
12682	struct inodedep *inodedep;
12683	struct inoref *inoref;
12684	struct ufsmount *ump;
12685	int error, waitfor;
12686
12687	/*
12688	 * This work is done in two passes. The first pass grabs most
12689	 * of the buffers and begins asynchronously writing them. The
12690	 * only way to wait for these asynchronous writes is to sleep
12691	 * on the filesystem vnode which may stay busy for a long time
12692	 * if the filesystem is active. So, instead, we make a second
12693	 * pass over the dependencies blocking on each write. In the
12694	 * usual case we will be blocking against a write that we
12695	 * initiated, so when it is done the dependency will have been
12696	 * resolved. Thus the second pass is expected to end quickly.
12697	 * We give a brief window at the top of the loop to allow
12698	 * any pending I/O to complete.
12699	 */
12700	ump = VFSTOUFS(mp);
12701	LOCK_OWNED(ump);
12702	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12703		if (error)
12704			return (error);
12705		FREE_LOCK(ump);
12706		ACQUIRE_LOCK(ump);
12707restart:
12708		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12709			return (0);
12710		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12711			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12712			    == DEPCOMPLETE) {
12713				jwait(&inoref->if_list, MNT_WAIT);
12714				goto restart;
12715			}
12716		}
12717		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12718		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12719		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12720		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12721			continue;
12722		/*
12723		 * If pass2, we are done, otherwise do pass 2.
12724		 */
12725		if (waitfor == MNT_WAIT)
12726			break;
12727		waitfor = MNT_WAIT;
12728	}
12729	/*
12730	 * Try freeing inodedep in case all dependencies have been removed.
12731	 */
12732	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12733		(void) free_inodedep(inodedep);
12734	return (0);
12735}
12736
12737/*
12738 * Flush an inode dependency list.
12739 * Called with splbio blocked.
12740 */
12741static int
12742flush_deplist(listhead, waitfor, errorp)
12743	struct allocdirectlst *listhead;
12744	int waitfor;
12745	int *errorp;
12746{
12747	struct allocdirect *adp;
12748	struct newblk *newblk;
12749	struct ufsmount *ump;
12750	struct buf *bp;
12751
12752	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12753		return (0);
12754	ump = VFSTOUFS(adp->ad_list.wk_mp);
12755	LOCK_OWNED(ump);
12756	TAILQ_FOREACH(adp, listhead, ad_next) {
12757		newblk = (struct newblk *)adp;
12758		if (newblk->nb_jnewblk != NULL) {
12759			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12760			return (1);
12761		}
12762		if (newblk->nb_state & DEPCOMPLETE)
12763			continue;
12764		bp = newblk->nb_bmsafemap->sm_buf;
12765		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12766		if (bp == NULL) {
12767			if (waitfor == MNT_NOWAIT)
12768				continue;
12769			return (1);
12770		}
12771		FREE_LOCK(ump);
12772		if (waitfor == MNT_NOWAIT)
12773			bawrite(bp);
12774		else
12775			*errorp = bwrite(bp);
12776		ACQUIRE_LOCK(ump);
12777		return (1);
12778	}
12779	return (0);
12780}
12781
12782/*
12783 * Flush dependencies associated with an allocdirect block.
12784 */
12785static int
12786flush_newblk_dep(vp, mp, lbn)
12787	struct vnode *vp;
12788	struct mount *mp;
12789	ufs_lbn_t lbn;
12790{
12791	struct newblk *newblk;
12792	struct ufsmount *ump;
12793	struct bufobj *bo;
12794	struct inode *ip;
12795	struct buf *bp;
12796	ufs2_daddr_t blkno;
12797	int error;
12798
12799	error = 0;
12800	bo = &vp->v_bufobj;
12801	ip = VTOI(vp);
12802	blkno = DIP(ip, i_db[lbn]);
12803	if (blkno == 0)
12804		panic("flush_newblk_dep: Missing block");
12805	ump = VFSTOUFS(mp);
12806	ACQUIRE_LOCK(ump);
12807	/*
12808	 * Loop until all dependencies related to this block are satisfied.
12809	 * We must be careful to restart after each sleep in case a write
12810	 * completes some part of this process for us.
12811	 */
12812	for (;;) {
12813		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12814			FREE_LOCK(ump);
12815			break;
12816		}
12817		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12818			panic("flush_newblk_deps: Bad newblk %p", newblk);
12819		/*
12820		 * Flush the journal.
12821		 */
12822		if (newblk->nb_jnewblk != NULL) {
12823			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12824			continue;
12825		}
12826		/*
12827		 * Write the bitmap dependency.
12828		 */
12829		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12830			bp = newblk->nb_bmsafemap->sm_buf;
12831			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12832			if (bp == NULL)
12833				continue;
12834			FREE_LOCK(ump);
12835			error = bwrite(bp);
12836			if (error)
12837				break;
12838			ACQUIRE_LOCK(ump);
12839			continue;
12840		}
12841		/*
12842		 * Write the buffer.
12843		 */
12844		FREE_LOCK(ump);
12845		BO_LOCK(bo);
12846		bp = gbincore(bo, lbn);
12847		if (bp != NULL) {
12848			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12849			    LK_INTERLOCK, BO_LOCKPTR(bo));
12850			if (error == ENOLCK) {
12851				ACQUIRE_LOCK(ump);
12852				continue; /* Slept, retry */
12853			}
12854			if (error != 0)
12855				break;	/* Failed */
12856			if (bp->b_flags & B_DELWRI) {
12857				bremfree(bp);
12858				error = bwrite(bp);
12859				if (error)
12860					break;
12861			} else
12862				BUF_UNLOCK(bp);
12863		} else
12864			BO_UNLOCK(bo);
12865		/*
12866		 * We have to wait for the direct pointers to
12867		 * point at the newdirblk before the dependency
12868		 * will go away.
12869		 */
12870		error = ffs_update(vp, 1);
12871		if (error)
12872			break;
12873		ACQUIRE_LOCK(ump);
12874	}
12875	return (error);
12876}
12877
12878/*
12879 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12880 * Called with splbio blocked.
12881 */
12882static int
12883flush_pagedep_deps(pvp, mp, diraddhdp)
12884	struct vnode *pvp;
12885	struct mount *mp;
12886	struct diraddhd *diraddhdp;
12887{
12888	struct inodedep *inodedep;
12889	struct inoref *inoref;
12890	struct ufsmount *ump;
12891	struct diradd *dap;
12892	struct vnode *vp;
12893	int error = 0;
12894	struct buf *bp;
12895	ino_t inum;
12896	struct diraddhd unfinished;
12897
12898	LIST_INIT(&unfinished);
12899	ump = VFSTOUFS(mp);
12900	LOCK_OWNED(ump);
12901restart:
12902	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12903		/*
12904		 * Flush ourselves if this directory entry
12905		 * has a MKDIR_PARENT dependency.
12906		 */
12907		if (dap->da_state & MKDIR_PARENT) {
12908			FREE_LOCK(ump);
12909			if ((error = ffs_update(pvp, 1)) != 0)
12910				break;
12911			ACQUIRE_LOCK(ump);
12912			/*
12913			 * If that cleared dependencies, go on to next.
12914			 */
12915			if (dap != LIST_FIRST(diraddhdp))
12916				continue;
12917			/*
12918			 * All MKDIR_PARENT dependencies and all the
12919			 * NEWBLOCK pagedeps that are contained in direct
12920			 * blocks were resolved by doing above ffs_update.
12921			 * Pagedeps contained in indirect blocks may
12922			 * require a complete sync'ing of the directory.
12923			 * We are in the midst of doing a complete sync,
12924			 * so if they are not resolved in this pass we
12925			 * defer them for now as they will be sync'ed by
12926			 * our caller shortly.
12927			 */
12928			LIST_REMOVE(dap, da_pdlist);
12929			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
12930			continue;
12931		}
12932		/*
12933		 * A newly allocated directory must have its "." and
12934		 * ".." entries written out before its name can be
12935		 * committed in its parent.
12936		 */
12937		inum = dap->da_newinum;
12938		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12939			panic("flush_pagedep_deps: lost inode1");
12940		/*
12941		 * Wait for any pending journal adds to complete so we don't
12942		 * cause rollbacks while syncing.
12943		 */
12944		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12945			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12946			    == DEPCOMPLETE) {
12947				jwait(&inoref->if_list, MNT_WAIT);
12948				goto restart;
12949			}
12950		}
12951		if (dap->da_state & MKDIR_BODY) {
12952			FREE_LOCK(ump);
12953			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12954			    FFSV_FORCEINSMQ)))
12955				break;
12956			error = flush_newblk_dep(vp, mp, 0);
12957			/*
12958			 * If we still have the dependency we might need to
12959			 * update the vnode to sync the new link count to
12960			 * disk.
12961			 */
12962			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12963				error = ffs_update(vp, 1);
12964			vput(vp);
12965			if (error != 0)
12966				break;
12967			ACQUIRE_LOCK(ump);
12968			/*
12969			 * If that cleared dependencies, go on to next.
12970			 */
12971			if (dap != LIST_FIRST(diraddhdp))
12972				continue;
12973			if (dap->da_state & MKDIR_BODY) {
12974				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12975				    &inodedep);
12976				panic("flush_pagedep_deps: MKDIR_BODY "
12977				    "inodedep %p dap %p vp %p",
12978				    inodedep, dap, vp);
12979			}
12980		}
12981		/*
12982		 * Flush the inode on which the directory entry depends.
12983		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12984		 * the only remaining dependency is that the updated inode
12985		 * count must get pushed to disk. The inode has already
12986		 * been pushed into its inode buffer (via VOP_UPDATE) at
12987		 * the time of the reference count change. So we need only
12988		 * locate that buffer, ensure that there will be no rollback
12989		 * caused by a bitmap dependency, then write the inode buffer.
12990		 */
12991retry:
12992		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12993			panic("flush_pagedep_deps: lost inode");
12994		/*
12995		 * If the inode still has bitmap dependencies,
12996		 * push them to disk.
12997		 */
12998		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12999			bp = inodedep->id_bmsafemap->sm_buf;
13000			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13001			if (bp == NULL)
13002				goto retry;
13003			FREE_LOCK(ump);
13004			if ((error = bwrite(bp)) != 0)
13005				break;
13006			ACQUIRE_LOCK(ump);
13007			if (dap != LIST_FIRST(diraddhdp))
13008				continue;
13009		}
13010		/*
13011		 * If the inode is still sitting in a buffer waiting
13012		 * to be written or waiting for the link count to be
13013		 * adjusted update it here to flush it to disk.
13014		 */
13015		if (dap == LIST_FIRST(diraddhdp)) {
13016			FREE_LOCK(ump);
13017			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13018			    FFSV_FORCEINSMQ)))
13019				break;
13020			error = ffs_update(vp, 1);
13021			vput(vp);
13022			if (error)
13023				break;
13024			ACQUIRE_LOCK(ump);
13025		}
13026		/*
13027		 * If we have failed to get rid of all the dependencies
13028		 * then something is seriously wrong.
13029		 */
13030		if (dap == LIST_FIRST(diraddhdp)) {
13031			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13032			panic("flush_pagedep_deps: failed to flush "
13033			    "inodedep %p ino %ju dap %p",
13034			    inodedep, (uintmax_t)inum, dap);
13035		}
13036	}
13037	if (error)
13038		ACQUIRE_LOCK(ump);
13039	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13040		LIST_REMOVE(dap, da_pdlist);
13041		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13042	}
13043	return (error);
13044}
13045
13046/*
13047 * A large burst of file addition or deletion activity can drive the
13048 * memory load excessively high. First attempt to slow things down
13049 * using the techniques below. If that fails, this routine requests
13050 * the offending operations to fall back to running synchronously
13051 * until the memory load returns to a reasonable level.
13052 */
13053int
13054softdep_slowdown(vp)
13055	struct vnode *vp;
13056{
13057	struct ufsmount *ump;
13058	int jlow;
13059	int max_softdeps_hard;
13060
13061	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13062	    ("softdep_slowdown called on non-softdep filesystem"));
13063	ump = VFSTOUFS(vp->v_mount);
13064	ACQUIRE_LOCK(ump);
13065	jlow = 0;
13066	/*
13067	 * Check for journal space if needed.
13068	 */
13069	if (DOINGSUJ(vp)) {
13070		if (journal_space(ump, 0) == 0)
13071			jlow = 1;
13072	}
13073	/*
13074	 * If the system is under its limits and our filesystem is
13075	 * not responsible for more than our share of the usage and
13076	 * we are not low on journal space, then no need to slow down.
13077	 */
13078	max_softdeps_hard = max_softdeps * 11 / 10;
13079	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13080	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13081	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13082	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13083	    ump->softdep_curdeps[D_DIRREM] <
13084	    (max_softdeps_hard / 2) / stat_flush_threads &&
13085	    ump->softdep_curdeps[D_INODEDEP] <
13086	    max_softdeps_hard / stat_flush_threads &&
13087	    ump->softdep_curdeps[D_INDIRDEP] <
13088	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13089	    ump->softdep_curdeps[D_FREEBLKS] <
13090	    max_softdeps_hard / stat_flush_threads) {
13091		FREE_LOCK(ump);
13092  		return (0);
13093	}
13094	/*
13095	 * If the journal is low or our filesystem is over its limit
13096	 * then speedup the cleanup.
13097	 */
13098	if (ump->softdep_curdeps[D_INDIRDEP] <
13099	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13100		softdep_speedup(ump);
13101	stat_sync_limit_hit += 1;
13102	FREE_LOCK(ump);
13103	/*
13104	 * We only slow down the rate at which new dependencies are
13105	 * generated if we are not using journaling. With journaling,
13106	 * the cleanup should always be sufficient to keep things
13107	 * under control.
13108	 */
13109	if (DOINGSUJ(vp))
13110		return (0);
13111	return (1);
13112}
13113
13114/*
13115 * Called by the allocation routines when they are about to fail
13116 * in the hope that we can free up the requested resource (inodes
13117 * or disk space).
13118 *
13119 * First check to see if the work list has anything on it. If it has,
13120 * clean up entries until we successfully free the requested resource.
13121 * Because this process holds inodes locked, we cannot handle any remove
13122 * requests that might block on a locked inode as that could lead to
13123 * deadlock. If the worklist yields none of the requested resource,
13124 * start syncing out vnodes to free up the needed space.
13125 */
13126int
13127softdep_request_cleanup(fs, vp, cred, resource)
13128	struct fs *fs;
13129	struct vnode *vp;
13130	struct ucred *cred;
13131	int resource;
13132{
13133	struct ufsmount *ump;
13134	struct mount *mp;
13135	struct vnode *lvp, *mvp;
13136	long starttime;
13137	ufs2_daddr_t needed;
13138	int error;
13139
13140	/*
13141	 * If we are being called because of a process doing a
13142	 * copy-on-write, then it is not safe to process any
13143	 * worklist items as we will recurse into the copyonwrite
13144	 * routine.  This will result in an incoherent snapshot.
13145	 * If the vnode that we hold is a snapshot, we must avoid
13146	 * handling other resources that could cause deadlock.
13147	 */
13148	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13149		return (0);
13150
13151	if (resource == FLUSH_BLOCKS_WAIT)
13152		stat_cleanup_blkrequests += 1;
13153	else
13154		stat_cleanup_inorequests += 1;
13155
13156	mp = vp->v_mount;
13157	ump = VFSTOUFS(mp);
13158	mtx_assert(UFS_MTX(ump), MA_OWNED);
13159	UFS_UNLOCK(ump);
13160	error = ffs_update(vp, 1);
13161	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13162		UFS_LOCK(ump);
13163		return (0);
13164	}
13165	/*
13166	 * If we are in need of resources, start by cleaning up
13167	 * any block removals associated with our inode.
13168	 */
13169	ACQUIRE_LOCK(ump);
13170	process_removes(vp);
13171	process_truncates(vp);
13172	FREE_LOCK(ump);
13173	/*
13174	 * Now clean up at least as many resources as we will need.
13175	 *
13176	 * When requested to clean up inodes, the number that are needed
13177	 * is set by the number of simultaneous writers (mnt_writeopcount)
13178	 * plus a bit of slop (2) in case some more writers show up while
13179	 * we are cleaning.
13180	 *
13181	 * When requested to free up space, the amount of space that
13182	 * we need is enough blocks to allocate a full-sized segment
13183	 * (fs_contigsumsize). The number of such segments that will
13184	 * be needed is set by the number of simultaneous writers
13185	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13186	 * writers show up while we are cleaning.
13187	 *
13188	 * Additionally, if we are unpriviledged and allocating space,
13189	 * we need to ensure that we clean up enough blocks to get the
13190	 * needed number of blocks over the threshhold of the minimum
13191	 * number of blocks required to be kept free by the filesystem
13192	 * (fs_minfree).
13193	 */
13194	if (resource == FLUSH_INODES_WAIT) {
13195		needed = vp->v_mount->mnt_writeopcount + 2;
13196	} else if (resource == FLUSH_BLOCKS_WAIT) {
13197		needed = (vp->v_mount->mnt_writeopcount + 2) *
13198		    fs->fs_contigsumsize;
13199		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13200			needed += fragstoblks(fs,
13201			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13202			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13203	} else {
13204		UFS_LOCK(ump);
13205		printf("softdep_request_cleanup: Unknown resource type %d\n",
13206		    resource);
13207		return (0);
13208	}
13209	starttime = time_second;
13210retry:
13211	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13212	    fs->fs_cstotal.cs_nbfree <= needed) ||
13213	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13214	    fs->fs_cstotal.cs_nifree <= needed)) {
13215		ACQUIRE_LOCK(ump);
13216		if (ump->softdep_on_worklist > 0 &&
13217		    process_worklist_item(UFSTOVFS(ump),
13218		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13219			stat_worklist_push += 1;
13220		FREE_LOCK(ump);
13221	}
13222	/*
13223	 * If we still need resources and there are no more worklist
13224	 * entries to process to obtain them, we have to start flushing
13225	 * the dirty vnodes to force the release of additional requests
13226	 * to the worklist that we can then process to reap addition
13227	 * resources. We walk the vnodes associated with the mount point
13228	 * until we get the needed worklist requests that we can reap.
13229	 */
13230	if ((resource == FLUSH_BLOCKS_WAIT &&
13231	     fs->fs_cstotal.cs_nbfree <= needed) ||
13232	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13233	     fs->fs_cstotal.cs_nifree <= needed)) {
13234		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13235			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13236				VI_UNLOCK(lvp);
13237				continue;
13238			}
13239			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13240			    curthread))
13241				continue;
13242			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13243				vput(lvp);
13244				continue;
13245			}
13246			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13247			vput(lvp);
13248		}
13249		lvp = ump->um_devvp;
13250		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13251			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13252			VOP_UNLOCK(lvp, 0);
13253		}
13254		if (ump->softdep_on_worklist > 0) {
13255			stat_cleanup_retries += 1;
13256			goto retry;
13257		}
13258		stat_cleanup_failures += 1;
13259	}
13260	if (time_second - starttime > stat_cleanup_high_delay)
13261		stat_cleanup_high_delay = time_second - starttime;
13262	UFS_LOCK(ump);
13263	return (1);
13264}
13265
13266/*
13267 * If memory utilization has gotten too high, deliberately slow things
13268 * down and speed up the I/O processing.
13269 */
13270static int
13271request_cleanup(mp, resource)
13272	struct mount *mp;
13273	int resource;
13274{
13275	struct thread *td = curthread;
13276	struct ufsmount *ump;
13277
13278	ump = VFSTOUFS(mp);
13279	LOCK_OWNED(ump);
13280	/*
13281	 * We never hold up the filesystem syncer or buf daemon.
13282	 */
13283	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13284		return (0);
13285	/*
13286	 * First check to see if the work list has gotten backlogged.
13287	 * If it has, co-opt this process to help clean up two entries.
13288	 * Because this process may hold inodes locked, we cannot
13289	 * handle any remove requests that might block on a locked
13290	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13291	 * to avoid recursively processing the worklist.
13292	 */
13293	if (ump->softdep_on_worklist > max_softdeps / 10) {
13294		td->td_pflags |= TDP_SOFTDEP;
13295		process_worklist_item(mp, 2, LK_NOWAIT);
13296		td->td_pflags &= ~TDP_SOFTDEP;
13297		stat_worklist_push += 2;
13298		return(1);
13299	}
13300	/*
13301	 * Next, we attempt to speed up the syncer process. If that
13302	 * is successful, then we allow the process to continue.
13303	 */
13304	if (softdep_speedup(ump) &&
13305	    resource != FLUSH_BLOCKS_WAIT &&
13306	    resource != FLUSH_INODES_WAIT)
13307		return(0);
13308	/*
13309	 * If we are resource constrained on inode dependencies, try
13310	 * flushing some dirty inodes. Otherwise, we are constrained
13311	 * by file deletions, so try accelerating flushes of directories
13312	 * with removal dependencies. We would like to do the cleanup
13313	 * here, but we probably hold an inode locked at this point and
13314	 * that might deadlock against one that we try to clean. So,
13315	 * the best that we can do is request the syncer daemon to do
13316	 * the cleanup for us.
13317	 */
13318	switch (resource) {
13319
13320	case FLUSH_INODES:
13321	case FLUSH_INODES_WAIT:
13322		ACQUIRE_GBLLOCK(&lk);
13323		stat_ino_limit_push += 1;
13324		req_clear_inodedeps += 1;
13325		FREE_GBLLOCK(&lk);
13326		stat_countp = &stat_ino_limit_hit;
13327		break;
13328
13329	case FLUSH_BLOCKS:
13330	case FLUSH_BLOCKS_WAIT:
13331		ACQUIRE_GBLLOCK(&lk);
13332		stat_blk_limit_push += 1;
13333		req_clear_remove += 1;
13334		FREE_GBLLOCK(&lk);
13335		stat_countp = &stat_blk_limit_hit;
13336		break;
13337
13338	default:
13339		panic("request_cleanup: unknown type");
13340	}
13341	/*
13342	 * Hopefully the syncer daemon will catch up and awaken us.
13343	 * We wait at most tickdelay before proceeding in any case.
13344	 */
13345	ACQUIRE_GBLLOCK(&lk);
13346	FREE_LOCK(ump);
13347	proc_waiting += 1;
13348	if (callout_pending(&softdep_callout) == FALSE)
13349		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13350		    pause_timer, 0);
13351
13352	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13353	proc_waiting -= 1;
13354	FREE_GBLLOCK(&lk);
13355	ACQUIRE_LOCK(ump);
13356	return (1);
13357}
13358
13359/*
13360 * Awaken processes pausing in request_cleanup and clear proc_waiting
13361 * to indicate that there is no longer a timer running. Pause_timer
13362 * will be called with the global softdep mutex (&lk) locked.
13363 */
13364static void
13365pause_timer(arg)
13366	void *arg;
13367{
13368
13369	GBLLOCK_OWNED(&lk);
13370	/*
13371	 * The callout_ API has acquired mtx and will hold it around this
13372	 * function call.
13373	 */
13374	*stat_countp += proc_waiting;
13375	wakeup(&proc_waiting);
13376}
13377
13378/*
13379 * If requested, try removing inode or removal dependencies.
13380 */
13381static void
13382check_clear_deps(mp)
13383	struct mount *mp;
13384{
13385
13386	/*
13387	 * If we are suspended, it may be because of our using
13388	 * too many inodedeps, so help clear them out.
13389	 */
13390	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13391		clear_inodedeps(mp);
13392	/*
13393	 * General requests for cleanup of backed up dependencies
13394	 */
13395	ACQUIRE_GBLLOCK(&lk);
13396	if (req_clear_inodedeps) {
13397		req_clear_inodedeps -= 1;
13398		FREE_GBLLOCK(&lk);
13399		clear_inodedeps(mp);
13400		ACQUIRE_GBLLOCK(&lk);
13401		wakeup(&proc_waiting);
13402	}
13403	if (req_clear_remove) {
13404		req_clear_remove -= 1;
13405		FREE_GBLLOCK(&lk);
13406		clear_remove(mp);
13407		ACQUIRE_GBLLOCK(&lk);
13408		wakeup(&proc_waiting);
13409	}
13410	FREE_GBLLOCK(&lk);
13411}
13412
13413/*
13414 * Flush out a directory with at least one removal dependency in an effort to
13415 * reduce the number of dirrem, freefile, and freeblks dependency structures.
13416 */
13417static void
13418clear_remove(mp)
13419	struct mount *mp;
13420{
13421	struct pagedep_hashhead *pagedephd;
13422	struct pagedep *pagedep;
13423	struct ufsmount *ump;
13424	struct vnode *vp;
13425	struct bufobj *bo;
13426	int error, cnt;
13427	ino_t ino;
13428
13429	ump = VFSTOUFS(mp);
13430	LOCK_OWNED(ump);
13431
13432	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13433		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13434		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13435			ump->pagedep_nextclean = 0;
13436		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13437			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13438				continue;
13439			ino = pagedep->pd_ino;
13440			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13441				continue;
13442			FREE_LOCK(ump);
13443
13444			/*
13445			 * Let unmount clear deps
13446			 */
13447			error = vfs_busy(mp, MBF_NOWAIT);
13448			if (error != 0)
13449				goto finish_write;
13450			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13451			     FFSV_FORCEINSMQ);
13452			vfs_unbusy(mp);
13453			if (error != 0) {
13454				softdep_error("clear_remove: vget", error);
13455				goto finish_write;
13456			}
13457			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13458				softdep_error("clear_remove: fsync", error);
13459			bo = &vp->v_bufobj;
13460			BO_LOCK(bo);
13461			drain_output(vp);
13462			BO_UNLOCK(bo);
13463			vput(vp);
13464		finish_write:
13465			vn_finished_write(mp);
13466			ACQUIRE_LOCK(ump);
13467			return;
13468		}
13469	}
13470}
13471
13472/*
13473 * Clear out a block of dirty inodes in an effort to reduce
13474 * the number of inodedep dependency structures.
13475 */
13476static void
13477clear_inodedeps(mp)
13478	struct mount *mp;
13479{
13480	struct inodedep_hashhead *inodedephd;
13481	struct inodedep *inodedep;
13482	struct ufsmount *ump;
13483	struct vnode *vp;
13484	struct fs *fs;
13485	int error, cnt;
13486	ino_t firstino, lastino, ino;
13487
13488	ump = VFSTOUFS(mp);
13489	fs = ump->um_fs;
13490	LOCK_OWNED(ump);
13491	/*
13492	 * Pick a random inode dependency to be cleared.
13493	 * We will then gather up all the inodes in its block
13494	 * that have dependencies and flush them out.
13495	 */
13496	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13497		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13498		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13499			ump->inodedep_nextclean = 0;
13500		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13501			break;
13502	}
13503	if (inodedep == NULL)
13504		return;
13505	/*
13506	 * Find the last inode in the block with dependencies.
13507	 */
13508	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13509	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13510		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13511			break;
13512	/*
13513	 * Asynchronously push all but the last inode with dependencies.
13514	 * Synchronously push the last inode with dependencies to ensure
13515	 * that the inode block gets written to free up the inodedeps.
13516	 */
13517	for (ino = firstino; ino <= lastino; ino++) {
13518		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13519			continue;
13520		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13521			continue;
13522		FREE_LOCK(ump);
13523		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13524		if (error != 0) {
13525			vn_finished_write(mp);
13526			ACQUIRE_LOCK(ump);
13527			return;
13528		}
13529		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13530		    FFSV_FORCEINSMQ)) != 0) {
13531			softdep_error("clear_inodedeps: vget", error);
13532			vfs_unbusy(mp);
13533			vn_finished_write(mp);
13534			ACQUIRE_LOCK(ump);
13535			return;
13536		}
13537		vfs_unbusy(mp);
13538		if (ino == lastino) {
13539			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13540				softdep_error("clear_inodedeps: fsync1", error);
13541		} else {
13542			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13543				softdep_error("clear_inodedeps: fsync2", error);
13544			BO_LOCK(&vp->v_bufobj);
13545			drain_output(vp);
13546			BO_UNLOCK(&vp->v_bufobj);
13547		}
13548		vput(vp);
13549		vn_finished_write(mp);
13550		ACQUIRE_LOCK(ump);
13551	}
13552}
13553
13554void
13555softdep_buf_append(bp, wkhd)
13556	struct buf *bp;
13557	struct workhead *wkhd;
13558{
13559	struct worklist *wk;
13560	struct ufsmount *ump;
13561
13562	if ((wk = LIST_FIRST(wkhd)) == NULL)
13563		return;
13564	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13565	    ("softdep_buf_append called on non-softdep filesystem"));
13566	ump = VFSTOUFS(wk->wk_mp);
13567	ACQUIRE_LOCK(ump);
13568	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13569		WORKLIST_REMOVE(wk);
13570		WORKLIST_INSERT(&bp->b_dep, wk);
13571	}
13572	FREE_LOCK(ump);
13573
13574}
13575
13576void
13577softdep_inode_append(ip, cred, wkhd)
13578	struct inode *ip;
13579	struct ucred *cred;
13580	struct workhead *wkhd;
13581{
13582	struct buf *bp;
13583	struct fs *fs;
13584	int error;
13585
13586	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
13587	    ("softdep_inode_append called on non-softdep filesystem"));
13588	fs = ip->i_fs;
13589	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13590	    (int)fs->fs_bsize, cred, &bp);
13591	if (error) {
13592		bqrelse(bp);
13593		softdep_freework(wkhd);
13594		return;
13595	}
13596	softdep_buf_append(bp, wkhd);
13597	bqrelse(bp);
13598}
13599
13600void
13601softdep_freework(wkhd)
13602	struct workhead *wkhd;
13603{
13604	struct worklist *wk;
13605	struct ufsmount *ump;
13606
13607	if ((wk = LIST_FIRST(wkhd)) == NULL)
13608		return;
13609	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13610	    ("softdep_freework called on non-softdep filesystem"));
13611	ump = VFSTOUFS(wk->wk_mp);
13612	ACQUIRE_LOCK(ump);
13613	handle_jwork(wkhd);
13614	FREE_LOCK(ump);
13615}
13616
13617/*
13618 * Function to determine if the buffer has outstanding dependencies
13619 * that will cause a roll-back if the buffer is written. If wantcount
13620 * is set, return number of dependencies, otherwise just yes or no.
13621 */
13622static int
13623softdep_count_dependencies(bp, wantcount)
13624	struct buf *bp;
13625	int wantcount;
13626{
13627	struct worklist *wk;
13628	struct ufsmount *ump;
13629	struct bmsafemap *bmsafemap;
13630	struct freework *freework;
13631	struct inodedep *inodedep;
13632	struct indirdep *indirdep;
13633	struct freeblks *freeblks;
13634	struct allocindir *aip;
13635	struct pagedep *pagedep;
13636	struct dirrem *dirrem;
13637	struct newblk *newblk;
13638	struct mkdir *mkdir;
13639	struct diradd *dap;
13640	int i, retval;
13641
13642	retval = 0;
13643	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13644		return (0);
13645	ump = VFSTOUFS(wk->wk_mp);
13646	ACQUIRE_LOCK(ump);
13647	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13648		switch (wk->wk_type) {
13649
13650		case D_INODEDEP:
13651			inodedep = WK_INODEDEP(wk);
13652			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13653				/* bitmap allocation dependency */
13654				retval += 1;
13655				if (!wantcount)
13656					goto out;
13657			}
13658			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13659				/* direct block pointer dependency */
13660				retval += 1;
13661				if (!wantcount)
13662					goto out;
13663			}
13664			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13665				/* direct block pointer dependency */
13666				retval += 1;
13667				if (!wantcount)
13668					goto out;
13669			}
13670			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13671				/* Add reference dependency. */
13672				retval += 1;
13673				if (!wantcount)
13674					goto out;
13675			}
13676			continue;
13677
13678		case D_INDIRDEP:
13679			indirdep = WK_INDIRDEP(wk);
13680
13681			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13682				/* indirect truncation dependency */
13683				retval += 1;
13684				if (!wantcount)
13685					goto out;
13686			}
13687
13688			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13689				/* indirect block pointer dependency */
13690				retval += 1;
13691				if (!wantcount)
13692					goto out;
13693			}
13694			continue;
13695
13696		case D_PAGEDEP:
13697			pagedep = WK_PAGEDEP(wk);
13698			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13699				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13700					/* Journal remove ref dependency. */
13701					retval += 1;
13702					if (!wantcount)
13703						goto out;
13704				}
13705			}
13706			for (i = 0; i < DAHASHSZ; i++) {
13707
13708				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13709					/* directory entry dependency */
13710					retval += 1;
13711					if (!wantcount)
13712						goto out;
13713				}
13714			}
13715			continue;
13716
13717		case D_BMSAFEMAP:
13718			bmsafemap = WK_BMSAFEMAP(wk);
13719			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13720				/* Add reference dependency. */
13721				retval += 1;
13722				if (!wantcount)
13723					goto out;
13724			}
13725			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13726				/* Allocate block dependency. */
13727				retval += 1;
13728				if (!wantcount)
13729					goto out;
13730			}
13731			continue;
13732
13733		case D_FREEBLKS:
13734			freeblks = WK_FREEBLKS(wk);
13735			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13736				/* Freeblk journal dependency. */
13737				retval += 1;
13738				if (!wantcount)
13739					goto out;
13740			}
13741			continue;
13742
13743		case D_ALLOCDIRECT:
13744		case D_ALLOCINDIR:
13745			newblk = WK_NEWBLK(wk);
13746			if (newblk->nb_jnewblk) {
13747				/* Journal allocate dependency. */
13748				retval += 1;
13749				if (!wantcount)
13750					goto out;
13751			}
13752			continue;
13753
13754		case D_MKDIR:
13755			mkdir = WK_MKDIR(wk);
13756			if (mkdir->md_jaddref) {
13757				/* Journal reference dependency. */
13758				retval += 1;
13759				if (!wantcount)
13760					goto out;
13761			}
13762			continue;
13763
13764		case D_FREEWORK:
13765		case D_FREEDEP:
13766		case D_JSEGDEP:
13767		case D_JSEG:
13768		case D_SBDEP:
13769			/* never a dependency on these blocks */
13770			continue;
13771
13772		default:
13773			panic("softdep_count_dependencies: Unexpected type %s",
13774			    TYPENAME(wk->wk_type));
13775			/* NOTREACHED */
13776		}
13777	}
13778out:
13779	FREE_LOCK(ump);
13780	return retval;
13781}
13782
13783/*
13784 * Acquire exclusive access to a buffer.
13785 * Must be called with a locked mtx parameter.
13786 * Return acquired buffer or NULL on failure.
13787 */
13788static struct buf *
13789getdirtybuf(bp, lock, waitfor)
13790	struct buf *bp;
13791	struct rwlock *lock;
13792	int waitfor;
13793{
13794	int error;
13795
13796	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13797		if (waitfor != MNT_WAIT)
13798			return (NULL);
13799		error = BUF_LOCK(bp,
13800		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13801		/*
13802		 * Even if we sucessfully acquire bp here, we have dropped
13803		 * lock, which may violates our guarantee.
13804		 */
13805		if (error == 0)
13806			BUF_UNLOCK(bp);
13807		else if (error != ENOLCK)
13808			panic("getdirtybuf: inconsistent lock: %d", error);
13809		rw_wlock(lock);
13810		return (NULL);
13811	}
13812	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13813		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
13814			rw_wunlock(lock);
13815			BO_LOCK(bp->b_bufobj);
13816			BUF_UNLOCK(bp);
13817			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13818				bp->b_vflags |= BV_BKGRDWAIT;
13819				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13820				       PRIBIO | PDROP, "getbuf", 0);
13821			} else
13822				BO_UNLOCK(bp->b_bufobj);
13823			rw_wlock(lock);
13824			return (NULL);
13825		}
13826		BUF_UNLOCK(bp);
13827		if (waitfor != MNT_WAIT)
13828			return (NULL);
13829		/*
13830		 * The lock argument must be bp->b_vp's mutex in
13831		 * this case.
13832		 */
13833#ifdef	DEBUG_VFS_LOCKS
13834		if (bp->b_vp->v_type != VCHR)
13835			ASSERT_BO_WLOCKED(bp->b_bufobj);
13836#endif
13837		bp->b_vflags |= BV_BKGRDWAIT;
13838		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13839		return (NULL);
13840	}
13841	if ((bp->b_flags & B_DELWRI) == 0) {
13842		BUF_UNLOCK(bp);
13843		return (NULL);
13844	}
13845	bremfree(bp);
13846	return (bp);
13847}
13848
13849
13850/*
13851 * Check if it is safe to suspend the file system now.  On entry,
13852 * the vnode interlock for devvp should be held.  Return 0 with
13853 * the mount interlock held if the file system can be suspended now,
13854 * otherwise return EAGAIN with the mount interlock held.
13855 */
13856int
13857softdep_check_suspend(struct mount *mp,
13858		      struct vnode *devvp,
13859		      int softdep_depcnt,
13860		      int softdep_accdepcnt,
13861		      int secondary_writes,
13862		      int secondary_accwrites)
13863{
13864	struct bufobj *bo;
13865	struct ufsmount *ump;
13866	struct inodedep *inodedep;
13867	int error, unlinked;
13868
13869	bo = &devvp->v_bufobj;
13870	ASSERT_BO_WLOCKED(bo);
13871
13872	/*
13873	 * If we are not running with soft updates, then we need only
13874	 * deal with secondary writes as we try to suspend.
13875	 */
13876	if (MOUNTEDSOFTDEP(mp) == 0) {
13877		MNT_ILOCK(mp);
13878		while (mp->mnt_secondary_writes != 0) {
13879			BO_UNLOCK(bo);
13880			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
13881			    (PUSER - 1) | PDROP, "secwr", 0);
13882			BO_LOCK(bo);
13883			MNT_ILOCK(mp);
13884		}
13885
13886		/*
13887		 * Reasons for needing more work before suspend:
13888		 * - Dirty buffers on devvp.
13889		 * - Secondary writes occurred after start of vnode sync loop
13890		 */
13891		error = 0;
13892		if (bo->bo_numoutput > 0 ||
13893		    bo->bo_dirty.bv_cnt > 0 ||
13894		    secondary_writes != 0 ||
13895		    mp->mnt_secondary_writes != 0 ||
13896		    secondary_accwrites != mp->mnt_secondary_accwrites)
13897			error = EAGAIN;
13898		BO_UNLOCK(bo);
13899		return (error);
13900	}
13901
13902	/*
13903	 * If we are running with soft updates, then we need to coordinate
13904	 * with them as we try to suspend.
13905	 */
13906	ump = VFSTOUFS(mp);
13907	for (;;) {
13908		if (!TRY_ACQUIRE_LOCK(ump)) {
13909			BO_UNLOCK(bo);
13910			ACQUIRE_LOCK(ump);
13911			FREE_LOCK(ump);
13912			BO_LOCK(bo);
13913			continue;
13914		}
13915		MNT_ILOCK(mp);
13916		if (mp->mnt_secondary_writes != 0) {
13917			FREE_LOCK(ump);
13918			BO_UNLOCK(bo);
13919			msleep(&mp->mnt_secondary_writes,
13920			       MNT_MTX(mp),
13921			       (PUSER - 1) | PDROP, "secwr", 0);
13922			BO_LOCK(bo);
13923			continue;
13924		}
13925		break;
13926	}
13927
13928	unlinked = 0;
13929	if (MOUNTEDSUJ(mp)) {
13930		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
13931		    inodedep != NULL;
13932		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
13933			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
13934			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
13935			    UNLINKONLIST) ||
13936			    !check_inodedep_free(inodedep))
13937				continue;
13938			unlinked++;
13939		}
13940	}
13941
13942	/*
13943	 * Reasons for needing more work before suspend:
13944	 * - Dirty buffers on devvp.
13945	 * - Softdep activity occurred after start of vnode sync loop
13946	 * - Secondary writes occurred after start of vnode sync loop
13947	 */
13948	error = 0;
13949	if (bo->bo_numoutput > 0 ||
13950	    bo->bo_dirty.bv_cnt > 0 ||
13951	    softdep_depcnt != unlinked ||
13952	    ump->softdep_deps != unlinked ||
13953	    softdep_accdepcnt != ump->softdep_accdeps ||
13954	    secondary_writes != 0 ||
13955	    mp->mnt_secondary_writes != 0 ||
13956	    secondary_accwrites != mp->mnt_secondary_accwrites)
13957		error = EAGAIN;
13958	FREE_LOCK(ump);
13959	BO_UNLOCK(bo);
13960	return (error);
13961}
13962
13963
13964/*
13965 * Get the number of dependency structures for the file system, both
13966 * the current number and the total number allocated.  These will
13967 * later be used to detect that softdep processing has occurred.
13968 */
13969void
13970softdep_get_depcounts(struct mount *mp,
13971		      int *softdep_depsp,
13972		      int *softdep_accdepsp)
13973{
13974	struct ufsmount *ump;
13975
13976	if (MOUNTEDSOFTDEP(mp) == 0) {
13977		*softdep_depsp = 0;
13978		*softdep_accdepsp = 0;
13979		return;
13980	}
13981	ump = VFSTOUFS(mp);
13982	ACQUIRE_LOCK(ump);
13983	*softdep_depsp = ump->softdep_deps;
13984	*softdep_accdepsp = ump->softdep_accdeps;
13985	FREE_LOCK(ump);
13986}
13987
13988/*
13989 * Wait for pending output on a vnode to complete.
13990 * Must be called with vnode lock and interlock locked.
13991 *
13992 * XXX: Should just be a call to bufobj_wwait().
13993 */
13994static void
13995drain_output(vp)
13996	struct vnode *vp;
13997{
13998	struct bufobj *bo;
13999
14000	bo = &vp->v_bufobj;
14001	ASSERT_VOP_LOCKED(vp, "drain_output");
14002	ASSERT_BO_WLOCKED(bo);
14003
14004	while (bo->bo_numoutput) {
14005		bo->bo_flag |= BO_WWAIT;
14006		msleep((caddr_t)&bo->bo_numoutput,
14007		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
14008	}
14009}
14010
14011/*
14012 * Called whenever a buffer that is being invalidated or reallocated
14013 * contains dependencies. This should only happen if an I/O error has
14014 * occurred. The routine is called with the buffer locked.
14015 */
14016static void
14017softdep_deallocate_dependencies(bp)
14018	struct buf *bp;
14019{
14020
14021	if ((bp->b_ioflags & BIO_ERROR) == 0)
14022		panic("softdep_deallocate_dependencies: dangling deps");
14023	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14024		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14025	else
14026		printf("softdep_deallocate_dependencies: "
14027		    "got error %d while accessing filesystem\n", bp->b_error);
14028	if (bp->b_error != ENXIO)
14029		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14030}
14031
14032/*
14033 * Function to handle asynchronous write errors in the filesystem.
14034 */
14035static void
14036softdep_error(func, error)
14037	char *func;
14038	int error;
14039{
14040
14041	/* XXX should do something better! */
14042	printf("%s: got error %d while accessing filesystem\n", func, error);
14043}
14044
14045#ifdef DDB
14046
14047static void
14048inodedep_print(struct inodedep *inodedep, int verbose)
14049{
14050	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
14051	    " saveino %p\n",
14052	    inodedep, inodedep->id_fs, inodedep->id_state,
14053	    (intmax_t)inodedep->id_ino,
14054	    (intmax_t)fsbtodb(inodedep->id_fs,
14055	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14056	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
14057	    inodedep->id_savedino1);
14058
14059	if (verbose == 0)
14060		return;
14061
14062	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
14063	    "mkdiradd %p\n",
14064	    LIST_FIRST(&inodedep->id_pendinghd),
14065	    LIST_FIRST(&inodedep->id_bufwait),
14066	    LIST_FIRST(&inodedep->id_inowait),
14067	    TAILQ_FIRST(&inodedep->id_inoreflst),
14068	    inodedep->id_mkdiradd);
14069	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
14070	    TAILQ_FIRST(&inodedep->id_inoupdt),
14071	    TAILQ_FIRST(&inodedep->id_newinoupdt),
14072	    TAILQ_FIRST(&inodedep->id_extupdt),
14073	    TAILQ_FIRST(&inodedep->id_newextupdt));
14074}
14075
14076DB_SHOW_COMMAND(inodedep, db_show_inodedep)
14077{
14078
14079	if (have_addr == 0) {
14080		db_printf("Address required\n");
14081		return;
14082	}
14083	inodedep_print((struct inodedep*)addr, 1);
14084}
14085
14086DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
14087{
14088	struct inodedep_hashhead *inodedephd;
14089	struct inodedep *inodedep;
14090	struct ufsmount *ump;
14091	int cnt;
14092
14093	if (have_addr == 0) {
14094		db_printf("Address required\n");
14095		return;
14096	}
14097	ump = (struct ufsmount *)addr;
14098	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14099		inodedephd = &ump->inodedep_hashtbl[cnt];
14100		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14101			inodedep_print(inodedep, 0);
14102		}
14103	}
14104}
14105
14106DB_SHOW_COMMAND(worklist, db_show_worklist)
14107{
14108	struct worklist *wk;
14109
14110	if (have_addr == 0) {
14111		db_printf("Address required\n");
14112		return;
14113	}
14114	wk = (struct worklist *)addr;
14115	printf("worklist: %p type %s state 0x%X\n",
14116	    wk, TYPENAME(wk->wk_type), wk->wk_state);
14117}
14118
14119DB_SHOW_COMMAND(workhead, db_show_workhead)
14120{
14121	struct workhead *wkhd;
14122	struct worklist *wk;
14123	int i;
14124
14125	if (have_addr == 0) {
14126		db_printf("Address required\n");
14127		return;
14128	}
14129	wkhd = (struct workhead *)addr;
14130	wk = LIST_FIRST(wkhd);
14131	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
14132		db_printf("worklist: %p type %s state 0x%X",
14133		    wk, TYPENAME(wk->wk_type), wk->wk_state);
14134	if (i == 100)
14135		db_printf("workhead overflow");
14136	printf("\n");
14137}
14138
14139
14140DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
14141{
14142	struct mkdirlist *mkdirlisthd;
14143	struct jaddref *jaddref;
14144	struct diradd *diradd;
14145	struct mkdir *mkdir;
14146
14147	if (have_addr == 0) {
14148		db_printf("Address required\n");
14149		return;
14150	}
14151	mkdirlisthd = (struct mkdirlist *)addr;
14152	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14153		diradd = mkdir->md_diradd;
14154		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
14155		    mkdir, mkdir->md_state, diradd, diradd->da_state);
14156		if ((jaddref = mkdir->md_jaddref) != NULL)
14157			db_printf(" jaddref %p jaddref state 0x%X",
14158			    jaddref, jaddref->ja_state);
14159		db_printf("\n");
14160	}
14161}
14162
14163/* exported to ffs_vfsops.c */
14164extern void db_print_ffs(struct ufsmount *ump);
14165void
14166db_print_ffs(struct ufsmount *ump)
14167{
14168	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
14169	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
14170	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
14171	    ump->softdep_deps, ump->softdep_req);
14172}
14173
14174#endif /* DDB */
14175
14176#endif /* SOFTUPDATES */
14177