ffs_softdep.c revision 281350
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick.
3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4 * All rights reserved.
5 *
6 * The soft updates code is derived from the appendix of a University
7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8 * "Soft Updates: A Solution to the Metadata Update Problem in File
9 * Systems", CSE-TR-254-95, August 1995).
10 *
11 * Further information about soft updates can be obtained from:
12 *
13 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14 *	1614 Oxford Street		mckusick@mckusick.com
15 *	Berkeley, CA 94709-1608		+1-510-843-9542
16 *	USA
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 *
39 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40 */
41
42#include <sys/cdefs.h>
43__FBSDID("$FreeBSD: stable/10/sys/ufs/ffs/ffs_softdep.c 281350 2015-04-10 02:23:44Z kib $");
44
45#include "opt_ffs.h"
46#include "opt_quota.h"
47#include "opt_ddb.h"
48
49/*
50 * For now we want the safety net that the DEBUG flag provides.
51 */
52#ifndef DEBUG
53#define DEBUG
54#endif
55
56#include <sys/param.h>
57#include <sys/kernel.h>
58#include <sys/systm.h>
59#include <sys/bio.h>
60#include <sys/buf.h>
61#include <sys/kdb.h>
62#include <sys/kthread.h>
63#include <sys/ktr.h>
64#include <sys/limits.h>
65#include <sys/lock.h>
66#include <sys/malloc.h>
67#include <sys/mount.h>
68#include <sys/mutex.h>
69#include <sys/namei.h>
70#include <sys/priv.h>
71#include <sys/proc.h>
72#include <sys/rwlock.h>
73#include <sys/stat.h>
74#include <sys/sysctl.h>
75#include <sys/syslog.h>
76#include <sys/vnode.h>
77#include <sys/conf.h>
78
79#include <ufs/ufs/dir.h>
80#include <ufs/ufs/extattr.h>
81#include <ufs/ufs/quota.h>
82#include <ufs/ufs/inode.h>
83#include <ufs/ufs/ufsmount.h>
84#include <ufs/ffs/fs.h>
85#include <ufs/ffs/softdep.h>
86#include <ufs/ffs/ffs_extern.h>
87#include <ufs/ufs/ufs_extern.h>
88
89#include <vm/vm.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_object.h>
92
93#include <geom/geom.h>
94
95#include <ddb/ddb.h>
96
97#define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98
99#ifndef SOFTUPDATES
100
101int
102softdep_flushfiles(oldmnt, flags, td)
103	struct mount *oldmnt;
104	int flags;
105	struct thread *td;
106{
107
108	panic("softdep_flushfiles called");
109}
110
111int
112softdep_mount(devvp, mp, fs, cred)
113	struct vnode *devvp;
114	struct mount *mp;
115	struct fs *fs;
116	struct ucred *cred;
117{
118
119	return (0);
120}
121
122void
123softdep_initialize()
124{
125
126	return;
127}
128
129void
130softdep_uninitialize()
131{
132
133	return;
134}
135
136void
137softdep_unmount(mp)
138	struct mount *mp;
139{
140
141	panic("softdep_unmount called");
142}
143
144void
145softdep_setup_sbupdate(ump, fs, bp)
146	struct ufsmount *ump;
147	struct fs *fs;
148	struct buf *bp;
149{
150
151	panic("softdep_setup_sbupdate called");
152}
153
154void
155softdep_setup_inomapdep(bp, ip, newinum, mode)
156	struct buf *bp;
157	struct inode *ip;
158	ino_t newinum;
159	int mode;
160{
161
162	panic("softdep_setup_inomapdep called");
163}
164
165void
166softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
167	struct buf *bp;
168	struct mount *mp;
169	ufs2_daddr_t newblkno;
170	int frags;
171	int oldfrags;
172{
173
174	panic("softdep_setup_blkmapdep called");
175}
176
177void
178softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
179	struct inode *ip;
180	ufs_lbn_t lbn;
181	ufs2_daddr_t newblkno;
182	ufs2_daddr_t oldblkno;
183	long newsize;
184	long oldsize;
185	struct buf *bp;
186{
187
188	panic("softdep_setup_allocdirect called");
189}
190
191void
192softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
193	struct inode *ip;
194	ufs_lbn_t lbn;
195	ufs2_daddr_t newblkno;
196	ufs2_daddr_t oldblkno;
197	long newsize;
198	long oldsize;
199	struct buf *bp;
200{
201
202	panic("softdep_setup_allocext called");
203}
204
205void
206softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
207	struct inode *ip;
208	ufs_lbn_t lbn;
209	struct buf *bp;
210	int ptrno;
211	ufs2_daddr_t newblkno;
212	ufs2_daddr_t oldblkno;
213	struct buf *nbp;
214{
215
216	panic("softdep_setup_allocindir_page called");
217}
218
219void
220softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
221	struct buf *nbp;
222	struct inode *ip;
223	struct buf *bp;
224	int ptrno;
225	ufs2_daddr_t newblkno;
226{
227
228	panic("softdep_setup_allocindir_meta called");
229}
230
231void
232softdep_journal_freeblocks(ip, cred, length, flags)
233	struct inode *ip;
234	struct ucred *cred;
235	off_t length;
236	int flags;
237{
238
239	panic("softdep_journal_freeblocks called");
240}
241
242void
243softdep_journal_fsync(ip)
244	struct inode *ip;
245{
246
247	panic("softdep_journal_fsync called");
248}
249
250void
251softdep_setup_freeblocks(ip, length, flags)
252	struct inode *ip;
253	off_t length;
254	int flags;
255{
256
257	panic("softdep_setup_freeblocks called");
258}
259
260void
261softdep_freefile(pvp, ino, mode)
262		struct vnode *pvp;
263		ino_t ino;
264		int mode;
265{
266
267	panic("softdep_freefile called");
268}
269
270int
271softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
272	struct buf *bp;
273	struct inode *dp;
274	off_t diroffset;
275	ino_t newinum;
276	struct buf *newdirbp;
277	int isnewblk;
278{
279
280	panic("softdep_setup_directory_add called");
281}
282
283void
284softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
285	struct buf *bp;
286	struct inode *dp;
287	caddr_t base;
288	caddr_t oldloc;
289	caddr_t newloc;
290	int entrysize;
291{
292
293	panic("softdep_change_directoryentry_offset called");
294}
295
296void
297softdep_setup_remove(bp, dp, ip, isrmdir)
298	struct buf *bp;
299	struct inode *dp;
300	struct inode *ip;
301	int isrmdir;
302{
303
304	panic("softdep_setup_remove called");
305}
306
307void
308softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
309	struct buf *bp;
310	struct inode *dp;
311	struct inode *ip;
312	ino_t newinum;
313	int isrmdir;
314{
315
316	panic("softdep_setup_directory_change called");
317}
318
319void
320softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
321	struct mount *mp;
322	struct buf *bp;
323	ufs2_daddr_t blkno;
324	int frags;
325	struct workhead *wkhd;
326{
327
328	panic("%s called", __FUNCTION__);
329}
330
331void
332softdep_setup_inofree(mp, bp, ino, wkhd)
333	struct mount *mp;
334	struct buf *bp;
335	ino_t ino;
336	struct workhead *wkhd;
337{
338
339	panic("%s called", __FUNCTION__);
340}
341
342void
343softdep_setup_unlink(dp, ip)
344	struct inode *dp;
345	struct inode *ip;
346{
347
348	panic("%s called", __FUNCTION__);
349}
350
351void
352softdep_setup_link(dp, ip)
353	struct inode *dp;
354	struct inode *ip;
355{
356
357	panic("%s called", __FUNCTION__);
358}
359
360void
361softdep_revert_link(dp, ip)
362	struct inode *dp;
363	struct inode *ip;
364{
365
366	panic("%s called", __FUNCTION__);
367}
368
369void
370softdep_setup_rmdir(dp, ip)
371	struct inode *dp;
372	struct inode *ip;
373{
374
375	panic("%s called", __FUNCTION__);
376}
377
378void
379softdep_revert_rmdir(dp, ip)
380	struct inode *dp;
381	struct inode *ip;
382{
383
384	panic("%s called", __FUNCTION__);
385}
386
387void
388softdep_setup_create(dp, ip)
389	struct inode *dp;
390	struct inode *ip;
391{
392
393	panic("%s called", __FUNCTION__);
394}
395
396void
397softdep_revert_create(dp, ip)
398	struct inode *dp;
399	struct inode *ip;
400{
401
402	panic("%s called", __FUNCTION__);
403}
404
405void
406softdep_setup_mkdir(dp, ip)
407	struct inode *dp;
408	struct inode *ip;
409{
410
411	panic("%s called", __FUNCTION__);
412}
413
414void
415softdep_revert_mkdir(dp, ip)
416	struct inode *dp;
417	struct inode *ip;
418{
419
420	panic("%s called", __FUNCTION__);
421}
422
423void
424softdep_setup_dotdot_link(dp, ip)
425	struct inode *dp;
426	struct inode *ip;
427{
428
429	panic("%s called", __FUNCTION__);
430}
431
432int
433softdep_prealloc(vp, waitok)
434	struct vnode *vp;
435	int waitok;
436{
437
438	panic("%s called", __FUNCTION__);
439}
440
441int
442softdep_journal_lookup(mp, vpp)
443	struct mount *mp;
444	struct vnode **vpp;
445{
446
447	return (ENOENT);
448}
449
450void
451softdep_change_linkcnt(ip)
452	struct inode *ip;
453{
454
455	panic("softdep_change_linkcnt called");
456}
457
458void
459softdep_load_inodeblock(ip)
460	struct inode *ip;
461{
462
463	panic("softdep_load_inodeblock called");
464}
465
466void
467softdep_update_inodeblock(ip, bp, waitfor)
468	struct inode *ip;
469	struct buf *bp;
470	int waitfor;
471{
472
473	panic("softdep_update_inodeblock called");
474}
475
476int
477softdep_fsync(vp)
478	struct vnode *vp;	/* the "in_core" copy of the inode */
479{
480
481	return (0);
482}
483
484void
485softdep_fsync_mountdev(vp)
486	struct vnode *vp;
487{
488
489	return;
490}
491
492int
493softdep_flushworklist(oldmnt, countp, td)
494	struct mount *oldmnt;
495	int *countp;
496	struct thread *td;
497{
498
499	*countp = 0;
500	return (0);
501}
502
503int
504softdep_sync_metadata(struct vnode *vp)
505{
506
507	panic("softdep_sync_metadata called");
508}
509
510int
511softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
512{
513
514	panic("softdep_sync_buf called");
515}
516
517int
518softdep_slowdown(vp)
519	struct vnode *vp;
520{
521
522	panic("softdep_slowdown called");
523}
524
525int
526softdep_request_cleanup(fs, vp, cred, resource)
527	struct fs *fs;
528	struct vnode *vp;
529	struct ucred *cred;
530	int resource;
531{
532
533	return (0);
534}
535
536int
537softdep_check_suspend(struct mount *mp,
538		      struct vnode *devvp,
539		      int softdep_depcnt,
540		      int softdep_accdepcnt,
541		      int secondary_writes,
542		      int secondary_accwrites)
543{
544	struct bufobj *bo;
545	int error;
546
547	(void) softdep_depcnt,
548	(void) softdep_accdepcnt;
549
550	bo = &devvp->v_bufobj;
551	ASSERT_BO_WLOCKED(bo);
552
553	MNT_ILOCK(mp);
554	while (mp->mnt_secondary_writes != 0) {
555		BO_UNLOCK(bo);
556		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557		    (PUSER - 1) | PDROP, "secwr", 0);
558		BO_LOCK(bo);
559		MNT_ILOCK(mp);
560	}
561
562	/*
563	 * Reasons for needing more work before suspend:
564	 * - Dirty buffers on devvp.
565	 * - Secondary writes occurred after start of vnode sync loop
566	 */
567	error = 0;
568	if (bo->bo_numoutput > 0 ||
569	    bo->bo_dirty.bv_cnt > 0 ||
570	    secondary_writes != 0 ||
571	    mp->mnt_secondary_writes != 0 ||
572	    secondary_accwrites != mp->mnt_secondary_accwrites)
573		error = EAGAIN;
574	BO_UNLOCK(bo);
575	return (error);
576}
577
578void
579softdep_get_depcounts(struct mount *mp,
580		      int *softdepactivep,
581		      int *softdepactiveaccp)
582{
583	(void) mp;
584	*softdepactivep = 0;
585	*softdepactiveaccp = 0;
586}
587
588void
589softdep_buf_append(bp, wkhd)
590	struct buf *bp;
591	struct workhead *wkhd;
592{
593
594	panic("softdep_buf_appendwork called");
595}
596
597void
598softdep_inode_append(ip, cred, wkhd)
599	struct inode *ip;
600	struct ucred *cred;
601	struct workhead *wkhd;
602{
603
604	panic("softdep_inode_appendwork called");
605}
606
607void
608softdep_freework(wkhd)
609	struct workhead *wkhd;
610{
611
612	panic("softdep_freework called");
613}
614
615#else
616
617FEATURE(softupdates, "FFS soft-updates support");
618
619static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
620    "soft updates stats");
621static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
622    "total dependencies allocated");
623static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
624    "high use dependencies allocated");
625static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
626    "current dependencies allocated");
627static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
628    "current dependencies written");
629
630unsigned long dep_current[D_LAST + 1];
631unsigned long dep_highuse[D_LAST + 1];
632unsigned long dep_total[D_LAST + 1];
633unsigned long dep_write[D_LAST + 1];
634
635#define	SOFTDEP_TYPE(type, str, long)					\
636    static MALLOC_DEFINE(M_ ## type, #str, long);			\
637    SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
638	&dep_total[D_ ## type], 0, "");					\
639    SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
640	&dep_current[D_ ## type], 0, "");				\
641    SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
642	&dep_highuse[D_ ## type], 0, "");				\
643    SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
644	&dep_write[D_ ## type], 0, "");
645
646SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
647SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
648SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
649    "Block or frag allocated from cyl group map");
650SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
651SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
652SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
653SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
654SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
655SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
656SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
657SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
658SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
659SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
660SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
661SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
662SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
663SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
664SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
665SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
666SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
667SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
668SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
669SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
670SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
671SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
672SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
673SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
674
675static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
676
677static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
678static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
679static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
680
681#define M_SOFTDEP_FLAGS	(M_WAITOK)
682
683/*
684 * translate from workitem type to memory type
685 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
686 */
687static struct malloc_type *memtype[] = {
688	M_PAGEDEP,
689	M_INODEDEP,
690	M_BMSAFEMAP,
691	M_NEWBLK,
692	M_ALLOCDIRECT,
693	M_INDIRDEP,
694	M_ALLOCINDIR,
695	M_FREEFRAG,
696	M_FREEBLKS,
697	M_FREEFILE,
698	M_DIRADD,
699	M_MKDIR,
700	M_DIRREM,
701	M_NEWDIRBLK,
702	M_FREEWORK,
703	M_FREEDEP,
704	M_JADDREF,
705	M_JREMREF,
706	M_JMVREF,
707	M_JNEWBLK,
708	M_JFREEBLK,
709	M_JFREEFRAG,
710	M_JSEG,
711	M_JSEGDEP,
712	M_SBDEP,
713	M_JTRUNC,
714	M_JFSYNC,
715	M_SENTINEL
716};
717
718#define DtoM(type) (memtype[type])
719
720/*
721 * Names of malloc types.
722 */
723#define TYPENAME(type)  \
724	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
725/*
726 * End system adaptation definitions.
727 */
728
729#define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
730#define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
731
732/*
733 * Internal function prototypes.
734 */
735static	void check_clear_deps(struct mount *);
736static	void softdep_error(char *, int);
737static	int softdep_process_worklist(struct mount *, int);
738static	int softdep_waitidle(struct mount *, int);
739static	void drain_output(struct vnode *);
740static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
741static	int check_inodedep_free(struct inodedep *);
742static	void clear_remove(struct mount *);
743static	void clear_inodedeps(struct mount *);
744static	void unlinked_inodedep(struct mount *, struct inodedep *);
745static	void clear_unlinked_inodedep(struct inodedep *);
746static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
747static	int flush_pagedep_deps(struct vnode *, struct mount *,
748	    struct diraddhd *);
749static	int free_pagedep(struct pagedep *);
750static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
751static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
752static	int flush_deplist(struct allocdirectlst *, int, int *);
753static	int sync_cgs(struct mount *, int);
754static	int handle_written_filepage(struct pagedep *, struct buf *);
755static	int handle_written_sbdep(struct sbdep *, struct buf *);
756static	void initiate_write_sbdep(struct sbdep *);
757static	void diradd_inode_written(struct diradd *, struct inodedep *);
758static	int handle_written_indirdep(struct indirdep *, struct buf *,
759	    struct buf**);
760static	int handle_written_inodeblock(struct inodedep *, struct buf *);
761static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
762	    uint8_t *);
763static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
764static	void handle_written_jaddref(struct jaddref *);
765static	void handle_written_jremref(struct jremref *);
766static	void handle_written_jseg(struct jseg *, struct buf *);
767static	void handle_written_jnewblk(struct jnewblk *);
768static	void handle_written_jblkdep(struct jblkdep *);
769static	void handle_written_jfreefrag(struct jfreefrag *);
770static	void complete_jseg(struct jseg *);
771static	void complete_jsegs(struct jseg *);
772static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
773static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
774static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
775static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
776static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
777static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
778static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
779static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
780static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
781static	inline void inoref_write(struct inoref *, struct jseg *,
782	    struct jrefrec *);
783static	void handle_allocdirect_partdone(struct allocdirect *,
784	    struct workhead *);
785static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
786	    struct workhead *);
787static	void indirdep_complete(struct indirdep *);
788static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
789static	void indirblk_insert(struct freework *);
790static	void indirblk_remove(struct freework *);
791static	void handle_allocindir_partdone(struct allocindir *);
792static	void initiate_write_filepage(struct pagedep *, struct buf *);
793static	void initiate_write_indirdep(struct indirdep*, struct buf *);
794static	void handle_written_mkdir(struct mkdir *, int);
795static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
796	    uint8_t *);
797static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
798static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
799static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
800static	void handle_workitem_freefile(struct freefile *);
801static	int handle_workitem_remove(struct dirrem *, int);
802static	struct dirrem *newdirrem(struct buf *, struct inode *,
803	    struct inode *, int, struct dirrem **);
804static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
805	    struct buf *);
806static	void cancel_indirdep(struct indirdep *, struct buf *,
807	    struct freeblks *);
808static	void free_indirdep(struct indirdep *);
809static	void free_diradd(struct diradd *, struct workhead *);
810static	void merge_diradd(struct inodedep *, struct diradd *);
811static	void complete_diradd(struct diradd *);
812static	struct diradd *diradd_lookup(struct pagedep *, int);
813static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
814	    struct jremref *);
815static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
816	    struct jremref *);
817static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
818	    struct jremref *, struct jremref *);
819static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
820	    struct jremref *);
821static	void cancel_allocindir(struct allocindir *, struct buf *bp,
822	    struct freeblks *, int);
823static	int setup_trunc_indir(struct freeblks *, struct inode *,
824	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
825static	void complete_trunc_indir(struct freework *);
826static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
827	    int);
828static	void complete_mkdir(struct mkdir *);
829static	void free_newdirblk(struct newdirblk *);
830static	void free_jremref(struct jremref *);
831static	void free_jaddref(struct jaddref *);
832static	void free_jsegdep(struct jsegdep *);
833static	void free_jsegs(struct jblocks *);
834static	void rele_jseg(struct jseg *);
835static	void free_jseg(struct jseg *, struct jblocks *);
836static	void free_jnewblk(struct jnewblk *);
837static	void free_jblkdep(struct jblkdep *);
838static	void free_jfreefrag(struct jfreefrag *);
839static	void free_freedep(struct freedep *);
840static	void journal_jremref(struct dirrem *, struct jremref *,
841	    struct inodedep *);
842static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
843static	int cancel_jaddref(struct jaddref *, struct inodedep *,
844	    struct workhead *);
845static	void cancel_jfreefrag(struct jfreefrag *);
846static	inline void setup_freedirect(struct freeblks *, struct inode *,
847	    int, int);
848static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
849static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
850	    ufs_lbn_t, int);
851static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
852static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
853static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
854static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
855static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
856static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
857	    int, int);
858static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
859static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
860static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
861static	void newblk_freefrag(struct newblk*);
862static	void free_newblk(struct newblk *);
863static	void cancel_allocdirect(struct allocdirectlst *,
864	    struct allocdirect *, struct freeblks *);
865static	int check_inode_unwritten(struct inodedep *);
866static	int free_inodedep(struct inodedep *);
867static	void freework_freeblock(struct freework *);
868static	void freework_enqueue(struct freework *);
869static	int handle_workitem_freeblocks(struct freeblks *, int);
870static	int handle_complete_freeblocks(struct freeblks *, int);
871static	void handle_workitem_indirblk(struct freework *);
872static	void handle_written_freework(struct freework *);
873static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
874static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
875	    struct workhead *);
876static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
877	    struct inodedep *, struct allocindir *, ufs_lbn_t);
878static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
879	    ufs2_daddr_t, ufs_lbn_t);
880static	void handle_workitem_freefrag(struct freefrag *);
881static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
882	    ufs_lbn_t);
883static	void allocdirect_merge(struct allocdirectlst *,
884	    struct allocdirect *, struct allocdirect *);
885static	struct freefrag *allocindir_merge(struct allocindir *,
886	    struct allocindir *);
887static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
888	    struct bmsafemap **);
889static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
890	    int cg, struct bmsafemap *);
891static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
892	    struct newblk **);
893static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
894static	int inodedep_find(struct inodedep_hashhead *, ino_t,
895	    struct inodedep **);
896static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
897static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
898	    int, struct pagedep **);
899static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
900	    struct pagedep **);
901static	void pause_timer(void *);
902static	int request_cleanup(struct mount *, int);
903static	int process_worklist_item(struct mount *, int, int);
904static	void process_removes(struct vnode *);
905static	void process_truncates(struct vnode *);
906static	void jwork_move(struct workhead *, struct workhead *);
907static	void jwork_insert(struct workhead *, struct jsegdep *);
908static	void add_to_worklist(struct worklist *, int);
909static	void wake_worklist(struct worklist *);
910static	void wait_worklist(struct worklist *, char *);
911static	void remove_from_worklist(struct worklist *);
912static	void softdep_flush(void *);
913static	void softdep_flushjournal(struct mount *);
914static	int softdep_speedup(struct ufsmount *);
915static	void worklist_speedup(struct mount *);
916static	int journal_mount(struct mount *, struct fs *, struct ucred *);
917static	void journal_unmount(struct ufsmount *);
918static	int journal_space(struct ufsmount *, int);
919static	void journal_suspend(struct ufsmount *);
920static	int journal_unsuspend(struct ufsmount *ump);
921static	void softdep_prelink(struct vnode *, struct vnode *);
922static	void add_to_journal(struct worklist *);
923static	void remove_from_journal(struct worklist *);
924static	void softdep_process_journal(struct mount *, struct worklist *, int);
925static	struct jremref *newjremref(struct dirrem *, struct inode *,
926	    struct inode *ip, off_t, nlink_t);
927static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
928	    uint16_t);
929static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
930	    uint16_t);
931static	inline struct jsegdep *inoref_jseg(struct inoref *);
932static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
933static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
934	    ufs2_daddr_t, int);
935static	void adjust_newfreework(struct freeblks *, int);
936static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
937static	void move_newblock_dep(struct jaddref *, struct inodedep *);
938static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
939static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
940	    ufs2_daddr_t, long, ufs_lbn_t);
941static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
942	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
943static	int jwait(struct worklist *, int);
944static	struct inodedep *inodedep_lookup_ip(struct inode *);
945static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
946static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
947static	void handle_jwork(struct workhead *);
948static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
949	    struct mkdir **);
950static	struct jblocks *jblocks_create(void);
951static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
952static	void jblocks_free(struct jblocks *, struct mount *, int);
953static	void jblocks_destroy(struct jblocks *);
954static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
955
956/*
957 * Exported softdep operations.
958 */
959static	void softdep_disk_io_initiation(struct buf *);
960static	void softdep_disk_write_complete(struct buf *);
961static	void softdep_deallocate_dependencies(struct buf *);
962static	int softdep_count_dependencies(struct buf *bp, int);
963
964/*
965 * Global lock over all of soft updates.
966 */
967static struct mtx lk;
968MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
969
970#define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
971#define FREE_GBLLOCK(lk)	mtx_unlock(lk)
972#define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
973
974/*
975 * Per-filesystem soft-updates locking.
976 */
977#define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
978#define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
979#define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
980#define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
981#define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
982				    RA_WLOCKED)
983
984#define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
985#define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
986
987/*
988 * Worklist queue management.
989 * These routines require that the lock be held.
990 */
991#ifndef /* NOT */ DEBUG
992#define WORKLIST_INSERT(head, item) do {	\
993	(item)->wk_state |= ONWORKLIST;		\
994	LIST_INSERT_HEAD(head, item, wk_list);	\
995} while (0)
996#define WORKLIST_REMOVE(item) do {		\
997	(item)->wk_state &= ~ONWORKLIST;	\
998	LIST_REMOVE(item, wk_list);		\
999} while (0)
1000#define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1001#define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1002
1003#else /* DEBUG */
1004static	void worklist_insert(struct workhead *, struct worklist *, int);
1005static	void worklist_remove(struct worklist *, int);
1006
1007#define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1008#define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1009#define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1010#define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1011
1012static void
1013worklist_insert(head, item, locked)
1014	struct workhead *head;
1015	struct worklist *item;
1016	int locked;
1017{
1018
1019	if (locked)
1020		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1021	if (item->wk_state & ONWORKLIST)
1022		panic("worklist_insert: %p %s(0x%X) already on list",
1023		    item, TYPENAME(item->wk_type), item->wk_state);
1024	item->wk_state |= ONWORKLIST;
1025	LIST_INSERT_HEAD(head, item, wk_list);
1026}
1027
1028static void
1029worklist_remove(item, locked)
1030	struct worklist *item;
1031	int locked;
1032{
1033
1034	if (locked)
1035		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1036	if ((item->wk_state & ONWORKLIST) == 0)
1037		panic("worklist_remove: %p %s(0x%X) not on list",
1038		    item, TYPENAME(item->wk_type), item->wk_state);
1039	item->wk_state &= ~ONWORKLIST;
1040	LIST_REMOVE(item, wk_list);
1041}
1042#endif /* DEBUG */
1043
1044/*
1045 * Merge two jsegdeps keeping only the oldest one as newer references
1046 * can't be discarded until after older references.
1047 */
1048static inline struct jsegdep *
1049jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1050{
1051	struct jsegdep *swp;
1052
1053	if (two == NULL)
1054		return (one);
1055
1056	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1057		swp = one;
1058		one = two;
1059		two = swp;
1060	}
1061	WORKLIST_REMOVE(&two->jd_list);
1062	free_jsegdep(two);
1063
1064	return (one);
1065}
1066
1067/*
1068 * If two freedeps are compatible free one to reduce list size.
1069 */
1070static inline struct freedep *
1071freedep_merge(struct freedep *one, struct freedep *two)
1072{
1073	if (two == NULL)
1074		return (one);
1075
1076	if (one->fd_freework == two->fd_freework) {
1077		WORKLIST_REMOVE(&two->fd_list);
1078		free_freedep(two);
1079	}
1080	return (one);
1081}
1082
1083/*
1084 * Move journal work from one list to another.  Duplicate freedeps and
1085 * jsegdeps are coalesced to keep the lists as small as possible.
1086 */
1087static void
1088jwork_move(dst, src)
1089	struct workhead *dst;
1090	struct workhead *src;
1091{
1092	struct freedep *freedep;
1093	struct jsegdep *jsegdep;
1094	struct worklist *wkn;
1095	struct worklist *wk;
1096
1097	KASSERT(dst != src,
1098	    ("jwork_move: dst == src"));
1099	freedep = NULL;
1100	jsegdep = NULL;
1101	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1102		if (wk->wk_type == D_JSEGDEP)
1103			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1104		if (wk->wk_type == D_FREEDEP)
1105			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1106	}
1107
1108	while ((wk = LIST_FIRST(src)) != NULL) {
1109		WORKLIST_REMOVE(wk);
1110		WORKLIST_INSERT(dst, wk);
1111		if (wk->wk_type == D_JSEGDEP) {
1112			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1113			continue;
1114		}
1115		if (wk->wk_type == D_FREEDEP)
1116			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1117	}
1118}
1119
1120static void
1121jwork_insert(dst, jsegdep)
1122	struct workhead *dst;
1123	struct jsegdep *jsegdep;
1124{
1125	struct jsegdep *jsegdepn;
1126	struct worklist *wk;
1127
1128	LIST_FOREACH(wk, dst, wk_list)
1129		if (wk->wk_type == D_JSEGDEP)
1130			break;
1131	if (wk == NULL) {
1132		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1133		return;
1134	}
1135	jsegdepn = WK_JSEGDEP(wk);
1136	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1137		WORKLIST_REMOVE(wk);
1138		free_jsegdep(jsegdepn);
1139		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1140	} else
1141		free_jsegdep(jsegdep);
1142}
1143
1144/*
1145 * Routines for tracking and managing workitems.
1146 */
1147static	void workitem_free(struct worklist *, int);
1148static	void workitem_alloc(struct worklist *, int, struct mount *);
1149static	void workitem_reassign(struct worklist *, int);
1150
1151#define	WORKITEM_FREE(item, type) \
1152	workitem_free((struct worklist *)(item), (type))
1153#define	WORKITEM_REASSIGN(item, type) \
1154	workitem_reassign((struct worklist *)(item), (type))
1155
1156static void
1157workitem_free(item, type)
1158	struct worklist *item;
1159	int type;
1160{
1161	struct ufsmount *ump;
1162
1163#ifdef DEBUG
1164	if (item->wk_state & ONWORKLIST)
1165		panic("workitem_free: %s(0x%X) still on list",
1166		    TYPENAME(item->wk_type), item->wk_state);
1167	if (item->wk_type != type && type != D_NEWBLK)
1168		panic("workitem_free: type mismatch %s != %s",
1169		    TYPENAME(item->wk_type), TYPENAME(type));
1170#endif
1171	if (item->wk_state & IOWAITING)
1172		wakeup(item);
1173	ump = VFSTOUFS(item->wk_mp);
1174	LOCK_OWNED(ump);
1175	KASSERT(ump->softdep_deps > 0,
1176	    ("workitem_free: %s: softdep_deps going negative",
1177	    ump->um_fs->fs_fsmnt));
1178	if (--ump->softdep_deps == 0 && ump->softdep_req)
1179		wakeup(&ump->softdep_deps);
1180	KASSERT(dep_current[item->wk_type] > 0,
1181	    ("workitem_free: %s: dep_current[%s] going negative",
1182	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1183	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1184	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1185	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1186	atomic_subtract_long(&dep_current[item->wk_type], 1);
1187	ump->softdep_curdeps[item->wk_type] -= 1;
1188	free(item, DtoM(type));
1189}
1190
1191static void
1192workitem_alloc(item, type, mp)
1193	struct worklist *item;
1194	int type;
1195	struct mount *mp;
1196{
1197	struct ufsmount *ump;
1198
1199	item->wk_type = type;
1200	item->wk_mp = mp;
1201	item->wk_state = 0;
1202
1203	ump = VFSTOUFS(mp);
1204	ACQUIRE_GBLLOCK(&lk);
1205	dep_current[type]++;
1206	if (dep_current[type] > dep_highuse[type])
1207		dep_highuse[type] = dep_current[type];
1208	dep_total[type]++;
1209	FREE_GBLLOCK(&lk);
1210	ACQUIRE_LOCK(ump);
1211	ump->softdep_curdeps[type] += 1;
1212	ump->softdep_deps++;
1213	ump->softdep_accdeps++;
1214	FREE_LOCK(ump);
1215}
1216
1217static void
1218workitem_reassign(item, newtype)
1219	struct worklist *item;
1220	int newtype;
1221{
1222	struct ufsmount *ump;
1223
1224	ump = VFSTOUFS(item->wk_mp);
1225	LOCK_OWNED(ump);
1226	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1227	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1228	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1229	ump->softdep_curdeps[item->wk_type] -= 1;
1230	ump->softdep_curdeps[newtype] += 1;
1231	KASSERT(dep_current[item->wk_type] > 0,
1232	    ("workitem_reassign: %s: dep_current[%s] going negative",
1233	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1234	ACQUIRE_GBLLOCK(&lk);
1235	dep_current[newtype]++;
1236	dep_current[item->wk_type]--;
1237	if (dep_current[newtype] > dep_highuse[newtype])
1238		dep_highuse[newtype] = dep_current[newtype];
1239	dep_total[newtype]++;
1240	FREE_GBLLOCK(&lk);
1241	item->wk_type = newtype;
1242}
1243
1244/*
1245 * Workitem queue management
1246 */
1247static int max_softdeps;	/* maximum number of structs before slowdown */
1248static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1249static int proc_waiting;	/* tracks whether we have a timeout posted */
1250static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1251static struct callout softdep_callout;
1252static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1253static int req_clear_remove;	/* syncer process flush some freeblks */
1254static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1255
1256/*
1257 * runtime statistics
1258 */
1259static int stat_flush_threads;	/* number of softdep flushing threads */
1260static int stat_worklist_push;	/* number of worklist cleanups */
1261static int stat_blk_limit_push;	/* number of times block limit neared */
1262static int stat_ino_limit_push;	/* number of times inode limit neared */
1263static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1264static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1265static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1266static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1267static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1268static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1269static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1270static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1271static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1272static int stat_journal_min;	/* Times hit journal min threshold */
1273static int stat_journal_low;	/* Times hit journal low threshold */
1274static int stat_journal_wait;	/* Times blocked in jwait(). */
1275static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1276static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1277static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1278static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1279static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1280static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1281static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1282static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1283static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1284static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1285
1286SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1287    &max_softdeps, 0, "");
1288SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1289    &tickdelay, 0, "");
1290SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1291    &stat_flush_threads, 0, "");
1292SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1293    &stat_worklist_push, 0,"");
1294SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1295    &stat_blk_limit_push, 0,"");
1296SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1297    &stat_ino_limit_push, 0,"");
1298SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1299    &stat_blk_limit_hit, 0, "");
1300SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1301    &stat_ino_limit_hit, 0, "");
1302SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1303    &stat_sync_limit_hit, 0, "");
1304SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1305    &stat_indir_blk_ptrs, 0, "");
1306SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1307    &stat_inode_bitmap, 0, "");
1308SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1309    &stat_direct_blk_ptrs, 0, "");
1310SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1311    &stat_dir_entry, 0, "");
1312SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1313    &stat_jaddref, 0, "");
1314SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1315    &stat_jnewblk, 0, "");
1316SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1317    &stat_journal_low, 0, "");
1318SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1319    &stat_journal_min, 0, "");
1320SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1321    &stat_journal_wait, 0, "");
1322SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1323    &stat_jwait_filepage, 0, "");
1324SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1325    &stat_jwait_freeblks, 0, "");
1326SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1327    &stat_jwait_inode, 0, "");
1328SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1329    &stat_jwait_newblk, 0, "");
1330SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1331    &stat_cleanup_blkrequests, 0, "");
1332SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1333    &stat_cleanup_inorequests, 0, "");
1334SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1335    &stat_cleanup_high_delay, 0, "");
1336SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1337    &stat_cleanup_retries, 0, "");
1338SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1339    &stat_cleanup_failures, 0, "");
1340SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1341    &softdep_flushcache, 0, "");
1342SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1343    &stat_emptyjblocks, 0, "");
1344
1345SYSCTL_DECL(_vfs_ffs);
1346
1347/* Whether to recompute the summary at mount time */
1348static int compute_summary_at_mount = 0;
1349SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1350	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1351static int print_threads = 0;
1352SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1353    &print_threads, 0, "Notify flusher thread start/stop");
1354
1355/* List of all filesystems mounted with soft updates */
1356static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1357
1358/*
1359 * This function cleans the worklist for a filesystem.
1360 * Each filesystem running with soft dependencies gets its own
1361 * thread to run in this function. The thread is started up in
1362 * softdep_mount and shutdown in softdep_unmount. They show up
1363 * as part of the kernel "bufdaemon" process whose process
1364 * entry is available in bufdaemonproc.
1365 */
1366static int searchfailed;
1367extern struct proc *bufdaemonproc;
1368static void
1369softdep_flush(addr)
1370	void *addr;
1371{
1372	struct mount *mp;
1373	struct thread *td;
1374	struct ufsmount *ump;
1375
1376	td = curthread;
1377	td->td_pflags |= TDP_NORUNNINGBUF;
1378	mp = (struct mount *)addr;
1379	ump = VFSTOUFS(mp);
1380	atomic_add_int(&stat_flush_threads, 1);
1381	ACQUIRE_LOCK(ump);
1382	ump->softdep_flags &= ~FLUSH_STARTING;
1383	wakeup(&ump->softdep_flushtd);
1384	FREE_LOCK(ump);
1385	if (print_threads) {
1386		if (stat_flush_threads == 1)
1387			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1388			    bufdaemonproc->p_pid);
1389		printf("Start thread %s\n", td->td_name);
1390	}
1391	for (;;) {
1392		while (softdep_process_worklist(mp, 0) > 0 ||
1393		    (MOUNTEDSUJ(mp) &&
1394		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1395			kthread_suspend_check();
1396		ACQUIRE_LOCK(ump);
1397		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1398			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1399			    "sdflush", hz / 2);
1400		ump->softdep_flags &= ~FLUSH_CLEANUP;
1401		/*
1402		 * Check to see if we are done and need to exit.
1403		 */
1404		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1405			FREE_LOCK(ump);
1406			continue;
1407		}
1408		ump->softdep_flags &= ~FLUSH_EXIT;
1409		FREE_LOCK(ump);
1410		wakeup(&ump->softdep_flags);
1411		if (print_threads)
1412			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1413		atomic_subtract_int(&stat_flush_threads, 1);
1414		kthread_exit();
1415		panic("kthread_exit failed\n");
1416	}
1417}
1418
1419static void
1420worklist_speedup(mp)
1421	struct mount *mp;
1422{
1423	struct ufsmount *ump;
1424
1425	ump = VFSTOUFS(mp);
1426	LOCK_OWNED(ump);
1427	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1428		ump->softdep_flags |= FLUSH_CLEANUP;
1429	wakeup(&ump->softdep_flushtd);
1430}
1431
1432static int
1433softdep_speedup(ump)
1434	struct ufsmount *ump;
1435{
1436	struct ufsmount *altump;
1437	struct mount_softdeps *sdp;
1438
1439	LOCK_OWNED(ump);
1440	worklist_speedup(ump->um_mountp);
1441	bd_speedup();
1442	/*
1443	 * If we have global shortages, then we need other
1444	 * filesystems to help with the cleanup. Here we wakeup a
1445	 * flusher thread for a filesystem that is over its fair
1446	 * share of resources.
1447	 */
1448	if (req_clear_inodedeps || req_clear_remove) {
1449		ACQUIRE_GBLLOCK(&lk);
1450		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1451			if ((altump = sdp->sd_ump) == ump)
1452				continue;
1453			if (((req_clear_inodedeps &&
1454			    altump->softdep_curdeps[D_INODEDEP] >
1455			    max_softdeps / stat_flush_threads) ||
1456			    (req_clear_remove &&
1457			    altump->softdep_curdeps[D_DIRREM] >
1458			    (max_softdeps / 2) / stat_flush_threads)) &&
1459			    TRY_ACQUIRE_LOCK(altump))
1460				break;
1461		}
1462		if (sdp == NULL) {
1463			searchfailed++;
1464			FREE_GBLLOCK(&lk);
1465		} else {
1466			/*
1467			 * Move to the end of the list so we pick a
1468			 * different one on out next try.
1469			 */
1470			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1471			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1472			FREE_GBLLOCK(&lk);
1473			if ((altump->softdep_flags &
1474			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1475				altump->softdep_flags |= FLUSH_CLEANUP;
1476			altump->um_softdep->sd_cleanups++;
1477			wakeup(&altump->softdep_flushtd);
1478			FREE_LOCK(altump);
1479		}
1480	}
1481	return (speedup_syncer());
1482}
1483
1484/*
1485 * Add an item to the end of the work queue.
1486 * This routine requires that the lock be held.
1487 * This is the only routine that adds items to the list.
1488 * The following routine is the only one that removes items
1489 * and does so in order from first to last.
1490 */
1491
1492#define	WK_HEAD		0x0001	/* Add to HEAD. */
1493#define	WK_NODELAY	0x0002	/* Process immediately. */
1494
1495static void
1496add_to_worklist(wk, flags)
1497	struct worklist *wk;
1498	int flags;
1499{
1500	struct ufsmount *ump;
1501
1502	ump = VFSTOUFS(wk->wk_mp);
1503	LOCK_OWNED(ump);
1504	if (wk->wk_state & ONWORKLIST)
1505		panic("add_to_worklist: %s(0x%X) already on list",
1506		    TYPENAME(wk->wk_type), wk->wk_state);
1507	wk->wk_state |= ONWORKLIST;
1508	if (ump->softdep_on_worklist == 0) {
1509		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1510		ump->softdep_worklist_tail = wk;
1511	} else if (flags & WK_HEAD) {
1512		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1513	} else {
1514		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1515		ump->softdep_worklist_tail = wk;
1516	}
1517	ump->softdep_on_worklist += 1;
1518	if (flags & WK_NODELAY)
1519		worklist_speedup(wk->wk_mp);
1520}
1521
1522/*
1523 * Remove the item to be processed. If we are removing the last
1524 * item on the list, we need to recalculate the tail pointer.
1525 */
1526static void
1527remove_from_worklist(wk)
1528	struct worklist *wk;
1529{
1530	struct ufsmount *ump;
1531
1532	ump = VFSTOUFS(wk->wk_mp);
1533	WORKLIST_REMOVE(wk);
1534	if (ump->softdep_worklist_tail == wk)
1535		ump->softdep_worklist_tail =
1536		    (struct worklist *)wk->wk_list.le_prev;
1537	ump->softdep_on_worklist -= 1;
1538}
1539
1540static void
1541wake_worklist(wk)
1542	struct worklist *wk;
1543{
1544	if (wk->wk_state & IOWAITING) {
1545		wk->wk_state &= ~IOWAITING;
1546		wakeup(wk);
1547	}
1548}
1549
1550static void
1551wait_worklist(wk, wmesg)
1552	struct worklist *wk;
1553	char *wmesg;
1554{
1555	struct ufsmount *ump;
1556
1557	ump = VFSTOUFS(wk->wk_mp);
1558	wk->wk_state |= IOWAITING;
1559	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1560}
1561
1562/*
1563 * Process that runs once per second to handle items in the background queue.
1564 *
1565 * Note that we ensure that everything is done in the order in which they
1566 * appear in the queue. The code below depends on this property to ensure
1567 * that blocks of a file are freed before the inode itself is freed. This
1568 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1569 * until all the old ones have been purged from the dependency lists.
1570 */
1571static int
1572softdep_process_worklist(mp, full)
1573	struct mount *mp;
1574	int full;
1575{
1576	int cnt, matchcnt;
1577	struct ufsmount *ump;
1578	long starttime;
1579
1580	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1581	if (MOUNTEDSOFTDEP(mp) == 0)
1582		return (0);
1583	matchcnt = 0;
1584	ump = VFSTOUFS(mp);
1585	ACQUIRE_LOCK(ump);
1586	starttime = time_second;
1587	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1588	check_clear_deps(mp);
1589	while (ump->softdep_on_worklist > 0) {
1590		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1591			break;
1592		else
1593			matchcnt += cnt;
1594		check_clear_deps(mp);
1595		/*
1596		 * We do not generally want to stop for buffer space, but if
1597		 * we are really being a buffer hog, we will stop and wait.
1598		 */
1599		if (should_yield()) {
1600			FREE_LOCK(ump);
1601			kern_yield(PRI_USER);
1602			bwillwrite();
1603			ACQUIRE_LOCK(ump);
1604		}
1605		/*
1606		 * Never allow processing to run for more than one
1607		 * second. This gives the syncer thread the opportunity
1608		 * to pause if appropriate.
1609		 */
1610		if (!full && starttime != time_second)
1611			break;
1612	}
1613	if (full == 0)
1614		journal_unsuspend(ump);
1615	FREE_LOCK(ump);
1616	return (matchcnt);
1617}
1618
1619/*
1620 * Process all removes associated with a vnode if we are running out of
1621 * journal space.  Any other process which attempts to flush these will
1622 * be unable as we have the vnodes locked.
1623 */
1624static void
1625process_removes(vp)
1626	struct vnode *vp;
1627{
1628	struct inodedep *inodedep;
1629	struct dirrem *dirrem;
1630	struct ufsmount *ump;
1631	struct mount *mp;
1632	ino_t inum;
1633
1634	mp = vp->v_mount;
1635	ump = VFSTOUFS(mp);
1636	LOCK_OWNED(ump);
1637	inum = VTOI(vp)->i_number;
1638	for (;;) {
1639top:
1640		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1641			return;
1642		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1643			/*
1644			 * If another thread is trying to lock this vnode
1645			 * it will fail but we must wait for it to do so
1646			 * before we can proceed.
1647			 */
1648			if (dirrem->dm_state & INPROGRESS) {
1649				wait_worklist(&dirrem->dm_list, "pwrwait");
1650				goto top;
1651			}
1652			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1653			    (COMPLETE | ONWORKLIST))
1654				break;
1655		}
1656		if (dirrem == NULL)
1657			return;
1658		remove_from_worklist(&dirrem->dm_list);
1659		FREE_LOCK(ump);
1660		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1661			panic("process_removes: suspended filesystem");
1662		handle_workitem_remove(dirrem, 0);
1663		vn_finished_secondary_write(mp);
1664		ACQUIRE_LOCK(ump);
1665	}
1666}
1667
1668/*
1669 * Process all truncations associated with a vnode if we are running out
1670 * of journal space.  This is called when the vnode lock is already held
1671 * and no other process can clear the truncation.  This function returns
1672 * a value greater than zero if it did any work.
1673 */
1674static void
1675process_truncates(vp)
1676	struct vnode *vp;
1677{
1678	struct inodedep *inodedep;
1679	struct freeblks *freeblks;
1680	struct ufsmount *ump;
1681	struct mount *mp;
1682	ino_t inum;
1683	int cgwait;
1684
1685	mp = vp->v_mount;
1686	ump = VFSTOUFS(mp);
1687	LOCK_OWNED(ump);
1688	inum = VTOI(vp)->i_number;
1689	for (;;) {
1690		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1691			return;
1692		cgwait = 0;
1693		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1694			/* Journal entries not yet written.  */
1695			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1696				jwait(&LIST_FIRST(
1697				    &freeblks->fb_jblkdephd)->jb_list,
1698				    MNT_WAIT);
1699				break;
1700			}
1701			/* Another thread is executing this item. */
1702			if (freeblks->fb_state & INPROGRESS) {
1703				wait_worklist(&freeblks->fb_list, "ptrwait");
1704				break;
1705			}
1706			/* Freeblks is waiting on a inode write. */
1707			if ((freeblks->fb_state & COMPLETE) == 0) {
1708				FREE_LOCK(ump);
1709				ffs_update(vp, 1);
1710				ACQUIRE_LOCK(ump);
1711				break;
1712			}
1713			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1714			    (ALLCOMPLETE | ONWORKLIST)) {
1715				remove_from_worklist(&freeblks->fb_list);
1716				freeblks->fb_state |= INPROGRESS;
1717				FREE_LOCK(ump);
1718				if (vn_start_secondary_write(NULL, &mp,
1719				    V_NOWAIT))
1720					panic("process_truncates: "
1721					    "suspended filesystem");
1722				handle_workitem_freeblocks(freeblks, 0);
1723				vn_finished_secondary_write(mp);
1724				ACQUIRE_LOCK(ump);
1725				break;
1726			}
1727			if (freeblks->fb_cgwait)
1728				cgwait++;
1729		}
1730		if (cgwait) {
1731			FREE_LOCK(ump);
1732			sync_cgs(mp, MNT_WAIT);
1733			ffs_sync_snap(mp, MNT_WAIT);
1734			ACQUIRE_LOCK(ump);
1735			continue;
1736		}
1737		if (freeblks == NULL)
1738			break;
1739	}
1740	return;
1741}
1742
1743/*
1744 * Process one item on the worklist.
1745 */
1746static int
1747process_worklist_item(mp, target, flags)
1748	struct mount *mp;
1749	int target;
1750	int flags;
1751{
1752	struct worklist sentinel;
1753	struct worklist *wk;
1754	struct ufsmount *ump;
1755	int matchcnt;
1756	int error;
1757
1758	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1759	/*
1760	 * If we are being called because of a process doing a
1761	 * copy-on-write, then it is not safe to write as we may
1762	 * recurse into the copy-on-write routine.
1763	 */
1764	if (curthread->td_pflags & TDP_COWINPROGRESS)
1765		return (-1);
1766	PHOLD(curproc);	/* Don't let the stack go away. */
1767	ump = VFSTOUFS(mp);
1768	LOCK_OWNED(ump);
1769	matchcnt = 0;
1770	sentinel.wk_mp = NULL;
1771	sentinel.wk_type = D_SENTINEL;
1772	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1773	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1774	    wk = LIST_NEXT(&sentinel, wk_list)) {
1775		if (wk->wk_type == D_SENTINEL) {
1776			LIST_REMOVE(&sentinel, wk_list);
1777			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1778			continue;
1779		}
1780		if (wk->wk_state & INPROGRESS)
1781			panic("process_worklist_item: %p already in progress.",
1782			    wk);
1783		wk->wk_state |= INPROGRESS;
1784		remove_from_worklist(wk);
1785		FREE_LOCK(ump);
1786		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1787			panic("process_worklist_item: suspended filesystem");
1788		switch (wk->wk_type) {
1789		case D_DIRREM:
1790			/* removal of a directory entry */
1791			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1792			break;
1793
1794		case D_FREEBLKS:
1795			/* releasing blocks and/or fragments from a file */
1796			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1797			    flags);
1798			break;
1799
1800		case D_FREEFRAG:
1801			/* releasing a fragment when replaced as a file grows */
1802			handle_workitem_freefrag(WK_FREEFRAG(wk));
1803			error = 0;
1804			break;
1805
1806		case D_FREEFILE:
1807			/* releasing an inode when its link count drops to 0 */
1808			handle_workitem_freefile(WK_FREEFILE(wk));
1809			error = 0;
1810			break;
1811
1812		default:
1813			panic("%s_process_worklist: Unknown type %s",
1814			    "softdep", TYPENAME(wk->wk_type));
1815			/* NOTREACHED */
1816		}
1817		vn_finished_secondary_write(mp);
1818		ACQUIRE_LOCK(ump);
1819		if (error == 0) {
1820			if (++matchcnt == target)
1821				break;
1822			continue;
1823		}
1824		/*
1825		 * We have to retry the worklist item later.  Wake up any
1826		 * waiters who may be able to complete it immediately and
1827		 * add the item back to the head so we don't try to execute
1828		 * it again.
1829		 */
1830		wk->wk_state &= ~INPROGRESS;
1831		wake_worklist(wk);
1832		add_to_worklist(wk, WK_HEAD);
1833	}
1834	LIST_REMOVE(&sentinel, wk_list);
1835	/* Sentinal could've become the tail from remove_from_worklist. */
1836	if (ump->softdep_worklist_tail == &sentinel)
1837		ump->softdep_worklist_tail =
1838		    (struct worklist *)sentinel.wk_list.le_prev;
1839	PRELE(curproc);
1840	return (matchcnt);
1841}
1842
1843/*
1844 * Move dependencies from one buffer to another.
1845 */
1846int
1847softdep_move_dependencies(oldbp, newbp)
1848	struct buf *oldbp;
1849	struct buf *newbp;
1850{
1851	struct worklist *wk, *wktail;
1852	struct ufsmount *ump;
1853	int dirty;
1854
1855	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1856		return (0);
1857	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1858	    ("softdep_move_dependencies called on non-softdep filesystem"));
1859	dirty = 0;
1860	wktail = NULL;
1861	ump = VFSTOUFS(wk->wk_mp);
1862	ACQUIRE_LOCK(ump);
1863	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1864		LIST_REMOVE(wk, wk_list);
1865		if (wk->wk_type == D_BMSAFEMAP &&
1866		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1867			dirty = 1;
1868		if (wktail == 0)
1869			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1870		else
1871			LIST_INSERT_AFTER(wktail, wk, wk_list);
1872		wktail = wk;
1873	}
1874	FREE_LOCK(ump);
1875
1876	return (dirty);
1877}
1878
1879/*
1880 * Purge the work list of all items associated with a particular mount point.
1881 */
1882int
1883softdep_flushworklist(oldmnt, countp, td)
1884	struct mount *oldmnt;
1885	int *countp;
1886	struct thread *td;
1887{
1888	struct vnode *devvp;
1889	struct ufsmount *ump;
1890	int count, error;
1891
1892	/*
1893	 * Alternately flush the block device associated with the mount
1894	 * point and process any dependencies that the flushing
1895	 * creates. We continue until no more worklist dependencies
1896	 * are found.
1897	 */
1898	*countp = 0;
1899	error = 0;
1900	ump = VFSTOUFS(oldmnt);
1901	devvp = ump->um_devvp;
1902	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1903		*countp += count;
1904		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1905		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1906		VOP_UNLOCK(devvp, 0);
1907		if (error != 0)
1908			break;
1909	}
1910	return (error);
1911}
1912
1913#define	SU_WAITIDLE_RETRIES	20
1914static int
1915softdep_waitidle(struct mount *mp, int flags __unused)
1916{
1917	struct ufsmount *ump;
1918	struct vnode *devvp;
1919	struct thread *td;
1920	int error, i;
1921
1922	ump = VFSTOUFS(mp);
1923	devvp = ump->um_devvp;
1924	td = curthread;
1925	error = 0;
1926	ACQUIRE_LOCK(ump);
1927	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1928		ump->softdep_req = 1;
1929		KASSERT((flags & FORCECLOSE) == 0 ||
1930		    ump->softdep_on_worklist == 0,
1931		    ("softdep_waitidle: work added after flush"));
1932		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1933		    "softdeps", 10 * hz);
1934		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1935		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1936		VOP_UNLOCK(devvp, 0);
1937		if (error != 0)
1938			break;
1939		ACQUIRE_LOCK(ump);
1940	}
1941	ump->softdep_req = 0;
1942	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1943		error = EBUSY;
1944		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1945		    mp);
1946	}
1947	FREE_LOCK(ump);
1948	return (error);
1949}
1950
1951/*
1952 * Flush all vnodes and worklist items associated with a specified mount point.
1953 */
1954int
1955softdep_flushfiles(oldmnt, flags, td)
1956	struct mount *oldmnt;
1957	int flags;
1958	struct thread *td;
1959{
1960#ifdef QUOTA
1961	struct ufsmount *ump;
1962	int i;
1963#endif
1964	int error, early, depcount, loopcnt, retry_flush_count, retry;
1965	int morework;
1966
1967	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1968	    ("softdep_flushfiles called on non-softdep filesystem"));
1969	loopcnt = 10;
1970	retry_flush_count = 3;
1971retry_flush:
1972	error = 0;
1973
1974	/*
1975	 * Alternately flush the vnodes associated with the mount
1976	 * point and process any dependencies that the flushing
1977	 * creates. In theory, this loop can happen at most twice,
1978	 * but we give it a few extra just to be sure.
1979	 */
1980	for (; loopcnt > 0; loopcnt--) {
1981		/*
1982		 * Do another flush in case any vnodes were brought in
1983		 * as part of the cleanup operations.
1984		 */
1985		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1986		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1987		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1988			break;
1989		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1990		    depcount == 0)
1991			break;
1992	}
1993	/*
1994	 * If we are unmounting then it is an error to fail. If we
1995	 * are simply trying to downgrade to read-only, then filesystem
1996	 * activity can keep us busy forever, so we just fail with EBUSY.
1997	 */
1998	if (loopcnt == 0) {
1999		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2000			panic("softdep_flushfiles: looping");
2001		error = EBUSY;
2002	}
2003	if (!error)
2004		error = softdep_waitidle(oldmnt, flags);
2005	if (!error) {
2006		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2007			retry = 0;
2008			MNT_ILOCK(oldmnt);
2009			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
2010			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2011			morework = oldmnt->mnt_nvnodelistsize > 0;
2012#ifdef QUOTA
2013			ump = VFSTOUFS(oldmnt);
2014			UFS_LOCK(ump);
2015			for (i = 0; i < MAXQUOTAS; i++) {
2016				if (ump->um_quotas[i] != NULLVP)
2017					morework = 1;
2018			}
2019			UFS_UNLOCK(ump);
2020#endif
2021			if (morework) {
2022				if (--retry_flush_count > 0) {
2023					retry = 1;
2024					loopcnt = 3;
2025				} else
2026					error = EBUSY;
2027			}
2028			MNT_IUNLOCK(oldmnt);
2029			if (retry)
2030				goto retry_flush;
2031		}
2032	}
2033	return (error);
2034}
2035
2036/*
2037 * Structure hashing.
2038 *
2039 * There are four types of structures that can be looked up:
2040 *	1) pagedep structures identified by mount point, inode number,
2041 *	   and logical block.
2042 *	2) inodedep structures identified by mount point and inode number.
2043 *	3) newblk structures identified by mount point and
2044 *	   physical block number.
2045 *	4) bmsafemap structures identified by mount point and
2046 *	   cylinder group number.
2047 *
2048 * The "pagedep" and "inodedep" dependency structures are hashed
2049 * separately from the file blocks and inodes to which they correspond.
2050 * This separation helps when the in-memory copy of an inode or
2051 * file block must be replaced. It also obviates the need to access
2052 * an inode or file page when simply updating (or de-allocating)
2053 * dependency structures. Lookup of newblk structures is needed to
2054 * find newly allocated blocks when trying to associate them with
2055 * their allocdirect or allocindir structure.
2056 *
2057 * The lookup routines optionally create and hash a new instance when
2058 * an existing entry is not found. The bmsafemap lookup routine always
2059 * allocates a new structure if an existing one is not found.
2060 */
2061#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2062#define NODELAY		0x0002	/* cannot do background work */
2063
2064/*
2065 * Structures and routines associated with pagedep caching.
2066 */
2067#define	PAGEDEP_HASH(ump, inum, lbn) \
2068	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2069
2070static int
2071pagedep_find(pagedephd, ino, lbn, pagedeppp)
2072	struct pagedep_hashhead *pagedephd;
2073	ino_t ino;
2074	ufs_lbn_t lbn;
2075	struct pagedep **pagedeppp;
2076{
2077	struct pagedep *pagedep;
2078
2079	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2080		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2081			*pagedeppp = pagedep;
2082			return (1);
2083		}
2084	}
2085	*pagedeppp = NULL;
2086	return (0);
2087}
2088/*
2089 * Look up a pagedep. Return 1 if found, 0 otherwise.
2090 * If not found, allocate if DEPALLOC flag is passed.
2091 * Found or allocated entry is returned in pagedeppp.
2092 * This routine must be called with splbio interrupts blocked.
2093 */
2094static int
2095pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2096	struct mount *mp;
2097	struct buf *bp;
2098	ino_t ino;
2099	ufs_lbn_t lbn;
2100	int flags;
2101	struct pagedep **pagedeppp;
2102{
2103	struct pagedep *pagedep;
2104	struct pagedep_hashhead *pagedephd;
2105	struct worklist *wk;
2106	struct ufsmount *ump;
2107	int ret;
2108	int i;
2109
2110	ump = VFSTOUFS(mp);
2111	LOCK_OWNED(ump);
2112	if (bp) {
2113		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2114			if (wk->wk_type == D_PAGEDEP) {
2115				*pagedeppp = WK_PAGEDEP(wk);
2116				return (1);
2117			}
2118		}
2119	}
2120	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2121	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2122	if (ret) {
2123		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2124			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2125		return (1);
2126	}
2127	if ((flags & DEPALLOC) == 0)
2128		return (0);
2129	FREE_LOCK(ump);
2130	pagedep = malloc(sizeof(struct pagedep),
2131	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2132	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2133	ACQUIRE_LOCK(ump);
2134	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2135	if (*pagedeppp) {
2136		/*
2137		 * This should never happen since we only create pagedeps
2138		 * with the vnode lock held.  Could be an assert.
2139		 */
2140		WORKITEM_FREE(pagedep, D_PAGEDEP);
2141		return (ret);
2142	}
2143	pagedep->pd_ino = ino;
2144	pagedep->pd_lbn = lbn;
2145	LIST_INIT(&pagedep->pd_dirremhd);
2146	LIST_INIT(&pagedep->pd_pendinghd);
2147	for (i = 0; i < DAHASHSZ; i++)
2148		LIST_INIT(&pagedep->pd_diraddhd[i]);
2149	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2150	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2151	*pagedeppp = pagedep;
2152	return (0);
2153}
2154
2155/*
2156 * Structures and routines associated with inodedep caching.
2157 */
2158#define	INODEDEP_HASH(ump, inum) \
2159      (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2160
2161static int
2162inodedep_find(inodedephd, inum, inodedeppp)
2163	struct inodedep_hashhead *inodedephd;
2164	ino_t inum;
2165	struct inodedep **inodedeppp;
2166{
2167	struct inodedep *inodedep;
2168
2169	LIST_FOREACH(inodedep, inodedephd, id_hash)
2170		if (inum == inodedep->id_ino)
2171			break;
2172	if (inodedep) {
2173		*inodedeppp = inodedep;
2174		return (1);
2175	}
2176	*inodedeppp = NULL;
2177
2178	return (0);
2179}
2180/*
2181 * Look up an inodedep. Return 1 if found, 0 if not found.
2182 * If not found, allocate if DEPALLOC flag is passed.
2183 * Found or allocated entry is returned in inodedeppp.
2184 * This routine must be called with splbio interrupts blocked.
2185 */
2186static int
2187inodedep_lookup(mp, inum, flags, inodedeppp)
2188	struct mount *mp;
2189	ino_t inum;
2190	int flags;
2191	struct inodedep **inodedeppp;
2192{
2193	struct inodedep *inodedep;
2194	struct inodedep_hashhead *inodedephd;
2195	struct ufsmount *ump;
2196	struct fs *fs;
2197
2198	ump = VFSTOUFS(mp);
2199	LOCK_OWNED(ump);
2200	fs = ump->um_fs;
2201	inodedephd = INODEDEP_HASH(ump, inum);
2202
2203	if (inodedep_find(inodedephd, inum, inodedeppp))
2204		return (1);
2205	if ((flags & DEPALLOC) == 0)
2206		return (0);
2207	/*
2208	 * If the system is over its limit and our filesystem is
2209	 * responsible for more than our share of that usage and
2210	 * we are not in a rush, request some inodedep cleanup.
2211	 */
2212	while (dep_current[D_INODEDEP] > max_softdeps &&
2213	    (flags & NODELAY) == 0 &&
2214	    ump->softdep_curdeps[D_INODEDEP] >
2215	    max_softdeps / stat_flush_threads)
2216		request_cleanup(mp, FLUSH_INODES);
2217	FREE_LOCK(ump);
2218	inodedep = malloc(sizeof(struct inodedep),
2219		M_INODEDEP, M_SOFTDEP_FLAGS);
2220	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2221	ACQUIRE_LOCK(ump);
2222	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2223		WORKITEM_FREE(inodedep, D_INODEDEP);
2224		return (1);
2225	}
2226	inodedep->id_fs = fs;
2227	inodedep->id_ino = inum;
2228	inodedep->id_state = ALLCOMPLETE;
2229	inodedep->id_nlinkdelta = 0;
2230	inodedep->id_savedino1 = NULL;
2231	inodedep->id_savedsize = -1;
2232	inodedep->id_savedextsize = -1;
2233	inodedep->id_savednlink = -1;
2234	inodedep->id_bmsafemap = NULL;
2235	inodedep->id_mkdiradd = NULL;
2236	LIST_INIT(&inodedep->id_dirremhd);
2237	LIST_INIT(&inodedep->id_pendinghd);
2238	LIST_INIT(&inodedep->id_inowait);
2239	LIST_INIT(&inodedep->id_bufwait);
2240	TAILQ_INIT(&inodedep->id_inoreflst);
2241	TAILQ_INIT(&inodedep->id_inoupdt);
2242	TAILQ_INIT(&inodedep->id_newinoupdt);
2243	TAILQ_INIT(&inodedep->id_extupdt);
2244	TAILQ_INIT(&inodedep->id_newextupdt);
2245	TAILQ_INIT(&inodedep->id_freeblklst);
2246	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2247	*inodedeppp = inodedep;
2248	return (0);
2249}
2250
2251/*
2252 * Structures and routines associated with newblk caching.
2253 */
2254#define	NEWBLK_HASH(ump, inum) \
2255	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2256
2257static int
2258newblk_find(newblkhd, newblkno, flags, newblkpp)
2259	struct newblk_hashhead *newblkhd;
2260	ufs2_daddr_t newblkno;
2261	int flags;
2262	struct newblk **newblkpp;
2263{
2264	struct newblk *newblk;
2265
2266	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2267		if (newblkno != newblk->nb_newblkno)
2268			continue;
2269		/*
2270		 * If we're creating a new dependency don't match those that
2271		 * have already been converted to allocdirects.  This is for
2272		 * a frag extend.
2273		 */
2274		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2275			continue;
2276		break;
2277	}
2278	if (newblk) {
2279		*newblkpp = newblk;
2280		return (1);
2281	}
2282	*newblkpp = NULL;
2283	return (0);
2284}
2285
2286/*
2287 * Look up a newblk. Return 1 if found, 0 if not found.
2288 * If not found, allocate if DEPALLOC flag is passed.
2289 * Found or allocated entry is returned in newblkpp.
2290 */
2291static int
2292newblk_lookup(mp, newblkno, flags, newblkpp)
2293	struct mount *mp;
2294	ufs2_daddr_t newblkno;
2295	int flags;
2296	struct newblk **newblkpp;
2297{
2298	struct newblk *newblk;
2299	struct newblk_hashhead *newblkhd;
2300	struct ufsmount *ump;
2301
2302	ump = VFSTOUFS(mp);
2303	LOCK_OWNED(ump);
2304	newblkhd = NEWBLK_HASH(ump, newblkno);
2305	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2306		return (1);
2307	if ((flags & DEPALLOC) == 0)
2308		return (0);
2309	FREE_LOCK(ump);
2310	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2311	    M_SOFTDEP_FLAGS | M_ZERO);
2312	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2313	ACQUIRE_LOCK(ump);
2314	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2315		WORKITEM_FREE(newblk, D_NEWBLK);
2316		return (1);
2317	}
2318	newblk->nb_freefrag = NULL;
2319	LIST_INIT(&newblk->nb_indirdeps);
2320	LIST_INIT(&newblk->nb_newdirblk);
2321	LIST_INIT(&newblk->nb_jwork);
2322	newblk->nb_state = ATTACHED;
2323	newblk->nb_newblkno = newblkno;
2324	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2325	*newblkpp = newblk;
2326	return (0);
2327}
2328
2329/*
2330 * Structures and routines associated with freed indirect block caching.
2331 */
2332#define	INDIR_HASH(ump, blkno) \
2333	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2334
2335/*
2336 * Lookup an indirect block in the indir hash table.  The freework is
2337 * removed and potentially freed.  The caller must do a blocking journal
2338 * write before writing to the blkno.
2339 */
2340static int
2341indirblk_lookup(mp, blkno)
2342	struct mount *mp;
2343	ufs2_daddr_t blkno;
2344{
2345	struct freework *freework;
2346	struct indir_hashhead *wkhd;
2347	struct ufsmount *ump;
2348
2349	ump = VFSTOUFS(mp);
2350	wkhd = INDIR_HASH(ump, blkno);
2351	TAILQ_FOREACH(freework, wkhd, fw_next) {
2352		if (freework->fw_blkno != blkno)
2353			continue;
2354		indirblk_remove(freework);
2355		return (1);
2356	}
2357	return (0);
2358}
2359
2360/*
2361 * Insert an indirect block represented by freework into the indirblk
2362 * hash table so that it may prevent the block from being re-used prior
2363 * to the journal being written.
2364 */
2365static void
2366indirblk_insert(freework)
2367	struct freework *freework;
2368{
2369	struct jblocks *jblocks;
2370	struct jseg *jseg;
2371	struct ufsmount *ump;
2372
2373	ump = VFSTOUFS(freework->fw_list.wk_mp);
2374	jblocks = ump->softdep_jblocks;
2375	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2376	if (jseg == NULL)
2377		return;
2378
2379	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2380	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2381	    fw_next);
2382	freework->fw_state &= ~DEPCOMPLETE;
2383}
2384
2385static void
2386indirblk_remove(freework)
2387	struct freework *freework;
2388{
2389	struct ufsmount *ump;
2390
2391	ump = VFSTOUFS(freework->fw_list.wk_mp);
2392	LIST_REMOVE(freework, fw_segs);
2393	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2394	freework->fw_state |= DEPCOMPLETE;
2395	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2396		WORKITEM_FREE(freework, D_FREEWORK);
2397}
2398
2399/*
2400 * Executed during filesystem system initialization before
2401 * mounting any filesystems.
2402 */
2403void
2404softdep_initialize()
2405{
2406
2407	TAILQ_INIT(&softdepmounts);
2408	max_softdeps = desiredvnodes * 4;
2409
2410	/* initialise bioops hack */
2411	bioops.io_start = softdep_disk_io_initiation;
2412	bioops.io_complete = softdep_disk_write_complete;
2413	bioops.io_deallocate = softdep_deallocate_dependencies;
2414	bioops.io_countdeps = softdep_count_dependencies;
2415
2416	/* Initialize the callout with an mtx. */
2417	callout_init_mtx(&softdep_callout, &lk, 0);
2418}
2419
2420/*
2421 * Executed after all filesystems have been unmounted during
2422 * filesystem module unload.
2423 */
2424void
2425softdep_uninitialize()
2426{
2427
2428	/* clear bioops hack */
2429	bioops.io_start = NULL;
2430	bioops.io_complete = NULL;
2431	bioops.io_deallocate = NULL;
2432	bioops.io_countdeps = NULL;
2433
2434	callout_drain(&softdep_callout);
2435}
2436
2437/*
2438 * Called at mount time to notify the dependency code that a
2439 * filesystem wishes to use it.
2440 */
2441int
2442softdep_mount(devvp, mp, fs, cred)
2443	struct vnode *devvp;
2444	struct mount *mp;
2445	struct fs *fs;
2446	struct ucred *cred;
2447{
2448	struct csum_total cstotal;
2449	struct mount_softdeps *sdp;
2450	struct ufsmount *ump;
2451	struct cg *cgp;
2452	struct buf *bp;
2453	int i, error, cyl;
2454
2455	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2456	    M_WAITOK | M_ZERO);
2457	MNT_ILOCK(mp);
2458	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2459	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2460		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2461			MNTK_SOFTDEP | MNTK_NOASYNC;
2462	}
2463	ump = VFSTOUFS(mp);
2464	ump->um_softdep = sdp;
2465	MNT_IUNLOCK(mp);
2466	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2467	sdp->sd_ump = ump;
2468	LIST_INIT(&ump->softdep_workitem_pending);
2469	LIST_INIT(&ump->softdep_journal_pending);
2470	TAILQ_INIT(&ump->softdep_unlinked);
2471	LIST_INIT(&ump->softdep_dirtycg);
2472	ump->softdep_worklist_tail = NULL;
2473	ump->softdep_on_worklist = 0;
2474	ump->softdep_deps = 0;
2475	LIST_INIT(&ump->softdep_mkdirlisthd);
2476	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2477	    &ump->pagedep_hash_size);
2478	ump->pagedep_nextclean = 0;
2479	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2480	    &ump->inodedep_hash_size);
2481	ump->inodedep_nextclean = 0;
2482	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2483	    &ump->newblk_hash_size);
2484	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2485	    &ump->bmsafemap_hash_size);
2486	i = 1 << (ffs(desiredvnodes / 10) - 1);
2487	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2488	    M_FREEWORK, M_WAITOK);
2489	ump->indir_hash_size = i - 1;
2490	for (i = 0; i <= ump->indir_hash_size; i++)
2491		TAILQ_INIT(&ump->indir_hashtbl[i]);
2492	ACQUIRE_GBLLOCK(&lk);
2493	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2494	FREE_GBLLOCK(&lk);
2495	if ((fs->fs_flags & FS_SUJ) &&
2496	    (error = journal_mount(mp, fs, cred)) != 0) {
2497		printf("Failed to start journal: %d\n", error);
2498		softdep_unmount(mp);
2499		return (error);
2500	}
2501	/*
2502	 * Start our flushing thread in the bufdaemon process.
2503	 */
2504	ACQUIRE_LOCK(ump);
2505	ump->softdep_flags |= FLUSH_STARTING;
2506	FREE_LOCK(ump);
2507	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2508	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2509	    mp->mnt_stat.f_mntonname);
2510	ACQUIRE_LOCK(ump);
2511	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2512		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2513		    hz / 2);
2514	}
2515	FREE_LOCK(ump);
2516	/*
2517	 * When doing soft updates, the counters in the
2518	 * superblock may have gotten out of sync. Recomputation
2519	 * can take a long time and can be deferred for background
2520	 * fsck.  However, the old behavior of scanning the cylinder
2521	 * groups and recalculating them at mount time is available
2522	 * by setting vfs.ffs.compute_summary_at_mount to one.
2523	 */
2524	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2525		return (0);
2526	bzero(&cstotal, sizeof cstotal);
2527	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2528		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2529		    fs->fs_cgsize, cred, &bp)) != 0) {
2530			brelse(bp);
2531			softdep_unmount(mp);
2532			return (error);
2533		}
2534		cgp = (struct cg *)bp->b_data;
2535		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2536		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2537		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2538		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2539		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2540		brelse(bp);
2541	}
2542#ifdef DEBUG
2543	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2544		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2545#endif
2546	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2547	return (0);
2548}
2549
2550void
2551softdep_unmount(mp)
2552	struct mount *mp;
2553{
2554	struct ufsmount *ump;
2555#ifdef INVARIANTS
2556	int i;
2557#endif
2558
2559	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2560	    ("softdep_unmount called on non-softdep filesystem"));
2561	ump = VFSTOUFS(mp);
2562	MNT_ILOCK(mp);
2563	mp->mnt_flag &= ~MNT_SOFTDEP;
2564	if (MOUNTEDSUJ(mp) == 0) {
2565		MNT_IUNLOCK(mp);
2566	} else {
2567		mp->mnt_flag &= ~MNT_SUJ;
2568		MNT_IUNLOCK(mp);
2569		journal_unmount(ump);
2570	}
2571	/*
2572	 * Shut down our flushing thread. Check for NULL is if
2573	 * softdep_mount errors out before the thread has been created.
2574	 */
2575	if (ump->softdep_flushtd != NULL) {
2576		ACQUIRE_LOCK(ump);
2577		ump->softdep_flags |= FLUSH_EXIT;
2578		wakeup(&ump->softdep_flushtd);
2579		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2580		    "sdwait", 0);
2581		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2582		    ("Thread shutdown failed"));
2583	}
2584	/*
2585	 * Free up our resources.
2586	 */
2587	ACQUIRE_GBLLOCK(&lk);
2588	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2589	FREE_GBLLOCK(&lk);
2590	rw_destroy(LOCK_PTR(ump));
2591	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2592	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2593	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2594	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2595	    ump->bmsafemap_hash_size);
2596	free(ump->indir_hashtbl, M_FREEWORK);
2597#ifdef INVARIANTS
2598	for (i = 0; i <= D_LAST; i++)
2599		KASSERT(ump->softdep_curdeps[i] == 0,
2600		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2601		    TYPENAME(i), ump->softdep_curdeps[i]));
2602#endif
2603	free(ump->um_softdep, M_MOUNTDATA);
2604}
2605
2606static struct jblocks *
2607jblocks_create(void)
2608{
2609	struct jblocks *jblocks;
2610
2611	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2612	TAILQ_INIT(&jblocks->jb_segs);
2613	jblocks->jb_avail = 10;
2614	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2615	    M_JBLOCKS, M_WAITOK | M_ZERO);
2616
2617	return (jblocks);
2618}
2619
2620static ufs2_daddr_t
2621jblocks_alloc(jblocks, bytes, actual)
2622	struct jblocks *jblocks;
2623	int bytes;
2624	int *actual;
2625{
2626	ufs2_daddr_t daddr;
2627	struct jextent *jext;
2628	int freecnt;
2629	int blocks;
2630
2631	blocks = bytes / DEV_BSIZE;
2632	jext = &jblocks->jb_extent[jblocks->jb_head];
2633	freecnt = jext->je_blocks - jblocks->jb_off;
2634	if (freecnt == 0) {
2635		jblocks->jb_off = 0;
2636		if (++jblocks->jb_head > jblocks->jb_used)
2637			jblocks->jb_head = 0;
2638		jext = &jblocks->jb_extent[jblocks->jb_head];
2639		freecnt = jext->je_blocks;
2640	}
2641	if (freecnt > blocks)
2642		freecnt = blocks;
2643	*actual = freecnt * DEV_BSIZE;
2644	daddr = jext->je_daddr + jblocks->jb_off;
2645	jblocks->jb_off += freecnt;
2646	jblocks->jb_free -= freecnt;
2647
2648	return (daddr);
2649}
2650
2651static void
2652jblocks_free(jblocks, mp, bytes)
2653	struct jblocks *jblocks;
2654	struct mount *mp;
2655	int bytes;
2656{
2657
2658	LOCK_OWNED(VFSTOUFS(mp));
2659	jblocks->jb_free += bytes / DEV_BSIZE;
2660	if (jblocks->jb_suspended)
2661		worklist_speedup(mp);
2662	wakeup(jblocks);
2663}
2664
2665static void
2666jblocks_destroy(jblocks)
2667	struct jblocks *jblocks;
2668{
2669
2670	if (jblocks->jb_extent)
2671		free(jblocks->jb_extent, M_JBLOCKS);
2672	free(jblocks, M_JBLOCKS);
2673}
2674
2675static void
2676jblocks_add(jblocks, daddr, blocks)
2677	struct jblocks *jblocks;
2678	ufs2_daddr_t daddr;
2679	int blocks;
2680{
2681	struct jextent *jext;
2682
2683	jblocks->jb_blocks += blocks;
2684	jblocks->jb_free += blocks;
2685	jext = &jblocks->jb_extent[jblocks->jb_used];
2686	/* Adding the first block. */
2687	if (jext->je_daddr == 0) {
2688		jext->je_daddr = daddr;
2689		jext->je_blocks = blocks;
2690		return;
2691	}
2692	/* Extending the last extent. */
2693	if (jext->je_daddr + jext->je_blocks == daddr) {
2694		jext->je_blocks += blocks;
2695		return;
2696	}
2697	/* Adding a new extent. */
2698	if (++jblocks->jb_used == jblocks->jb_avail) {
2699		jblocks->jb_avail *= 2;
2700		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2701		    M_JBLOCKS, M_WAITOK | M_ZERO);
2702		memcpy(jext, jblocks->jb_extent,
2703		    sizeof(struct jextent) * jblocks->jb_used);
2704		free(jblocks->jb_extent, M_JBLOCKS);
2705		jblocks->jb_extent = jext;
2706	}
2707	jext = &jblocks->jb_extent[jblocks->jb_used];
2708	jext->je_daddr = daddr;
2709	jext->je_blocks = blocks;
2710	return;
2711}
2712
2713int
2714softdep_journal_lookup(mp, vpp)
2715	struct mount *mp;
2716	struct vnode **vpp;
2717{
2718	struct componentname cnp;
2719	struct vnode *dvp;
2720	ino_t sujournal;
2721	int error;
2722
2723	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2724	if (error)
2725		return (error);
2726	bzero(&cnp, sizeof(cnp));
2727	cnp.cn_nameiop = LOOKUP;
2728	cnp.cn_flags = ISLASTCN;
2729	cnp.cn_thread = curthread;
2730	cnp.cn_cred = curthread->td_ucred;
2731	cnp.cn_pnbuf = SUJ_FILE;
2732	cnp.cn_nameptr = SUJ_FILE;
2733	cnp.cn_namelen = strlen(SUJ_FILE);
2734	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2735	vput(dvp);
2736	if (error != 0)
2737		return (error);
2738	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2739	return (error);
2740}
2741
2742/*
2743 * Open and verify the journal file.
2744 */
2745static int
2746journal_mount(mp, fs, cred)
2747	struct mount *mp;
2748	struct fs *fs;
2749	struct ucred *cred;
2750{
2751	struct jblocks *jblocks;
2752	struct ufsmount *ump;
2753	struct vnode *vp;
2754	struct inode *ip;
2755	ufs2_daddr_t blkno;
2756	int bcount;
2757	int error;
2758	int i;
2759
2760	ump = VFSTOUFS(mp);
2761	ump->softdep_journal_tail = NULL;
2762	ump->softdep_on_journal = 0;
2763	ump->softdep_accdeps = 0;
2764	ump->softdep_req = 0;
2765	ump->softdep_jblocks = NULL;
2766	error = softdep_journal_lookup(mp, &vp);
2767	if (error != 0) {
2768		printf("Failed to find journal.  Use tunefs to create one\n");
2769		return (error);
2770	}
2771	ip = VTOI(vp);
2772	if (ip->i_size < SUJ_MIN) {
2773		error = ENOSPC;
2774		goto out;
2775	}
2776	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2777	jblocks = jblocks_create();
2778	for (i = 0; i < bcount; i++) {
2779		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2780		if (error)
2781			break;
2782		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2783	}
2784	if (error) {
2785		jblocks_destroy(jblocks);
2786		goto out;
2787	}
2788	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2789	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2790	ump->softdep_jblocks = jblocks;
2791out:
2792	if (error == 0) {
2793		MNT_ILOCK(mp);
2794		mp->mnt_flag |= MNT_SUJ;
2795		mp->mnt_flag &= ~MNT_SOFTDEP;
2796		MNT_IUNLOCK(mp);
2797		/*
2798		 * Only validate the journal contents if the
2799		 * filesystem is clean, otherwise we write the logs
2800		 * but they'll never be used.  If the filesystem was
2801		 * still dirty when we mounted it the journal is
2802		 * invalid and a new journal can only be valid if it
2803		 * starts from a clean mount.
2804		 */
2805		if (fs->fs_clean) {
2806			DIP_SET(ip, i_modrev, fs->fs_mtime);
2807			ip->i_flags |= IN_MODIFIED;
2808			ffs_update(vp, 1);
2809		}
2810	}
2811	vput(vp);
2812	return (error);
2813}
2814
2815static void
2816journal_unmount(ump)
2817	struct ufsmount *ump;
2818{
2819
2820	if (ump->softdep_jblocks)
2821		jblocks_destroy(ump->softdep_jblocks);
2822	ump->softdep_jblocks = NULL;
2823}
2824
2825/*
2826 * Called when a journal record is ready to be written.  Space is allocated
2827 * and the journal entry is created when the journal is flushed to stable
2828 * store.
2829 */
2830static void
2831add_to_journal(wk)
2832	struct worklist *wk;
2833{
2834	struct ufsmount *ump;
2835
2836	ump = VFSTOUFS(wk->wk_mp);
2837	LOCK_OWNED(ump);
2838	if (wk->wk_state & ONWORKLIST)
2839		panic("add_to_journal: %s(0x%X) already on list",
2840		    TYPENAME(wk->wk_type), wk->wk_state);
2841	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2842	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2843		ump->softdep_jblocks->jb_age = ticks;
2844		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2845	} else
2846		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2847	ump->softdep_journal_tail = wk;
2848	ump->softdep_on_journal += 1;
2849}
2850
2851/*
2852 * Remove an arbitrary item for the journal worklist maintain the tail
2853 * pointer.  This happens when a new operation obviates the need to
2854 * journal an old operation.
2855 */
2856static void
2857remove_from_journal(wk)
2858	struct worklist *wk;
2859{
2860	struct ufsmount *ump;
2861
2862	ump = VFSTOUFS(wk->wk_mp);
2863	LOCK_OWNED(ump);
2864#ifdef SUJ_DEBUG
2865	{
2866		struct worklist *wkn;
2867
2868		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2869			if (wkn == wk)
2870				break;
2871		if (wkn == NULL)
2872			panic("remove_from_journal: %p is not in journal", wk);
2873	}
2874#endif
2875	/*
2876	 * We emulate a TAILQ to save space in most structures which do not
2877	 * require TAILQ semantics.  Here we must update the tail position
2878	 * when removing the tail which is not the final entry. This works
2879	 * only if the worklist linkage are at the beginning of the structure.
2880	 */
2881	if (ump->softdep_journal_tail == wk)
2882		ump->softdep_journal_tail =
2883		    (struct worklist *)wk->wk_list.le_prev;
2884
2885	WORKLIST_REMOVE(wk);
2886	ump->softdep_on_journal -= 1;
2887}
2888
2889/*
2890 * Check for journal space as well as dependency limits so the prelink
2891 * code can throttle both journaled and non-journaled filesystems.
2892 * Threshold is 0 for low and 1 for min.
2893 */
2894static int
2895journal_space(ump, thresh)
2896	struct ufsmount *ump;
2897	int thresh;
2898{
2899	struct jblocks *jblocks;
2900	int limit, avail;
2901
2902	jblocks = ump->softdep_jblocks;
2903	if (jblocks == NULL)
2904		return (1);
2905	/*
2906	 * We use a tighter restriction here to prevent request_cleanup()
2907	 * running in threads from running into locks we currently hold.
2908	 * We have to be over the limit and our filesystem has to be
2909	 * responsible for more than our share of that usage.
2910	 */
2911	limit = (max_softdeps / 10) * 9;
2912	if (dep_current[D_INODEDEP] > limit &&
2913	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2914		return (0);
2915	if (thresh)
2916		thresh = jblocks->jb_min;
2917	else
2918		thresh = jblocks->jb_low;
2919	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2920	avail = jblocks->jb_free - avail;
2921
2922	return (avail > thresh);
2923}
2924
2925static void
2926journal_suspend(ump)
2927	struct ufsmount *ump;
2928{
2929	struct jblocks *jblocks;
2930	struct mount *mp;
2931
2932	mp = UFSTOVFS(ump);
2933	jblocks = ump->softdep_jblocks;
2934	MNT_ILOCK(mp);
2935	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2936		stat_journal_min++;
2937		mp->mnt_kern_flag |= MNTK_SUSPEND;
2938		mp->mnt_susp_owner = ump->softdep_flushtd;
2939	}
2940	jblocks->jb_suspended = 1;
2941	MNT_IUNLOCK(mp);
2942}
2943
2944static int
2945journal_unsuspend(struct ufsmount *ump)
2946{
2947	struct jblocks *jblocks;
2948	struct mount *mp;
2949
2950	mp = UFSTOVFS(ump);
2951	jblocks = ump->softdep_jblocks;
2952
2953	if (jblocks != NULL && jblocks->jb_suspended &&
2954	    journal_space(ump, jblocks->jb_min)) {
2955		jblocks->jb_suspended = 0;
2956		FREE_LOCK(ump);
2957		mp->mnt_susp_owner = curthread;
2958		vfs_write_resume(mp, 0);
2959		ACQUIRE_LOCK(ump);
2960		return (1);
2961	}
2962	return (0);
2963}
2964
2965/*
2966 * Called before any allocation function to be certain that there is
2967 * sufficient space in the journal prior to creating any new records.
2968 * Since in the case of block allocation we may have multiple locked
2969 * buffers at the time of the actual allocation we can not block
2970 * when the journal records are created.  Doing so would create a deadlock
2971 * if any of these buffers needed to be flushed to reclaim space.  Instead
2972 * we require a sufficiently large amount of available space such that
2973 * each thread in the system could have passed this allocation check and
2974 * still have sufficient free space.  With 20% of a minimum journal size
2975 * of 1MB we have 6553 records available.
2976 */
2977int
2978softdep_prealloc(vp, waitok)
2979	struct vnode *vp;
2980	int waitok;
2981{
2982	struct ufsmount *ump;
2983
2984	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2985	    ("softdep_prealloc called on non-softdep filesystem"));
2986	/*
2987	 * Nothing to do if we are not running journaled soft updates.
2988	 * If we currently hold the snapshot lock, we must avoid handling
2989	 * other resources that could cause deadlock.
2990	 */
2991	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2992		return (0);
2993	ump = VFSTOUFS(vp->v_mount);
2994	ACQUIRE_LOCK(ump);
2995	if (journal_space(ump, 0)) {
2996		FREE_LOCK(ump);
2997		return (0);
2998	}
2999	stat_journal_low++;
3000	FREE_LOCK(ump);
3001	if (waitok == MNT_NOWAIT)
3002		return (ENOSPC);
3003	/*
3004	 * Attempt to sync this vnode once to flush any journal
3005	 * work attached to it.
3006	 */
3007	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3008		ffs_syncvnode(vp, waitok, 0);
3009	ACQUIRE_LOCK(ump);
3010	process_removes(vp);
3011	process_truncates(vp);
3012	if (journal_space(ump, 0) == 0) {
3013		softdep_speedup(ump);
3014		if (journal_space(ump, 1) == 0)
3015			journal_suspend(ump);
3016	}
3017	FREE_LOCK(ump);
3018
3019	return (0);
3020}
3021
3022/*
3023 * Before adjusting a link count on a vnode verify that we have sufficient
3024 * journal space.  If not, process operations that depend on the currently
3025 * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3026 * and softdep flush threads can not acquire these locks to reclaim space.
3027 */
3028static void
3029softdep_prelink(dvp, vp)
3030	struct vnode *dvp;
3031	struct vnode *vp;
3032{
3033	struct ufsmount *ump;
3034
3035	ump = VFSTOUFS(dvp->v_mount);
3036	LOCK_OWNED(ump);
3037	/*
3038	 * Nothing to do if we have sufficient journal space.
3039	 * If we currently hold the snapshot lock, we must avoid
3040	 * handling other resources that could cause deadlock.
3041	 */
3042	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3043		return;
3044	stat_journal_low++;
3045	FREE_LOCK(ump);
3046	if (vp)
3047		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3048	ffs_syncvnode(dvp, MNT_WAIT, 0);
3049	ACQUIRE_LOCK(ump);
3050	/* Process vp before dvp as it may create .. removes. */
3051	if (vp) {
3052		process_removes(vp);
3053		process_truncates(vp);
3054	}
3055	process_removes(dvp);
3056	process_truncates(dvp);
3057	softdep_speedup(ump);
3058	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3059	if (journal_space(ump, 0) == 0) {
3060		softdep_speedup(ump);
3061		if (journal_space(ump, 1) == 0)
3062			journal_suspend(ump);
3063	}
3064}
3065
3066static void
3067jseg_write(ump, jseg, data)
3068	struct ufsmount *ump;
3069	struct jseg *jseg;
3070	uint8_t *data;
3071{
3072	struct jsegrec *rec;
3073
3074	rec = (struct jsegrec *)data;
3075	rec->jsr_seq = jseg->js_seq;
3076	rec->jsr_oldest = jseg->js_oldseq;
3077	rec->jsr_cnt = jseg->js_cnt;
3078	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3079	rec->jsr_crc = 0;
3080	rec->jsr_time = ump->um_fs->fs_mtime;
3081}
3082
3083static inline void
3084inoref_write(inoref, jseg, rec)
3085	struct inoref *inoref;
3086	struct jseg *jseg;
3087	struct jrefrec *rec;
3088{
3089
3090	inoref->if_jsegdep->jd_seg = jseg;
3091	rec->jr_ino = inoref->if_ino;
3092	rec->jr_parent = inoref->if_parent;
3093	rec->jr_nlink = inoref->if_nlink;
3094	rec->jr_mode = inoref->if_mode;
3095	rec->jr_diroff = inoref->if_diroff;
3096}
3097
3098static void
3099jaddref_write(jaddref, jseg, data)
3100	struct jaddref *jaddref;
3101	struct jseg *jseg;
3102	uint8_t *data;
3103{
3104	struct jrefrec *rec;
3105
3106	rec = (struct jrefrec *)data;
3107	rec->jr_op = JOP_ADDREF;
3108	inoref_write(&jaddref->ja_ref, jseg, rec);
3109}
3110
3111static void
3112jremref_write(jremref, jseg, data)
3113	struct jremref *jremref;
3114	struct jseg *jseg;
3115	uint8_t *data;
3116{
3117	struct jrefrec *rec;
3118
3119	rec = (struct jrefrec *)data;
3120	rec->jr_op = JOP_REMREF;
3121	inoref_write(&jremref->jr_ref, jseg, rec);
3122}
3123
3124static void
3125jmvref_write(jmvref, jseg, data)
3126	struct jmvref *jmvref;
3127	struct jseg *jseg;
3128	uint8_t *data;
3129{
3130	struct jmvrec *rec;
3131
3132	rec = (struct jmvrec *)data;
3133	rec->jm_op = JOP_MVREF;
3134	rec->jm_ino = jmvref->jm_ino;
3135	rec->jm_parent = jmvref->jm_parent;
3136	rec->jm_oldoff = jmvref->jm_oldoff;
3137	rec->jm_newoff = jmvref->jm_newoff;
3138}
3139
3140static void
3141jnewblk_write(jnewblk, jseg, data)
3142	struct jnewblk *jnewblk;
3143	struct jseg *jseg;
3144	uint8_t *data;
3145{
3146	struct jblkrec *rec;
3147
3148	jnewblk->jn_jsegdep->jd_seg = jseg;
3149	rec = (struct jblkrec *)data;
3150	rec->jb_op = JOP_NEWBLK;
3151	rec->jb_ino = jnewblk->jn_ino;
3152	rec->jb_blkno = jnewblk->jn_blkno;
3153	rec->jb_lbn = jnewblk->jn_lbn;
3154	rec->jb_frags = jnewblk->jn_frags;
3155	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3156}
3157
3158static void
3159jfreeblk_write(jfreeblk, jseg, data)
3160	struct jfreeblk *jfreeblk;
3161	struct jseg *jseg;
3162	uint8_t *data;
3163{
3164	struct jblkrec *rec;
3165
3166	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3167	rec = (struct jblkrec *)data;
3168	rec->jb_op = JOP_FREEBLK;
3169	rec->jb_ino = jfreeblk->jf_ino;
3170	rec->jb_blkno = jfreeblk->jf_blkno;
3171	rec->jb_lbn = jfreeblk->jf_lbn;
3172	rec->jb_frags = jfreeblk->jf_frags;
3173	rec->jb_oldfrags = 0;
3174}
3175
3176static void
3177jfreefrag_write(jfreefrag, jseg, data)
3178	struct jfreefrag *jfreefrag;
3179	struct jseg *jseg;
3180	uint8_t *data;
3181{
3182	struct jblkrec *rec;
3183
3184	jfreefrag->fr_jsegdep->jd_seg = jseg;
3185	rec = (struct jblkrec *)data;
3186	rec->jb_op = JOP_FREEBLK;
3187	rec->jb_ino = jfreefrag->fr_ino;
3188	rec->jb_blkno = jfreefrag->fr_blkno;
3189	rec->jb_lbn = jfreefrag->fr_lbn;
3190	rec->jb_frags = jfreefrag->fr_frags;
3191	rec->jb_oldfrags = 0;
3192}
3193
3194static void
3195jtrunc_write(jtrunc, jseg, data)
3196	struct jtrunc *jtrunc;
3197	struct jseg *jseg;
3198	uint8_t *data;
3199{
3200	struct jtrncrec *rec;
3201
3202	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3203	rec = (struct jtrncrec *)data;
3204	rec->jt_op = JOP_TRUNC;
3205	rec->jt_ino = jtrunc->jt_ino;
3206	rec->jt_size = jtrunc->jt_size;
3207	rec->jt_extsize = jtrunc->jt_extsize;
3208}
3209
3210static void
3211jfsync_write(jfsync, jseg, data)
3212	struct jfsync *jfsync;
3213	struct jseg *jseg;
3214	uint8_t *data;
3215{
3216	struct jtrncrec *rec;
3217
3218	rec = (struct jtrncrec *)data;
3219	rec->jt_op = JOP_SYNC;
3220	rec->jt_ino = jfsync->jfs_ino;
3221	rec->jt_size = jfsync->jfs_size;
3222	rec->jt_extsize = jfsync->jfs_extsize;
3223}
3224
3225static void
3226softdep_flushjournal(mp)
3227	struct mount *mp;
3228{
3229	struct jblocks *jblocks;
3230	struct ufsmount *ump;
3231
3232	if (MOUNTEDSUJ(mp) == 0)
3233		return;
3234	ump = VFSTOUFS(mp);
3235	jblocks = ump->softdep_jblocks;
3236	ACQUIRE_LOCK(ump);
3237	while (ump->softdep_on_journal) {
3238		jblocks->jb_needseg = 1;
3239		softdep_process_journal(mp, NULL, MNT_WAIT);
3240	}
3241	FREE_LOCK(ump);
3242}
3243
3244static void softdep_synchronize_completed(struct bio *);
3245static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3246
3247static void
3248softdep_synchronize_completed(bp)
3249        struct bio *bp;
3250{
3251	struct jseg *oldest;
3252	struct jseg *jseg;
3253	struct ufsmount *ump;
3254
3255	/*
3256	 * caller1 marks the last segment written before we issued the
3257	 * synchronize cache.
3258	 */
3259	jseg = bp->bio_caller1;
3260	if (jseg == NULL) {
3261		g_destroy_bio(bp);
3262		return;
3263	}
3264	ump = VFSTOUFS(jseg->js_list.wk_mp);
3265	ACQUIRE_LOCK(ump);
3266	oldest = NULL;
3267	/*
3268	 * Mark all the journal entries waiting on the synchronize cache
3269	 * as completed so they may continue on.
3270	 */
3271	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3272		jseg->js_state |= COMPLETE;
3273		oldest = jseg;
3274		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3275	}
3276	/*
3277	 * Restart deferred journal entry processing from the oldest
3278	 * completed jseg.
3279	 */
3280	if (oldest)
3281		complete_jsegs(oldest);
3282
3283	FREE_LOCK(ump);
3284	g_destroy_bio(bp);
3285}
3286
3287/*
3288 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3289 * barriers.  The journal must be written prior to any blocks that depend
3290 * on it and the journal can not be released until the blocks have be
3291 * written.  This code handles both barriers simultaneously.
3292 */
3293static void
3294softdep_synchronize(bp, ump, caller1)
3295	struct bio *bp;
3296	struct ufsmount *ump;
3297	void *caller1;
3298{
3299
3300	bp->bio_cmd = BIO_FLUSH;
3301	bp->bio_flags |= BIO_ORDERED;
3302	bp->bio_data = NULL;
3303	bp->bio_offset = ump->um_cp->provider->mediasize;
3304	bp->bio_length = 0;
3305	bp->bio_done = softdep_synchronize_completed;
3306	bp->bio_caller1 = caller1;
3307	g_io_request(bp,
3308	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3309}
3310
3311/*
3312 * Flush some journal records to disk.
3313 */
3314static void
3315softdep_process_journal(mp, needwk, flags)
3316	struct mount *mp;
3317	struct worklist *needwk;
3318	int flags;
3319{
3320	struct jblocks *jblocks;
3321	struct ufsmount *ump;
3322	struct worklist *wk;
3323	struct jseg *jseg;
3324	struct buf *bp;
3325	struct bio *bio;
3326	uint8_t *data;
3327	struct fs *fs;
3328	int shouldflush;
3329	int segwritten;
3330	int jrecmin;	/* Minimum records per block. */
3331	int jrecmax;	/* Maximum records per block. */
3332	int size;
3333	int cnt;
3334	int off;
3335	int devbsize;
3336
3337	if (MOUNTEDSUJ(mp) == 0)
3338		return;
3339	shouldflush = softdep_flushcache;
3340	bio = NULL;
3341	jseg = NULL;
3342	ump = VFSTOUFS(mp);
3343	LOCK_OWNED(ump);
3344	fs = ump->um_fs;
3345	jblocks = ump->softdep_jblocks;
3346	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3347	/*
3348	 * We write anywhere between a disk block and fs block.  The upper
3349	 * bound is picked to prevent buffer cache fragmentation and limit
3350	 * processing time per I/O.
3351	 */
3352	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3353	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3354	segwritten = 0;
3355	for (;;) {
3356		cnt = ump->softdep_on_journal;
3357		/*
3358		 * Criteria for writing a segment:
3359		 * 1) We have a full block.
3360		 * 2) We're called from jwait() and haven't found the
3361		 *    journal item yet.
3362		 * 3) Always write if needseg is set.
3363		 * 4) If we are called from process_worklist and have
3364		 *    not yet written anything we write a partial block
3365		 *    to enforce a 1 second maximum latency on journal
3366		 *    entries.
3367		 */
3368		if (cnt < (jrecmax - 1) && needwk == NULL &&
3369		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3370			break;
3371		cnt++;
3372		/*
3373		 * Verify some free journal space.  softdep_prealloc() should
3374		 * guarantee that we don't run out so this is indicative of
3375		 * a problem with the flow control.  Try to recover
3376		 * gracefully in any event.
3377		 */
3378		while (jblocks->jb_free == 0) {
3379			if (flags != MNT_WAIT)
3380				break;
3381			printf("softdep: Out of journal space!\n");
3382			softdep_speedup(ump);
3383			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3384		}
3385		FREE_LOCK(ump);
3386		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3387		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3388		LIST_INIT(&jseg->js_entries);
3389		LIST_INIT(&jseg->js_indirs);
3390		jseg->js_state = ATTACHED;
3391		if (shouldflush == 0)
3392			jseg->js_state |= COMPLETE;
3393		else if (bio == NULL)
3394			bio = g_alloc_bio();
3395		jseg->js_jblocks = jblocks;
3396		bp = geteblk(fs->fs_bsize, 0);
3397		ACQUIRE_LOCK(ump);
3398		/*
3399		 * If there was a race while we were allocating the block
3400		 * and jseg the entry we care about was likely written.
3401		 * We bail out in both the WAIT and NOWAIT case and assume
3402		 * the caller will loop if the entry it cares about is
3403		 * not written.
3404		 */
3405		cnt = ump->softdep_on_journal;
3406		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3407			bp->b_flags |= B_INVAL | B_NOCACHE;
3408			WORKITEM_FREE(jseg, D_JSEG);
3409			FREE_LOCK(ump);
3410			brelse(bp);
3411			ACQUIRE_LOCK(ump);
3412			break;
3413		}
3414		/*
3415		 * Calculate the disk block size required for the available
3416		 * records rounded to the min size.
3417		 */
3418		if (cnt == 0)
3419			size = devbsize;
3420		else if (cnt < jrecmax)
3421			size = howmany(cnt, jrecmin) * devbsize;
3422		else
3423			size = fs->fs_bsize;
3424		/*
3425		 * Allocate a disk block for this journal data and account
3426		 * for truncation of the requested size if enough contiguous
3427		 * space was not available.
3428		 */
3429		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3430		bp->b_lblkno = bp->b_blkno;
3431		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3432		bp->b_bcount = size;
3433		bp->b_flags &= ~B_INVAL;
3434		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3435		/*
3436		 * Initialize our jseg with cnt records.  Assign the next
3437		 * sequence number to it and link it in-order.
3438		 */
3439		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3440		jseg->js_buf = bp;
3441		jseg->js_cnt = cnt;
3442		jseg->js_refs = cnt + 1;	/* Self ref. */
3443		jseg->js_size = size;
3444		jseg->js_seq = jblocks->jb_nextseq++;
3445		if (jblocks->jb_oldestseg == NULL)
3446			jblocks->jb_oldestseg = jseg;
3447		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3448		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3449		if (jblocks->jb_writeseg == NULL)
3450			jblocks->jb_writeseg = jseg;
3451		/*
3452		 * Start filling in records from the pending list.
3453		 */
3454		data = bp->b_data;
3455		off = 0;
3456
3457		/*
3458		 * Always put a header on the first block.
3459		 * XXX As with below, there might not be a chance to get
3460		 * into the loop.  Ensure that something valid is written.
3461		 */
3462		jseg_write(ump, jseg, data);
3463		off += JREC_SIZE;
3464		data = bp->b_data + off;
3465
3466		/*
3467		 * XXX Something is wrong here.  There's no work to do,
3468		 * but we need to perform and I/O and allow it to complete
3469		 * anyways.
3470		 */
3471		if (LIST_EMPTY(&ump->softdep_journal_pending))
3472			stat_emptyjblocks++;
3473
3474		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3475		    != NULL) {
3476			if (cnt == 0)
3477				break;
3478			/* Place a segment header on every device block. */
3479			if ((off % devbsize) == 0) {
3480				jseg_write(ump, jseg, data);
3481				off += JREC_SIZE;
3482				data = bp->b_data + off;
3483			}
3484			if (wk == needwk)
3485				needwk = NULL;
3486			remove_from_journal(wk);
3487			wk->wk_state |= INPROGRESS;
3488			WORKLIST_INSERT(&jseg->js_entries, wk);
3489			switch (wk->wk_type) {
3490			case D_JADDREF:
3491				jaddref_write(WK_JADDREF(wk), jseg, data);
3492				break;
3493			case D_JREMREF:
3494				jremref_write(WK_JREMREF(wk), jseg, data);
3495				break;
3496			case D_JMVREF:
3497				jmvref_write(WK_JMVREF(wk), jseg, data);
3498				break;
3499			case D_JNEWBLK:
3500				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3501				break;
3502			case D_JFREEBLK:
3503				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3504				break;
3505			case D_JFREEFRAG:
3506				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3507				break;
3508			case D_JTRUNC:
3509				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3510				break;
3511			case D_JFSYNC:
3512				jfsync_write(WK_JFSYNC(wk), jseg, data);
3513				break;
3514			default:
3515				panic("process_journal: Unknown type %s",
3516				    TYPENAME(wk->wk_type));
3517				/* NOTREACHED */
3518			}
3519			off += JREC_SIZE;
3520			data = bp->b_data + off;
3521			cnt--;
3522		}
3523
3524		/* Clear any remaining space so we don't leak kernel data */
3525		if (size > off)
3526			bzero(data, size - off);
3527
3528		/*
3529		 * Write this one buffer and continue.
3530		 */
3531		segwritten = 1;
3532		jblocks->jb_needseg = 0;
3533		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3534		FREE_LOCK(ump);
3535		pbgetvp(ump->um_devvp, bp);
3536		/*
3537		 * We only do the blocking wait once we find the journal
3538		 * entry we're looking for.
3539		 */
3540		if (needwk == NULL && flags == MNT_WAIT)
3541			bwrite(bp);
3542		else
3543			bawrite(bp);
3544		ACQUIRE_LOCK(ump);
3545	}
3546	/*
3547	 * If we wrote a segment issue a synchronize cache so the journal
3548	 * is reflected on disk before the data is written.  Since reclaiming
3549	 * journal space also requires writing a journal record this
3550	 * process also enforces a barrier before reclamation.
3551	 */
3552	if (segwritten && shouldflush) {
3553		softdep_synchronize(bio, ump,
3554		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3555	} else if (bio)
3556		g_destroy_bio(bio);
3557	/*
3558	 * If we've suspended the filesystem because we ran out of journal
3559	 * space either try to sync it here to make some progress or
3560	 * unsuspend it if we already have.
3561	 */
3562	if (flags == 0 && jblocks->jb_suspended) {
3563		if (journal_unsuspend(ump))
3564			return;
3565		FREE_LOCK(ump);
3566		VFS_SYNC(mp, MNT_NOWAIT);
3567		ffs_sbupdate(ump, MNT_WAIT, 0);
3568		ACQUIRE_LOCK(ump);
3569	}
3570}
3571
3572/*
3573 * Complete a jseg, allowing all dependencies awaiting journal writes
3574 * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3575 * structures so that the journal segment can be freed to reclaim space.
3576 */
3577static void
3578complete_jseg(jseg)
3579	struct jseg *jseg;
3580{
3581	struct worklist *wk;
3582	struct jmvref *jmvref;
3583	int waiting;
3584#ifdef INVARIANTS
3585	int i = 0;
3586#endif
3587
3588	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3589		WORKLIST_REMOVE(wk);
3590		waiting = wk->wk_state & IOWAITING;
3591		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3592		wk->wk_state |= COMPLETE;
3593		KASSERT(i++ < jseg->js_cnt,
3594		    ("handle_written_jseg: overflow %d >= %d",
3595		    i - 1, jseg->js_cnt));
3596		switch (wk->wk_type) {
3597		case D_JADDREF:
3598			handle_written_jaddref(WK_JADDREF(wk));
3599			break;
3600		case D_JREMREF:
3601			handle_written_jremref(WK_JREMREF(wk));
3602			break;
3603		case D_JMVREF:
3604			rele_jseg(jseg);	/* No jsegdep. */
3605			jmvref = WK_JMVREF(wk);
3606			LIST_REMOVE(jmvref, jm_deps);
3607			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3608				free_pagedep(jmvref->jm_pagedep);
3609			WORKITEM_FREE(jmvref, D_JMVREF);
3610			break;
3611		case D_JNEWBLK:
3612			handle_written_jnewblk(WK_JNEWBLK(wk));
3613			break;
3614		case D_JFREEBLK:
3615			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3616			break;
3617		case D_JTRUNC:
3618			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3619			break;
3620		case D_JFSYNC:
3621			rele_jseg(jseg);	/* No jsegdep. */
3622			WORKITEM_FREE(wk, D_JFSYNC);
3623			break;
3624		case D_JFREEFRAG:
3625			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3626			break;
3627		default:
3628			panic("handle_written_jseg: Unknown type %s",
3629			    TYPENAME(wk->wk_type));
3630			/* NOTREACHED */
3631		}
3632		if (waiting)
3633			wakeup(wk);
3634	}
3635	/* Release the self reference so the structure may be freed. */
3636	rele_jseg(jseg);
3637}
3638
3639/*
3640 * Determine which jsegs are ready for completion processing.  Waits for
3641 * synchronize cache to complete as well as forcing in-order completion
3642 * of journal entries.
3643 */
3644static void
3645complete_jsegs(jseg)
3646	struct jseg *jseg;
3647{
3648	struct jblocks *jblocks;
3649	struct jseg *jsegn;
3650
3651	jblocks = jseg->js_jblocks;
3652	/*
3653	 * Don't allow out of order completions.  If this isn't the first
3654	 * block wait for it to write before we're done.
3655	 */
3656	if (jseg != jblocks->jb_writeseg)
3657		return;
3658	/* Iterate through available jsegs processing their entries. */
3659	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3660		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3661		jsegn = TAILQ_NEXT(jseg, js_next);
3662		complete_jseg(jseg);
3663		jseg = jsegn;
3664	}
3665	jblocks->jb_writeseg = jseg;
3666	/*
3667	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3668	 */
3669	free_jsegs(jblocks);
3670}
3671
3672/*
3673 * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3674 * the final completions.
3675 */
3676static void
3677handle_written_jseg(jseg, bp)
3678	struct jseg *jseg;
3679	struct buf *bp;
3680{
3681
3682	if (jseg->js_refs == 0)
3683		panic("handle_written_jseg: No self-reference on %p", jseg);
3684	jseg->js_state |= DEPCOMPLETE;
3685	/*
3686	 * We'll never need this buffer again, set flags so it will be
3687	 * discarded.
3688	 */
3689	bp->b_flags |= B_INVAL | B_NOCACHE;
3690	pbrelvp(bp);
3691	complete_jsegs(jseg);
3692}
3693
3694static inline struct jsegdep *
3695inoref_jseg(inoref)
3696	struct inoref *inoref;
3697{
3698	struct jsegdep *jsegdep;
3699
3700	jsegdep = inoref->if_jsegdep;
3701	inoref->if_jsegdep = NULL;
3702
3703	return (jsegdep);
3704}
3705
3706/*
3707 * Called once a jremref has made it to stable store.  The jremref is marked
3708 * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3709 * for the jremref to complete will be awoken by free_jremref.
3710 */
3711static void
3712handle_written_jremref(jremref)
3713	struct jremref *jremref;
3714{
3715	struct inodedep *inodedep;
3716	struct jsegdep *jsegdep;
3717	struct dirrem *dirrem;
3718
3719	/* Grab the jsegdep. */
3720	jsegdep = inoref_jseg(&jremref->jr_ref);
3721	/*
3722	 * Remove us from the inoref list.
3723	 */
3724	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3725	    0, &inodedep) == 0)
3726		panic("handle_written_jremref: Lost inodedep");
3727	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3728	/*
3729	 * Complete the dirrem.
3730	 */
3731	dirrem = jremref->jr_dirrem;
3732	jremref->jr_dirrem = NULL;
3733	LIST_REMOVE(jremref, jr_deps);
3734	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3735	jwork_insert(&dirrem->dm_jwork, jsegdep);
3736	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3737	    (dirrem->dm_state & COMPLETE) != 0)
3738		add_to_worklist(&dirrem->dm_list, 0);
3739	free_jremref(jremref);
3740}
3741
3742/*
3743 * Called once a jaddref has made it to stable store.  The dependency is
3744 * marked complete and any dependent structures are added to the inode
3745 * bufwait list to be completed as soon as it is written.  If a bitmap write
3746 * depends on this entry we move the inode into the inodedephd of the
3747 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3748 */
3749static void
3750handle_written_jaddref(jaddref)
3751	struct jaddref *jaddref;
3752{
3753	struct jsegdep *jsegdep;
3754	struct inodedep *inodedep;
3755	struct diradd *diradd;
3756	struct mkdir *mkdir;
3757
3758	/* Grab the jsegdep. */
3759	jsegdep = inoref_jseg(&jaddref->ja_ref);
3760	mkdir = NULL;
3761	diradd = NULL;
3762	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3763	    0, &inodedep) == 0)
3764		panic("handle_written_jaddref: Lost inodedep.");
3765	if (jaddref->ja_diradd == NULL)
3766		panic("handle_written_jaddref: No dependency");
3767	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3768		diradd = jaddref->ja_diradd;
3769		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3770	} else if (jaddref->ja_state & MKDIR_PARENT) {
3771		mkdir = jaddref->ja_mkdir;
3772		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3773	} else if (jaddref->ja_state & MKDIR_BODY)
3774		mkdir = jaddref->ja_mkdir;
3775	else
3776		panic("handle_written_jaddref: Unknown dependency %p",
3777		    jaddref->ja_diradd);
3778	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3779	/*
3780	 * Remove us from the inode list.
3781	 */
3782	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3783	/*
3784	 * The mkdir may be waiting on the jaddref to clear before freeing.
3785	 */
3786	if (mkdir) {
3787		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3788		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3789		    TYPENAME(mkdir->md_list.wk_type)));
3790		mkdir->md_jaddref = NULL;
3791		diradd = mkdir->md_diradd;
3792		mkdir->md_state |= DEPCOMPLETE;
3793		complete_mkdir(mkdir);
3794	}
3795	jwork_insert(&diradd->da_jwork, jsegdep);
3796	if (jaddref->ja_state & NEWBLOCK) {
3797		inodedep->id_state |= ONDEPLIST;
3798		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3799		    inodedep, id_deps);
3800	}
3801	free_jaddref(jaddref);
3802}
3803
3804/*
3805 * Called once a jnewblk journal is written.  The allocdirect or allocindir
3806 * is placed in the bmsafemap to await notification of a written bitmap.  If
3807 * the operation was canceled we add the segdep to the appropriate
3808 * dependency to free the journal space once the canceling operation
3809 * completes.
3810 */
3811static void
3812handle_written_jnewblk(jnewblk)
3813	struct jnewblk *jnewblk;
3814{
3815	struct bmsafemap *bmsafemap;
3816	struct freefrag *freefrag;
3817	struct freework *freework;
3818	struct jsegdep *jsegdep;
3819	struct newblk *newblk;
3820
3821	/* Grab the jsegdep. */
3822	jsegdep = jnewblk->jn_jsegdep;
3823	jnewblk->jn_jsegdep = NULL;
3824	if (jnewblk->jn_dep == NULL)
3825		panic("handle_written_jnewblk: No dependency for the segdep.");
3826	switch (jnewblk->jn_dep->wk_type) {
3827	case D_NEWBLK:
3828	case D_ALLOCDIRECT:
3829	case D_ALLOCINDIR:
3830		/*
3831		 * Add the written block to the bmsafemap so it can
3832		 * be notified when the bitmap is on disk.
3833		 */
3834		newblk = WK_NEWBLK(jnewblk->jn_dep);
3835		newblk->nb_jnewblk = NULL;
3836		if ((newblk->nb_state & GOINGAWAY) == 0) {
3837			bmsafemap = newblk->nb_bmsafemap;
3838			newblk->nb_state |= ONDEPLIST;
3839			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3840			    nb_deps);
3841		}
3842		jwork_insert(&newblk->nb_jwork, jsegdep);
3843		break;
3844	case D_FREEFRAG:
3845		/*
3846		 * A newblock being removed by a freefrag when replaced by
3847		 * frag extension.
3848		 */
3849		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3850		freefrag->ff_jdep = NULL;
3851		jwork_insert(&freefrag->ff_jwork, jsegdep);
3852		break;
3853	case D_FREEWORK:
3854		/*
3855		 * A direct block was removed by truncate.
3856		 */
3857		freework = WK_FREEWORK(jnewblk->jn_dep);
3858		freework->fw_jnewblk = NULL;
3859		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3860		break;
3861	default:
3862		panic("handle_written_jnewblk: Unknown type %d.",
3863		    jnewblk->jn_dep->wk_type);
3864	}
3865	jnewblk->jn_dep = NULL;
3866	free_jnewblk(jnewblk);
3867}
3868
3869/*
3870 * Cancel a jfreefrag that won't be needed, probably due to colliding with
3871 * an in-flight allocation that has not yet been committed.  Divorce us
3872 * from the freefrag and mark it DEPCOMPLETE so that it may be added
3873 * to the worklist.
3874 */
3875static void
3876cancel_jfreefrag(jfreefrag)
3877	struct jfreefrag *jfreefrag;
3878{
3879	struct freefrag *freefrag;
3880
3881	if (jfreefrag->fr_jsegdep) {
3882		free_jsegdep(jfreefrag->fr_jsegdep);
3883		jfreefrag->fr_jsegdep = NULL;
3884	}
3885	freefrag = jfreefrag->fr_freefrag;
3886	jfreefrag->fr_freefrag = NULL;
3887	free_jfreefrag(jfreefrag);
3888	freefrag->ff_state |= DEPCOMPLETE;
3889	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3890}
3891
3892/*
3893 * Free a jfreefrag when the parent freefrag is rendered obsolete.
3894 */
3895static void
3896free_jfreefrag(jfreefrag)
3897	struct jfreefrag *jfreefrag;
3898{
3899
3900	if (jfreefrag->fr_state & INPROGRESS)
3901		WORKLIST_REMOVE(&jfreefrag->fr_list);
3902	else if (jfreefrag->fr_state & ONWORKLIST)
3903		remove_from_journal(&jfreefrag->fr_list);
3904	if (jfreefrag->fr_freefrag != NULL)
3905		panic("free_jfreefrag:  Still attached to a freefrag.");
3906	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3907}
3908
3909/*
3910 * Called when the journal write for a jfreefrag completes.  The parent
3911 * freefrag is added to the worklist if this completes its dependencies.
3912 */
3913static void
3914handle_written_jfreefrag(jfreefrag)
3915	struct jfreefrag *jfreefrag;
3916{
3917	struct jsegdep *jsegdep;
3918	struct freefrag *freefrag;
3919
3920	/* Grab the jsegdep. */
3921	jsegdep = jfreefrag->fr_jsegdep;
3922	jfreefrag->fr_jsegdep = NULL;
3923	freefrag = jfreefrag->fr_freefrag;
3924	if (freefrag == NULL)
3925		panic("handle_written_jfreefrag: No freefrag.");
3926	freefrag->ff_state |= DEPCOMPLETE;
3927	freefrag->ff_jdep = NULL;
3928	jwork_insert(&freefrag->ff_jwork, jsegdep);
3929	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3930		add_to_worklist(&freefrag->ff_list, 0);
3931	jfreefrag->fr_freefrag = NULL;
3932	free_jfreefrag(jfreefrag);
3933}
3934
3935/*
3936 * Called when the journal write for a jfreeblk completes.  The jfreeblk
3937 * is removed from the freeblks list of pending journal writes and the
3938 * jsegdep is moved to the freeblks jwork to be completed when all blocks
3939 * have been reclaimed.
3940 */
3941static void
3942handle_written_jblkdep(jblkdep)
3943	struct jblkdep *jblkdep;
3944{
3945	struct freeblks *freeblks;
3946	struct jsegdep *jsegdep;
3947
3948	/* Grab the jsegdep. */
3949	jsegdep = jblkdep->jb_jsegdep;
3950	jblkdep->jb_jsegdep = NULL;
3951	freeblks = jblkdep->jb_freeblks;
3952	LIST_REMOVE(jblkdep, jb_deps);
3953	jwork_insert(&freeblks->fb_jwork, jsegdep);
3954	/*
3955	 * If the freeblks is all journaled, we can add it to the worklist.
3956	 */
3957	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3958	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3959		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3960
3961	free_jblkdep(jblkdep);
3962}
3963
3964static struct jsegdep *
3965newjsegdep(struct worklist *wk)
3966{
3967	struct jsegdep *jsegdep;
3968
3969	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3970	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3971	jsegdep->jd_seg = NULL;
3972
3973	return (jsegdep);
3974}
3975
3976static struct jmvref *
3977newjmvref(dp, ino, oldoff, newoff)
3978	struct inode *dp;
3979	ino_t ino;
3980	off_t oldoff;
3981	off_t newoff;
3982{
3983	struct jmvref *jmvref;
3984
3985	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3986	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3987	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3988	jmvref->jm_parent = dp->i_number;
3989	jmvref->jm_ino = ino;
3990	jmvref->jm_oldoff = oldoff;
3991	jmvref->jm_newoff = newoff;
3992
3993	return (jmvref);
3994}
3995
3996/*
3997 * Allocate a new jremref that tracks the removal of ip from dp with the
3998 * directory entry offset of diroff.  Mark the entry as ATTACHED and
3999 * DEPCOMPLETE as we have all the information required for the journal write
4000 * and the directory has already been removed from the buffer.  The caller
4001 * is responsible for linking the jremref into the pagedep and adding it
4002 * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4003 * a DOTDOT addition so handle_workitem_remove() can properly assign
4004 * the jsegdep when we're done.
4005 */
4006static struct jremref *
4007newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4008    off_t diroff, nlink_t nlink)
4009{
4010	struct jremref *jremref;
4011
4012	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4013	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
4014	jremref->jr_state = ATTACHED;
4015	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4016	   nlink, ip->i_mode);
4017	jremref->jr_dirrem = dirrem;
4018
4019	return (jremref);
4020}
4021
4022static inline void
4023newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4024    nlink_t nlink, uint16_t mode)
4025{
4026
4027	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4028	inoref->if_diroff = diroff;
4029	inoref->if_ino = ino;
4030	inoref->if_parent = parent;
4031	inoref->if_nlink = nlink;
4032	inoref->if_mode = mode;
4033}
4034
4035/*
4036 * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4037 * directory offset may not be known until later.  The caller is responsible
4038 * adding the entry to the journal when this information is available.  nlink
4039 * should be the link count prior to the addition and mode is only required
4040 * to have the correct FMT.
4041 */
4042static struct jaddref *
4043newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4044    uint16_t mode)
4045{
4046	struct jaddref *jaddref;
4047
4048	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4049	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
4050	jaddref->ja_state = ATTACHED;
4051	jaddref->ja_mkdir = NULL;
4052	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4053
4054	return (jaddref);
4055}
4056
4057/*
4058 * Create a new free dependency for a freework.  The caller is responsible
4059 * for adjusting the reference count when it has the lock held.  The freedep
4060 * will track an outstanding bitmap write that will ultimately clear the
4061 * freework to continue.
4062 */
4063static struct freedep *
4064newfreedep(struct freework *freework)
4065{
4066	struct freedep *freedep;
4067
4068	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4069	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4070	freedep->fd_freework = freework;
4071
4072	return (freedep);
4073}
4074
4075/*
4076 * Free a freedep structure once the buffer it is linked to is written.  If
4077 * this is the last reference to the freework schedule it for completion.
4078 */
4079static void
4080free_freedep(freedep)
4081	struct freedep *freedep;
4082{
4083	struct freework *freework;
4084
4085	freework = freedep->fd_freework;
4086	freework->fw_freeblks->fb_cgwait--;
4087	if (--freework->fw_ref == 0)
4088		freework_enqueue(freework);
4089	WORKITEM_FREE(freedep, D_FREEDEP);
4090}
4091
4092/*
4093 * Allocate a new freework structure that may be a level in an indirect
4094 * when parent is not NULL or a top level block when it is.  The top level
4095 * freework structures are allocated without the per-filesystem lock held
4096 * and before the freeblks is visible outside of softdep_setup_freeblocks().
4097 */
4098static struct freework *
4099newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4100	struct ufsmount *ump;
4101	struct freeblks *freeblks;
4102	struct freework *parent;
4103	ufs_lbn_t lbn;
4104	ufs2_daddr_t nb;
4105	int frags;
4106	int off;
4107	int journal;
4108{
4109	struct freework *freework;
4110
4111	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4112	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4113	freework->fw_state = ATTACHED;
4114	freework->fw_jnewblk = NULL;
4115	freework->fw_freeblks = freeblks;
4116	freework->fw_parent = parent;
4117	freework->fw_lbn = lbn;
4118	freework->fw_blkno = nb;
4119	freework->fw_frags = frags;
4120	freework->fw_indir = NULL;
4121	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
4122		? 0 : NINDIR(ump->um_fs) + 1;
4123	freework->fw_start = freework->fw_off = off;
4124	if (journal)
4125		newjfreeblk(freeblks, lbn, nb, frags);
4126	if (parent == NULL) {
4127		ACQUIRE_LOCK(ump);
4128		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4129		freeblks->fb_ref++;
4130		FREE_LOCK(ump);
4131	}
4132
4133	return (freework);
4134}
4135
4136/*
4137 * Eliminate a jfreeblk for a block that does not need journaling.
4138 */
4139static void
4140cancel_jfreeblk(freeblks, blkno)
4141	struct freeblks *freeblks;
4142	ufs2_daddr_t blkno;
4143{
4144	struct jfreeblk *jfreeblk;
4145	struct jblkdep *jblkdep;
4146
4147	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4148		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4149			continue;
4150		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4151		if (jfreeblk->jf_blkno == blkno)
4152			break;
4153	}
4154	if (jblkdep == NULL)
4155		return;
4156	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4157	free_jsegdep(jblkdep->jb_jsegdep);
4158	LIST_REMOVE(jblkdep, jb_deps);
4159	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4160}
4161
4162/*
4163 * Allocate a new jfreeblk to journal top level block pointer when truncating
4164 * a file.  The caller must add this to the worklist when the per-filesystem
4165 * lock is held.
4166 */
4167static struct jfreeblk *
4168newjfreeblk(freeblks, lbn, blkno, frags)
4169	struct freeblks *freeblks;
4170	ufs_lbn_t lbn;
4171	ufs2_daddr_t blkno;
4172	int frags;
4173{
4174	struct jfreeblk *jfreeblk;
4175
4176	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4177	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4178	    freeblks->fb_list.wk_mp);
4179	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4180	jfreeblk->jf_dep.jb_freeblks = freeblks;
4181	jfreeblk->jf_ino = freeblks->fb_inum;
4182	jfreeblk->jf_lbn = lbn;
4183	jfreeblk->jf_blkno = blkno;
4184	jfreeblk->jf_frags = frags;
4185	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4186
4187	return (jfreeblk);
4188}
4189
4190/*
4191 * The journal is only prepared to handle full-size block numbers, so we
4192 * have to adjust the record to reflect the change to a full-size block.
4193 * For example, suppose we have a block made up of fragments 8-15 and
4194 * want to free its last two fragments. We are given a request that says:
4195 *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4196 * where frags are the number of fragments to free and oldfrags are the
4197 * number of fragments to keep. To block align it, we have to change it to
4198 * have a valid full-size blkno, so it becomes:
4199 *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4200 */
4201static void
4202adjust_newfreework(freeblks, frag_offset)
4203	struct freeblks *freeblks;
4204	int frag_offset;
4205{
4206	struct jfreeblk *jfreeblk;
4207
4208	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4209	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4210	    ("adjust_newfreework: Missing freeblks dependency"));
4211
4212	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4213	jfreeblk->jf_blkno -= frag_offset;
4214	jfreeblk->jf_frags += frag_offset;
4215}
4216
4217/*
4218 * Allocate a new jtrunc to track a partial truncation.
4219 */
4220static struct jtrunc *
4221newjtrunc(freeblks, size, extsize)
4222	struct freeblks *freeblks;
4223	off_t size;
4224	int extsize;
4225{
4226	struct jtrunc *jtrunc;
4227
4228	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4229	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4230	    freeblks->fb_list.wk_mp);
4231	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4232	jtrunc->jt_dep.jb_freeblks = freeblks;
4233	jtrunc->jt_ino = freeblks->fb_inum;
4234	jtrunc->jt_size = size;
4235	jtrunc->jt_extsize = extsize;
4236	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4237
4238	return (jtrunc);
4239}
4240
4241/*
4242 * If we're canceling a new bitmap we have to search for another ref
4243 * to move into the bmsafemap dep.  This might be better expressed
4244 * with another structure.
4245 */
4246static void
4247move_newblock_dep(jaddref, inodedep)
4248	struct jaddref *jaddref;
4249	struct inodedep *inodedep;
4250{
4251	struct inoref *inoref;
4252	struct jaddref *jaddrefn;
4253
4254	jaddrefn = NULL;
4255	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4256	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4257		if ((jaddref->ja_state & NEWBLOCK) &&
4258		    inoref->if_list.wk_type == D_JADDREF) {
4259			jaddrefn = (struct jaddref *)inoref;
4260			break;
4261		}
4262	}
4263	if (jaddrefn == NULL)
4264		return;
4265	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4266	jaddrefn->ja_state |= jaddref->ja_state &
4267	    (ATTACHED | UNDONE | NEWBLOCK);
4268	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4269	jaddref->ja_state |= ATTACHED;
4270	LIST_REMOVE(jaddref, ja_bmdeps);
4271	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4272	    ja_bmdeps);
4273}
4274
4275/*
4276 * Cancel a jaddref either before it has been written or while it is being
4277 * written.  This happens when a link is removed before the add reaches
4278 * the disk.  The jaddref dependency is kept linked into the bmsafemap
4279 * and inode to prevent the link count or bitmap from reaching the disk
4280 * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4281 * required.
4282 *
4283 * Returns 1 if the canceled addref requires journaling of the remove and
4284 * 0 otherwise.
4285 */
4286static int
4287cancel_jaddref(jaddref, inodedep, wkhd)
4288	struct jaddref *jaddref;
4289	struct inodedep *inodedep;
4290	struct workhead *wkhd;
4291{
4292	struct inoref *inoref;
4293	struct jsegdep *jsegdep;
4294	int needsj;
4295
4296	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4297	    ("cancel_jaddref: Canceling complete jaddref"));
4298	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4299		needsj = 1;
4300	else
4301		needsj = 0;
4302	if (inodedep == NULL)
4303		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4304		    0, &inodedep) == 0)
4305			panic("cancel_jaddref: Lost inodedep");
4306	/*
4307	 * We must adjust the nlink of any reference operation that follows
4308	 * us so that it is consistent with the in-memory reference.  This
4309	 * ensures that inode nlink rollbacks always have the correct link.
4310	 */
4311	if (needsj == 0) {
4312		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4313		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4314			if (inoref->if_state & GOINGAWAY)
4315				break;
4316			inoref->if_nlink--;
4317		}
4318	}
4319	jsegdep = inoref_jseg(&jaddref->ja_ref);
4320	if (jaddref->ja_state & NEWBLOCK)
4321		move_newblock_dep(jaddref, inodedep);
4322	wake_worklist(&jaddref->ja_list);
4323	jaddref->ja_mkdir = NULL;
4324	if (jaddref->ja_state & INPROGRESS) {
4325		jaddref->ja_state &= ~INPROGRESS;
4326		WORKLIST_REMOVE(&jaddref->ja_list);
4327		jwork_insert(wkhd, jsegdep);
4328	} else {
4329		free_jsegdep(jsegdep);
4330		if (jaddref->ja_state & DEPCOMPLETE)
4331			remove_from_journal(&jaddref->ja_list);
4332	}
4333	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4334	/*
4335	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4336	 * can arrange for them to be freed with the bitmap.  Otherwise we
4337	 * no longer need this addref attached to the inoreflst and it
4338	 * will incorrectly adjust nlink if we leave it.
4339	 */
4340	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4341		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4342		    if_deps);
4343		jaddref->ja_state |= COMPLETE;
4344		free_jaddref(jaddref);
4345		return (needsj);
4346	}
4347	/*
4348	 * Leave the head of the list for jsegdeps for fast merging.
4349	 */
4350	if (LIST_FIRST(wkhd) != NULL) {
4351		jaddref->ja_state |= ONWORKLIST;
4352		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4353	} else
4354		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4355
4356	return (needsj);
4357}
4358
4359/*
4360 * Attempt to free a jaddref structure when some work completes.  This
4361 * should only succeed once the entry is written and all dependencies have
4362 * been notified.
4363 */
4364static void
4365free_jaddref(jaddref)
4366	struct jaddref *jaddref;
4367{
4368
4369	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4370		return;
4371	if (jaddref->ja_ref.if_jsegdep)
4372		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4373		    jaddref, jaddref->ja_state);
4374	if (jaddref->ja_state & NEWBLOCK)
4375		LIST_REMOVE(jaddref, ja_bmdeps);
4376	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4377		panic("free_jaddref: Bad state %p(0x%X)",
4378		    jaddref, jaddref->ja_state);
4379	if (jaddref->ja_mkdir != NULL)
4380		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4381	WORKITEM_FREE(jaddref, D_JADDREF);
4382}
4383
4384/*
4385 * Free a jremref structure once it has been written or discarded.
4386 */
4387static void
4388free_jremref(jremref)
4389	struct jremref *jremref;
4390{
4391
4392	if (jremref->jr_ref.if_jsegdep)
4393		free_jsegdep(jremref->jr_ref.if_jsegdep);
4394	if (jremref->jr_state & INPROGRESS)
4395		panic("free_jremref: IO still pending");
4396	WORKITEM_FREE(jremref, D_JREMREF);
4397}
4398
4399/*
4400 * Free a jnewblk structure.
4401 */
4402static void
4403free_jnewblk(jnewblk)
4404	struct jnewblk *jnewblk;
4405{
4406
4407	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4408		return;
4409	LIST_REMOVE(jnewblk, jn_deps);
4410	if (jnewblk->jn_dep != NULL)
4411		panic("free_jnewblk: Dependency still attached.");
4412	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4413}
4414
4415/*
4416 * Cancel a jnewblk which has been been made redundant by frag extension.
4417 */
4418static void
4419cancel_jnewblk(jnewblk, wkhd)
4420	struct jnewblk *jnewblk;
4421	struct workhead *wkhd;
4422{
4423	struct jsegdep *jsegdep;
4424
4425	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4426	jsegdep = jnewblk->jn_jsegdep;
4427	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4428		panic("cancel_jnewblk: Invalid state");
4429	jnewblk->jn_jsegdep  = NULL;
4430	jnewblk->jn_dep = NULL;
4431	jnewblk->jn_state |= GOINGAWAY;
4432	if (jnewblk->jn_state & INPROGRESS) {
4433		jnewblk->jn_state &= ~INPROGRESS;
4434		WORKLIST_REMOVE(&jnewblk->jn_list);
4435		jwork_insert(wkhd, jsegdep);
4436	} else {
4437		free_jsegdep(jsegdep);
4438		remove_from_journal(&jnewblk->jn_list);
4439	}
4440	wake_worklist(&jnewblk->jn_list);
4441	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4442}
4443
4444static void
4445free_jblkdep(jblkdep)
4446	struct jblkdep *jblkdep;
4447{
4448
4449	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4450		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4451	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4452		WORKITEM_FREE(jblkdep, D_JTRUNC);
4453	else
4454		panic("free_jblkdep: Unexpected type %s",
4455		    TYPENAME(jblkdep->jb_list.wk_type));
4456}
4457
4458/*
4459 * Free a single jseg once it is no longer referenced in memory or on
4460 * disk.  Reclaim journal blocks and dependencies waiting for the segment
4461 * to disappear.
4462 */
4463static void
4464free_jseg(jseg, jblocks)
4465	struct jseg *jseg;
4466	struct jblocks *jblocks;
4467{
4468	struct freework *freework;
4469
4470	/*
4471	 * Free freework structures that were lingering to indicate freed
4472	 * indirect blocks that forced journal write ordering on reallocate.
4473	 */
4474	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4475		indirblk_remove(freework);
4476	if (jblocks->jb_oldestseg == jseg)
4477		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4478	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4479	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4480	KASSERT(LIST_EMPTY(&jseg->js_entries),
4481	    ("free_jseg: Freed jseg has valid entries."));
4482	WORKITEM_FREE(jseg, D_JSEG);
4483}
4484
4485/*
4486 * Free all jsegs that meet the criteria for being reclaimed and update
4487 * oldestseg.
4488 */
4489static void
4490free_jsegs(jblocks)
4491	struct jblocks *jblocks;
4492{
4493	struct jseg *jseg;
4494
4495	/*
4496	 * Free only those jsegs which have none allocated before them to
4497	 * preserve the journal space ordering.
4498	 */
4499	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4500		/*
4501		 * Only reclaim space when nothing depends on this journal
4502		 * set and another set has written that it is no longer
4503		 * valid.
4504		 */
4505		if (jseg->js_refs != 0) {
4506			jblocks->jb_oldestseg = jseg;
4507			return;
4508		}
4509		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4510			break;
4511		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4512			break;
4513		/*
4514		 * We can free jsegs that didn't write entries when
4515		 * oldestwrseq == js_seq.
4516		 */
4517		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4518		    jseg->js_cnt != 0)
4519			break;
4520		free_jseg(jseg, jblocks);
4521	}
4522	/*
4523	 * If we exited the loop above we still must discover the
4524	 * oldest valid segment.
4525	 */
4526	if (jseg)
4527		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4528		     jseg = TAILQ_NEXT(jseg, js_next))
4529			if (jseg->js_refs != 0)
4530				break;
4531	jblocks->jb_oldestseg = jseg;
4532	/*
4533	 * The journal has no valid records but some jsegs may still be
4534	 * waiting on oldestwrseq to advance.  We force a small record
4535	 * out to permit these lingering records to be reclaimed.
4536	 */
4537	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4538		jblocks->jb_needseg = 1;
4539}
4540
4541/*
4542 * Release one reference to a jseg and free it if the count reaches 0.  This
4543 * should eventually reclaim journal space as well.
4544 */
4545static void
4546rele_jseg(jseg)
4547	struct jseg *jseg;
4548{
4549
4550	KASSERT(jseg->js_refs > 0,
4551	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4552	if (--jseg->js_refs != 0)
4553		return;
4554	free_jsegs(jseg->js_jblocks);
4555}
4556
4557/*
4558 * Release a jsegdep and decrement the jseg count.
4559 */
4560static void
4561free_jsegdep(jsegdep)
4562	struct jsegdep *jsegdep;
4563{
4564
4565	if (jsegdep->jd_seg)
4566		rele_jseg(jsegdep->jd_seg);
4567	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4568}
4569
4570/*
4571 * Wait for a journal item to make it to disk.  Initiate journal processing
4572 * if required.
4573 */
4574static int
4575jwait(wk, waitfor)
4576	struct worklist *wk;
4577	int waitfor;
4578{
4579
4580	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4581	/*
4582	 * Blocking journal waits cause slow synchronous behavior.  Record
4583	 * stats on the frequency of these blocking operations.
4584	 */
4585	if (waitfor == MNT_WAIT) {
4586		stat_journal_wait++;
4587		switch (wk->wk_type) {
4588		case D_JREMREF:
4589		case D_JMVREF:
4590			stat_jwait_filepage++;
4591			break;
4592		case D_JTRUNC:
4593		case D_JFREEBLK:
4594			stat_jwait_freeblks++;
4595			break;
4596		case D_JNEWBLK:
4597			stat_jwait_newblk++;
4598			break;
4599		case D_JADDREF:
4600			stat_jwait_inode++;
4601			break;
4602		default:
4603			break;
4604		}
4605	}
4606	/*
4607	 * If IO has not started we process the journal.  We can't mark the
4608	 * worklist item as IOWAITING because we drop the lock while
4609	 * processing the journal and the worklist entry may be freed after
4610	 * this point.  The caller may call back in and re-issue the request.
4611	 */
4612	if ((wk->wk_state & INPROGRESS) == 0) {
4613		softdep_process_journal(wk->wk_mp, wk, waitfor);
4614		if (waitfor != MNT_WAIT)
4615			return (EBUSY);
4616		return (0);
4617	}
4618	if (waitfor != MNT_WAIT)
4619		return (EBUSY);
4620	wait_worklist(wk, "jwait");
4621	return (0);
4622}
4623
4624/*
4625 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4626 * appropriate.  This is a convenience function to reduce duplicate code
4627 * for the setup and revert functions below.
4628 */
4629static struct inodedep *
4630inodedep_lookup_ip(ip)
4631	struct inode *ip;
4632{
4633	struct inodedep *inodedep;
4634	int dflags;
4635
4636	KASSERT(ip->i_nlink >= ip->i_effnlink,
4637	    ("inodedep_lookup_ip: bad delta"));
4638	dflags = DEPALLOC;
4639	if (IS_SNAPSHOT(ip))
4640		dflags |= NODELAY;
4641	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4642	    &inodedep);
4643	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4644	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4645
4646	return (inodedep);
4647}
4648
4649/*
4650 * Called prior to creating a new inode and linking it to a directory.  The
4651 * jaddref structure must already be allocated by softdep_setup_inomapdep
4652 * and it is discovered here so we can initialize the mode and update
4653 * nlinkdelta.
4654 */
4655void
4656softdep_setup_create(dp, ip)
4657	struct inode *dp;
4658	struct inode *ip;
4659{
4660	struct inodedep *inodedep;
4661	struct jaddref *jaddref;
4662	struct vnode *dvp;
4663
4664	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4665	    ("softdep_setup_create called on non-softdep filesystem"));
4666	KASSERT(ip->i_nlink == 1,
4667	    ("softdep_setup_create: Invalid link count."));
4668	dvp = ITOV(dp);
4669	ACQUIRE_LOCK(dp->i_ump);
4670	inodedep = inodedep_lookup_ip(ip);
4671	if (DOINGSUJ(dvp)) {
4672		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4673		    inoreflst);
4674		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4675		    ("softdep_setup_create: No addref structure present."));
4676	}
4677	softdep_prelink(dvp, NULL);
4678	FREE_LOCK(dp->i_ump);
4679}
4680
4681/*
4682 * Create a jaddref structure to track the addition of a DOTDOT link when
4683 * we are reparenting an inode as part of a rename.  This jaddref will be
4684 * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4685 * non-journaling softdep.
4686 */
4687void
4688softdep_setup_dotdot_link(dp, ip)
4689	struct inode *dp;
4690	struct inode *ip;
4691{
4692	struct inodedep *inodedep;
4693	struct jaddref *jaddref;
4694	struct vnode *dvp;
4695	struct vnode *vp;
4696
4697	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4698	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4699	dvp = ITOV(dp);
4700	vp = ITOV(ip);
4701	jaddref = NULL;
4702	/*
4703	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4704	 * is used as a normal link would be.
4705	 */
4706	if (DOINGSUJ(dvp))
4707		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4708		    dp->i_effnlink - 1, dp->i_mode);
4709	ACQUIRE_LOCK(dp->i_ump);
4710	inodedep = inodedep_lookup_ip(dp);
4711	if (jaddref)
4712		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4713		    if_deps);
4714	softdep_prelink(dvp, ITOV(ip));
4715	FREE_LOCK(dp->i_ump);
4716}
4717
4718/*
4719 * Create a jaddref structure to track a new link to an inode.  The directory
4720 * offset is not known until softdep_setup_directory_add or
4721 * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4722 * softdep.
4723 */
4724void
4725softdep_setup_link(dp, ip)
4726	struct inode *dp;
4727	struct inode *ip;
4728{
4729	struct inodedep *inodedep;
4730	struct jaddref *jaddref;
4731	struct vnode *dvp;
4732
4733	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4734	    ("softdep_setup_link called on non-softdep filesystem"));
4735	dvp = ITOV(dp);
4736	jaddref = NULL;
4737	if (DOINGSUJ(dvp))
4738		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4739		    ip->i_mode);
4740	ACQUIRE_LOCK(dp->i_ump);
4741	inodedep = inodedep_lookup_ip(ip);
4742	if (jaddref)
4743		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4744		    if_deps);
4745	softdep_prelink(dvp, ITOV(ip));
4746	FREE_LOCK(dp->i_ump);
4747}
4748
4749/*
4750 * Called to create the jaddref structures to track . and .. references as
4751 * well as lookup and further initialize the incomplete jaddref created
4752 * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4753 * nlinkdelta for non-journaling softdep.
4754 */
4755void
4756softdep_setup_mkdir(dp, ip)
4757	struct inode *dp;
4758	struct inode *ip;
4759{
4760	struct inodedep *inodedep;
4761	struct jaddref *dotdotaddref;
4762	struct jaddref *dotaddref;
4763	struct jaddref *jaddref;
4764	struct vnode *dvp;
4765
4766	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4767	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4768	dvp = ITOV(dp);
4769	dotaddref = dotdotaddref = NULL;
4770	if (DOINGSUJ(dvp)) {
4771		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4772		    ip->i_mode);
4773		dotaddref->ja_state |= MKDIR_BODY;
4774		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4775		    dp->i_effnlink - 1, dp->i_mode);
4776		dotdotaddref->ja_state |= MKDIR_PARENT;
4777	}
4778	ACQUIRE_LOCK(dp->i_ump);
4779	inodedep = inodedep_lookup_ip(ip);
4780	if (DOINGSUJ(dvp)) {
4781		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4782		    inoreflst);
4783		KASSERT(jaddref != NULL,
4784		    ("softdep_setup_mkdir: No addref structure present."));
4785		KASSERT(jaddref->ja_parent == dp->i_number,
4786		    ("softdep_setup_mkdir: bad parent %ju",
4787		    (uintmax_t)jaddref->ja_parent));
4788		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4789		    if_deps);
4790	}
4791	inodedep = inodedep_lookup_ip(dp);
4792	if (DOINGSUJ(dvp))
4793		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4794		    &dotdotaddref->ja_ref, if_deps);
4795	softdep_prelink(ITOV(dp), NULL);
4796	FREE_LOCK(dp->i_ump);
4797}
4798
4799/*
4800 * Called to track nlinkdelta of the inode and parent directories prior to
4801 * unlinking a directory.
4802 */
4803void
4804softdep_setup_rmdir(dp, ip)
4805	struct inode *dp;
4806	struct inode *ip;
4807{
4808	struct vnode *dvp;
4809
4810	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4811	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4812	dvp = ITOV(dp);
4813	ACQUIRE_LOCK(dp->i_ump);
4814	(void) inodedep_lookup_ip(ip);
4815	(void) inodedep_lookup_ip(dp);
4816	softdep_prelink(dvp, ITOV(ip));
4817	FREE_LOCK(dp->i_ump);
4818}
4819
4820/*
4821 * Called to track nlinkdelta of the inode and parent directories prior to
4822 * unlink.
4823 */
4824void
4825softdep_setup_unlink(dp, ip)
4826	struct inode *dp;
4827	struct inode *ip;
4828{
4829	struct vnode *dvp;
4830
4831	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4832	    ("softdep_setup_unlink called on non-softdep filesystem"));
4833	dvp = ITOV(dp);
4834	ACQUIRE_LOCK(dp->i_ump);
4835	(void) inodedep_lookup_ip(ip);
4836	(void) inodedep_lookup_ip(dp);
4837	softdep_prelink(dvp, ITOV(ip));
4838	FREE_LOCK(dp->i_ump);
4839}
4840
4841/*
4842 * Called to release the journal structures created by a failed non-directory
4843 * creation.  Adjusts nlinkdelta for non-journaling softdep.
4844 */
4845void
4846softdep_revert_create(dp, ip)
4847	struct inode *dp;
4848	struct inode *ip;
4849{
4850	struct inodedep *inodedep;
4851	struct jaddref *jaddref;
4852	struct vnode *dvp;
4853
4854	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4855	    ("softdep_revert_create called on non-softdep filesystem"));
4856	dvp = ITOV(dp);
4857	ACQUIRE_LOCK(dp->i_ump);
4858	inodedep = inodedep_lookup_ip(ip);
4859	if (DOINGSUJ(dvp)) {
4860		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4861		    inoreflst);
4862		KASSERT(jaddref->ja_parent == dp->i_number,
4863		    ("softdep_revert_create: addref parent mismatch"));
4864		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4865	}
4866	FREE_LOCK(dp->i_ump);
4867}
4868
4869/*
4870 * Called to release the journal structures created by a failed link
4871 * addition.  Adjusts nlinkdelta for non-journaling softdep.
4872 */
4873void
4874softdep_revert_link(dp, ip)
4875	struct inode *dp;
4876	struct inode *ip;
4877{
4878	struct inodedep *inodedep;
4879	struct jaddref *jaddref;
4880	struct vnode *dvp;
4881
4882	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4883	    ("softdep_revert_link called on non-softdep filesystem"));
4884	dvp = ITOV(dp);
4885	ACQUIRE_LOCK(dp->i_ump);
4886	inodedep = inodedep_lookup_ip(ip);
4887	if (DOINGSUJ(dvp)) {
4888		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4889		    inoreflst);
4890		KASSERT(jaddref->ja_parent == dp->i_number,
4891		    ("softdep_revert_link: addref parent mismatch"));
4892		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4893	}
4894	FREE_LOCK(dp->i_ump);
4895}
4896
4897/*
4898 * Called to release the journal structures created by a failed mkdir
4899 * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4900 */
4901void
4902softdep_revert_mkdir(dp, ip)
4903	struct inode *dp;
4904	struct inode *ip;
4905{
4906	struct inodedep *inodedep;
4907	struct jaddref *jaddref;
4908	struct jaddref *dotaddref;
4909	struct vnode *dvp;
4910
4911	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4912	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4913	dvp = ITOV(dp);
4914
4915	ACQUIRE_LOCK(dp->i_ump);
4916	inodedep = inodedep_lookup_ip(dp);
4917	if (DOINGSUJ(dvp)) {
4918		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4919		    inoreflst);
4920		KASSERT(jaddref->ja_parent == ip->i_number,
4921		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4922		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4923	}
4924	inodedep = inodedep_lookup_ip(ip);
4925	if (DOINGSUJ(dvp)) {
4926		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4927		    inoreflst);
4928		KASSERT(jaddref->ja_parent == dp->i_number,
4929		    ("softdep_revert_mkdir: addref parent mismatch"));
4930		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4931		    inoreflst, if_deps);
4932		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4933		KASSERT(dotaddref->ja_parent == ip->i_number,
4934		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4935		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4936	}
4937	FREE_LOCK(dp->i_ump);
4938}
4939
4940/*
4941 * Called to correct nlinkdelta after a failed rmdir.
4942 */
4943void
4944softdep_revert_rmdir(dp, ip)
4945	struct inode *dp;
4946	struct inode *ip;
4947{
4948
4949	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4950	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4951	ACQUIRE_LOCK(dp->i_ump);
4952	(void) inodedep_lookup_ip(ip);
4953	(void) inodedep_lookup_ip(dp);
4954	FREE_LOCK(dp->i_ump);
4955}
4956
4957/*
4958 * Protecting the freemaps (or bitmaps).
4959 *
4960 * To eliminate the need to execute fsck before mounting a filesystem
4961 * after a power failure, one must (conservatively) guarantee that the
4962 * on-disk copy of the bitmaps never indicate that a live inode or block is
4963 * free.  So, when a block or inode is allocated, the bitmap should be
4964 * updated (on disk) before any new pointers.  When a block or inode is
4965 * freed, the bitmap should not be updated until all pointers have been
4966 * reset.  The latter dependency is handled by the delayed de-allocation
4967 * approach described below for block and inode de-allocation.  The former
4968 * dependency is handled by calling the following procedure when a block or
4969 * inode is allocated. When an inode is allocated an "inodedep" is created
4970 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4971 * Each "inodedep" is also inserted into the hash indexing structure so
4972 * that any additional link additions can be made dependent on the inode
4973 * allocation.
4974 *
4975 * The ufs filesystem maintains a number of free block counts (e.g., per
4976 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4977 * in addition to the bitmaps.  These counts are used to improve efficiency
4978 * during allocation and therefore must be consistent with the bitmaps.
4979 * There is no convenient way to guarantee post-crash consistency of these
4980 * counts with simple update ordering, for two main reasons: (1) The counts
4981 * and bitmaps for a single cylinder group block are not in the same disk
4982 * sector.  If a disk write is interrupted (e.g., by power failure), one may
4983 * be written and the other not.  (2) Some of the counts are located in the
4984 * superblock rather than the cylinder group block. So, we focus our soft
4985 * updates implementation on protecting the bitmaps. When mounting a
4986 * filesystem, we recompute the auxiliary counts from the bitmaps.
4987 */
4988
4989/*
4990 * Called just after updating the cylinder group block to allocate an inode.
4991 */
4992void
4993softdep_setup_inomapdep(bp, ip, newinum, mode)
4994	struct buf *bp;		/* buffer for cylgroup block with inode map */
4995	struct inode *ip;	/* inode related to allocation */
4996	ino_t newinum;		/* new inode number being allocated */
4997	int mode;
4998{
4999	struct inodedep *inodedep;
5000	struct bmsafemap *bmsafemap;
5001	struct jaddref *jaddref;
5002	struct mount *mp;
5003	struct fs *fs;
5004
5005	mp = UFSTOVFS(ip->i_ump);
5006	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5007	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5008	fs = ip->i_ump->um_fs;
5009	jaddref = NULL;
5010
5011	/*
5012	 * Allocate the journal reference add structure so that the bitmap
5013	 * can be dependent on it.
5014	 */
5015	if (MOUNTEDSUJ(mp)) {
5016		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5017		jaddref->ja_state |= NEWBLOCK;
5018	}
5019
5020	/*
5021	 * Create a dependency for the newly allocated inode.
5022	 * Panic if it already exists as something is seriously wrong.
5023	 * Otherwise add it to the dependency list for the buffer holding
5024	 * the cylinder group map from which it was allocated.
5025	 *
5026	 * We have to preallocate a bmsafemap entry in case it is needed
5027	 * in bmsafemap_lookup since once we allocate the inodedep, we
5028	 * have to finish initializing it before we can FREE_LOCK().
5029	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5030	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5031	 * creating the inodedep as it can be freed during the time
5032	 * that we FREE_LOCK() while allocating the inodedep. We must
5033	 * call workitem_alloc() before entering the locked section as
5034	 * it also acquires the lock and we must avoid trying doing so
5035	 * recursively.
5036	 */
5037	bmsafemap = malloc(sizeof(struct bmsafemap),
5038	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5039	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5040	ACQUIRE_LOCK(ip->i_ump);
5041	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
5042		panic("softdep_setup_inomapdep: dependency %p for new"
5043		    "inode already exists", inodedep);
5044	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5045	if (jaddref) {
5046		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5047		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5048		    if_deps);
5049	} else {
5050		inodedep->id_state |= ONDEPLIST;
5051		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5052	}
5053	inodedep->id_bmsafemap = bmsafemap;
5054	inodedep->id_state &= ~DEPCOMPLETE;
5055	FREE_LOCK(ip->i_ump);
5056}
5057
5058/*
5059 * Called just after updating the cylinder group block to
5060 * allocate block or fragment.
5061 */
5062void
5063softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5064	struct buf *bp;		/* buffer for cylgroup block with block map */
5065	struct mount *mp;	/* filesystem doing allocation */
5066	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5067	int frags;		/* Number of fragments. */
5068	int oldfrags;		/* Previous number of fragments for extend. */
5069{
5070	struct newblk *newblk;
5071	struct bmsafemap *bmsafemap;
5072	struct jnewblk *jnewblk;
5073	struct ufsmount *ump;
5074	struct fs *fs;
5075
5076	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5077	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5078	ump = VFSTOUFS(mp);
5079	fs = ump->um_fs;
5080	jnewblk = NULL;
5081	/*
5082	 * Create a dependency for the newly allocated block.
5083	 * Add it to the dependency list for the buffer holding
5084	 * the cylinder group map from which it was allocated.
5085	 */
5086	if (MOUNTEDSUJ(mp)) {
5087		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5088		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5089		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5090		jnewblk->jn_state = ATTACHED;
5091		jnewblk->jn_blkno = newblkno;
5092		jnewblk->jn_frags = frags;
5093		jnewblk->jn_oldfrags = oldfrags;
5094#ifdef SUJ_DEBUG
5095		{
5096			struct cg *cgp;
5097			uint8_t *blksfree;
5098			long bno;
5099			int i;
5100
5101			cgp = (struct cg *)bp->b_data;
5102			blksfree = cg_blksfree(cgp);
5103			bno = dtogd(fs, jnewblk->jn_blkno);
5104			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5105			    i++) {
5106				if (isset(blksfree, bno + i))
5107					panic("softdep_setup_blkmapdep: "
5108					    "free fragment %d from %d-%d "
5109					    "state 0x%X dep %p", i,
5110					    jnewblk->jn_oldfrags,
5111					    jnewblk->jn_frags,
5112					    jnewblk->jn_state,
5113					    jnewblk->jn_dep);
5114			}
5115		}
5116#endif
5117	}
5118
5119	CTR3(KTR_SUJ,
5120	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5121	    newblkno, frags, oldfrags);
5122	ACQUIRE_LOCK(ump);
5123	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5124		panic("softdep_setup_blkmapdep: found block");
5125	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5126	    dtog(fs, newblkno), NULL);
5127	if (jnewblk) {
5128		jnewblk->jn_dep = (struct worklist *)newblk;
5129		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5130	} else {
5131		newblk->nb_state |= ONDEPLIST;
5132		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5133	}
5134	newblk->nb_bmsafemap = bmsafemap;
5135	newblk->nb_jnewblk = jnewblk;
5136	FREE_LOCK(ump);
5137}
5138
5139#define	BMSAFEMAP_HASH(ump, cg) \
5140      (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5141
5142static int
5143bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5144	struct bmsafemap_hashhead *bmsafemaphd;
5145	int cg;
5146	struct bmsafemap **bmsafemapp;
5147{
5148	struct bmsafemap *bmsafemap;
5149
5150	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5151		if (bmsafemap->sm_cg == cg)
5152			break;
5153	if (bmsafemap) {
5154		*bmsafemapp = bmsafemap;
5155		return (1);
5156	}
5157	*bmsafemapp = NULL;
5158
5159	return (0);
5160}
5161
5162/*
5163 * Find the bmsafemap associated with a cylinder group buffer.
5164 * If none exists, create one. The buffer must be locked when
5165 * this routine is called and this routine must be called with
5166 * the softdep lock held. To avoid giving up the lock while
5167 * allocating a new bmsafemap, a preallocated bmsafemap may be
5168 * provided. If it is provided but not needed, it is freed.
5169 */
5170static struct bmsafemap *
5171bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5172	struct mount *mp;
5173	struct buf *bp;
5174	int cg;
5175	struct bmsafemap *newbmsafemap;
5176{
5177	struct bmsafemap_hashhead *bmsafemaphd;
5178	struct bmsafemap *bmsafemap, *collision;
5179	struct worklist *wk;
5180	struct ufsmount *ump;
5181
5182	ump = VFSTOUFS(mp);
5183	LOCK_OWNED(ump);
5184	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5185	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5186		if (wk->wk_type == D_BMSAFEMAP) {
5187			if (newbmsafemap)
5188				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5189			return (WK_BMSAFEMAP(wk));
5190		}
5191	}
5192	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5193	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5194		if (newbmsafemap)
5195			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5196		return (bmsafemap);
5197	}
5198	if (newbmsafemap) {
5199		bmsafemap = newbmsafemap;
5200	} else {
5201		FREE_LOCK(ump);
5202		bmsafemap = malloc(sizeof(struct bmsafemap),
5203			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5204		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5205		ACQUIRE_LOCK(ump);
5206	}
5207	bmsafemap->sm_buf = bp;
5208	LIST_INIT(&bmsafemap->sm_inodedephd);
5209	LIST_INIT(&bmsafemap->sm_inodedepwr);
5210	LIST_INIT(&bmsafemap->sm_newblkhd);
5211	LIST_INIT(&bmsafemap->sm_newblkwr);
5212	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5213	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5214	LIST_INIT(&bmsafemap->sm_freehd);
5215	LIST_INIT(&bmsafemap->sm_freewr);
5216	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5217		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5218		return (collision);
5219	}
5220	bmsafemap->sm_cg = cg;
5221	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5222	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5223	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5224	return (bmsafemap);
5225}
5226
5227/*
5228 * Direct block allocation dependencies.
5229 *
5230 * When a new block is allocated, the corresponding disk locations must be
5231 * initialized (with zeros or new data) before the on-disk inode points to
5232 * them.  Also, the freemap from which the block was allocated must be
5233 * updated (on disk) before the inode's pointer. These two dependencies are
5234 * independent of each other and are needed for all file blocks and indirect
5235 * blocks that are pointed to directly by the inode.  Just before the
5236 * "in-core" version of the inode is updated with a newly allocated block
5237 * number, a procedure (below) is called to setup allocation dependency
5238 * structures.  These structures are removed when the corresponding
5239 * dependencies are satisfied or when the block allocation becomes obsolete
5240 * (i.e., the file is deleted, the block is de-allocated, or the block is a
5241 * fragment that gets upgraded).  All of these cases are handled in
5242 * procedures described later.
5243 *
5244 * When a file extension causes a fragment to be upgraded, either to a larger
5245 * fragment or to a full block, the on-disk location may change (if the
5246 * previous fragment could not simply be extended). In this case, the old
5247 * fragment must be de-allocated, but not until after the inode's pointer has
5248 * been updated. In most cases, this is handled by later procedures, which
5249 * will construct a "freefrag" structure to be added to the workitem queue
5250 * when the inode update is complete (or obsolete).  The main exception to
5251 * this is when an allocation occurs while a pending allocation dependency
5252 * (for the same block pointer) remains.  This case is handled in the main
5253 * allocation dependency setup procedure by immediately freeing the
5254 * unreferenced fragments.
5255 */
5256void
5257softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5258	struct inode *ip;	/* inode to which block is being added */
5259	ufs_lbn_t off;		/* block pointer within inode */
5260	ufs2_daddr_t newblkno;	/* disk block number being added */
5261	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5262	long newsize;		/* size of new block */
5263	long oldsize;		/* size of new block */
5264	struct buf *bp;		/* bp for allocated block */
5265{
5266	struct allocdirect *adp, *oldadp;
5267	struct allocdirectlst *adphead;
5268	struct freefrag *freefrag;
5269	struct inodedep *inodedep;
5270	struct pagedep *pagedep;
5271	struct jnewblk *jnewblk;
5272	struct newblk *newblk;
5273	struct mount *mp;
5274	ufs_lbn_t lbn;
5275
5276	lbn = bp->b_lblkno;
5277	mp = UFSTOVFS(ip->i_ump);
5278	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5279	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5280	if (oldblkno && oldblkno != newblkno)
5281		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5282	else
5283		freefrag = NULL;
5284
5285	CTR6(KTR_SUJ,
5286	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5287	    "off %jd newsize %ld oldsize %d",
5288	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5289	ACQUIRE_LOCK(ip->i_ump);
5290	if (off >= NDADDR) {
5291		if (lbn > 0)
5292			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5293			    lbn, off);
5294		/* allocating an indirect block */
5295		if (oldblkno != 0)
5296			panic("softdep_setup_allocdirect: non-zero indir");
5297	} else {
5298		if (off != lbn)
5299			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5300			    lbn, off);
5301		/*
5302		 * Allocating a direct block.
5303		 *
5304		 * If we are allocating a directory block, then we must
5305		 * allocate an associated pagedep to track additions and
5306		 * deletions.
5307		 */
5308		if ((ip->i_mode & IFMT) == IFDIR)
5309			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5310			    &pagedep);
5311	}
5312	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5313		panic("softdep_setup_allocdirect: lost block");
5314	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5315	    ("softdep_setup_allocdirect: newblk already initialized"));
5316	/*
5317	 * Convert the newblk to an allocdirect.
5318	 */
5319	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5320	adp = (struct allocdirect *)newblk;
5321	newblk->nb_freefrag = freefrag;
5322	adp->ad_offset = off;
5323	adp->ad_oldblkno = oldblkno;
5324	adp->ad_newsize = newsize;
5325	adp->ad_oldsize = oldsize;
5326
5327	/*
5328	 * Finish initializing the journal.
5329	 */
5330	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5331		jnewblk->jn_ino = ip->i_number;
5332		jnewblk->jn_lbn = lbn;
5333		add_to_journal(&jnewblk->jn_list);
5334	}
5335	if (freefrag && freefrag->ff_jdep != NULL &&
5336	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5337		add_to_journal(freefrag->ff_jdep);
5338	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5339	adp->ad_inodedep = inodedep;
5340
5341	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5342	/*
5343	 * The list of allocdirects must be kept in sorted and ascending
5344	 * order so that the rollback routines can quickly determine the
5345	 * first uncommitted block (the size of the file stored on disk
5346	 * ends at the end of the lowest committed fragment, or if there
5347	 * are no fragments, at the end of the highest committed block).
5348	 * Since files generally grow, the typical case is that the new
5349	 * block is to be added at the end of the list. We speed this
5350	 * special case by checking against the last allocdirect in the
5351	 * list before laboriously traversing the list looking for the
5352	 * insertion point.
5353	 */
5354	adphead = &inodedep->id_newinoupdt;
5355	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5356	if (oldadp == NULL || oldadp->ad_offset <= off) {
5357		/* insert at end of list */
5358		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5359		if (oldadp != NULL && oldadp->ad_offset == off)
5360			allocdirect_merge(adphead, adp, oldadp);
5361		FREE_LOCK(ip->i_ump);
5362		return;
5363	}
5364	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5365		if (oldadp->ad_offset >= off)
5366			break;
5367	}
5368	if (oldadp == NULL)
5369		panic("softdep_setup_allocdirect: lost entry");
5370	/* insert in middle of list */
5371	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5372	if (oldadp->ad_offset == off)
5373		allocdirect_merge(adphead, adp, oldadp);
5374
5375	FREE_LOCK(ip->i_ump);
5376}
5377
5378/*
5379 * Merge a newer and older journal record to be stored either in a
5380 * newblock or freefrag.  This handles aggregating journal records for
5381 * fragment allocation into a second record as well as replacing a
5382 * journal free with an aborted journal allocation.  A segment for the
5383 * oldest record will be placed on wkhd if it has been written.  If not
5384 * the segment for the newer record will suffice.
5385 */
5386static struct worklist *
5387jnewblk_merge(new, old, wkhd)
5388	struct worklist *new;
5389	struct worklist *old;
5390	struct workhead *wkhd;
5391{
5392	struct jnewblk *njnewblk;
5393	struct jnewblk *jnewblk;
5394
5395	/* Handle NULLs to simplify callers. */
5396	if (new == NULL)
5397		return (old);
5398	if (old == NULL)
5399		return (new);
5400	/* Replace a jfreefrag with a jnewblk. */
5401	if (new->wk_type == D_JFREEFRAG) {
5402		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5403			panic("jnewblk_merge: blkno mismatch: %p, %p",
5404			    old, new);
5405		cancel_jfreefrag(WK_JFREEFRAG(new));
5406		return (old);
5407	}
5408	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5409		panic("jnewblk_merge: Bad type: old %d new %d\n",
5410		    old->wk_type, new->wk_type);
5411	/*
5412	 * Handle merging of two jnewblk records that describe
5413	 * different sets of fragments in the same block.
5414	 */
5415	jnewblk = WK_JNEWBLK(old);
5416	njnewblk = WK_JNEWBLK(new);
5417	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5418		panic("jnewblk_merge: Merging disparate blocks.");
5419	/*
5420	 * The record may be rolled back in the cg.
5421	 */
5422	if (jnewblk->jn_state & UNDONE) {
5423		jnewblk->jn_state &= ~UNDONE;
5424		njnewblk->jn_state |= UNDONE;
5425		njnewblk->jn_state &= ~ATTACHED;
5426	}
5427	/*
5428	 * We modify the newer addref and free the older so that if neither
5429	 * has been written the most up-to-date copy will be on disk.  If
5430	 * both have been written but rolled back we only temporarily need
5431	 * one of them to fix the bits when the cg write completes.
5432	 */
5433	jnewblk->jn_state |= ATTACHED | COMPLETE;
5434	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5435	cancel_jnewblk(jnewblk, wkhd);
5436	WORKLIST_REMOVE(&jnewblk->jn_list);
5437	free_jnewblk(jnewblk);
5438	return (new);
5439}
5440
5441/*
5442 * Replace an old allocdirect dependency with a newer one.
5443 * This routine must be called with splbio interrupts blocked.
5444 */
5445static void
5446allocdirect_merge(adphead, newadp, oldadp)
5447	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5448	struct allocdirect *newadp;	/* allocdirect being added */
5449	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5450{
5451	struct worklist *wk;
5452	struct freefrag *freefrag;
5453
5454	freefrag = NULL;
5455	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5456	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5457	    newadp->ad_oldsize != oldadp->ad_newsize ||
5458	    newadp->ad_offset >= NDADDR)
5459		panic("%s %jd != new %jd || old size %ld != new %ld",
5460		    "allocdirect_merge: old blkno",
5461		    (intmax_t)newadp->ad_oldblkno,
5462		    (intmax_t)oldadp->ad_newblkno,
5463		    newadp->ad_oldsize, oldadp->ad_newsize);
5464	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5465	newadp->ad_oldsize = oldadp->ad_oldsize;
5466	/*
5467	 * If the old dependency had a fragment to free or had never
5468	 * previously had a block allocated, then the new dependency
5469	 * can immediately post its freefrag and adopt the old freefrag.
5470	 * This action is done by swapping the freefrag dependencies.
5471	 * The new dependency gains the old one's freefrag, and the
5472	 * old one gets the new one and then immediately puts it on
5473	 * the worklist when it is freed by free_newblk. It is
5474	 * not possible to do this swap when the old dependency had a
5475	 * non-zero size but no previous fragment to free. This condition
5476	 * arises when the new block is an extension of the old block.
5477	 * Here, the first part of the fragment allocated to the new
5478	 * dependency is part of the block currently claimed on disk by
5479	 * the old dependency, so cannot legitimately be freed until the
5480	 * conditions for the new dependency are fulfilled.
5481	 */
5482	freefrag = newadp->ad_freefrag;
5483	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5484		newadp->ad_freefrag = oldadp->ad_freefrag;
5485		oldadp->ad_freefrag = freefrag;
5486	}
5487	/*
5488	 * If we are tracking a new directory-block allocation,
5489	 * move it from the old allocdirect to the new allocdirect.
5490	 */
5491	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5492		WORKLIST_REMOVE(wk);
5493		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5494			panic("allocdirect_merge: extra newdirblk");
5495		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5496	}
5497	TAILQ_REMOVE(adphead, oldadp, ad_next);
5498	/*
5499	 * We need to move any journal dependencies over to the freefrag
5500	 * that releases this block if it exists.  Otherwise we are
5501	 * extending an existing block and we'll wait until that is
5502	 * complete to release the journal space and extend the
5503	 * new journal to cover this old space as well.
5504	 */
5505	if (freefrag == NULL) {
5506		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5507			panic("allocdirect_merge: %jd != %jd",
5508			    oldadp->ad_newblkno, newadp->ad_newblkno);
5509		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5510		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5511		    &oldadp->ad_block.nb_jnewblk->jn_list,
5512		    &newadp->ad_block.nb_jwork);
5513		oldadp->ad_block.nb_jnewblk = NULL;
5514		cancel_newblk(&oldadp->ad_block, NULL,
5515		    &newadp->ad_block.nb_jwork);
5516	} else {
5517		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5518		    &freefrag->ff_list, &freefrag->ff_jwork);
5519		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5520		    &freefrag->ff_jwork);
5521	}
5522	free_newblk(&oldadp->ad_block);
5523}
5524
5525/*
5526 * Allocate a jfreefrag structure to journal a single block free.
5527 */
5528static struct jfreefrag *
5529newjfreefrag(freefrag, ip, blkno, size, lbn)
5530	struct freefrag *freefrag;
5531	struct inode *ip;
5532	ufs2_daddr_t blkno;
5533	long size;
5534	ufs_lbn_t lbn;
5535{
5536	struct jfreefrag *jfreefrag;
5537	struct fs *fs;
5538
5539	fs = ip->i_fs;
5540	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5541	    M_SOFTDEP_FLAGS);
5542	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5543	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5544	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5545	jfreefrag->fr_ino = ip->i_number;
5546	jfreefrag->fr_lbn = lbn;
5547	jfreefrag->fr_blkno = blkno;
5548	jfreefrag->fr_frags = numfrags(fs, size);
5549	jfreefrag->fr_freefrag = freefrag;
5550
5551	return (jfreefrag);
5552}
5553
5554/*
5555 * Allocate a new freefrag structure.
5556 */
5557static struct freefrag *
5558newfreefrag(ip, blkno, size, lbn)
5559	struct inode *ip;
5560	ufs2_daddr_t blkno;
5561	long size;
5562	ufs_lbn_t lbn;
5563{
5564	struct freefrag *freefrag;
5565	struct fs *fs;
5566
5567	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5568	    ip->i_number, blkno, size, lbn);
5569	fs = ip->i_fs;
5570	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5571		panic("newfreefrag: frag size");
5572	freefrag = malloc(sizeof(struct freefrag),
5573	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5574	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5575	freefrag->ff_state = ATTACHED;
5576	LIST_INIT(&freefrag->ff_jwork);
5577	freefrag->ff_inum = ip->i_number;
5578	freefrag->ff_vtype = ITOV(ip)->v_type;
5579	freefrag->ff_blkno = blkno;
5580	freefrag->ff_fragsize = size;
5581
5582	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5583		freefrag->ff_jdep = (struct worklist *)
5584		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5585	} else {
5586		freefrag->ff_state |= DEPCOMPLETE;
5587		freefrag->ff_jdep = NULL;
5588	}
5589
5590	return (freefrag);
5591}
5592
5593/*
5594 * This workitem de-allocates fragments that were replaced during
5595 * file block allocation.
5596 */
5597static void
5598handle_workitem_freefrag(freefrag)
5599	struct freefrag *freefrag;
5600{
5601	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5602	struct workhead wkhd;
5603
5604	CTR3(KTR_SUJ,
5605	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5606	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5607	/*
5608	 * It would be illegal to add new completion items to the
5609	 * freefrag after it was schedule to be done so it must be
5610	 * safe to modify the list head here.
5611	 */
5612	LIST_INIT(&wkhd);
5613	ACQUIRE_LOCK(ump);
5614	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5615	/*
5616	 * If the journal has not been written we must cancel it here.
5617	 */
5618	if (freefrag->ff_jdep) {
5619		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5620			panic("handle_workitem_freefrag: Unexpected type %d\n",
5621			    freefrag->ff_jdep->wk_type);
5622		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5623	}
5624	FREE_LOCK(ump);
5625	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5626	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5627	ACQUIRE_LOCK(ump);
5628	WORKITEM_FREE(freefrag, D_FREEFRAG);
5629	FREE_LOCK(ump);
5630}
5631
5632/*
5633 * Set up a dependency structure for an external attributes data block.
5634 * This routine follows much of the structure of softdep_setup_allocdirect.
5635 * See the description of softdep_setup_allocdirect above for details.
5636 */
5637void
5638softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5639	struct inode *ip;
5640	ufs_lbn_t off;
5641	ufs2_daddr_t newblkno;
5642	ufs2_daddr_t oldblkno;
5643	long newsize;
5644	long oldsize;
5645	struct buf *bp;
5646{
5647	struct allocdirect *adp, *oldadp;
5648	struct allocdirectlst *adphead;
5649	struct freefrag *freefrag;
5650	struct inodedep *inodedep;
5651	struct jnewblk *jnewblk;
5652	struct newblk *newblk;
5653	struct mount *mp;
5654	ufs_lbn_t lbn;
5655
5656	mp = UFSTOVFS(ip->i_ump);
5657	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5658	    ("softdep_setup_allocext called on non-softdep filesystem"));
5659	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5660		    (long long)off));
5661
5662	lbn = bp->b_lblkno;
5663	if (oldblkno && oldblkno != newblkno)
5664		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5665	else
5666		freefrag = NULL;
5667
5668	ACQUIRE_LOCK(ip->i_ump);
5669	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5670		panic("softdep_setup_allocext: lost block");
5671	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5672	    ("softdep_setup_allocext: newblk already initialized"));
5673	/*
5674	 * Convert the newblk to an allocdirect.
5675	 */
5676	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5677	adp = (struct allocdirect *)newblk;
5678	newblk->nb_freefrag = freefrag;
5679	adp->ad_offset = off;
5680	adp->ad_oldblkno = oldblkno;
5681	adp->ad_newsize = newsize;
5682	adp->ad_oldsize = oldsize;
5683	adp->ad_state |=  EXTDATA;
5684
5685	/*
5686	 * Finish initializing the journal.
5687	 */
5688	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5689		jnewblk->jn_ino = ip->i_number;
5690		jnewblk->jn_lbn = lbn;
5691		add_to_journal(&jnewblk->jn_list);
5692	}
5693	if (freefrag && freefrag->ff_jdep != NULL &&
5694	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5695		add_to_journal(freefrag->ff_jdep);
5696	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5697	adp->ad_inodedep = inodedep;
5698
5699	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5700	/*
5701	 * The list of allocdirects must be kept in sorted and ascending
5702	 * order so that the rollback routines can quickly determine the
5703	 * first uncommitted block (the size of the file stored on disk
5704	 * ends at the end of the lowest committed fragment, or if there
5705	 * are no fragments, at the end of the highest committed block).
5706	 * Since files generally grow, the typical case is that the new
5707	 * block is to be added at the end of the list. We speed this
5708	 * special case by checking against the last allocdirect in the
5709	 * list before laboriously traversing the list looking for the
5710	 * insertion point.
5711	 */
5712	adphead = &inodedep->id_newextupdt;
5713	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5714	if (oldadp == NULL || oldadp->ad_offset <= off) {
5715		/* insert at end of list */
5716		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5717		if (oldadp != NULL && oldadp->ad_offset == off)
5718			allocdirect_merge(adphead, adp, oldadp);
5719		FREE_LOCK(ip->i_ump);
5720		return;
5721	}
5722	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5723		if (oldadp->ad_offset >= off)
5724			break;
5725	}
5726	if (oldadp == NULL)
5727		panic("softdep_setup_allocext: lost entry");
5728	/* insert in middle of list */
5729	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5730	if (oldadp->ad_offset == off)
5731		allocdirect_merge(adphead, adp, oldadp);
5732	FREE_LOCK(ip->i_ump);
5733}
5734
5735/*
5736 * Indirect block allocation dependencies.
5737 *
5738 * The same dependencies that exist for a direct block also exist when
5739 * a new block is allocated and pointed to by an entry in a block of
5740 * indirect pointers. The undo/redo states described above are also
5741 * used here. Because an indirect block contains many pointers that
5742 * may have dependencies, a second copy of the entire in-memory indirect
5743 * block is kept. The buffer cache copy is always completely up-to-date.
5744 * The second copy, which is used only as a source for disk writes,
5745 * contains only the safe pointers (i.e., those that have no remaining
5746 * update dependencies). The second copy is freed when all pointers
5747 * are safe. The cache is not allowed to replace indirect blocks with
5748 * pending update dependencies. If a buffer containing an indirect
5749 * block with dependencies is written, these routines will mark it
5750 * dirty again. It can only be successfully written once all the
5751 * dependencies are removed. The ffs_fsync routine in conjunction with
5752 * softdep_sync_metadata work together to get all the dependencies
5753 * removed so that a file can be successfully written to disk. Three
5754 * procedures are used when setting up indirect block pointer
5755 * dependencies. The division is necessary because of the organization
5756 * of the "balloc" routine and because of the distinction between file
5757 * pages and file metadata blocks.
5758 */
5759
5760/*
5761 * Allocate a new allocindir structure.
5762 */
5763static struct allocindir *
5764newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5765	struct inode *ip;	/* inode for file being extended */
5766	int ptrno;		/* offset of pointer in indirect block */
5767	ufs2_daddr_t newblkno;	/* disk block number being added */
5768	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5769	ufs_lbn_t lbn;
5770{
5771	struct newblk *newblk;
5772	struct allocindir *aip;
5773	struct freefrag *freefrag;
5774	struct jnewblk *jnewblk;
5775
5776	if (oldblkno)
5777		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5778	else
5779		freefrag = NULL;
5780	ACQUIRE_LOCK(ip->i_ump);
5781	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5782		panic("new_allocindir: lost block");
5783	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5784	    ("newallocindir: newblk already initialized"));
5785	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5786	newblk->nb_freefrag = freefrag;
5787	aip = (struct allocindir *)newblk;
5788	aip->ai_offset = ptrno;
5789	aip->ai_oldblkno = oldblkno;
5790	aip->ai_lbn = lbn;
5791	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5792		jnewblk->jn_ino = ip->i_number;
5793		jnewblk->jn_lbn = lbn;
5794		add_to_journal(&jnewblk->jn_list);
5795	}
5796	if (freefrag && freefrag->ff_jdep != NULL &&
5797	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5798		add_to_journal(freefrag->ff_jdep);
5799	return (aip);
5800}
5801
5802/*
5803 * Called just before setting an indirect block pointer
5804 * to a newly allocated file page.
5805 */
5806void
5807softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5808	struct inode *ip;	/* inode for file being extended */
5809	ufs_lbn_t lbn;		/* allocated block number within file */
5810	struct buf *bp;		/* buffer with indirect blk referencing page */
5811	int ptrno;		/* offset of pointer in indirect block */
5812	ufs2_daddr_t newblkno;	/* disk block number being added */
5813	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5814	struct buf *nbp;	/* buffer holding allocated page */
5815{
5816	struct inodedep *inodedep;
5817	struct freefrag *freefrag;
5818	struct allocindir *aip;
5819	struct pagedep *pagedep;
5820	struct mount *mp;
5821	int dflags;
5822
5823	mp = UFSTOVFS(ip->i_ump);
5824	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5825	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5826	KASSERT(lbn == nbp->b_lblkno,
5827	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5828	    lbn, bp->b_lblkno));
5829	CTR4(KTR_SUJ,
5830	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5831	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5832	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5833	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5834	dflags = DEPALLOC;
5835	if (IS_SNAPSHOT(ip))
5836		dflags |= NODELAY;
5837	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5838	/*
5839	 * If we are allocating a directory page, then we must
5840	 * allocate an associated pagedep to track additions and
5841	 * deletions.
5842	 */
5843	if ((ip->i_mode & IFMT) == IFDIR)
5844		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5845	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5846	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5847	FREE_LOCK(ip->i_ump);
5848	if (freefrag)
5849		handle_workitem_freefrag(freefrag);
5850}
5851
5852/*
5853 * Called just before setting an indirect block pointer to a
5854 * newly allocated indirect block.
5855 */
5856void
5857softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5858	struct buf *nbp;	/* newly allocated indirect block */
5859	struct inode *ip;	/* inode for file being extended */
5860	struct buf *bp;		/* indirect block referencing allocated block */
5861	int ptrno;		/* offset of pointer in indirect block */
5862	ufs2_daddr_t newblkno;	/* disk block number being added */
5863{
5864	struct inodedep *inodedep;
5865	struct allocindir *aip;
5866	ufs_lbn_t lbn;
5867	int dflags;
5868
5869	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
5870	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5871	CTR3(KTR_SUJ,
5872	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5873	    ip->i_number, newblkno, ptrno);
5874	lbn = nbp->b_lblkno;
5875	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5876	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5877	dflags = DEPALLOC;
5878	if (IS_SNAPSHOT(ip))
5879		dflags |= NODELAY;
5880	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5881	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5882	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5883		panic("softdep_setup_allocindir_meta: Block already existed");
5884	FREE_LOCK(ip->i_ump);
5885}
5886
5887static void
5888indirdep_complete(indirdep)
5889	struct indirdep *indirdep;
5890{
5891	struct allocindir *aip;
5892
5893	LIST_REMOVE(indirdep, ir_next);
5894	indirdep->ir_state |= DEPCOMPLETE;
5895
5896	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5897		LIST_REMOVE(aip, ai_next);
5898		free_newblk(&aip->ai_block);
5899	}
5900	/*
5901	 * If this indirdep is not attached to a buf it was simply waiting
5902	 * on completion to clear completehd.  free_indirdep() asserts
5903	 * that nothing is dangling.
5904	 */
5905	if ((indirdep->ir_state & ONWORKLIST) == 0)
5906		free_indirdep(indirdep);
5907}
5908
5909static struct indirdep *
5910indirdep_lookup(mp, ip, bp)
5911	struct mount *mp;
5912	struct inode *ip;
5913	struct buf *bp;
5914{
5915	struct indirdep *indirdep, *newindirdep;
5916	struct newblk *newblk;
5917	struct ufsmount *ump;
5918	struct worklist *wk;
5919	struct fs *fs;
5920	ufs2_daddr_t blkno;
5921
5922	ump = VFSTOUFS(mp);
5923	LOCK_OWNED(ump);
5924	indirdep = NULL;
5925	newindirdep = NULL;
5926	fs = ip->i_fs;
5927	for (;;) {
5928		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5929			if (wk->wk_type != D_INDIRDEP)
5930				continue;
5931			indirdep = WK_INDIRDEP(wk);
5932			break;
5933		}
5934		/* Found on the buffer worklist, no new structure to free. */
5935		if (indirdep != NULL && newindirdep == NULL)
5936			return (indirdep);
5937		if (indirdep != NULL && newindirdep != NULL)
5938			panic("indirdep_lookup: simultaneous create");
5939		/* None found on the buffer and a new structure is ready. */
5940		if (indirdep == NULL && newindirdep != NULL)
5941			break;
5942		/* None found and no new structure available. */
5943		FREE_LOCK(ump);
5944		newindirdep = malloc(sizeof(struct indirdep),
5945		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5946		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5947		newindirdep->ir_state = ATTACHED;
5948		if (ip->i_ump->um_fstype == UFS1)
5949			newindirdep->ir_state |= UFS1FMT;
5950		TAILQ_INIT(&newindirdep->ir_trunc);
5951		newindirdep->ir_saveddata = NULL;
5952		LIST_INIT(&newindirdep->ir_deplisthd);
5953		LIST_INIT(&newindirdep->ir_donehd);
5954		LIST_INIT(&newindirdep->ir_writehd);
5955		LIST_INIT(&newindirdep->ir_completehd);
5956		if (bp->b_blkno == bp->b_lblkno) {
5957			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5958			    NULL, NULL);
5959			bp->b_blkno = blkno;
5960		}
5961		newindirdep->ir_freeblks = NULL;
5962		newindirdep->ir_savebp =
5963		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5964		newindirdep->ir_bp = bp;
5965		BUF_KERNPROC(newindirdep->ir_savebp);
5966		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5967		ACQUIRE_LOCK(ump);
5968	}
5969	indirdep = newindirdep;
5970	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5971	/*
5972	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5973	 * that we don't free dependencies until the pointers are valid.
5974	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5975	 * than using the hash.
5976	 */
5977	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5978		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5979	else
5980		indirdep->ir_state |= DEPCOMPLETE;
5981	return (indirdep);
5982}
5983
5984/*
5985 * Called to finish the allocation of the "aip" allocated
5986 * by one of the two routines above.
5987 */
5988static struct freefrag *
5989setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5990	struct buf *bp;		/* in-memory copy of the indirect block */
5991	struct inode *ip;	/* inode for file being extended */
5992	struct inodedep *inodedep; /* Inodedep for ip */
5993	struct allocindir *aip;	/* allocindir allocated by the above routines */
5994	ufs_lbn_t lbn;		/* Logical block number for this block. */
5995{
5996	struct fs *fs;
5997	struct indirdep *indirdep;
5998	struct allocindir *oldaip;
5999	struct freefrag *freefrag;
6000	struct mount *mp;
6001
6002	LOCK_OWNED(ip->i_ump);
6003	mp = UFSTOVFS(ip->i_ump);
6004	fs = ip->i_fs;
6005	if (bp->b_lblkno >= 0)
6006		panic("setup_allocindir_phase2: not indir blk");
6007	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6008	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6009	indirdep = indirdep_lookup(mp, ip, bp);
6010	KASSERT(indirdep->ir_savebp != NULL,
6011	    ("setup_allocindir_phase2 NULL ir_savebp"));
6012	aip->ai_indirdep = indirdep;
6013	/*
6014	 * Check for an unwritten dependency for this indirect offset.  If
6015	 * there is, merge the old dependency into the new one.  This happens
6016	 * as a result of reallocblk only.
6017	 */
6018	freefrag = NULL;
6019	if (aip->ai_oldblkno != 0) {
6020		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6021			if (oldaip->ai_offset == aip->ai_offset) {
6022				freefrag = allocindir_merge(aip, oldaip);
6023				goto done;
6024			}
6025		}
6026		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6027			if (oldaip->ai_offset == aip->ai_offset) {
6028				freefrag = allocindir_merge(aip, oldaip);
6029				goto done;
6030			}
6031		}
6032	}
6033done:
6034	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6035	return (freefrag);
6036}
6037
6038/*
6039 * Merge two allocindirs which refer to the same block.  Move newblock
6040 * dependencies and setup the freefrags appropriately.
6041 */
6042static struct freefrag *
6043allocindir_merge(aip, oldaip)
6044	struct allocindir *aip;
6045	struct allocindir *oldaip;
6046{
6047	struct freefrag *freefrag;
6048	struct worklist *wk;
6049
6050	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6051		panic("allocindir_merge: blkno");
6052	aip->ai_oldblkno = oldaip->ai_oldblkno;
6053	freefrag = aip->ai_freefrag;
6054	aip->ai_freefrag = oldaip->ai_freefrag;
6055	oldaip->ai_freefrag = NULL;
6056	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6057	/*
6058	 * If we are tracking a new directory-block allocation,
6059	 * move it from the old allocindir to the new allocindir.
6060	 */
6061	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6062		WORKLIST_REMOVE(wk);
6063		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6064			panic("allocindir_merge: extra newdirblk");
6065		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6066	}
6067	/*
6068	 * We can skip journaling for this freefrag and just complete
6069	 * any pending journal work for the allocindir that is being
6070	 * removed after the freefrag completes.
6071	 */
6072	if (freefrag->ff_jdep)
6073		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6074	LIST_REMOVE(oldaip, ai_next);
6075	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6076	    &freefrag->ff_list, &freefrag->ff_jwork);
6077	free_newblk(&oldaip->ai_block);
6078
6079	return (freefrag);
6080}
6081
6082static inline void
6083setup_freedirect(freeblks, ip, i, needj)
6084	struct freeblks *freeblks;
6085	struct inode *ip;
6086	int i;
6087	int needj;
6088{
6089	ufs2_daddr_t blkno;
6090	int frags;
6091
6092	blkno = DIP(ip, i_db[i]);
6093	if (blkno == 0)
6094		return;
6095	DIP_SET(ip, i_db[i], 0);
6096	frags = sblksize(ip->i_fs, ip->i_size, i);
6097	frags = numfrags(ip->i_fs, frags);
6098	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
6099}
6100
6101static inline void
6102setup_freeext(freeblks, ip, i, needj)
6103	struct freeblks *freeblks;
6104	struct inode *ip;
6105	int i;
6106	int needj;
6107{
6108	ufs2_daddr_t blkno;
6109	int frags;
6110
6111	blkno = ip->i_din2->di_extb[i];
6112	if (blkno == 0)
6113		return;
6114	ip->i_din2->di_extb[i] = 0;
6115	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
6116	frags = numfrags(ip->i_fs, frags);
6117	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6118}
6119
6120static inline void
6121setup_freeindir(freeblks, ip, i, lbn, needj)
6122	struct freeblks *freeblks;
6123	struct inode *ip;
6124	int i;
6125	ufs_lbn_t lbn;
6126	int needj;
6127{
6128	ufs2_daddr_t blkno;
6129
6130	blkno = DIP(ip, i_ib[i]);
6131	if (blkno == 0)
6132		return;
6133	DIP_SET(ip, i_ib[i], 0);
6134	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
6135	    0, needj);
6136}
6137
6138static inline struct freeblks *
6139newfreeblks(mp, ip)
6140	struct mount *mp;
6141	struct inode *ip;
6142{
6143	struct freeblks *freeblks;
6144
6145	freeblks = malloc(sizeof(struct freeblks),
6146		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6147	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6148	LIST_INIT(&freeblks->fb_jblkdephd);
6149	LIST_INIT(&freeblks->fb_jwork);
6150	freeblks->fb_ref = 0;
6151	freeblks->fb_cgwait = 0;
6152	freeblks->fb_state = ATTACHED;
6153	freeblks->fb_uid = ip->i_uid;
6154	freeblks->fb_inum = ip->i_number;
6155	freeblks->fb_vtype = ITOV(ip)->v_type;
6156	freeblks->fb_modrev = DIP(ip, i_modrev);
6157	freeblks->fb_devvp = ip->i_devvp;
6158	freeblks->fb_chkcnt = 0;
6159	freeblks->fb_len = 0;
6160
6161	return (freeblks);
6162}
6163
6164static void
6165trunc_indirdep(indirdep, freeblks, bp, off)
6166	struct indirdep *indirdep;
6167	struct freeblks *freeblks;
6168	struct buf *bp;
6169	int off;
6170{
6171	struct allocindir *aip, *aipn;
6172
6173	/*
6174	 * The first set of allocindirs won't be in savedbp.
6175	 */
6176	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6177		if (aip->ai_offset > off)
6178			cancel_allocindir(aip, bp, freeblks, 1);
6179	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6180		if (aip->ai_offset > off)
6181			cancel_allocindir(aip, bp, freeblks, 1);
6182	/*
6183	 * These will exist in savedbp.
6184	 */
6185	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6186		if (aip->ai_offset > off)
6187			cancel_allocindir(aip, NULL, freeblks, 0);
6188	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6189		if (aip->ai_offset > off)
6190			cancel_allocindir(aip, NULL, freeblks, 0);
6191}
6192
6193/*
6194 * Follow the chain of indirects down to lastlbn creating a freework
6195 * structure for each.  This will be used to start indir_trunc() at
6196 * the right offset and create the journal records for the parrtial
6197 * truncation.  A second step will handle the truncated dependencies.
6198 */
6199static int
6200setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6201	struct freeblks *freeblks;
6202	struct inode *ip;
6203	ufs_lbn_t lbn;
6204	ufs_lbn_t lastlbn;
6205	ufs2_daddr_t blkno;
6206{
6207	struct indirdep *indirdep;
6208	struct indirdep *indirn;
6209	struct freework *freework;
6210	struct newblk *newblk;
6211	struct mount *mp;
6212	struct buf *bp;
6213	uint8_t *start;
6214	uint8_t *end;
6215	ufs_lbn_t lbnadd;
6216	int level;
6217	int error;
6218	int off;
6219
6220
6221	freework = NULL;
6222	if (blkno == 0)
6223		return (0);
6224	mp = freeblks->fb_list.wk_mp;
6225	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6226	if ((bp->b_flags & B_CACHE) == 0) {
6227		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6228		bp->b_iocmd = BIO_READ;
6229		bp->b_flags &= ~B_INVAL;
6230		bp->b_ioflags &= ~BIO_ERROR;
6231		vfs_busy_pages(bp, 0);
6232		bp->b_iooffset = dbtob(bp->b_blkno);
6233		bstrategy(bp);
6234		curthread->td_ru.ru_inblock++;
6235		error = bufwait(bp);
6236		if (error) {
6237			brelse(bp);
6238			return (error);
6239		}
6240	}
6241	level = lbn_level(lbn);
6242	lbnadd = lbn_offset(ip->i_fs, level);
6243	/*
6244	 * Compute the offset of the last block we want to keep.  Store
6245	 * in the freework the first block we want to completely free.
6246	 */
6247	off = (lastlbn - -(lbn + level)) / lbnadd;
6248	if (off + 1 == NINDIR(ip->i_fs))
6249		goto nowork;
6250	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6251	    0);
6252	/*
6253	 * Link the freework into the indirdep.  This will prevent any new
6254	 * allocations from proceeding until we are finished with the
6255	 * truncate and the block is written.
6256	 */
6257	ACQUIRE_LOCK(ip->i_ump);
6258	indirdep = indirdep_lookup(mp, ip, bp);
6259	if (indirdep->ir_freeblks)
6260		panic("setup_trunc_indir: indirdep already truncated.");
6261	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6262	freework->fw_indir = indirdep;
6263	/*
6264	 * Cancel any allocindirs that will not make it to disk.
6265	 * We have to do this for all copies of the indirdep that
6266	 * live on this newblk.
6267	 */
6268	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6269		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6270		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6271			trunc_indirdep(indirn, freeblks, bp, off);
6272	} else
6273		trunc_indirdep(indirdep, freeblks, bp, off);
6274	FREE_LOCK(ip->i_ump);
6275	/*
6276	 * Creation is protected by the buf lock. The saveddata is only
6277	 * needed if a full truncation follows a partial truncation but it
6278	 * is difficult to allocate in that case so we fetch it anyway.
6279	 */
6280	if (indirdep->ir_saveddata == NULL)
6281		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6282		    M_SOFTDEP_FLAGS);
6283nowork:
6284	/* Fetch the blkno of the child and the zero start offset. */
6285	if (ip->i_ump->um_fstype == UFS1) {
6286		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6287		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6288	} else {
6289		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6290		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6291	}
6292	if (freework) {
6293		/* Zero the truncated pointers. */
6294		end = bp->b_data + bp->b_bcount;
6295		bzero(start, end - start);
6296		bdwrite(bp);
6297	} else
6298		bqrelse(bp);
6299	if (level == 0)
6300		return (0);
6301	lbn++; /* adjust level */
6302	lbn -= (off * lbnadd);
6303	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6304}
6305
6306/*
6307 * Complete the partial truncation of an indirect block setup by
6308 * setup_trunc_indir().  This zeros the truncated pointers in the saved
6309 * copy and writes them to disk before the freeblks is allowed to complete.
6310 */
6311static void
6312complete_trunc_indir(freework)
6313	struct freework *freework;
6314{
6315	struct freework *fwn;
6316	struct indirdep *indirdep;
6317	struct ufsmount *ump;
6318	struct buf *bp;
6319	uintptr_t start;
6320	int count;
6321
6322	ump = VFSTOUFS(freework->fw_list.wk_mp);
6323	LOCK_OWNED(ump);
6324	indirdep = freework->fw_indir;
6325	for (;;) {
6326		bp = indirdep->ir_bp;
6327		/* See if the block was discarded. */
6328		if (bp == NULL)
6329			break;
6330		/* Inline part of getdirtybuf().  We dont want bremfree. */
6331		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6332			break;
6333		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6334		    LOCK_PTR(ump)) == 0)
6335			BUF_UNLOCK(bp);
6336		ACQUIRE_LOCK(ump);
6337	}
6338	freework->fw_state |= DEPCOMPLETE;
6339	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6340	/*
6341	 * Zero the pointers in the saved copy.
6342	 */
6343	if (indirdep->ir_state & UFS1FMT)
6344		start = sizeof(ufs1_daddr_t);
6345	else
6346		start = sizeof(ufs2_daddr_t);
6347	start *= freework->fw_start;
6348	count = indirdep->ir_savebp->b_bcount - start;
6349	start += (uintptr_t)indirdep->ir_savebp->b_data;
6350	bzero((char *)start, count);
6351	/*
6352	 * We need to start the next truncation in the list if it has not
6353	 * been started yet.
6354	 */
6355	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6356	if (fwn != NULL) {
6357		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6358			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6359		if ((fwn->fw_state & ONWORKLIST) == 0)
6360			freework_enqueue(fwn);
6361	}
6362	/*
6363	 * If bp is NULL the block was fully truncated, restore
6364	 * the saved block list otherwise free it if it is no
6365	 * longer needed.
6366	 */
6367	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6368		if (bp == NULL)
6369			bcopy(indirdep->ir_saveddata,
6370			    indirdep->ir_savebp->b_data,
6371			    indirdep->ir_savebp->b_bcount);
6372		free(indirdep->ir_saveddata, M_INDIRDEP);
6373		indirdep->ir_saveddata = NULL;
6374	}
6375	/*
6376	 * When bp is NULL there is a full truncation pending.  We
6377	 * must wait for this full truncation to be journaled before
6378	 * we can release this freework because the disk pointers will
6379	 * never be written as zero.
6380	 */
6381	if (bp == NULL)  {
6382		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6383			handle_written_freework(freework);
6384		else
6385			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6386			   &freework->fw_list);
6387	} else {
6388		/* Complete when the real copy is written. */
6389		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6390		BUF_UNLOCK(bp);
6391	}
6392}
6393
6394/*
6395 * Calculate the number of blocks we are going to release where datablocks
6396 * is the current total and length is the new file size.
6397 */
6398static ufs2_daddr_t
6399blkcount(fs, datablocks, length)
6400	struct fs *fs;
6401	ufs2_daddr_t datablocks;
6402	off_t length;
6403{
6404	off_t totblks, numblks;
6405
6406	totblks = 0;
6407	numblks = howmany(length, fs->fs_bsize);
6408	if (numblks <= NDADDR) {
6409		totblks = howmany(length, fs->fs_fsize);
6410		goto out;
6411	}
6412        totblks = blkstofrags(fs, numblks);
6413	numblks -= NDADDR;
6414	/*
6415	 * Count all single, then double, then triple indirects required.
6416	 * Subtracting one indirects worth of blocks for each pass
6417	 * acknowledges one of each pointed to by the inode.
6418	 */
6419	for (;;) {
6420		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6421		numblks -= NINDIR(fs);
6422		if (numblks <= 0)
6423			break;
6424		numblks = howmany(numblks, NINDIR(fs));
6425	}
6426out:
6427	totblks = fsbtodb(fs, totblks);
6428	/*
6429	 * Handle sparse files.  We can't reclaim more blocks than the inode
6430	 * references.  We will correct it later in handle_complete_freeblks()
6431	 * when we know the real count.
6432	 */
6433	if (totblks > datablocks)
6434		return (0);
6435	return (datablocks - totblks);
6436}
6437
6438/*
6439 * Handle freeblocks for journaled softupdate filesystems.
6440 *
6441 * Contrary to normal softupdates, we must preserve the block pointers in
6442 * indirects until their subordinates are free.  This is to avoid journaling
6443 * every block that is freed which may consume more space than the journal
6444 * itself.  The recovery program will see the free block journals at the
6445 * base of the truncated area and traverse them to reclaim space.  The
6446 * pointers in the inode may be cleared immediately after the journal
6447 * records are written because each direct and indirect pointer in the
6448 * inode is recorded in a journal.  This permits full truncation to proceed
6449 * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6450 *
6451 * The algorithm is as follows:
6452 * 1) Traverse the in-memory state and create journal entries to release
6453 *    the relevant blocks and full indirect trees.
6454 * 2) Traverse the indirect block chain adding partial truncation freework
6455 *    records to indirects in the path to lastlbn.  The freework will
6456 *    prevent new allocation dependencies from being satisfied in this
6457 *    indirect until the truncation completes.
6458 * 3) Read and lock the inode block, performing an update with the new size
6459 *    and pointers.  This prevents truncated data from becoming valid on
6460 *    disk through step 4.
6461 * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6462 *    eliminate journal work for those records that do not require it.
6463 * 5) Schedule the journal records to be written followed by the inode block.
6464 * 6) Allocate any necessary frags for the end of file.
6465 * 7) Zero any partially truncated blocks.
6466 *
6467 * From this truncation proceeds asynchronously using the freework and
6468 * indir_trunc machinery.  The file will not be extended again into a
6469 * partially truncated indirect block until all work is completed but
6470 * the normal dependency mechanism ensures that it is rolled back/forward
6471 * as appropriate.  Further truncation may occur without delay and is
6472 * serialized in indir_trunc().
6473 */
6474void
6475softdep_journal_freeblocks(ip, cred, length, flags)
6476	struct inode *ip;	/* The inode whose length is to be reduced */
6477	struct ucred *cred;
6478	off_t length;		/* The new length for the file */
6479	int flags;		/* IO_EXT and/or IO_NORMAL */
6480{
6481	struct freeblks *freeblks, *fbn;
6482	struct worklist *wk, *wkn;
6483	struct inodedep *inodedep;
6484	struct jblkdep *jblkdep;
6485	struct allocdirect *adp, *adpn;
6486	struct ufsmount *ump;
6487	struct fs *fs;
6488	struct buf *bp;
6489	struct vnode *vp;
6490	struct mount *mp;
6491	ufs2_daddr_t extblocks, datablocks;
6492	ufs_lbn_t tmpval, lbn, lastlbn;
6493	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6494
6495	fs = ip->i_fs;
6496	ump = ip->i_ump;
6497	mp = UFSTOVFS(ump);
6498	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6499	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6500	vp = ITOV(ip);
6501	needj = 1;
6502	iboff = -1;
6503	allocblock = 0;
6504	extblocks = 0;
6505	datablocks = 0;
6506	frags = 0;
6507	freeblks = newfreeblks(mp, ip);
6508	ACQUIRE_LOCK(ump);
6509	/*
6510	 * If we're truncating a removed file that will never be written
6511	 * we don't need to journal the block frees.  The canceled journals
6512	 * for the allocations will suffice.
6513	 */
6514	dflags = DEPALLOC;
6515	if (IS_SNAPSHOT(ip))
6516		dflags |= NODELAY;
6517	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6518	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6519	    length == 0)
6520		needj = 0;
6521	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6522	    ip->i_number, length, needj);
6523	FREE_LOCK(ump);
6524	/*
6525	 * Calculate the lbn that we are truncating to.  This results in -1
6526	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6527	 * to keep, not the first lbn we want to truncate.
6528	 */
6529	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6530	lastoff = blkoff(fs, length);
6531	/*
6532	 * Compute frags we are keeping in lastlbn.  0 means all.
6533	 */
6534	if (lastlbn >= 0 && lastlbn < NDADDR) {
6535		frags = fragroundup(fs, lastoff);
6536		/* adp offset of last valid allocdirect. */
6537		iboff = lastlbn;
6538	} else if (lastlbn > 0)
6539		iboff = NDADDR;
6540	if (fs->fs_magic == FS_UFS2_MAGIC)
6541		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6542	/*
6543	 * Handle normal data blocks and indirects.  This section saves
6544	 * values used after the inode update to complete frag and indirect
6545	 * truncation.
6546	 */
6547	if ((flags & IO_NORMAL) != 0) {
6548		/*
6549		 * Handle truncation of whole direct and indirect blocks.
6550		 */
6551		for (i = iboff + 1; i < NDADDR; i++)
6552			setup_freedirect(freeblks, ip, i, needj);
6553		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6554		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6555			/* Release a whole indirect tree. */
6556			if (lbn > lastlbn) {
6557				setup_freeindir(freeblks, ip, i, -lbn -i,
6558				    needj);
6559				continue;
6560			}
6561			iboff = i + NDADDR;
6562			/*
6563			 * Traverse partially truncated indirect tree.
6564			 */
6565			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6566				setup_trunc_indir(freeblks, ip, -lbn - i,
6567				    lastlbn, DIP(ip, i_ib[i]));
6568		}
6569		/*
6570		 * Handle partial truncation to a frag boundary.
6571		 */
6572		if (frags) {
6573			ufs2_daddr_t blkno;
6574			long oldfrags;
6575
6576			oldfrags = blksize(fs, ip, lastlbn);
6577			blkno = DIP(ip, i_db[lastlbn]);
6578			if (blkno && oldfrags != frags) {
6579				oldfrags -= frags;
6580				oldfrags = numfrags(ip->i_fs, oldfrags);
6581				blkno += numfrags(ip->i_fs, frags);
6582				newfreework(ump, freeblks, NULL, lastlbn,
6583				    blkno, oldfrags, 0, needj);
6584				if (needj)
6585					adjust_newfreework(freeblks,
6586					    numfrags(ip->i_fs, frags));
6587			} else if (blkno == 0)
6588				allocblock = 1;
6589		}
6590		/*
6591		 * Add a journal record for partial truncate if we are
6592		 * handling indirect blocks.  Non-indirects need no extra
6593		 * journaling.
6594		 */
6595		if (length != 0 && lastlbn >= NDADDR) {
6596			ip->i_flag |= IN_TRUNCATED;
6597			newjtrunc(freeblks, length, 0);
6598		}
6599		ip->i_size = length;
6600		DIP_SET(ip, i_size, ip->i_size);
6601		datablocks = DIP(ip, i_blocks) - extblocks;
6602		if (length != 0)
6603			datablocks = blkcount(ip->i_fs, datablocks, length);
6604		freeblks->fb_len = length;
6605	}
6606	if ((flags & IO_EXT) != 0) {
6607		for (i = 0; i < NXADDR; i++)
6608			setup_freeext(freeblks, ip, i, needj);
6609		ip->i_din2->di_extsize = 0;
6610		datablocks += extblocks;
6611	}
6612#ifdef QUOTA
6613	/* Reference the quotas in case the block count is wrong in the end. */
6614	quotaref(vp, freeblks->fb_quota);
6615	(void) chkdq(ip, -datablocks, NOCRED, 0);
6616#endif
6617	freeblks->fb_chkcnt = -datablocks;
6618	UFS_LOCK(ump);
6619	fs->fs_pendingblocks += datablocks;
6620	UFS_UNLOCK(ump);
6621	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6622	/*
6623	 * Handle truncation of incomplete alloc direct dependencies.  We
6624	 * hold the inode block locked to prevent incomplete dependencies
6625	 * from reaching the disk while we are eliminating those that
6626	 * have been truncated.  This is a partially inlined ffs_update().
6627	 */
6628	ufs_itimes(vp);
6629	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6630	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6631	    (int)fs->fs_bsize, cred, &bp);
6632	if (error) {
6633		brelse(bp);
6634		softdep_error("softdep_journal_freeblocks", error);
6635		return;
6636	}
6637	if (bp->b_bufsize == fs->fs_bsize)
6638		bp->b_flags |= B_CLUSTEROK;
6639	softdep_update_inodeblock(ip, bp, 0);
6640	if (ump->um_fstype == UFS1)
6641		*((struct ufs1_dinode *)bp->b_data +
6642		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6643	else
6644		*((struct ufs2_dinode *)bp->b_data +
6645		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6646	ACQUIRE_LOCK(ump);
6647	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6648	if ((inodedep->id_state & IOSTARTED) != 0)
6649		panic("softdep_setup_freeblocks: inode busy");
6650	/*
6651	 * Add the freeblks structure to the list of operations that
6652	 * must await the zero'ed inode being written to disk. If we
6653	 * still have a bitmap dependency (needj), then the inode
6654	 * has never been written to disk, so we can process the
6655	 * freeblks below once we have deleted the dependencies.
6656	 */
6657	if (needj)
6658		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6659	else
6660		freeblks->fb_state |= COMPLETE;
6661	if ((flags & IO_NORMAL) != 0) {
6662		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6663			if (adp->ad_offset > iboff)
6664				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6665				    freeblks);
6666			/*
6667			 * Truncate the allocdirect.  We could eliminate
6668			 * or modify journal records as well.
6669			 */
6670			else if (adp->ad_offset == iboff && frags)
6671				adp->ad_newsize = frags;
6672		}
6673	}
6674	if ((flags & IO_EXT) != 0)
6675		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6676			cancel_allocdirect(&inodedep->id_extupdt, adp,
6677			    freeblks);
6678	/*
6679	 * Scan the bufwait list for newblock dependencies that will never
6680	 * make it to disk.
6681	 */
6682	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6683		if (wk->wk_type != D_ALLOCDIRECT)
6684			continue;
6685		adp = WK_ALLOCDIRECT(wk);
6686		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6687		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6688			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6689			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6690			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6691		}
6692	}
6693	/*
6694	 * Add journal work.
6695	 */
6696	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6697		add_to_journal(&jblkdep->jb_list);
6698	FREE_LOCK(ump);
6699	bdwrite(bp);
6700	/*
6701	 * Truncate dependency structures beyond length.
6702	 */
6703	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6704	/*
6705	 * This is only set when we need to allocate a fragment because
6706	 * none existed at the end of a frag-sized file.  It handles only
6707	 * allocating a new, zero filled block.
6708	 */
6709	if (allocblock) {
6710		ip->i_size = length - lastoff;
6711		DIP_SET(ip, i_size, ip->i_size);
6712		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6713		if (error != 0) {
6714			softdep_error("softdep_journal_freeblks", error);
6715			return;
6716		}
6717		ip->i_size = length;
6718		DIP_SET(ip, i_size, length);
6719		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6720		allocbuf(bp, frags);
6721		ffs_update(vp, 0);
6722		bawrite(bp);
6723	} else if (lastoff != 0 && vp->v_type != VDIR) {
6724		int size;
6725
6726		/*
6727		 * Zero the end of a truncated frag or block.
6728		 */
6729		size = sblksize(fs, length, lastlbn);
6730		error = bread(vp, lastlbn, size, cred, &bp);
6731		if (error) {
6732			softdep_error("softdep_journal_freeblks", error);
6733			return;
6734		}
6735		bzero((char *)bp->b_data + lastoff, size - lastoff);
6736		bawrite(bp);
6737
6738	}
6739	ACQUIRE_LOCK(ump);
6740	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6741	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6742	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6743	/*
6744	 * We zero earlier truncations so they don't erroneously
6745	 * update i_blocks.
6746	 */
6747	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6748		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6749			fbn->fb_len = 0;
6750	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6751	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6752		freeblks->fb_state |= INPROGRESS;
6753	else
6754		freeblks = NULL;
6755	FREE_LOCK(ump);
6756	if (freeblks)
6757		handle_workitem_freeblocks(freeblks, 0);
6758	trunc_pages(ip, length, extblocks, flags);
6759
6760}
6761
6762/*
6763 * Flush a JOP_SYNC to the journal.
6764 */
6765void
6766softdep_journal_fsync(ip)
6767	struct inode *ip;
6768{
6769	struct jfsync *jfsync;
6770
6771	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
6772	    ("softdep_journal_fsync called on non-softdep filesystem"));
6773	if ((ip->i_flag & IN_TRUNCATED) == 0)
6774		return;
6775	ip->i_flag &= ~IN_TRUNCATED;
6776	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6777	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6778	jfsync->jfs_size = ip->i_size;
6779	jfsync->jfs_ino = ip->i_number;
6780	ACQUIRE_LOCK(ip->i_ump);
6781	add_to_journal(&jfsync->jfs_list);
6782	jwait(&jfsync->jfs_list, MNT_WAIT);
6783	FREE_LOCK(ip->i_ump);
6784}
6785
6786/*
6787 * Block de-allocation dependencies.
6788 *
6789 * When blocks are de-allocated, the on-disk pointers must be nullified before
6790 * the blocks are made available for use by other files.  (The true
6791 * requirement is that old pointers must be nullified before new on-disk
6792 * pointers are set.  We chose this slightly more stringent requirement to
6793 * reduce complexity.) Our implementation handles this dependency by updating
6794 * the inode (or indirect block) appropriately but delaying the actual block
6795 * de-allocation (i.e., freemap and free space count manipulation) until
6796 * after the updated versions reach stable storage.  After the disk is
6797 * updated, the blocks can be safely de-allocated whenever it is convenient.
6798 * This implementation handles only the common case of reducing a file's
6799 * length to zero. Other cases are handled by the conventional synchronous
6800 * write approach.
6801 *
6802 * The ffs implementation with which we worked double-checks
6803 * the state of the block pointers and file size as it reduces
6804 * a file's length.  Some of this code is replicated here in our
6805 * soft updates implementation.  The freeblks->fb_chkcnt field is
6806 * used to transfer a part of this information to the procedure
6807 * that eventually de-allocates the blocks.
6808 *
6809 * This routine should be called from the routine that shortens
6810 * a file's length, before the inode's size or block pointers
6811 * are modified. It will save the block pointer information for
6812 * later release and zero the inode so that the calling routine
6813 * can release it.
6814 */
6815void
6816softdep_setup_freeblocks(ip, length, flags)
6817	struct inode *ip;	/* The inode whose length is to be reduced */
6818	off_t length;		/* The new length for the file */
6819	int flags;		/* IO_EXT and/or IO_NORMAL */
6820{
6821	struct ufs1_dinode *dp1;
6822	struct ufs2_dinode *dp2;
6823	struct freeblks *freeblks;
6824	struct inodedep *inodedep;
6825	struct allocdirect *adp;
6826	struct ufsmount *ump;
6827	struct buf *bp;
6828	struct fs *fs;
6829	ufs2_daddr_t extblocks, datablocks;
6830	struct mount *mp;
6831	int i, delay, error, dflags;
6832	ufs_lbn_t tmpval;
6833	ufs_lbn_t lbn;
6834
6835	ump = ip->i_ump;
6836	mp = UFSTOVFS(ump);
6837	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6838	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6839	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6840	    ip->i_number, length);
6841	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6842	fs = ip->i_fs;
6843	freeblks = newfreeblks(mp, ip);
6844	extblocks = 0;
6845	datablocks = 0;
6846	if (fs->fs_magic == FS_UFS2_MAGIC)
6847		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6848	if ((flags & IO_NORMAL) != 0) {
6849		for (i = 0; i < NDADDR; i++)
6850			setup_freedirect(freeblks, ip, i, 0);
6851		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6852		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6853			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6854		ip->i_size = 0;
6855		DIP_SET(ip, i_size, 0);
6856		datablocks = DIP(ip, i_blocks) - extblocks;
6857	}
6858	if ((flags & IO_EXT) != 0) {
6859		for (i = 0; i < NXADDR; i++)
6860			setup_freeext(freeblks, ip, i, 0);
6861		ip->i_din2->di_extsize = 0;
6862		datablocks += extblocks;
6863	}
6864#ifdef QUOTA
6865	/* Reference the quotas in case the block count is wrong in the end. */
6866	quotaref(ITOV(ip), freeblks->fb_quota);
6867	(void) chkdq(ip, -datablocks, NOCRED, 0);
6868#endif
6869	freeblks->fb_chkcnt = -datablocks;
6870	UFS_LOCK(ump);
6871	fs->fs_pendingblocks += datablocks;
6872	UFS_UNLOCK(ump);
6873	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6874	/*
6875	 * Push the zero'ed inode to to its disk buffer so that we are free
6876	 * to delete its dependencies below. Once the dependencies are gone
6877	 * the buffer can be safely released.
6878	 */
6879	if ((error = bread(ip->i_devvp,
6880	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6881	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6882		brelse(bp);
6883		softdep_error("softdep_setup_freeblocks", error);
6884	}
6885	if (ump->um_fstype == UFS1) {
6886		dp1 = ((struct ufs1_dinode *)bp->b_data +
6887		    ino_to_fsbo(fs, ip->i_number));
6888		ip->i_din1->di_freelink = dp1->di_freelink;
6889		*dp1 = *ip->i_din1;
6890	} else {
6891		dp2 = ((struct ufs2_dinode *)bp->b_data +
6892		    ino_to_fsbo(fs, ip->i_number));
6893		ip->i_din2->di_freelink = dp2->di_freelink;
6894		*dp2 = *ip->i_din2;
6895	}
6896	/*
6897	 * Find and eliminate any inode dependencies.
6898	 */
6899	ACQUIRE_LOCK(ump);
6900	dflags = DEPALLOC;
6901	if (IS_SNAPSHOT(ip))
6902		dflags |= NODELAY;
6903	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6904	if ((inodedep->id_state & IOSTARTED) != 0)
6905		panic("softdep_setup_freeblocks: inode busy");
6906	/*
6907	 * Add the freeblks structure to the list of operations that
6908	 * must await the zero'ed inode being written to disk. If we
6909	 * still have a bitmap dependency (delay == 0), then the inode
6910	 * has never been written to disk, so we can process the
6911	 * freeblks below once we have deleted the dependencies.
6912	 */
6913	delay = (inodedep->id_state & DEPCOMPLETE);
6914	if (delay)
6915		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6916	else
6917		freeblks->fb_state |= COMPLETE;
6918	/*
6919	 * Because the file length has been truncated to zero, any
6920	 * pending block allocation dependency structures associated
6921	 * with this inode are obsolete and can simply be de-allocated.
6922	 * We must first merge the two dependency lists to get rid of
6923	 * any duplicate freefrag structures, then purge the merged list.
6924	 * If we still have a bitmap dependency, then the inode has never
6925	 * been written to disk, so we can free any fragments without delay.
6926	 */
6927	if (flags & IO_NORMAL) {
6928		merge_inode_lists(&inodedep->id_newinoupdt,
6929		    &inodedep->id_inoupdt);
6930		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6931			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6932			    freeblks);
6933	}
6934	if (flags & IO_EXT) {
6935		merge_inode_lists(&inodedep->id_newextupdt,
6936		    &inodedep->id_extupdt);
6937		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6938			cancel_allocdirect(&inodedep->id_extupdt, adp,
6939			    freeblks);
6940	}
6941	FREE_LOCK(ump);
6942	bdwrite(bp);
6943	trunc_dependencies(ip, freeblks, -1, 0, flags);
6944	ACQUIRE_LOCK(ump);
6945	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6946		(void) free_inodedep(inodedep);
6947	freeblks->fb_state |= DEPCOMPLETE;
6948	/*
6949	 * If the inode with zeroed block pointers is now on disk
6950	 * we can start freeing blocks.
6951	 */
6952	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6953		freeblks->fb_state |= INPROGRESS;
6954	else
6955		freeblks = NULL;
6956	FREE_LOCK(ump);
6957	if (freeblks)
6958		handle_workitem_freeblocks(freeblks, 0);
6959	trunc_pages(ip, length, extblocks, flags);
6960}
6961
6962/*
6963 * Eliminate pages from the page cache that back parts of this inode and
6964 * adjust the vnode pager's idea of our size.  This prevents stale data
6965 * from hanging around in the page cache.
6966 */
6967static void
6968trunc_pages(ip, length, extblocks, flags)
6969	struct inode *ip;
6970	off_t length;
6971	ufs2_daddr_t extblocks;
6972	int flags;
6973{
6974	struct vnode *vp;
6975	struct fs *fs;
6976	ufs_lbn_t lbn;
6977	off_t end, extend;
6978
6979	vp = ITOV(ip);
6980	fs = ip->i_fs;
6981	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6982	if ((flags & IO_EXT) != 0)
6983		vn_pages_remove(vp, extend, 0);
6984	if ((flags & IO_NORMAL) == 0)
6985		return;
6986	BO_LOCK(&vp->v_bufobj);
6987	drain_output(vp);
6988	BO_UNLOCK(&vp->v_bufobj);
6989	/*
6990	 * The vnode pager eliminates file pages we eliminate indirects
6991	 * below.
6992	 */
6993	vnode_pager_setsize(vp, length);
6994	/*
6995	 * Calculate the end based on the last indirect we want to keep.  If
6996	 * the block extends into indirects we can just use the negative of
6997	 * its lbn.  Doubles and triples exist at lower numbers so we must
6998	 * be careful not to remove those, if they exist.  double and triple
6999	 * indirect lbns do not overlap with others so it is not important
7000	 * to verify how many levels are required.
7001	 */
7002	lbn = lblkno(fs, length);
7003	if (lbn >= NDADDR) {
7004		/* Calculate the virtual lbn of the triple indirect. */
7005		lbn = -lbn - (NIADDR - 1);
7006		end = OFF_TO_IDX(lblktosize(fs, lbn));
7007	} else
7008		end = extend;
7009	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7010}
7011
7012/*
7013 * See if the buf bp is in the range eliminated by truncation.
7014 */
7015static int
7016trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7017	struct buf *bp;
7018	int *blkoffp;
7019	ufs_lbn_t lastlbn;
7020	int lastoff;
7021	int flags;
7022{
7023	ufs_lbn_t lbn;
7024
7025	*blkoffp = 0;
7026	/* Only match ext/normal blocks as appropriate. */
7027	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7028	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7029		return (0);
7030	/* ALTDATA is always a full truncation. */
7031	if ((bp->b_xflags & BX_ALTDATA) != 0)
7032		return (1);
7033	/* -1 is full truncation. */
7034	if (lastlbn == -1)
7035		return (1);
7036	/*
7037	 * If this is a partial truncate we only want those
7038	 * blocks and indirect blocks that cover the range
7039	 * we're after.
7040	 */
7041	lbn = bp->b_lblkno;
7042	if (lbn < 0)
7043		lbn = -(lbn + lbn_level(lbn));
7044	if (lbn < lastlbn)
7045		return (0);
7046	/* Here we only truncate lblkno if it's partial. */
7047	if (lbn == lastlbn) {
7048		if (lastoff == 0)
7049			return (0);
7050		*blkoffp = lastoff;
7051	}
7052	return (1);
7053}
7054
7055/*
7056 * Eliminate any dependencies that exist in memory beyond lblkno:off
7057 */
7058static void
7059trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7060	struct inode *ip;
7061	struct freeblks *freeblks;
7062	ufs_lbn_t lastlbn;
7063	int lastoff;
7064	int flags;
7065{
7066	struct bufobj *bo;
7067	struct vnode *vp;
7068	struct buf *bp;
7069	struct fs *fs;
7070	int blkoff;
7071
7072	/*
7073	 * We must wait for any I/O in progress to finish so that
7074	 * all potential buffers on the dirty list will be visible.
7075	 * Once they are all there, walk the list and get rid of
7076	 * any dependencies.
7077	 */
7078	fs = ip->i_fs;
7079	vp = ITOV(ip);
7080	bo = &vp->v_bufobj;
7081	BO_LOCK(bo);
7082	drain_output(vp);
7083	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7084		bp->b_vflags &= ~BV_SCANNED;
7085restart:
7086	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7087		if (bp->b_vflags & BV_SCANNED)
7088			continue;
7089		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7090			bp->b_vflags |= BV_SCANNED;
7091			continue;
7092		}
7093		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7094		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7095			goto restart;
7096		BO_UNLOCK(bo);
7097		if (deallocate_dependencies(bp, freeblks, blkoff))
7098			bqrelse(bp);
7099		else
7100			brelse(bp);
7101		BO_LOCK(bo);
7102		goto restart;
7103	}
7104	/*
7105	 * Now do the work of vtruncbuf while also matching indirect blocks.
7106	 */
7107	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7108		bp->b_vflags &= ~BV_SCANNED;
7109cleanrestart:
7110	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7111		if (bp->b_vflags & BV_SCANNED)
7112			continue;
7113		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7114			bp->b_vflags |= BV_SCANNED;
7115			continue;
7116		}
7117		if (BUF_LOCK(bp,
7118		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7119		    BO_LOCKPTR(bo)) == ENOLCK) {
7120			BO_LOCK(bo);
7121			goto cleanrestart;
7122		}
7123		bp->b_vflags |= BV_SCANNED;
7124		bremfree(bp);
7125		if (blkoff != 0) {
7126			allocbuf(bp, blkoff);
7127			bqrelse(bp);
7128		} else {
7129			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7130			brelse(bp);
7131		}
7132		BO_LOCK(bo);
7133		goto cleanrestart;
7134	}
7135	drain_output(vp);
7136	BO_UNLOCK(bo);
7137}
7138
7139static int
7140cancel_pagedep(pagedep, freeblks, blkoff)
7141	struct pagedep *pagedep;
7142	struct freeblks *freeblks;
7143	int blkoff;
7144{
7145	struct jremref *jremref;
7146	struct jmvref *jmvref;
7147	struct dirrem *dirrem, *tmp;
7148	int i;
7149
7150	/*
7151	 * Copy any directory remove dependencies to the list
7152	 * to be processed after the freeblks proceeds.  If
7153	 * directory entry never made it to disk they
7154	 * can be dumped directly onto the work list.
7155	 */
7156	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7157		/* Skip this directory removal if it is intended to remain. */
7158		if (dirrem->dm_offset < blkoff)
7159			continue;
7160		/*
7161		 * If there are any dirrems we wait for the journal write
7162		 * to complete and then restart the buf scan as the lock
7163		 * has been dropped.
7164		 */
7165		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7166			jwait(&jremref->jr_list, MNT_WAIT);
7167			return (ERESTART);
7168		}
7169		LIST_REMOVE(dirrem, dm_next);
7170		dirrem->dm_dirinum = pagedep->pd_ino;
7171		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7172	}
7173	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7174		jwait(&jmvref->jm_list, MNT_WAIT);
7175		return (ERESTART);
7176	}
7177	/*
7178	 * When we're partially truncating a pagedep we just want to flush
7179	 * journal entries and return.  There can not be any adds in the
7180	 * truncated portion of the directory and newblk must remain if
7181	 * part of the block remains.
7182	 */
7183	if (blkoff != 0) {
7184		struct diradd *dap;
7185
7186		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7187			if (dap->da_offset > blkoff)
7188				panic("cancel_pagedep: diradd %p off %d > %d",
7189				    dap, dap->da_offset, blkoff);
7190		for (i = 0; i < DAHASHSZ; i++)
7191			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7192				if (dap->da_offset > blkoff)
7193					panic("cancel_pagedep: diradd %p off %d > %d",
7194					    dap, dap->da_offset, blkoff);
7195		return (0);
7196	}
7197	/*
7198	 * There should be no directory add dependencies present
7199	 * as the directory could not be truncated until all
7200	 * children were removed.
7201	 */
7202	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7203	    ("deallocate_dependencies: pendinghd != NULL"));
7204	for (i = 0; i < DAHASHSZ; i++)
7205		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7206		    ("deallocate_dependencies: diraddhd != NULL"));
7207	if ((pagedep->pd_state & NEWBLOCK) != 0)
7208		free_newdirblk(pagedep->pd_newdirblk);
7209	if (free_pagedep(pagedep) == 0)
7210		panic("Failed to free pagedep %p", pagedep);
7211	return (0);
7212}
7213
7214/*
7215 * Reclaim any dependency structures from a buffer that is about to
7216 * be reallocated to a new vnode. The buffer must be locked, thus,
7217 * no I/O completion operations can occur while we are manipulating
7218 * its associated dependencies. The mutex is held so that other I/O's
7219 * associated with related dependencies do not occur.
7220 */
7221static int
7222deallocate_dependencies(bp, freeblks, off)
7223	struct buf *bp;
7224	struct freeblks *freeblks;
7225	int off;
7226{
7227	struct indirdep *indirdep;
7228	struct pagedep *pagedep;
7229	struct allocdirect *adp;
7230	struct worklist *wk, *wkn;
7231	struct ufsmount *ump;
7232
7233	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7234		goto done;
7235	ump = VFSTOUFS(wk->wk_mp);
7236	ACQUIRE_LOCK(ump);
7237	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7238		switch (wk->wk_type) {
7239		case D_INDIRDEP:
7240			indirdep = WK_INDIRDEP(wk);
7241			if (bp->b_lblkno >= 0 ||
7242			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7243				panic("deallocate_dependencies: not indir");
7244			cancel_indirdep(indirdep, bp, freeblks);
7245			continue;
7246
7247		case D_PAGEDEP:
7248			pagedep = WK_PAGEDEP(wk);
7249			if (cancel_pagedep(pagedep, freeblks, off)) {
7250				FREE_LOCK(ump);
7251				return (ERESTART);
7252			}
7253			continue;
7254
7255		case D_ALLOCINDIR:
7256			/*
7257			 * Simply remove the allocindir, we'll find it via
7258			 * the indirdep where we can clear pointers if
7259			 * needed.
7260			 */
7261			WORKLIST_REMOVE(wk);
7262			continue;
7263
7264		case D_FREEWORK:
7265			/*
7266			 * A truncation is waiting for the zero'd pointers
7267			 * to be written.  It can be freed when the freeblks
7268			 * is journaled.
7269			 */
7270			WORKLIST_REMOVE(wk);
7271			wk->wk_state |= ONDEPLIST;
7272			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7273			break;
7274
7275		case D_ALLOCDIRECT:
7276			adp = WK_ALLOCDIRECT(wk);
7277			if (off != 0)
7278				continue;
7279			/* FALLTHROUGH */
7280		default:
7281			panic("deallocate_dependencies: Unexpected type %s",
7282			    TYPENAME(wk->wk_type));
7283			/* NOTREACHED */
7284		}
7285	}
7286	FREE_LOCK(ump);
7287done:
7288	/*
7289	 * Don't throw away this buf, we were partially truncating and
7290	 * some deps may always remain.
7291	 */
7292	if (off) {
7293		allocbuf(bp, off);
7294		bp->b_vflags |= BV_SCANNED;
7295		return (EBUSY);
7296	}
7297	bp->b_flags |= B_INVAL | B_NOCACHE;
7298
7299	return (0);
7300}
7301
7302/*
7303 * An allocdirect is being canceled due to a truncate.  We must make sure
7304 * the journal entry is released in concert with the blkfree that releases
7305 * the storage.  Completed journal entries must not be released until the
7306 * space is no longer pointed to by the inode or in the bitmap.
7307 */
7308static void
7309cancel_allocdirect(adphead, adp, freeblks)
7310	struct allocdirectlst *adphead;
7311	struct allocdirect *adp;
7312	struct freeblks *freeblks;
7313{
7314	struct freework *freework;
7315	struct newblk *newblk;
7316	struct worklist *wk;
7317
7318	TAILQ_REMOVE(adphead, adp, ad_next);
7319	newblk = (struct newblk *)adp;
7320	freework = NULL;
7321	/*
7322	 * Find the correct freework structure.
7323	 */
7324	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7325		if (wk->wk_type != D_FREEWORK)
7326			continue;
7327		freework = WK_FREEWORK(wk);
7328		if (freework->fw_blkno == newblk->nb_newblkno)
7329			break;
7330	}
7331	if (freework == NULL)
7332		panic("cancel_allocdirect: Freework not found");
7333	/*
7334	 * If a newblk exists at all we still have the journal entry that
7335	 * initiated the allocation so we do not need to journal the free.
7336	 */
7337	cancel_jfreeblk(freeblks, freework->fw_blkno);
7338	/*
7339	 * If the journal hasn't been written the jnewblk must be passed
7340	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7341	 * this by linking the journal dependency into the freework to be
7342	 * freed when freework_freeblock() is called.  If the journal has
7343	 * been written we can simply reclaim the journal space when the
7344	 * freeblks work is complete.
7345	 */
7346	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7347	    &freeblks->fb_jwork);
7348	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7349}
7350
7351
7352/*
7353 * Cancel a new block allocation.  May be an indirect or direct block.  We
7354 * remove it from various lists and return any journal record that needs to
7355 * be resolved by the caller.
7356 *
7357 * A special consideration is made for indirects which were never pointed
7358 * at on disk and will never be found once this block is released.
7359 */
7360static struct jnewblk *
7361cancel_newblk(newblk, wk, wkhd)
7362	struct newblk *newblk;
7363	struct worklist *wk;
7364	struct workhead *wkhd;
7365{
7366	struct jnewblk *jnewblk;
7367
7368	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7369
7370	newblk->nb_state |= GOINGAWAY;
7371	/*
7372	 * Previously we traversed the completedhd on each indirdep
7373	 * attached to this newblk to cancel them and gather journal
7374	 * work.  Since we need only the oldest journal segment and
7375	 * the lowest point on the tree will always have the oldest
7376	 * journal segment we are free to release the segments
7377	 * of any subordinates and may leave the indirdep list to
7378	 * indirdep_complete() when this newblk is freed.
7379	 */
7380	if (newblk->nb_state & ONDEPLIST) {
7381		newblk->nb_state &= ~ONDEPLIST;
7382		LIST_REMOVE(newblk, nb_deps);
7383	}
7384	if (newblk->nb_state & ONWORKLIST)
7385		WORKLIST_REMOVE(&newblk->nb_list);
7386	/*
7387	 * If the journal entry hasn't been written we save a pointer to
7388	 * the dependency that frees it until it is written or the
7389	 * superseding operation completes.
7390	 */
7391	jnewblk = newblk->nb_jnewblk;
7392	if (jnewblk != NULL && wk != NULL) {
7393		newblk->nb_jnewblk = NULL;
7394		jnewblk->jn_dep = wk;
7395	}
7396	if (!LIST_EMPTY(&newblk->nb_jwork))
7397		jwork_move(wkhd, &newblk->nb_jwork);
7398	/*
7399	 * When truncating we must free the newdirblk early to remove
7400	 * the pagedep from the hash before returning.
7401	 */
7402	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7403		free_newdirblk(WK_NEWDIRBLK(wk));
7404	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7405		panic("cancel_newblk: extra newdirblk");
7406
7407	return (jnewblk);
7408}
7409
7410/*
7411 * Schedule the freefrag associated with a newblk to be released once
7412 * the pointers are written and the previous block is no longer needed.
7413 */
7414static void
7415newblk_freefrag(newblk)
7416	struct newblk *newblk;
7417{
7418	struct freefrag *freefrag;
7419
7420	if (newblk->nb_freefrag == NULL)
7421		return;
7422	freefrag = newblk->nb_freefrag;
7423	newblk->nb_freefrag = NULL;
7424	freefrag->ff_state |= COMPLETE;
7425	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7426		add_to_worklist(&freefrag->ff_list, 0);
7427}
7428
7429/*
7430 * Free a newblk. Generate a new freefrag work request if appropriate.
7431 * This must be called after the inode pointer and any direct block pointers
7432 * are valid or fully removed via truncate or frag extension.
7433 */
7434static void
7435free_newblk(newblk)
7436	struct newblk *newblk;
7437{
7438	struct indirdep *indirdep;
7439	struct worklist *wk;
7440
7441	KASSERT(newblk->nb_jnewblk == NULL,
7442	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7443	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7444	    ("free_newblk: unclaimed newblk"));
7445	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7446	newblk_freefrag(newblk);
7447	if (newblk->nb_state & ONDEPLIST)
7448		LIST_REMOVE(newblk, nb_deps);
7449	if (newblk->nb_state & ONWORKLIST)
7450		WORKLIST_REMOVE(&newblk->nb_list);
7451	LIST_REMOVE(newblk, nb_hash);
7452	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7453		free_newdirblk(WK_NEWDIRBLK(wk));
7454	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7455		panic("free_newblk: extra newdirblk");
7456	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7457		indirdep_complete(indirdep);
7458	handle_jwork(&newblk->nb_jwork);
7459	WORKITEM_FREE(newblk, D_NEWBLK);
7460}
7461
7462/*
7463 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7464 * This routine must be called with splbio interrupts blocked.
7465 */
7466static void
7467free_newdirblk(newdirblk)
7468	struct newdirblk *newdirblk;
7469{
7470	struct pagedep *pagedep;
7471	struct diradd *dap;
7472	struct worklist *wk;
7473
7474	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7475	WORKLIST_REMOVE(&newdirblk->db_list);
7476	/*
7477	 * If the pagedep is still linked onto the directory buffer
7478	 * dependency chain, then some of the entries on the
7479	 * pd_pendinghd list may not be committed to disk yet. In
7480	 * this case, we will simply clear the NEWBLOCK flag and
7481	 * let the pd_pendinghd list be processed when the pagedep
7482	 * is next written. If the pagedep is no longer on the buffer
7483	 * dependency chain, then all the entries on the pd_pending
7484	 * list are committed to disk and we can free them here.
7485	 */
7486	pagedep = newdirblk->db_pagedep;
7487	pagedep->pd_state &= ~NEWBLOCK;
7488	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7489		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7490			free_diradd(dap, NULL);
7491		/*
7492		 * If no dependencies remain, the pagedep will be freed.
7493		 */
7494		free_pagedep(pagedep);
7495	}
7496	/* Should only ever be one item in the list. */
7497	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7498		WORKLIST_REMOVE(wk);
7499		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7500	}
7501	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7502}
7503
7504/*
7505 * Prepare an inode to be freed. The actual free operation is not
7506 * done until the zero'ed inode has been written to disk.
7507 */
7508void
7509softdep_freefile(pvp, ino, mode)
7510	struct vnode *pvp;
7511	ino_t ino;
7512	int mode;
7513{
7514	struct inode *ip = VTOI(pvp);
7515	struct inodedep *inodedep;
7516	struct freefile *freefile;
7517	struct freeblks *freeblks;
7518	struct ufsmount *ump;
7519
7520	ump = ip->i_ump;
7521	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7522	    ("softdep_freefile called on non-softdep filesystem"));
7523	/*
7524	 * This sets up the inode de-allocation dependency.
7525	 */
7526	freefile = malloc(sizeof(struct freefile),
7527		M_FREEFILE, M_SOFTDEP_FLAGS);
7528	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7529	freefile->fx_mode = mode;
7530	freefile->fx_oldinum = ino;
7531	freefile->fx_devvp = ip->i_devvp;
7532	LIST_INIT(&freefile->fx_jwork);
7533	UFS_LOCK(ump);
7534	ip->i_fs->fs_pendinginodes += 1;
7535	UFS_UNLOCK(ump);
7536
7537	/*
7538	 * If the inodedep does not exist, then the zero'ed inode has
7539	 * been written to disk. If the allocated inode has never been
7540	 * written to disk, then the on-disk inode is zero'ed. In either
7541	 * case we can free the file immediately.  If the journal was
7542	 * canceled before being written the inode will never make it to
7543	 * disk and we must send the canceled journal entrys to
7544	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7545	 * Any blocks waiting on the inode to write can be safely freed
7546	 * here as it will never been written.
7547	 */
7548	ACQUIRE_LOCK(ump);
7549	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7550	if (inodedep) {
7551		/*
7552		 * Clear out freeblks that no longer need to reference
7553		 * this inode.
7554		 */
7555		while ((freeblks =
7556		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7557			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7558			    fb_next);
7559			freeblks->fb_state &= ~ONDEPLIST;
7560		}
7561		/*
7562		 * Remove this inode from the unlinked list.
7563		 */
7564		if (inodedep->id_state & UNLINKED) {
7565			/*
7566			 * Save the journal work to be freed with the bitmap
7567			 * before we clear UNLINKED.  Otherwise it can be lost
7568			 * if the inode block is written.
7569			 */
7570			handle_bufwait(inodedep, &freefile->fx_jwork);
7571			clear_unlinked_inodedep(inodedep);
7572			/*
7573			 * Re-acquire inodedep as we've dropped the
7574			 * per-filesystem lock in clear_unlinked_inodedep().
7575			 */
7576			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7577		}
7578	}
7579	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7580		FREE_LOCK(ump);
7581		handle_workitem_freefile(freefile);
7582		return;
7583	}
7584	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7585		inodedep->id_state |= GOINGAWAY;
7586	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7587	FREE_LOCK(ump);
7588	if (ip->i_number == ino)
7589		ip->i_flag |= IN_MODIFIED;
7590}
7591
7592/*
7593 * Check to see if an inode has never been written to disk. If
7594 * so free the inodedep and return success, otherwise return failure.
7595 * This routine must be called with splbio interrupts blocked.
7596 *
7597 * If we still have a bitmap dependency, then the inode has never
7598 * been written to disk. Drop the dependency as it is no longer
7599 * necessary since the inode is being deallocated. We set the
7600 * ALLCOMPLETE flags since the bitmap now properly shows that the
7601 * inode is not allocated. Even if the inode is actively being
7602 * written, it has been rolled back to its zero'ed state, so we
7603 * are ensured that a zero inode is what is on the disk. For short
7604 * lived files, this change will usually result in removing all the
7605 * dependencies from the inode so that it can be freed immediately.
7606 */
7607static int
7608check_inode_unwritten(inodedep)
7609	struct inodedep *inodedep;
7610{
7611
7612	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7613
7614	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7615	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7616	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7617	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7618	    !LIST_EMPTY(&inodedep->id_inowait) ||
7619	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7620	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7621	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7622	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7623	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7624	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7625	    inodedep->id_mkdiradd != NULL ||
7626	    inodedep->id_nlinkdelta != 0)
7627		return (0);
7628	/*
7629	 * Another process might be in initiate_write_inodeblock_ufs[12]
7630	 * trying to allocate memory without holding "Softdep Lock".
7631	 */
7632	if ((inodedep->id_state & IOSTARTED) != 0 &&
7633	    inodedep->id_savedino1 == NULL)
7634		return (0);
7635
7636	if (inodedep->id_state & ONDEPLIST)
7637		LIST_REMOVE(inodedep, id_deps);
7638	inodedep->id_state &= ~ONDEPLIST;
7639	inodedep->id_state |= ALLCOMPLETE;
7640	inodedep->id_bmsafemap = NULL;
7641	if (inodedep->id_state & ONWORKLIST)
7642		WORKLIST_REMOVE(&inodedep->id_list);
7643	if (inodedep->id_savedino1 != NULL) {
7644		free(inodedep->id_savedino1, M_SAVEDINO);
7645		inodedep->id_savedino1 = NULL;
7646	}
7647	if (free_inodedep(inodedep) == 0)
7648		panic("check_inode_unwritten: busy inode");
7649	return (1);
7650}
7651
7652static int
7653check_inodedep_free(inodedep)
7654	struct inodedep *inodedep;
7655{
7656
7657	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7658	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7659	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7660	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7661	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7662	    !LIST_EMPTY(&inodedep->id_inowait) ||
7663	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7664	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7665	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7666	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7667	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7668	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7669	    inodedep->id_mkdiradd != NULL ||
7670	    inodedep->id_nlinkdelta != 0 ||
7671	    inodedep->id_savedino1 != NULL)
7672		return (0);
7673	return (1);
7674}
7675
7676/*
7677 * Try to free an inodedep structure. Return 1 if it could be freed.
7678 */
7679static int
7680free_inodedep(inodedep)
7681	struct inodedep *inodedep;
7682{
7683
7684	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7685	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7686	    !check_inodedep_free(inodedep))
7687		return (0);
7688	if (inodedep->id_state & ONDEPLIST)
7689		LIST_REMOVE(inodedep, id_deps);
7690	LIST_REMOVE(inodedep, id_hash);
7691	WORKITEM_FREE(inodedep, D_INODEDEP);
7692	return (1);
7693}
7694
7695/*
7696 * Free the block referenced by a freework structure.  The parent freeblks
7697 * structure is released and completed when the final cg bitmap reaches
7698 * the disk.  This routine may be freeing a jnewblk which never made it to
7699 * disk in which case we do not have to wait as the operation is undone
7700 * in memory immediately.
7701 */
7702static void
7703freework_freeblock(freework)
7704	struct freework *freework;
7705{
7706	struct freeblks *freeblks;
7707	struct jnewblk *jnewblk;
7708	struct ufsmount *ump;
7709	struct workhead wkhd;
7710	struct fs *fs;
7711	int bsize;
7712	int needj;
7713
7714	ump = VFSTOUFS(freework->fw_list.wk_mp);
7715	LOCK_OWNED(ump);
7716	/*
7717	 * Handle partial truncate separately.
7718	 */
7719	if (freework->fw_indir) {
7720		complete_trunc_indir(freework);
7721		return;
7722	}
7723	freeblks = freework->fw_freeblks;
7724	fs = ump->um_fs;
7725	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7726	bsize = lfragtosize(fs, freework->fw_frags);
7727	LIST_INIT(&wkhd);
7728	/*
7729	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7730	 * on the indirblk hashtable and prevents premature freeing.
7731	 */
7732	freework->fw_state |= DEPCOMPLETE;
7733	/*
7734	 * SUJ needs to wait for the segment referencing freed indirect
7735	 * blocks to expire so that we know the checker will not confuse
7736	 * a re-allocated indirect block with its old contents.
7737	 */
7738	if (needj && freework->fw_lbn <= -NDADDR)
7739		indirblk_insert(freework);
7740	/*
7741	 * If we are canceling an existing jnewblk pass it to the free
7742	 * routine, otherwise pass the freeblk which will ultimately
7743	 * release the freeblks.  If we're not journaling, we can just
7744	 * free the freeblks immediately.
7745	 */
7746	jnewblk = freework->fw_jnewblk;
7747	if (jnewblk != NULL) {
7748		cancel_jnewblk(jnewblk, &wkhd);
7749		needj = 0;
7750	} else if (needj) {
7751		freework->fw_state |= DELAYEDFREE;
7752		freeblks->fb_cgwait++;
7753		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7754	}
7755	FREE_LOCK(ump);
7756	freeblks_free(ump, freeblks, btodb(bsize));
7757	CTR4(KTR_SUJ,
7758	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7759	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7760	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7761	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7762	ACQUIRE_LOCK(ump);
7763	/*
7764	 * The jnewblk will be discarded and the bits in the map never
7765	 * made it to disk.  We can immediately free the freeblk.
7766	 */
7767	if (needj == 0)
7768		handle_written_freework(freework);
7769}
7770
7771/*
7772 * We enqueue freework items that need processing back on the freeblks and
7773 * add the freeblks to the worklist.  This makes it easier to find all work
7774 * required to flush a truncation in process_truncates().
7775 */
7776static void
7777freework_enqueue(freework)
7778	struct freework *freework;
7779{
7780	struct freeblks *freeblks;
7781
7782	freeblks = freework->fw_freeblks;
7783	if ((freework->fw_state & INPROGRESS) == 0)
7784		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7785	if ((freeblks->fb_state &
7786	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7787	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7788		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7789}
7790
7791/*
7792 * Start, continue, or finish the process of freeing an indirect block tree.
7793 * The free operation may be paused at any point with fw_off containing the
7794 * offset to restart from.  This enables us to implement some flow control
7795 * for large truncates which may fan out and generate a huge number of
7796 * dependencies.
7797 */
7798static void
7799handle_workitem_indirblk(freework)
7800	struct freework *freework;
7801{
7802	struct freeblks *freeblks;
7803	struct ufsmount *ump;
7804	struct fs *fs;
7805
7806	freeblks = freework->fw_freeblks;
7807	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7808	fs = ump->um_fs;
7809	if (freework->fw_state & DEPCOMPLETE) {
7810		handle_written_freework(freework);
7811		return;
7812	}
7813	if (freework->fw_off == NINDIR(fs)) {
7814		freework_freeblock(freework);
7815		return;
7816	}
7817	freework->fw_state |= INPROGRESS;
7818	FREE_LOCK(ump);
7819	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7820	    freework->fw_lbn);
7821	ACQUIRE_LOCK(ump);
7822}
7823
7824/*
7825 * Called when a freework structure attached to a cg buf is written.  The
7826 * ref on either the parent or the freeblks structure is released and
7827 * the freeblks is added back to the worklist if there is more work to do.
7828 */
7829static void
7830handle_written_freework(freework)
7831	struct freework *freework;
7832{
7833	struct freeblks *freeblks;
7834	struct freework *parent;
7835
7836	freeblks = freework->fw_freeblks;
7837	parent = freework->fw_parent;
7838	if (freework->fw_state & DELAYEDFREE)
7839		freeblks->fb_cgwait--;
7840	freework->fw_state |= COMPLETE;
7841	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7842		WORKITEM_FREE(freework, D_FREEWORK);
7843	if (parent) {
7844		if (--parent->fw_ref == 0)
7845			freework_enqueue(parent);
7846		return;
7847	}
7848	if (--freeblks->fb_ref != 0)
7849		return;
7850	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7851	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7852		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7853}
7854
7855/*
7856 * This workitem routine performs the block de-allocation.
7857 * The workitem is added to the pending list after the updated
7858 * inode block has been written to disk.  As mentioned above,
7859 * checks regarding the number of blocks de-allocated (compared
7860 * to the number of blocks allocated for the file) are also
7861 * performed in this function.
7862 */
7863static int
7864handle_workitem_freeblocks(freeblks, flags)
7865	struct freeblks *freeblks;
7866	int flags;
7867{
7868	struct freework *freework;
7869	struct newblk *newblk;
7870	struct allocindir *aip;
7871	struct ufsmount *ump;
7872	struct worklist *wk;
7873
7874	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7875	    ("handle_workitem_freeblocks: Journal entries not written."));
7876	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7877	ACQUIRE_LOCK(ump);
7878	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7879		WORKLIST_REMOVE(wk);
7880		switch (wk->wk_type) {
7881		case D_DIRREM:
7882			wk->wk_state |= COMPLETE;
7883			add_to_worklist(wk, 0);
7884			continue;
7885
7886		case D_ALLOCDIRECT:
7887			free_newblk(WK_NEWBLK(wk));
7888			continue;
7889
7890		case D_ALLOCINDIR:
7891			aip = WK_ALLOCINDIR(wk);
7892			freework = NULL;
7893			if (aip->ai_state & DELAYEDFREE) {
7894				FREE_LOCK(ump);
7895				freework = newfreework(ump, freeblks, NULL,
7896				    aip->ai_lbn, aip->ai_newblkno,
7897				    ump->um_fs->fs_frag, 0, 0);
7898				ACQUIRE_LOCK(ump);
7899			}
7900			newblk = WK_NEWBLK(wk);
7901			if (newblk->nb_jnewblk) {
7902				freework->fw_jnewblk = newblk->nb_jnewblk;
7903				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7904				newblk->nb_jnewblk = NULL;
7905			}
7906			free_newblk(newblk);
7907			continue;
7908
7909		case D_FREEWORK:
7910			freework = WK_FREEWORK(wk);
7911			if (freework->fw_lbn <= -NDADDR)
7912				handle_workitem_indirblk(freework);
7913			else
7914				freework_freeblock(freework);
7915			continue;
7916		default:
7917			panic("handle_workitem_freeblocks: Unknown type %s",
7918			    TYPENAME(wk->wk_type));
7919		}
7920	}
7921	if (freeblks->fb_ref != 0) {
7922		freeblks->fb_state &= ~INPROGRESS;
7923		wake_worklist(&freeblks->fb_list);
7924		freeblks = NULL;
7925	}
7926	FREE_LOCK(ump);
7927	if (freeblks)
7928		return handle_complete_freeblocks(freeblks, flags);
7929	return (0);
7930}
7931
7932/*
7933 * Handle completion of block free via truncate.  This allows fs_pending
7934 * to track the actual free block count more closely than if we only updated
7935 * it at the end.  We must be careful to handle cases where the block count
7936 * on free was incorrect.
7937 */
7938static void
7939freeblks_free(ump, freeblks, blocks)
7940	struct ufsmount *ump;
7941	struct freeblks *freeblks;
7942	int blocks;
7943{
7944	struct fs *fs;
7945	ufs2_daddr_t remain;
7946
7947	UFS_LOCK(ump);
7948	remain = -freeblks->fb_chkcnt;
7949	freeblks->fb_chkcnt += blocks;
7950	if (remain > 0) {
7951		if (remain < blocks)
7952			blocks = remain;
7953		fs = ump->um_fs;
7954		fs->fs_pendingblocks -= blocks;
7955	}
7956	UFS_UNLOCK(ump);
7957}
7958
7959/*
7960 * Once all of the freework workitems are complete we can retire the
7961 * freeblocks dependency and any journal work awaiting completion.  This
7962 * can not be called until all other dependencies are stable on disk.
7963 */
7964static int
7965handle_complete_freeblocks(freeblks, flags)
7966	struct freeblks *freeblks;
7967	int flags;
7968{
7969	struct inodedep *inodedep;
7970	struct inode *ip;
7971	struct vnode *vp;
7972	struct fs *fs;
7973	struct ufsmount *ump;
7974	ufs2_daddr_t spare;
7975
7976	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7977	fs = ump->um_fs;
7978	flags = LK_EXCLUSIVE | flags;
7979	spare = freeblks->fb_chkcnt;
7980
7981	/*
7982	 * If we did not release the expected number of blocks we may have
7983	 * to adjust the inode block count here.  Only do so if it wasn't
7984	 * a truncation to zero and the modrev still matches.
7985	 */
7986	if (spare && freeblks->fb_len != 0) {
7987		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7988		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7989			return (EBUSY);
7990		ip = VTOI(vp);
7991		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7992			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7993			ip->i_flag |= IN_CHANGE;
7994			/*
7995			 * We must wait so this happens before the
7996			 * journal is reclaimed.
7997			 */
7998			ffs_update(vp, 1);
7999		}
8000		vput(vp);
8001	}
8002	if (spare < 0) {
8003		UFS_LOCK(ump);
8004		fs->fs_pendingblocks += spare;
8005		UFS_UNLOCK(ump);
8006	}
8007#ifdef QUOTA
8008	/* Handle spare. */
8009	if (spare)
8010		quotaadj(freeblks->fb_quota, ump, -spare);
8011	quotarele(freeblks->fb_quota);
8012#endif
8013	ACQUIRE_LOCK(ump);
8014	if (freeblks->fb_state & ONDEPLIST) {
8015		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8016		    0, &inodedep);
8017		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8018		freeblks->fb_state &= ~ONDEPLIST;
8019		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8020			free_inodedep(inodedep);
8021	}
8022	/*
8023	 * All of the freeblock deps must be complete prior to this call
8024	 * so it's now safe to complete earlier outstanding journal entries.
8025	 */
8026	handle_jwork(&freeblks->fb_jwork);
8027	WORKITEM_FREE(freeblks, D_FREEBLKS);
8028	FREE_LOCK(ump);
8029	return (0);
8030}
8031
8032/*
8033 * Release blocks associated with the freeblks and stored in the indirect
8034 * block dbn. If level is greater than SINGLE, the block is an indirect block
8035 * and recursive calls to indirtrunc must be used to cleanse other indirect
8036 * blocks.
8037 *
8038 * This handles partial and complete truncation of blocks.  Partial is noted
8039 * with goingaway == 0.  In this case the freework is completed after the
8040 * zero'd indirects are written to disk.  For full truncation the freework
8041 * is completed after the block is freed.
8042 */
8043static void
8044indir_trunc(freework, dbn, lbn)
8045	struct freework *freework;
8046	ufs2_daddr_t dbn;
8047	ufs_lbn_t lbn;
8048{
8049	struct freework *nfreework;
8050	struct workhead wkhd;
8051	struct freeblks *freeblks;
8052	struct buf *bp;
8053	struct fs *fs;
8054	struct indirdep *indirdep;
8055	struct ufsmount *ump;
8056	ufs1_daddr_t *bap1 = 0;
8057	ufs2_daddr_t nb, nnb, *bap2 = 0;
8058	ufs_lbn_t lbnadd, nlbn;
8059	int i, nblocks, ufs1fmt;
8060	int freedblocks;
8061	int goingaway;
8062	int freedeps;
8063	int needj;
8064	int level;
8065	int cnt;
8066
8067	freeblks = freework->fw_freeblks;
8068	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8069	fs = ump->um_fs;
8070	/*
8071	 * Get buffer of block pointers to be freed.  There are three cases:
8072	 *
8073	 * 1) Partial truncate caches the indirdep pointer in the freework
8074	 *    which provides us a back copy to the save bp which holds the
8075	 *    pointers we want to clear.  When this completes the zero
8076	 *    pointers are written to the real copy.
8077	 * 2) The indirect is being completely truncated, cancel_indirdep()
8078	 *    eliminated the real copy and placed the indirdep on the saved
8079	 *    copy.  The indirdep and buf are discarded when this completes.
8080	 * 3) The indirect was not in memory, we read a copy off of the disk
8081	 *    using the devvp and drop and invalidate the buffer when we're
8082	 *    done.
8083	 */
8084	goingaway = 1;
8085	indirdep = NULL;
8086	if (freework->fw_indir != NULL) {
8087		goingaway = 0;
8088		indirdep = freework->fw_indir;
8089		bp = indirdep->ir_savebp;
8090		if (bp == NULL || bp->b_blkno != dbn)
8091			panic("indir_trunc: Bad saved buf %p blkno %jd",
8092			    bp, (intmax_t)dbn);
8093	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8094		/*
8095		 * The lock prevents the buf dep list from changing and
8096	 	 * indirects on devvp should only ever have one dependency.
8097		 */
8098		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8099		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8100			panic("indir_trunc: Bad indirdep %p from buf %p",
8101			    indirdep, bp);
8102	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8103	    NOCRED, &bp) != 0) {
8104		brelse(bp);
8105		return;
8106	}
8107	ACQUIRE_LOCK(ump);
8108	/* Protects against a race with complete_trunc_indir(). */
8109	freework->fw_state &= ~INPROGRESS;
8110	/*
8111	 * If we have an indirdep we need to enforce the truncation order
8112	 * and discard it when it is complete.
8113	 */
8114	if (indirdep) {
8115		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8116		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8117			/*
8118			 * Add the complete truncate to the list on the
8119			 * indirdep to enforce in-order processing.
8120			 */
8121			if (freework->fw_indir == NULL)
8122				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8123				    freework, fw_next);
8124			FREE_LOCK(ump);
8125			return;
8126		}
8127		/*
8128		 * If we're goingaway, free the indirdep.  Otherwise it will
8129		 * linger until the write completes.
8130		 */
8131		if (goingaway)
8132			free_indirdep(indirdep);
8133	}
8134	FREE_LOCK(ump);
8135	/* Initialize pointers depending on block size. */
8136	if (ump->um_fstype == UFS1) {
8137		bap1 = (ufs1_daddr_t *)bp->b_data;
8138		nb = bap1[freework->fw_off];
8139		ufs1fmt = 1;
8140	} else {
8141		bap2 = (ufs2_daddr_t *)bp->b_data;
8142		nb = bap2[freework->fw_off];
8143		ufs1fmt = 0;
8144	}
8145	level = lbn_level(lbn);
8146	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8147	lbnadd = lbn_offset(fs, level);
8148	nblocks = btodb(fs->fs_bsize);
8149	nfreework = freework;
8150	freedeps = 0;
8151	cnt = 0;
8152	/*
8153	 * Reclaim blocks.  Traverses into nested indirect levels and
8154	 * arranges for the current level to be freed when subordinates
8155	 * are free when journaling.
8156	 */
8157	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8158		if (i != NINDIR(fs) - 1) {
8159			if (ufs1fmt)
8160				nnb = bap1[i+1];
8161			else
8162				nnb = bap2[i+1];
8163		} else
8164			nnb = 0;
8165		if (nb == 0)
8166			continue;
8167		cnt++;
8168		if (level != 0) {
8169			nlbn = (lbn + 1) - (i * lbnadd);
8170			if (needj != 0) {
8171				nfreework = newfreework(ump, freeblks, freework,
8172				    nlbn, nb, fs->fs_frag, 0, 0);
8173				freedeps++;
8174			}
8175			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8176		} else {
8177			struct freedep *freedep;
8178
8179			/*
8180			 * Attempt to aggregate freedep dependencies for
8181			 * all blocks being released to the same CG.
8182			 */
8183			LIST_INIT(&wkhd);
8184			if (needj != 0 &&
8185			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8186				freedep = newfreedep(freework);
8187				WORKLIST_INSERT_UNLOCKED(&wkhd,
8188				    &freedep->fd_list);
8189				freedeps++;
8190			}
8191			CTR3(KTR_SUJ,
8192			    "indir_trunc: ino %d blkno %jd size %ld",
8193			    freeblks->fb_inum, nb, fs->fs_bsize);
8194			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8195			    fs->fs_bsize, freeblks->fb_inum,
8196			    freeblks->fb_vtype, &wkhd);
8197		}
8198	}
8199	if (goingaway) {
8200		bp->b_flags |= B_INVAL | B_NOCACHE;
8201		brelse(bp);
8202	}
8203	freedblocks = 0;
8204	if (level == 0)
8205		freedblocks = (nblocks * cnt);
8206	if (needj == 0)
8207		freedblocks += nblocks;
8208	freeblks_free(ump, freeblks, freedblocks);
8209	/*
8210	 * If we are journaling set up the ref counts and offset so this
8211	 * indirect can be completed when its children are free.
8212	 */
8213	if (needj) {
8214		ACQUIRE_LOCK(ump);
8215		freework->fw_off = i;
8216		freework->fw_ref += freedeps;
8217		freework->fw_ref -= NINDIR(fs) + 1;
8218		if (level == 0)
8219			freeblks->fb_cgwait += freedeps;
8220		if (freework->fw_ref == 0)
8221			freework_freeblock(freework);
8222		FREE_LOCK(ump);
8223		return;
8224	}
8225	/*
8226	 * If we're not journaling we can free the indirect now.
8227	 */
8228	dbn = dbtofsb(fs, dbn);
8229	CTR3(KTR_SUJ,
8230	    "indir_trunc 2: ino %d blkno %jd size %ld",
8231	    freeblks->fb_inum, dbn, fs->fs_bsize);
8232	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8233	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8234	/* Non SUJ softdep does single-threaded truncations. */
8235	if (freework->fw_blkno == dbn) {
8236		freework->fw_state |= ALLCOMPLETE;
8237		ACQUIRE_LOCK(ump);
8238		handle_written_freework(freework);
8239		FREE_LOCK(ump);
8240	}
8241	return;
8242}
8243
8244/*
8245 * Cancel an allocindir when it is removed via truncation.  When bp is not
8246 * NULL the indirect never appeared on disk and is scheduled to be freed
8247 * independently of the indir so we can more easily track journal work.
8248 */
8249static void
8250cancel_allocindir(aip, bp, freeblks, trunc)
8251	struct allocindir *aip;
8252	struct buf *bp;
8253	struct freeblks *freeblks;
8254	int trunc;
8255{
8256	struct indirdep *indirdep;
8257	struct freefrag *freefrag;
8258	struct newblk *newblk;
8259
8260	newblk = (struct newblk *)aip;
8261	LIST_REMOVE(aip, ai_next);
8262	/*
8263	 * We must eliminate the pointer in bp if it must be freed on its
8264	 * own due to partial truncate or pending journal work.
8265	 */
8266	if (bp && (trunc || newblk->nb_jnewblk)) {
8267		/*
8268		 * Clear the pointer and mark the aip to be freed
8269		 * directly if it never existed on disk.
8270		 */
8271		aip->ai_state |= DELAYEDFREE;
8272		indirdep = aip->ai_indirdep;
8273		if (indirdep->ir_state & UFS1FMT)
8274			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8275		else
8276			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8277	}
8278	/*
8279	 * When truncating the previous pointer will be freed via
8280	 * savedbp.  Eliminate the freefrag which would dup free.
8281	 */
8282	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8283		newblk->nb_freefrag = NULL;
8284		if (freefrag->ff_jdep)
8285			cancel_jfreefrag(
8286			    WK_JFREEFRAG(freefrag->ff_jdep));
8287		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8288		WORKITEM_FREE(freefrag, D_FREEFRAG);
8289	}
8290	/*
8291	 * If the journal hasn't been written the jnewblk must be passed
8292	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8293	 * this by leaving the journal dependency on the newblk to be freed
8294	 * when a freework is created in handle_workitem_freeblocks().
8295	 */
8296	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8297	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8298}
8299
8300/*
8301 * Create the mkdir dependencies for . and .. in a new directory.  Link them
8302 * in to a newdirblk so any subsequent additions are tracked properly.  The
8303 * caller is responsible for adding the mkdir1 dependency to the journal
8304 * and updating id_mkdiradd.  This function returns with the per-filesystem
8305 * lock held.
8306 */
8307static struct mkdir *
8308setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8309	struct diradd *dap;
8310	ino_t newinum;
8311	ino_t dinum;
8312	struct buf *newdirbp;
8313	struct mkdir **mkdirp;
8314{
8315	struct newblk *newblk;
8316	struct pagedep *pagedep;
8317	struct inodedep *inodedep;
8318	struct newdirblk *newdirblk = 0;
8319	struct mkdir *mkdir1, *mkdir2;
8320	struct worklist *wk;
8321	struct jaddref *jaddref;
8322	struct ufsmount *ump;
8323	struct mount *mp;
8324
8325	mp = dap->da_list.wk_mp;
8326	ump = VFSTOUFS(mp);
8327	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8328	    M_SOFTDEP_FLAGS);
8329	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8330	LIST_INIT(&newdirblk->db_mkdir);
8331	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8332	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8333	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8334	mkdir1->md_diradd = dap;
8335	mkdir1->md_jaddref = NULL;
8336	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8337	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8338	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8339	mkdir2->md_diradd = dap;
8340	mkdir2->md_jaddref = NULL;
8341	if (MOUNTEDSUJ(mp) == 0) {
8342		mkdir1->md_state |= DEPCOMPLETE;
8343		mkdir2->md_state |= DEPCOMPLETE;
8344	}
8345	/*
8346	 * Dependency on "." and ".." being written to disk.
8347	 */
8348	mkdir1->md_buf = newdirbp;
8349	ACQUIRE_LOCK(VFSTOUFS(mp));
8350	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8351	/*
8352	 * We must link the pagedep, allocdirect, and newdirblk for
8353	 * the initial file page so the pointer to the new directory
8354	 * is not written until the directory contents are live and
8355	 * any subsequent additions are not marked live until the
8356	 * block is reachable via the inode.
8357	 */
8358	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8359		panic("setup_newdir: lost pagedep");
8360	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8361		if (wk->wk_type == D_ALLOCDIRECT)
8362			break;
8363	if (wk == NULL)
8364		panic("setup_newdir: lost allocdirect");
8365	if (pagedep->pd_state & NEWBLOCK)
8366		panic("setup_newdir: NEWBLOCK already set");
8367	newblk = WK_NEWBLK(wk);
8368	pagedep->pd_state |= NEWBLOCK;
8369	pagedep->pd_newdirblk = newdirblk;
8370	newdirblk->db_pagedep = pagedep;
8371	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8372	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8373	/*
8374	 * Look up the inodedep for the parent directory so that we
8375	 * can link mkdir2 into the pending dotdot jaddref or
8376	 * the inode write if there is none.  If the inode is
8377	 * ALLCOMPLETE and no jaddref is present all dependencies have
8378	 * been satisfied and mkdir2 can be freed.
8379	 */
8380	inodedep_lookup(mp, dinum, 0, &inodedep);
8381	if (MOUNTEDSUJ(mp)) {
8382		if (inodedep == NULL)
8383			panic("setup_newdir: Lost parent.");
8384		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8385		    inoreflst);
8386		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8387		    (jaddref->ja_state & MKDIR_PARENT),
8388		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8389		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8390		mkdir2->md_jaddref = jaddref;
8391		jaddref->ja_mkdir = mkdir2;
8392	} else if (inodedep == NULL ||
8393	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8394		dap->da_state &= ~MKDIR_PARENT;
8395		WORKITEM_FREE(mkdir2, D_MKDIR);
8396		mkdir2 = NULL;
8397	} else {
8398		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8399		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8400	}
8401	*mkdirp = mkdir2;
8402
8403	return (mkdir1);
8404}
8405
8406/*
8407 * Directory entry addition dependencies.
8408 *
8409 * When adding a new directory entry, the inode (with its incremented link
8410 * count) must be written to disk before the directory entry's pointer to it.
8411 * Also, if the inode is newly allocated, the corresponding freemap must be
8412 * updated (on disk) before the directory entry's pointer. These requirements
8413 * are met via undo/redo on the directory entry's pointer, which consists
8414 * simply of the inode number.
8415 *
8416 * As directory entries are added and deleted, the free space within a
8417 * directory block can become fragmented.  The ufs filesystem will compact
8418 * a fragmented directory block to make space for a new entry. When this
8419 * occurs, the offsets of previously added entries change. Any "diradd"
8420 * dependency structures corresponding to these entries must be updated with
8421 * the new offsets.
8422 */
8423
8424/*
8425 * This routine is called after the in-memory inode's link
8426 * count has been incremented, but before the directory entry's
8427 * pointer to the inode has been set.
8428 */
8429int
8430softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8431	struct buf *bp;		/* buffer containing directory block */
8432	struct inode *dp;	/* inode for directory */
8433	off_t diroffset;	/* offset of new entry in directory */
8434	ino_t newinum;		/* inode referenced by new directory entry */
8435	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8436	int isnewblk;		/* entry is in a newly allocated block */
8437{
8438	int offset;		/* offset of new entry within directory block */
8439	ufs_lbn_t lbn;		/* block in directory containing new entry */
8440	struct fs *fs;
8441	struct diradd *dap;
8442	struct newblk *newblk;
8443	struct pagedep *pagedep;
8444	struct inodedep *inodedep;
8445	struct newdirblk *newdirblk = 0;
8446	struct mkdir *mkdir1, *mkdir2;
8447	struct jaddref *jaddref;
8448	struct ufsmount *ump;
8449	struct mount *mp;
8450	int isindir;
8451
8452	ump = dp->i_ump;
8453	mp = UFSTOVFS(ump);
8454	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8455	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8456	/*
8457	 * Whiteouts have no dependencies.
8458	 */
8459	if (newinum == WINO) {
8460		if (newdirbp != NULL)
8461			bdwrite(newdirbp);
8462		return (0);
8463	}
8464	jaddref = NULL;
8465	mkdir1 = mkdir2 = NULL;
8466	fs = dp->i_fs;
8467	lbn = lblkno(fs, diroffset);
8468	offset = blkoff(fs, diroffset);
8469	dap = malloc(sizeof(struct diradd), M_DIRADD,
8470		M_SOFTDEP_FLAGS|M_ZERO);
8471	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8472	dap->da_offset = offset;
8473	dap->da_newinum = newinum;
8474	dap->da_state = ATTACHED;
8475	LIST_INIT(&dap->da_jwork);
8476	isindir = bp->b_lblkno >= NDADDR;
8477	if (isnewblk &&
8478	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8479		newdirblk = malloc(sizeof(struct newdirblk),
8480		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8481		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8482		LIST_INIT(&newdirblk->db_mkdir);
8483	}
8484	/*
8485	 * If we're creating a new directory setup the dependencies and set
8486	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8487	 * we can move on.
8488	 */
8489	if (newdirbp == NULL) {
8490		dap->da_state |= DEPCOMPLETE;
8491		ACQUIRE_LOCK(ump);
8492	} else {
8493		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8494		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8495		    &mkdir2);
8496	}
8497	/*
8498	 * Link into parent directory pagedep to await its being written.
8499	 */
8500	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8501#ifdef DEBUG
8502	if (diradd_lookup(pagedep, offset) != NULL)
8503		panic("softdep_setup_directory_add: %p already at off %d\n",
8504		    diradd_lookup(pagedep, offset), offset);
8505#endif
8506	dap->da_pagedep = pagedep;
8507	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8508	    da_pdlist);
8509	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8510	/*
8511	 * If we're journaling, link the diradd into the jaddref so it
8512	 * may be completed after the journal entry is written.  Otherwise,
8513	 * link the diradd into its inodedep.  If the inode is not yet
8514	 * written place it on the bufwait list, otherwise do the post-inode
8515	 * write processing to put it on the id_pendinghd list.
8516	 */
8517	if (MOUNTEDSUJ(mp)) {
8518		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8519		    inoreflst);
8520		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8521		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8522		jaddref->ja_diroff = diroffset;
8523		jaddref->ja_diradd = dap;
8524		add_to_journal(&jaddref->ja_list);
8525	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8526		diradd_inode_written(dap, inodedep);
8527	else
8528		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8529	/*
8530	 * Add the journal entries for . and .. links now that the primary
8531	 * link is written.
8532	 */
8533	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8534		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8535		    inoreflst, if_deps);
8536		KASSERT(jaddref != NULL &&
8537		    jaddref->ja_ino == jaddref->ja_parent &&
8538		    (jaddref->ja_state & MKDIR_BODY),
8539		    ("softdep_setup_directory_add: bad dot jaddref %p",
8540		    jaddref));
8541		mkdir1->md_jaddref = jaddref;
8542		jaddref->ja_mkdir = mkdir1;
8543		/*
8544		 * It is important that the dotdot journal entry
8545		 * is added prior to the dot entry since dot writes
8546		 * both the dot and dotdot links.  These both must
8547		 * be added after the primary link for the journal
8548		 * to remain consistent.
8549		 */
8550		add_to_journal(&mkdir2->md_jaddref->ja_list);
8551		add_to_journal(&jaddref->ja_list);
8552	}
8553	/*
8554	 * If we are adding a new directory remember this diradd so that if
8555	 * we rename it we can keep the dot and dotdot dependencies.  If
8556	 * we are adding a new name for an inode that has a mkdiradd we
8557	 * must be in rename and we have to move the dot and dotdot
8558	 * dependencies to this new name.  The old name is being orphaned
8559	 * soon.
8560	 */
8561	if (mkdir1 != NULL) {
8562		if (inodedep->id_mkdiradd != NULL)
8563			panic("softdep_setup_directory_add: Existing mkdir");
8564		inodedep->id_mkdiradd = dap;
8565	} else if (inodedep->id_mkdiradd)
8566		merge_diradd(inodedep, dap);
8567	if (newdirblk) {
8568		/*
8569		 * There is nothing to do if we are already tracking
8570		 * this block.
8571		 */
8572		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8573			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8574			FREE_LOCK(ump);
8575			return (0);
8576		}
8577		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8578		    == 0)
8579			panic("softdep_setup_directory_add: lost entry");
8580		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8581		pagedep->pd_state |= NEWBLOCK;
8582		pagedep->pd_newdirblk = newdirblk;
8583		newdirblk->db_pagedep = pagedep;
8584		FREE_LOCK(ump);
8585		/*
8586		 * If we extended into an indirect signal direnter to sync.
8587		 */
8588		if (isindir)
8589			return (1);
8590		return (0);
8591	}
8592	FREE_LOCK(ump);
8593	return (0);
8594}
8595
8596/*
8597 * This procedure is called to change the offset of a directory
8598 * entry when compacting a directory block which must be owned
8599 * exclusively by the caller. Note that the actual entry movement
8600 * must be done in this procedure to ensure that no I/O completions
8601 * occur while the move is in progress.
8602 */
8603void
8604softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8605	struct buf *bp;		/* Buffer holding directory block. */
8606	struct inode *dp;	/* inode for directory */
8607	caddr_t base;		/* address of dp->i_offset */
8608	caddr_t oldloc;		/* address of old directory location */
8609	caddr_t newloc;		/* address of new directory location */
8610	int entrysize;		/* size of directory entry */
8611{
8612	int offset, oldoffset, newoffset;
8613	struct pagedep *pagedep;
8614	struct jmvref *jmvref;
8615	struct diradd *dap;
8616	struct direct *de;
8617	struct mount *mp;
8618	ufs_lbn_t lbn;
8619	int flags;
8620
8621	mp = UFSTOVFS(dp->i_ump);
8622	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8623	    ("softdep_change_directoryentry_offset called on "
8624	     "non-softdep filesystem"));
8625	de = (struct direct *)oldloc;
8626	jmvref = NULL;
8627	flags = 0;
8628	/*
8629	 * Moves are always journaled as it would be too complex to
8630	 * determine if any affected adds or removes are present in the
8631	 * journal.
8632	 */
8633	if (MOUNTEDSUJ(mp)) {
8634		flags = DEPALLOC;
8635		jmvref = newjmvref(dp, de->d_ino,
8636		    dp->i_offset + (oldloc - base),
8637		    dp->i_offset + (newloc - base));
8638	}
8639	lbn = lblkno(dp->i_fs, dp->i_offset);
8640	offset = blkoff(dp->i_fs, dp->i_offset);
8641	oldoffset = offset + (oldloc - base);
8642	newoffset = offset + (newloc - base);
8643	ACQUIRE_LOCK(dp->i_ump);
8644	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8645		goto done;
8646	dap = diradd_lookup(pagedep, oldoffset);
8647	if (dap) {
8648		dap->da_offset = newoffset;
8649		newoffset = DIRADDHASH(newoffset);
8650		oldoffset = DIRADDHASH(oldoffset);
8651		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8652		    newoffset != oldoffset) {
8653			LIST_REMOVE(dap, da_pdlist);
8654			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8655			    dap, da_pdlist);
8656		}
8657	}
8658done:
8659	if (jmvref) {
8660		jmvref->jm_pagedep = pagedep;
8661		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8662		add_to_journal(&jmvref->jm_list);
8663	}
8664	bcopy(oldloc, newloc, entrysize);
8665	FREE_LOCK(dp->i_ump);
8666}
8667
8668/*
8669 * Move the mkdir dependencies and journal work from one diradd to another
8670 * when renaming a directory.  The new name must depend on the mkdir deps
8671 * completing as the old name did.  Directories can only have one valid link
8672 * at a time so one must be canonical.
8673 */
8674static void
8675merge_diradd(inodedep, newdap)
8676	struct inodedep *inodedep;
8677	struct diradd *newdap;
8678{
8679	struct diradd *olddap;
8680	struct mkdir *mkdir, *nextmd;
8681	struct ufsmount *ump;
8682	short state;
8683
8684	olddap = inodedep->id_mkdiradd;
8685	inodedep->id_mkdiradd = newdap;
8686	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8687		newdap->da_state &= ~DEPCOMPLETE;
8688		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8689		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8690		     mkdir = nextmd) {
8691			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8692			if (mkdir->md_diradd != olddap)
8693				continue;
8694			mkdir->md_diradd = newdap;
8695			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8696			newdap->da_state |= state;
8697			olddap->da_state &= ~state;
8698			if ((olddap->da_state &
8699			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8700				break;
8701		}
8702		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8703			panic("merge_diradd: unfound ref");
8704	}
8705	/*
8706	 * Any mkdir related journal items are not safe to be freed until
8707	 * the new name is stable.
8708	 */
8709	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8710	olddap->da_state |= DEPCOMPLETE;
8711	complete_diradd(olddap);
8712}
8713
8714/*
8715 * Move the diradd to the pending list when all diradd dependencies are
8716 * complete.
8717 */
8718static void
8719complete_diradd(dap)
8720	struct diradd *dap;
8721{
8722	struct pagedep *pagedep;
8723
8724	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8725		if (dap->da_state & DIRCHG)
8726			pagedep = dap->da_previous->dm_pagedep;
8727		else
8728			pagedep = dap->da_pagedep;
8729		LIST_REMOVE(dap, da_pdlist);
8730		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8731	}
8732}
8733
8734/*
8735 * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8736 * add entries and conditonally journal the remove.
8737 */
8738static void
8739cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8740	struct diradd *dap;
8741	struct dirrem *dirrem;
8742	struct jremref *jremref;
8743	struct jremref *dotremref;
8744	struct jremref *dotdotremref;
8745{
8746	struct inodedep *inodedep;
8747	struct jaddref *jaddref;
8748	struct inoref *inoref;
8749	struct ufsmount *ump;
8750	struct mkdir *mkdir;
8751
8752	/*
8753	 * If no remove references were allocated we're on a non-journaled
8754	 * filesystem and can skip the cancel step.
8755	 */
8756	if (jremref == NULL) {
8757		free_diradd(dap, NULL);
8758		return;
8759	}
8760	/*
8761	 * Cancel the primary name an free it if it does not require
8762	 * journaling.
8763	 */
8764	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8765	    0, &inodedep) != 0) {
8766		/* Abort the addref that reference this diradd.  */
8767		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8768			if (inoref->if_list.wk_type != D_JADDREF)
8769				continue;
8770			jaddref = (struct jaddref *)inoref;
8771			if (jaddref->ja_diradd != dap)
8772				continue;
8773			if (cancel_jaddref(jaddref, inodedep,
8774			    &dirrem->dm_jwork) == 0) {
8775				free_jremref(jremref);
8776				jremref = NULL;
8777			}
8778			break;
8779		}
8780	}
8781	/*
8782	 * Cancel subordinate names and free them if they do not require
8783	 * journaling.
8784	 */
8785	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8786		ump = VFSTOUFS(dap->da_list.wk_mp);
8787		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8788			if (mkdir->md_diradd != dap)
8789				continue;
8790			if ((jaddref = mkdir->md_jaddref) == NULL)
8791				continue;
8792			mkdir->md_jaddref = NULL;
8793			if (mkdir->md_state & MKDIR_PARENT) {
8794				if (cancel_jaddref(jaddref, NULL,
8795				    &dirrem->dm_jwork) == 0) {
8796					free_jremref(dotdotremref);
8797					dotdotremref = NULL;
8798				}
8799			} else {
8800				if (cancel_jaddref(jaddref, inodedep,
8801				    &dirrem->dm_jwork) == 0) {
8802					free_jremref(dotremref);
8803					dotremref = NULL;
8804				}
8805			}
8806		}
8807	}
8808
8809	if (jremref)
8810		journal_jremref(dirrem, jremref, inodedep);
8811	if (dotremref)
8812		journal_jremref(dirrem, dotremref, inodedep);
8813	if (dotdotremref)
8814		journal_jremref(dirrem, dotdotremref, NULL);
8815	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8816	free_diradd(dap, &dirrem->dm_jwork);
8817}
8818
8819/*
8820 * Free a diradd dependency structure. This routine must be called
8821 * with splbio interrupts blocked.
8822 */
8823static void
8824free_diradd(dap, wkhd)
8825	struct diradd *dap;
8826	struct workhead *wkhd;
8827{
8828	struct dirrem *dirrem;
8829	struct pagedep *pagedep;
8830	struct inodedep *inodedep;
8831	struct mkdir *mkdir, *nextmd;
8832	struct ufsmount *ump;
8833
8834	ump = VFSTOUFS(dap->da_list.wk_mp);
8835	LOCK_OWNED(ump);
8836	LIST_REMOVE(dap, da_pdlist);
8837	if (dap->da_state & ONWORKLIST)
8838		WORKLIST_REMOVE(&dap->da_list);
8839	if ((dap->da_state & DIRCHG) == 0) {
8840		pagedep = dap->da_pagedep;
8841	} else {
8842		dirrem = dap->da_previous;
8843		pagedep = dirrem->dm_pagedep;
8844		dirrem->dm_dirinum = pagedep->pd_ino;
8845		dirrem->dm_state |= COMPLETE;
8846		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8847			add_to_worklist(&dirrem->dm_list, 0);
8848	}
8849	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8850	    0, &inodedep) != 0)
8851		if (inodedep->id_mkdiradd == dap)
8852			inodedep->id_mkdiradd = NULL;
8853	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8854		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8855		     mkdir = nextmd) {
8856			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8857			if (mkdir->md_diradd != dap)
8858				continue;
8859			dap->da_state &=
8860			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8861			LIST_REMOVE(mkdir, md_mkdirs);
8862			if (mkdir->md_state & ONWORKLIST)
8863				WORKLIST_REMOVE(&mkdir->md_list);
8864			if (mkdir->md_jaddref != NULL)
8865				panic("free_diradd: Unexpected jaddref");
8866			WORKITEM_FREE(mkdir, D_MKDIR);
8867			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8868				break;
8869		}
8870		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8871			panic("free_diradd: unfound ref");
8872	}
8873	if (inodedep)
8874		free_inodedep(inodedep);
8875	/*
8876	 * Free any journal segments waiting for the directory write.
8877	 */
8878	handle_jwork(&dap->da_jwork);
8879	WORKITEM_FREE(dap, D_DIRADD);
8880}
8881
8882/*
8883 * Directory entry removal dependencies.
8884 *
8885 * When removing a directory entry, the entry's inode pointer must be
8886 * zero'ed on disk before the corresponding inode's link count is decremented
8887 * (possibly freeing the inode for re-use). This dependency is handled by
8888 * updating the directory entry but delaying the inode count reduction until
8889 * after the directory block has been written to disk. After this point, the
8890 * inode count can be decremented whenever it is convenient.
8891 */
8892
8893/*
8894 * This routine should be called immediately after removing
8895 * a directory entry.  The inode's link count should not be
8896 * decremented by the calling procedure -- the soft updates
8897 * code will do this task when it is safe.
8898 */
8899void
8900softdep_setup_remove(bp, dp, ip, isrmdir)
8901	struct buf *bp;		/* buffer containing directory block */
8902	struct inode *dp;	/* inode for the directory being modified */
8903	struct inode *ip;	/* inode for directory entry being removed */
8904	int isrmdir;		/* indicates if doing RMDIR */
8905{
8906	struct dirrem *dirrem, *prevdirrem;
8907	struct inodedep *inodedep;
8908	int direct;
8909
8910	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
8911	    ("softdep_setup_remove called on non-softdep filesystem"));
8912	/*
8913	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8914	 * newdirrem() to setup the full directory remove which requires
8915	 * isrmdir > 1.
8916	 */
8917	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8918	/*
8919	 * Add the dirrem to the inodedep's pending remove list for quick
8920	 * discovery later.
8921	 */
8922	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8923	    &inodedep) == 0)
8924		panic("softdep_setup_remove: Lost inodedep.");
8925	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8926	dirrem->dm_state |= ONDEPLIST;
8927	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8928
8929	/*
8930	 * If the COMPLETE flag is clear, then there were no active
8931	 * entries and we want to roll back to a zeroed entry until
8932	 * the new inode is committed to disk. If the COMPLETE flag is
8933	 * set then we have deleted an entry that never made it to
8934	 * disk. If the entry we deleted resulted from a name change,
8935	 * then the old name still resides on disk. We cannot delete
8936	 * its inode (returned to us in prevdirrem) until the zeroed
8937	 * directory entry gets to disk. The new inode has never been
8938	 * referenced on the disk, so can be deleted immediately.
8939	 */
8940	if ((dirrem->dm_state & COMPLETE) == 0) {
8941		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8942		    dm_next);
8943		FREE_LOCK(ip->i_ump);
8944	} else {
8945		if (prevdirrem != NULL)
8946			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8947			    prevdirrem, dm_next);
8948		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8949		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8950		FREE_LOCK(ip->i_ump);
8951		if (direct)
8952			handle_workitem_remove(dirrem, 0);
8953	}
8954}
8955
8956/*
8957 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8958 * pd_pendinghd list of a pagedep.
8959 */
8960static struct diradd *
8961diradd_lookup(pagedep, offset)
8962	struct pagedep *pagedep;
8963	int offset;
8964{
8965	struct diradd *dap;
8966
8967	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8968		if (dap->da_offset == offset)
8969			return (dap);
8970	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8971		if (dap->da_offset == offset)
8972			return (dap);
8973	return (NULL);
8974}
8975
8976/*
8977 * Search for a .. diradd dependency in a directory that is being removed.
8978 * If the directory was renamed to a new parent we have a diradd rather
8979 * than a mkdir for the .. entry.  We need to cancel it now before
8980 * it is found in truncate().
8981 */
8982static struct jremref *
8983cancel_diradd_dotdot(ip, dirrem, jremref)
8984	struct inode *ip;
8985	struct dirrem *dirrem;
8986	struct jremref *jremref;
8987{
8988	struct pagedep *pagedep;
8989	struct diradd *dap;
8990	struct worklist *wk;
8991
8992	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8993	    &pagedep) == 0)
8994		return (jremref);
8995	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8996	if (dap == NULL)
8997		return (jremref);
8998	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8999	/*
9000	 * Mark any journal work as belonging to the parent so it is freed
9001	 * with the .. reference.
9002	 */
9003	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9004		wk->wk_state |= MKDIR_PARENT;
9005	return (NULL);
9006}
9007
9008/*
9009 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9010 * replace it with a dirrem/diradd pair as a result of re-parenting a
9011 * directory.  This ensures that we don't simultaneously have a mkdir and
9012 * a diradd for the same .. entry.
9013 */
9014static struct jremref *
9015cancel_mkdir_dotdot(ip, dirrem, jremref)
9016	struct inode *ip;
9017	struct dirrem *dirrem;
9018	struct jremref *jremref;
9019{
9020	struct inodedep *inodedep;
9021	struct jaddref *jaddref;
9022	struct ufsmount *ump;
9023	struct mkdir *mkdir;
9024	struct diradd *dap;
9025
9026	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
9027	    &inodedep) == 0)
9028		return (jremref);
9029	dap = inodedep->id_mkdiradd;
9030	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9031		return (jremref);
9032	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9033	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9034	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9035		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9036			break;
9037	if (mkdir == NULL)
9038		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9039	if ((jaddref = mkdir->md_jaddref) != NULL) {
9040		mkdir->md_jaddref = NULL;
9041		jaddref->ja_state &= ~MKDIR_PARENT;
9042		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
9043		    &inodedep) == 0)
9044			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9045		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9046			journal_jremref(dirrem, jremref, inodedep);
9047			jremref = NULL;
9048		}
9049	}
9050	if (mkdir->md_state & ONWORKLIST)
9051		WORKLIST_REMOVE(&mkdir->md_list);
9052	mkdir->md_state |= ALLCOMPLETE;
9053	complete_mkdir(mkdir);
9054	return (jremref);
9055}
9056
9057static void
9058journal_jremref(dirrem, jremref, inodedep)
9059	struct dirrem *dirrem;
9060	struct jremref *jremref;
9061	struct inodedep *inodedep;
9062{
9063
9064	if (inodedep == NULL)
9065		if (inodedep_lookup(jremref->jr_list.wk_mp,
9066		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9067			panic("journal_jremref: Lost inodedep");
9068	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9069	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9070	add_to_journal(&jremref->jr_list);
9071}
9072
9073static void
9074dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9075	struct dirrem *dirrem;
9076	struct jremref *jremref;
9077	struct jremref *dotremref;
9078	struct jremref *dotdotremref;
9079{
9080	struct inodedep *inodedep;
9081
9082
9083	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9084	    &inodedep) == 0)
9085		panic("dirrem_journal: Lost inodedep");
9086	journal_jremref(dirrem, jremref, inodedep);
9087	if (dotremref)
9088		journal_jremref(dirrem, dotremref, inodedep);
9089	if (dotdotremref)
9090		journal_jremref(dirrem, dotdotremref, NULL);
9091}
9092
9093/*
9094 * Allocate a new dirrem if appropriate and return it along with
9095 * its associated pagedep. Called without a lock, returns with lock.
9096 */
9097static struct dirrem *
9098newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9099	struct buf *bp;		/* buffer containing directory block */
9100	struct inode *dp;	/* inode for the directory being modified */
9101	struct inode *ip;	/* inode for directory entry being removed */
9102	int isrmdir;		/* indicates if doing RMDIR */
9103	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9104{
9105	int offset;
9106	ufs_lbn_t lbn;
9107	struct diradd *dap;
9108	struct dirrem *dirrem;
9109	struct pagedep *pagedep;
9110	struct jremref *jremref;
9111	struct jremref *dotremref;
9112	struct jremref *dotdotremref;
9113	struct vnode *dvp;
9114
9115	/*
9116	 * Whiteouts have no deletion dependencies.
9117	 */
9118	if (ip == NULL)
9119		panic("newdirrem: whiteout");
9120	dvp = ITOV(dp);
9121	/*
9122	 * If the system is over its limit and our filesystem is
9123	 * responsible for more than our share of that usage and
9124	 * we are not a snapshot, request some inodedep cleanup.
9125	 * Limiting the number of dirrem structures will also limit
9126	 * the number of freefile and freeblks structures.
9127	 */
9128	ACQUIRE_LOCK(ip->i_ump);
9129	while (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2 &&
9130	    ip->i_ump->softdep_curdeps[D_DIRREM] >
9131	    (max_softdeps / 2) / stat_flush_threads)
9132		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
9133	FREE_LOCK(ip->i_ump);
9134	dirrem = malloc(sizeof(struct dirrem),
9135		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
9136	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9137	LIST_INIT(&dirrem->dm_jremrefhd);
9138	LIST_INIT(&dirrem->dm_jwork);
9139	dirrem->dm_state = isrmdir ? RMDIR : 0;
9140	dirrem->dm_oldinum = ip->i_number;
9141	*prevdirremp = NULL;
9142	/*
9143	 * Allocate remove reference structures to track journal write
9144	 * dependencies.  We will always have one for the link and
9145	 * when doing directories we will always have one more for dot.
9146	 * When renaming a directory we skip the dotdot link change so
9147	 * this is not needed.
9148	 */
9149	jremref = dotremref = dotdotremref = NULL;
9150	if (DOINGSUJ(dvp)) {
9151		if (isrmdir) {
9152			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9153			    ip->i_effnlink + 2);
9154			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9155			    ip->i_effnlink + 1);
9156			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9157			    dp->i_effnlink + 1);
9158			dotdotremref->jr_state |= MKDIR_PARENT;
9159		} else
9160			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9161			    ip->i_effnlink + 1);
9162	}
9163	ACQUIRE_LOCK(ip->i_ump);
9164	lbn = lblkno(dp->i_fs, dp->i_offset);
9165	offset = blkoff(dp->i_fs, dp->i_offset);
9166	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
9167	    &pagedep);
9168	dirrem->dm_pagedep = pagedep;
9169	dirrem->dm_offset = offset;
9170	/*
9171	 * If we're renaming a .. link to a new directory, cancel any
9172	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9173	 * the jremref is preserved for any potential diradd in this
9174	 * location.  This can not coincide with a rmdir.
9175	 */
9176	if (dp->i_offset == DOTDOT_OFFSET) {
9177		if (isrmdir)
9178			panic("newdirrem: .. directory change during remove?");
9179		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9180	}
9181	/*
9182	 * If we're removing a directory search for the .. dependency now and
9183	 * cancel it.  Any pending journal work will be added to the dirrem
9184	 * to be completed when the workitem remove completes.
9185	 */
9186	if (isrmdir)
9187		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9188	/*
9189	 * Check for a diradd dependency for the same directory entry.
9190	 * If present, then both dependencies become obsolete and can
9191	 * be de-allocated.
9192	 */
9193	dap = diradd_lookup(pagedep, offset);
9194	if (dap == NULL) {
9195		/*
9196		 * Link the jremref structures into the dirrem so they are
9197		 * written prior to the pagedep.
9198		 */
9199		if (jremref)
9200			dirrem_journal(dirrem, jremref, dotremref,
9201			    dotdotremref);
9202		return (dirrem);
9203	}
9204	/*
9205	 * Must be ATTACHED at this point.
9206	 */
9207	if ((dap->da_state & ATTACHED) == 0)
9208		panic("newdirrem: not ATTACHED");
9209	if (dap->da_newinum != ip->i_number)
9210		panic("newdirrem: inum %ju should be %ju",
9211		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9212	/*
9213	 * If we are deleting a changed name that never made it to disk,
9214	 * then return the dirrem describing the previous inode (which
9215	 * represents the inode currently referenced from this entry on disk).
9216	 */
9217	if ((dap->da_state & DIRCHG) != 0) {
9218		*prevdirremp = dap->da_previous;
9219		dap->da_state &= ~DIRCHG;
9220		dap->da_pagedep = pagedep;
9221	}
9222	/*
9223	 * We are deleting an entry that never made it to disk.
9224	 * Mark it COMPLETE so we can delete its inode immediately.
9225	 */
9226	dirrem->dm_state |= COMPLETE;
9227	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9228#ifdef SUJ_DEBUG
9229	if (isrmdir == 0) {
9230		struct worklist *wk;
9231
9232		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9233			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9234				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9235	}
9236#endif
9237
9238	return (dirrem);
9239}
9240
9241/*
9242 * Directory entry change dependencies.
9243 *
9244 * Changing an existing directory entry requires that an add operation
9245 * be completed first followed by a deletion. The semantics for the addition
9246 * are identical to the description of adding a new entry above except
9247 * that the rollback is to the old inode number rather than zero. Once
9248 * the addition dependency is completed, the removal is done as described
9249 * in the removal routine above.
9250 */
9251
9252/*
9253 * This routine should be called immediately after changing
9254 * a directory entry.  The inode's link count should not be
9255 * decremented by the calling procedure -- the soft updates
9256 * code will perform this task when it is safe.
9257 */
9258void
9259softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9260	struct buf *bp;		/* buffer containing directory block */
9261	struct inode *dp;	/* inode for the directory being modified */
9262	struct inode *ip;	/* inode for directory entry being removed */
9263	ino_t newinum;		/* new inode number for changed entry */
9264	int isrmdir;		/* indicates if doing RMDIR */
9265{
9266	int offset;
9267	struct diradd *dap = NULL;
9268	struct dirrem *dirrem, *prevdirrem;
9269	struct pagedep *pagedep;
9270	struct inodedep *inodedep;
9271	struct jaddref *jaddref;
9272	struct mount *mp;
9273
9274	offset = blkoff(dp->i_fs, dp->i_offset);
9275	mp = UFSTOVFS(dp->i_ump);
9276	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9277	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9278
9279	/*
9280	 * Whiteouts do not need diradd dependencies.
9281	 */
9282	if (newinum != WINO) {
9283		dap = malloc(sizeof(struct diradd),
9284		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9285		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9286		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9287		dap->da_offset = offset;
9288		dap->da_newinum = newinum;
9289		LIST_INIT(&dap->da_jwork);
9290	}
9291
9292	/*
9293	 * Allocate a new dirrem and ACQUIRE_LOCK.
9294	 */
9295	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9296	pagedep = dirrem->dm_pagedep;
9297	/*
9298	 * The possible values for isrmdir:
9299	 *	0 - non-directory file rename
9300	 *	1 - directory rename within same directory
9301	 *   inum - directory rename to new directory of given inode number
9302	 * When renaming to a new directory, we are both deleting and
9303	 * creating a new directory entry, so the link count on the new
9304	 * directory should not change. Thus we do not need the followup
9305	 * dirrem which is usually done in handle_workitem_remove. We set
9306	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9307	 * followup dirrem.
9308	 */
9309	if (isrmdir > 1)
9310		dirrem->dm_state |= DIRCHG;
9311
9312	/*
9313	 * Whiteouts have no additional dependencies,
9314	 * so just put the dirrem on the correct list.
9315	 */
9316	if (newinum == WINO) {
9317		if ((dirrem->dm_state & COMPLETE) == 0) {
9318			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9319			    dm_next);
9320		} else {
9321			dirrem->dm_dirinum = pagedep->pd_ino;
9322			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9323				add_to_worklist(&dirrem->dm_list, 0);
9324		}
9325		FREE_LOCK(dp->i_ump);
9326		return;
9327	}
9328	/*
9329	 * Add the dirrem to the inodedep's pending remove list for quick
9330	 * discovery later.  A valid nlinkdelta ensures that this lookup
9331	 * will not fail.
9332	 */
9333	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9334		panic("softdep_setup_directory_change: Lost inodedep.");
9335	dirrem->dm_state |= ONDEPLIST;
9336	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9337
9338	/*
9339	 * If the COMPLETE flag is clear, then there were no active
9340	 * entries and we want to roll back to the previous inode until
9341	 * the new inode is committed to disk. If the COMPLETE flag is
9342	 * set, then we have deleted an entry that never made it to disk.
9343	 * If the entry we deleted resulted from a name change, then the old
9344	 * inode reference still resides on disk. Any rollback that we do
9345	 * needs to be to that old inode (returned to us in prevdirrem). If
9346	 * the entry we deleted resulted from a create, then there is
9347	 * no entry on the disk, so we want to roll back to zero rather
9348	 * than the uncommitted inode. In either of the COMPLETE cases we
9349	 * want to immediately free the unwritten and unreferenced inode.
9350	 */
9351	if ((dirrem->dm_state & COMPLETE) == 0) {
9352		dap->da_previous = dirrem;
9353	} else {
9354		if (prevdirrem != NULL) {
9355			dap->da_previous = prevdirrem;
9356		} else {
9357			dap->da_state &= ~DIRCHG;
9358			dap->da_pagedep = pagedep;
9359		}
9360		dirrem->dm_dirinum = pagedep->pd_ino;
9361		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9362			add_to_worklist(&dirrem->dm_list, 0);
9363	}
9364	/*
9365	 * Lookup the jaddref for this journal entry.  We must finish
9366	 * initializing it and make the diradd write dependent on it.
9367	 * If we're not journaling, put it on the id_bufwait list if the
9368	 * inode is not yet written. If it is written, do the post-inode
9369	 * write processing to put it on the id_pendinghd list.
9370	 */
9371	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9372	if (MOUNTEDSUJ(mp)) {
9373		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9374		    inoreflst);
9375		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9376		    ("softdep_setup_directory_change: bad jaddref %p",
9377		    jaddref));
9378		jaddref->ja_diroff = dp->i_offset;
9379		jaddref->ja_diradd = dap;
9380		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9381		    dap, da_pdlist);
9382		add_to_journal(&jaddref->ja_list);
9383	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9384		dap->da_state |= COMPLETE;
9385		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9386		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9387	} else {
9388		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9389		    dap, da_pdlist);
9390		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9391	}
9392	/*
9393	 * If we're making a new name for a directory that has not been
9394	 * committed when need to move the dot and dotdot references to
9395	 * this new name.
9396	 */
9397	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9398		merge_diradd(inodedep, dap);
9399	FREE_LOCK(dp->i_ump);
9400}
9401
9402/*
9403 * Called whenever the link count on an inode is changed.
9404 * It creates an inode dependency so that the new reference(s)
9405 * to the inode cannot be committed to disk until the updated
9406 * inode has been written.
9407 */
9408void
9409softdep_change_linkcnt(ip)
9410	struct inode *ip;	/* the inode with the increased link count */
9411{
9412	struct inodedep *inodedep;
9413	int dflags;
9414
9415	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
9416	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9417	ACQUIRE_LOCK(ip->i_ump);
9418	dflags = DEPALLOC;
9419	if (IS_SNAPSHOT(ip))
9420		dflags |= NODELAY;
9421	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9422	if (ip->i_nlink < ip->i_effnlink)
9423		panic("softdep_change_linkcnt: bad delta");
9424	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9425	FREE_LOCK(ip->i_ump);
9426}
9427
9428/*
9429 * Attach a sbdep dependency to the superblock buf so that we can keep
9430 * track of the head of the linked list of referenced but unlinked inodes.
9431 */
9432void
9433softdep_setup_sbupdate(ump, fs, bp)
9434	struct ufsmount *ump;
9435	struct fs *fs;
9436	struct buf *bp;
9437{
9438	struct sbdep *sbdep;
9439	struct worklist *wk;
9440
9441	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9442	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9443	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9444		if (wk->wk_type == D_SBDEP)
9445			break;
9446	if (wk != NULL)
9447		return;
9448	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9449	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9450	sbdep->sb_fs = fs;
9451	sbdep->sb_ump = ump;
9452	ACQUIRE_LOCK(ump);
9453	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9454	FREE_LOCK(ump);
9455}
9456
9457/*
9458 * Return the first unlinked inodedep which is ready to be the head of the
9459 * list.  The inodedep and all those after it must have valid next pointers.
9460 */
9461static struct inodedep *
9462first_unlinked_inodedep(ump)
9463	struct ufsmount *ump;
9464{
9465	struct inodedep *inodedep;
9466	struct inodedep *idp;
9467
9468	LOCK_OWNED(ump);
9469	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9470	    inodedep; inodedep = idp) {
9471		if ((inodedep->id_state & UNLINKNEXT) == 0)
9472			return (NULL);
9473		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9474		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9475			break;
9476		if ((inodedep->id_state & UNLINKPREV) == 0)
9477			break;
9478	}
9479	return (inodedep);
9480}
9481
9482/*
9483 * Set the sujfree unlinked head pointer prior to writing a superblock.
9484 */
9485static void
9486initiate_write_sbdep(sbdep)
9487	struct sbdep *sbdep;
9488{
9489	struct inodedep *inodedep;
9490	struct fs *bpfs;
9491	struct fs *fs;
9492
9493	bpfs = sbdep->sb_fs;
9494	fs = sbdep->sb_ump->um_fs;
9495	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9496	if (inodedep) {
9497		fs->fs_sujfree = inodedep->id_ino;
9498		inodedep->id_state |= UNLINKPREV;
9499	} else
9500		fs->fs_sujfree = 0;
9501	bpfs->fs_sujfree = fs->fs_sujfree;
9502}
9503
9504/*
9505 * After a superblock is written determine whether it must be written again
9506 * due to a changing unlinked list head.
9507 */
9508static int
9509handle_written_sbdep(sbdep, bp)
9510	struct sbdep *sbdep;
9511	struct buf *bp;
9512{
9513	struct inodedep *inodedep;
9514	struct mount *mp;
9515	struct fs *fs;
9516
9517	LOCK_OWNED(sbdep->sb_ump);
9518	fs = sbdep->sb_fs;
9519	mp = UFSTOVFS(sbdep->sb_ump);
9520	/*
9521	 * If the superblock doesn't match the in-memory list start over.
9522	 */
9523	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9524	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9525	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9526		bdirty(bp);
9527		return (1);
9528	}
9529	WORKITEM_FREE(sbdep, D_SBDEP);
9530	if (fs->fs_sujfree == 0)
9531		return (0);
9532	/*
9533	 * Now that we have a record of this inode in stable store allow it
9534	 * to be written to free up pending work.  Inodes may see a lot of
9535	 * write activity after they are unlinked which we must not hold up.
9536	 */
9537	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9538		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9539			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9540			    inodedep, inodedep->id_state);
9541		if (inodedep->id_state & UNLINKONLIST)
9542			break;
9543		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9544	}
9545
9546	return (0);
9547}
9548
9549/*
9550 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9551 */
9552static void
9553unlinked_inodedep(mp, inodedep)
9554	struct mount *mp;
9555	struct inodedep *inodedep;
9556{
9557	struct ufsmount *ump;
9558
9559	ump = VFSTOUFS(mp);
9560	LOCK_OWNED(ump);
9561	if (MOUNTEDSUJ(mp) == 0)
9562		return;
9563	ump->um_fs->fs_fmod = 1;
9564	if (inodedep->id_state & UNLINKED)
9565		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9566	inodedep->id_state |= UNLINKED;
9567	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9568}
9569
9570/*
9571 * Remove an inodedep from the unlinked inodedep list.  This may require
9572 * disk writes if the inode has made it that far.
9573 */
9574static void
9575clear_unlinked_inodedep(inodedep)
9576	struct inodedep *inodedep;
9577{
9578	struct ufsmount *ump;
9579	struct inodedep *idp;
9580	struct inodedep *idn;
9581	struct fs *fs;
9582	struct buf *bp;
9583	ino_t ino;
9584	ino_t nino;
9585	ino_t pino;
9586	int error;
9587
9588	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9589	fs = ump->um_fs;
9590	ino = inodedep->id_ino;
9591	error = 0;
9592	for (;;) {
9593		LOCK_OWNED(ump);
9594		KASSERT((inodedep->id_state & UNLINKED) != 0,
9595		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9596		    inodedep));
9597		/*
9598		 * If nothing has yet been written simply remove us from
9599		 * the in memory list and return.  This is the most common
9600		 * case where handle_workitem_remove() loses the final
9601		 * reference.
9602		 */
9603		if ((inodedep->id_state & UNLINKLINKS) == 0)
9604			break;
9605		/*
9606		 * If we have a NEXT pointer and no PREV pointer we can simply
9607		 * clear NEXT's PREV and remove ourselves from the list.  Be
9608		 * careful not to clear PREV if the superblock points at
9609		 * next as well.
9610		 */
9611		idn = TAILQ_NEXT(inodedep, id_unlinked);
9612		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9613			if (idn && fs->fs_sujfree != idn->id_ino)
9614				idn->id_state &= ~UNLINKPREV;
9615			break;
9616		}
9617		/*
9618		 * Here we have an inodedep which is actually linked into
9619		 * the list.  We must remove it by forcing a write to the
9620		 * link before us, whether it be the superblock or an inode.
9621		 * Unfortunately the list may change while we're waiting
9622		 * on the buf lock for either resource so we must loop until
9623		 * we lock the right one.  If both the superblock and an
9624		 * inode point to this inode we must clear the inode first
9625		 * followed by the superblock.
9626		 */
9627		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9628		pino = 0;
9629		if (idp && (idp->id_state & UNLINKNEXT))
9630			pino = idp->id_ino;
9631		FREE_LOCK(ump);
9632		if (pino == 0) {
9633			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9634			    (int)fs->fs_sbsize, 0, 0, 0);
9635		} else {
9636			error = bread(ump->um_devvp,
9637			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9638			    (int)fs->fs_bsize, NOCRED, &bp);
9639			if (error)
9640				brelse(bp);
9641		}
9642		ACQUIRE_LOCK(ump);
9643		if (error)
9644			break;
9645		/* If the list has changed restart the loop. */
9646		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9647		nino = 0;
9648		if (idp && (idp->id_state & UNLINKNEXT))
9649			nino = idp->id_ino;
9650		if (nino != pino ||
9651		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9652			FREE_LOCK(ump);
9653			brelse(bp);
9654			ACQUIRE_LOCK(ump);
9655			continue;
9656		}
9657		nino = 0;
9658		idn = TAILQ_NEXT(inodedep, id_unlinked);
9659		if (idn)
9660			nino = idn->id_ino;
9661		/*
9662		 * Remove us from the in memory list.  After this we cannot
9663		 * access the inodedep.
9664		 */
9665		KASSERT((inodedep->id_state & UNLINKED) != 0,
9666		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9667		    inodedep));
9668		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9669		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9670		FREE_LOCK(ump);
9671		/*
9672		 * The predecessor's next pointer is manually updated here
9673		 * so that the NEXT flag is never cleared for an element
9674		 * that is in the list.
9675		 */
9676		if (pino == 0) {
9677			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9678			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9679			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9680			    bp);
9681		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9682			((struct ufs1_dinode *)bp->b_data +
9683			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9684		else
9685			((struct ufs2_dinode *)bp->b_data +
9686			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9687		/*
9688		 * If the bwrite fails we have no recourse to recover.  The
9689		 * filesystem is corrupted already.
9690		 */
9691		bwrite(bp);
9692		ACQUIRE_LOCK(ump);
9693		/*
9694		 * If the superblock pointer still needs to be cleared force
9695		 * a write here.
9696		 */
9697		if (fs->fs_sujfree == ino) {
9698			FREE_LOCK(ump);
9699			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9700			    (int)fs->fs_sbsize, 0, 0, 0);
9701			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9702			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9703			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9704			    bp);
9705			bwrite(bp);
9706			ACQUIRE_LOCK(ump);
9707		}
9708
9709		if (fs->fs_sujfree != ino)
9710			return;
9711		panic("clear_unlinked_inodedep: Failed to clear free head");
9712	}
9713	if (inodedep->id_ino == fs->fs_sujfree)
9714		panic("clear_unlinked_inodedep: Freeing head of free list");
9715	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9716	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9717	return;
9718}
9719
9720/*
9721 * This workitem decrements the inode's link count.
9722 * If the link count reaches zero, the file is removed.
9723 */
9724static int
9725handle_workitem_remove(dirrem, flags)
9726	struct dirrem *dirrem;
9727	int flags;
9728{
9729	struct inodedep *inodedep;
9730	struct workhead dotdotwk;
9731	struct worklist *wk;
9732	struct ufsmount *ump;
9733	struct mount *mp;
9734	struct vnode *vp;
9735	struct inode *ip;
9736	ino_t oldinum;
9737
9738	if (dirrem->dm_state & ONWORKLIST)
9739		panic("handle_workitem_remove: dirrem %p still on worklist",
9740		    dirrem);
9741	oldinum = dirrem->dm_oldinum;
9742	mp = dirrem->dm_list.wk_mp;
9743	ump = VFSTOUFS(mp);
9744	flags |= LK_EXCLUSIVE;
9745	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9746		return (EBUSY);
9747	ip = VTOI(vp);
9748	ACQUIRE_LOCK(ump);
9749	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9750		panic("handle_workitem_remove: lost inodedep");
9751	if (dirrem->dm_state & ONDEPLIST)
9752		LIST_REMOVE(dirrem, dm_inonext);
9753	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9754	    ("handle_workitem_remove:  Journal entries not written."));
9755
9756	/*
9757	 * Move all dependencies waiting on the remove to complete
9758	 * from the dirrem to the inode inowait list to be completed
9759	 * after the inode has been updated and written to disk.  Any
9760	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9761	 * is removed.
9762	 */
9763	LIST_INIT(&dotdotwk);
9764	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9765		WORKLIST_REMOVE(wk);
9766		if (wk->wk_state & MKDIR_PARENT) {
9767			wk->wk_state &= ~MKDIR_PARENT;
9768			WORKLIST_INSERT(&dotdotwk, wk);
9769			continue;
9770		}
9771		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9772	}
9773	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9774	/*
9775	 * Normal file deletion.
9776	 */
9777	if ((dirrem->dm_state & RMDIR) == 0) {
9778		ip->i_nlink--;
9779		DIP_SET(ip, i_nlink, ip->i_nlink);
9780		ip->i_flag |= IN_CHANGE;
9781		if (ip->i_nlink < ip->i_effnlink)
9782			panic("handle_workitem_remove: bad file delta");
9783		if (ip->i_nlink == 0)
9784			unlinked_inodedep(mp, inodedep);
9785		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9786		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9787		    ("handle_workitem_remove: worklist not empty. %s",
9788		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9789		WORKITEM_FREE(dirrem, D_DIRREM);
9790		FREE_LOCK(ump);
9791		goto out;
9792	}
9793	/*
9794	 * Directory deletion. Decrement reference count for both the
9795	 * just deleted parent directory entry and the reference for ".".
9796	 * Arrange to have the reference count on the parent decremented
9797	 * to account for the loss of "..".
9798	 */
9799	ip->i_nlink -= 2;
9800	DIP_SET(ip, i_nlink, ip->i_nlink);
9801	ip->i_flag |= IN_CHANGE;
9802	if (ip->i_nlink < ip->i_effnlink)
9803		panic("handle_workitem_remove: bad dir delta");
9804	if (ip->i_nlink == 0)
9805		unlinked_inodedep(mp, inodedep);
9806	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9807	/*
9808	 * Rename a directory to a new parent. Since, we are both deleting
9809	 * and creating a new directory entry, the link count on the new
9810	 * directory should not change. Thus we skip the followup dirrem.
9811	 */
9812	if (dirrem->dm_state & DIRCHG) {
9813		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9814		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9815		WORKITEM_FREE(dirrem, D_DIRREM);
9816		FREE_LOCK(ump);
9817		goto out;
9818	}
9819	dirrem->dm_state = ONDEPLIST;
9820	dirrem->dm_oldinum = dirrem->dm_dirinum;
9821	/*
9822	 * Place the dirrem on the parent's diremhd list.
9823	 */
9824	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9825		panic("handle_workitem_remove: lost dir inodedep");
9826	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9827	/*
9828	 * If the allocated inode has never been written to disk, then
9829	 * the on-disk inode is zero'ed and we can remove the file
9830	 * immediately.  When journaling if the inode has been marked
9831	 * unlinked and not DEPCOMPLETE we know it can never be written.
9832	 */
9833	inodedep_lookup(mp, oldinum, 0, &inodedep);
9834	if (inodedep == NULL ||
9835	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9836	    check_inode_unwritten(inodedep)) {
9837		FREE_LOCK(ump);
9838		vput(vp);
9839		return handle_workitem_remove(dirrem, flags);
9840	}
9841	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9842	FREE_LOCK(ump);
9843	ip->i_flag |= IN_CHANGE;
9844out:
9845	ffs_update(vp, 0);
9846	vput(vp);
9847	return (0);
9848}
9849
9850/*
9851 * Inode de-allocation dependencies.
9852 *
9853 * When an inode's link count is reduced to zero, it can be de-allocated. We
9854 * found it convenient to postpone de-allocation until after the inode is
9855 * written to disk with its new link count (zero).  At this point, all of the
9856 * on-disk inode's block pointers are nullified and, with careful dependency
9857 * list ordering, all dependencies related to the inode will be satisfied and
9858 * the corresponding dependency structures de-allocated.  So, if/when the
9859 * inode is reused, there will be no mixing of old dependencies with new
9860 * ones.  This artificial dependency is set up by the block de-allocation
9861 * procedure above (softdep_setup_freeblocks) and completed by the
9862 * following procedure.
9863 */
9864static void
9865handle_workitem_freefile(freefile)
9866	struct freefile *freefile;
9867{
9868	struct workhead wkhd;
9869	struct fs *fs;
9870	struct inodedep *idp;
9871	struct ufsmount *ump;
9872	int error;
9873
9874	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9875	fs = ump->um_fs;
9876#ifdef DEBUG
9877	ACQUIRE_LOCK(ump);
9878	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9879	FREE_LOCK(ump);
9880	if (error)
9881		panic("handle_workitem_freefile: inodedep %p survived", idp);
9882#endif
9883	UFS_LOCK(ump);
9884	fs->fs_pendinginodes -= 1;
9885	UFS_UNLOCK(ump);
9886	LIST_INIT(&wkhd);
9887	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9888	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9889	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9890		softdep_error("handle_workitem_freefile", error);
9891	ACQUIRE_LOCK(ump);
9892	WORKITEM_FREE(freefile, D_FREEFILE);
9893	FREE_LOCK(ump);
9894}
9895
9896
9897/*
9898 * Helper function which unlinks marker element from work list and returns
9899 * the next element on the list.
9900 */
9901static __inline struct worklist *
9902markernext(struct worklist *marker)
9903{
9904	struct worklist *next;
9905
9906	next = LIST_NEXT(marker, wk_list);
9907	LIST_REMOVE(marker, wk_list);
9908	return next;
9909}
9910
9911/*
9912 * Disk writes.
9913 *
9914 * The dependency structures constructed above are most actively used when file
9915 * system blocks are written to disk.  No constraints are placed on when a
9916 * block can be written, but unsatisfied update dependencies are made safe by
9917 * modifying (or replacing) the source memory for the duration of the disk
9918 * write.  When the disk write completes, the memory block is again brought
9919 * up-to-date.
9920 *
9921 * In-core inode structure reclamation.
9922 *
9923 * Because there are a finite number of "in-core" inode structures, they are
9924 * reused regularly.  By transferring all inode-related dependencies to the
9925 * in-memory inode block and indexing them separately (via "inodedep"s), we
9926 * can allow "in-core" inode structures to be reused at any time and avoid
9927 * any increase in contention.
9928 *
9929 * Called just before entering the device driver to initiate a new disk I/O.
9930 * The buffer must be locked, thus, no I/O completion operations can occur
9931 * while we are manipulating its associated dependencies.
9932 */
9933static void
9934softdep_disk_io_initiation(bp)
9935	struct buf *bp;		/* structure describing disk write to occur */
9936{
9937	struct worklist *wk;
9938	struct worklist marker;
9939	struct inodedep *inodedep;
9940	struct freeblks *freeblks;
9941	struct jblkdep *jblkdep;
9942	struct newblk *newblk;
9943	struct ufsmount *ump;
9944
9945	/*
9946	 * We only care about write operations. There should never
9947	 * be dependencies for reads.
9948	 */
9949	if (bp->b_iocmd != BIO_WRITE)
9950		panic("softdep_disk_io_initiation: not write");
9951
9952	if (bp->b_vflags & BV_BKGRDINPROG)
9953		panic("softdep_disk_io_initiation: Writing buffer with "
9954		    "background write in progress: %p", bp);
9955
9956	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9957		return;
9958	ump = VFSTOUFS(wk->wk_mp);
9959
9960	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9961	PHOLD(curproc);			/* Don't swap out kernel stack */
9962	ACQUIRE_LOCK(ump);
9963	/*
9964	 * Do any necessary pre-I/O processing.
9965	 */
9966	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9967	     wk = markernext(&marker)) {
9968		LIST_INSERT_AFTER(wk, &marker, wk_list);
9969		switch (wk->wk_type) {
9970
9971		case D_PAGEDEP:
9972			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9973			continue;
9974
9975		case D_INODEDEP:
9976			inodedep = WK_INODEDEP(wk);
9977			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9978				initiate_write_inodeblock_ufs1(inodedep, bp);
9979			else
9980				initiate_write_inodeblock_ufs2(inodedep, bp);
9981			continue;
9982
9983		case D_INDIRDEP:
9984			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9985			continue;
9986
9987		case D_BMSAFEMAP:
9988			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9989			continue;
9990
9991		case D_JSEG:
9992			WK_JSEG(wk)->js_buf = NULL;
9993			continue;
9994
9995		case D_FREEBLKS:
9996			freeblks = WK_FREEBLKS(wk);
9997			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9998			/*
9999			 * We have to wait for the freeblks to be journaled
10000			 * before we can write an inodeblock with updated
10001			 * pointers.  Be careful to arrange the marker so
10002			 * we revisit the freeblks if it's not removed by
10003			 * the first jwait().
10004			 */
10005			if (jblkdep != NULL) {
10006				LIST_REMOVE(&marker, wk_list);
10007				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10008				jwait(&jblkdep->jb_list, MNT_WAIT);
10009			}
10010			continue;
10011		case D_ALLOCDIRECT:
10012		case D_ALLOCINDIR:
10013			/*
10014			 * We have to wait for the jnewblk to be journaled
10015			 * before we can write to a block if the contents
10016			 * may be confused with an earlier file's indirect
10017			 * at recovery time.  Handle the marker as described
10018			 * above.
10019			 */
10020			newblk = WK_NEWBLK(wk);
10021			if (newblk->nb_jnewblk != NULL &&
10022			    indirblk_lookup(newblk->nb_list.wk_mp,
10023			    newblk->nb_newblkno)) {
10024				LIST_REMOVE(&marker, wk_list);
10025				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10026				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10027			}
10028			continue;
10029
10030		case D_SBDEP:
10031			initiate_write_sbdep(WK_SBDEP(wk));
10032			continue;
10033
10034		case D_MKDIR:
10035		case D_FREEWORK:
10036		case D_FREEDEP:
10037		case D_JSEGDEP:
10038			continue;
10039
10040		default:
10041			panic("handle_disk_io_initiation: Unexpected type %s",
10042			    TYPENAME(wk->wk_type));
10043			/* NOTREACHED */
10044		}
10045	}
10046	FREE_LOCK(ump);
10047	PRELE(curproc);			/* Allow swapout of kernel stack */
10048}
10049
10050/*
10051 * Called from within the procedure above to deal with unsatisfied
10052 * allocation dependencies in a directory. The buffer must be locked,
10053 * thus, no I/O completion operations can occur while we are
10054 * manipulating its associated dependencies.
10055 */
10056static void
10057initiate_write_filepage(pagedep, bp)
10058	struct pagedep *pagedep;
10059	struct buf *bp;
10060{
10061	struct jremref *jremref;
10062	struct jmvref *jmvref;
10063	struct dirrem *dirrem;
10064	struct diradd *dap;
10065	struct direct *ep;
10066	int i;
10067
10068	if (pagedep->pd_state & IOSTARTED) {
10069		/*
10070		 * This can only happen if there is a driver that does not
10071		 * understand chaining. Here biodone will reissue the call
10072		 * to strategy for the incomplete buffers.
10073		 */
10074		printf("initiate_write_filepage: already started\n");
10075		return;
10076	}
10077	pagedep->pd_state |= IOSTARTED;
10078	/*
10079	 * Wait for all journal remove dependencies to hit the disk.
10080	 * We can not allow any potentially conflicting directory adds
10081	 * to be visible before removes and rollback is too difficult.
10082	 * The per-filesystem lock may be dropped and re-acquired, however
10083	 * we hold the buf locked so the dependency can not go away.
10084	 */
10085	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10086		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10087			jwait(&jremref->jr_list, MNT_WAIT);
10088	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10089		jwait(&jmvref->jm_list, MNT_WAIT);
10090	for (i = 0; i < DAHASHSZ; i++) {
10091		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10092			ep = (struct direct *)
10093			    ((char *)bp->b_data + dap->da_offset);
10094			if (ep->d_ino != dap->da_newinum)
10095				panic("%s: dir inum %ju != new %ju",
10096				    "initiate_write_filepage",
10097				    (uintmax_t)ep->d_ino,
10098				    (uintmax_t)dap->da_newinum);
10099			if (dap->da_state & DIRCHG)
10100				ep->d_ino = dap->da_previous->dm_oldinum;
10101			else
10102				ep->d_ino = 0;
10103			dap->da_state &= ~ATTACHED;
10104			dap->da_state |= UNDONE;
10105		}
10106	}
10107}
10108
10109/*
10110 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10111 * Note that any bug fixes made to this routine must be done in the
10112 * version found below.
10113 *
10114 * Called from within the procedure above to deal with unsatisfied
10115 * allocation dependencies in an inodeblock. The buffer must be
10116 * locked, thus, no I/O completion operations can occur while we
10117 * are manipulating its associated dependencies.
10118 */
10119static void
10120initiate_write_inodeblock_ufs1(inodedep, bp)
10121	struct inodedep *inodedep;
10122	struct buf *bp;			/* The inode block */
10123{
10124	struct allocdirect *adp, *lastadp;
10125	struct ufs1_dinode *dp;
10126	struct ufs1_dinode *sip;
10127	struct inoref *inoref;
10128	struct ufsmount *ump;
10129	struct fs *fs;
10130	ufs_lbn_t i;
10131#ifdef INVARIANTS
10132	ufs_lbn_t prevlbn = 0;
10133#endif
10134	int deplist;
10135
10136	if (inodedep->id_state & IOSTARTED)
10137		panic("initiate_write_inodeblock_ufs1: already started");
10138	inodedep->id_state |= IOSTARTED;
10139	fs = inodedep->id_fs;
10140	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10141	LOCK_OWNED(ump);
10142	dp = (struct ufs1_dinode *)bp->b_data +
10143	    ino_to_fsbo(fs, inodedep->id_ino);
10144
10145	/*
10146	 * If we're on the unlinked list but have not yet written our
10147	 * next pointer initialize it here.
10148	 */
10149	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10150		struct inodedep *inon;
10151
10152		inon = TAILQ_NEXT(inodedep, id_unlinked);
10153		dp->di_freelink = inon ? inon->id_ino : 0;
10154	}
10155	/*
10156	 * If the bitmap is not yet written, then the allocated
10157	 * inode cannot be written to disk.
10158	 */
10159	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10160		if (inodedep->id_savedino1 != NULL)
10161			panic("initiate_write_inodeblock_ufs1: I/O underway");
10162		FREE_LOCK(ump);
10163		sip = malloc(sizeof(struct ufs1_dinode),
10164		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10165		ACQUIRE_LOCK(ump);
10166		inodedep->id_savedino1 = sip;
10167		*inodedep->id_savedino1 = *dp;
10168		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10169		dp->di_gen = inodedep->id_savedino1->di_gen;
10170		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10171		return;
10172	}
10173	/*
10174	 * If no dependencies, then there is nothing to roll back.
10175	 */
10176	inodedep->id_savedsize = dp->di_size;
10177	inodedep->id_savedextsize = 0;
10178	inodedep->id_savednlink = dp->di_nlink;
10179	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10180	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10181		return;
10182	/*
10183	 * Revert the link count to that of the first unwritten journal entry.
10184	 */
10185	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10186	if (inoref)
10187		dp->di_nlink = inoref->if_nlink;
10188	/*
10189	 * Set the dependencies to busy.
10190	 */
10191	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10192	     adp = TAILQ_NEXT(adp, ad_next)) {
10193#ifdef INVARIANTS
10194		if (deplist != 0 && prevlbn >= adp->ad_offset)
10195			panic("softdep_write_inodeblock: lbn order");
10196		prevlbn = adp->ad_offset;
10197		if (adp->ad_offset < NDADDR &&
10198		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10199			panic("%s: direct pointer #%jd mismatch %d != %jd",
10200			    "softdep_write_inodeblock",
10201			    (intmax_t)adp->ad_offset,
10202			    dp->di_db[adp->ad_offset],
10203			    (intmax_t)adp->ad_newblkno);
10204		if (adp->ad_offset >= NDADDR &&
10205		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10206			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10207			    "softdep_write_inodeblock",
10208			    (intmax_t)adp->ad_offset - NDADDR,
10209			    dp->di_ib[adp->ad_offset - NDADDR],
10210			    (intmax_t)adp->ad_newblkno);
10211		deplist |= 1 << adp->ad_offset;
10212		if ((adp->ad_state & ATTACHED) == 0)
10213			panic("softdep_write_inodeblock: Unknown state 0x%x",
10214			    adp->ad_state);
10215#endif /* INVARIANTS */
10216		adp->ad_state &= ~ATTACHED;
10217		adp->ad_state |= UNDONE;
10218	}
10219	/*
10220	 * The on-disk inode cannot claim to be any larger than the last
10221	 * fragment that has been written. Otherwise, the on-disk inode
10222	 * might have fragments that were not the last block in the file
10223	 * which would corrupt the filesystem.
10224	 */
10225	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10226	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10227		if (adp->ad_offset >= NDADDR)
10228			break;
10229		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10230		/* keep going until hitting a rollback to a frag */
10231		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10232			continue;
10233		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10234		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10235#ifdef INVARIANTS
10236			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10237				panic("softdep_write_inodeblock: lost dep1");
10238#endif /* INVARIANTS */
10239			dp->di_db[i] = 0;
10240		}
10241		for (i = 0; i < NIADDR; i++) {
10242#ifdef INVARIANTS
10243			if (dp->di_ib[i] != 0 &&
10244			    (deplist & ((1 << NDADDR) << i)) == 0)
10245				panic("softdep_write_inodeblock: lost dep2");
10246#endif /* INVARIANTS */
10247			dp->di_ib[i] = 0;
10248		}
10249		return;
10250	}
10251	/*
10252	 * If we have zero'ed out the last allocated block of the file,
10253	 * roll back the size to the last currently allocated block.
10254	 * We know that this last allocated block is a full-sized as
10255	 * we already checked for fragments in the loop above.
10256	 */
10257	if (lastadp != NULL &&
10258	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10259		for (i = lastadp->ad_offset; i >= 0; i--)
10260			if (dp->di_db[i] != 0)
10261				break;
10262		dp->di_size = (i + 1) * fs->fs_bsize;
10263	}
10264	/*
10265	 * The only dependencies are for indirect blocks.
10266	 *
10267	 * The file size for indirect block additions is not guaranteed.
10268	 * Such a guarantee would be non-trivial to achieve. The conventional
10269	 * synchronous write implementation also does not make this guarantee.
10270	 * Fsck should catch and fix discrepancies. Arguably, the file size
10271	 * can be over-estimated without destroying integrity when the file
10272	 * moves into the indirect blocks (i.e., is large). If we want to
10273	 * postpone fsck, we are stuck with this argument.
10274	 */
10275	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10276		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10277}
10278
10279/*
10280 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10281 * Note that any bug fixes made to this routine must be done in the
10282 * version found above.
10283 *
10284 * Called from within the procedure above to deal with unsatisfied
10285 * allocation dependencies in an inodeblock. The buffer must be
10286 * locked, thus, no I/O completion operations can occur while we
10287 * are manipulating its associated dependencies.
10288 */
10289static void
10290initiate_write_inodeblock_ufs2(inodedep, bp)
10291	struct inodedep *inodedep;
10292	struct buf *bp;			/* The inode block */
10293{
10294	struct allocdirect *adp, *lastadp;
10295	struct ufs2_dinode *dp;
10296	struct ufs2_dinode *sip;
10297	struct inoref *inoref;
10298	struct ufsmount *ump;
10299	struct fs *fs;
10300	ufs_lbn_t i;
10301#ifdef INVARIANTS
10302	ufs_lbn_t prevlbn = 0;
10303#endif
10304	int deplist;
10305
10306	if (inodedep->id_state & IOSTARTED)
10307		panic("initiate_write_inodeblock_ufs2: already started");
10308	inodedep->id_state |= IOSTARTED;
10309	fs = inodedep->id_fs;
10310	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10311	LOCK_OWNED(ump);
10312	dp = (struct ufs2_dinode *)bp->b_data +
10313	    ino_to_fsbo(fs, inodedep->id_ino);
10314
10315	/*
10316	 * If we're on the unlinked list but have not yet written our
10317	 * next pointer initialize it here.
10318	 */
10319	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10320		struct inodedep *inon;
10321
10322		inon = TAILQ_NEXT(inodedep, id_unlinked);
10323		dp->di_freelink = inon ? inon->id_ino : 0;
10324	}
10325	/*
10326	 * If the bitmap is not yet written, then the allocated
10327	 * inode cannot be written to disk.
10328	 */
10329	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10330		if (inodedep->id_savedino2 != NULL)
10331			panic("initiate_write_inodeblock_ufs2: I/O underway");
10332		FREE_LOCK(ump);
10333		sip = malloc(sizeof(struct ufs2_dinode),
10334		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10335		ACQUIRE_LOCK(ump);
10336		inodedep->id_savedino2 = sip;
10337		*inodedep->id_savedino2 = *dp;
10338		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10339		dp->di_gen = inodedep->id_savedino2->di_gen;
10340		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10341		return;
10342	}
10343	/*
10344	 * If no dependencies, then there is nothing to roll back.
10345	 */
10346	inodedep->id_savedsize = dp->di_size;
10347	inodedep->id_savedextsize = dp->di_extsize;
10348	inodedep->id_savednlink = dp->di_nlink;
10349	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10350	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10351	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10352		return;
10353	/*
10354	 * Revert the link count to that of the first unwritten journal entry.
10355	 */
10356	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10357	if (inoref)
10358		dp->di_nlink = inoref->if_nlink;
10359
10360	/*
10361	 * Set the ext data dependencies to busy.
10362	 */
10363	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10364	     adp = TAILQ_NEXT(adp, ad_next)) {
10365#ifdef INVARIANTS
10366		if (deplist != 0 && prevlbn >= adp->ad_offset)
10367			panic("softdep_write_inodeblock: lbn order");
10368		prevlbn = adp->ad_offset;
10369		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10370			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10371			    "softdep_write_inodeblock",
10372			    (intmax_t)adp->ad_offset,
10373			    (intmax_t)dp->di_extb[adp->ad_offset],
10374			    (intmax_t)adp->ad_newblkno);
10375		deplist |= 1 << adp->ad_offset;
10376		if ((adp->ad_state & ATTACHED) == 0)
10377			panic("softdep_write_inodeblock: Unknown state 0x%x",
10378			    adp->ad_state);
10379#endif /* INVARIANTS */
10380		adp->ad_state &= ~ATTACHED;
10381		adp->ad_state |= UNDONE;
10382	}
10383	/*
10384	 * The on-disk inode cannot claim to be any larger than the last
10385	 * fragment that has been written. Otherwise, the on-disk inode
10386	 * might have fragments that were not the last block in the ext
10387	 * data which would corrupt the filesystem.
10388	 */
10389	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10390	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10391		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10392		/* keep going until hitting a rollback to a frag */
10393		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10394			continue;
10395		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10396		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10397#ifdef INVARIANTS
10398			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10399				panic("softdep_write_inodeblock: lost dep1");
10400#endif /* INVARIANTS */
10401			dp->di_extb[i] = 0;
10402		}
10403		lastadp = NULL;
10404		break;
10405	}
10406	/*
10407	 * If we have zero'ed out the last allocated block of the ext
10408	 * data, roll back the size to the last currently allocated block.
10409	 * We know that this last allocated block is a full-sized as
10410	 * we already checked for fragments in the loop above.
10411	 */
10412	if (lastadp != NULL &&
10413	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10414		for (i = lastadp->ad_offset; i >= 0; i--)
10415			if (dp->di_extb[i] != 0)
10416				break;
10417		dp->di_extsize = (i + 1) * fs->fs_bsize;
10418	}
10419	/*
10420	 * Set the file data dependencies to busy.
10421	 */
10422	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10423	     adp = TAILQ_NEXT(adp, ad_next)) {
10424#ifdef INVARIANTS
10425		if (deplist != 0 && prevlbn >= adp->ad_offset)
10426			panic("softdep_write_inodeblock: lbn order");
10427		if ((adp->ad_state & ATTACHED) == 0)
10428			panic("inodedep %p and adp %p not attached", inodedep, adp);
10429		prevlbn = adp->ad_offset;
10430		if (adp->ad_offset < NDADDR &&
10431		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10432			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10433			    "softdep_write_inodeblock",
10434			    (intmax_t)adp->ad_offset,
10435			    (intmax_t)dp->di_db[adp->ad_offset],
10436			    (intmax_t)adp->ad_newblkno);
10437		if (adp->ad_offset >= NDADDR &&
10438		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10439			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10440			    "softdep_write_inodeblock:",
10441			    (intmax_t)adp->ad_offset - NDADDR,
10442			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10443			    (intmax_t)adp->ad_newblkno);
10444		deplist |= 1 << adp->ad_offset;
10445		if ((adp->ad_state & ATTACHED) == 0)
10446			panic("softdep_write_inodeblock: Unknown state 0x%x",
10447			    adp->ad_state);
10448#endif /* INVARIANTS */
10449		adp->ad_state &= ~ATTACHED;
10450		adp->ad_state |= UNDONE;
10451	}
10452	/*
10453	 * The on-disk inode cannot claim to be any larger than the last
10454	 * fragment that has been written. Otherwise, the on-disk inode
10455	 * might have fragments that were not the last block in the file
10456	 * which would corrupt the filesystem.
10457	 */
10458	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10459	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10460		if (adp->ad_offset >= NDADDR)
10461			break;
10462		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10463		/* keep going until hitting a rollback to a frag */
10464		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10465			continue;
10466		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10467		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10468#ifdef INVARIANTS
10469			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10470				panic("softdep_write_inodeblock: lost dep2");
10471#endif /* INVARIANTS */
10472			dp->di_db[i] = 0;
10473		}
10474		for (i = 0; i < NIADDR; i++) {
10475#ifdef INVARIANTS
10476			if (dp->di_ib[i] != 0 &&
10477			    (deplist & ((1 << NDADDR) << i)) == 0)
10478				panic("softdep_write_inodeblock: lost dep3");
10479#endif /* INVARIANTS */
10480			dp->di_ib[i] = 0;
10481		}
10482		return;
10483	}
10484	/*
10485	 * If we have zero'ed out the last allocated block of the file,
10486	 * roll back the size to the last currently allocated block.
10487	 * We know that this last allocated block is a full-sized as
10488	 * we already checked for fragments in the loop above.
10489	 */
10490	if (lastadp != NULL &&
10491	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10492		for (i = lastadp->ad_offset; i >= 0; i--)
10493			if (dp->di_db[i] != 0)
10494				break;
10495		dp->di_size = (i + 1) * fs->fs_bsize;
10496	}
10497	/*
10498	 * The only dependencies are for indirect blocks.
10499	 *
10500	 * The file size for indirect block additions is not guaranteed.
10501	 * Such a guarantee would be non-trivial to achieve. The conventional
10502	 * synchronous write implementation also does not make this guarantee.
10503	 * Fsck should catch and fix discrepancies. Arguably, the file size
10504	 * can be over-estimated without destroying integrity when the file
10505	 * moves into the indirect blocks (i.e., is large). If we want to
10506	 * postpone fsck, we are stuck with this argument.
10507	 */
10508	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10509		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10510}
10511
10512/*
10513 * Cancel an indirdep as a result of truncation.  Release all of the
10514 * children allocindirs and place their journal work on the appropriate
10515 * list.
10516 */
10517static void
10518cancel_indirdep(indirdep, bp, freeblks)
10519	struct indirdep *indirdep;
10520	struct buf *bp;
10521	struct freeblks *freeblks;
10522{
10523	struct allocindir *aip;
10524
10525	/*
10526	 * None of the indirect pointers will ever be visible,
10527	 * so they can simply be tossed. GOINGAWAY ensures
10528	 * that allocated pointers will be saved in the buffer
10529	 * cache until they are freed. Note that they will
10530	 * only be able to be found by their physical address
10531	 * since the inode mapping the logical address will
10532	 * be gone. The save buffer used for the safe copy
10533	 * was allocated in setup_allocindir_phase2 using
10534	 * the physical address so it could be used for this
10535	 * purpose. Hence we swap the safe copy with the real
10536	 * copy, allowing the safe copy to be freed and holding
10537	 * on to the real copy for later use in indir_trunc.
10538	 */
10539	if (indirdep->ir_state & GOINGAWAY)
10540		panic("cancel_indirdep: already gone");
10541	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10542		indirdep->ir_state |= DEPCOMPLETE;
10543		LIST_REMOVE(indirdep, ir_next);
10544	}
10545	indirdep->ir_state |= GOINGAWAY;
10546	/*
10547	 * Pass in bp for blocks still have journal writes
10548	 * pending so we can cancel them on their own.
10549	 */
10550	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10551		cancel_allocindir(aip, bp, freeblks, 0);
10552	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10553		cancel_allocindir(aip, NULL, freeblks, 0);
10554	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10555		cancel_allocindir(aip, NULL, freeblks, 0);
10556	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10557		cancel_allocindir(aip, NULL, freeblks, 0);
10558	/*
10559	 * If there are pending partial truncations we need to keep the
10560	 * old block copy around until they complete.  This is because
10561	 * the current b_data is not a perfect superset of the available
10562	 * blocks.
10563	 */
10564	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10565		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10566	else
10567		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10568	WORKLIST_REMOVE(&indirdep->ir_list);
10569	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10570	indirdep->ir_bp = NULL;
10571	indirdep->ir_freeblks = freeblks;
10572}
10573
10574/*
10575 * Free an indirdep once it no longer has new pointers to track.
10576 */
10577static void
10578free_indirdep(indirdep)
10579	struct indirdep *indirdep;
10580{
10581
10582	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10583	    ("free_indirdep: Indir trunc list not empty."));
10584	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10585	    ("free_indirdep: Complete head not empty."));
10586	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10587	    ("free_indirdep: write head not empty."));
10588	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10589	    ("free_indirdep: done head not empty."));
10590	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10591	    ("free_indirdep: deplist head not empty."));
10592	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10593	    ("free_indirdep: %p still on newblk list.", indirdep));
10594	KASSERT(indirdep->ir_saveddata == NULL,
10595	    ("free_indirdep: %p still has saved data.", indirdep));
10596	if (indirdep->ir_state & ONWORKLIST)
10597		WORKLIST_REMOVE(&indirdep->ir_list);
10598	WORKITEM_FREE(indirdep, D_INDIRDEP);
10599}
10600
10601/*
10602 * Called before a write to an indirdep.  This routine is responsible for
10603 * rolling back pointers to a safe state which includes only those
10604 * allocindirs which have been completed.
10605 */
10606static void
10607initiate_write_indirdep(indirdep, bp)
10608	struct indirdep *indirdep;
10609	struct buf *bp;
10610{
10611	struct ufsmount *ump;
10612
10613	indirdep->ir_state |= IOSTARTED;
10614	if (indirdep->ir_state & GOINGAWAY)
10615		panic("disk_io_initiation: indirdep gone");
10616	/*
10617	 * If there are no remaining dependencies, this will be writing
10618	 * the real pointers.
10619	 */
10620	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10621	    TAILQ_EMPTY(&indirdep->ir_trunc))
10622		return;
10623	/*
10624	 * Replace up-to-date version with safe version.
10625	 */
10626	if (indirdep->ir_saveddata == NULL) {
10627		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10628		LOCK_OWNED(ump);
10629		FREE_LOCK(ump);
10630		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10631		    M_SOFTDEP_FLAGS);
10632		ACQUIRE_LOCK(ump);
10633	}
10634	indirdep->ir_state &= ~ATTACHED;
10635	indirdep->ir_state |= UNDONE;
10636	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10637	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10638	    bp->b_bcount);
10639}
10640
10641/*
10642 * Called when an inode has been cleared in a cg bitmap.  This finally
10643 * eliminates any canceled jaddrefs
10644 */
10645void
10646softdep_setup_inofree(mp, bp, ino, wkhd)
10647	struct mount *mp;
10648	struct buf *bp;
10649	ino_t ino;
10650	struct workhead *wkhd;
10651{
10652	struct worklist *wk, *wkn;
10653	struct inodedep *inodedep;
10654	struct ufsmount *ump;
10655	uint8_t *inosused;
10656	struct cg *cgp;
10657	struct fs *fs;
10658
10659	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10660	    ("softdep_setup_inofree called on non-softdep filesystem"));
10661	ump = VFSTOUFS(mp);
10662	ACQUIRE_LOCK(ump);
10663	fs = ump->um_fs;
10664	cgp = (struct cg *)bp->b_data;
10665	inosused = cg_inosused(cgp);
10666	if (isset(inosused, ino % fs->fs_ipg))
10667		panic("softdep_setup_inofree: inode %ju not freed.",
10668		    (uintmax_t)ino);
10669	if (inodedep_lookup(mp, ino, 0, &inodedep))
10670		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10671		    (uintmax_t)ino, inodedep);
10672	if (wkhd) {
10673		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10674			if (wk->wk_type != D_JADDREF)
10675				continue;
10676			WORKLIST_REMOVE(wk);
10677			/*
10678			 * We can free immediately even if the jaddref
10679			 * isn't attached in a background write as now
10680			 * the bitmaps are reconciled.
10681			 */
10682			wk->wk_state |= COMPLETE | ATTACHED;
10683			free_jaddref(WK_JADDREF(wk));
10684		}
10685		jwork_move(&bp->b_dep, wkhd);
10686	}
10687	FREE_LOCK(ump);
10688}
10689
10690
10691/*
10692 * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10693 * map.  Any dependencies waiting for the write to clear are added to the
10694 * buf's list and any jnewblks that are being canceled are discarded
10695 * immediately.
10696 */
10697void
10698softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10699	struct mount *mp;
10700	struct buf *bp;
10701	ufs2_daddr_t blkno;
10702	int frags;
10703	struct workhead *wkhd;
10704{
10705	struct bmsafemap *bmsafemap;
10706	struct jnewblk *jnewblk;
10707	struct ufsmount *ump;
10708	struct worklist *wk;
10709	struct fs *fs;
10710#ifdef SUJ_DEBUG
10711	uint8_t *blksfree;
10712	struct cg *cgp;
10713	ufs2_daddr_t jstart;
10714	ufs2_daddr_t jend;
10715	ufs2_daddr_t end;
10716	long bno;
10717	int i;
10718#endif
10719
10720	CTR3(KTR_SUJ,
10721	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10722	    blkno, frags, wkhd);
10723
10724	ump = VFSTOUFS(mp);
10725	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10726	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10727	ACQUIRE_LOCK(ump);
10728	/* Lookup the bmsafemap so we track when it is dirty. */
10729	fs = ump->um_fs;
10730	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10731	/*
10732	 * Detach any jnewblks which have been canceled.  They must linger
10733	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10734	 * an unjournaled allocation from hitting the disk.
10735	 */
10736	if (wkhd) {
10737		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10738			CTR2(KTR_SUJ,
10739			    "softdep_setup_blkfree: blkno %jd wk type %d",
10740			    blkno, wk->wk_type);
10741			WORKLIST_REMOVE(wk);
10742			if (wk->wk_type != D_JNEWBLK) {
10743				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10744				continue;
10745			}
10746			jnewblk = WK_JNEWBLK(wk);
10747			KASSERT(jnewblk->jn_state & GOINGAWAY,
10748			    ("softdep_setup_blkfree: jnewblk not canceled."));
10749#ifdef SUJ_DEBUG
10750			/*
10751			 * Assert that this block is free in the bitmap
10752			 * before we discard the jnewblk.
10753			 */
10754			cgp = (struct cg *)bp->b_data;
10755			blksfree = cg_blksfree(cgp);
10756			bno = dtogd(fs, jnewblk->jn_blkno);
10757			for (i = jnewblk->jn_oldfrags;
10758			    i < jnewblk->jn_frags; i++) {
10759				if (isset(blksfree, bno + i))
10760					continue;
10761				panic("softdep_setup_blkfree: not free");
10762			}
10763#endif
10764			/*
10765			 * Even if it's not attached we can free immediately
10766			 * as the new bitmap is correct.
10767			 */
10768			wk->wk_state |= COMPLETE | ATTACHED;
10769			free_jnewblk(jnewblk);
10770		}
10771	}
10772
10773#ifdef SUJ_DEBUG
10774	/*
10775	 * Assert that we are not freeing a block which has an outstanding
10776	 * allocation dependency.
10777	 */
10778	fs = VFSTOUFS(mp)->um_fs;
10779	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10780	end = blkno + frags;
10781	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10782		/*
10783		 * Don't match against blocks that will be freed when the
10784		 * background write is done.
10785		 */
10786		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10787		    (COMPLETE | DEPCOMPLETE))
10788			continue;
10789		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10790		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10791		if ((blkno >= jstart && blkno < jend) ||
10792		    (end > jstart && end <= jend)) {
10793			printf("state 0x%X %jd - %d %d dep %p\n",
10794			    jnewblk->jn_state, jnewblk->jn_blkno,
10795			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10796			    jnewblk->jn_dep);
10797			panic("softdep_setup_blkfree: "
10798			    "%jd-%jd(%d) overlaps with %jd-%jd",
10799			    blkno, end, frags, jstart, jend);
10800		}
10801	}
10802#endif
10803	FREE_LOCK(ump);
10804}
10805
10806/*
10807 * Revert a block allocation when the journal record that describes it
10808 * is not yet written.
10809 */
10810static int
10811jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10812	struct jnewblk *jnewblk;
10813	struct fs *fs;
10814	struct cg *cgp;
10815	uint8_t *blksfree;
10816{
10817	ufs1_daddr_t fragno;
10818	long cgbno, bbase;
10819	int frags, blk;
10820	int i;
10821
10822	frags = 0;
10823	cgbno = dtogd(fs, jnewblk->jn_blkno);
10824	/*
10825	 * We have to test which frags need to be rolled back.  We may
10826	 * be operating on a stale copy when doing background writes.
10827	 */
10828	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10829		if (isclr(blksfree, cgbno + i))
10830			frags++;
10831	if (frags == 0)
10832		return (0);
10833	/*
10834	 * This is mostly ffs_blkfree() sans some validation and
10835	 * superblock updates.
10836	 */
10837	if (frags == fs->fs_frag) {
10838		fragno = fragstoblks(fs, cgbno);
10839		ffs_setblock(fs, blksfree, fragno);
10840		ffs_clusteracct(fs, cgp, fragno, 1);
10841		cgp->cg_cs.cs_nbfree++;
10842	} else {
10843		cgbno += jnewblk->jn_oldfrags;
10844		bbase = cgbno - fragnum(fs, cgbno);
10845		/* Decrement the old frags.  */
10846		blk = blkmap(fs, blksfree, bbase);
10847		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10848		/* Deallocate the fragment */
10849		for (i = 0; i < frags; i++)
10850			setbit(blksfree, cgbno + i);
10851		cgp->cg_cs.cs_nffree += frags;
10852		/* Add back in counts associated with the new frags */
10853		blk = blkmap(fs, blksfree, bbase);
10854		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10855		/* If a complete block has been reassembled, account for it. */
10856		fragno = fragstoblks(fs, bbase);
10857		if (ffs_isblock(fs, blksfree, fragno)) {
10858			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10859			ffs_clusteracct(fs, cgp, fragno, 1);
10860			cgp->cg_cs.cs_nbfree++;
10861		}
10862	}
10863	stat_jnewblk++;
10864	jnewblk->jn_state &= ~ATTACHED;
10865	jnewblk->jn_state |= UNDONE;
10866
10867	return (frags);
10868}
10869
10870static void
10871initiate_write_bmsafemap(bmsafemap, bp)
10872	struct bmsafemap *bmsafemap;
10873	struct buf *bp;			/* The cg block. */
10874{
10875	struct jaddref *jaddref;
10876	struct jnewblk *jnewblk;
10877	uint8_t *inosused;
10878	uint8_t *blksfree;
10879	struct cg *cgp;
10880	struct fs *fs;
10881	ino_t ino;
10882
10883	if (bmsafemap->sm_state & IOSTARTED)
10884		return;
10885	bmsafemap->sm_state |= IOSTARTED;
10886	/*
10887	 * Clear any inode allocations which are pending journal writes.
10888	 */
10889	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10890		cgp = (struct cg *)bp->b_data;
10891		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10892		inosused = cg_inosused(cgp);
10893		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10894			ino = jaddref->ja_ino % fs->fs_ipg;
10895			if (isset(inosused, ino)) {
10896				if ((jaddref->ja_mode & IFMT) == IFDIR)
10897					cgp->cg_cs.cs_ndir--;
10898				cgp->cg_cs.cs_nifree++;
10899				clrbit(inosused, ino);
10900				jaddref->ja_state &= ~ATTACHED;
10901				jaddref->ja_state |= UNDONE;
10902				stat_jaddref++;
10903			} else
10904				panic("initiate_write_bmsafemap: inode %ju "
10905				    "marked free", (uintmax_t)jaddref->ja_ino);
10906		}
10907	}
10908	/*
10909	 * Clear any block allocations which are pending journal writes.
10910	 */
10911	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10912		cgp = (struct cg *)bp->b_data;
10913		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10914		blksfree = cg_blksfree(cgp);
10915		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10916			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10917				continue;
10918			panic("initiate_write_bmsafemap: block %jd "
10919			    "marked free", jnewblk->jn_blkno);
10920		}
10921	}
10922	/*
10923	 * Move allocation lists to the written lists so they can be
10924	 * cleared once the block write is complete.
10925	 */
10926	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10927	    inodedep, id_deps);
10928	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10929	    newblk, nb_deps);
10930	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10931	    wk_list);
10932}
10933
10934/*
10935 * This routine is called during the completion interrupt
10936 * service routine for a disk write (from the procedure called
10937 * by the device driver to inform the filesystem caches of
10938 * a request completion).  It should be called early in this
10939 * procedure, before the block is made available to other
10940 * processes or other routines are called.
10941 *
10942 */
10943static void
10944softdep_disk_write_complete(bp)
10945	struct buf *bp;		/* describes the completed disk write */
10946{
10947	struct worklist *wk;
10948	struct worklist *owk;
10949	struct ufsmount *ump;
10950	struct workhead reattach;
10951	struct freeblks *freeblks;
10952	struct buf *sbp;
10953
10954	/*
10955	 * If an error occurred while doing the write, then the data
10956	 * has not hit the disk and the dependencies cannot be unrolled.
10957	 */
10958	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10959		return;
10960	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
10961		return;
10962	ump = VFSTOUFS(wk->wk_mp);
10963	LIST_INIT(&reattach);
10964	/*
10965	 * This lock must not be released anywhere in this code segment.
10966	 */
10967	sbp = NULL;
10968	owk = NULL;
10969	ACQUIRE_LOCK(ump);
10970	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10971		WORKLIST_REMOVE(wk);
10972		atomic_add_long(&dep_write[wk->wk_type], 1);
10973		if (wk == owk)
10974			panic("duplicate worklist: %p\n", wk);
10975		owk = wk;
10976		switch (wk->wk_type) {
10977
10978		case D_PAGEDEP:
10979			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10980				WORKLIST_INSERT(&reattach, wk);
10981			continue;
10982
10983		case D_INODEDEP:
10984			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10985				WORKLIST_INSERT(&reattach, wk);
10986			continue;
10987
10988		case D_BMSAFEMAP:
10989			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10990				WORKLIST_INSERT(&reattach, wk);
10991			continue;
10992
10993		case D_MKDIR:
10994			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10995			continue;
10996
10997		case D_ALLOCDIRECT:
10998			wk->wk_state |= COMPLETE;
10999			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11000			continue;
11001
11002		case D_ALLOCINDIR:
11003			wk->wk_state |= COMPLETE;
11004			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11005			continue;
11006
11007		case D_INDIRDEP:
11008			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
11009				WORKLIST_INSERT(&reattach, wk);
11010			continue;
11011
11012		case D_FREEBLKS:
11013			wk->wk_state |= COMPLETE;
11014			freeblks = WK_FREEBLKS(wk);
11015			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11016			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11017				add_to_worklist(wk, WK_NODELAY);
11018			continue;
11019
11020		case D_FREEWORK:
11021			handle_written_freework(WK_FREEWORK(wk));
11022			break;
11023
11024		case D_JSEGDEP:
11025			free_jsegdep(WK_JSEGDEP(wk));
11026			continue;
11027
11028		case D_JSEG:
11029			handle_written_jseg(WK_JSEG(wk), bp);
11030			continue;
11031
11032		case D_SBDEP:
11033			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11034				WORKLIST_INSERT(&reattach, wk);
11035			continue;
11036
11037		case D_FREEDEP:
11038			free_freedep(WK_FREEDEP(wk));
11039			continue;
11040
11041		default:
11042			panic("handle_disk_write_complete: Unknown type %s",
11043			    TYPENAME(wk->wk_type));
11044			/* NOTREACHED */
11045		}
11046	}
11047	/*
11048	 * Reattach any requests that must be redone.
11049	 */
11050	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11051		WORKLIST_REMOVE(wk);
11052		WORKLIST_INSERT(&bp->b_dep, wk);
11053	}
11054	FREE_LOCK(ump);
11055	if (sbp)
11056		brelse(sbp);
11057}
11058
11059/*
11060 * Called from within softdep_disk_write_complete above. Note that
11061 * this routine is always called from interrupt level with further
11062 * splbio interrupts blocked.
11063 */
11064static void
11065handle_allocdirect_partdone(adp, wkhd)
11066	struct allocdirect *adp;	/* the completed allocdirect */
11067	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11068{
11069	struct allocdirectlst *listhead;
11070	struct allocdirect *listadp;
11071	struct inodedep *inodedep;
11072	long bsize;
11073
11074	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11075		return;
11076	/*
11077	 * The on-disk inode cannot claim to be any larger than the last
11078	 * fragment that has been written. Otherwise, the on-disk inode
11079	 * might have fragments that were not the last block in the file
11080	 * which would corrupt the filesystem. Thus, we cannot free any
11081	 * allocdirects after one whose ad_oldblkno claims a fragment as
11082	 * these blocks must be rolled back to zero before writing the inode.
11083	 * We check the currently active set of allocdirects in id_inoupdt
11084	 * or id_extupdt as appropriate.
11085	 */
11086	inodedep = adp->ad_inodedep;
11087	bsize = inodedep->id_fs->fs_bsize;
11088	if (adp->ad_state & EXTDATA)
11089		listhead = &inodedep->id_extupdt;
11090	else
11091		listhead = &inodedep->id_inoupdt;
11092	TAILQ_FOREACH(listadp, listhead, ad_next) {
11093		/* found our block */
11094		if (listadp == adp)
11095			break;
11096		/* continue if ad_oldlbn is not a fragment */
11097		if (listadp->ad_oldsize == 0 ||
11098		    listadp->ad_oldsize == bsize)
11099			continue;
11100		/* hit a fragment */
11101		return;
11102	}
11103	/*
11104	 * If we have reached the end of the current list without
11105	 * finding the just finished dependency, then it must be
11106	 * on the future dependency list. Future dependencies cannot
11107	 * be freed until they are moved to the current list.
11108	 */
11109	if (listadp == NULL) {
11110#ifdef DEBUG
11111		if (adp->ad_state & EXTDATA)
11112			listhead = &inodedep->id_newextupdt;
11113		else
11114			listhead = &inodedep->id_newinoupdt;
11115		TAILQ_FOREACH(listadp, listhead, ad_next)
11116			/* found our block */
11117			if (listadp == adp)
11118				break;
11119		if (listadp == NULL)
11120			panic("handle_allocdirect_partdone: lost dep");
11121#endif /* DEBUG */
11122		return;
11123	}
11124	/*
11125	 * If we have found the just finished dependency, then queue
11126	 * it along with anything that follows it that is complete.
11127	 * Since the pointer has not yet been written in the inode
11128	 * as the dependency prevents it, place the allocdirect on the
11129	 * bufwait list where it will be freed once the pointer is
11130	 * valid.
11131	 */
11132	if (wkhd == NULL)
11133		wkhd = &inodedep->id_bufwait;
11134	for (; adp; adp = listadp) {
11135		listadp = TAILQ_NEXT(adp, ad_next);
11136		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11137			return;
11138		TAILQ_REMOVE(listhead, adp, ad_next);
11139		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11140	}
11141}
11142
11143/*
11144 * Called from within softdep_disk_write_complete above.  This routine
11145 * completes successfully written allocindirs.
11146 */
11147static void
11148handle_allocindir_partdone(aip)
11149	struct allocindir *aip;		/* the completed allocindir */
11150{
11151	struct indirdep *indirdep;
11152
11153	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11154		return;
11155	indirdep = aip->ai_indirdep;
11156	LIST_REMOVE(aip, ai_next);
11157	/*
11158	 * Don't set a pointer while the buffer is undergoing IO or while
11159	 * we have active truncations.
11160	 */
11161	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11162		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11163		return;
11164	}
11165	if (indirdep->ir_state & UFS1FMT)
11166		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11167		    aip->ai_newblkno;
11168	else
11169		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11170		    aip->ai_newblkno;
11171	/*
11172	 * Await the pointer write before freeing the allocindir.
11173	 */
11174	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11175}
11176
11177/*
11178 * Release segments held on a jwork list.
11179 */
11180static void
11181handle_jwork(wkhd)
11182	struct workhead *wkhd;
11183{
11184	struct worklist *wk;
11185
11186	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11187		WORKLIST_REMOVE(wk);
11188		switch (wk->wk_type) {
11189		case D_JSEGDEP:
11190			free_jsegdep(WK_JSEGDEP(wk));
11191			continue;
11192		case D_FREEDEP:
11193			free_freedep(WK_FREEDEP(wk));
11194			continue;
11195		case D_FREEFRAG:
11196			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11197			WORKITEM_FREE(wk, D_FREEFRAG);
11198			continue;
11199		case D_FREEWORK:
11200			handle_written_freework(WK_FREEWORK(wk));
11201			continue;
11202		default:
11203			panic("handle_jwork: Unknown type %s\n",
11204			    TYPENAME(wk->wk_type));
11205		}
11206	}
11207}
11208
11209/*
11210 * Handle the bufwait list on an inode when it is safe to release items
11211 * held there.  This normally happens after an inode block is written but
11212 * may be delayed and handled later if there are pending journal items that
11213 * are not yet safe to be released.
11214 */
11215static struct freefile *
11216handle_bufwait(inodedep, refhd)
11217	struct inodedep *inodedep;
11218	struct workhead *refhd;
11219{
11220	struct jaddref *jaddref;
11221	struct freefile *freefile;
11222	struct worklist *wk;
11223
11224	freefile = NULL;
11225	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11226		WORKLIST_REMOVE(wk);
11227		switch (wk->wk_type) {
11228		case D_FREEFILE:
11229			/*
11230			 * We defer adding freefile to the worklist
11231			 * until all other additions have been made to
11232			 * ensure that it will be done after all the
11233			 * old blocks have been freed.
11234			 */
11235			if (freefile != NULL)
11236				panic("handle_bufwait: freefile");
11237			freefile = WK_FREEFILE(wk);
11238			continue;
11239
11240		case D_MKDIR:
11241			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11242			continue;
11243
11244		case D_DIRADD:
11245			diradd_inode_written(WK_DIRADD(wk), inodedep);
11246			continue;
11247
11248		case D_FREEFRAG:
11249			wk->wk_state |= COMPLETE;
11250			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11251				add_to_worklist(wk, 0);
11252			continue;
11253
11254		case D_DIRREM:
11255			wk->wk_state |= COMPLETE;
11256			add_to_worklist(wk, 0);
11257			continue;
11258
11259		case D_ALLOCDIRECT:
11260		case D_ALLOCINDIR:
11261			free_newblk(WK_NEWBLK(wk));
11262			continue;
11263
11264		case D_JNEWBLK:
11265			wk->wk_state |= COMPLETE;
11266			free_jnewblk(WK_JNEWBLK(wk));
11267			continue;
11268
11269		/*
11270		 * Save freed journal segments and add references on
11271		 * the supplied list which will delay their release
11272		 * until the cg bitmap is cleared on disk.
11273		 */
11274		case D_JSEGDEP:
11275			if (refhd == NULL)
11276				free_jsegdep(WK_JSEGDEP(wk));
11277			else
11278				WORKLIST_INSERT(refhd, wk);
11279			continue;
11280
11281		case D_JADDREF:
11282			jaddref = WK_JADDREF(wk);
11283			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11284			    if_deps);
11285			/*
11286			 * Transfer any jaddrefs to the list to be freed with
11287			 * the bitmap if we're handling a removed file.
11288			 */
11289			if (refhd == NULL) {
11290				wk->wk_state |= COMPLETE;
11291				free_jaddref(jaddref);
11292			} else
11293				WORKLIST_INSERT(refhd, wk);
11294			continue;
11295
11296		default:
11297			panic("handle_bufwait: Unknown type %p(%s)",
11298			    wk, TYPENAME(wk->wk_type));
11299			/* NOTREACHED */
11300		}
11301	}
11302	return (freefile);
11303}
11304/*
11305 * Called from within softdep_disk_write_complete above to restore
11306 * in-memory inode block contents to their most up-to-date state. Note
11307 * that this routine is always called from interrupt level with further
11308 * splbio interrupts blocked.
11309 */
11310static int
11311handle_written_inodeblock(inodedep, bp)
11312	struct inodedep *inodedep;
11313	struct buf *bp;		/* buffer containing the inode block */
11314{
11315	struct freefile *freefile;
11316	struct allocdirect *adp, *nextadp;
11317	struct ufs1_dinode *dp1 = NULL;
11318	struct ufs2_dinode *dp2 = NULL;
11319	struct workhead wkhd;
11320	int hadchanges, fstype;
11321	ino_t freelink;
11322
11323	LIST_INIT(&wkhd);
11324	hadchanges = 0;
11325	freefile = NULL;
11326	if ((inodedep->id_state & IOSTARTED) == 0)
11327		panic("handle_written_inodeblock: not started");
11328	inodedep->id_state &= ~IOSTARTED;
11329	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11330		fstype = UFS1;
11331		dp1 = (struct ufs1_dinode *)bp->b_data +
11332		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11333		freelink = dp1->di_freelink;
11334	} else {
11335		fstype = UFS2;
11336		dp2 = (struct ufs2_dinode *)bp->b_data +
11337		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11338		freelink = dp2->di_freelink;
11339	}
11340	/*
11341	 * Leave this inodeblock dirty until it's in the list.
11342	 */
11343	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11344		struct inodedep *inon;
11345
11346		inon = TAILQ_NEXT(inodedep, id_unlinked);
11347		if ((inon == NULL && freelink == 0) ||
11348		    (inon && inon->id_ino == freelink)) {
11349			if (inon)
11350				inon->id_state |= UNLINKPREV;
11351			inodedep->id_state |= UNLINKNEXT;
11352		}
11353		hadchanges = 1;
11354	}
11355	/*
11356	 * If we had to rollback the inode allocation because of
11357	 * bitmaps being incomplete, then simply restore it.
11358	 * Keep the block dirty so that it will not be reclaimed until
11359	 * all associated dependencies have been cleared and the
11360	 * corresponding updates written to disk.
11361	 */
11362	if (inodedep->id_savedino1 != NULL) {
11363		hadchanges = 1;
11364		if (fstype == UFS1)
11365			*dp1 = *inodedep->id_savedino1;
11366		else
11367			*dp2 = *inodedep->id_savedino2;
11368		free(inodedep->id_savedino1, M_SAVEDINO);
11369		inodedep->id_savedino1 = NULL;
11370		if ((bp->b_flags & B_DELWRI) == 0)
11371			stat_inode_bitmap++;
11372		bdirty(bp);
11373		/*
11374		 * If the inode is clear here and GOINGAWAY it will never
11375		 * be written.  Process the bufwait and clear any pending
11376		 * work which may include the freefile.
11377		 */
11378		if (inodedep->id_state & GOINGAWAY)
11379			goto bufwait;
11380		return (1);
11381	}
11382	inodedep->id_state |= COMPLETE;
11383	/*
11384	 * Roll forward anything that had to be rolled back before
11385	 * the inode could be updated.
11386	 */
11387	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11388		nextadp = TAILQ_NEXT(adp, ad_next);
11389		if (adp->ad_state & ATTACHED)
11390			panic("handle_written_inodeblock: new entry");
11391		if (fstype == UFS1) {
11392			if (adp->ad_offset < NDADDR) {
11393				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11394					panic("%s %s #%jd mismatch %d != %jd",
11395					    "handle_written_inodeblock:",
11396					    "direct pointer",
11397					    (intmax_t)adp->ad_offset,
11398					    dp1->di_db[adp->ad_offset],
11399					    (intmax_t)adp->ad_oldblkno);
11400				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11401			} else {
11402				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11403					panic("%s: %s #%jd allocated as %d",
11404					    "handle_written_inodeblock",
11405					    "indirect pointer",
11406					    (intmax_t)adp->ad_offset - NDADDR,
11407					    dp1->di_ib[adp->ad_offset - NDADDR]);
11408				dp1->di_ib[adp->ad_offset - NDADDR] =
11409				    adp->ad_newblkno;
11410			}
11411		} else {
11412			if (adp->ad_offset < NDADDR) {
11413				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11414					panic("%s: %s #%jd %s %jd != %jd",
11415					    "handle_written_inodeblock",
11416					    "direct pointer",
11417					    (intmax_t)adp->ad_offset, "mismatch",
11418					    (intmax_t)dp2->di_db[adp->ad_offset],
11419					    (intmax_t)adp->ad_oldblkno);
11420				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11421			} else {
11422				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11423					panic("%s: %s #%jd allocated as %jd",
11424					    "handle_written_inodeblock",
11425					    "indirect pointer",
11426					    (intmax_t)adp->ad_offset - NDADDR,
11427					    (intmax_t)
11428					    dp2->di_ib[adp->ad_offset - NDADDR]);
11429				dp2->di_ib[adp->ad_offset - NDADDR] =
11430				    adp->ad_newblkno;
11431			}
11432		}
11433		adp->ad_state &= ~UNDONE;
11434		adp->ad_state |= ATTACHED;
11435		hadchanges = 1;
11436	}
11437	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11438		nextadp = TAILQ_NEXT(adp, ad_next);
11439		if (adp->ad_state & ATTACHED)
11440			panic("handle_written_inodeblock: new entry");
11441		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11442			panic("%s: direct pointers #%jd %s %jd != %jd",
11443			    "handle_written_inodeblock",
11444			    (intmax_t)adp->ad_offset, "mismatch",
11445			    (intmax_t)dp2->di_extb[adp->ad_offset],
11446			    (intmax_t)adp->ad_oldblkno);
11447		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11448		adp->ad_state &= ~UNDONE;
11449		adp->ad_state |= ATTACHED;
11450		hadchanges = 1;
11451	}
11452	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11453		stat_direct_blk_ptrs++;
11454	/*
11455	 * Reset the file size to its most up-to-date value.
11456	 */
11457	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11458		panic("handle_written_inodeblock: bad size");
11459	if (inodedep->id_savednlink > LINK_MAX)
11460		panic("handle_written_inodeblock: Invalid link count "
11461		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11462	if (fstype == UFS1) {
11463		if (dp1->di_nlink != inodedep->id_savednlink) {
11464			dp1->di_nlink = inodedep->id_savednlink;
11465			hadchanges = 1;
11466		}
11467		if (dp1->di_size != inodedep->id_savedsize) {
11468			dp1->di_size = inodedep->id_savedsize;
11469			hadchanges = 1;
11470		}
11471	} else {
11472		if (dp2->di_nlink != inodedep->id_savednlink) {
11473			dp2->di_nlink = inodedep->id_savednlink;
11474			hadchanges = 1;
11475		}
11476		if (dp2->di_size != inodedep->id_savedsize) {
11477			dp2->di_size = inodedep->id_savedsize;
11478			hadchanges = 1;
11479		}
11480		if (dp2->di_extsize != inodedep->id_savedextsize) {
11481			dp2->di_extsize = inodedep->id_savedextsize;
11482			hadchanges = 1;
11483		}
11484	}
11485	inodedep->id_savedsize = -1;
11486	inodedep->id_savedextsize = -1;
11487	inodedep->id_savednlink = -1;
11488	/*
11489	 * If there were any rollbacks in the inode block, then it must be
11490	 * marked dirty so that its will eventually get written back in
11491	 * its correct form.
11492	 */
11493	if (hadchanges)
11494		bdirty(bp);
11495bufwait:
11496	/*
11497	 * Process any allocdirects that completed during the update.
11498	 */
11499	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11500		handle_allocdirect_partdone(adp, &wkhd);
11501	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11502		handle_allocdirect_partdone(adp, &wkhd);
11503	/*
11504	 * Process deallocations that were held pending until the
11505	 * inode had been written to disk. Freeing of the inode
11506	 * is delayed until after all blocks have been freed to
11507	 * avoid creation of new <vfsid, inum, lbn> triples
11508	 * before the old ones have been deleted.  Completely
11509	 * unlinked inodes are not processed until the unlinked
11510	 * inode list is written or the last reference is removed.
11511	 */
11512	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11513		freefile = handle_bufwait(inodedep, NULL);
11514		if (freefile && !LIST_EMPTY(&wkhd)) {
11515			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11516			freefile = NULL;
11517		}
11518	}
11519	/*
11520	 * Move rolled forward dependency completions to the bufwait list
11521	 * now that those that were already written have been processed.
11522	 */
11523	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11524		panic("handle_written_inodeblock: bufwait but no changes");
11525	jwork_move(&inodedep->id_bufwait, &wkhd);
11526
11527	if (freefile != NULL) {
11528		/*
11529		 * If the inode is goingaway it was never written.  Fake up
11530		 * the state here so free_inodedep() can succeed.
11531		 */
11532		if (inodedep->id_state & GOINGAWAY)
11533			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11534		if (free_inodedep(inodedep) == 0)
11535			panic("handle_written_inodeblock: live inodedep %p",
11536			    inodedep);
11537		add_to_worklist(&freefile->fx_list, 0);
11538		return (0);
11539	}
11540
11541	/*
11542	 * If no outstanding dependencies, free it.
11543	 */
11544	if (free_inodedep(inodedep) ||
11545	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11546	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11547	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11548	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11549		return (0);
11550	return (hadchanges);
11551}
11552
11553static int
11554handle_written_indirdep(indirdep, bp, bpp)
11555	struct indirdep *indirdep;
11556	struct buf *bp;
11557	struct buf **bpp;
11558{
11559	struct allocindir *aip;
11560	struct buf *sbp;
11561	int chgs;
11562
11563	if (indirdep->ir_state & GOINGAWAY)
11564		panic("handle_written_indirdep: indirdep gone");
11565	if ((indirdep->ir_state & IOSTARTED) == 0)
11566		panic("handle_written_indirdep: IO not started");
11567	chgs = 0;
11568	/*
11569	 * If there were rollbacks revert them here.
11570	 */
11571	if (indirdep->ir_saveddata) {
11572		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11573		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11574			free(indirdep->ir_saveddata, M_INDIRDEP);
11575			indirdep->ir_saveddata = NULL;
11576		}
11577		chgs = 1;
11578	}
11579	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11580	indirdep->ir_state |= ATTACHED;
11581	/*
11582	 * Move allocindirs with written pointers to the completehd if
11583	 * the indirdep's pointer is not yet written.  Otherwise
11584	 * free them here.
11585	 */
11586	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11587		LIST_REMOVE(aip, ai_next);
11588		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11589			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11590			    ai_next);
11591			newblk_freefrag(&aip->ai_block);
11592			continue;
11593		}
11594		free_newblk(&aip->ai_block);
11595	}
11596	/*
11597	 * Move allocindirs that have finished dependency processing from
11598	 * the done list to the write list after updating the pointers.
11599	 */
11600	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11601		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11602			handle_allocindir_partdone(aip);
11603			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11604				panic("disk_write_complete: not gone");
11605			chgs = 1;
11606		}
11607	}
11608	/*
11609	 * Preserve the indirdep if there were any changes or if it is not
11610	 * yet valid on disk.
11611	 */
11612	if (chgs) {
11613		stat_indir_blk_ptrs++;
11614		bdirty(bp);
11615		return (1);
11616	}
11617	/*
11618	 * If there were no changes we can discard the savedbp and detach
11619	 * ourselves from the buf.  We are only carrying completed pointers
11620	 * in this case.
11621	 */
11622	sbp = indirdep->ir_savebp;
11623	sbp->b_flags |= B_INVAL | B_NOCACHE;
11624	indirdep->ir_savebp = NULL;
11625	indirdep->ir_bp = NULL;
11626	if (*bpp != NULL)
11627		panic("handle_written_indirdep: bp already exists.");
11628	*bpp = sbp;
11629	/*
11630	 * The indirdep may not be freed until its parent points at it.
11631	 */
11632	if (indirdep->ir_state & DEPCOMPLETE)
11633		free_indirdep(indirdep);
11634
11635	return (0);
11636}
11637
11638/*
11639 * Process a diradd entry after its dependent inode has been written.
11640 * This routine must be called with splbio interrupts blocked.
11641 */
11642static void
11643diradd_inode_written(dap, inodedep)
11644	struct diradd *dap;
11645	struct inodedep *inodedep;
11646{
11647
11648	dap->da_state |= COMPLETE;
11649	complete_diradd(dap);
11650	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11651}
11652
11653/*
11654 * Returns true if the bmsafemap will have rollbacks when written.  Must only
11655 * be called with the per-filesystem lock and the buf lock on the cg held.
11656 */
11657static int
11658bmsafemap_backgroundwrite(bmsafemap, bp)
11659	struct bmsafemap *bmsafemap;
11660	struct buf *bp;
11661{
11662	int dirty;
11663
11664	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11665	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11666	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11667	/*
11668	 * If we're initiating a background write we need to process the
11669	 * rollbacks as they exist now, not as they exist when IO starts.
11670	 * No other consumers will look at the contents of the shadowed
11671	 * buf so this is safe to do here.
11672	 */
11673	if (bp->b_xflags & BX_BKGRDMARKER)
11674		initiate_write_bmsafemap(bmsafemap, bp);
11675
11676	return (dirty);
11677}
11678
11679/*
11680 * Re-apply an allocation when a cg write is complete.
11681 */
11682static int
11683jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11684	struct jnewblk *jnewblk;
11685	struct fs *fs;
11686	struct cg *cgp;
11687	uint8_t *blksfree;
11688{
11689	ufs1_daddr_t fragno;
11690	ufs2_daddr_t blkno;
11691	long cgbno, bbase;
11692	int frags, blk;
11693	int i;
11694
11695	frags = 0;
11696	cgbno = dtogd(fs, jnewblk->jn_blkno);
11697	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11698		if (isclr(blksfree, cgbno + i))
11699			panic("jnewblk_rollforward: re-allocated fragment");
11700		frags++;
11701	}
11702	if (frags == fs->fs_frag) {
11703		blkno = fragstoblks(fs, cgbno);
11704		ffs_clrblock(fs, blksfree, (long)blkno);
11705		ffs_clusteracct(fs, cgp, blkno, -1);
11706		cgp->cg_cs.cs_nbfree--;
11707	} else {
11708		bbase = cgbno - fragnum(fs, cgbno);
11709		cgbno += jnewblk->jn_oldfrags;
11710                /* If a complete block had been reassembled, account for it. */
11711		fragno = fragstoblks(fs, bbase);
11712		if (ffs_isblock(fs, blksfree, fragno)) {
11713			cgp->cg_cs.cs_nffree += fs->fs_frag;
11714			ffs_clusteracct(fs, cgp, fragno, -1);
11715			cgp->cg_cs.cs_nbfree--;
11716		}
11717		/* Decrement the old frags.  */
11718		blk = blkmap(fs, blksfree, bbase);
11719		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11720		/* Allocate the fragment */
11721		for (i = 0; i < frags; i++)
11722			clrbit(blksfree, cgbno + i);
11723		cgp->cg_cs.cs_nffree -= frags;
11724		/* Add back in counts associated with the new frags */
11725		blk = blkmap(fs, blksfree, bbase);
11726		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11727	}
11728	return (frags);
11729}
11730
11731/*
11732 * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11733 * changes if it's not a background write.  Set all written dependencies
11734 * to DEPCOMPLETE and free the structure if possible.
11735 */
11736static int
11737handle_written_bmsafemap(bmsafemap, bp)
11738	struct bmsafemap *bmsafemap;
11739	struct buf *bp;
11740{
11741	struct newblk *newblk;
11742	struct inodedep *inodedep;
11743	struct jaddref *jaddref, *jatmp;
11744	struct jnewblk *jnewblk, *jntmp;
11745	struct ufsmount *ump;
11746	uint8_t *inosused;
11747	uint8_t *blksfree;
11748	struct cg *cgp;
11749	struct fs *fs;
11750	ino_t ino;
11751	int foreground;
11752	int chgs;
11753
11754	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11755		panic("initiate_write_bmsafemap: Not started\n");
11756	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11757	chgs = 0;
11758	bmsafemap->sm_state &= ~IOSTARTED;
11759	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11760	/*
11761	 * Release journal work that was waiting on the write.
11762	 */
11763	handle_jwork(&bmsafemap->sm_freewr);
11764
11765	/*
11766	 * Restore unwritten inode allocation pending jaddref writes.
11767	 */
11768	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11769		cgp = (struct cg *)bp->b_data;
11770		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11771		inosused = cg_inosused(cgp);
11772		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11773		    ja_bmdeps, jatmp) {
11774			if ((jaddref->ja_state & UNDONE) == 0)
11775				continue;
11776			ino = jaddref->ja_ino % fs->fs_ipg;
11777			if (isset(inosused, ino))
11778				panic("handle_written_bmsafemap: "
11779				    "re-allocated inode");
11780			/* Do the roll-forward only if it's a real copy. */
11781			if (foreground) {
11782				if ((jaddref->ja_mode & IFMT) == IFDIR)
11783					cgp->cg_cs.cs_ndir++;
11784				cgp->cg_cs.cs_nifree--;
11785				setbit(inosused, ino);
11786				chgs = 1;
11787			}
11788			jaddref->ja_state &= ~UNDONE;
11789			jaddref->ja_state |= ATTACHED;
11790			free_jaddref(jaddref);
11791		}
11792	}
11793	/*
11794	 * Restore any block allocations which are pending journal writes.
11795	 */
11796	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11797		cgp = (struct cg *)bp->b_data;
11798		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11799		blksfree = cg_blksfree(cgp);
11800		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11801		    jntmp) {
11802			if ((jnewblk->jn_state & UNDONE) == 0)
11803				continue;
11804			/* Do the roll-forward only if it's a real copy. */
11805			if (foreground &&
11806			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11807				chgs = 1;
11808			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11809			jnewblk->jn_state |= ATTACHED;
11810			free_jnewblk(jnewblk);
11811		}
11812	}
11813	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11814		newblk->nb_state |= DEPCOMPLETE;
11815		newblk->nb_state &= ~ONDEPLIST;
11816		newblk->nb_bmsafemap = NULL;
11817		LIST_REMOVE(newblk, nb_deps);
11818		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11819			handle_allocdirect_partdone(
11820			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11821		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11822			handle_allocindir_partdone(
11823			    WK_ALLOCINDIR(&newblk->nb_list));
11824		else if (newblk->nb_list.wk_type != D_NEWBLK)
11825			panic("handle_written_bmsafemap: Unexpected type: %s",
11826			    TYPENAME(newblk->nb_list.wk_type));
11827	}
11828	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11829		inodedep->id_state |= DEPCOMPLETE;
11830		inodedep->id_state &= ~ONDEPLIST;
11831		LIST_REMOVE(inodedep, id_deps);
11832		inodedep->id_bmsafemap = NULL;
11833	}
11834	LIST_REMOVE(bmsafemap, sm_next);
11835	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11836	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11837	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11838	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11839	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11840		LIST_REMOVE(bmsafemap, sm_hash);
11841		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11842		return (0);
11843	}
11844	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11845	if (foreground)
11846		bdirty(bp);
11847	return (1);
11848}
11849
11850/*
11851 * Try to free a mkdir dependency.
11852 */
11853static void
11854complete_mkdir(mkdir)
11855	struct mkdir *mkdir;
11856{
11857	struct diradd *dap;
11858
11859	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11860		return;
11861	LIST_REMOVE(mkdir, md_mkdirs);
11862	dap = mkdir->md_diradd;
11863	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11864	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11865		dap->da_state |= DEPCOMPLETE;
11866		complete_diradd(dap);
11867	}
11868	WORKITEM_FREE(mkdir, D_MKDIR);
11869}
11870
11871/*
11872 * Handle the completion of a mkdir dependency.
11873 */
11874static void
11875handle_written_mkdir(mkdir, type)
11876	struct mkdir *mkdir;
11877	int type;
11878{
11879
11880	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11881		panic("handle_written_mkdir: bad type");
11882	mkdir->md_state |= COMPLETE;
11883	complete_mkdir(mkdir);
11884}
11885
11886static int
11887free_pagedep(pagedep)
11888	struct pagedep *pagedep;
11889{
11890	int i;
11891
11892	if (pagedep->pd_state & NEWBLOCK)
11893		return (0);
11894	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11895		return (0);
11896	for (i = 0; i < DAHASHSZ; i++)
11897		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11898			return (0);
11899	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11900		return (0);
11901	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11902		return (0);
11903	if (pagedep->pd_state & ONWORKLIST)
11904		WORKLIST_REMOVE(&pagedep->pd_list);
11905	LIST_REMOVE(pagedep, pd_hash);
11906	WORKITEM_FREE(pagedep, D_PAGEDEP);
11907
11908	return (1);
11909}
11910
11911/*
11912 * Called from within softdep_disk_write_complete above.
11913 * A write operation was just completed. Removed inodes can
11914 * now be freed and associated block pointers may be committed.
11915 * Note that this routine is always called from interrupt level
11916 * with further splbio interrupts blocked.
11917 */
11918static int
11919handle_written_filepage(pagedep, bp)
11920	struct pagedep *pagedep;
11921	struct buf *bp;		/* buffer containing the written page */
11922{
11923	struct dirrem *dirrem;
11924	struct diradd *dap, *nextdap;
11925	struct direct *ep;
11926	int i, chgs;
11927
11928	if ((pagedep->pd_state & IOSTARTED) == 0)
11929		panic("handle_written_filepage: not started");
11930	pagedep->pd_state &= ~IOSTARTED;
11931	/*
11932	 * Process any directory removals that have been committed.
11933	 */
11934	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11935		LIST_REMOVE(dirrem, dm_next);
11936		dirrem->dm_state |= COMPLETE;
11937		dirrem->dm_dirinum = pagedep->pd_ino;
11938		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11939		    ("handle_written_filepage: Journal entries not written."));
11940		add_to_worklist(&dirrem->dm_list, 0);
11941	}
11942	/*
11943	 * Free any directory additions that have been committed.
11944	 * If it is a newly allocated block, we have to wait until
11945	 * the on-disk directory inode claims the new block.
11946	 */
11947	if ((pagedep->pd_state & NEWBLOCK) == 0)
11948		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11949			free_diradd(dap, NULL);
11950	/*
11951	 * Uncommitted directory entries must be restored.
11952	 */
11953	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11954		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11955		     dap = nextdap) {
11956			nextdap = LIST_NEXT(dap, da_pdlist);
11957			if (dap->da_state & ATTACHED)
11958				panic("handle_written_filepage: attached");
11959			ep = (struct direct *)
11960			    ((char *)bp->b_data + dap->da_offset);
11961			ep->d_ino = dap->da_newinum;
11962			dap->da_state &= ~UNDONE;
11963			dap->da_state |= ATTACHED;
11964			chgs = 1;
11965			/*
11966			 * If the inode referenced by the directory has
11967			 * been written out, then the dependency can be
11968			 * moved to the pending list.
11969			 */
11970			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11971				LIST_REMOVE(dap, da_pdlist);
11972				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11973				    da_pdlist);
11974			}
11975		}
11976	}
11977	/*
11978	 * If there were any rollbacks in the directory, then it must be
11979	 * marked dirty so that its will eventually get written back in
11980	 * its correct form.
11981	 */
11982	if (chgs) {
11983		if ((bp->b_flags & B_DELWRI) == 0)
11984			stat_dir_entry++;
11985		bdirty(bp);
11986		return (1);
11987	}
11988	/*
11989	 * If we are not waiting for a new directory block to be
11990	 * claimed by its inode, then the pagedep will be freed.
11991	 * Otherwise it will remain to track any new entries on
11992	 * the page in case they are fsync'ed.
11993	 */
11994	free_pagedep(pagedep);
11995	return (0);
11996}
11997
11998/*
11999 * Writing back in-core inode structures.
12000 *
12001 * The filesystem only accesses an inode's contents when it occupies an
12002 * "in-core" inode structure.  These "in-core" structures are separate from
12003 * the page frames used to cache inode blocks.  Only the latter are
12004 * transferred to/from the disk.  So, when the updated contents of the
12005 * "in-core" inode structure are copied to the corresponding in-memory inode
12006 * block, the dependencies are also transferred.  The following procedure is
12007 * called when copying a dirty "in-core" inode to a cached inode block.
12008 */
12009
12010/*
12011 * Called when an inode is loaded from disk. If the effective link count
12012 * differed from the actual link count when it was last flushed, then we
12013 * need to ensure that the correct effective link count is put back.
12014 */
12015void
12016softdep_load_inodeblock(ip)
12017	struct inode *ip;	/* the "in_core" copy of the inode */
12018{
12019	struct inodedep *inodedep;
12020
12021	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12022	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12023	/*
12024	 * Check for alternate nlink count.
12025	 */
12026	ip->i_effnlink = ip->i_nlink;
12027	ACQUIRE_LOCK(ip->i_ump);
12028	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
12029	    &inodedep) == 0) {
12030		FREE_LOCK(ip->i_ump);
12031		return;
12032	}
12033	ip->i_effnlink -= inodedep->id_nlinkdelta;
12034	FREE_LOCK(ip->i_ump);
12035}
12036
12037/*
12038 * This routine is called just before the "in-core" inode
12039 * information is to be copied to the in-memory inode block.
12040 * Recall that an inode block contains several inodes. If
12041 * the force flag is set, then the dependencies will be
12042 * cleared so that the update can always be made. Note that
12043 * the buffer is locked when this routine is called, so we
12044 * will never be in the middle of writing the inode block
12045 * to disk.
12046 */
12047void
12048softdep_update_inodeblock(ip, bp, waitfor)
12049	struct inode *ip;	/* the "in_core" copy of the inode */
12050	struct buf *bp;		/* the buffer containing the inode block */
12051	int waitfor;		/* nonzero => update must be allowed */
12052{
12053	struct inodedep *inodedep;
12054	struct inoref *inoref;
12055	struct ufsmount *ump;
12056	struct worklist *wk;
12057	struct mount *mp;
12058	struct buf *ibp;
12059	struct fs *fs;
12060	int error;
12061
12062	ump = ip->i_ump;
12063	mp = UFSTOVFS(ump);
12064	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12065	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12066	fs = ip->i_fs;
12067	/*
12068	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12069	 * does not have access to the in-core ip so must write directly into
12070	 * the inode block buffer when setting freelink.
12071	 */
12072	if (fs->fs_magic == FS_UFS1_MAGIC)
12073		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12074		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12075	else
12076		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12077		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12078	/*
12079	 * If the effective link count is not equal to the actual link
12080	 * count, then we must track the difference in an inodedep while
12081	 * the inode is (potentially) tossed out of the cache. Otherwise,
12082	 * if there is no existing inodedep, then there are no dependencies
12083	 * to track.
12084	 */
12085	ACQUIRE_LOCK(ump);
12086again:
12087	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12088		FREE_LOCK(ump);
12089		if (ip->i_effnlink != ip->i_nlink)
12090			panic("softdep_update_inodeblock: bad link count");
12091		return;
12092	}
12093	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12094		panic("softdep_update_inodeblock: bad delta");
12095	/*
12096	 * If we're flushing all dependencies we must also move any waiting
12097	 * for journal writes onto the bufwait list prior to I/O.
12098	 */
12099	if (waitfor) {
12100		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12101			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12102			    == DEPCOMPLETE) {
12103				jwait(&inoref->if_list, MNT_WAIT);
12104				goto again;
12105			}
12106		}
12107	}
12108	/*
12109	 * Changes have been initiated. Anything depending on these
12110	 * changes cannot occur until this inode has been written.
12111	 */
12112	inodedep->id_state &= ~COMPLETE;
12113	if ((inodedep->id_state & ONWORKLIST) == 0)
12114		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12115	/*
12116	 * Any new dependencies associated with the incore inode must
12117	 * now be moved to the list associated with the buffer holding
12118	 * the in-memory copy of the inode. Once merged process any
12119	 * allocdirects that are completed by the merger.
12120	 */
12121	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12122	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12123		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12124		    NULL);
12125	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12126	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12127		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12128		    NULL);
12129	/*
12130	 * Now that the inode has been pushed into the buffer, the
12131	 * operations dependent on the inode being written to disk
12132	 * can be moved to the id_bufwait so that they will be
12133	 * processed when the buffer I/O completes.
12134	 */
12135	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12136		WORKLIST_REMOVE(wk);
12137		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12138	}
12139	/*
12140	 * Newly allocated inodes cannot be written until the bitmap
12141	 * that allocates them have been written (indicated by
12142	 * DEPCOMPLETE being set in id_state). If we are doing a
12143	 * forced sync (e.g., an fsync on a file), we force the bitmap
12144	 * to be written so that the update can be done.
12145	 */
12146	if (waitfor == 0) {
12147		FREE_LOCK(ump);
12148		return;
12149	}
12150retry:
12151	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12152		FREE_LOCK(ump);
12153		return;
12154	}
12155	ibp = inodedep->id_bmsafemap->sm_buf;
12156	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12157	if (ibp == NULL) {
12158		/*
12159		 * If ibp came back as NULL, the dependency could have been
12160		 * freed while we slept.  Look it up again, and check to see
12161		 * that it has completed.
12162		 */
12163		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12164			goto retry;
12165		FREE_LOCK(ump);
12166		return;
12167	}
12168	FREE_LOCK(ump);
12169	if ((error = bwrite(ibp)) != 0)
12170		softdep_error("softdep_update_inodeblock: bwrite", error);
12171}
12172
12173/*
12174 * Merge the a new inode dependency list (such as id_newinoupdt) into an
12175 * old inode dependency list (such as id_inoupdt). This routine must be
12176 * called with splbio interrupts blocked.
12177 */
12178static void
12179merge_inode_lists(newlisthead, oldlisthead)
12180	struct allocdirectlst *newlisthead;
12181	struct allocdirectlst *oldlisthead;
12182{
12183	struct allocdirect *listadp, *newadp;
12184
12185	newadp = TAILQ_FIRST(newlisthead);
12186	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12187		if (listadp->ad_offset < newadp->ad_offset) {
12188			listadp = TAILQ_NEXT(listadp, ad_next);
12189			continue;
12190		}
12191		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12192		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12193		if (listadp->ad_offset == newadp->ad_offset) {
12194			allocdirect_merge(oldlisthead, newadp,
12195			    listadp);
12196			listadp = newadp;
12197		}
12198		newadp = TAILQ_FIRST(newlisthead);
12199	}
12200	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12201		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12202		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12203	}
12204}
12205
12206/*
12207 * If we are doing an fsync, then we must ensure that any directory
12208 * entries for the inode have been written after the inode gets to disk.
12209 */
12210int
12211softdep_fsync(vp)
12212	struct vnode *vp;	/* the "in_core" copy of the inode */
12213{
12214	struct inodedep *inodedep;
12215	struct pagedep *pagedep;
12216	struct inoref *inoref;
12217	struct ufsmount *ump;
12218	struct worklist *wk;
12219	struct diradd *dap;
12220	struct mount *mp;
12221	struct vnode *pvp;
12222	struct inode *ip;
12223	struct buf *bp;
12224	struct fs *fs;
12225	struct thread *td = curthread;
12226	int error, flushparent, pagedep_new_block;
12227	ino_t parentino;
12228	ufs_lbn_t lbn;
12229
12230	ip = VTOI(vp);
12231	fs = ip->i_fs;
12232	ump = ip->i_ump;
12233	mp = vp->v_mount;
12234	if (MOUNTEDSOFTDEP(mp) == 0)
12235		return (0);
12236	ACQUIRE_LOCK(ump);
12237restart:
12238	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12239		FREE_LOCK(ump);
12240		return (0);
12241	}
12242	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12243		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12244		    == DEPCOMPLETE) {
12245			jwait(&inoref->if_list, MNT_WAIT);
12246			goto restart;
12247		}
12248	}
12249	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12250	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12251	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12252	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12253	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12254		panic("softdep_fsync: pending ops %p", inodedep);
12255	for (error = 0, flushparent = 0; ; ) {
12256		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12257			break;
12258		if (wk->wk_type != D_DIRADD)
12259			panic("softdep_fsync: Unexpected type %s",
12260			    TYPENAME(wk->wk_type));
12261		dap = WK_DIRADD(wk);
12262		/*
12263		 * Flush our parent if this directory entry has a MKDIR_PARENT
12264		 * dependency or is contained in a newly allocated block.
12265		 */
12266		if (dap->da_state & DIRCHG)
12267			pagedep = dap->da_previous->dm_pagedep;
12268		else
12269			pagedep = dap->da_pagedep;
12270		parentino = pagedep->pd_ino;
12271		lbn = pagedep->pd_lbn;
12272		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12273			panic("softdep_fsync: dirty");
12274		if ((dap->da_state & MKDIR_PARENT) ||
12275		    (pagedep->pd_state & NEWBLOCK))
12276			flushparent = 1;
12277		else
12278			flushparent = 0;
12279		/*
12280		 * If we are being fsync'ed as part of vgone'ing this vnode,
12281		 * then we will not be able to release and recover the
12282		 * vnode below, so we just have to give up on writing its
12283		 * directory entry out. It will eventually be written, just
12284		 * not now, but then the user was not asking to have it
12285		 * written, so we are not breaking any promises.
12286		 */
12287		if (vp->v_iflag & VI_DOOMED)
12288			break;
12289		/*
12290		 * We prevent deadlock by always fetching inodes from the
12291		 * root, moving down the directory tree. Thus, when fetching
12292		 * our parent directory, we first try to get the lock. If
12293		 * that fails, we must unlock ourselves before requesting
12294		 * the lock on our parent. See the comment in ufs_lookup
12295		 * for details on possible races.
12296		 */
12297		FREE_LOCK(ump);
12298		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12299		    FFSV_FORCEINSMQ)) {
12300			error = vfs_busy(mp, MBF_NOWAIT);
12301			if (error != 0) {
12302				vfs_ref(mp);
12303				VOP_UNLOCK(vp, 0);
12304				error = vfs_busy(mp, 0);
12305				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12306				vfs_rel(mp);
12307				if (error != 0)
12308					return (ENOENT);
12309				if (vp->v_iflag & VI_DOOMED) {
12310					vfs_unbusy(mp);
12311					return (ENOENT);
12312				}
12313			}
12314			VOP_UNLOCK(vp, 0);
12315			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12316			    &pvp, FFSV_FORCEINSMQ);
12317			vfs_unbusy(mp);
12318			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12319			if (vp->v_iflag & VI_DOOMED) {
12320				if (error == 0)
12321					vput(pvp);
12322				error = ENOENT;
12323			}
12324			if (error != 0)
12325				return (error);
12326		}
12327		/*
12328		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12329		 * that are contained in direct blocks will be resolved by
12330		 * doing a ffs_update. Pagedeps contained in indirect blocks
12331		 * may require a complete sync'ing of the directory. So, we
12332		 * try the cheap and fast ffs_update first, and if that fails,
12333		 * then we do the slower ffs_syncvnode of the directory.
12334		 */
12335		if (flushparent) {
12336			int locked;
12337
12338			if ((error = ffs_update(pvp, 1)) != 0) {
12339				vput(pvp);
12340				return (error);
12341			}
12342			ACQUIRE_LOCK(ump);
12343			locked = 1;
12344			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12345				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12346					if (wk->wk_type != D_DIRADD)
12347						panic("softdep_fsync: Unexpected type %s",
12348						      TYPENAME(wk->wk_type));
12349					dap = WK_DIRADD(wk);
12350					if (dap->da_state & DIRCHG)
12351						pagedep = dap->da_previous->dm_pagedep;
12352					else
12353						pagedep = dap->da_pagedep;
12354					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12355					FREE_LOCK(ump);
12356					locked = 0;
12357					if (pagedep_new_block && (error =
12358					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12359						vput(pvp);
12360						return (error);
12361					}
12362				}
12363			}
12364			if (locked)
12365				FREE_LOCK(ump);
12366		}
12367		/*
12368		 * Flush directory page containing the inode's name.
12369		 */
12370		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12371		    &bp);
12372		if (error == 0)
12373			error = bwrite(bp);
12374		else
12375			brelse(bp);
12376		vput(pvp);
12377		if (error != 0)
12378			return (error);
12379		ACQUIRE_LOCK(ump);
12380		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12381			break;
12382	}
12383	FREE_LOCK(ump);
12384	return (0);
12385}
12386
12387/*
12388 * Flush all the dirty bitmaps associated with the block device
12389 * before flushing the rest of the dirty blocks so as to reduce
12390 * the number of dependencies that will have to be rolled back.
12391 *
12392 * XXX Unused?
12393 */
12394void
12395softdep_fsync_mountdev(vp)
12396	struct vnode *vp;
12397{
12398	struct buf *bp, *nbp;
12399	struct worklist *wk;
12400	struct bufobj *bo;
12401
12402	if (!vn_isdisk(vp, NULL))
12403		panic("softdep_fsync_mountdev: vnode not a disk");
12404	bo = &vp->v_bufobj;
12405restart:
12406	BO_LOCK(bo);
12407	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12408		/*
12409		 * If it is already scheduled, skip to the next buffer.
12410		 */
12411		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12412			continue;
12413
12414		if ((bp->b_flags & B_DELWRI) == 0)
12415			panic("softdep_fsync_mountdev: not dirty");
12416		/*
12417		 * We are only interested in bitmaps with outstanding
12418		 * dependencies.
12419		 */
12420		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12421		    wk->wk_type != D_BMSAFEMAP ||
12422		    (bp->b_vflags & BV_BKGRDINPROG)) {
12423			BUF_UNLOCK(bp);
12424			continue;
12425		}
12426		BO_UNLOCK(bo);
12427		bremfree(bp);
12428		(void) bawrite(bp);
12429		goto restart;
12430	}
12431	drain_output(vp);
12432	BO_UNLOCK(bo);
12433}
12434
12435/*
12436 * Sync all cylinder groups that were dirty at the time this function is
12437 * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12438 * is used to flush freedep activity that may be holding up writes to a
12439 * indirect block.
12440 */
12441static int
12442sync_cgs(mp, waitfor)
12443	struct mount *mp;
12444	int waitfor;
12445{
12446	struct bmsafemap *bmsafemap;
12447	struct bmsafemap *sentinel;
12448	struct ufsmount *ump;
12449	struct buf *bp;
12450	int error;
12451
12452	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12453	sentinel->sm_cg = -1;
12454	ump = VFSTOUFS(mp);
12455	error = 0;
12456	ACQUIRE_LOCK(ump);
12457	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12458	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12459	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12460		/* Skip sentinels and cgs with no work to release. */
12461		if (bmsafemap->sm_cg == -1 ||
12462		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12463		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12464			LIST_REMOVE(sentinel, sm_next);
12465			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12466			continue;
12467		}
12468		/*
12469		 * If we don't get the lock and we're waiting try again, if
12470		 * not move on to the next buf and try to sync it.
12471		 */
12472		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12473		if (bp == NULL && waitfor == MNT_WAIT)
12474			continue;
12475		LIST_REMOVE(sentinel, sm_next);
12476		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12477		if (bp == NULL)
12478			continue;
12479		FREE_LOCK(ump);
12480		if (waitfor == MNT_NOWAIT)
12481			bawrite(bp);
12482		else
12483			error = bwrite(bp);
12484		ACQUIRE_LOCK(ump);
12485		if (error)
12486			break;
12487	}
12488	LIST_REMOVE(sentinel, sm_next);
12489	FREE_LOCK(ump);
12490	free(sentinel, M_BMSAFEMAP);
12491	return (error);
12492}
12493
12494/*
12495 * This routine is called when we are trying to synchronously flush a
12496 * file. This routine must eliminate any filesystem metadata dependencies
12497 * so that the syncing routine can succeed.
12498 */
12499int
12500softdep_sync_metadata(struct vnode *vp)
12501{
12502	struct inode *ip;
12503	int error;
12504
12505	ip = VTOI(vp);
12506	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12507	    ("softdep_sync_metadata called on non-softdep filesystem"));
12508	/*
12509	 * Ensure that any direct block dependencies have been cleared,
12510	 * truncations are started, and inode references are journaled.
12511	 */
12512	ACQUIRE_LOCK(ip->i_ump);
12513	/*
12514	 * Write all journal records to prevent rollbacks on devvp.
12515	 */
12516	if (vp->v_type == VCHR)
12517		softdep_flushjournal(vp->v_mount);
12518	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12519	/*
12520	 * Ensure that all truncates are written so we won't find deps on
12521	 * indirect blocks.
12522	 */
12523	process_truncates(vp);
12524	FREE_LOCK(ip->i_ump);
12525
12526	return (error);
12527}
12528
12529/*
12530 * This routine is called when we are attempting to sync a buf with
12531 * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12532 * other IO it can but returns EBUSY if the buffer is not yet able to
12533 * be written.  Dependencies which will not cause rollbacks will always
12534 * return 0.
12535 */
12536int
12537softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12538{
12539	struct indirdep *indirdep;
12540	struct pagedep *pagedep;
12541	struct allocindir *aip;
12542	struct newblk *newblk;
12543	struct ufsmount *ump;
12544	struct buf *nbp;
12545	struct worklist *wk;
12546	int i, error;
12547
12548	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12549	    ("softdep_sync_buf called on non-softdep filesystem"));
12550	/*
12551	 * For VCHR we just don't want to force flush any dependencies that
12552	 * will cause rollbacks.
12553	 */
12554	if (vp->v_type == VCHR) {
12555		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12556			return (EBUSY);
12557		return (0);
12558	}
12559	ump = VTOI(vp)->i_ump;
12560	ACQUIRE_LOCK(ump);
12561	/*
12562	 * As we hold the buffer locked, none of its dependencies
12563	 * will disappear.
12564	 */
12565	error = 0;
12566top:
12567	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12568		switch (wk->wk_type) {
12569
12570		case D_ALLOCDIRECT:
12571		case D_ALLOCINDIR:
12572			newblk = WK_NEWBLK(wk);
12573			if (newblk->nb_jnewblk != NULL) {
12574				if (waitfor == MNT_NOWAIT) {
12575					error = EBUSY;
12576					goto out_unlock;
12577				}
12578				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12579				goto top;
12580			}
12581			if (newblk->nb_state & DEPCOMPLETE ||
12582			    waitfor == MNT_NOWAIT)
12583				continue;
12584			nbp = newblk->nb_bmsafemap->sm_buf;
12585			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12586			if (nbp == NULL)
12587				goto top;
12588			FREE_LOCK(ump);
12589			if ((error = bwrite(nbp)) != 0)
12590				goto out;
12591			ACQUIRE_LOCK(ump);
12592			continue;
12593
12594		case D_INDIRDEP:
12595			indirdep = WK_INDIRDEP(wk);
12596			if (waitfor == MNT_NOWAIT) {
12597				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12598				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12599					error = EBUSY;
12600					goto out_unlock;
12601				}
12602			}
12603			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12604				panic("softdep_sync_buf: truncation pending.");
12605		restart:
12606			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12607				newblk = (struct newblk *)aip;
12608				if (newblk->nb_jnewblk != NULL) {
12609					jwait(&newblk->nb_jnewblk->jn_list,
12610					    waitfor);
12611					goto restart;
12612				}
12613				if (newblk->nb_state & DEPCOMPLETE)
12614					continue;
12615				nbp = newblk->nb_bmsafemap->sm_buf;
12616				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12617				if (nbp == NULL)
12618					goto restart;
12619				FREE_LOCK(ump);
12620				if ((error = bwrite(nbp)) != 0)
12621					goto out;
12622				ACQUIRE_LOCK(ump);
12623				goto restart;
12624			}
12625			continue;
12626
12627		case D_PAGEDEP:
12628			/*
12629			 * Only flush directory entries in synchronous passes.
12630			 */
12631			if (waitfor != MNT_WAIT) {
12632				error = EBUSY;
12633				goto out_unlock;
12634			}
12635			/*
12636			 * While syncing snapshots, we must allow recursive
12637			 * lookups.
12638			 */
12639			BUF_AREC(bp);
12640			/*
12641			 * We are trying to sync a directory that may
12642			 * have dependencies on both its own metadata
12643			 * and/or dependencies on the inodes of any
12644			 * recently allocated files. We walk its diradd
12645			 * lists pushing out the associated inode.
12646			 */
12647			pagedep = WK_PAGEDEP(wk);
12648			for (i = 0; i < DAHASHSZ; i++) {
12649				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12650					continue;
12651				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12652				    &pagedep->pd_diraddhd[i]))) {
12653					BUF_NOREC(bp);
12654					goto out_unlock;
12655				}
12656			}
12657			BUF_NOREC(bp);
12658			continue;
12659
12660		case D_FREEWORK:
12661		case D_FREEDEP:
12662		case D_JSEGDEP:
12663		case D_JNEWBLK:
12664			continue;
12665
12666		default:
12667			panic("softdep_sync_buf: Unknown type %s",
12668			    TYPENAME(wk->wk_type));
12669			/* NOTREACHED */
12670		}
12671	}
12672out_unlock:
12673	FREE_LOCK(ump);
12674out:
12675	return (error);
12676}
12677
12678/*
12679 * Flush the dependencies associated with an inodedep.
12680 * Called with splbio blocked.
12681 */
12682static int
12683flush_inodedep_deps(vp, mp, ino)
12684	struct vnode *vp;
12685	struct mount *mp;
12686	ino_t ino;
12687{
12688	struct inodedep *inodedep;
12689	struct inoref *inoref;
12690	struct ufsmount *ump;
12691	int error, waitfor;
12692
12693	/*
12694	 * This work is done in two passes. The first pass grabs most
12695	 * of the buffers and begins asynchronously writing them. The
12696	 * only way to wait for these asynchronous writes is to sleep
12697	 * on the filesystem vnode which may stay busy for a long time
12698	 * if the filesystem is active. So, instead, we make a second
12699	 * pass over the dependencies blocking on each write. In the
12700	 * usual case we will be blocking against a write that we
12701	 * initiated, so when it is done the dependency will have been
12702	 * resolved. Thus the second pass is expected to end quickly.
12703	 * We give a brief window at the top of the loop to allow
12704	 * any pending I/O to complete.
12705	 */
12706	ump = VFSTOUFS(mp);
12707	LOCK_OWNED(ump);
12708	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12709		if (error)
12710			return (error);
12711		FREE_LOCK(ump);
12712		ACQUIRE_LOCK(ump);
12713restart:
12714		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12715			return (0);
12716		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12717			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12718			    == DEPCOMPLETE) {
12719				jwait(&inoref->if_list, MNT_WAIT);
12720				goto restart;
12721			}
12722		}
12723		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12724		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12725		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12726		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12727			continue;
12728		/*
12729		 * If pass2, we are done, otherwise do pass 2.
12730		 */
12731		if (waitfor == MNT_WAIT)
12732			break;
12733		waitfor = MNT_WAIT;
12734	}
12735	/*
12736	 * Try freeing inodedep in case all dependencies have been removed.
12737	 */
12738	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12739		(void) free_inodedep(inodedep);
12740	return (0);
12741}
12742
12743/*
12744 * Flush an inode dependency list.
12745 * Called with splbio blocked.
12746 */
12747static int
12748flush_deplist(listhead, waitfor, errorp)
12749	struct allocdirectlst *listhead;
12750	int waitfor;
12751	int *errorp;
12752{
12753	struct allocdirect *adp;
12754	struct newblk *newblk;
12755	struct ufsmount *ump;
12756	struct buf *bp;
12757
12758	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12759		return (0);
12760	ump = VFSTOUFS(adp->ad_list.wk_mp);
12761	LOCK_OWNED(ump);
12762	TAILQ_FOREACH(adp, listhead, ad_next) {
12763		newblk = (struct newblk *)adp;
12764		if (newblk->nb_jnewblk != NULL) {
12765			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12766			return (1);
12767		}
12768		if (newblk->nb_state & DEPCOMPLETE)
12769			continue;
12770		bp = newblk->nb_bmsafemap->sm_buf;
12771		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12772		if (bp == NULL) {
12773			if (waitfor == MNT_NOWAIT)
12774				continue;
12775			return (1);
12776		}
12777		FREE_LOCK(ump);
12778		if (waitfor == MNT_NOWAIT)
12779			bawrite(bp);
12780		else
12781			*errorp = bwrite(bp);
12782		ACQUIRE_LOCK(ump);
12783		return (1);
12784	}
12785	return (0);
12786}
12787
12788/*
12789 * Flush dependencies associated with an allocdirect block.
12790 */
12791static int
12792flush_newblk_dep(vp, mp, lbn)
12793	struct vnode *vp;
12794	struct mount *mp;
12795	ufs_lbn_t lbn;
12796{
12797	struct newblk *newblk;
12798	struct ufsmount *ump;
12799	struct bufobj *bo;
12800	struct inode *ip;
12801	struct buf *bp;
12802	ufs2_daddr_t blkno;
12803	int error;
12804
12805	error = 0;
12806	bo = &vp->v_bufobj;
12807	ip = VTOI(vp);
12808	blkno = DIP(ip, i_db[lbn]);
12809	if (blkno == 0)
12810		panic("flush_newblk_dep: Missing block");
12811	ump = VFSTOUFS(mp);
12812	ACQUIRE_LOCK(ump);
12813	/*
12814	 * Loop until all dependencies related to this block are satisfied.
12815	 * We must be careful to restart after each sleep in case a write
12816	 * completes some part of this process for us.
12817	 */
12818	for (;;) {
12819		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12820			FREE_LOCK(ump);
12821			break;
12822		}
12823		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12824			panic("flush_newblk_deps: Bad newblk %p", newblk);
12825		/*
12826		 * Flush the journal.
12827		 */
12828		if (newblk->nb_jnewblk != NULL) {
12829			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12830			continue;
12831		}
12832		/*
12833		 * Write the bitmap dependency.
12834		 */
12835		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12836			bp = newblk->nb_bmsafemap->sm_buf;
12837			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12838			if (bp == NULL)
12839				continue;
12840			FREE_LOCK(ump);
12841			error = bwrite(bp);
12842			if (error)
12843				break;
12844			ACQUIRE_LOCK(ump);
12845			continue;
12846		}
12847		/*
12848		 * Write the buffer.
12849		 */
12850		FREE_LOCK(ump);
12851		BO_LOCK(bo);
12852		bp = gbincore(bo, lbn);
12853		if (bp != NULL) {
12854			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12855			    LK_INTERLOCK, BO_LOCKPTR(bo));
12856			if (error == ENOLCK) {
12857				ACQUIRE_LOCK(ump);
12858				continue; /* Slept, retry */
12859			}
12860			if (error != 0)
12861				break;	/* Failed */
12862			if (bp->b_flags & B_DELWRI) {
12863				bremfree(bp);
12864				error = bwrite(bp);
12865				if (error)
12866					break;
12867			} else
12868				BUF_UNLOCK(bp);
12869		} else
12870			BO_UNLOCK(bo);
12871		/*
12872		 * We have to wait for the direct pointers to
12873		 * point at the newdirblk before the dependency
12874		 * will go away.
12875		 */
12876		error = ffs_update(vp, 1);
12877		if (error)
12878			break;
12879		ACQUIRE_LOCK(ump);
12880	}
12881	return (error);
12882}
12883
12884/*
12885 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12886 * Called with splbio blocked.
12887 */
12888static int
12889flush_pagedep_deps(pvp, mp, diraddhdp)
12890	struct vnode *pvp;
12891	struct mount *mp;
12892	struct diraddhd *diraddhdp;
12893{
12894	struct inodedep *inodedep;
12895	struct inoref *inoref;
12896	struct ufsmount *ump;
12897	struct diradd *dap;
12898	struct vnode *vp;
12899	int error = 0;
12900	struct buf *bp;
12901	ino_t inum;
12902	struct diraddhd unfinished;
12903
12904	LIST_INIT(&unfinished);
12905	ump = VFSTOUFS(mp);
12906	LOCK_OWNED(ump);
12907restart:
12908	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12909		/*
12910		 * Flush ourselves if this directory entry
12911		 * has a MKDIR_PARENT dependency.
12912		 */
12913		if (dap->da_state & MKDIR_PARENT) {
12914			FREE_LOCK(ump);
12915			if ((error = ffs_update(pvp, 1)) != 0)
12916				break;
12917			ACQUIRE_LOCK(ump);
12918			/*
12919			 * If that cleared dependencies, go on to next.
12920			 */
12921			if (dap != LIST_FIRST(diraddhdp))
12922				continue;
12923			/*
12924			 * All MKDIR_PARENT dependencies and all the
12925			 * NEWBLOCK pagedeps that are contained in direct
12926			 * blocks were resolved by doing above ffs_update.
12927			 * Pagedeps contained in indirect blocks may
12928			 * require a complete sync'ing of the directory.
12929			 * We are in the midst of doing a complete sync,
12930			 * so if they are not resolved in this pass we
12931			 * defer them for now as they will be sync'ed by
12932			 * our caller shortly.
12933			 */
12934			LIST_REMOVE(dap, da_pdlist);
12935			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
12936			continue;
12937		}
12938		/*
12939		 * A newly allocated directory must have its "." and
12940		 * ".." entries written out before its name can be
12941		 * committed in its parent.
12942		 */
12943		inum = dap->da_newinum;
12944		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12945			panic("flush_pagedep_deps: lost inode1");
12946		/*
12947		 * Wait for any pending journal adds to complete so we don't
12948		 * cause rollbacks while syncing.
12949		 */
12950		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12951			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12952			    == DEPCOMPLETE) {
12953				jwait(&inoref->if_list, MNT_WAIT);
12954				goto restart;
12955			}
12956		}
12957		if (dap->da_state & MKDIR_BODY) {
12958			FREE_LOCK(ump);
12959			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12960			    FFSV_FORCEINSMQ)))
12961				break;
12962			error = flush_newblk_dep(vp, mp, 0);
12963			/*
12964			 * If we still have the dependency we might need to
12965			 * update the vnode to sync the new link count to
12966			 * disk.
12967			 */
12968			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12969				error = ffs_update(vp, 1);
12970			vput(vp);
12971			if (error != 0)
12972				break;
12973			ACQUIRE_LOCK(ump);
12974			/*
12975			 * If that cleared dependencies, go on to next.
12976			 */
12977			if (dap != LIST_FIRST(diraddhdp))
12978				continue;
12979			if (dap->da_state & MKDIR_BODY) {
12980				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12981				    &inodedep);
12982				panic("flush_pagedep_deps: MKDIR_BODY "
12983				    "inodedep %p dap %p vp %p",
12984				    inodedep, dap, vp);
12985			}
12986		}
12987		/*
12988		 * Flush the inode on which the directory entry depends.
12989		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12990		 * the only remaining dependency is that the updated inode
12991		 * count must get pushed to disk. The inode has already
12992		 * been pushed into its inode buffer (via VOP_UPDATE) at
12993		 * the time of the reference count change. So we need only
12994		 * locate that buffer, ensure that there will be no rollback
12995		 * caused by a bitmap dependency, then write the inode buffer.
12996		 */
12997retry:
12998		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12999			panic("flush_pagedep_deps: lost inode");
13000		/*
13001		 * If the inode still has bitmap dependencies,
13002		 * push them to disk.
13003		 */
13004		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13005			bp = inodedep->id_bmsafemap->sm_buf;
13006			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13007			if (bp == NULL)
13008				goto retry;
13009			FREE_LOCK(ump);
13010			if ((error = bwrite(bp)) != 0)
13011				break;
13012			ACQUIRE_LOCK(ump);
13013			if (dap != LIST_FIRST(diraddhdp))
13014				continue;
13015		}
13016		/*
13017		 * If the inode is still sitting in a buffer waiting
13018		 * to be written or waiting for the link count to be
13019		 * adjusted update it here to flush it to disk.
13020		 */
13021		if (dap == LIST_FIRST(diraddhdp)) {
13022			FREE_LOCK(ump);
13023			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13024			    FFSV_FORCEINSMQ)))
13025				break;
13026			error = ffs_update(vp, 1);
13027			vput(vp);
13028			if (error)
13029				break;
13030			ACQUIRE_LOCK(ump);
13031		}
13032		/*
13033		 * If we have failed to get rid of all the dependencies
13034		 * then something is seriously wrong.
13035		 */
13036		if (dap == LIST_FIRST(diraddhdp)) {
13037			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13038			panic("flush_pagedep_deps: failed to flush "
13039			    "inodedep %p ino %ju dap %p",
13040			    inodedep, (uintmax_t)inum, dap);
13041		}
13042	}
13043	if (error)
13044		ACQUIRE_LOCK(ump);
13045	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13046		LIST_REMOVE(dap, da_pdlist);
13047		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13048	}
13049	return (error);
13050}
13051
13052/*
13053 * A large burst of file addition or deletion activity can drive the
13054 * memory load excessively high. First attempt to slow things down
13055 * using the techniques below. If that fails, this routine requests
13056 * the offending operations to fall back to running synchronously
13057 * until the memory load returns to a reasonable level.
13058 */
13059int
13060softdep_slowdown(vp)
13061	struct vnode *vp;
13062{
13063	struct ufsmount *ump;
13064	int jlow;
13065	int max_softdeps_hard;
13066
13067	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13068	    ("softdep_slowdown called on non-softdep filesystem"));
13069	ump = VFSTOUFS(vp->v_mount);
13070	ACQUIRE_LOCK(ump);
13071	jlow = 0;
13072	/*
13073	 * Check for journal space if needed.
13074	 */
13075	if (DOINGSUJ(vp)) {
13076		if (journal_space(ump, 0) == 0)
13077			jlow = 1;
13078	}
13079	/*
13080	 * If the system is under its limits and our filesystem is
13081	 * not responsible for more than our share of the usage and
13082	 * we are not low on journal space, then no need to slow down.
13083	 */
13084	max_softdeps_hard = max_softdeps * 11 / 10;
13085	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13086	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13087	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13088	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13089	    ump->softdep_curdeps[D_DIRREM] <
13090	    (max_softdeps_hard / 2) / stat_flush_threads &&
13091	    ump->softdep_curdeps[D_INODEDEP] <
13092	    max_softdeps_hard / stat_flush_threads &&
13093	    ump->softdep_curdeps[D_INDIRDEP] <
13094	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13095	    ump->softdep_curdeps[D_FREEBLKS] <
13096	    max_softdeps_hard / stat_flush_threads) {
13097		FREE_LOCK(ump);
13098  		return (0);
13099	}
13100	/*
13101	 * If the journal is low or our filesystem is over its limit
13102	 * then speedup the cleanup.
13103	 */
13104	if (ump->softdep_curdeps[D_INDIRDEP] <
13105	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13106		softdep_speedup(ump);
13107	stat_sync_limit_hit += 1;
13108	FREE_LOCK(ump);
13109	/*
13110	 * We only slow down the rate at which new dependencies are
13111	 * generated if we are not using journaling. With journaling,
13112	 * the cleanup should always be sufficient to keep things
13113	 * under control.
13114	 */
13115	if (DOINGSUJ(vp))
13116		return (0);
13117	return (1);
13118}
13119
13120/*
13121 * Called by the allocation routines when they are about to fail
13122 * in the hope that we can free up the requested resource (inodes
13123 * or disk space).
13124 *
13125 * First check to see if the work list has anything on it. If it has,
13126 * clean up entries until we successfully free the requested resource.
13127 * Because this process holds inodes locked, we cannot handle any remove
13128 * requests that might block on a locked inode as that could lead to
13129 * deadlock. If the worklist yields none of the requested resource,
13130 * start syncing out vnodes to free up the needed space.
13131 */
13132int
13133softdep_request_cleanup(fs, vp, cred, resource)
13134	struct fs *fs;
13135	struct vnode *vp;
13136	struct ucred *cred;
13137	int resource;
13138{
13139	struct ufsmount *ump;
13140	struct mount *mp;
13141	struct vnode *lvp, *mvp;
13142	long starttime;
13143	ufs2_daddr_t needed;
13144	int error;
13145
13146	/*
13147	 * If we are being called because of a process doing a
13148	 * copy-on-write, then it is not safe to process any
13149	 * worklist items as we will recurse into the copyonwrite
13150	 * routine.  This will result in an incoherent snapshot.
13151	 * If the vnode that we hold is a snapshot, we must avoid
13152	 * handling other resources that could cause deadlock.
13153	 */
13154	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13155		return (0);
13156
13157	if (resource == FLUSH_BLOCKS_WAIT)
13158		stat_cleanup_blkrequests += 1;
13159	else
13160		stat_cleanup_inorequests += 1;
13161
13162	mp = vp->v_mount;
13163	ump = VFSTOUFS(mp);
13164	mtx_assert(UFS_MTX(ump), MA_OWNED);
13165	UFS_UNLOCK(ump);
13166	error = ffs_update(vp, 1);
13167	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13168		UFS_LOCK(ump);
13169		return (0);
13170	}
13171	/*
13172	 * If we are in need of resources, start by cleaning up
13173	 * any block removals associated with our inode.
13174	 */
13175	ACQUIRE_LOCK(ump);
13176	process_removes(vp);
13177	process_truncates(vp);
13178	FREE_LOCK(ump);
13179	/*
13180	 * Now clean up at least as many resources as we will need.
13181	 *
13182	 * When requested to clean up inodes, the number that are needed
13183	 * is set by the number of simultaneous writers (mnt_writeopcount)
13184	 * plus a bit of slop (2) in case some more writers show up while
13185	 * we are cleaning.
13186	 *
13187	 * When requested to free up space, the amount of space that
13188	 * we need is enough blocks to allocate a full-sized segment
13189	 * (fs_contigsumsize). The number of such segments that will
13190	 * be needed is set by the number of simultaneous writers
13191	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13192	 * writers show up while we are cleaning.
13193	 *
13194	 * Additionally, if we are unpriviledged and allocating space,
13195	 * we need to ensure that we clean up enough blocks to get the
13196	 * needed number of blocks over the threshhold of the minimum
13197	 * number of blocks required to be kept free by the filesystem
13198	 * (fs_minfree).
13199	 */
13200	if (resource == FLUSH_INODES_WAIT) {
13201		needed = vp->v_mount->mnt_writeopcount + 2;
13202	} else if (resource == FLUSH_BLOCKS_WAIT) {
13203		needed = (vp->v_mount->mnt_writeopcount + 2) *
13204		    fs->fs_contigsumsize;
13205		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13206			needed += fragstoblks(fs,
13207			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13208			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13209	} else {
13210		UFS_LOCK(ump);
13211		printf("softdep_request_cleanup: Unknown resource type %d\n",
13212		    resource);
13213		return (0);
13214	}
13215	starttime = time_second;
13216retry:
13217	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13218	    fs->fs_cstotal.cs_nbfree <= needed) ||
13219	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13220	    fs->fs_cstotal.cs_nifree <= needed)) {
13221		ACQUIRE_LOCK(ump);
13222		if (ump->softdep_on_worklist > 0 &&
13223		    process_worklist_item(UFSTOVFS(ump),
13224		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13225			stat_worklist_push += 1;
13226		FREE_LOCK(ump);
13227	}
13228	/*
13229	 * If we still need resources and there are no more worklist
13230	 * entries to process to obtain them, we have to start flushing
13231	 * the dirty vnodes to force the release of additional requests
13232	 * to the worklist that we can then process to reap addition
13233	 * resources. We walk the vnodes associated with the mount point
13234	 * until we get the needed worklist requests that we can reap.
13235	 */
13236	if ((resource == FLUSH_BLOCKS_WAIT &&
13237	     fs->fs_cstotal.cs_nbfree <= needed) ||
13238	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13239	     fs->fs_cstotal.cs_nifree <= needed)) {
13240		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13241			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13242				VI_UNLOCK(lvp);
13243				continue;
13244			}
13245			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13246			    curthread))
13247				continue;
13248			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13249				vput(lvp);
13250				continue;
13251			}
13252			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13253			vput(lvp);
13254		}
13255		lvp = ump->um_devvp;
13256		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13257			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13258			VOP_UNLOCK(lvp, 0);
13259		}
13260		if (ump->softdep_on_worklist > 0) {
13261			stat_cleanup_retries += 1;
13262			goto retry;
13263		}
13264		stat_cleanup_failures += 1;
13265	}
13266	if (time_second - starttime > stat_cleanup_high_delay)
13267		stat_cleanup_high_delay = time_second - starttime;
13268	UFS_LOCK(ump);
13269	return (1);
13270}
13271
13272/*
13273 * If memory utilization has gotten too high, deliberately slow things
13274 * down and speed up the I/O processing.
13275 */
13276static int
13277request_cleanup(mp, resource)
13278	struct mount *mp;
13279	int resource;
13280{
13281	struct thread *td = curthread;
13282	struct ufsmount *ump;
13283
13284	ump = VFSTOUFS(mp);
13285	LOCK_OWNED(ump);
13286	/*
13287	 * We never hold up the filesystem syncer or buf daemon.
13288	 */
13289	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13290		return (0);
13291	/*
13292	 * First check to see if the work list has gotten backlogged.
13293	 * If it has, co-opt this process to help clean up two entries.
13294	 * Because this process may hold inodes locked, we cannot
13295	 * handle any remove requests that might block on a locked
13296	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13297	 * to avoid recursively processing the worklist.
13298	 */
13299	if (ump->softdep_on_worklist > max_softdeps / 10) {
13300		td->td_pflags |= TDP_SOFTDEP;
13301		process_worklist_item(mp, 2, LK_NOWAIT);
13302		td->td_pflags &= ~TDP_SOFTDEP;
13303		stat_worklist_push += 2;
13304		return(1);
13305	}
13306	/*
13307	 * Next, we attempt to speed up the syncer process. If that
13308	 * is successful, then we allow the process to continue.
13309	 */
13310	if (softdep_speedup(ump) &&
13311	    resource != FLUSH_BLOCKS_WAIT &&
13312	    resource != FLUSH_INODES_WAIT)
13313		return(0);
13314	/*
13315	 * If we are resource constrained on inode dependencies, try
13316	 * flushing some dirty inodes. Otherwise, we are constrained
13317	 * by file deletions, so try accelerating flushes of directories
13318	 * with removal dependencies. We would like to do the cleanup
13319	 * here, but we probably hold an inode locked at this point and
13320	 * that might deadlock against one that we try to clean. So,
13321	 * the best that we can do is request the syncer daemon to do
13322	 * the cleanup for us.
13323	 */
13324	switch (resource) {
13325
13326	case FLUSH_INODES:
13327	case FLUSH_INODES_WAIT:
13328		ACQUIRE_GBLLOCK(&lk);
13329		stat_ino_limit_push += 1;
13330		req_clear_inodedeps += 1;
13331		FREE_GBLLOCK(&lk);
13332		stat_countp = &stat_ino_limit_hit;
13333		break;
13334
13335	case FLUSH_BLOCKS:
13336	case FLUSH_BLOCKS_WAIT:
13337		ACQUIRE_GBLLOCK(&lk);
13338		stat_blk_limit_push += 1;
13339		req_clear_remove += 1;
13340		FREE_GBLLOCK(&lk);
13341		stat_countp = &stat_blk_limit_hit;
13342		break;
13343
13344	default:
13345		panic("request_cleanup: unknown type");
13346	}
13347	/*
13348	 * Hopefully the syncer daemon will catch up and awaken us.
13349	 * We wait at most tickdelay before proceeding in any case.
13350	 */
13351	ACQUIRE_GBLLOCK(&lk);
13352	FREE_LOCK(ump);
13353	proc_waiting += 1;
13354	if (callout_pending(&softdep_callout) == FALSE)
13355		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13356		    pause_timer, 0);
13357
13358	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13359	proc_waiting -= 1;
13360	FREE_GBLLOCK(&lk);
13361	ACQUIRE_LOCK(ump);
13362	return (1);
13363}
13364
13365/*
13366 * Awaken processes pausing in request_cleanup and clear proc_waiting
13367 * to indicate that there is no longer a timer running. Pause_timer
13368 * will be called with the global softdep mutex (&lk) locked.
13369 */
13370static void
13371pause_timer(arg)
13372	void *arg;
13373{
13374
13375	GBLLOCK_OWNED(&lk);
13376	/*
13377	 * The callout_ API has acquired mtx and will hold it around this
13378	 * function call.
13379	 */
13380	*stat_countp += proc_waiting;
13381	wakeup(&proc_waiting);
13382}
13383
13384/*
13385 * If requested, try removing inode or removal dependencies.
13386 */
13387static void
13388check_clear_deps(mp)
13389	struct mount *mp;
13390{
13391
13392	/*
13393	 * If we are suspended, it may be because of our using
13394	 * too many inodedeps, so help clear them out.
13395	 */
13396	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13397		clear_inodedeps(mp);
13398	/*
13399	 * General requests for cleanup of backed up dependencies
13400	 */
13401	ACQUIRE_GBLLOCK(&lk);
13402	if (req_clear_inodedeps) {
13403		req_clear_inodedeps -= 1;
13404		FREE_GBLLOCK(&lk);
13405		clear_inodedeps(mp);
13406		ACQUIRE_GBLLOCK(&lk);
13407		wakeup(&proc_waiting);
13408	}
13409	if (req_clear_remove) {
13410		req_clear_remove -= 1;
13411		FREE_GBLLOCK(&lk);
13412		clear_remove(mp);
13413		ACQUIRE_GBLLOCK(&lk);
13414		wakeup(&proc_waiting);
13415	}
13416	FREE_GBLLOCK(&lk);
13417}
13418
13419/*
13420 * Flush out a directory with at least one removal dependency in an effort to
13421 * reduce the number of dirrem, freefile, and freeblks dependency structures.
13422 */
13423static void
13424clear_remove(mp)
13425	struct mount *mp;
13426{
13427	struct pagedep_hashhead *pagedephd;
13428	struct pagedep *pagedep;
13429	struct ufsmount *ump;
13430	struct vnode *vp;
13431	struct bufobj *bo;
13432	int error, cnt;
13433	ino_t ino;
13434
13435	ump = VFSTOUFS(mp);
13436	LOCK_OWNED(ump);
13437
13438	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13439		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13440		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13441			ump->pagedep_nextclean = 0;
13442		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13443			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13444				continue;
13445			ino = pagedep->pd_ino;
13446			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13447				continue;
13448			FREE_LOCK(ump);
13449
13450			/*
13451			 * Let unmount clear deps
13452			 */
13453			error = vfs_busy(mp, MBF_NOWAIT);
13454			if (error != 0)
13455				goto finish_write;
13456			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13457			     FFSV_FORCEINSMQ);
13458			vfs_unbusy(mp);
13459			if (error != 0) {
13460				softdep_error("clear_remove: vget", error);
13461				goto finish_write;
13462			}
13463			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13464				softdep_error("clear_remove: fsync", error);
13465			bo = &vp->v_bufobj;
13466			BO_LOCK(bo);
13467			drain_output(vp);
13468			BO_UNLOCK(bo);
13469			vput(vp);
13470		finish_write:
13471			vn_finished_write(mp);
13472			ACQUIRE_LOCK(ump);
13473			return;
13474		}
13475	}
13476}
13477
13478/*
13479 * Clear out a block of dirty inodes in an effort to reduce
13480 * the number of inodedep dependency structures.
13481 */
13482static void
13483clear_inodedeps(mp)
13484	struct mount *mp;
13485{
13486	struct inodedep_hashhead *inodedephd;
13487	struct inodedep *inodedep;
13488	struct ufsmount *ump;
13489	struct vnode *vp;
13490	struct fs *fs;
13491	int error, cnt;
13492	ino_t firstino, lastino, ino;
13493
13494	ump = VFSTOUFS(mp);
13495	fs = ump->um_fs;
13496	LOCK_OWNED(ump);
13497	/*
13498	 * Pick a random inode dependency to be cleared.
13499	 * We will then gather up all the inodes in its block
13500	 * that have dependencies and flush them out.
13501	 */
13502	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13503		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13504		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13505			ump->inodedep_nextclean = 0;
13506		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13507			break;
13508	}
13509	if (inodedep == NULL)
13510		return;
13511	/*
13512	 * Find the last inode in the block with dependencies.
13513	 */
13514	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13515	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13516		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13517			break;
13518	/*
13519	 * Asynchronously push all but the last inode with dependencies.
13520	 * Synchronously push the last inode with dependencies to ensure
13521	 * that the inode block gets written to free up the inodedeps.
13522	 */
13523	for (ino = firstino; ino <= lastino; ino++) {
13524		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13525			continue;
13526		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13527			continue;
13528		FREE_LOCK(ump);
13529		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13530		if (error != 0) {
13531			vn_finished_write(mp);
13532			ACQUIRE_LOCK(ump);
13533			return;
13534		}
13535		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13536		    FFSV_FORCEINSMQ)) != 0) {
13537			softdep_error("clear_inodedeps: vget", error);
13538			vfs_unbusy(mp);
13539			vn_finished_write(mp);
13540			ACQUIRE_LOCK(ump);
13541			return;
13542		}
13543		vfs_unbusy(mp);
13544		if (ino == lastino) {
13545			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13546				softdep_error("clear_inodedeps: fsync1", error);
13547		} else {
13548			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13549				softdep_error("clear_inodedeps: fsync2", error);
13550			BO_LOCK(&vp->v_bufobj);
13551			drain_output(vp);
13552			BO_UNLOCK(&vp->v_bufobj);
13553		}
13554		vput(vp);
13555		vn_finished_write(mp);
13556		ACQUIRE_LOCK(ump);
13557	}
13558}
13559
13560void
13561softdep_buf_append(bp, wkhd)
13562	struct buf *bp;
13563	struct workhead *wkhd;
13564{
13565	struct worklist *wk;
13566	struct ufsmount *ump;
13567
13568	if ((wk = LIST_FIRST(wkhd)) == NULL)
13569		return;
13570	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13571	    ("softdep_buf_append called on non-softdep filesystem"));
13572	ump = VFSTOUFS(wk->wk_mp);
13573	ACQUIRE_LOCK(ump);
13574	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13575		WORKLIST_REMOVE(wk);
13576		WORKLIST_INSERT(&bp->b_dep, wk);
13577	}
13578	FREE_LOCK(ump);
13579
13580}
13581
13582void
13583softdep_inode_append(ip, cred, wkhd)
13584	struct inode *ip;
13585	struct ucred *cred;
13586	struct workhead *wkhd;
13587{
13588	struct buf *bp;
13589	struct fs *fs;
13590	int error;
13591
13592	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
13593	    ("softdep_inode_append called on non-softdep filesystem"));
13594	fs = ip->i_fs;
13595	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13596	    (int)fs->fs_bsize, cred, &bp);
13597	if (error) {
13598		bqrelse(bp);
13599		softdep_freework(wkhd);
13600		return;
13601	}
13602	softdep_buf_append(bp, wkhd);
13603	bqrelse(bp);
13604}
13605
13606void
13607softdep_freework(wkhd)
13608	struct workhead *wkhd;
13609{
13610	struct worklist *wk;
13611	struct ufsmount *ump;
13612
13613	if ((wk = LIST_FIRST(wkhd)) == NULL)
13614		return;
13615	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13616	    ("softdep_freework called on non-softdep filesystem"));
13617	ump = VFSTOUFS(wk->wk_mp);
13618	ACQUIRE_LOCK(ump);
13619	handle_jwork(wkhd);
13620	FREE_LOCK(ump);
13621}
13622
13623/*
13624 * Function to determine if the buffer has outstanding dependencies
13625 * that will cause a roll-back if the buffer is written. If wantcount
13626 * is set, return number of dependencies, otherwise just yes or no.
13627 */
13628static int
13629softdep_count_dependencies(bp, wantcount)
13630	struct buf *bp;
13631	int wantcount;
13632{
13633	struct worklist *wk;
13634	struct ufsmount *ump;
13635	struct bmsafemap *bmsafemap;
13636	struct freework *freework;
13637	struct inodedep *inodedep;
13638	struct indirdep *indirdep;
13639	struct freeblks *freeblks;
13640	struct allocindir *aip;
13641	struct pagedep *pagedep;
13642	struct dirrem *dirrem;
13643	struct newblk *newblk;
13644	struct mkdir *mkdir;
13645	struct diradd *dap;
13646	int i, retval;
13647
13648	retval = 0;
13649	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13650		return (0);
13651	ump = VFSTOUFS(wk->wk_mp);
13652	ACQUIRE_LOCK(ump);
13653	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13654		switch (wk->wk_type) {
13655
13656		case D_INODEDEP:
13657			inodedep = WK_INODEDEP(wk);
13658			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13659				/* bitmap allocation dependency */
13660				retval += 1;
13661				if (!wantcount)
13662					goto out;
13663			}
13664			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13665				/* direct block pointer dependency */
13666				retval += 1;
13667				if (!wantcount)
13668					goto out;
13669			}
13670			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13671				/* direct block pointer dependency */
13672				retval += 1;
13673				if (!wantcount)
13674					goto out;
13675			}
13676			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13677				/* Add reference dependency. */
13678				retval += 1;
13679				if (!wantcount)
13680					goto out;
13681			}
13682			continue;
13683
13684		case D_INDIRDEP:
13685			indirdep = WK_INDIRDEP(wk);
13686
13687			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13688				/* indirect truncation dependency */
13689				retval += 1;
13690				if (!wantcount)
13691					goto out;
13692			}
13693
13694			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13695				/* indirect block pointer dependency */
13696				retval += 1;
13697				if (!wantcount)
13698					goto out;
13699			}
13700			continue;
13701
13702		case D_PAGEDEP:
13703			pagedep = WK_PAGEDEP(wk);
13704			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13705				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13706					/* Journal remove ref dependency. */
13707					retval += 1;
13708					if (!wantcount)
13709						goto out;
13710				}
13711			}
13712			for (i = 0; i < DAHASHSZ; i++) {
13713
13714				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13715					/* directory entry dependency */
13716					retval += 1;
13717					if (!wantcount)
13718						goto out;
13719				}
13720			}
13721			continue;
13722
13723		case D_BMSAFEMAP:
13724			bmsafemap = WK_BMSAFEMAP(wk);
13725			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13726				/* Add reference dependency. */
13727				retval += 1;
13728				if (!wantcount)
13729					goto out;
13730			}
13731			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13732				/* Allocate block dependency. */
13733				retval += 1;
13734				if (!wantcount)
13735					goto out;
13736			}
13737			continue;
13738
13739		case D_FREEBLKS:
13740			freeblks = WK_FREEBLKS(wk);
13741			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13742				/* Freeblk journal dependency. */
13743				retval += 1;
13744				if (!wantcount)
13745					goto out;
13746			}
13747			continue;
13748
13749		case D_ALLOCDIRECT:
13750		case D_ALLOCINDIR:
13751			newblk = WK_NEWBLK(wk);
13752			if (newblk->nb_jnewblk) {
13753				/* Journal allocate dependency. */
13754				retval += 1;
13755				if (!wantcount)
13756					goto out;
13757			}
13758			continue;
13759
13760		case D_MKDIR:
13761			mkdir = WK_MKDIR(wk);
13762			if (mkdir->md_jaddref) {
13763				/* Journal reference dependency. */
13764				retval += 1;
13765				if (!wantcount)
13766					goto out;
13767			}
13768			continue;
13769
13770		case D_FREEWORK:
13771		case D_FREEDEP:
13772		case D_JSEGDEP:
13773		case D_JSEG:
13774		case D_SBDEP:
13775			/* never a dependency on these blocks */
13776			continue;
13777
13778		default:
13779			panic("softdep_count_dependencies: Unexpected type %s",
13780			    TYPENAME(wk->wk_type));
13781			/* NOTREACHED */
13782		}
13783	}
13784out:
13785	FREE_LOCK(ump);
13786	return retval;
13787}
13788
13789/*
13790 * Acquire exclusive access to a buffer.
13791 * Must be called with a locked mtx parameter.
13792 * Return acquired buffer or NULL on failure.
13793 */
13794static struct buf *
13795getdirtybuf(bp, lock, waitfor)
13796	struct buf *bp;
13797	struct rwlock *lock;
13798	int waitfor;
13799{
13800	int error;
13801
13802	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13803		if (waitfor != MNT_WAIT)
13804			return (NULL);
13805		error = BUF_LOCK(bp,
13806		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13807		/*
13808		 * Even if we sucessfully acquire bp here, we have dropped
13809		 * lock, which may violates our guarantee.
13810		 */
13811		if (error == 0)
13812			BUF_UNLOCK(bp);
13813		else if (error != ENOLCK)
13814			panic("getdirtybuf: inconsistent lock: %d", error);
13815		rw_wlock(lock);
13816		return (NULL);
13817	}
13818	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13819		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
13820			rw_wunlock(lock);
13821			BO_LOCK(bp->b_bufobj);
13822			BUF_UNLOCK(bp);
13823			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13824				bp->b_vflags |= BV_BKGRDWAIT;
13825				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13826				       PRIBIO | PDROP, "getbuf", 0);
13827			} else
13828				BO_UNLOCK(bp->b_bufobj);
13829			rw_wlock(lock);
13830			return (NULL);
13831		}
13832		BUF_UNLOCK(bp);
13833		if (waitfor != MNT_WAIT)
13834			return (NULL);
13835		/*
13836		 * The lock argument must be bp->b_vp's mutex in
13837		 * this case.
13838		 */
13839#ifdef	DEBUG_VFS_LOCKS
13840		if (bp->b_vp->v_type != VCHR)
13841			ASSERT_BO_WLOCKED(bp->b_bufobj);
13842#endif
13843		bp->b_vflags |= BV_BKGRDWAIT;
13844		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13845		return (NULL);
13846	}
13847	if ((bp->b_flags & B_DELWRI) == 0) {
13848		BUF_UNLOCK(bp);
13849		return (NULL);
13850	}
13851	bremfree(bp);
13852	return (bp);
13853}
13854
13855
13856/*
13857 * Check if it is safe to suspend the file system now.  On entry,
13858 * the vnode interlock for devvp should be held.  Return 0 with
13859 * the mount interlock held if the file system can be suspended now,
13860 * otherwise return EAGAIN with the mount interlock held.
13861 */
13862int
13863softdep_check_suspend(struct mount *mp,
13864		      struct vnode *devvp,
13865		      int softdep_depcnt,
13866		      int softdep_accdepcnt,
13867		      int secondary_writes,
13868		      int secondary_accwrites)
13869{
13870	struct bufobj *bo;
13871	struct ufsmount *ump;
13872	struct inodedep *inodedep;
13873	int error, unlinked;
13874
13875	bo = &devvp->v_bufobj;
13876	ASSERT_BO_WLOCKED(bo);
13877
13878	/*
13879	 * If we are not running with soft updates, then we need only
13880	 * deal with secondary writes as we try to suspend.
13881	 */
13882	if (MOUNTEDSOFTDEP(mp) == 0) {
13883		MNT_ILOCK(mp);
13884		while (mp->mnt_secondary_writes != 0) {
13885			BO_UNLOCK(bo);
13886			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
13887			    (PUSER - 1) | PDROP, "secwr", 0);
13888			BO_LOCK(bo);
13889			MNT_ILOCK(mp);
13890		}
13891
13892		/*
13893		 * Reasons for needing more work before suspend:
13894		 * - Dirty buffers on devvp.
13895		 * - Secondary writes occurred after start of vnode sync loop
13896		 */
13897		error = 0;
13898		if (bo->bo_numoutput > 0 ||
13899		    bo->bo_dirty.bv_cnt > 0 ||
13900		    secondary_writes != 0 ||
13901		    mp->mnt_secondary_writes != 0 ||
13902		    secondary_accwrites != mp->mnt_secondary_accwrites)
13903			error = EAGAIN;
13904		BO_UNLOCK(bo);
13905		return (error);
13906	}
13907
13908	/*
13909	 * If we are running with soft updates, then we need to coordinate
13910	 * with them as we try to suspend.
13911	 */
13912	ump = VFSTOUFS(mp);
13913	for (;;) {
13914		if (!TRY_ACQUIRE_LOCK(ump)) {
13915			BO_UNLOCK(bo);
13916			ACQUIRE_LOCK(ump);
13917			FREE_LOCK(ump);
13918			BO_LOCK(bo);
13919			continue;
13920		}
13921		MNT_ILOCK(mp);
13922		if (mp->mnt_secondary_writes != 0) {
13923			FREE_LOCK(ump);
13924			BO_UNLOCK(bo);
13925			msleep(&mp->mnt_secondary_writes,
13926			       MNT_MTX(mp),
13927			       (PUSER - 1) | PDROP, "secwr", 0);
13928			BO_LOCK(bo);
13929			continue;
13930		}
13931		break;
13932	}
13933
13934	unlinked = 0;
13935	if (MOUNTEDSUJ(mp)) {
13936		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
13937		    inodedep != NULL;
13938		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
13939			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
13940			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
13941			    UNLINKONLIST) ||
13942			    !check_inodedep_free(inodedep))
13943				continue;
13944			unlinked++;
13945		}
13946	}
13947
13948	/*
13949	 * Reasons for needing more work before suspend:
13950	 * - Dirty buffers on devvp.
13951	 * - Softdep activity occurred after start of vnode sync loop
13952	 * - Secondary writes occurred after start of vnode sync loop
13953	 */
13954	error = 0;
13955	if (bo->bo_numoutput > 0 ||
13956	    bo->bo_dirty.bv_cnt > 0 ||
13957	    softdep_depcnt != unlinked ||
13958	    ump->softdep_deps != unlinked ||
13959	    softdep_accdepcnt != ump->softdep_accdeps ||
13960	    secondary_writes != 0 ||
13961	    mp->mnt_secondary_writes != 0 ||
13962	    secondary_accwrites != mp->mnt_secondary_accwrites)
13963		error = EAGAIN;
13964	FREE_LOCK(ump);
13965	BO_UNLOCK(bo);
13966	return (error);
13967}
13968
13969
13970/*
13971 * Get the number of dependency structures for the file system, both
13972 * the current number and the total number allocated.  These will
13973 * later be used to detect that softdep processing has occurred.
13974 */
13975void
13976softdep_get_depcounts(struct mount *mp,
13977		      int *softdep_depsp,
13978		      int *softdep_accdepsp)
13979{
13980	struct ufsmount *ump;
13981
13982	if (MOUNTEDSOFTDEP(mp) == 0) {
13983		*softdep_depsp = 0;
13984		*softdep_accdepsp = 0;
13985		return;
13986	}
13987	ump = VFSTOUFS(mp);
13988	ACQUIRE_LOCK(ump);
13989	*softdep_depsp = ump->softdep_deps;
13990	*softdep_accdepsp = ump->softdep_accdeps;
13991	FREE_LOCK(ump);
13992}
13993
13994/*
13995 * Wait for pending output on a vnode to complete.
13996 * Must be called with vnode lock and interlock locked.
13997 *
13998 * XXX: Should just be a call to bufobj_wwait().
13999 */
14000static void
14001drain_output(vp)
14002	struct vnode *vp;
14003{
14004	struct bufobj *bo;
14005
14006	bo = &vp->v_bufobj;
14007	ASSERT_VOP_LOCKED(vp, "drain_output");
14008	ASSERT_BO_WLOCKED(bo);
14009
14010	while (bo->bo_numoutput) {
14011		bo->bo_flag |= BO_WWAIT;
14012		msleep((caddr_t)&bo->bo_numoutput,
14013		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
14014	}
14015}
14016
14017/*
14018 * Called whenever a buffer that is being invalidated or reallocated
14019 * contains dependencies. This should only happen if an I/O error has
14020 * occurred. The routine is called with the buffer locked.
14021 */
14022static void
14023softdep_deallocate_dependencies(bp)
14024	struct buf *bp;
14025{
14026
14027	if ((bp->b_ioflags & BIO_ERROR) == 0)
14028		panic("softdep_deallocate_dependencies: dangling deps");
14029	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14030		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14031	else
14032		printf("softdep_deallocate_dependencies: "
14033		    "got error %d while accessing filesystem\n", bp->b_error);
14034	if (bp->b_error != ENXIO)
14035		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14036}
14037
14038/*
14039 * Function to handle asynchronous write errors in the filesystem.
14040 */
14041static void
14042softdep_error(func, error)
14043	char *func;
14044	int error;
14045{
14046
14047	/* XXX should do something better! */
14048	printf("%s: got error %d while accessing filesystem\n", func, error);
14049}
14050
14051#ifdef DDB
14052
14053static void
14054inodedep_print(struct inodedep *inodedep, int verbose)
14055{
14056	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
14057	    " saveino %p\n",
14058	    inodedep, inodedep->id_fs, inodedep->id_state,
14059	    (intmax_t)inodedep->id_ino,
14060	    (intmax_t)fsbtodb(inodedep->id_fs,
14061	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14062	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
14063	    inodedep->id_savedino1);
14064
14065	if (verbose == 0)
14066		return;
14067
14068	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
14069	    "mkdiradd %p\n",
14070	    LIST_FIRST(&inodedep->id_pendinghd),
14071	    LIST_FIRST(&inodedep->id_bufwait),
14072	    LIST_FIRST(&inodedep->id_inowait),
14073	    TAILQ_FIRST(&inodedep->id_inoreflst),
14074	    inodedep->id_mkdiradd);
14075	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
14076	    TAILQ_FIRST(&inodedep->id_inoupdt),
14077	    TAILQ_FIRST(&inodedep->id_newinoupdt),
14078	    TAILQ_FIRST(&inodedep->id_extupdt),
14079	    TAILQ_FIRST(&inodedep->id_newextupdt));
14080}
14081
14082DB_SHOW_COMMAND(inodedep, db_show_inodedep)
14083{
14084
14085	if (have_addr == 0) {
14086		db_printf("Address required\n");
14087		return;
14088	}
14089	inodedep_print((struct inodedep*)addr, 1);
14090}
14091
14092DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
14093{
14094	struct inodedep_hashhead *inodedephd;
14095	struct inodedep *inodedep;
14096	struct ufsmount *ump;
14097	int cnt;
14098
14099	if (have_addr == 0) {
14100		db_printf("Address required\n");
14101		return;
14102	}
14103	ump = (struct ufsmount *)addr;
14104	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14105		inodedephd = &ump->inodedep_hashtbl[cnt];
14106		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14107			inodedep_print(inodedep, 0);
14108		}
14109	}
14110}
14111
14112DB_SHOW_COMMAND(worklist, db_show_worklist)
14113{
14114	struct worklist *wk;
14115
14116	if (have_addr == 0) {
14117		db_printf("Address required\n");
14118		return;
14119	}
14120	wk = (struct worklist *)addr;
14121	printf("worklist: %p type %s state 0x%X\n",
14122	    wk, TYPENAME(wk->wk_type), wk->wk_state);
14123}
14124
14125DB_SHOW_COMMAND(workhead, db_show_workhead)
14126{
14127	struct workhead *wkhd;
14128	struct worklist *wk;
14129	int i;
14130
14131	if (have_addr == 0) {
14132		db_printf("Address required\n");
14133		return;
14134	}
14135	wkhd = (struct workhead *)addr;
14136	wk = LIST_FIRST(wkhd);
14137	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
14138		db_printf("worklist: %p type %s state 0x%X",
14139		    wk, TYPENAME(wk->wk_type), wk->wk_state);
14140	if (i == 100)
14141		db_printf("workhead overflow");
14142	printf("\n");
14143}
14144
14145
14146DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
14147{
14148	struct mkdirlist *mkdirlisthd;
14149	struct jaddref *jaddref;
14150	struct diradd *diradd;
14151	struct mkdir *mkdir;
14152
14153	if (have_addr == 0) {
14154		db_printf("Address required\n");
14155		return;
14156	}
14157	mkdirlisthd = (struct mkdirlist *)addr;
14158	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14159		diradd = mkdir->md_diradd;
14160		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
14161		    mkdir, mkdir->md_state, diradd, diradd->da_state);
14162		if ((jaddref = mkdir->md_jaddref) != NULL)
14163			db_printf(" jaddref %p jaddref state 0x%X",
14164			    jaddref, jaddref->ja_state);
14165		db_printf("\n");
14166	}
14167}
14168
14169/* exported to ffs_vfsops.c */
14170extern void db_print_ffs(struct ufsmount *ump);
14171void
14172db_print_ffs(struct ufsmount *ump)
14173{
14174	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
14175	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
14176	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
14177	    ump->softdep_deps, ump->softdep_req);
14178}
14179
14180#endif /* DDB */
14181
14182#endif /* SOFTUPDATES */
14183