ffs_softdep.c revision 270007
1/*-
2 * Copyright 1998, 2000 Marshall Kirk McKusick.
3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4 * All rights reserved.
5 *
6 * The soft updates code is derived from the appendix of a University
7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8 * "Soft Updates: A Solution to the Metadata Update Problem in File
9 * Systems", CSE-TR-254-95, August 1995).
10 *
11 * Further information about soft updates can be obtained from:
12 *
13 *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14 *	1614 Oxford Street		mckusick@mckusick.com
15 *	Berkeley, CA 94709-1608		+1-510-843-9542
16 *	USA
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 *    notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 *    notice, this list of conditions and the following disclaimer in the
26 *    documentation and/or other materials provided with the distribution.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 *
39 *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40 */
41
42#include <sys/cdefs.h>
43__FBSDID("$FreeBSD: stable/10/sys/ufs/ffs/ffs_softdep.c 270007 2014-08-14 23:38:04Z mckusick $");
44
45#include "opt_ffs.h"
46#include "opt_quota.h"
47#include "opt_ddb.h"
48
49/*
50 * For now we want the safety net that the DEBUG flag provides.
51 */
52#ifndef DEBUG
53#define DEBUG
54#endif
55
56#include <sys/param.h>
57#include <sys/kernel.h>
58#include <sys/systm.h>
59#include <sys/bio.h>
60#include <sys/buf.h>
61#include <sys/kdb.h>
62#include <sys/kthread.h>
63#include <sys/ktr.h>
64#include <sys/limits.h>
65#include <sys/lock.h>
66#include <sys/malloc.h>
67#include <sys/mount.h>
68#include <sys/mutex.h>
69#include <sys/namei.h>
70#include <sys/priv.h>
71#include <sys/proc.h>
72#include <sys/rwlock.h>
73#include <sys/stat.h>
74#include <sys/sysctl.h>
75#include <sys/syslog.h>
76#include <sys/vnode.h>
77#include <sys/conf.h>
78
79#include <ufs/ufs/dir.h>
80#include <ufs/ufs/extattr.h>
81#include <ufs/ufs/quota.h>
82#include <ufs/ufs/inode.h>
83#include <ufs/ufs/ufsmount.h>
84#include <ufs/ffs/fs.h>
85#include <ufs/ffs/softdep.h>
86#include <ufs/ffs/ffs_extern.h>
87#include <ufs/ufs/ufs_extern.h>
88
89#include <vm/vm.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_object.h>
92
93#include <geom/geom.h>
94
95#include <ddb/ddb.h>
96
97#define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98
99#ifndef SOFTUPDATES
100
101int
102softdep_flushfiles(oldmnt, flags, td)
103	struct mount *oldmnt;
104	int flags;
105	struct thread *td;
106{
107
108	panic("softdep_flushfiles called");
109}
110
111int
112softdep_mount(devvp, mp, fs, cred)
113	struct vnode *devvp;
114	struct mount *mp;
115	struct fs *fs;
116	struct ucred *cred;
117{
118
119	return (0);
120}
121
122void
123softdep_initialize()
124{
125
126	return;
127}
128
129void
130softdep_uninitialize()
131{
132
133	return;
134}
135
136void
137softdep_unmount(mp)
138	struct mount *mp;
139{
140
141	panic("softdep_unmount called");
142}
143
144void
145softdep_setup_sbupdate(ump, fs, bp)
146	struct ufsmount *ump;
147	struct fs *fs;
148	struct buf *bp;
149{
150
151	panic("softdep_setup_sbupdate called");
152}
153
154void
155softdep_setup_inomapdep(bp, ip, newinum, mode)
156	struct buf *bp;
157	struct inode *ip;
158	ino_t newinum;
159	int mode;
160{
161
162	panic("softdep_setup_inomapdep called");
163}
164
165void
166softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
167	struct buf *bp;
168	struct mount *mp;
169	ufs2_daddr_t newblkno;
170	int frags;
171	int oldfrags;
172{
173
174	panic("softdep_setup_blkmapdep called");
175}
176
177void
178softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
179	struct inode *ip;
180	ufs_lbn_t lbn;
181	ufs2_daddr_t newblkno;
182	ufs2_daddr_t oldblkno;
183	long newsize;
184	long oldsize;
185	struct buf *bp;
186{
187
188	panic("softdep_setup_allocdirect called");
189}
190
191void
192softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
193	struct inode *ip;
194	ufs_lbn_t lbn;
195	ufs2_daddr_t newblkno;
196	ufs2_daddr_t oldblkno;
197	long newsize;
198	long oldsize;
199	struct buf *bp;
200{
201
202	panic("softdep_setup_allocext called");
203}
204
205void
206softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
207	struct inode *ip;
208	ufs_lbn_t lbn;
209	struct buf *bp;
210	int ptrno;
211	ufs2_daddr_t newblkno;
212	ufs2_daddr_t oldblkno;
213	struct buf *nbp;
214{
215
216	panic("softdep_setup_allocindir_page called");
217}
218
219void
220softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
221	struct buf *nbp;
222	struct inode *ip;
223	struct buf *bp;
224	int ptrno;
225	ufs2_daddr_t newblkno;
226{
227
228	panic("softdep_setup_allocindir_meta called");
229}
230
231void
232softdep_journal_freeblocks(ip, cred, length, flags)
233	struct inode *ip;
234	struct ucred *cred;
235	off_t length;
236	int flags;
237{
238
239	panic("softdep_journal_freeblocks called");
240}
241
242void
243softdep_journal_fsync(ip)
244	struct inode *ip;
245{
246
247	panic("softdep_journal_fsync called");
248}
249
250void
251softdep_setup_freeblocks(ip, length, flags)
252	struct inode *ip;
253	off_t length;
254	int flags;
255{
256
257	panic("softdep_setup_freeblocks called");
258}
259
260void
261softdep_freefile(pvp, ino, mode)
262		struct vnode *pvp;
263		ino_t ino;
264		int mode;
265{
266
267	panic("softdep_freefile called");
268}
269
270int
271softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
272	struct buf *bp;
273	struct inode *dp;
274	off_t diroffset;
275	ino_t newinum;
276	struct buf *newdirbp;
277	int isnewblk;
278{
279
280	panic("softdep_setup_directory_add called");
281}
282
283void
284softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
285	struct buf *bp;
286	struct inode *dp;
287	caddr_t base;
288	caddr_t oldloc;
289	caddr_t newloc;
290	int entrysize;
291{
292
293	panic("softdep_change_directoryentry_offset called");
294}
295
296void
297softdep_setup_remove(bp, dp, ip, isrmdir)
298	struct buf *bp;
299	struct inode *dp;
300	struct inode *ip;
301	int isrmdir;
302{
303
304	panic("softdep_setup_remove called");
305}
306
307void
308softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
309	struct buf *bp;
310	struct inode *dp;
311	struct inode *ip;
312	ino_t newinum;
313	int isrmdir;
314{
315
316	panic("softdep_setup_directory_change called");
317}
318
319void
320softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
321	struct mount *mp;
322	struct buf *bp;
323	ufs2_daddr_t blkno;
324	int frags;
325	struct workhead *wkhd;
326{
327
328	panic("%s called", __FUNCTION__);
329}
330
331void
332softdep_setup_inofree(mp, bp, ino, wkhd)
333	struct mount *mp;
334	struct buf *bp;
335	ino_t ino;
336	struct workhead *wkhd;
337{
338
339	panic("%s called", __FUNCTION__);
340}
341
342void
343softdep_setup_unlink(dp, ip)
344	struct inode *dp;
345	struct inode *ip;
346{
347
348	panic("%s called", __FUNCTION__);
349}
350
351void
352softdep_setup_link(dp, ip)
353	struct inode *dp;
354	struct inode *ip;
355{
356
357	panic("%s called", __FUNCTION__);
358}
359
360void
361softdep_revert_link(dp, ip)
362	struct inode *dp;
363	struct inode *ip;
364{
365
366	panic("%s called", __FUNCTION__);
367}
368
369void
370softdep_setup_rmdir(dp, ip)
371	struct inode *dp;
372	struct inode *ip;
373{
374
375	panic("%s called", __FUNCTION__);
376}
377
378void
379softdep_revert_rmdir(dp, ip)
380	struct inode *dp;
381	struct inode *ip;
382{
383
384	panic("%s called", __FUNCTION__);
385}
386
387void
388softdep_setup_create(dp, ip)
389	struct inode *dp;
390	struct inode *ip;
391{
392
393	panic("%s called", __FUNCTION__);
394}
395
396void
397softdep_revert_create(dp, ip)
398	struct inode *dp;
399	struct inode *ip;
400{
401
402	panic("%s called", __FUNCTION__);
403}
404
405void
406softdep_setup_mkdir(dp, ip)
407	struct inode *dp;
408	struct inode *ip;
409{
410
411	panic("%s called", __FUNCTION__);
412}
413
414void
415softdep_revert_mkdir(dp, ip)
416	struct inode *dp;
417	struct inode *ip;
418{
419
420	panic("%s called", __FUNCTION__);
421}
422
423void
424softdep_setup_dotdot_link(dp, ip)
425	struct inode *dp;
426	struct inode *ip;
427{
428
429	panic("%s called", __FUNCTION__);
430}
431
432int
433softdep_prealloc(vp, waitok)
434	struct vnode *vp;
435	int waitok;
436{
437
438	panic("%s called", __FUNCTION__);
439}
440
441int
442softdep_journal_lookup(mp, vpp)
443	struct mount *mp;
444	struct vnode **vpp;
445{
446
447	return (ENOENT);
448}
449
450void
451softdep_change_linkcnt(ip)
452	struct inode *ip;
453{
454
455	panic("softdep_change_linkcnt called");
456}
457
458void
459softdep_load_inodeblock(ip)
460	struct inode *ip;
461{
462
463	panic("softdep_load_inodeblock called");
464}
465
466void
467softdep_update_inodeblock(ip, bp, waitfor)
468	struct inode *ip;
469	struct buf *bp;
470	int waitfor;
471{
472
473	panic("softdep_update_inodeblock called");
474}
475
476int
477softdep_fsync(vp)
478	struct vnode *vp;	/* the "in_core" copy of the inode */
479{
480
481	return (0);
482}
483
484void
485softdep_fsync_mountdev(vp)
486	struct vnode *vp;
487{
488
489	return;
490}
491
492int
493softdep_flushworklist(oldmnt, countp, td)
494	struct mount *oldmnt;
495	int *countp;
496	struct thread *td;
497{
498
499	*countp = 0;
500	return (0);
501}
502
503int
504softdep_sync_metadata(struct vnode *vp)
505{
506
507	panic("softdep_sync_metadata called");
508}
509
510int
511softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
512{
513
514	panic("softdep_sync_buf called");
515}
516
517int
518softdep_slowdown(vp)
519	struct vnode *vp;
520{
521
522	panic("softdep_slowdown called");
523}
524
525int
526softdep_request_cleanup(fs, vp, cred, resource)
527	struct fs *fs;
528	struct vnode *vp;
529	struct ucred *cred;
530	int resource;
531{
532
533	return (0);
534}
535
536int
537softdep_check_suspend(struct mount *mp,
538		      struct vnode *devvp,
539		      int softdep_depcnt,
540		      int softdep_accdepcnt,
541		      int secondary_writes,
542		      int secondary_accwrites)
543{
544	struct bufobj *bo;
545	int error;
546
547	(void) softdep_depcnt,
548	(void) softdep_accdepcnt;
549
550	bo = &devvp->v_bufobj;
551	ASSERT_BO_WLOCKED(bo);
552
553	MNT_ILOCK(mp);
554	while (mp->mnt_secondary_writes != 0) {
555		BO_UNLOCK(bo);
556		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557		    (PUSER - 1) | PDROP, "secwr", 0);
558		BO_LOCK(bo);
559		MNT_ILOCK(mp);
560	}
561
562	/*
563	 * Reasons for needing more work before suspend:
564	 * - Dirty buffers on devvp.
565	 * - Secondary writes occurred after start of vnode sync loop
566	 */
567	error = 0;
568	if (bo->bo_numoutput > 0 ||
569	    bo->bo_dirty.bv_cnt > 0 ||
570	    secondary_writes != 0 ||
571	    mp->mnt_secondary_writes != 0 ||
572	    secondary_accwrites != mp->mnt_secondary_accwrites)
573		error = EAGAIN;
574	BO_UNLOCK(bo);
575	return (error);
576}
577
578void
579softdep_get_depcounts(struct mount *mp,
580		      int *softdepactivep,
581		      int *softdepactiveaccp)
582{
583	(void) mp;
584	*softdepactivep = 0;
585	*softdepactiveaccp = 0;
586}
587
588void
589softdep_buf_append(bp, wkhd)
590	struct buf *bp;
591	struct workhead *wkhd;
592{
593
594	panic("softdep_buf_appendwork called");
595}
596
597void
598softdep_inode_append(ip, cred, wkhd)
599	struct inode *ip;
600	struct ucred *cred;
601	struct workhead *wkhd;
602{
603
604	panic("softdep_inode_appendwork called");
605}
606
607void
608softdep_freework(wkhd)
609	struct workhead *wkhd;
610{
611
612	panic("softdep_freework called");
613}
614
615#else
616
617FEATURE(softupdates, "FFS soft-updates support");
618
619static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
620    "soft updates stats");
621static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
622    "total dependencies allocated");
623static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
624    "high use dependencies allocated");
625static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
626    "current dependencies allocated");
627static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
628    "current dependencies written");
629
630unsigned long dep_current[D_LAST + 1];
631unsigned long dep_highuse[D_LAST + 1];
632unsigned long dep_total[D_LAST + 1];
633unsigned long dep_write[D_LAST + 1];
634
635#define	SOFTDEP_TYPE(type, str, long)					\
636    static MALLOC_DEFINE(M_ ## type, #str, long);			\
637    SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
638	&dep_total[D_ ## type], 0, "");					\
639    SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
640	&dep_current[D_ ## type], 0, "");				\
641    SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
642	&dep_highuse[D_ ## type], 0, "");				\
643    SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
644	&dep_write[D_ ## type], 0, "");
645
646SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
647SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
648SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
649    "Block or frag allocated from cyl group map");
650SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
651SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
652SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
653SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
654SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
655SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
656SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
657SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
658SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
659SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
660SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
661SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
662SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
663SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
664SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
665SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
666SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
667SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
668SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
669SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
670SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
671SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
672SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
673SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
674
675static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
676
677static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
678static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
679static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
680
681#define M_SOFTDEP_FLAGS	(M_WAITOK)
682
683/*
684 * translate from workitem type to memory type
685 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
686 */
687static struct malloc_type *memtype[] = {
688	M_PAGEDEP,
689	M_INODEDEP,
690	M_BMSAFEMAP,
691	M_NEWBLK,
692	M_ALLOCDIRECT,
693	M_INDIRDEP,
694	M_ALLOCINDIR,
695	M_FREEFRAG,
696	M_FREEBLKS,
697	M_FREEFILE,
698	M_DIRADD,
699	M_MKDIR,
700	M_DIRREM,
701	M_NEWDIRBLK,
702	M_FREEWORK,
703	M_FREEDEP,
704	M_JADDREF,
705	M_JREMREF,
706	M_JMVREF,
707	M_JNEWBLK,
708	M_JFREEBLK,
709	M_JFREEFRAG,
710	M_JSEG,
711	M_JSEGDEP,
712	M_SBDEP,
713	M_JTRUNC,
714	M_JFSYNC,
715	M_SENTINEL
716};
717
718#define DtoM(type) (memtype[type])
719
720/*
721 * Names of malloc types.
722 */
723#define TYPENAME(type)  \
724	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
725/*
726 * End system adaptation definitions.
727 */
728
729#define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
730#define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
731
732/*
733 * Internal function prototypes.
734 */
735static	void check_clear_deps(struct mount *);
736static	void softdep_error(char *, int);
737static	int softdep_process_worklist(struct mount *, int);
738static	int softdep_waitidle(struct mount *);
739static	void drain_output(struct vnode *);
740static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
741static	void clear_remove(struct mount *);
742static	void clear_inodedeps(struct mount *);
743static	void unlinked_inodedep(struct mount *, struct inodedep *);
744static	void clear_unlinked_inodedep(struct inodedep *);
745static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
746static	int flush_pagedep_deps(struct vnode *, struct mount *,
747	    struct diraddhd *);
748static	int free_pagedep(struct pagedep *);
749static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
750static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
751static	int flush_deplist(struct allocdirectlst *, int, int *);
752static	int sync_cgs(struct mount *, int);
753static	int handle_written_filepage(struct pagedep *, struct buf *);
754static	int handle_written_sbdep(struct sbdep *, struct buf *);
755static	void initiate_write_sbdep(struct sbdep *);
756static	void diradd_inode_written(struct diradd *, struct inodedep *);
757static	int handle_written_indirdep(struct indirdep *, struct buf *,
758	    struct buf**);
759static	int handle_written_inodeblock(struct inodedep *, struct buf *);
760static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
761	    uint8_t *);
762static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
763static	void handle_written_jaddref(struct jaddref *);
764static	void handle_written_jremref(struct jremref *);
765static	void handle_written_jseg(struct jseg *, struct buf *);
766static	void handle_written_jnewblk(struct jnewblk *);
767static	void handle_written_jblkdep(struct jblkdep *);
768static	void handle_written_jfreefrag(struct jfreefrag *);
769static	void complete_jseg(struct jseg *);
770static	void complete_jsegs(struct jseg *);
771static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
772static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
773static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
774static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
775static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
776static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
777static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
778static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
779static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
780static	inline void inoref_write(struct inoref *, struct jseg *,
781	    struct jrefrec *);
782static	void handle_allocdirect_partdone(struct allocdirect *,
783	    struct workhead *);
784static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
785	    struct workhead *);
786static	void indirdep_complete(struct indirdep *);
787static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
788static	void indirblk_insert(struct freework *);
789static	void indirblk_remove(struct freework *);
790static	void handle_allocindir_partdone(struct allocindir *);
791static	void initiate_write_filepage(struct pagedep *, struct buf *);
792static	void initiate_write_indirdep(struct indirdep*, struct buf *);
793static	void handle_written_mkdir(struct mkdir *, int);
794static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
795	    uint8_t *);
796static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
797static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
798static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
799static	void handle_workitem_freefile(struct freefile *);
800static	int handle_workitem_remove(struct dirrem *, int);
801static	struct dirrem *newdirrem(struct buf *, struct inode *,
802	    struct inode *, int, struct dirrem **);
803static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
804	    struct buf *);
805static	void cancel_indirdep(struct indirdep *, struct buf *,
806	    struct freeblks *);
807static	void free_indirdep(struct indirdep *);
808static	void free_diradd(struct diradd *, struct workhead *);
809static	void merge_diradd(struct inodedep *, struct diradd *);
810static	void complete_diradd(struct diradd *);
811static	struct diradd *diradd_lookup(struct pagedep *, int);
812static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
813	    struct jremref *);
814static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
815	    struct jremref *);
816static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
817	    struct jremref *, struct jremref *);
818static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
819	    struct jremref *);
820static	void cancel_allocindir(struct allocindir *, struct buf *bp,
821	    struct freeblks *, int);
822static	int setup_trunc_indir(struct freeblks *, struct inode *,
823	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
824static	void complete_trunc_indir(struct freework *);
825static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
826	    int);
827static	void complete_mkdir(struct mkdir *);
828static	void free_newdirblk(struct newdirblk *);
829static	void free_jremref(struct jremref *);
830static	void free_jaddref(struct jaddref *);
831static	void free_jsegdep(struct jsegdep *);
832static	void free_jsegs(struct jblocks *);
833static	void rele_jseg(struct jseg *);
834static	void free_jseg(struct jseg *, struct jblocks *);
835static	void free_jnewblk(struct jnewblk *);
836static	void free_jblkdep(struct jblkdep *);
837static	void free_jfreefrag(struct jfreefrag *);
838static	void free_freedep(struct freedep *);
839static	void journal_jremref(struct dirrem *, struct jremref *,
840	    struct inodedep *);
841static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
842static	int cancel_jaddref(struct jaddref *, struct inodedep *,
843	    struct workhead *);
844static	void cancel_jfreefrag(struct jfreefrag *);
845static	inline void setup_freedirect(struct freeblks *, struct inode *,
846	    int, int);
847static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
848static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
849	    ufs_lbn_t, int);
850static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
851static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
852static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
853static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
854static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
855static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
856	    int, int);
857static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
858static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
859static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
860static	void newblk_freefrag(struct newblk*);
861static	void free_newblk(struct newblk *);
862static	void cancel_allocdirect(struct allocdirectlst *,
863	    struct allocdirect *, struct freeblks *);
864static	int check_inode_unwritten(struct inodedep *);
865static	int free_inodedep(struct inodedep *);
866static	void freework_freeblock(struct freework *);
867static	void freework_enqueue(struct freework *);
868static	int handle_workitem_freeblocks(struct freeblks *, int);
869static	int handle_complete_freeblocks(struct freeblks *, int);
870static	void handle_workitem_indirblk(struct freework *);
871static	void handle_written_freework(struct freework *);
872static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
873static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
874	    struct workhead *);
875static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
876	    struct inodedep *, struct allocindir *, ufs_lbn_t);
877static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
878	    ufs2_daddr_t, ufs_lbn_t);
879static	void handle_workitem_freefrag(struct freefrag *);
880static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
881	    ufs_lbn_t);
882static	void allocdirect_merge(struct allocdirectlst *,
883	    struct allocdirect *, struct allocdirect *);
884static	struct freefrag *allocindir_merge(struct allocindir *,
885	    struct allocindir *);
886static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
887	    struct bmsafemap **);
888static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
889	    int cg, struct bmsafemap *);
890static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
891	    struct newblk **);
892static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
893static	int inodedep_find(struct inodedep_hashhead *, ino_t,
894	    struct inodedep **);
895static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
896static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
897	    int, struct pagedep **);
898static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
899	    struct pagedep **);
900static	void pause_timer(void *);
901static	int request_cleanup(struct mount *, int);
902static	int process_worklist_item(struct mount *, int, int);
903static	void process_removes(struct vnode *);
904static	void process_truncates(struct vnode *);
905static	void jwork_move(struct workhead *, struct workhead *);
906static	void jwork_insert(struct workhead *, struct jsegdep *);
907static	void add_to_worklist(struct worklist *, int);
908static	void wake_worklist(struct worklist *);
909static	void wait_worklist(struct worklist *, char *);
910static	void remove_from_worklist(struct worklist *);
911static	void softdep_flush(void);
912static	void softdep_flushjournal(struct mount *);
913static	int softdep_speedup(void);
914static	void worklist_speedup(struct mount *);
915static	int journal_mount(struct mount *, struct fs *, struct ucred *);
916static	void journal_unmount(struct ufsmount *);
917static	int journal_space(struct ufsmount *, int);
918static	void journal_suspend(struct ufsmount *);
919static	int journal_unsuspend(struct ufsmount *ump);
920static	void softdep_prelink(struct vnode *, struct vnode *);
921static	void add_to_journal(struct worklist *);
922static	void remove_from_journal(struct worklist *);
923static	void softdep_process_journal(struct mount *, struct worklist *, int);
924static	struct jremref *newjremref(struct dirrem *, struct inode *,
925	    struct inode *ip, off_t, nlink_t);
926static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
927	    uint16_t);
928static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
929	    uint16_t);
930static	inline struct jsegdep *inoref_jseg(struct inoref *);
931static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
932static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
933	    ufs2_daddr_t, int);
934static	void adjust_newfreework(struct freeblks *, int);
935static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
936static	void move_newblock_dep(struct jaddref *, struct inodedep *);
937static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
938static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
939	    ufs2_daddr_t, long, ufs_lbn_t);
940static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
941	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
942static	int jwait(struct worklist *, int);
943static	struct inodedep *inodedep_lookup_ip(struct inode *);
944static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
945static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
946static	void handle_jwork(struct workhead *);
947static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
948	    struct mkdir **);
949static	struct jblocks *jblocks_create(void);
950static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
951static	void jblocks_free(struct jblocks *, struct mount *, int);
952static	void jblocks_destroy(struct jblocks *);
953static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
954
955/*
956 * Exported softdep operations.
957 */
958static	void softdep_disk_io_initiation(struct buf *);
959static	void softdep_disk_write_complete(struct buf *);
960static	void softdep_deallocate_dependencies(struct buf *);
961static	int softdep_count_dependencies(struct buf *bp, int);
962
963/*
964 * Global lock over all of soft updates.
965 */
966static struct rwlock lk;
967RW_SYSINIT(softdep_lock, &lk, "Softdep Lock");
968
969/*
970 * Allow per-filesystem soft-updates locking.
971 * For now all use the same global lock defined above.
972 */
973#define LOCK_PTR(ump)		((ump)->um_softdep->sd_fslock)
974#define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock((ump)->um_softdep->sd_fslock)
975#define ACQUIRE_LOCK(ump)	rw_wlock((ump)->um_softdep->sd_fslock)
976#define FREE_LOCK(ump)		rw_wunlock((ump)->um_softdep->sd_fslock)
977#define LOCK_OWNED(ump)		rw_assert((ump)->um_softdep->sd_fslock, \
978				    RA_WLOCKED)
979
980#define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
981#define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
982
983/*
984 * Worklist queue management.
985 * These routines require that the lock be held.
986 */
987#ifndef /* NOT */ DEBUG
988#define WORKLIST_INSERT(head, item) do {	\
989	(item)->wk_state |= ONWORKLIST;		\
990	LIST_INSERT_HEAD(head, item, wk_list);	\
991} while (0)
992#define WORKLIST_REMOVE(item) do {		\
993	(item)->wk_state &= ~ONWORKLIST;	\
994	LIST_REMOVE(item, wk_list);		\
995} while (0)
996#define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
997#define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
998
999#else /* DEBUG */
1000static	void worklist_insert(struct workhead *, struct worklist *, int);
1001static	void worklist_remove(struct worklist *, int);
1002
1003#define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1004#define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1005#define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1006#define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1007
1008static void
1009worklist_insert(head, item, locked)
1010	struct workhead *head;
1011	struct worklist *item;
1012	int locked;
1013{
1014
1015	if (locked)
1016		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1017	if (item->wk_state & ONWORKLIST)
1018		panic("worklist_insert: %p %s(0x%X) already on list",
1019		    item, TYPENAME(item->wk_type), item->wk_state);
1020	item->wk_state |= ONWORKLIST;
1021	LIST_INSERT_HEAD(head, item, wk_list);
1022}
1023
1024static void
1025worklist_remove(item, locked)
1026	struct worklist *item;
1027	int locked;
1028{
1029
1030	if (locked)
1031		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1032	if ((item->wk_state & ONWORKLIST) == 0)
1033		panic("worklist_remove: %p %s(0x%X) not on list",
1034		    item, TYPENAME(item->wk_type), item->wk_state);
1035	item->wk_state &= ~ONWORKLIST;
1036	LIST_REMOVE(item, wk_list);
1037}
1038#endif /* DEBUG */
1039
1040/*
1041 * Merge two jsegdeps keeping only the oldest one as newer references
1042 * can't be discarded until after older references.
1043 */
1044static inline struct jsegdep *
1045jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1046{
1047	struct jsegdep *swp;
1048
1049	if (two == NULL)
1050		return (one);
1051
1052	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1053		swp = one;
1054		one = two;
1055		two = swp;
1056	}
1057	WORKLIST_REMOVE(&two->jd_list);
1058	free_jsegdep(two);
1059
1060	return (one);
1061}
1062
1063/*
1064 * If two freedeps are compatible free one to reduce list size.
1065 */
1066static inline struct freedep *
1067freedep_merge(struct freedep *one, struct freedep *two)
1068{
1069	if (two == NULL)
1070		return (one);
1071
1072	if (one->fd_freework == two->fd_freework) {
1073		WORKLIST_REMOVE(&two->fd_list);
1074		free_freedep(two);
1075	}
1076	return (one);
1077}
1078
1079/*
1080 * Move journal work from one list to another.  Duplicate freedeps and
1081 * jsegdeps are coalesced to keep the lists as small as possible.
1082 */
1083static void
1084jwork_move(dst, src)
1085	struct workhead *dst;
1086	struct workhead *src;
1087{
1088	struct freedep *freedep;
1089	struct jsegdep *jsegdep;
1090	struct worklist *wkn;
1091	struct worklist *wk;
1092
1093	KASSERT(dst != src,
1094	    ("jwork_move: dst == src"));
1095	freedep = NULL;
1096	jsegdep = NULL;
1097	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1098		if (wk->wk_type == D_JSEGDEP)
1099			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1100		if (wk->wk_type == D_FREEDEP)
1101			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1102	}
1103
1104	while ((wk = LIST_FIRST(src)) != NULL) {
1105		WORKLIST_REMOVE(wk);
1106		WORKLIST_INSERT(dst, wk);
1107		if (wk->wk_type == D_JSEGDEP) {
1108			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1109			continue;
1110		}
1111		if (wk->wk_type == D_FREEDEP)
1112			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1113	}
1114}
1115
1116static void
1117jwork_insert(dst, jsegdep)
1118	struct workhead *dst;
1119	struct jsegdep *jsegdep;
1120{
1121	struct jsegdep *jsegdepn;
1122	struct worklist *wk;
1123
1124	LIST_FOREACH(wk, dst, wk_list)
1125		if (wk->wk_type == D_JSEGDEP)
1126			break;
1127	if (wk == NULL) {
1128		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1129		return;
1130	}
1131	jsegdepn = WK_JSEGDEP(wk);
1132	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1133		WORKLIST_REMOVE(wk);
1134		free_jsegdep(jsegdepn);
1135		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1136	} else
1137		free_jsegdep(jsegdep);
1138}
1139
1140/*
1141 * Routines for tracking and managing workitems.
1142 */
1143static	void workitem_free(struct worklist *, int);
1144static	void workitem_alloc(struct worklist *, int, struct mount *);
1145static	void workitem_reassign(struct worklist *, int);
1146
1147#define	WORKITEM_FREE(item, type) \
1148	workitem_free((struct worklist *)(item), (type))
1149#define	WORKITEM_REASSIGN(item, type) \
1150	workitem_reassign((struct worklist *)(item), (type))
1151
1152static void
1153workitem_free(item, type)
1154	struct worklist *item;
1155	int type;
1156{
1157	struct ufsmount *ump;
1158
1159#ifdef DEBUG
1160	if (item->wk_state & ONWORKLIST)
1161		panic("workitem_free: %s(0x%X) still on list",
1162		    TYPENAME(item->wk_type), item->wk_state);
1163	if (item->wk_type != type && type != D_NEWBLK)
1164		panic("workitem_free: type mismatch %s != %s",
1165		    TYPENAME(item->wk_type), TYPENAME(type));
1166#endif
1167	if (item->wk_state & IOWAITING)
1168		wakeup(item);
1169	ump = VFSTOUFS(item->wk_mp);
1170	LOCK_OWNED(ump);
1171	KASSERT(ump->softdep_deps > 0,
1172	    ("workitem_free: %s: softdep_deps going negative",
1173	    ump->um_fs->fs_fsmnt));
1174	if (--ump->softdep_deps == 0 && ump->softdep_req)
1175		wakeup(&ump->softdep_deps);
1176	KASSERT(dep_current[item->wk_type] > 0,
1177	    ("workitem_free: %s: dep_current[%s] going negative",
1178	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1179	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1180	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1181	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1182	dep_current[item->wk_type]--;
1183	ump->softdep_curdeps[item->wk_type] -= 1;
1184	free(item, DtoM(type));
1185}
1186
1187static void
1188workitem_alloc(item, type, mp)
1189	struct worklist *item;
1190	int type;
1191	struct mount *mp;
1192{
1193	struct ufsmount *ump;
1194
1195	item->wk_type = type;
1196	item->wk_mp = mp;
1197	item->wk_state = 0;
1198
1199	ump = VFSTOUFS(mp);
1200	ACQUIRE_LOCK(ump);
1201	dep_current[type]++;
1202	if (dep_current[type] > dep_highuse[type])
1203		dep_highuse[type] = dep_current[type];
1204	dep_total[type]++;
1205	ump->softdep_curdeps[type] += 1;
1206	ump->softdep_deps++;
1207	ump->softdep_accdeps++;
1208	FREE_LOCK(ump);
1209}
1210
1211static void
1212workitem_reassign(item, newtype)
1213	struct worklist *item;
1214	int newtype;
1215{
1216	struct ufsmount *ump;
1217
1218	ump = VFSTOUFS(item->wk_mp);
1219	LOCK_OWNED(ump);
1220	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1221	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1222	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1223	ump->softdep_curdeps[item->wk_type] -= 1;
1224	ump->softdep_curdeps[newtype] += 1;
1225	KASSERT(dep_current[item->wk_type] > 0,
1226	    ("workitem_reassign: %s: dep_current[%s] going negative",
1227	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1228	dep_current[item->wk_type]--;
1229	dep_current[newtype]++;
1230	if (dep_current[newtype] > dep_highuse[newtype])
1231		dep_highuse[newtype] = dep_current[newtype];
1232	dep_total[newtype]++;
1233	item->wk_type = newtype;
1234}
1235
1236/*
1237 * Workitem queue management
1238 */
1239static int max_softdeps;	/* maximum number of structs before slowdown */
1240static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1241static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1242static int proc_waiting;	/* tracks whether we have a timeout posted */
1243static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1244static struct callout softdep_callout;
1245static struct mount *req_pending;
1246#define ALLCLEAN ((struct mount *)-1)
1247static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1248static int req_clear_remove;	/* syncer process flush some freeblks */
1249static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1250
1251/*
1252 * runtime statistics
1253 */
1254static int stat_softdep_mounts;	/* number of softdep mounted filesystems */
1255static int stat_worklist_push;	/* number of worklist cleanups */
1256static int stat_blk_limit_push;	/* number of times block limit neared */
1257static int stat_ino_limit_push;	/* number of times inode limit neared */
1258static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1259static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1260static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1261static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1262static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1263static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1264static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1265static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1266static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1267static int stat_journal_min;	/* Times hit journal min threshold */
1268static int stat_journal_low;	/* Times hit journal low threshold */
1269static int stat_journal_wait;	/* Times blocked in jwait(). */
1270static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1271static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1272static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1273static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1274static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1275static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1276static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1277static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1278static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1279static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1280
1281SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1282    &max_softdeps, 0, "");
1283SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1284    &tickdelay, 0, "");
1285SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1286    &maxindirdeps, 0, "");
1287SYSCTL_INT(_debug_softdep, OID_AUTO, softdep_mounts, CTLFLAG_RD,
1288    &stat_softdep_mounts, 0, "");
1289SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1290    &stat_worklist_push, 0,"");
1291SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1292    &stat_blk_limit_push, 0,"");
1293SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1294    &stat_ino_limit_push, 0,"");
1295SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1296    &stat_blk_limit_hit, 0, "");
1297SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1298    &stat_ino_limit_hit, 0, "");
1299SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1300    &stat_sync_limit_hit, 0, "");
1301SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1302    &stat_indir_blk_ptrs, 0, "");
1303SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1304    &stat_inode_bitmap, 0, "");
1305SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1306    &stat_direct_blk_ptrs, 0, "");
1307SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1308    &stat_dir_entry, 0, "");
1309SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1310    &stat_jaddref, 0, "");
1311SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1312    &stat_jnewblk, 0, "");
1313SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1314    &stat_journal_low, 0, "");
1315SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1316    &stat_journal_min, 0, "");
1317SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1318    &stat_journal_wait, 0, "");
1319SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1320    &stat_jwait_filepage, 0, "");
1321SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1322    &stat_jwait_freeblks, 0, "");
1323SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1324    &stat_jwait_inode, 0, "");
1325SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1326    &stat_jwait_newblk, 0, "");
1327SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1328    &stat_cleanup_blkrequests, 0, "");
1329SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1330    &stat_cleanup_inorequests, 0, "");
1331SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1332    &stat_cleanup_high_delay, 0, "");
1333SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1334    &stat_cleanup_retries, 0, "");
1335SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1336    &stat_cleanup_failures, 0, "");
1337SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1338    &softdep_flushcache, 0, "");
1339SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1340    &stat_emptyjblocks, 0, "");
1341
1342SYSCTL_DECL(_vfs_ffs);
1343
1344/* Whether to recompute the summary at mount time */
1345static int compute_summary_at_mount = 0;
1346SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1347	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1348static struct proc *softdepproc;
1349static struct kproc_desc softdep_kp = {
1350	"softdepflush",
1351	softdep_flush,
1352	&softdepproc
1353};
1354SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1355    &softdep_kp);
1356
1357static void
1358softdep_flush(void)
1359{
1360	struct mount *nmp;
1361	struct mount *mp;
1362	struct ufsmount *ump;
1363	struct thread *td;
1364	int remaining;
1365	int progress;
1366
1367	td = curthread;
1368	td->td_pflags |= TDP_NORUNNINGBUF;
1369
1370	for (;;) {
1371		kproc_suspend_check(softdepproc);
1372		remaining = progress = 0;
1373		mtx_lock(&mountlist_mtx);
1374		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1375			nmp = TAILQ_NEXT(mp, mnt_list);
1376			if (MOUNTEDSOFTDEP(mp) == 0)
1377				continue;
1378			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1379				continue;
1380			ump = VFSTOUFS(mp);
1381			progress += softdep_process_worklist(mp, 0);
1382			remaining += ump->softdep_on_worklist;
1383			mtx_lock(&mountlist_mtx);
1384			nmp = TAILQ_NEXT(mp, mnt_list);
1385			vfs_unbusy(mp);
1386		}
1387		mtx_unlock(&mountlist_mtx);
1388		if (remaining && progress)
1389			continue;
1390		rw_wlock(&lk);
1391		if (req_pending == NULL)
1392			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1393		req_pending = NULL;
1394		rw_wunlock(&lk);
1395	}
1396}
1397
1398static void
1399worklist_speedup(mp)
1400	struct mount *mp;
1401{
1402	rw_assert(&lk, RA_WLOCKED);
1403	if (req_pending == 0) {
1404		req_pending = mp;
1405		wakeup(&req_pending);
1406	}
1407}
1408
1409static int
1410softdep_speedup(void)
1411{
1412
1413	worklist_speedup(ALLCLEAN);
1414	bd_speedup();
1415	return (speedup_syncer());
1416}
1417
1418/*
1419 * Add an item to the end of the work queue.
1420 * This routine requires that the lock be held.
1421 * This is the only routine that adds items to the list.
1422 * The following routine is the only one that removes items
1423 * and does so in order from first to last.
1424 */
1425
1426#define	WK_HEAD		0x0001	/* Add to HEAD. */
1427#define	WK_NODELAY	0x0002	/* Process immediately. */
1428
1429static void
1430add_to_worklist(wk, flags)
1431	struct worklist *wk;
1432	int flags;
1433{
1434	struct ufsmount *ump;
1435
1436	ump = VFSTOUFS(wk->wk_mp);
1437	LOCK_OWNED(ump);
1438	if (wk->wk_state & ONWORKLIST)
1439		panic("add_to_worklist: %s(0x%X) already on list",
1440		    TYPENAME(wk->wk_type), wk->wk_state);
1441	wk->wk_state |= ONWORKLIST;
1442	if (ump->softdep_on_worklist == 0) {
1443		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1444		ump->softdep_worklist_tail = wk;
1445	} else if (flags & WK_HEAD) {
1446		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1447	} else {
1448		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1449		ump->softdep_worklist_tail = wk;
1450	}
1451	ump->softdep_on_worklist += 1;
1452	if (flags & WK_NODELAY)
1453		worklist_speedup(wk->wk_mp);
1454}
1455
1456/*
1457 * Remove the item to be processed. If we are removing the last
1458 * item on the list, we need to recalculate the tail pointer.
1459 */
1460static void
1461remove_from_worklist(wk)
1462	struct worklist *wk;
1463{
1464	struct ufsmount *ump;
1465
1466	ump = VFSTOUFS(wk->wk_mp);
1467	WORKLIST_REMOVE(wk);
1468	if (ump->softdep_worklist_tail == wk)
1469		ump->softdep_worklist_tail =
1470		    (struct worklist *)wk->wk_list.le_prev;
1471	ump->softdep_on_worklist -= 1;
1472}
1473
1474static void
1475wake_worklist(wk)
1476	struct worklist *wk;
1477{
1478	if (wk->wk_state & IOWAITING) {
1479		wk->wk_state &= ~IOWAITING;
1480		wakeup(wk);
1481	}
1482}
1483
1484static void
1485wait_worklist(wk, wmesg)
1486	struct worklist *wk;
1487	char *wmesg;
1488{
1489	struct ufsmount *ump;
1490
1491	ump = VFSTOUFS(wk->wk_mp);
1492	wk->wk_state |= IOWAITING;
1493	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1494}
1495
1496/*
1497 * Process that runs once per second to handle items in the background queue.
1498 *
1499 * Note that we ensure that everything is done in the order in which they
1500 * appear in the queue. The code below depends on this property to ensure
1501 * that blocks of a file are freed before the inode itself is freed. This
1502 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1503 * until all the old ones have been purged from the dependency lists.
1504 */
1505static int
1506softdep_process_worklist(mp, full)
1507	struct mount *mp;
1508	int full;
1509{
1510	int cnt, matchcnt;
1511	struct ufsmount *ump;
1512	long starttime;
1513
1514	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1515	if (MOUNTEDSOFTDEP(mp) == 0)
1516		return (0);
1517	matchcnt = 0;
1518	ump = VFSTOUFS(mp);
1519	ACQUIRE_LOCK(ump);
1520	starttime = time_second;
1521	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1522	check_clear_deps(mp);
1523	while (ump->softdep_on_worklist > 0) {
1524		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1525			break;
1526		else
1527			matchcnt += cnt;
1528		check_clear_deps(mp);
1529		/*
1530		 * We do not generally want to stop for buffer space, but if
1531		 * we are really being a buffer hog, we will stop and wait.
1532		 */
1533		if (should_yield()) {
1534			FREE_LOCK(ump);
1535			kern_yield(PRI_USER);
1536			bwillwrite();
1537			ACQUIRE_LOCK(ump);
1538		}
1539		/*
1540		 * Never allow processing to run for more than one
1541		 * second. This gives the syncer thread the opportunity
1542		 * to pause if appropriate.
1543		 */
1544		if (!full && starttime != time_second)
1545			break;
1546	}
1547	if (full == 0)
1548		journal_unsuspend(ump);
1549	FREE_LOCK(ump);
1550	return (matchcnt);
1551}
1552
1553/*
1554 * Process all removes associated with a vnode if we are running out of
1555 * journal space.  Any other process which attempts to flush these will
1556 * be unable as we have the vnodes locked.
1557 */
1558static void
1559process_removes(vp)
1560	struct vnode *vp;
1561{
1562	struct inodedep *inodedep;
1563	struct dirrem *dirrem;
1564	struct ufsmount *ump;
1565	struct mount *mp;
1566	ino_t inum;
1567
1568	mp = vp->v_mount;
1569	ump = VFSTOUFS(mp);
1570	LOCK_OWNED(ump);
1571	inum = VTOI(vp)->i_number;
1572	for (;;) {
1573top:
1574		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1575			return;
1576		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1577			/*
1578			 * If another thread is trying to lock this vnode
1579			 * it will fail but we must wait for it to do so
1580			 * before we can proceed.
1581			 */
1582			if (dirrem->dm_state & INPROGRESS) {
1583				wait_worklist(&dirrem->dm_list, "pwrwait");
1584				goto top;
1585			}
1586			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1587			    (COMPLETE | ONWORKLIST))
1588				break;
1589		}
1590		if (dirrem == NULL)
1591			return;
1592		remove_from_worklist(&dirrem->dm_list);
1593		FREE_LOCK(ump);
1594		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1595			panic("process_removes: suspended filesystem");
1596		handle_workitem_remove(dirrem, 0);
1597		vn_finished_secondary_write(mp);
1598		ACQUIRE_LOCK(ump);
1599	}
1600}
1601
1602/*
1603 * Process all truncations associated with a vnode if we are running out
1604 * of journal space.  This is called when the vnode lock is already held
1605 * and no other process can clear the truncation.  This function returns
1606 * a value greater than zero if it did any work.
1607 */
1608static void
1609process_truncates(vp)
1610	struct vnode *vp;
1611{
1612	struct inodedep *inodedep;
1613	struct freeblks *freeblks;
1614	struct ufsmount *ump;
1615	struct mount *mp;
1616	ino_t inum;
1617	int cgwait;
1618
1619	mp = vp->v_mount;
1620	ump = VFSTOUFS(mp);
1621	LOCK_OWNED(ump);
1622	inum = VTOI(vp)->i_number;
1623	for (;;) {
1624		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1625			return;
1626		cgwait = 0;
1627		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1628			/* Journal entries not yet written.  */
1629			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1630				jwait(&LIST_FIRST(
1631				    &freeblks->fb_jblkdephd)->jb_list,
1632				    MNT_WAIT);
1633				break;
1634			}
1635			/* Another thread is executing this item. */
1636			if (freeblks->fb_state & INPROGRESS) {
1637				wait_worklist(&freeblks->fb_list, "ptrwait");
1638				break;
1639			}
1640			/* Freeblks is waiting on a inode write. */
1641			if ((freeblks->fb_state & COMPLETE) == 0) {
1642				FREE_LOCK(ump);
1643				ffs_update(vp, 1);
1644				ACQUIRE_LOCK(ump);
1645				break;
1646			}
1647			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1648			    (ALLCOMPLETE | ONWORKLIST)) {
1649				remove_from_worklist(&freeblks->fb_list);
1650				freeblks->fb_state |= INPROGRESS;
1651				FREE_LOCK(ump);
1652				if (vn_start_secondary_write(NULL, &mp,
1653				    V_NOWAIT))
1654					panic("process_truncates: "
1655					    "suspended filesystem");
1656				handle_workitem_freeblocks(freeblks, 0);
1657				vn_finished_secondary_write(mp);
1658				ACQUIRE_LOCK(ump);
1659				break;
1660			}
1661			if (freeblks->fb_cgwait)
1662				cgwait++;
1663		}
1664		if (cgwait) {
1665			FREE_LOCK(ump);
1666			sync_cgs(mp, MNT_WAIT);
1667			ffs_sync_snap(mp, MNT_WAIT);
1668			ACQUIRE_LOCK(ump);
1669			continue;
1670		}
1671		if (freeblks == NULL)
1672			break;
1673	}
1674	return;
1675}
1676
1677/*
1678 * Process one item on the worklist.
1679 */
1680static int
1681process_worklist_item(mp, target, flags)
1682	struct mount *mp;
1683	int target;
1684	int flags;
1685{
1686	struct worklist sentinel;
1687	struct worklist *wk;
1688	struct ufsmount *ump;
1689	int matchcnt;
1690	int error;
1691
1692	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1693	/*
1694	 * If we are being called because of a process doing a
1695	 * copy-on-write, then it is not safe to write as we may
1696	 * recurse into the copy-on-write routine.
1697	 */
1698	if (curthread->td_pflags & TDP_COWINPROGRESS)
1699		return (-1);
1700	PHOLD(curproc);	/* Don't let the stack go away. */
1701	ump = VFSTOUFS(mp);
1702	LOCK_OWNED(ump);
1703	matchcnt = 0;
1704	sentinel.wk_mp = NULL;
1705	sentinel.wk_type = D_SENTINEL;
1706	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1707	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1708	    wk = LIST_NEXT(&sentinel, wk_list)) {
1709		if (wk->wk_type == D_SENTINEL) {
1710			LIST_REMOVE(&sentinel, wk_list);
1711			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1712			continue;
1713		}
1714		if (wk->wk_state & INPROGRESS)
1715			panic("process_worklist_item: %p already in progress.",
1716			    wk);
1717		wk->wk_state |= INPROGRESS;
1718		remove_from_worklist(wk);
1719		FREE_LOCK(ump);
1720		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1721			panic("process_worklist_item: suspended filesystem");
1722		switch (wk->wk_type) {
1723		case D_DIRREM:
1724			/* removal of a directory entry */
1725			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1726			break;
1727
1728		case D_FREEBLKS:
1729			/* releasing blocks and/or fragments from a file */
1730			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1731			    flags);
1732			break;
1733
1734		case D_FREEFRAG:
1735			/* releasing a fragment when replaced as a file grows */
1736			handle_workitem_freefrag(WK_FREEFRAG(wk));
1737			error = 0;
1738			break;
1739
1740		case D_FREEFILE:
1741			/* releasing an inode when its link count drops to 0 */
1742			handle_workitem_freefile(WK_FREEFILE(wk));
1743			error = 0;
1744			break;
1745
1746		default:
1747			panic("%s_process_worklist: Unknown type %s",
1748			    "softdep", TYPENAME(wk->wk_type));
1749			/* NOTREACHED */
1750		}
1751		vn_finished_secondary_write(mp);
1752		ACQUIRE_LOCK(ump);
1753		if (error == 0) {
1754			if (++matchcnt == target)
1755				break;
1756			continue;
1757		}
1758		/*
1759		 * We have to retry the worklist item later.  Wake up any
1760		 * waiters who may be able to complete it immediately and
1761		 * add the item back to the head so we don't try to execute
1762		 * it again.
1763		 */
1764		wk->wk_state &= ~INPROGRESS;
1765		wake_worklist(wk);
1766		add_to_worklist(wk, WK_HEAD);
1767	}
1768	LIST_REMOVE(&sentinel, wk_list);
1769	/* Sentinal could've become the tail from remove_from_worklist. */
1770	if (ump->softdep_worklist_tail == &sentinel)
1771		ump->softdep_worklist_tail =
1772		    (struct worklist *)sentinel.wk_list.le_prev;
1773	PRELE(curproc);
1774	return (matchcnt);
1775}
1776
1777/*
1778 * Move dependencies from one buffer to another.
1779 */
1780int
1781softdep_move_dependencies(oldbp, newbp)
1782	struct buf *oldbp;
1783	struct buf *newbp;
1784{
1785	struct worklist *wk, *wktail;
1786	struct ufsmount *ump;
1787	int dirty;
1788
1789	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1790		return (0);
1791	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1792	    ("softdep_move_dependencies called on non-softdep filesystem"));
1793	dirty = 0;
1794	wktail = NULL;
1795	ump = VFSTOUFS(wk->wk_mp);
1796	ACQUIRE_LOCK(ump);
1797	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1798		LIST_REMOVE(wk, wk_list);
1799		if (wk->wk_type == D_BMSAFEMAP &&
1800		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1801			dirty = 1;
1802		if (wktail == 0)
1803			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1804		else
1805			LIST_INSERT_AFTER(wktail, wk, wk_list);
1806		wktail = wk;
1807	}
1808	FREE_LOCK(ump);
1809
1810	return (dirty);
1811}
1812
1813/*
1814 * Purge the work list of all items associated with a particular mount point.
1815 */
1816int
1817softdep_flushworklist(oldmnt, countp, td)
1818	struct mount *oldmnt;
1819	int *countp;
1820	struct thread *td;
1821{
1822	struct vnode *devvp;
1823	int count, error = 0;
1824	struct ufsmount *ump;
1825
1826	/*
1827	 * Alternately flush the block device associated with the mount
1828	 * point and process any dependencies that the flushing
1829	 * creates. We continue until no more worklist dependencies
1830	 * are found.
1831	 */
1832	*countp = 0;
1833	ump = VFSTOUFS(oldmnt);
1834	devvp = ump->um_devvp;
1835	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1836		*countp += count;
1837		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1838		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1839		VOP_UNLOCK(devvp, 0);
1840		if (error)
1841			break;
1842	}
1843	return (error);
1844}
1845
1846static int
1847softdep_waitidle(struct mount *mp)
1848{
1849	struct ufsmount *ump;
1850	int error;
1851	int i;
1852
1853	ump = VFSTOUFS(mp);
1854	ACQUIRE_LOCK(ump);
1855	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1856		ump->softdep_req = 1;
1857		if (ump->softdep_on_worklist)
1858			panic("softdep_waitidle: work added after flush.");
1859		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM, "softdeps", 1);
1860	}
1861	ump->softdep_req = 0;
1862	FREE_LOCK(ump);
1863	error = 0;
1864	if (i == 10) {
1865		error = EBUSY;
1866		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1867		    mp);
1868	}
1869
1870	return (error);
1871}
1872
1873/*
1874 * Flush all vnodes and worklist items associated with a specified mount point.
1875 */
1876int
1877softdep_flushfiles(oldmnt, flags, td)
1878	struct mount *oldmnt;
1879	int flags;
1880	struct thread *td;
1881{
1882#ifdef QUOTA
1883	struct ufsmount *ump;
1884	int i;
1885#endif
1886	int error, early, depcount, loopcnt, retry_flush_count, retry;
1887	int morework;
1888
1889	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1890	    ("softdep_flushfiles called on non-softdep filesystem"));
1891	loopcnt = 10;
1892	retry_flush_count = 3;
1893retry_flush:
1894	error = 0;
1895
1896	/*
1897	 * Alternately flush the vnodes associated with the mount
1898	 * point and process any dependencies that the flushing
1899	 * creates. In theory, this loop can happen at most twice,
1900	 * but we give it a few extra just to be sure.
1901	 */
1902	for (; loopcnt > 0; loopcnt--) {
1903		/*
1904		 * Do another flush in case any vnodes were brought in
1905		 * as part of the cleanup operations.
1906		 */
1907		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1908		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1909		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1910			break;
1911		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1912		    depcount == 0)
1913			break;
1914	}
1915	/*
1916	 * If we are unmounting then it is an error to fail. If we
1917	 * are simply trying to downgrade to read-only, then filesystem
1918	 * activity can keep us busy forever, so we just fail with EBUSY.
1919	 */
1920	if (loopcnt == 0) {
1921		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1922			panic("softdep_flushfiles: looping");
1923		error = EBUSY;
1924	}
1925	if (!error)
1926		error = softdep_waitidle(oldmnt);
1927	if (!error) {
1928		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1929			retry = 0;
1930			MNT_ILOCK(oldmnt);
1931			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1932			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1933			morework = oldmnt->mnt_nvnodelistsize > 0;
1934#ifdef QUOTA
1935			ump = VFSTOUFS(oldmnt);
1936			UFS_LOCK(ump);
1937			for (i = 0; i < MAXQUOTAS; i++) {
1938				if (ump->um_quotas[i] != NULLVP)
1939					morework = 1;
1940			}
1941			UFS_UNLOCK(ump);
1942#endif
1943			if (morework) {
1944				if (--retry_flush_count > 0) {
1945					retry = 1;
1946					loopcnt = 3;
1947				} else
1948					error = EBUSY;
1949			}
1950			MNT_IUNLOCK(oldmnt);
1951			if (retry)
1952				goto retry_flush;
1953		}
1954	}
1955	return (error);
1956}
1957
1958/*
1959 * Structure hashing.
1960 *
1961 * There are four types of structures that can be looked up:
1962 *	1) pagedep structures identified by mount point, inode number,
1963 *	   and logical block.
1964 *	2) inodedep structures identified by mount point and inode number.
1965 *	3) newblk structures identified by mount point and
1966 *	   physical block number.
1967 *	4) bmsafemap structures identified by mount point and
1968 *	   cylinder group number.
1969 *
1970 * The "pagedep" and "inodedep" dependency structures are hashed
1971 * separately from the file blocks and inodes to which they correspond.
1972 * This separation helps when the in-memory copy of an inode or
1973 * file block must be replaced. It also obviates the need to access
1974 * an inode or file page when simply updating (or de-allocating)
1975 * dependency structures. Lookup of newblk structures is needed to
1976 * find newly allocated blocks when trying to associate them with
1977 * their allocdirect or allocindir structure.
1978 *
1979 * The lookup routines optionally create and hash a new instance when
1980 * an existing entry is not found. The bmsafemap lookup routine always
1981 * allocates a new structure if an existing one is not found.
1982 */
1983#define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1984#define NODELAY		0x0002	/* cannot do background work */
1985
1986/*
1987 * Structures and routines associated with pagedep caching.
1988 */
1989#define	PAGEDEP_HASH(ump, inum, lbn) \
1990	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
1991
1992static int
1993pagedep_find(pagedephd, ino, lbn, pagedeppp)
1994	struct pagedep_hashhead *pagedephd;
1995	ino_t ino;
1996	ufs_lbn_t lbn;
1997	struct pagedep **pagedeppp;
1998{
1999	struct pagedep *pagedep;
2000
2001	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2002		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2003			*pagedeppp = pagedep;
2004			return (1);
2005		}
2006	}
2007	*pagedeppp = NULL;
2008	return (0);
2009}
2010/*
2011 * Look up a pagedep. Return 1 if found, 0 otherwise.
2012 * If not found, allocate if DEPALLOC flag is passed.
2013 * Found or allocated entry is returned in pagedeppp.
2014 * This routine must be called with splbio interrupts blocked.
2015 */
2016static int
2017pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2018	struct mount *mp;
2019	struct buf *bp;
2020	ino_t ino;
2021	ufs_lbn_t lbn;
2022	int flags;
2023	struct pagedep **pagedeppp;
2024{
2025	struct pagedep *pagedep;
2026	struct pagedep_hashhead *pagedephd;
2027	struct worklist *wk;
2028	struct ufsmount *ump;
2029	int ret;
2030	int i;
2031
2032	ump = VFSTOUFS(mp);
2033	LOCK_OWNED(ump);
2034	if (bp) {
2035		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2036			if (wk->wk_type == D_PAGEDEP) {
2037				*pagedeppp = WK_PAGEDEP(wk);
2038				return (1);
2039			}
2040		}
2041	}
2042	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2043	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2044	if (ret) {
2045		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2046			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2047		return (1);
2048	}
2049	if ((flags & DEPALLOC) == 0)
2050		return (0);
2051	FREE_LOCK(ump);
2052	pagedep = malloc(sizeof(struct pagedep),
2053	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2054	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2055	ACQUIRE_LOCK(ump);
2056	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2057	if (*pagedeppp) {
2058		/*
2059		 * This should never happen since we only create pagedeps
2060		 * with the vnode lock held.  Could be an assert.
2061		 */
2062		WORKITEM_FREE(pagedep, D_PAGEDEP);
2063		return (ret);
2064	}
2065	pagedep->pd_ino = ino;
2066	pagedep->pd_lbn = lbn;
2067	LIST_INIT(&pagedep->pd_dirremhd);
2068	LIST_INIT(&pagedep->pd_pendinghd);
2069	for (i = 0; i < DAHASHSZ; i++)
2070		LIST_INIT(&pagedep->pd_diraddhd[i]);
2071	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2072	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2073	*pagedeppp = pagedep;
2074	return (0);
2075}
2076
2077/*
2078 * Structures and routines associated with inodedep caching.
2079 */
2080#define	INODEDEP_HASH(ump, inum) \
2081      (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2082
2083static int
2084inodedep_find(inodedephd, inum, inodedeppp)
2085	struct inodedep_hashhead *inodedephd;
2086	ino_t inum;
2087	struct inodedep **inodedeppp;
2088{
2089	struct inodedep *inodedep;
2090
2091	LIST_FOREACH(inodedep, inodedephd, id_hash)
2092		if (inum == inodedep->id_ino)
2093			break;
2094	if (inodedep) {
2095		*inodedeppp = inodedep;
2096		return (1);
2097	}
2098	*inodedeppp = NULL;
2099
2100	return (0);
2101}
2102/*
2103 * Look up an inodedep. Return 1 if found, 0 if not found.
2104 * If not found, allocate if DEPALLOC flag is passed.
2105 * Found or allocated entry is returned in inodedeppp.
2106 * This routine must be called with splbio interrupts blocked.
2107 */
2108static int
2109inodedep_lookup(mp, inum, flags, inodedeppp)
2110	struct mount *mp;
2111	ino_t inum;
2112	int flags;
2113	struct inodedep **inodedeppp;
2114{
2115	struct inodedep *inodedep;
2116	struct inodedep_hashhead *inodedephd;
2117	struct ufsmount *ump;
2118	struct fs *fs;
2119
2120	ump = VFSTOUFS(mp);
2121	LOCK_OWNED(ump);
2122	fs = ump->um_fs;
2123	inodedephd = INODEDEP_HASH(ump, inum);
2124
2125	if (inodedep_find(inodedephd, inum, inodedeppp))
2126		return (1);
2127	if ((flags & DEPALLOC) == 0)
2128		return (0);
2129	/*
2130	 * If we are over our limit, try to improve the situation.
2131	 */
2132	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2133		request_cleanup(mp, FLUSH_INODES);
2134	FREE_LOCK(ump);
2135	inodedep = malloc(sizeof(struct inodedep),
2136		M_INODEDEP, M_SOFTDEP_FLAGS);
2137	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2138	ACQUIRE_LOCK(ump);
2139	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2140		WORKITEM_FREE(inodedep, D_INODEDEP);
2141		return (1);
2142	}
2143	inodedep->id_fs = fs;
2144	inodedep->id_ino = inum;
2145	inodedep->id_state = ALLCOMPLETE;
2146	inodedep->id_nlinkdelta = 0;
2147	inodedep->id_savedino1 = NULL;
2148	inodedep->id_savedsize = -1;
2149	inodedep->id_savedextsize = -1;
2150	inodedep->id_savednlink = -1;
2151	inodedep->id_bmsafemap = NULL;
2152	inodedep->id_mkdiradd = NULL;
2153	LIST_INIT(&inodedep->id_dirremhd);
2154	LIST_INIT(&inodedep->id_pendinghd);
2155	LIST_INIT(&inodedep->id_inowait);
2156	LIST_INIT(&inodedep->id_bufwait);
2157	TAILQ_INIT(&inodedep->id_inoreflst);
2158	TAILQ_INIT(&inodedep->id_inoupdt);
2159	TAILQ_INIT(&inodedep->id_newinoupdt);
2160	TAILQ_INIT(&inodedep->id_extupdt);
2161	TAILQ_INIT(&inodedep->id_newextupdt);
2162	TAILQ_INIT(&inodedep->id_freeblklst);
2163	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2164	*inodedeppp = inodedep;
2165	return (0);
2166}
2167
2168/*
2169 * Structures and routines associated with newblk caching.
2170 */
2171#define	NEWBLK_HASH(ump, inum) \
2172	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2173
2174static int
2175newblk_find(newblkhd, newblkno, flags, newblkpp)
2176	struct newblk_hashhead *newblkhd;
2177	ufs2_daddr_t newblkno;
2178	int flags;
2179	struct newblk **newblkpp;
2180{
2181	struct newblk *newblk;
2182
2183	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2184		if (newblkno != newblk->nb_newblkno)
2185			continue;
2186		/*
2187		 * If we're creating a new dependency don't match those that
2188		 * have already been converted to allocdirects.  This is for
2189		 * a frag extend.
2190		 */
2191		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2192			continue;
2193		break;
2194	}
2195	if (newblk) {
2196		*newblkpp = newblk;
2197		return (1);
2198	}
2199	*newblkpp = NULL;
2200	return (0);
2201}
2202
2203/*
2204 * Look up a newblk. Return 1 if found, 0 if not found.
2205 * If not found, allocate if DEPALLOC flag is passed.
2206 * Found or allocated entry is returned in newblkpp.
2207 */
2208static int
2209newblk_lookup(mp, newblkno, flags, newblkpp)
2210	struct mount *mp;
2211	ufs2_daddr_t newblkno;
2212	int flags;
2213	struct newblk **newblkpp;
2214{
2215	struct newblk *newblk;
2216	struct newblk_hashhead *newblkhd;
2217	struct ufsmount *ump;
2218
2219	ump = VFSTOUFS(mp);
2220	LOCK_OWNED(ump);
2221	newblkhd = NEWBLK_HASH(ump, newblkno);
2222	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2223		return (1);
2224	if ((flags & DEPALLOC) == 0)
2225		return (0);
2226	FREE_LOCK(ump);
2227	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2228	    M_SOFTDEP_FLAGS | M_ZERO);
2229	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2230	ACQUIRE_LOCK(ump);
2231	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2232		WORKITEM_FREE(newblk, D_NEWBLK);
2233		return (1);
2234	}
2235	newblk->nb_freefrag = NULL;
2236	LIST_INIT(&newblk->nb_indirdeps);
2237	LIST_INIT(&newblk->nb_newdirblk);
2238	LIST_INIT(&newblk->nb_jwork);
2239	newblk->nb_state = ATTACHED;
2240	newblk->nb_newblkno = newblkno;
2241	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2242	*newblkpp = newblk;
2243	return (0);
2244}
2245
2246/*
2247 * Structures and routines associated with freed indirect block caching.
2248 */
2249#define	INDIR_HASH(ump, blkno) \
2250	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2251
2252/*
2253 * Lookup an indirect block in the indir hash table.  The freework is
2254 * removed and potentially freed.  The caller must do a blocking journal
2255 * write before writing to the blkno.
2256 */
2257static int
2258indirblk_lookup(mp, blkno)
2259	struct mount *mp;
2260	ufs2_daddr_t blkno;
2261{
2262	struct freework *freework;
2263	struct indir_hashhead *wkhd;
2264	struct ufsmount *ump;
2265
2266	ump = VFSTOUFS(mp);
2267	wkhd = INDIR_HASH(ump, blkno);
2268	TAILQ_FOREACH(freework, wkhd, fw_next) {
2269		if (freework->fw_blkno != blkno)
2270			continue;
2271		indirblk_remove(freework);
2272		return (1);
2273	}
2274	return (0);
2275}
2276
2277/*
2278 * Insert an indirect block represented by freework into the indirblk
2279 * hash table so that it may prevent the block from being re-used prior
2280 * to the journal being written.
2281 */
2282static void
2283indirblk_insert(freework)
2284	struct freework *freework;
2285{
2286	struct jblocks *jblocks;
2287	struct jseg *jseg;
2288	struct ufsmount *ump;
2289
2290	ump = VFSTOUFS(freework->fw_list.wk_mp);
2291	jblocks = ump->softdep_jblocks;
2292	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2293	if (jseg == NULL)
2294		return;
2295
2296	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2297	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2298	    fw_next);
2299	freework->fw_state &= ~DEPCOMPLETE;
2300}
2301
2302static void
2303indirblk_remove(freework)
2304	struct freework *freework;
2305{
2306	struct ufsmount *ump;
2307
2308	ump = VFSTOUFS(freework->fw_list.wk_mp);
2309	LIST_REMOVE(freework, fw_segs);
2310	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2311	freework->fw_state |= DEPCOMPLETE;
2312	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2313		WORKITEM_FREE(freework, D_FREEWORK);
2314}
2315
2316/*
2317 * Executed during filesystem system initialization before
2318 * mounting any filesystems.
2319 */
2320void
2321softdep_initialize()
2322{
2323
2324	max_softdeps = desiredvnodes * 4;
2325
2326	/* initialise bioops hack */
2327	bioops.io_start = softdep_disk_io_initiation;
2328	bioops.io_complete = softdep_disk_write_complete;
2329	bioops.io_deallocate = softdep_deallocate_dependencies;
2330	bioops.io_countdeps = softdep_count_dependencies;
2331
2332	/* Initialize the callout with an mtx. */
2333	callout_init_mtx(&softdep_callout, &lk, 0);
2334}
2335
2336/*
2337 * Executed after all filesystems have been unmounted during
2338 * filesystem module unload.
2339 */
2340void
2341softdep_uninitialize()
2342{
2343
2344	/* clear bioops hack */
2345	bioops.io_start = NULL;
2346	bioops.io_complete = NULL;
2347	bioops.io_deallocate = NULL;
2348	bioops.io_countdeps = NULL;
2349
2350	callout_drain(&softdep_callout);
2351}
2352
2353/*
2354 * Called at mount time to notify the dependency code that a
2355 * filesystem wishes to use it.
2356 */
2357int
2358softdep_mount(devvp, mp, fs, cred)
2359	struct vnode *devvp;
2360	struct mount *mp;
2361	struct fs *fs;
2362	struct ucred *cred;
2363{
2364	struct csum_total cstotal;
2365	struct mount_softdeps *sdp;
2366	struct ufsmount *ump;
2367	struct cg *cgp;
2368	struct buf *bp;
2369	int i, error, cyl;
2370
2371	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2372	    M_WAITOK | M_ZERO);
2373	MNT_ILOCK(mp);
2374	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2375	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2376		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2377			MNTK_SOFTDEP | MNTK_NOASYNC;
2378	}
2379	ump = VFSTOUFS(mp);
2380	ump->um_softdep = sdp;
2381	MNT_IUNLOCK(mp);
2382	LOCK_PTR(ump) = &lk;
2383	LIST_INIT(&ump->softdep_workitem_pending);
2384	LIST_INIT(&ump->softdep_journal_pending);
2385	TAILQ_INIT(&ump->softdep_unlinked);
2386	LIST_INIT(&ump->softdep_dirtycg);
2387	ump->softdep_worklist_tail = NULL;
2388	ump->softdep_on_worklist = 0;
2389	ump->softdep_deps = 0;
2390	LIST_INIT(&ump->softdep_mkdirlisthd);
2391	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2392	    &ump->pagedep_hash_size);
2393	ump->pagedep_nextclean = 0;
2394	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2395	    &ump->inodedep_hash_size);
2396	ump->inodedep_nextclean = 0;
2397	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2398	    &ump->newblk_hash_size);
2399	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2400	    &ump->bmsafemap_hash_size);
2401	i = 1 << (ffs(desiredvnodes / 10) - 1);
2402	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2403	    M_FREEWORK, M_WAITOK);
2404	ump->indir_hash_size = i - 1;
2405	for (i = 0; i <= ump->indir_hash_size; i++)
2406		TAILQ_INIT(&ump->indir_hashtbl[i]);
2407	if ((fs->fs_flags & FS_SUJ) &&
2408	    (error = journal_mount(mp, fs, cred)) != 0) {
2409		printf("Failed to start journal: %d\n", error);
2410		softdep_unmount(mp);
2411		return (error);
2412	}
2413	atomic_add_int(&stat_softdep_mounts, 1);
2414	/*
2415	 * When doing soft updates, the counters in the
2416	 * superblock may have gotten out of sync. Recomputation
2417	 * can take a long time and can be deferred for background
2418	 * fsck.  However, the old behavior of scanning the cylinder
2419	 * groups and recalculating them at mount time is available
2420	 * by setting vfs.ffs.compute_summary_at_mount to one.
2421	 */
2422	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2423		return (0);
2424	bzero(&cstotal, sizeof cstotal);
2425	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2426		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2427		    fs->fs_cgsize, cred, &bp)) != 0) {
2428			brelse(bp);
2429			softdep_unmount(mp);
2430			return (error);
2431		}
2432		cgp = (struct cg *)bp->b_data;
2433		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2434		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2435		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2436		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2437		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2438		brelse(bp);
2439	}
2440#ifdef DEBUG
2441	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2442		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2443#endif
2444	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2445	return (0);
2446}
2447
2448void
2449softdep_unmount(mp)
2450	struct mount *mp;
2451{
2452	struct ufsmount *ump;
2453#ifdef INVARIANTS
2454	int i;
2455#endif
2456
2457	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2458	    ("softdep_unmount called on non-softdep filesystem"));
2459	ump = VFSTOUFS(mp);
2460	MNT_ILOCK(mp);
2461	mp->mnt_flag &= ~MNT_SOFTDEP;
2462	if (MOUNTEDSUJ(mp) == 0) {
2463		MNT_IUNLOCK(mp);
2464	} else {
2465		mp->mnt_flag &= ~MNT_SUJ;
2466		MNT_IUNLOCK(mp);
2467		journal_unmount(ump);
2468	}
2469	atomic_subtract_int(&stat_softdep_mounts, 1);
2470	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2471	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2472	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2473	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2474	    ump->bmsafemap_hash_size);
2475	free(ump->indir_hashtbl, M_FREEWORK);
2476#ifdef INVARIANTS
2477	for (i = 0; i <= D_LAST; i++)
2478		KASSERT(ump->softdep_curdeps[i] == 0,
2479		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2480		    TYPENAME(i), ump->softdep_curdeps[i]));
2481#endif
2482	free(ump->um_softdep, M_MOUNTDATA);
2483}
2484
2485static struct jblocks *
2486jblocks_create(void)
2487{
2488	struct jblocks *jblocks;
2489
2490	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2491	TAILQ_INIT(&jblocks->jb_segs);
2492	jblocks->jb_avail = 10;
2493	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2494	    M_JBLOCKS, M_WAITOK | M_ZERO);
2495
2496	return (jblocks);
2497}
2498
2499static ufs2_daddr_t
2500jblocks_alloc(jblocks, bytes, actual)
2501	struct jblocks *jblocks;
2502	int bytes;
2503	int *actual;
2504{
2505	ufs2_daddr_t daddr;
2506	struct jextent *jext;
2507	int freecnt;
2508	int blocks;
2509
2510	blocks = bytes / DEV_BSIZE;
2511	jext = &jblocks->jb_extent[jblocks->jb_head];
2512	freecnt = jext->je_blocks - jblocks->jb_off;
2513	if (freecnt == 0) {
2514		jblocks->jb_off = 0;
2515		if (++jblocks->jb_head > jblocks->jb_used)
2516			jblocks->jb_head = 0;
2517		jext = &jblocks->jb_extent[jblocks->jb_head];
2518		freecnt = jext->je_blocks;
2519	}
2520	if (freecnt > blocks)
2521		freecnt = blocks;
2522	*actual = freecnt * DEV_BSIZE;
2523	daddr = jext->je_daddr + jblocks->jb_off;
2524	jblocks->jb_off += freecnt;
2525	jblocks->jb_free -= freecnt;
2526
2527	return (daddr);
2528}
2529
2530static void
2531jblocks_free(jblocks, mp, bytes)
2532	struct jblocks *jblocks;
2533	struct mount *mp;
2534	int bytes;
2535{
2536
2537	LOCK_OWNED(VFSTOUFS(mp));
2538	jblocks->jb_free += bytes / DEV_BSIZE;
2539	if (jblocks->jb_suspended)
2540		worklist_speedup(mp);
2541	wakeup(jblocks);
2542}
2543
2544static void
2545jblocks_destroy(jblocks)
2546	struct jblocks *jblocks;
2547{
2548
2549	if (jblocks->jb_extent)
2550		free(jblocks->jb_extent, M_JBLOCKS);
2551	free(jblocks, M_JBLOCKS);
2552}
2553
2554static void
2555jblocks_add(jblocks, daddr, blocks)
2556	struct jblocks *jblocks;
2557	ufs2_daddr_t daddr;
2558	int blocks;
2559{
2560	struct jextent *jext;
2561
2562	jblocks->jb_blocks += blocks;
2563	jblocks->jb_free += blocks;
2564	jext = &jblocks->jb_extent[jblocks->jb_used];
2565	/* Adding the first block. */
2566	if (jext->je_daddr == 0) {
2567		jext->je_daddr = daddr;
2568		jext->je_blocks = blocks;
2569		return;
2570	}
2571	/* Extending the last extent. */
2572	if (jext->je_daddr + jext->je_blocks == daddr) {
2573		jext->je_blocks += blocks;
2574		return;
2575	}
2576	/* Adding a new extent. */
2577	if (++jblocks->jb_used == jblocks->jb_avail) {
2578		jblocks->jb_avail *= 2;
2579		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2580		    M_JBLOCKS, M_WAITOK | M_ZERO);
2581		memcpy(jext, jblocks->jb_extent,
2582		    sizeof(struct jextent) * jblocks->jb_used);
2583		free(jblocks->jb_extent, M_JBLOCKS);
2584		jblocks->jb_extent = jext;
2585	}
2586	jext = &jblocks->jb_extent[jblocks->jb_used];
2587	jext->je_daddr = daddr;
2588	jext->je_blocks = blocks;
2589	return;
2590}
2591
2592int
2593softdep_journal_lookup(mp, vpp)
2594	struct mount *mp;
2595	struct vnode **vpp;
2596{
2597	struct componentname cnp;
2598	struct vnode *dvp;
2599	ino_t sujournal;
2600	int error;
2601
2602	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2603	if (error)
2604		return (error);
2605	bzero(&cnp, sizeof(cnp));
2606	cnp.cn_nameiop = LOOKUP;
2607	cnp.cn_flags = ISLASTCN;
2608	cnp.cn_thread = curthread;
2609	cnp.cn_cred = curthread->td_ucred;
2610	cnp.cn_pnbuf = SUJ_FILE;
2611	cnp.cn_nameptr = SUJ_FILE;
2612	cnp.cn_namelen = strlen(SUJ_FILE);
2613	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2614	vput(dvp);
2615	if (error != 0)
2616		return (error);
2617	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2618	return (error);
2619}
2620
2621/*
2622 * Open and verify the journal file.
2623 */
2624static int
2625journal_mount(mp, fs, cred)
2626	struct mount *mp;
2627	struct fs *fs;
2628	struct ucred *cred;
2629{
2630	struct jblocks *jblocks;
2631	struct ufsmount *ump;
2632	struct vnode *vp;
2633	struct inode *ip;
2634	ufs2_daddr_t blkno;
2635	int bcount;
2636	int error;
2637	int i;
2638
2639	ump = VFSTOUFS(mp);
2640	ump->softdep_journal_tail = NULL;
2641	ump->softdep_on_journal = 0;
2642	ump->softdep_accdeps = 0;
2643	ump->softdep_req = 0;
2644	ump->softdep_jblocks = NULL;
2645	error = softdep_journal_lookup(mp, &vp);
2646	if (error != 0) {
2647		printf("Failed to find journal.  Use tunefs to create one\n");
2648		return (error);
2649	}
2650	ip = VTOI(vp);
2651	if (ip->i_size < SUJ_MIN) {
2652		error = ENOSPC;
2653		goto out;
2654	}
2655	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2656	jblocks = jblocks_create();
2657	for (i = 0; i < bcount; i++) {
2658		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2659		if (error)
2660			break;
2661		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2662	}
2663	if (error) {
2664		jblocks_destroy(jblocks);
2665		goto out;
2666	}
2667	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2668	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2669	ump->softdep_jblocks = jblocks;
2670out:
2671	if (error == 0) {
2672		MNT_ILOCK(mp);
2673		mp->mnt_flag |= MNT_SUJ;
2674		mp->mnt_flag &= ~MNT_SOFTDEP;
2675		MNT_IUNLOCK(mp);
2676		/*
2677		 * Only validate the journal contents if the
2678		 * filesystem is clean, otherwise we write the logs
2679		 * but they'll never be used.  If the filesystem was
2680		 * still dirty when we mounted it the journal is
2681		 * invalid and a new journal can only be valid if it
2682		 * starts from a clean mount.
2683		 */
2684		if (fs->fs_clean) {
2685			DIP_SET(ip, i_modrev, fs->fs_mtime);
2686			ip->i_flags |= IN_MODIFIED;
2687			ffs_update(vp, 1);
2688		}
2689	}
2690	vput(vp);
2691	return (error);
2692}
2693
2694static void
2695journal_unmount(ump)
2696	struct ufsmount *ump;
2697{
2698
2699	if (ump->softdep_jblocks)
2700		jblocks_destroy(ump->softdep_jblocks);
2701	ump->softdep_jblocks = NULL;
2702}
2703
2704/*
2705 * Called when a journal record is ready to be written.  Space is allocated
2706 * and the journal entry is created when the journal is flushed to stable
2707 * store.
2708 */
2709static void
2710add_to_journal(wk)
2711	struct worklist *wk;
2712{
2713	struct ufsmount *ump;
2714
2715	ump = VFSTOUFS(wk->wk_mp);
2716	LOCK_OWNED(ump);
2717	if (wk->wk_state & ONWORKLIST)
2718		panic("add_to_journal: %s(0x%X) already on list",
2719		    TYPENAME(wk->wk_type), wk->wk_state);
2720	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2721	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2722		ump->softdep_jblocks->jb_age = ticks;
2723		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2724	} else
2725		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2726	ump->softdep_journal_tail = wk;
2727	ump->softdep_on_journal += 1;
2728}
2729
2730/*
2731 * Remove an arbitrary item for the journal worklist maintain the tail
2732 * pointer.  This happens when a new operation obviates the need to
2733 * journal an old operation.
2734 */
2735static void
2736remove_from_journal(wk)
2737	struct worklist *wk;
2738{
2739	struct ufsmount *ump;
2740
2741	ump = VFSTOUFS(wk->wk_mp);
2742	LOCK_OWNED(ump);
2743#ifdef SUJ_DEBUG
2744	{
2745		struct worklist *wkn;
2746
2747		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2748			if (wkn == wk)
2749				break;
2750		if (wkn == NULL)
2751			panic("remove_from_journal: %p is not in journal", wk);
2752	}
2753#endif
2754	/*
2755	 * We emulate a TAILQ to save space in most structures which do not
2756	 * require TAILQ semantics.  Here we must update the tail position
2757	 * when removing the tail which is not the final entry. This works
2758	 * only if the worklist linkage are at the beginning of the structure.
2759	 */
2760	if (ump->softdep_journal_tail == wk)
2761		ump->softdep_journal_tail =
2762		    (struct worklist *)wk->wk_list.le_prev;
2763
2764	WORKLIST_REMOVE(wk);
2765	ump->softdep_on_journal -= 1;
2766}
2767
2768/*
2769 * Check for journal space as well as dependency limits so the prelink
2770 * code can throttle both journaled and non-journaled filesystems.
2771 * Threshold is 0 for low and 1 for min.
2772 */
2773static int
2774journal_space(ump, thresh)
2775	struct ufsmount *ump;
2776	int thresh;
2777{
2778	struct jblocks *jblocks;
2779	int limit, avail;
2780
2781	jblocks = ump->softdep_jblocks;
2782	if (jblocks == NULL)
2783		return (1);
2784	/*
2785	 * We use a tighter restriction here to prevent request_cleanup()
2786	 * running in threads from running into locks we currently hold.
2787	 * We have to be over the limit and our filesystem has to be
2788	 * responsible for more than our share of that usage.
2789	 */
2790	limit = (max_softdeps / 10) * 9;
2791	if (dep_current[D_INODEDEP] > limit &&
2792	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_softdep_mounts)
2793		return (0);
2794	if (thresh)
2795		thresh = jblocks->jb_min;
2796	else
2797		thresh = jblocks->jb_low;
2798	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2799	avail = jblocks->jb_free - avail;
2800
2801	return (avail > thresh);
2802}
2803
2804static void
2805journal_suspend(ump)
2806	struct ufsmount *ump;
2807{
2808	struct jblocks *jblocks;
2809	struct mount *mp;
2810
2811	mp = UFSTOVFS(ump);
2812	jblocks = ump->softdep_jblocks;
2813	MNT_ILOCK(mp);
2814	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2815		stat_journal_min++;
2816		mp->mnt_kern_flag |= MNTK_SUSPEND;
2817		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2818	}
2819	jblocks->jb_suspended = 1;
2820	MNT_IUNLOCK(mp);
2821}
2822
2823static int
2824journal_unsuspend(struct ufsmount *ump)
2825{
2826	struct jblocks *jblocks;
2827	struct mount *mp;
2828
2829	mp = UFSTOVFS(ump);
2830	jblocks = ump->softdep_jblocks;
2831
2832	if (jblocks != NULL && jblocks->jb_suspended &&
2833	    journal_space(ump, jblocks->jb_min)) {
2834		jblocks->jb_suspended = 0;
2835		FREE_LOCK(ump);
2836		mp->mnt_susp_owner = curthread;
2837		vfs_write_resume(mp, 0);
2838		ACQUIRE_LOCK(ump);
2839		return (1);
2840	}
2841	return (0);
2842}
2843
2844/*
2845 * Called before any allocation function to be certain that there is
2846 * sufficient space in the journal prior to creating any new records.
2847 * Since in the case of block allocation we may have multiple locked
2848 * buffers at the time of the actual allocation we can not block
2849 * when the journal records are created.  Doing so would create a deadlock
2850 * if any of these buffers needed to be flushed to reclaim space.  Instead
2851 * we require a sufficiently large amount of available space such that
2852 * each thread in the system could have passed this allocation check and
2853 * still have sufficient free space.  With 20% of a minimum journal size
2854 * of 1MB we have 6553 records available.
2855 */
2856int
2857softdep_prealloc(vp, waitok)
2858	struct vnode *vp;
2859	int waitok;
2860{
2861	struct ufsmount *ump;
2862
2863	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2864	    ("softdep_prealloc called on non-softdep filesystem"));
2865	/*
2866	 * Nothing to do if we are not running journaled soft updates.
2867	 * If we currently hold the snapshot lock, we must avoid handling
2868	 * other resources that could cause deadlock.
2869	 */
2870	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2871		return (0);
2872	ump = VFSTOUFS(vp->v_mount);
2873	ACQUIRE_LOCK(ump);
2874	if (journal_space(ump, 0)) {
2875		FREE_LOCK(ump);
2876		return (0);
2877	}
2878	stat_journal_low++;
2879	FREE_LOCK(ump);
2880	if (waitok == MNT_NOWAIT)
2881		return (ENOSPC);
2882	/*
2883	 * Attempt to sync this vnode once to flush any journal
2884	 * work attached to it.
2885	 */
2886	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2887		ffs_syncvnode(vp, waitok, 0);
2888	ACQUIRE_LOCK(ump);
2889	process_removes(vp);
2890	process_truncates(vp);
2891	if (journal_space(ump, 0) == 0) {
2892		softdep_speedup();
2893		if (journal_space(ump, 1) == 0)
2894			journal_suspend(ump);
2895	}
2896	FREE_LOCK(ump);
2897
2898	return (0);
2899}
2900
2901/*
2902 * Before adjusting a link count on a vnode verify that we have sufficient
2903 * journal space.  If not, process operations that depend on the currently
2904 * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2905 * and softdep flush threads can not acquire these locks to reclaim space.
2906 */
2907static void
2908softdep_prelink(dvp, vp)
2909	struct vnode *dvp;
2910	struct vnode *vp;
2911{
2912	struct ufsmount *ump;
2913
2914	ump = VFSTOUFS(dvp->v_mount);
2915	LOCK_OWNED(ump);
2916	/*
2917	 * Nothing to do if we have sufficient journal space.
2918	 * If we currently hold the snapshot lock, we must avoid
2919	 * handling other resources that could cause deadlock.
2920	 */
2921	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
2922		return;
2923	stat_journal_low++;
2924	FREE_LOCK(ump);
2925	if (vp)
2926		ffs_syncvnode(vp, MNT_NOWAIT, 0);
2927	ffs_syncvnode(dvp, MNT_WAIT, 0);
2928	ACQUIRE_LOCK(ump);
2929	/* Process vp before dvp as it may create .. removes. */
2930	if (vp) {
2931		process_removes(vp);
2932		process_truncates(vp);
2933	}
2934	process_removes(dvp);
2935	process_truncates(dvp);
2936	softdep_speedup();
2937	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2938	if (journal_space(ump, 0) == 0) {
2939		softdep_speedup();
2940		if (journal_space(ump, 1) == 0)
2941			journal_suspend(ump);
2942	}
2943}
2944
2945static void
2946jseg_write(ump, jseg, data)
2947	struct ufsmount *ump;
2948	struct jseg *jseg;
2949	uint8_t *data;
2950{
2951	struct jsegrec *rec;
2952
2953	rec = (struct jsegrec *)data;
2954	rec->jsr_seq = jseg->js_seq;
2955	rec->jsr_oldest = jseg->js_oldseq;
2956	rec->jsr_cnt = jseg->js_cnt;
2957	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2958	rec->jsr_crc = 0;
2959	rec->jsr_time = ump->um_fs->fs_mtime;
2960}
2961
2962static inline void
2963inoref_write(inoref, jseg, rec)
2964	struct inoref *inoref;
2965	struct jseg *jseg;
2966	struct jrefrec *rec;
2967{
2968
2969	inoref->if_jsegdep->jd_seg = jseg;
2970	rec->jr_ino = inoref->if_ino;
2971	rec->jr_parent = inoref->if_parent;
2972	rec->jr_nlink = inoref->if_nlink;
2973	rec->jr_mode = inoref->if_mode;
2974	rec->jr_diroff = inoref->if_diroff;
2975}
2976
2977static void
2978jaddref_write(jaddref, jseg, data)
2979	struct jaddref *jaddref;
2980	struct jseg *jseg;
2981	uint8_t *data;
2982{
2983	struct jrefrec *rec;
2984
2985	rec = (struct jrefrec *)data;
2986	rec->jr_op = JOP_ADDREF;
2987	inoref_write(&jaddref->ja_ref, jseg, rec);
2988}
2989
2990static void
2991jremref_write(jremref, jseg, data)
2992	struct jremref *jremref;
2993	struct jseg *jseg;
2994	uint8_t *data;
2995{
2996	struct jrefrec *rec;
2997
2998	rec = (struct jrefrec *)data;
2999	rec->jr_op = JOP_REMREF;
3000	inoref_write(&jremref->jr_ref, jseg, rec);
3001}
3002
3003static void
3004jmvref_write(jmvref, jseg, data)
3005	struct jmvref *jmvref;
3006	struct jseg *jseg;
3007	uint8_t *data;
3008{
3009	struct jmvrec *rec;
3010
3011	rec = (struct jmvrec *)data;
3012	rec->jm_op = JOP_MVREF;
3013	rec->jm_ino = jmvref->jm_ino;
3014	rec->jm_parent = jmvref->jm_parent;
3015	rec->jm_oldoff = jmvref->jm_oldoff;
3016	rec->jm_newoff = jmvref->jm_newoff;
3017}
3018
3019static void
3020jnewblk_write(jnewblk, jseg, data)
3021	struct jnewblk *jnewblk;
3022	struct jseg *jseg;
3023	uint8_t *data;
3024{
3025	struct jblkrec *rec;
3026
3027	jnewblk->jn_jsegdep->jd_seg = jseg;
3028	rec = (struct jblkrec *)data;
3029	rec->jb_op = JOP_NEWBLK;
3030	rec->jb_ino = jnewblk->jn_ino;
3031	rec->jb_blkno = jnewblk->jn_blkno;
3032	rec->jb_lbn = jnewblk->jn_lbn;
3033	rec->jb_frags = jnewblk->jn_frags;
3034	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3035}
3036
3037static void
3038jfreeblk_write(jfreeblk, jseg, data)
3039	struct jfreeblk *jfreeblk;
3040	struct jseg *jseg;
3041	uint8_t *data;
3042{
3043	struct jblkrec *rec;
3044
3045	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3046	rec = (struct jblkrec *)data;
3047	rec->jb_op = JOP_FREEBLK;
3048	rec->jb_ino = jfreeblk->jf_ino;
3049	rec->jb_blkno = jfreeblk->jf_blkno;
3050	rec->jb_lbn = jfreeblk->jf_lbn;
3051	rec->jb_frags = jfreeblk->jf_frags;
3052	rec->jb_oldfrags = 0;
3053}
3054
3055static void
3056jfreefrag_write(jfreefrag, jseg, data)
3057	struct jfreefrag *jfreefrag;
3058	struct jseg *jseg;
3059	uint8_t *data;
3060{
3061	struct jblkrec *rec;
3062
3063	jfreefrag->fr_jsegdep->jd_seg = jseg;
3064	rec = (struct jblkrec *)data;
3065	rec->jb_op = JOP_FREEBLK;
3066	rec->jb_ino = jfreefrag->fr_ino;
3067	rec->jb_blkno = jfreefrag->fr_blkno;
3068	rec->jb_lbn = jfreefrag->fr_lbn;
3069	rec->jb_frags = jfreefrag->fr_frags;
3070	rec->jb_oldfrags = 0;
3071}
3072
3073static void
3074jtrunc_write(jtrunc, jseg, data)
3075	struct jtrunc *jtrunc;
3076	struct jseg *jseg;
3077	uint8_t *data;
3078{
3079	struct jtrncrec *rec;
3080
3081	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3082	rec = (struct jtrncrec *)data;
3083	rec->jt_op = JOP_TRUNC;
3084	rec->jt_ino = jtrunc->jt_ino;
3085	rec->jt_size = jtrunc->jt_size;
3086	rec->jt_extsize = jtrunc->jt_extsize;
3087}
3088
3089static void
3090jfsync_write(jfsync, jseg, data)
3091	struct jfsync *jfsync;
3092	struct jseg *jseg;
3093	uint8_t *data;
3094{
3095	struct jtrncrec *rec;
3096
3097	rec = (struct jtrncrec *)data;
3098	rec->jt_op = JOP_SYNC;
3099	rec->jt_ino = jfsync->jfs_ino;
3100	rec->jt_size = jfsync->jfs_size;
3101	rec->jt_extsize = jfsync->jfs_extsize;
3102}
3103
3104static void
3105softdep_flushjournal(mp)
3106	struct mount *mp;
3107{
3108	struct jblocks *jblocks;
3109	struct ufsmount *ump;
3110
3111	if (MOUNTEDSUJ(mp) == 0)
3112		return;
3113	ump = VFSTOUFS(mp);
3114	jblocks = ump->softdep_jblocks;
3115	ACQUIRE_LOCK(ump);
3116	while (ump->softdep_on_journal) {
3117		jblocks->jb_needseg = 1;
3118		softdep_process_journal(mp, NULL, MNT_WAIT);
3119	}
3120	FREE_LOCK(ump);
3121}
3122
3123static void softdep_synchronize_completed(struct bio *);
3124static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3125
3126static void
3127softdep_synchronize_completed(bp)
3128        struct bio *bp;
3129{
3130	struct jseg *oldest;
3131	struct jseg *jseg;
3132	struct ufsmount *ump;
3133
3134	/*
3135	 * caller1 marks the last segment written before we issued the
3136	 * synchronize cache.
3137	 */
3138	jseg = bp->bio_caller1;
3139	if (jseg == NULL) {
3140		g_destroy_bio(bp);
3141		return;
3142	}
3143	ump = VFSTOUFS(jseg->js_list.wk_mp);
3144	ACQUIRE_LOCK(ump);
3145	oldest = NULL;
3146	/*
3147	 * Mark all the journal entries waiting on the synchronize cache
3148	 * as completed so they may continue on.
3149	 */
3150	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3151		jseg->js_state |= COMPLETE;
3152		oldest = jseg;
3153		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3154	}
3155	/*
3156	 * Restart deferred journal entry processing from the oldest
3157	 * completed jseg.
3158	 */
3159	if (oldest)
3160		complete_jsegs(oldest);
3161
3162	FREE_LOCK(ump);
3163	g_destroy_bio(bp);
3164}
3165
3166/*
3167 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3168 * barriers.  The journal must be written prior to any blocks that depend
3169 * on it and the journal can not be released until the blocks have be
3170 * written.  This code handles both barriers simultaneously.
3171 */
3172static void
3173softdep_synchronize(bp, ump, caller1)
3174	struct bio *bp;
3175	struct ufsmount *ump;
3176	void *caller1;
3177{
3178
3179	bp->bio_cmd = BIO_FLUSH;
3180	bp->bio_flags |= BIO_ORDERED;
3181	bp->bio_data = NULL;
3182	bp->bio_offset = ump->um_cp->provider->mediasize;
3183	bp->bio_length = 0;
3184	bp->bio_done = softdep_synchronize_completed;
3185	bp->bio_caller1 = caller1;
3186	g_io_request(bp,
3187	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3188}
3189
3190/*
3191 * Flush some journal records to disk.
3192 */
3193static void
3194softdep_process_journal(mp, needwk, flags)
3195	struct mount *mp;
3196	struct worklist *needwk;
3197	int flags;
3198{
3199	struct jblocks *jblocks;
3200	struct ufsmount *ump;
3201	struct worklist *wk;
3202	struct jseg *jseg;
3203	struct buf *bp;
3204	struct bio *bio;
3205	uint8_t *data;
3206	struct fs *fs;
3207	int shouldflush;
3208	int segwritten;
3209	int jrecmin;	/* Minimum records per block. */
3210	int jrecmax;	/* Maximum records per block. */
3211	int size;
3212	int cnt;
3213	int off;
3214	int devbsize;
3215
3216	if (MOUNTEDSUJ(mp) == 0)
3217		return;
3218	shouldflush = softdep_flushcache;
3219	bio = NULL;
3220	jseg = NULL;
3221	ump = VFSTOUFS(mp);
3222	LOCK_OWNED(ump);
3223	fs = ump->um_fs;
3224	jblocks = ump->softdep_jblocks;
3225	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3226	/*
3227	 * We write anywhere between a disk block and fs block.  The upper
3228	 * bound is picked to prevent buffer cache fragmentation and limit
3229	 * processing time per I/O.
3230	 */
3231	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3232	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3233	segwritten = 0;
3234	for (;;) {
3235		cnt = ump->softdep_on_journal;
3236		/*
3237		 * Criteria for writing a segment:
3238		 * 1) We have a full block.
3239		 * 2) We're called from jwait() and haven't found the
3240		 *    journal item yet.
3241		 * 3) Always write if needseg is set.
3242		 * 4) If we are called from process_worklist and have
3243		 *    not yet written anything we write a partial block
3244		 *    to enforce a 1 second maximum latency on journal
3245		 *    entries.
3246		 */
3247		if (cnt < (jrecmax - 1) && needwk == NULL &&
3248		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3249			break;
3250		cnt++;
3251		/*
3252		 * Verify some free journal space.  softdep_prealloc() should
3253		 * guarantee that we don't run out so this is indicative of
3254		 * a problem with the flow control.  Try to recover
3255		 * gracefully in any event.
3256		 */
3257		while (jblocks->jb_free == 0) {
3258			if (flags != MNT_WAIT)
3259				break;
3260			printf("softdep: Out of journal space!\n");
3261			softdep_speedup();
3262			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3263		}
3264		FREE_LOCK(ump);
3265		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3266		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3267		LIST_INIT(&jseg->js_entries);
3268		LIST_INIT(&jseg->js_indirs);
3269		jseg->js_state = ATTACHED;
3270		if (shouldflush == 0)
3271			jseg->js_state |= COMPLETE;
3272		else if (bio == NULL)
3273			bio = g_alloc_bio();
3274		jseg->js_jblocks = jblocks;
3275		bp = geteblk(fs->fs_bsize, 0);
3276		ACQUIRE_LOCK(ump);
3277		/*
3278		 * If there was a race while we were allocating the block
3279		 * and jseg the entry we care about was likely written.
3280		 * We bail out in both the WAIT and NOWAIT case and assume
3281		 * the caller will loop if the entry it cares about is
3282		 * not written.
3283		 */
3284		cnt = ump->softdep_on_journal;
3285		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3286			bp->b_flags |= B_INVAL | B_NOCACHE;
3287			WORKITEM_FREE(jseg, D_JSEG);
3288			FREE_LOCK(ump);
3289			brelse(bp);
3290			ACQUIRE_LOCK(ump);
3291			break;
3292		}
3293		/*
3294		 * Calculate the disk block size required for the available
3295		 * records rounded to the min size.
3296		 */
3297		if (cnt == 0)
3298			size = devbsize;
3299		else if (cnt < jrecmax)
3300			size = howmany(cnt, jrecmin) * devbsize;
3301		else
3302			size = fs->fs_bsize;
3303		/*
3304		 * Allocate a disk block for this journal data and account
3305		 * for truncation of the requested size if enough contiguous
3306		 * space was not available.
3307		 */
3308		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3309		bp->b_lblkno = bp->b_blkno;
3310		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3311		bp->b_bcount = size;
3312		bp->b_flags &= ~B_INVAL;
3313		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3314		/*
3315		 * Initialize our jseg with cnt records.  Assign the next
3316		 * sequence number to it and link it in-order.
3317		 */
3318		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3319		jseg->js_buf = bp;
3320		jseg->js_cnt = cnt;
3321		jseg->js_refs = cnt + 1;	/* Self ref. */
3322		jseg->js_size = size;
3323		jseg->js_seq = jblocks->jb_nextseq++;
3324		if (jblocks->jb_oldestseg == NULL)
3325			jblocks->jb_oldestseg = jseg;
3326		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3327		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3328		if (jblocks->jb_writeseg == NULL)
3329			jblocks->jb_writeseg = jseg;
3330		/*
3331		 * Start filling in records from the pending list.
3332		 */
3333		data = bp->b_data;
3334		off = 0;
3335
3336		/*
3337		 * Always put a header on the first block.
3338		 * XXX As with below, there might not be a chance to get
3339		 * into the loop.  Ensure that something valid is written.
3340		 */
3341		jseg_write(ump, jseg, data);
3342		off += JREC_SIZE;
3343		data = bp->b_data + off;
3344
3345		/*
3346		 * XXX Something is wrong here.  There's no work to do,
3347		 * but we need to perform and I/O and allow it to complete
3348		 * anyways.
3349		 */
3350		if (LIST_EMPTY(&ump->softdep_journal_pending))
3351			stat_emptyjblocks++;
3352
3353		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3354		    != NULL) {
3355			if (cnt == 0)
3356				break;
3357			/* Place a segment header on every device block. */
3358			if ((off % devbsize) == 0) {
3359				jseg_write(ump, jseg, data);
3360				off += JREC_SIZE;
3361				data = bp->b_data + off;
3362			}
3363			if (wk == needwk)
3364				needwk = NULL;
3365			remove_from_journal(wk);
3366			wk->wk_state |= INPROGRESS;
3367			WORKLIST_INSERT(&jseg->js_entries, wk);
3368			switch (wk->wk_type) {
3369			case D_JADDREF:
3370				jaddref_write(WK_JADDREF(wk), jseg, data);
3371				break;
3372			case D_JREMREF:
3373				jremref_write(WK_JREMREF(wk), jseg, data);
3374				break;
3375			case D_JMVREF:
3376				jmvref_write(WK_JMVREF(wk), jseg, data);
3377				break;
3378			case D_JNEWBLK:
3379				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3380				break;
3381			case D_JFREEBLK:
3382				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3383				break;
3384			case D_JFREEFRAG:
3385				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3386				break;
3387			case D_JTRUNC:
3388				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3389				break;
3390			case D_JFSYNC:
3391				jfsync_write(WK_JFSYNC(wk), jseg, data);
3392				break;
3393			default:
3394				panic("process_journal: Unknown type %s",
3395				    TYPENAME(wk->wk_type));
3396				/* NOTREACHED */
3397			}
3398			off += JREC_SIZE;
3399			data = bp->b_data + off;
3400			cnt--;
3401		}
3402
3403		/* Clear any remaining space so we don't leak kernel data */
3404		if (size > off)
3405			bzero(data, size - off);
3406
3407		/*
3408		 * Write this one buffer and continue.
3409		 */
3410		segwritten = 1;
3411		jblocks->jb_needseg = 0;
3412		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3413		FREE_LOCK(ump);
3414		pbgetvp(ump->um_devvp, bp);
3415		/*
3416		 * We only do the blocking wait once we find the journal
3417		 * entry we're looking for.
3418		 */
3419		if (needwk == NULL && flags == MNT_WAIT)
3420			bwrite(bp);
3421		else
3422			bawrite(bp);
3423		ACQUIRE_LOCK(ump);
3424	}
3425	/*
3426	 * If we wrote a segment issue a synchronize cache so the journal
3427	 * is reflected on disk before the data is written.  Since reclaiming
3428	 * journal space also requires writing a journal record this
3429	 * process also enforces a barrier before reclamation.
3430	 */
3431	if (segwritten && shouldflush) {
3432		softdep_synchronize(bio, ump,
3433		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3434	} else if (bio)
3435		g_destroy_bio(bio);
3436	/*
3437	 * If we've suspended the filesystem because we ran out of journal
3438	 * space either try to sync it here to make some progress or
3439	 * unsuspend it if we already have.
3440	 */
3441	if (flags == 0 && jblocks->jb_suspended) {
3442		if (journal_unsuspend(ump))
3443			return;
3444		FREE_LOCK(ump);
3445		VFS_SYNC(mp, MNT_NOWAIT);
3446		ffs_sbupdate(ump, MNT_WAIT, 0);
3447		ACQUIRE_LOCK(ump);
3448	}
3449}
3450
3451/*
3452 * Complete a jseg, allowing all dependencies awaiting journal writes
3453 * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3454 * structures so that the journal segment can be freed to reclaim space.
3455 */
3456static void
3457complete_jseg(jseg)
3458	struct jseg *jseg;
3459{
3460	struct worklist *wk;
3461	struct jmvref *jmvref;
3462	int waiting;
3463#ifdef INVARIANTS
3464	int i = 0;
3465#endif
3466
3467	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3468		WORKLIST_REMOVE(wk);
3469		waiting = wk->wk_state & IOWAITING;
3470		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3471		wk->wk_state |= COMPLETE;
3472		KASSERT(i++ < jseg->js_cnt,
3473		    ("handle_written_jseg: overflow %d >= %d",
3474		    i - 1, jseg->js_cnt));
3475		switch (wk->wk_type) {
3476		case D_JADDREF:
3477			handle_written_jaddref(WK_JADDREF(wk));
3478			break;
3479		case D_JREMREF:
3480			handle_written_jremref(WK_JREMREF(wk));
3481			break;
3482		case D_JMVREF:
3483			rele_jseg(jseg);	/* No jsegdep. */
3484			jmvref = WK_JMVREF(wk);
3485			LIST_REMOVE(jmvref, jm_deps);
3486			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3487				free_pagedep(jmvref->jm_pagedep);
3488			WORKITEM_FREE(jmvref, D_JMVREF);
3489			break;
3490		case D_JNEWBLK:
3491			handle_written_jnewblk(WK_JNEWBLK(wk));
3492			break;
3493		case D_JFREEBLK:
3494			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3495			break;
3496		case D_JTRUNC:
3497			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3498			break;
3499		case D_JFSYNC:
3500			rele_jseg(jseg);	/* No jsegdep. */
3501			WORKITEM_FREE(wk, D_JFSYNC);
3502			break;
3503		case D_JFREEFRAG:
3504			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3505			break;
3506		default:
3507			panic("handle_written_jseg: Unknown type %s",
3508			    TYPENAME(wk->wk_type));
3509			/* NOTREACHED */
3510		}
3511		if (waiting)
3512			wakeup(wk);
3513	}
3514	/* Release the self reference so the structure may be freed. */
3515	rele_jseg(jseg);
3516}
3517
3518/*
3519 * Determine which jsegs are ready for completion processing.  Waits for
3520 * synchronize cache to complete as well as forcing in-order completion
3521 * of journal entries.
3522 */
3523static void
3524complete_jsegs(jseg)
3525	struct jseg *jseg;
3526{
3527	struct jblocks *jblocks;
3528	struct jseg *jsegn;
3529
3530	jblocks = jseg->js_jblocks;
3531	/*
3532	 * Don't allow out of order completions.  If this isn't the first
3533	 * block wait for it to write before we're done.
3534	 */
3535	if (jseg != jblocks->jb_writeseg)
3536		return;
3537	/* Iterate through available jsegs processing their entries. */
3538	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3539		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3540		jsegn = TAILQ_NEXT(jseg, js_next);
3541		complete_jseg(jseg);
3542		jseg = jsegn;
3543	}
3544	jblocks->jb_writeseg = jseg;
3545	/*
3546	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3547	 */
3548	free_jsegs(jblocks);
3549}
3550
3551/*
3552 * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3553 * the final completions.
3554 */
3555static void
3556handle_written_jseg(jseg, bp)
3557	struct jseg *jseg;
3558	struct buf *bp;
3559{
3560
3561	if (jseg->js_refs == 0)
3562		panic("handle_written_jseg: No self-reference on %p", jseg);
3563	jseg->js_state |= DEPCOMPLETE;
3564	/*
3565	 * We'll never need this buffer again, set flags so it will be
3566	 * discarded.
3567	 */
3568	bp->b_flags |= B_INVAL | B_NOCACHE;
3569	pbrelvp(bp);
3570	complete_jsegs(jseg);
3571}
3572
3573static inline struct jsegdep *
3574inoref_jseg(inoref)
3575	struct inoref *inoref;
3576{
3577	struct jsegdep *jsegdep;
3578
3579	jsegdep = inoref->if_jsegdep;
3580	inoref->if_jsegdep = NULL;
3581
3582	return (jsegdep);
3583}
3584
3585/*
3586 * Called once a jremref has made it to stable store.  The jremref is marked
3587 * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3588 * for the jremref to complete will be awoken by free_jremref.
3589 */
3590static void
3591handle_written_jremref(jremref)
3592	struct jremref *jremref;
3593{
3594	struct inodedep *inodedep;
3595	struct jsegdep *jsegdep;
3596	struct dirrem *dirrem;
3597
3598	/* Grab the jsegdep. */
3599	jsegdep = inoref_jseg(&jremref->jr_ref);
3600	/*
3601	 * Remove us from the inoref list.
3602	 */
3603	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3604	    0, &inodedep) == 0)
3605		panic("handle_written_jremref: Lost inodedep");
3606	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3607	/*
3608	 * Complete the dirrem.
3609	 */
3610	dirrem = jremref->jr_dirrem;
3611	jremref->jr_dirrem = NULL;
3612	LIST_REMOVE(jremref, jr_deps);
3613	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3614	jwork_insert(&dirrem->dm_jwork, jsegdep);
3615	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3616	    (dirrem->dm_state & COMPLETE) != 0)
3617		add_to_worklist(&dirrem->dm_list, 0);
3618	free_jremref(jremref);
3619}
3620
3621/*
3622 * Called once a jaddref has made it to stable store.  The dependency is
3623 * marked complete and any dependent structures are added to the inode
3624 * bufwait list to be completed as soon as it is written.  If a bitmap write
3625 * depends on this entry we move the inode into the inodedephd of the
3626 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3627 */
3628static void
3629handle_written_jaddref(jaddref)
3630	struct jaddref *jaddref;
3631{
3632	struct jsegdep *jsegdep;
3633	struct inodedep *inodedep;
3634	struct diradd *diradd;
3635	struct mkdir *mkdir;
3636
3637	/* Grab the jsegdep. */
3638	jsegdep = inoref_jseg(&jaddref->ja_ref);
3639	mkdir = NULL;
3640	diradd = NULL;
3641	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3642	    0, &inodedep) == 0)
3643		panic("handle_written_jaddref: Lost inodedep.");
3644	if (jaddref->ja_diradd == NULL)
3645		panic("handle_written_jaddref: No dependency");
3646	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3647		diradd = jaddref->ja_diradd;
3648		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3649	} else if (jaddref->ja_state & MKDIR_PARENT) {
3650		mkdir = jaddref->ja_mkdir;
3651		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3652	} else if (jaddref->ja_state & MKDIR_BODY)
3653		mkdir = jaddref->ja_mkdir;
3654	else
3655		panic("handle_written_jaddref: Unknown dependency %p",
3656		    jaddref->ja_diradd);
3657	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3658	/*
3659	 * Remove us from the inode list.
3660	 */
3661	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3662	/*
3663	 * The mkdir may be waiting on the jaddref to clear before freeing.
3664	 */
3665	if (mkdir) {
3666		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3667		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3668		    TYPENAME(mkdir->md_list.wk_type)));
3669		mkdir->md_jaddref = NULL;
3670		diradd = mkdir->md_diradd;
3671		mkdir->md_state |= DEPCOMPLETE;
3672		complete_mkdir(mkdir);
3673	}
3674	jwork_insert(&diradd->da_jwork, jsegdep);
3675	if (jaddref->ja_state & NEWBLOCK) {
3676		inodedep->id_state |= ONDEPLIST;
3677		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3678		    inodedep, id_deps);
3679	}
3680	free_jaddref(jaddref);
3681}
3682
3683/*
3684 * Called once a jnewblk journal is written.  The allocdirect or allocindir
3685 * is placed in the bmsafemap to await notification of a written bitmap.  If
3686 * the operation was canceled we add the segdep to the appropriate
3687 * dependency to free the journal space once the canceling operation
3688 * completes.
3689 */
3690static void
3691handle_written_jnewblk(jnewblk)
3692	struct jnewblk *jnewblk;
3693{
3694	struct bmsafemap *bmsafemap;
3695	struct freefrag *freefrag;
3696	struct freework *freework;
3697	struct jsegdep *jsegdep;
3698	struct newblk *newblk;
3699
3700	/* Grab the jsegdep. */
3701	jsegdep = jnewblk->jn_jsegdep;
3702	jnewblk->jn_jsegdep = NULL;
3703	if (jnewblk->jn_dep == NULL)
3704		panic("handle_written_jnewblk: No dependency for the segdep.");
3705	switch (jnewblk->jn_dep->wk_type) {
3706	case D_NEWBLK:
3707	case D_ALLOCDIRECT:
3708	case D_ALLOCINDIR:
3709		/*
3710		 * Add the written block to the bmsafemap so it can
3711		 * be notified when the bitmap is on disk.
3712		 */
3713		newblk = WK_NEWBLK(jnewblk->jn_dep);
3714		newblk->nb_jnewblk = NULL;
3715		if ((newblk->nb_state & GOINGAWAY) == 0) {
3716			bmsafemap = newblk->nb_bmsafemap;
3717			newblk->nb_state |= ONDEPLIST;
3718			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3719			    nb_deps);
3720		}
3721		jwork_insert(&newblk->nb_jwork, jsegdep);
3722		break;
3723	case D_FREEFRAG:
3724		/*
3725		 * A newblock being removed by a freefrag when replaced by
3726		 * frag extension.
3727		 */
3728		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3729		freefrag->ff_jdep = NULL;
3730		jwork_insert(&freefrag->ff_jwork, jsegdep);
3731		break;
3732	case D_FREEWORK:
3733		/*
3734		 * A direct block was removed by truncate.
3735		 */
3736		freework = WK_FREEWORK(jnewblk->jn_dep);
3737		freework->fw_jnewblk = NULL;
3738		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3739		break;
3740	default:
3741		panic("handle_written_jnewblk: Unknown type %d.",
3742		    jnewblk->jn_dep->wk_type);
3743	}
3744	jnewblk->jn_dep = NULL;
3745	free_jnewblk(jnewblk);
3746}
3747
3748/*
3749 * Cancel a jfreefrag that won't be needed, probably due to colliding with
3750 * an in-flight allocation that has not yet been committed.  Divorce us
3751 * from the freefrag and mark it DEPCOMPLETE so that it may be added
3752 * to the worklist.
3753 */
3754static void
3755cancel_jfreefrag(jfreefrag)
3756	struct jfreefrag *jfreefrag;
3757{
3758	struct freefrag *freefrag;
3759
3760	if (jfreefrag->fr_jsegdep) {
3761		free_jsegdep(jfreefrag->fr_jsegdep);
3762		jfreefrag->fr_jsegdep = NULL;
3763	}
3764	freefrag = jfreefrag->fr_freefrag;
3765	jfreefrag->fr_freefrag = NULL;
3766	free_jfreefrag(jfreefrag);
3767	freefrag->ff_state |= DEPCOMPLETE;
3768	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3769}
3770
3771/*
3772 * Free a jfreefrag when the parent freefrag is rendered obsolete.
3773 */
3774static void
3775free_jfreefrag(jfreefrag)
3776	struct jfreefrag *jfreefrag;
3777{
3778
3779	if (jfreefrag->fr_state & INPROGRESS)
3780		WORKLIST_REMOVE(&jfreefrag->fr_list);
3781	else if (jfreefrag->fr_state & ONWORKLIST)
3782		remove_from_journal(&jfreefrag->fr_list);
3783	if (jfreefrag->fr_freefrag != NULL)
3784		panic("free_jfreefrag:  Still attached to a freefrag.");
3785	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3786}
3787
3788/*
3789 * Called when the journal write for a jfreefrag completes.  The parent
3790 * freefrag is added to the worklist if this completes its dependencies.
3791 */
3792static void
3793handle_written_jfreefrag(jfreefrag)
3794	struct jfreefrag *jfreefrag;
3795{
3796	struct jsegdep *jsegdep;
3797	struct freefrag *freefrag;
3798
3799	/* Grab the jsegdep. */
3800	jsegdep = jfreefrag->fr_jsegdep;
3801	jfreefrag->fr_jsegdep = NULL;
3802	freefrag = jfreefrag->fr_freefrag;
3803	if (freefrag == NULL)
3804		panic("handle_written_jfreefrag: No freefrag.");
3805	freefrag->ff_state |= DEPCOMPLETE;
3806	freefrag->ff_jdep = NULL;
3807	jwork_insert(&freefrag->ff_jwork, jsegdep);
3808	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3809		add_to_worklist(&freefrag->ff_list, 0);
3810	jfreefrag->fr_freefrag = NULL;
3811	free_jfreefrag(jfreefrag);
3812}
3813
3814/*
3815 * Called when the journal write for a jfreeblk completes.  The jfreeblk
3816 * is removed from the freeblks list of pending journal writes and the
3817 * jsegdep is moved to the freeblks jwork to be completed when all blocks
3818 * have been reclaimed.
3819 */
3820static void
3821handle_written_jblkdep(jblkdep)
3822	struct jblkdep *jblkdep;
3823{
3824	struct freeblks *freeblks;
3825	struct jsegdep *jsegdep;
3826
3827	/* Grab the jsegdep. */
3828	jsegdep = jblkdep->jb_jsegdep;
3829	jblkdep->jb_jsegdep = NULL;
3830	freeblks = jblkdep->jb_freeblks;
3831	LIST_REMOVE(jblkdep, jb_deps);
3832	jwork_insert(&freeblks->fb_jwork, jsegdep);
3833	/*
3834	 * If the freeblks is all journaled, we can add it to the worklist.
3835	 */
3836	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3837	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3838		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3839
3840	free_jblkdep(jblkdep);
3841}
3842
3843static struct jsegdep *
3844newjsegdep(struct worklist *wk)
3845{
3846	struct jsegdep *jsegdep;
3847
3848	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3849	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3850	jsegdep->jd_seg = NULL;
3851
3852	return (jsegdep);
3853}
3854
3855static struct jmvref *
3856newjmvref(dp, ino, oldoff, newoff)
3857	struct inode *dp;
3858	ino_t ino;
3859	off_t oldoff;
3860	off_t newoff;
3861{
3862	struct jmvref *jmvref;
3863
3864	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3865	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3866	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3867	jmvref->jm_parent = dp->i_number;
3868	jmvref->jm_ino = ino;
3869	jmvref->jm_oldoff = oldoff;
3870	jmvref->jm_newoff = newoff;
3871
3872	return (jmvref);
3873}
3874
3875/*
3876 * Allocate a new jremref that tracks the removal of ip from dp with the
3877 * directory entry offset of diroff.  Mark the entry as ATTACHED and
3878 * DEPCOMPLETE as we have all the information required for the journal write
3879 * and the directory has already been removed from the buffer.  The caller
3880 * is responsible for linking the jremref into the pagedep and adding it
3881 * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3882 * a DOTDOT addition so handle_workitem_remove() can properly assign
3883 * the jsegdep when we're done.
3884 */
3885static struct jremref *
3886newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3887    off_t diroff, nlink_t nlink)
3888{
3889	struct jremref *jremref;
3890
3891	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3892	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3893	jremref->jr_state = ATTACHED;
3894	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3895	   nlink, ip->i_mode);
3896	jremref->jr_dirrem = dirrem;
3897
3898	return (jremref);
3899}
3900
3901static inline void
3902newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3903    nlink_t nlink, uint16_t mode)
3904{
3905
3906	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3907	inoref->if_diroff = diroff;
3908	inoref->if_ino = ino;
3909	inoref->if_parent = parent;
3910	inoref->if_nlink = nlink;
3911	inoref->if_mode = mode;
3912}
3913
3914/*
3915 * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3916 * directory offset may not be known until later.  The caller is responsible
3917 * adding the entry to the journal when this information is available.  nlink
3918 * should be the link count prior to the addition and mode is only required
3919 * to have the correct FMT.
3920 */
3921static struct jaddref *
3922newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3923    uint16_t mode)
3924{
3925	struct jaddref *jaddref;
3926
3927	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3928	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3929	jaddref->ja_state = ATTACHED;
3930	jaddref->ja_mkdir = NULL;
3931	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3932
3933	return (jaddref);
3934}
3935
3936/*
3937 * Create a new free dependency for a freework.  The caller is responsible
3938 * for adjusting the reference count when it has the lock held.  The freedep
3939 * will track an outstanding bitmap write that will ultimately clear the
3940 * freework to continue.
3941 */
3942static struct freedep *
3943newfreedep(struct freework *freework)
3944{
3945	struct freedep *freedep;
3946
3947	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3948	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3949	freedep->fd_freework = freework;
3950
3951	return (freedep);
3952}
3953
3954/*
3955 * Free a freedep structure once the buffer it is linked to is written.  If
3956 * this is the last reference to the freework schedule it for completion.
3957 */
3958static void
3959free_freedep(freedep)
3960	struct freedep *freedep;
3961{
3962	struct freework *freework;
3963
3964	freework = freedep->fd_freework;
3965	freework->fw_freeblks->fb_cgwait--;
3966	if (--freework->fw_ref == 0)
3967		freework_enqueue(freework);
3968	WORKITEM_FREE(freedep, D_FREEDEP);
3969}
3970
3971/*
3972 * Allocate a new freework structure that may be a level in an indirect
3973 * when parent is not NULL or a top level block when it is.  The top level
3974 * freework structures are allocated without the soft updates lock held
3975 * and before the freeblks is visible outside of softdep_setup_freeblocks().
3976 */
3977static struct freework *
3978newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3979	struct ufsmount *ump;
3980	struct freeblks *freeblks;
3981	struct freework *parent;
3982	ufs_lbn_t lbn;
3983	ufs2_daddr_t nb;
3984	int frags;
3985	int off;
3986	int journal;
3987{
3988	struct freework *freework;
3989
3990	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3991	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3992	freework->fw_state = ATTACHED;
3993	freework->fw_jnewblk = NULL;
3994	freework->fw_freeblks = freeblks;
3995	freework->fw_parent = parent;
3996	freework->fw_lbn = lbn;
3997	freework->fw_blkno = nb;
3998	freework->fw_frags = frags;
3999	freework->fw_indir = NULL;
4000	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
4001		? 0 : NINDIR(ump->um_fs) + 1;
4002	freework->fw_start = freework->fw_off = off;
4003	if (journal)
4004		newjfreeblk(freeblks, lbn, nb, frags);
4005	if (parent == NULL) {
4006		ACQUIRE_LOCK(ump);
4007		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4008		freeblks->fb_ref++;
4009		FREE_LOCK(ump);
4010	}
4011
4012	return (freework);
4013}
4014
4015/*
4016 * Eliminate a jfreeblk for a block that does not need journaling.
4017 */
4018static void
4019cancel_jfreeblk(freeblks, blkno)
4020	struct freeblks *freeblks;
4021	ufs2_daddr_t blkno;
4022{
4023	struct jfreeblk *jfreeblk;
4024	struct jblkdep *jblkdep;
4025
4026	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4027		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4028			continue;
4029		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4030		if (jfreeblk->jf_blkno == blkno)
4031			break;
4032	}
4033	if (jblkdep == NULL)
4034		return;
4035	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4036	free_jsegdep(jblkdep->jb_jsegdep);
4037	LIST_REMOVE(jblkdep, jb_deps);
4038	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4039}
4040
4041/*
4042 * Allocate a new jfreeblk to journal top level block pointer when truncating
4043 * a file.  The caller must add this to the worklist when the soft updates
4044 * lock is held.
4045 */
4046static struct jfreeblk *
4047newjfreeblk(freeblks, lbn, blkno, frags)
4048	struct freeblks *freeblks;
4049	ufs_lbn_t lbn;
4050	ufs2_daddr_t blkno;
4051	int frags;
4052{
4053	struct jfreeblk *jfreeblk;
4054
4055	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4056	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4057	    freeblks->fb_list.wk_mp);
4058	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4059	jfreeblk->jf_dep.jb_freeblks = freeblks;
4060	jfreeblk->jf_ino = freeblks->fb_inum;
4061	jfreeblk->jf_lbn = lbn;
4062	jfreeblk->jf_blkno = blkno;
4063	jfreeblk->jf_frags = frags;
4064	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4065
4066	return (jfreeblk);
4067}
4068
4069/*
4070 * The journal is only prepared to handle full-size block numbers, so we
4071 * have to adjust the record to reflect the change to a full-size block.
4072 * For example, suppose we have a block made up of fragments 8-15 and
4073 * want to free its last two fragments. We are given a request that says:
4074 *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4075 * where frags are the number of fragments to free and oldfrags are the
4076 * number of fragments to keep. To block align it, we have to change it to
4077 * have a valid full-size blkno, so it becomes:
4078 *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4079 */
4080static void
4081adjust_newfreework(freeblks, frag_offset)
4082	struct freeblks *freeblks;
4083	int frag_offset;
4084{
4085	struct jfreeblk *jfreeblk;
4086
4087	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4088	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4089	    ("adjust_newfreework: Missing freeblks dependency"));
4090
4091	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4092	jfreeblk->jf_blkno -= frag_offset;
4093	jfreeblk->jf_frags += frag_offset;
4094}
4095
4096/*
4097 * Allocate a new jtrunc to track a partial truncation.
4098 */
4099static struct jtrunc *
4100newjtrunc(freeblks, size, extsize)
4101	struct freeblks *freeblks;
4102	off_t size;
4103	int extsize;
4104{
4105	struct jtrunc *jtrunc;
4106
4107	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4108	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4109	    freeblks->fb_list.wk_mp);
4110	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4111	jtrunc->jt_dep.jb_freeblks = freeblks;
4112	jtrunc->jt_ino = freeblks->fb_inum;
4113	jtrunc->jt_size = size;
4114	jtrunc->jt_extsize = extsize;
4115	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4116
4117	return (jtrunc);
4118}
4119
4120/*
4121 * If we're canceling a new bitmap we have to search for another ref
4122 * to move into the bmsafemap dep.  This might be better expressed
4123 * with another structure.
4124 */
4125static void
4126move_newblock_dep(jaddref, inodedep)
4127	struct jaddref *jaddref;
4128	struct inodedep *inodedep;
4129{
4130	struct inoref *inoref;
4131	struct jaddref *jaddrefn;
4132
4133	jaddrefn = NULL;
4134	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4135	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4136		if ((jaddref->ja_state & NEWBLOCK) &&
4137		    inoref->if_list.wk_type == D_JADDREF) {
4138			jaddrefn = (struct jaddref *)inoref;
4139			break;
4140		}
4141	}
4142	if (jaddrefn == NULL)
4143		return;
4144	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4145	jaddrefn->ja_state |= jaddref->ja_state &
4146	    (ATTACHED | UNDONE | NEWBLOCK);
4147	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4148	jaddref->ja_state |= ATTACHED;
4149	LIST_REMOVE(jaddref, ja_bmdeps);
4150	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4151	    ja_bmdeps);
4152}
4153
4154/*
4155 * Cancel a jaddref either before it has been written or while it is being
4156 * written.  This happens when a link is removed before the add reaches
4157 * the disk.  The jaddref dependency is kept linked into the bmsafemap
4158 * and inode to prevent the link count or bitmap from reaching the disk
4159 * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4160 * required.
4161 *
4162 * Returns 1 if the canceled addref requires journaling of the remove and
4163 * 0 otherwise.
4164 */
4165static int
4166cancel_jaddref(jaddref, inodedep, wkhd)
4167	struct jaddref *jaddref;
4168	struct inodedep *inodedep;
4169	struct workhead *wkhd;
4170{
4171	struct inoref *inoref;
4172	struct jsegdep *jsegdep;
4173	int needsj;
4174
4175	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4176	    ("cancel_jaddref: Canceling complete jaddref"));
4177	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4178		needsj = 1;
4179	else
4180		needsj = 0;
4181	if (inodedep == NULL)
4182		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4183		    0, &inodedep) == 0)
4184			panic("cancel_jaddref: Lost inodedep");
4185	/*
4186	 * We must adjust the nlink of any reference operation that follows
4187	 * us so that it is consistent with the in-memory reference.  This
4188	 * ensures that inode nlink rollbacks always have the correct link.
4189	 */
4190	if (needsj == 0) {
4191		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4192		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4193			if (inoref->if_state & GOINGAWAY)
4194				break;
4195			inoref->if_nlink--;
4196		}
4197	}
4198	jsegdep = inoref_jseg(&jaddref->ja_ref);
4199	if (jaddref->ja_state & NEWBLOCK)
4200		move_newblock_dep(jaddref, inodedep);
4201	wake_worklist(&jaddref->ja_list);
4202	jaddref->ja_mkdir = NULL;
4203	if (jaddref->ja_state & INPROGRESS) {
4204		jaddref->ja_state &= ~INPROGRESS;
4205		WORKLIST_REMOVE(&jaddref->ja_list);
4206		jwork_insert(wkhd, jsegdep);
4207	} else {
4208		free_jsegdep(jsegdep);
4209		if (jaddref->ja_state & DEPCOMPLETE)
4210			remove_from_journal(&jaddref->ja_list);
4211	}
4212	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4213	/*
4214	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4215	 * can arrange for them to be freed with the bitmap.  Otherwise we
4216	 * no longer need this addref attached to the inoreflst and it
4217	 * will incorrectly adjust nlink if we leave it.
4218	 */
4219	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4220		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4221		    if_deps);
4222		jaddref->ja_state |= COMPLETE;
4223		free_jaddref(jaddref);
4224		return (needsj);
4225	}
4226	/*
4227	 * Leave the head of the list for jsegdeps for fast merging.
4228	 */
4229	if (LIST_FIRST(wkhd) != NULL) {
4230		jaddref->ja_state |= ONWORKLIST;
4231		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4232	} else
4233		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4234
4235	return (needsj);
4236}
4237
4238/*
4239 * Attempt to free a jaddref structure when some work completes.  This
4240 * should only succeed once the entry is written and all dependencies have
4241 * been notified.
4242 */
4243static void
4244free_jaddref(jaddref)
4245	struct jaddref *jaddref;
4246{
4247
4248	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4249		return;
4250	if (jaddref->ja_ref.if_jsegdep)
4251		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4252		    jaddref, jaddref->ja_state);
4253	if (jaddref->ja_state & NEWBLOCK)
4254		LIST_REMOVE(jaddref, ja_bmdeps);
4255	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4256		panic("free_jaddref: Bad state %p(0x%X)",
4257		    jaddref, jaddref->ja_state);
4258	if (jaddref->ja_mkdir != NULL)
4259		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4260	WORKITEM_FREE(jaddref, D_JADDREF);
4261}
4262
4263/*
4264 * Free a jremref structure once it has been written or discarded.
4265 */
4266static void
4267free_jremref(jremref)
4268	struct jremref *jremref;
4269{
4270
4271	if (jremref->jr_ref.if_jsegdep)
4272		free_jsegdep(jremref->jr_ref.if_jsegdep);
4273	if (jremref->jr_state & INPROGRESS)
4274		panic("free_jremref: IO still pending");
4275	WORKITEM_FREE(jremref, D_JREMREF);
4276}
4277
4278/*
4279 * Free a jnewblk structure.
4280 */
4281static void
4282free_jnewblk(jnewblk)
4283	struct jnewblk *jnewblk;
4284{
4285
4286	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4287		return;
4288	LIST_REMOVE(jnewblk, jn_deps);
4289	if (jnewblk->jn_dep != NULL)
4290		panic("free_jnewblk: Dependency still attached.");
4291	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4292}
4293
4294/*
4295 * Cancel a jnewblk which has been been made redundant by frag extension.
4296 */
4297static void
4298cancel_jnewblk(jnewblk, wkhd)
4299	struct jnewblk *jnewblk;
4300	struct workhead *wkhd;
4301{
4302	struct jsegdep *jsegdep;
4303
4304	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4305	jsegdep = jnewblk->jn_jsegdep;
4306	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4307		panic("cancel_jnewblk: Invalid state");
4308	jnewblk->jn_jsegdep  = NULL;
4309	jnewblk->jn_dep = NULL;
4310	jnewblk->jn_state |= GOINGAWAY;
4311	if (jnewblk->jn_state & INPROGRESS) {
4312		jnewblk->jn_state &= ~INPROGRESS;
4313		WORKLIST_REMOVE(&jnewblk->jn_list);
4314		jwork_insert(wkhd, jsegdep);
4315	} else {
4316		free_jsegdep(jsegdep);
4317		remove_from_journal(&jnewblk->jn_list);
4318	}
4319	wake_worklist(&jnewblk->jn_list);
4320	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4321}
4322
4323static void
4324free_jblkdep(jblkdep)
4325	struct jblkdep *jblkdep;
4326{
4327
4328	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4329		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4330	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4331		WORKITEM_FREE(jblkdep, D_JTRUNC);
4332	else
4333		panic("free_jblkdep: Unexpected type %s",
4334		    TYPENAME(jblkdep->jb_list.wk_type));
4335}
4336
4337/*
4338 * Free a single jseg once it is no longer referenced in memory or on
4339 * disk.  Reclaim journal blocks and dependencies waiting for the segment
4340 * to disappear.
4341 */
4342static void
4343free_jseg(jseg, jblocks)
4344	struct jseg *jseg;
4345	struct jblocks *jblocks;
4346{
4347	struct freework *freework;
4348
4349	/*
4350	 * Free freework structures that were lingering to indicate freed
4351	 * indirect blocks that forced journal write ordering on reallocate.
4352	 */
4353	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4354		indirblk_remove(freework);
4355	if (jblocks->jb_oldestseg == jseg)
4356		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4357	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4358	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4359	KASSERT(LIST_EMPTY(&jseg->js_entries),
4360	    ("free_jseg: Freed jseg has valid entries."));
4361	WORKITEM_FREE(jseg, D_JSEG);
4362}
4363
4364/*
4365 * Free all jsegs that meet the criteria for being reclaimed and update
4366 * oldestseg.
4367 */
4368static void
4369free_jsegs(jblocks)
4370	struct jblocks *jblocks;
4371{
4372	struct jseg *jseg;
4373
4374	/*
4375	 * Free only those jsegs which have none allocated before them to
4376	 * preserve the journal space ordering.
4377	 */
4378	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4379		/*
4380		 * Only reclaim space when nothing depends on this journal
4381		 * set and another set has written that it is no longer
4382		 * valid.
4383		 */
4384		if (jseg->js_refs != 0) {
4385			jblocks->jb_oldestseg = jseg;
4386			return;
4387		}
4388		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4389			break;
4390		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4391			break;
4392		/*
4393		 * We can free jsegs that didn't write entries when
4394		 * oldestwrseq == js_seq.
4395		 */
4396		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4397		    jseg->js_cnt != 0)
4398			break;
4399		free_jseg(jseg, jblocks);
4400	}
4401	/*
4402	 * If we exited the loop above we still must discover the
4403	 * oldest valid segment.
4404	 */
4405	if (jseg)
4406		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4407		     jseg = TAILQ_NEXT(jseg, js_next))
4408			if (jseg->js_refs != 0)
4409				break;
4410	jblocks->jb_oldestseg = jseg;
4411	/*
4412	 * The journal has no valid records but some jsegs may still be
4413	 * waiting on oldestwrseq to advance.  We force a small record
4414	 * out to permit these lingering records to be reclaimed.
4415	 */
4416	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4417		jblocks->jb_needseg = 1;
4418}
4419
4420/*
4421 * Release one reference to a jseg and free it if the count reaches 0.  This
4422 * should eventually reclaim journal space as well.
4423 */
4424static void
4425rele_jseg(jseg)
4426	struct jseg *jseg;
4427{
4428
4429	KASSERT(jseg->js_refs > 0,
4430	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4431	if (--jseg->js_refs != 0)
4432		return;
4433	free_jsegs(jseg->js_jblocks);
4434}
4435
4436/*
4437 * Release a jsegdep and decrement the jseg count.
4438 */
4439static void
4440free_jsegdep(jsegdep)
4441	struct jsegdep *jsegdep;
4442{
4443
4444	if (jsegdep->jd_seg)
4445		rele_jseg(jsegdep->jd_seg);
4446	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4447}
4448
4449/*
4450 * Wait for a journal item to make it to disk.  Initiate journal processing
4451 * if required.
4452 */
4453static int
4454jwait(wk, waitfor)
4455	struct worklist *wk;
4456	int waitfor;
4457{
4458
4459	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4460	/*
4461	 * Blocking journal waits cause slow synchronous behavior.  Record
4462	 * stats on the frequency of these blocking operations.
4463	 */
4464	if (waitfor == MNT_WAIT) {
4465		stat_journal_wait++;
4466		switch (wk->wk_type) {
4467		case D_JREMREF:
4468		case D_JMVREF:
4469			stat_jwait_filepage++;
4470			break;
4471		case D_JTRUNC:
4472		case D_JFREEBLK:
4473			stat_jwait_freeblks++;
4474			break;
4475		case D_JNEWBLK:
4476			stat_jwait_newblk++;
4477			break;
4478		case D_JADDREF:
4479			stat_jwait_inode++;
4480			break;
4481		default:
4482			break;
4483		}
4484	}
4485	/*
4486	 * If IO has not started we process the journal.  We can't mark the
4487	 * worklist item as IOWAITING because we drop the lock while
4488	 * processing the journal and the worklist entry may be freed after
4489	 * this point.  The caller may call back in and re-issue the request.
4490	 */
4491	if ((wk->wk_state & INPROGRESS) == 0) {
4492		softdep_process_journal(wk->wk_mp, wk, waitfor);
4493		if (waitfor != MNT_WAIT)
4494			return (EBUSY);
4495		return (0);
4496	}
4497	if (waitfor != MNT_WAIT)
4498		return (EBUSY);
4499	wait_worklist(wk, "jwait");
4500	return (0);
4501}
4502
4503/*
4504 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4505 * appropriate.  This is a convenience function to reduce duplicate code
4506 * for the setup and revert functions below.
4507 */
4508static struct inodedep *
4509inodedep_lookup_ip(ip)
4510	struct inode *ip;
4511{
4512	struct inodedep *inodedep;
4513	int dflags;
4514
4515	KASSERT(ip->i_nlink >= ip->i_effnlink,
4516	    ("inodedep_lookup_ip: bad delta"));
4517	dflags = DEPALLOC;
4518	if (IS_SNAPSHOT(ip))
4519		dflags |= NODELAY;
4520	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4521	    &inodedep);
4522	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4523	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4524
4525	return (inodedep);
4526}
4527
4528/*
4529 * Called prior to creating a new inode and linking it to a directory.  The
4530 * jaddref structure must already be allocated by softdep_setup_inomapdep
4531 * and it is discovered here so we can initialize the mode and update
4532 * nlinkdelta.
4533 */
4534void
4535softdep_setup_create(dp, ip)
4536	struct inode *dp;
4537	struct inode *ip;
4538{
4539	struct inodedep *inodedep;
4540	struct jaddref *jaddref;
4541	struct vnode *dvp;
4542
4543	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4544	    ("softdep_setup_create called on non-softdep filesystem"));
4545	KASSERT(ip->i_nlink == 1,
4546	    ("softdep_setup_create: Invalid link count."));
4547	dvp = ITOV(dp);
4548	ACQUIRE_LOCK(dp->i_ump);
4549	inodedep = inodedep_lookup_ip(ip);
4550	if (DOINGSUJ(dvp)) {
4551		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4552		    inoreflst);
4553		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4554		    ("softdep_setup_create: No addref structure present."));
4555	}
4556	softdep_prelink(dvp, NULL);
4557	FREE_LOCK(dp->i_ump);
4558}
4559
4560/*
4561 * Create a jaddref structure to track the addition of a DOTDOT link when
4562 * we are reparenting an inode as part of a rename.  This jaddref will be
4563 * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4564 * non-journaling softdep.
4565 */
4566void
4567softdep_setup_dotdot_link(dp, ip)
4568	struct inode *dp;
4569	struct inode *ip;
4570{
4571	struct inodedep *inodedep;
4572	struct jaddref *jaddref;
4573	struct vnode *dvp;
4574	struct vnode *vp;
4575
4576	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4577	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4578	dvp = ITOV(dp);
4579	vp = ITOV(ip);
4580	jaddref = NULL;
4581	/*
4582	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4583	 * is used as a normal link would be.
4584	 */
4585	if (DOINGSUJ(dvp))
4586		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4587		    dp->i_effnlink - 1, dp->i_mode);
4588	ACQUIRE_LOCK(dp->i_ump);
4589	inodedep = inodedep_lookup_ip(dp);
4590	if (jaddref)
4591		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4592		    if_deps);
4593	softdep_prelink(dvp, ITOV(ip));
4594	FREE_LOCK(dp->i_ump);
4595}
4596
4597/*
4598 * Create a jaddref structure to track a new link to an inode.  The directory
4599 * offset is not known until softdep_setup_directory_add or
4600 * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4601 * softdep.
4602 */
4603void
4604softdep_setup_link(dp, ip)
4605	struct inode *dp;
4606	struct inode *ip;
4607{
4608	struct inodedep *inodedep;
4609	struct jaddref *jaddref;
4610	struct vnode *dvp;
4611
4612	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4613	    ("softdep_setup_link called on non-softdep filesystem"));
4614	dvp = ITOV(dp);
4615	jaddref = NULL;
4616	if (DOINGSUJ(dvp))
4617		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4618		    ip->i_mode);
4619	ACQUIRE_LOCK(dp->i_ump);
4620	inodedep = inodedep_lookup_ip(ip);
4621	if (jaddref)
4622		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4623		    if_deps);
4624	softdep_prelink(dvp, ITOV(ip));
4625	FREE_LOCK(dp->i_ump);
4626}
4627
4628/*
4629 * Called to create the jaddref structures to track . and .. references as
4630 * well as lookup and further initialize the incomplete jaddref created
4631 * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4632 * nlinkdelta for non-journaling softdep.
4633 */
4634void
4635softdep_setup_mkdir(dp, ip)
4636	struct inode *dp;
4637	struct inode *ip;
4638{
4639	struct inodedep *inodedep;
4640	struct jaddref *dotdotaddref;
4641	struct jaddref *dotaddref;
4642	struct jaddref *jaddref;
4643	struct vnode *dvp;
4644
4645	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4646	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4647	dvp = ITOV(dp);
4648	dotaddref = dotdotaddref = NULL;
4649	if (DOINGSUJ(dvp)) {
4650		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4651		    ip->i_mode);
4652		dotaddref->ja_state |= MKDIR_BODY;
4653		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4654		    dp->i_effnlink - 1, dp->i_mode);
4655		dotdotaddref->ja_state |= MKDIR_PARENT;
4656	}
4657	ACQUIRE_LOCK(dp->i_ump);
4658	inodedep = inodedep_lookup_ip(ip);
4659	if (DOINGSUJ(dvp)) {
4660		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4661		    inoreflst);
4662		KASSERT(jaddref != NULL,
4663		    ("softdep_setup_mkdir: No addref structure present."));
4664		KASSERT(jaddref->ja_parent == dp->i_number,
4665		    ("softdep_setup_mkdir: bad parent %ju",
4666		    (uintmax_t)jaddref->ja_parent));
4667		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4668		    if_deps);
4669	}
4670	inodedep = inodedep_lookup_ip(dp);
4671	if (DOINGSUJ(dvp))
4672		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4673		    &dotdotaddref->ja_ref, if_deps);
4674	softdep_prelink(ITOV(dp), NULL);
4675	FREE_LOCK(dp->i_ump);
4676}
4677
4678/*
4679 * Called to track nlinkdelta of the inode and parent directories prior to
4680 * unlinking a directory.
4681 */
4682void
4683softdep_setup_rmdir(dp, ip)
4684	struct inode *dp;
4685	struct inode *ip;
4686{
4687	struct vnode *dvp;
4688
4689	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4690	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4691	dvp = ITOV(dp);
4692	ACQUIRE_LOCK(dp->i_ump);
4693	(void) inodedep_lookup_ip(ip);
4694	(void) inodedep_lookup_ip(dp);
4695	softdep_prelink(dvp, ITOV(ip));
4696	FREE_LOCK(dp->i_ump);
4697}
4698
4699/*
4700 * Called to track nlinkdelta of the inode and parent directories prior to
4701 * unlink.
4702 */
4703void
4704softdep_setup_unlink(dp, ip)
4705	struct inode *dp;
4706	struct inode *ip;
4707{
4708	struct vnode *dvp;
4709
4710	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4711	    ("softdep_setup_unlink called on non-softdep filesystem"));
4712	dvp = ITOV(dp);
4713	ACQUIRE_LOCK(dp->i_ump);
4714	(void) inodedep_lookup_ip(ip);
4715	(void) inodedep_lookup_ip(dp);
4716	softdep_prelink(dvp, ITOV(ip));
4717	FREE_LOCK(dp->i_ump);
4718}
4719
4720/*
4721 * Called to release the journal structures created by a failed non-directory
4722 * creation.  Adjusts nlinkdelta for non-journaling softdep.
4723 */
4724void
4725softdep_revert_create(dp, ip)
4726	struct inode *dp;
4727	struct inode *ip;
4728{
4729	struct inodedep *inodedep;
4730	struct jaddref *jaddref;
4731	struct vnode *dvp;
4732
4733	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4734	    ("softdep_revert_create called on non-softdep filesystem"));
4735	dvp = ITOV(dp);
4736	ACQUIRE_LOCK(dp->i_ump);
4737	inodedep = inodedep_lookup_ip(ip);
4738	if (DOINGSUJ(dvp)) {
4739		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4740		    inoreflst);
4741		KASSERT(jaddref->ja_parent == dp->i_number,
4742		    ("softdep_revert_create: addref parent mismatch"));
4743		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4744	}
4745	FREE_LOCK(dp->i_ump);
4746}
4747
4748/*
4749 * Called to release the journal structures created by a failed link
4750 * addition.  Adjusts nlinkdelta for non-journaling softdep.
4751 */
4752void
4753softdep_revert_link(dp, ip)
4754	struct inode *dp;
4755	struct inode *ip;
4756{
4757	struct inodedep *inodedep;
4758	struct jaddref *jaddref;
4759	struct vnode *dvp;
4760
4761	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4762	    ("softdep_revert_link called on non-softdep filesystem"));
4763	dvp = ITOV(dp);
4764	ACQUIRE_LOCK(dp->i_ump);
4765	inodedep = inodedep_lookup_ip(ip);
4766	if (DOINGSUJ(dvp)) {
4767		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4768		    inoreflst);
4769		KASSERT(jaddref->ja_parent == dp->i_number,
4770		    ("softdep_revert_link: addref parent mismatch"));
4771		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4772	}
4773	FREE_LOCK(dp->i_ump);
4774}
4775
4776/*
4777 * Called to release the journal structures created by a failed mkdir
4778 * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4779 */
4780void
4781softdep_revert_mkdir(dp, ip)
4782	struct inode *dp;
4783	struct inode *ip;
4784{
4785	struct inodedep *inodedep;
4786	struct jaddref *jaddref;
4787	struct jaddref *dotaddref;
4788	struct vnode *dvp;
4789
4790	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4791	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4792	dvp = ITOV(dp);
4793
4794	ACQUIRE_LOCK(dp->i_ump);
4795	inodedep = inodedep_lookup_ip(dp);
4796	if (DOINGSUJ(dvp)) {
4797		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4798		    inoreflst);
4799		KASSERT(jaddref->ja_parent == ip->i_number,
4800		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4801		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4802	}
4803	inodedep = inodedep_lookup_ip(ip);
4804	if (DOINGSUJ(dvp)) {
4805		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4806		    inoreflst);
4807		KASSERT(jaddref->ja_parent == dp->i_number,
4808		    ("softdep_revert_mkdir: addref parent mismatch"));
4809		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4810		    inoreflst, if_deps);
4811		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4812		KASSERT(dotaddref->ja_parent == ip->i_number,
4813		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4814		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4815	}
4816	FREE_LOCK(dp->i_ump);
4817}
4818
4819/*
4820 * Called to correct nlinkdelta after a failed rmdir.
4821 */
4822void
4823softdep_revert_rmdir(dp, ip)
4824	struct inode *dp;
4825	struct inode *ip;
4826{
4827
4828	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4829	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4830	ACQUIRE_LOCK(dp->i_ump);
4831	(void) inodedep_lookup_ip(ip);
4832	(void) inodedep_lookup_ip(dp);
4833	FREE_LOCK(dp->i_ump);
4834}
4835
4836/*
4837 * Protecting the freemaps (or bitmaps).
4838 *
4839 * To eliminate the need to execute fsck before mounting a filesystem
4840 * after a power failure, one must (conservatively) guarantee that the
4841 * on-disk copy of the bitmaps never indicate that a live inode or block is
4842 * free.  So, when a block or inode is allocated, the bitmap should be
4843 * updated (on disk) before any new pointers.  When a block or inode is
4844 * freed, the bitmap should not be updated until all pointers have been
4845 * reset.  The latter dependency is handled by the delayed de-allocation
4846 * approach described below for block and inode de-allocation.  The former
4847 * dependency is handled by calling the following procedure when a block or
4848 * inode is allocated. When an inode is allocated an "inodedep" is created
4849 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4850 * Each "inodedep" is also inserted into the hash indexing structure so
4851 * that any additional link additions can be made dependent on the inode
4852 * allocation.
4853 *
4854 * The ufs filesystem maintains a number of free block counts (e.g., per
4855 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4856 * in addition to the bitmaps.  These counts are used to improve efficiency
4857 * during allocation and therefore must be consistent with the bitmaps.
4858 * There is no convenient way to guarantee post-crash consistency of these
4859 * counts with simple update ordering, for two main reasons: (1) The counts
4860 * and bitmaps for a single cylinder group block are not in the same disk
4861 * sector.  If a disk write is interrupted (e.g., by power failure), one may
4862 * be written and the other not.  (2) Some of the counts are located in the
4863 * superblock rather than the cylinder group block. So, we focus our soft
4864 * updates implementation on protecting the bitmaps. When mounting a
4865 * filesystem, we recompute the auxiliary counts from the bitmaps.
4866 */
4867
4868/*
4869 * Called just after updating the cylinder group block to allocate an inode.
4870 */
4871void
4872softdep_setup_inomapdep(bp, ip, newinum, mode)
4873	struct buf *bp;		/* buffer for cylgroup block with inode map */
4874	struct inode *ip;	/* inode related to allocation */
4875	ino_t newinum;		/* new inode number being allocated */
4876	int mode;
4877{
4878	struct inodedep *inodedep;
4879	struct bmsafemap *bmsafemap;
4880	struct jaddref *jaddref;
4881	struct mount *mp;
4882	struct fs *fs;
4883
4884	mp = UFSTOVFS(ip->i_ump);
4885	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
4886	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
4887	fs = ip->i_ump->um_fs;
4888	jaddref = NULL;
4889
4890	/*
4891	 * Allocate the journal reference add structure so that the bitmap
4892	 * can be dependent on it.
4893	 */
4894	if (MOUNTEDSUJ(mp)) {
4895		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4896		jaddref->ja_state |= NEWBLOCK;
4897	}
4898
4899	/*
4900	 * Create a dependency for the newly allocated inode.
4901	 * Panic if it already exists as something is seriously wrong.
4902	 * Otherwise add it to the dependency list for the buffer holding
4903	 * the cylinder group map from which it was allocated.
4904	 *
4905	 * We have to preallocate a bmsafemap entry in case it is needed
4906	 * in bmsafemap_lookup since once we allocate the inodedep, we
4907	 * have to finish initializing it before we can FREE_LOCK().
4908	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
4909	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
4910	 * creating the inodedep as it can be freed during the time
4911	 * that we FREE_LOCK() while allocating the inodedep. We must
4912	 * call workitem_alloc() before entering the locked section as
4913	 * it also acquires the lock and we must avoid trying doing so
4914	 * recursively.
4915	 */
4916	bmsafemap = malloc(sizeof(struct bmsafemap),
4917	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4918	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4919	ACQUIRE_LOCK(ip->i_ump);
4920	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
4921		panic("softdep_setup_inomapdep: dependency %p for new"
4922		    "inode already exists", inodedep);
4923	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
4924	if (jaddref) {
4925		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4926		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4927		    if_deps);
4928	} else {
4929		inodedep->id_state |= ONDEPLIST;
4930		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4931	}
4932	inodedep->id_bmsafemap = bmsafemap;
4933	inodedep->id_state &= ~DEPCOMPLETE;
4934	FREE_LOCK(ip->i_ump);
4935}
4936
4937/*
4938 * Called just after updating the cylinder group block to
4939 * allocate block or fragment.
4940 */
4941void
4942softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4943	struct buf *bp;		/* buffer for cylgroup block with block map */
4944	struct mount *mp;	/* filesystem doing allocation */
4945	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4946	int frags;		/* Number of fragments. */
4947	int oldfrags;		/* Previous number of fragments for extend. */
4948{
4949	struct newblk *newblk;
4950	struct bmsafemap *bmsafemap;
4951	struct jnewblk *jnewblk;
4952	struct ufsmount *ump;
4953	struct fs *fs;
4954
4955	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
4956	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
4957	ump = VFSTOUFS(mp);
4958	fs = ump->um_fs;
4959	jnewblk = NULL;
4960	/*
4961	 * Create a dependency for the newly allocated block.
4962	 * Add it to the dependency list for the buffer holding
4963	 * the cylinder group map from which it was allocated.
4964	 */
4965	if (MOUNTEDSUJ(mp)) {
4966		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4967		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4968		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4969		jnewblk->jn_state = ATTACHED;
4970		jnewblk->jn_blkno = newblkno;
4971		jnewblk->jn_frags = frags;
4972		jnewblk->jn_oldfrags = oldfrags;
4973#ifdef SUJ_DEBUG
4974		{
4975			struct cg *cgp;
4976			uint8_t *blksfree;
4977			long bno;
4978			int i;
4979
4980			cgp = (struct cg *)bp->b_data;
4981			blksfree = cg_blksfree(cgp);
4982			bno = dtogd(fs, jnewblk->jn_blkno);
4983			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4984			    i++) {
4985				if (isset(blksfree, bno + i))
4986					panic("softdep_setup_blkmapdep: "
4987					    "free fragment %d from %d-%d "
4988					    "state 0x%X dep %p", i,
4989					    jnewblk->jn_oldfrags,
4990					    jnewblk->jn_frags,
4991					    jnewblk->jn_state,
4992					    jnewblk->jn_dep);
4993			}
4994		}
4995#endif
4996	}
4997
4998	CTR3(KTR_SUJ,
4999	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5000	    newblkno, frags, oldfrags);
5001	ACQUIRE_LOCK(ump);
5002	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5003		panic("softdep_setup_blkmapdep: found block");
5004	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5005	    dtog(fs, newblkno), NULL);
5006	if (jnewblk) {
5007		jnewblk->jn_dep = (struct worklist *)newblk;
5008		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5009	} else {
5010		newblk->nb_state |= ONDEPLIST;
5011		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5012	}
5013	newblk->nb_bmsafemap = bmsafemap;
5014	newblk->nb_jnewblk = jnewblk;
5015	FREE_LOCK(ump);
5016}
5017
5018#define	BMSAFEMAP_HASH(ump, cg) \
5019      (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5020
5021static int
5022bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5023	struct bmsafemap_hashhead *bmsafemaphd;
5024	int cg;
5025	struct bmsafemap **bmsafemapp;
5026{
5027	struct bmsafemap *bmsafemap;
5028
5029	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5030		if (bmsafemap->sm_cg == cg)
5031			break;
5032	if (bmsafemap) {
5033		*bmsafemapp = bmsafemap;
5034		return (1);
5035	}
5036	*bmsafemapp = NULL;
5037
5038	return (0);
5039}
5040
5041/*
5042 * Find the bmsafemap associated with a cylinder group buffer.
5043 * If none exists, create one. The buffer must be locked when
5044 * this routine is called and this routine must be called with
5045 * the softdep lock held. To avoid giving up the lock while
5046 * allocating a new bmsafemap, a preallocated bmsafemap may be
5047 * provided. If it is provided but not needed, it is freed.
5048 */
5049static struct bmsafemap *
5050bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5051	struct mount *mp;
5052	struct buf *bp;
5053	int cg;
5054	struct bmsafemap *newbmsafemap;
5055{
5056	struct bmsafemap_hashhead *bmsafemaphd;
5057	struct bmsafemap *bmsafemap, *collision;
5058	struct worklist *wk;
5059	struct ufsmount *ump;
5060
5061	ump = VFSTOUFS(mp);
5062	LOCK_OWNED(ump);
5063	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5064	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5065		if (wk->wk_type == D_BMSAFEMAP) {
5066			if (newbmsafemap)
5067				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5068			return (WK_BMSAFEMAP(wk));
5069		}
5070	}
5071	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5072	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5073		if (newbmsafemap)
5074			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5075		return (bmsafemap);
5076	}
5077	if (newbmsafemap) {
5078		bmsafemap = newbmsafemap;
5079	} else {
5080		FREE_LOCK(ump);
5081		bmsafemap = malloc(sizeof(struct bmsafemap),
5082			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5083		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5084		ACQUIRE_LOCK(ump);
5085	}
5086	bmsafemap->sm_buf = bp;
5087	LIST_INIT(&bmsafemap->sm_inodedephd);
5088	LIST_INIT(&bmsafemap->sm_inodedepwr);
5089	LIST_INIT(&bmsafemap->sm_newblkhd);
5090	LIST_INIT(&bmsafemap->sm_newblkwr);
5091	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5092	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5093	LIST_INIT(&bmsafemap->sm_freehd);
5094	LIST_INIT(&bmsafemap->sm_freewr);
5095	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5096		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5097		return (collision);
5098	}
5099	bmsafemap->sm_cg = cg;
5100	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5101	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5102	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5103	return (bmsafemap);
5104}
5105
5106/*
5107 * Direct block allocation dependencies.
5108 *
5109 * When a new block is allocated, the corresponding disk locations must be
5110 * initialized (with zeros or new data) before the on-disk inode points to
5111 * them.  Also, the freemap from which the block was allocated must be
5112 * updated (on disk) before the inode's pointer. These two dependencies are
5113 * independent of each other and are needed for all file blocks and indirect
5114 * blocks that are pointed to directly by the inode.  Just before the
5115 * "in-core" version of the inode is updated with a newly allocated block
5116 * number, a procedure (below) is called to setup allocation dependency
5117 * structures.  These structures are removed when the corresponding
5118 * dependencies are satisfied or when the block allocation becomes obsolete
5119 * (i.e., the file is deleted, the block is de-allocated, or the block is a
5120 * fragment that gets upgraded).  All of these cases are handled in
5121 * procedures described later.
5122 *
5123 * When a file extension causes a fragment to be upgraded, either to a larger
5124 * fragment or to a full block, the on-disk location may change (if the
5125 * previous fragment could not simply be extended). In this case, the old
5126 * fragment must be de-allocated, but not until after the inode's pointer has
5127 * been updated. In most cases, this is handled by later procedures, which
5128 * will construct a "freefrag" structure to be added to the workitem queue
5129 * when the inode update is complete (or obsolete).  The main exception to
5130 * this is when an allocation occurs while a pending allocation dependency
5131 * (for the same block pointer) remains.  This case is handled in the main
5132 * allocation dependency setup procedure by immediately freeing the
5133 * unreferenced fragments.
5134 */
5135void
5136softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5137	struct inode *ip;	/* inode to which block is being added */
5138	ufs_lbn_t off;		/* block pointer within inode */
5139	ufs2_daddr_t newblkno;	/* disk block number being added */
5140	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5141	long newsize;		/* size of new block */
5142	long oldsize;		/* size of new block */
5143	struct buf *bp;		/* bp for allocated block */
5144{
5145	struct allocdirect *adp, *oldadp;
5146	struct allocdirectlst *adphead;
5147	struct freefrag *freefrag;
5148	struct inodedep *inodedep;
5149	struct pagedep *pagedep;
5150	struct jnewblk *jnewblk;
5151	struct newblk *newblk;
5152	struct mount *mp;
5153	ufs_lbn_t lbn;
5154
5155	lbn = bp->b_lblkno;
5156	mp = UFSTOVFS(ip->i_ump);
5157	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5158	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5159	if (oldblkno && oldblkno != newblkno)
5160		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5161	else
5162		freefrag = NULL;
5163
5164	CTR6(KTR_SUJ,
5165	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5166	    "off %jd newsize %ld oldsize %d",
5167	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5168	ACQUIRE_LOCK(ip->i_ump);
5169	if (off >= NDADDR) {
5170		if (lbn > 0)
5171			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5172			    lbn, off);
5173		/* allocating an indirect block */
5174		if (oldblkno != 0)
5175			panic("softdep_setup_allocdirect: non-zero indir");
5176	} else {
5177		if (off != lbn)
5178			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5179			    lbn, off);
5180		/*
5181		 * Allocating a direct block.
5182		 *
5183		 * If we are allocating a directory block, then we must
5184		 * allocate an associated pagedep to track additions and
5185		 * deletions.
5186		 */
5187		if ((ip->i_mode & IFMT) == IFDIR)
5188			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5189			    &pagedep);
5190	}
5191	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5192		panic("softdep_setup_allocdirect: lost block");
5193	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5194	    ("softdep_setup_allocdirect: newblk already initialized"));
5195	/*
5196	 * Convert the newblk to an allocdirect.
5197	 */
5198	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5199	adp = (struct allocdirect *)newblk;
5200	newblk->nb_freefrag = freefrag;
5201	adp->ad_offset = off;
5202	adp->ad_oldblkno = oldblkno;
5203	adp->ad_newsize = newsize;
5204	adp->ad_oldsize = oldsize;
5205
5206	/*
5207	 * Finish initializing the journal.
5208	 */
5209	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5210		jnewblk->jn_ino = ip->i_number;
5211		jnewblk->jn_lbn = lbn;
5212		add_to_journal(&jnewblk->jn_list);
5213	}
5214	if (freefrag && freefrag->ff_jdep != NULL &&
5215	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5216		add_to_journal(freefrag->ff_jdep);
5217	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5218	adp->ad_inodedep = inodedep;
5219
5220	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5221	/*
5222	 * The list of allocdirects must be kept in sorted and ascending
5223	 * order so that the rollback routines can quickly determine the
5224	 * first uncommitted block (the size of the file stored on disk
5225	 * ends at the end of the lowest committed fragment, or if there
5226	 * are no fragments, at the end of the highest committed block).
5227	 * Since files generally grow, the typical case is that the new
5228	 * block is to be added at the end of the list. We speed this
5229	 * special case by checking against the last allocdirect in the
5230	 * list before laboriously traversing the list looking for the
5231	 * insertion point.
5232	 */
5233	adphead = &inodedep->id_newinoupdt;
5234	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5235	if (oldadp == NULL || oldadp->ad_offset <= off) {
5236		/* insert at end of list */
5237		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5238		if (oldadp != NULL && oldadp->ad_offset == off)
5239			allocdirect_merge(adphead, adp, oldadp);
5240		FREE_LOCK(ip->i_ump);
5241		return;
5242	}
5243	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5244		if (oldadp->ad_offset >= off)
5245			break;
5246	}
5247	if (oldadp == NULL)
5248		panic("softdep_setup_allocdirect: lost entry");
5249	/* insert in middle of list */
5250	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5251	if (oldadp->ad_offset == off)
5252		allocdirect_merge(adphead, adp, oldadp);
5253
5254	FREE_LOCK(ip->i_ump);
5255}
5256
5257/*
5258 * Merge a newer and older journal record to be stored either in a
5259 * newblock or freefrag.  This handles aggregating journal records for
5260 * fragment allocation into a second record as well as replacing a
5261 * journal free with an aborted journal allocation.  A segment for the
5262 * oldest record will be placed on wkhd if it has been written.  If not
5263 * the segment for the newer record will suffice.
5264 */
5265static struct worklist *
5266jnewblk_merge(new, old, wkhd)
5267	struct worklist *new;
5268	struct worklist *old;
5269	struct workhead *wkhd;
5270{
5271	struct jnewblk *njnewblk;
5272	struct jnewblk *jnewblk;
5273
5274	/* Handle NULLs to simplify callers. */
5275	if (new == NULL)
5276		return (old);
5277	if (old == NULL)
5278		return (new);
5279	/* Replace a jfreefrag with a jnewblk. */
5280	if (new->wk_type == D_JFREEFRAG) {
5281		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5282			panic("jnewblk_merge: blkno mismatch: %p, %p",
5283			    old, new);
5284		cancel_jfreefrag(WK_JFREEFRAG(new));
5285		return (old);
5286	}
5287	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5288		panic("jnewblk_merge: Bad type: old %d new %d\n",
5289		    old->wk_type, new->wk_type);
5290	/*
5291	 * Handle merging of two jnewblk records that describe
5292	 * different sets of fragments in the same block.
5293	 */
5294	jnewblk = WK_JNEWBLK(old);
5295	njnewblk = WK_JNEWBLK(new);
5296	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5297		panic("jnewblk_merge: Merging disparate blocks.");
5298	/*
5299	 * The record may be rolled back in the cg.
5300	 */
5301	if (jnewblk->jn_state & UNDONE) {
5302		jnewblk->jn_state &= ~UNDONE;
5303		njnewblk->jn_state |= UNDONE;
5304		njnewblk->jn_state &= ~ATTACHED;
5305	}
5306	/*
5307	 * We modify the newer addref and free the older so that if neither
5308	 * has been written the most up-to-date copy will be on disk.  If
5309	 * both have been written but rolled back we only temporarily need
5310	 * one of them to fix the bits when the cg write completes.
5311	 */
5312	jnewblk->jn_state |= ATTACHED | COMPLETE;
5313	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5314	cancel_jnewblk(jnewblk, wkhd);
5315	WORKLIST_REMOVE(&jnewblk->jn_list);
5316	free_jnewblk(jnewblk);
5317	return (new);
5318}
5319
5320/*
5321 * Replace an old allocdirect dependency with a newer one.
5322 * This routine must be called with splbio interrupts blocked.
5323 */
5324static void
5325allocdirect_merge(adphead, newadp, oldadp)
5326	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5327	struct allocdirect *newadp;	/* allocdirect being added */
5328	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5329{
5330	struct worklist *wk;
5331	struct freefrag *freefrag;
5332
5333	freefrag = NULL;
5334	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5335	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5336	    newadp->ad_oldsize != oldadp->ad_newsize ||
5337	    newadp->ad_offset >= NDADDR)
5338		panic("%s %jd != new %jd || old size %ld != new %ld",
5339		    "allocdirect_merge: old blkno",
5340		    (intmax_t)newadp->ad_oldblkno,
5341		    (intmax_t)oldadp->ad_newblkno,
5342		    newadp->ad_oldsize, oldadp->ad_newsize);
5343	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5344	newadp->ad_oldsize = oldadp->ad_oldsize;
5345	/*
5346	 * If the old dependency had a fragment to free or had never
5347	 * previously had a block allocated, then the new dependency
5348	 * can immediately post its freefrag and adopt the old freefrag.
5349	 * This action is done by swapping the freefrag dependencies.
5350	 * The new dependency gains the old one's freefrag, and the
5351	 * old one gets the new one and then immediately puts it on
5352	 * the worklist when it is freed by free_newblk. It is
5353	 * not possible to do this swap when the old dependency had a
5354	 * non-zero size but no previous fragment to free. This condition
5355	 * arises when the new block is an extension of the old block.
5356	 * Here, the first part of the fragment allocated to the new
5357	 * dependency is part of the block currently claimed on disk by
5358	 * the old dependency, so cannot legitimately be freed until the
5359	 * conditions for the new dependency are fulfilled.
5360	 */
5361	freefrag = newadp->ad_freefrag;
5362	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5363		newadp->ad_freefrag = oldadp->ad_freefrag;
5364		oldadp->ad_freefrag = freefrag;
5365	}
5366	/*
5367	 * If we are tracking a new directory-block allocation,
5368	 * move it from the old allocdirect to the new allocdirect.
5369	 */
5370	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5371		WORKLIST_REMOVE(wk);
5372		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5373			panic("allocdirect_merge: extra newdirblk");
5374		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5375	}
5376	TAILQ_REMOVE(adphead, oldadp, ad_next);
5377	/*
5378	 * We need to move any journal dependencies over to the freefrag
5379	 * that releases this block if it exists.  Otherwise we are
5380	 * extending an existing block and we'll wait until that is
5381	 * complete to release the journal space and extend the
5382	 * new journal to cover this old space as well.
5383	 */
5384	if (freefrag == NULL) {
5385		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5386			panic("allocdirect_merge: %jd != %jd",
5387			    oldadp->ad_newblkno, newadp->ad_newblkno);
5388		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5389		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5390		    &oldadp->ad_block.nb_jnewblk->jn_list,
5391		    &newadp->ad_block.nb_jwork);
5392		oldadp->ad_block.nb_jnewblk = NULL;
5393		cancel_newblk(&oldadp->ad_block, NULL,
5394		    &newadp->ad_block.nb_jwork);
5395	} else {
5396		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5397		    &freefrag->ff_list, &freefrag->ff_jwork);
5398		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5399		    &freefrag->ff_jwork);
5400	}
5401	free_newblk(&oldadp->ad_block);
5402}
5403
5404/*
5405 * Allocate a jfreefrag structure to journal a single block free.
5406 */
5407static struct jfreefrag *
5408newjfreefrag(freefrag, ip, blkno, size, lbn)
5409	struct freefrag *freefrag;
5410	struct inode *ip;
5411	ufs2_daddr_t blkno;
5412	long size;
5413	ufs_lbn_t lbn;
5414{
5415	struct jfreefrag *jfreefrag;
5416	struct fs *fs;
5417
5418	fs = ip->i_fs;
5419	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5420	    M_SOFTDEP_FLAGS);
5421	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5422	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5423	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5424	jfreefrag->fr_ino = ip->i_number;
5425	jfreefrag->fr_lbn = lbn;
5426	jfreefrag->fr_blkno = blkno;
5427	jfreefrag->fr_frags = numfrags(fs, size);
5428	jfreefrag->fr_freefrag = freefrag;
5429
5430	return (jfreefrag);
5431}
5432
5433/*
5434 * Allocate a new freefrag structure.
5435 */
5436static struct freefrag *
5437newfreefrag(ip, blkno, size, lbn)
5438	struct inode *ip;
5439	ufs2_daddr_t blkno;
5440	long size;
5441	ufs_lbn_t lbn;
5442{
5443	struct freefrag *freefrag;
5444	struct fs *fs;
5445
5446	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5447	    ip->i_number, blkno, size, lbn);
5448	fs = ip->i_fs;
5449	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5450		panic("newfreefrag: frag size");
5451	freefrag = malloc(sizeof(struct freefrag),
5452	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5453	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5454	freefrag->ff_state = ATTACHED;
5455	LIST_INIT(&freefrag->ff_jwork);
5456	freefrag->ff_inum = ip->i_number;
5457	freefrag->ff_vtype = ITOV(ip)->v_type;
5458	freefrag->ff_blkno = blkno;
5459	freefrag->ff_fragsize = size;
5460
5461	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5462		freefrag->ff_jdep = (struct worklist *)
5463		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5464	} else {
5465		freefrag->ff_state |= DEPCOMPLETE;
5466		freefrag->ff_jdep = NULL;
5467	}
5468
5469	return (freefrag);
5470}
5471
5472/*
5473 * This workitem de-allocates fragments that were replaced during
5474 * file block allocation.
5475 */
5476static void
5477handle_workitem_freefrag(freefrag)
5478	struct freefrag *freefrag;
5479{
5480	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5481	struct workhead wkhd;
5482
5483	CTR3(KTR_SUJ,
5484	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5485	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5486	/*
5487	 * It would be illegal to add new completion items to the
5488	 * freefrag after it was schedule to be done so it must be
5489	 * safe to modify the list head here.
5490	 */
5491	LIST_INIT(&wkhd);
5492	ACQUIRE_LOCK(ump);
5493	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5494	/*
5495	 * If the journal has not been written we must cancel it here.
5496	 */
5497	if (freefrag->ff_jdep) {
5498		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5499			panic("handle_workitem_freefrag: Unexpected type %d\n",
5500			    freefrag->ff_jdep->wk_type);
5501		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5502	}
5503	FREE_LOCK(ump);
5504	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5505	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5506	ACQUIRE_LOCK(ump);
5507	WORKITEM_FREE(freefrag, D_FREEFRAG);
5508	FREE_LOCK(ump);
5509}
5510
5511/*
5512 * Set up a dependency structure for an external attributes data block.
5513 * This routine follows much of the structure of softdep_setup_allocdirect.
5514 * See the description of softdep_setup_allocdirect above for details.
5515 */
5516void
5517softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5518	struct inode *ip;
5519	ufs_lbn_t off;
5520	ufs2_daddr_t newblkno;
5521	ufs2_daddr_t oldblkno;
5522	long newsize;
5523	long oldsize;
5524	struct buf *bp;
5525{
5526	struct allocdirect *adp, *oldadp;
5527	struct allocdirectlst *adphead;
5528	struct freefrag *freefrag;
5529	struct inodedep *inodedep;
5530	struct jnewblk *jnewblk;
5531	struct newblk *newblk;
5532	struct mount *mp;
5533	ufs_lbn_t lbn;
5534
5535	mp = UFSTOVFS(ip->i_ump);
5536	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5537	    ("softdep_setup_allocext called on non-softdep filesystem"));
5538	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5539		    (long long)off));
5540
5541	lbn = bp->b_lblkno;
5542	if (oldblkno && oldblkno != newblkno)
5543		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5544	else
5545		freefrag = NULL;
5546
5547	ACQUIRE_LOCK(ip->i_ump);
5548	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5549		panic("softdep_setup_allocext: lost block");
5550	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5551	    ("softdep_setup_allocext: newblk already initialized"));
5552	/*
5553	 * Convert the newblk to an allocdirect.
5554	 */
5555	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5556	adp = (struct allocdirect *)newblk;
5557	newblk->nb_freefrag = freefrag;
5558	adp->ad_offset = off;
5559	adp->ad_oldblkno = oldblkno;
5560	adp->ad_newsize = newsize;
5561	adp->ad_oldsize = oldsize;
5562	adp->ad_state |=  EXTDATA;
5563
5564	/*
5565	 * Finish initializing the journal.
5566	 */
5567	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5568		jnewblk->jn_ino = ip->i_number;
5569		jnewblk->jn_lbn = lbn;
5570		add_to_journal(&jnewblk->jn_list);
5571	}
5572	if (freefrag && freefrag->ff_jdep != NULL &&
5573	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5574		add_to_journal(freefrag->ff_jdep);
5575	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5576	adp->ad_inodedep = inodedep;
5577
5578	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5579	/*
5580	 * The list of allocdirects must be kept in sorted and ascending
5581	 * order so that the rollback routines can quickly determine the
5582	 * first uncommitted block (the size of the file stored on disk
5583	 * ends at the end of the lowest committed fragment, or if there
5584	 * are no fragments, at the end of the highest committed block).
5585	 * Since files generally grow, the typical case is that the new
5586	 * block is to be added at the end of the list. We speed this
5587	 * special case by checking against the last allocdirect in the
5588	 * list before laboriously traversing the list looking for the
5589	 * insertion point.
5590	 */
5591	adphead = &inodedep->id_newextupdt;
5592	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5593	if (oldadp == NULL || oldadp->ad_offset <= off) {
5594		/* insert at end of list */
5595		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5596		if (oldadp != NULL && oldadp->ad_offset == off)
5597			allocdirect_merge(adphead, adp, oldadp);
5598		FREE_LOCK(ip->i_ump);
5599		return;
5600	}
5601	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5602		if (oldadp->ad_offset >= off)
5603			break;
5604	}
5605	if (oldadp == NULL)
5606		panic("softdep_setup_allocext: lost entry");
5607	/* insert in middle of list */
5608	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5609	if (oldadp->ad_offset == off)
5610		allocdirect_merge(adphead, adp, oldadp);
5611	FREE_LOCK(ip->i_ump);
5612}
5613
5614/*
5615 * Indirect block allocation dependencies.
5616 *
5617 * The same dependencies that exist for a direct block also exist when
5618 * a new block is allocated and pointed to by an entry in a block of
5619 * indirect pointers. The undo/redo states described above are also
5620 * used here. Because an indirect block contains many pointers that
5621 * may have dependencies, a second copy of the entire in-memory indirect
5622 * block is kept. The buffer cache copy is always completely up-to-date.
5623 * The second copy, which is used only as a source for disk writes,
5624 * contains only the safe pointers (i.e., those that have no remaining
5625 * update dependencies). The second copy is freed when all pointers
5626 * are safe. The cache is not allowed to replace indirect blocks with
5627 * pending update dependencies. If a buffer containing an indirect
5628 * block with dependencies is written, these routines will mark it
5629 * dirty again. It can only be successfully written once all the
5630 * dependencies are removed. The ffs_fsync routine in conjunction with
5631 * softdep_sync_metadata work together to get all the dependencies
5632 * removed so that a file can be successfully written to disk. Three
5633 * procedures are used when setting up indirect block pointer
5634 * dependencies. The division is necessary because of the organization
5635 * of the "balloc" routine and because of the distinction between file
5636 * pages and file metadata blocks.
5637 */
5638
5639/*
5640 * Allocate a new allocindir structure.
5641 */
5642static struct allocindir *
5643newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5644	struct inode *ip;	/* inode for file being extended */
5645	int ptrno;		/* offset of pointer in indirect block */
5646	ufs2_daddr_t newblkno;	/* disk block number being added */
5647	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5648	ufs_lbn_t lbn;
5649{
5650	struct newblk *newblk;
5651	struct allocindir *aip;
5652	struct freefrag *freefrag;
5653	struct jnewblk *jnewblk;
5654
5655	if (oldblkno)
5656		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5657	else
5658		freefrag = NULL;
5659	ACQUIRE_LOCK(ip->i_ump);
5660	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5661		panic("new_allocindir: lost block");
5662	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5663	    ("newallocindir: newblk already initialized"));
5664	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5665	newblk->nb_freefrag = freefrag;
5666	aip = (struct allocindir *)newblk;
5667	aip->ai_offset = ptrno;
5668	aip->ai_oldblkno = oldblkno;
5669	aip->ai_lbn = lbn;
5670	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5671		jnewblk->jn_ino = ip->i_number;
5672		jnewblk->jn_lbn = lbn;
5673		add_to_journal(&jnewblk->jn_list);
5674	}
5675	if (freefrag && freefrag->ff_jdep != NULL &&
5676	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5677		add_to_journal(freefrag->ff_jdep);
5678	return (aip);
5679}
5680
5681/*
5682 * Called just before setting an indirect block pointer
5683 * to a newly allocated file page.
5684 */
5685void
5686softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5687	struct inode *ip;	/* inode for file being extended */
5688	ufs_lbn_t lbn;		/* allocated block number within file */
5689	struct buf *bp;		/* buffer with indirect blk referencing page */
5690	int ptrno;		/* offset of pointer in indirect block */
5691	ufs2_daddr_t newblkno;	/* disk block number being added */
5692	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5693	struct buf *nbp;	/* buffer holding allocated page */
5694{
5695	struct inodedep *inodedep;
5696	struct freefrag *freefrag;
5697	struct allocindir *aip;
5698	struct pagedep *pagedep;
5699	struct mount *mp;
5700	int dflags;
5701
5702	mp = UFSTOVFS(ip->i_ump);
5703	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5704	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5705	KASSERT(lbn == nbp->b_lblkno,
5706	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5707	    lbn, bp->b_lblkno));
5708	CTR4(KTR_SUJ,
5709	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5710	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5711	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5712	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5713	dflags = DEPALLOC;
5714	if (IS_SNAPSHOT(ip))
5715		dflags |= NODELAY;
5716	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5717	/*
5718	 * If we are allocating a directory page, then we must
5719	 * allocate an associated pagedep to track additions and
5720	 * deletions.
5721	 */
5722	if ((ip->i_mode & IFMT) == IFDIR)
5723		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5724	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5725	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5726	FREE_LOCK(ip->i_ump);
5727	if (freefrag)
5728		handle_workitem_freefrag(freefrag);
5729}
5730
5731/*
5732 * Called just before setting an indirect block pointer to a
5733 * newly allocated indirect block.
5734 */
5735void
5736softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5737	struct buf *nbp;	/* newly allocated indirect block */
5738	struct inode *ip;	/* inode for file being extended */
5739	struct buf *bp;		/* indirect block referencing allocated block */
5740	int ptrno;		/* offset of pointer in indirect block */
5741	ufs2_daddr_t newblkno;	/* disk block number being added */
5742{
5743	struct inodedep *inodedep;
5744	struct allocindir *aip;
5745	ufs_lbn_t lbn;
5746	int dflags;
5747
5748	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
5749	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5750	CTR3(KTR_SUJ,
5751	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5752	    ip->i_number, newblkno, ptrno);
5753	lbn = nbp->b_lblkno;
5754	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5755	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5756	dflags = DEPALLOC;
5757	if (IS_SNAPSHOT(ip))
5758		dflags |= NODELAY;
5759	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5760	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5761	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5762		panic("softdep_setup_allocindir_meta: Block already existed");
5763	FREE_LOCK(ip->i_ump);
5764}
5765
5766static void
5767indirdep_complete(indirdep)
5768	struct indirdep *indirdep;
5769{
5770	struct allocindir *aip;
5771
5772	LIST_REMOVE(indirdep, ir_next);
5773	indirdep->ir_state |= DEPCOMPLETE;
5774
5775	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5776		LIST_REMOVE(aip, ai_next);
5777		free_newblk(&aip->ai_block);
5778	}
5779	/*
5780	 * If this indirdep is not attached to a buf it was simply waiting
5781	 * on completion to clear completehd.  free_indirdep() asserts
5782	 * that nothing is dangling.
5783	 */
5784	if ((indirdep->ir_state & ONWORKLIST) == 0)
5785		free_indirdep(indirdep);
5786}
5787
5788static struct indirdep *
5789indirdep_lookup(mp, ip, bp)
5790	struct mount *mp;
5791	struct inode *ip;
5792	struct buf *bp;
5793{
5794	struct indirdep *indirdep, *newindirdep;
5795	struct newblk *newblk;
5796	struct ufsmount *ump;
5797	struct worklist *wk;
5798	struct fs *fs;
5799	ufs2_daddr_t blkno;
5800
5801	ump = VFSTOUFS(mp);
5802	LOCK_OWNED(ump);
5803	indirdep = NULL;
5804	newindirdep = NULL;
5805	fs = ip->i_fs;
5806	for (;;) {
5807		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5808			if (wk->wk_type != D_INDIRDEP)
5809				continue;
5810			indirdep = WK_INDIRDEP(wk);
5811			break;
5812		}
5813		/* Found on the buffer worklist, no new structure to free. */
5814		if (indirdep != NULL && newindirdep == NULL)
5815			return (indirdep);
5816		if (indirdep != NULL && newindirdep != NULL)
5817			panic("indirdep_lookup: simultaneous create");
5818		/* None found on the buffer and a new structure is ready. */
5819		if (indirdep == NULL && newindirdep != NULL)
5820			break;
5821		/* None found and no new structure available. */
5822		FREE_LOCK(ump);
5823		newindirdep = malloc(sizeof(struct indirdep),
5824		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5825		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5826		newindirdep->ir_state = ATTACHED;
5827		if (ip->i_ump->um_fstype == UFS1)
5828			newindirdep->ir_state |= UFS1FMT;
5829		TAILQ_INIT(&newindirdep->ir_trunc);
5830		newindirdep->ir_saveddata = NULL;
5831		LIST_INIT(&newindirdep->ir_deplisthd);
5832		LIST_INIT(&newindirdep->ir_donehd);
5833		LIST_INIT(&newindirdep->ir_writehd);
5834		LIST_INIT(&newindirdep->ir_completehd);
5835		if (bp->b_blkno == bp->b_lblkno) {
5836			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5837			    NULL, NULL);
5838			bp->b_blkno = blkno;
5839		}
5840		newindirdep->ir_freeblks = NULL;
5841		newindirdep->ir_savebp =
5842		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5843		newindirdep->ir_bp = bp;
5844		BUF_KERNPROC(newindirdep->ir_savebp);
5845		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5846		ACQUIRE_LOCK(ump);
5847	}
5848	indirdep = newindirdep;
5849	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5850	/*
5851	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5852	 * that we don't free dependencies until the pointers are valid.
5853	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5854	 * than using the hash.
5855	 */
5856	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5857		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5858	else
5859		indirdep->ir_state |= DEPCOMPLETE;
5860	return (indirdep);
5861}
5862
5863/*
5864 * Called to finish the allocation of the "aip" allocated
5865 * by one of the two routines above.
5866 */
5867static struct freefrag *
5868setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5869	struct buf *bp;		/* in-memory copy of the indirect block */
5870	struct inode *ip;	/* inode for file being extended */
5871	struct inodedep *inodedep; /* Inodedep for ip */
5872	struct allocindir *aip;	/* allocindir allocated by the above routines */
5873	ufs_lbn_t lbn;		/* Logical block number for this block. */
5874{
5875	struct fs *fs;
5876	struct indirdep *indirdep;
5877	struct allocindir *oldaip;
5878	struct freefrag *freefrag;
5879	struct mount *mp;
5880
5881	LOCK_OWNED(ip->i_ump);
5882	mp = UFSTOVFS(ip->i_ump);
5883	fs = ip->i_fs;
5884	if (bp->b_lblkno >= 0)
5885		panic("setup_allocindir_phase2: not indir blk");
5886	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5887	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5888	indirdep = indirdep_lookup(mp, ip, bp);
5889	KASSERT(indirdep->ir_savebp != NULL,
5890	    ("setup_allocindir_phase2 NULL ir_savebp"));
5891	aip->ai_indirdep = indirdep;
5892	/*
5893	 * Check for an unwritten dependency for this indirect offset.  If
5894	 * there is, merge the old dependency into the new one.  This happens
5895	 * as a result of reallocblk only.
5896	 */
5897	freefrag = NULL;
5898	if (aip->ai_oldblkno != 0) {
5899		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5900			if (oldaip->ai_offset == aip->ai_offset) {
5901				freefrag = allocindir_merge(aip, oldaip);
5902				goto done;
5903			}
5904		}
5905		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5906			if (oldaip->ai_offset == aip->ai_offset) {
5907				freefrag = allocindir_merge(aip, oldaip);
5908				goto done;
5909			}
5910		}
5911	}
5912done:
5913	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5914	return (freefrag);
5915}
5916
5917/*
5918 * Merge two allocindirs which refer to the same block.  Move newblock
5919 * dependencies and setup the freefrags appropriately.
5920 */
5921static struct freefrag *
5922allocindir_merge(aip, oldaip)
5923	struct allocindir *aip;
5924	struct allocindir *oldaip;
5925{
5926	struct freefrag *freefrag;
5927	struct worklist *wk;
5928
5929	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5930		panic("allocindir_merge: blkno");
5931	aip->ai_oldblkno = oldaip->ai_oldblkno;
5932	freefrag = aip->ai_freefrag;
5933	aip->ai_freefrag = oldaip->ai_freefrag;
5934	oldaip->ai_freefrag = NULL;
5935	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5936	/*
5937	 * If we are tracking a new directory-block allocation,
5938	 * move it from the old allocindir to the new allocindir.
5939	 */
5940	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5941		WORKLIST_REMOVE(wk);
5942		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5943			panic("allocindir_merge: extra newdirblk");
5944		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5945	}
5946	/*
5947	 * We can skip journaling for this freefrag and just complete
5948	 * any pending journal work for the allocindir that is being
5949	 * removed after the freefrag completes.
5950	 */
5951	if (freefrag->ff_jdep)
5952		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5953	LIST_REMOVE(oldaip, ai_next);
5954	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5955	    &freefrag->ff_list, &freefrag->ff_jwork);
5956	free_newblk(&oldaip->ai_block);
5957
5958	return (freefrag);
5959}
5960
5961static inline void
5962setup_freedirect(freeblks, ip, i, needj)
5963	struct freeblks *freeblks;
5964	struct inode *ip;
5965	int i;
5966	int needj;
5967{
5968	ufs2_daddr_t blkno;
5969	int frags;
5970
5971	blkno = DIP(ip, i_db[i]);
5972	if (blkno == 0)
5973		return;
5974	DIP_SET(ip, i_db[i], 0);
5975	frags = sblksize(ip->i_fs, ip->i_size, i);
5976	frags = numfrags(ip->i_fs, frags);
5977	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5978}
5979
5980static inline void
5981setup_freeext(freeblks, ip, i, needj)
5982	struct freeblks *freeblks;
5983	struct inode *ip;
5984	int i;
5985	int needj;
5986{
5987	ufs2_daddr_t blkno;
5988	int frags;
5989
5990	blkno = ip->i_din2->di_extb[i];
5991	if (blkno == 0)
5992		return;
5993	ip->i_din2->di_extb[i] = 0;
5994	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5995	frags = numfrags(ip->i_fs, frags);
5996	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5997}
5998
5999static inline void
6000setup_freeindir(freeblks, ip, i, lbn, needj)
6001	struct freeblks *freeblks;
6002	struct inode *ip;
6003	int i;
6004	ufs_lbn_t lbn;
6005	int needj;
6006{
6007	ufs2_daddr_t blkno;
6008
6009	blkno = DIP(ip, i_ib[i]);
6010	if (blkno == 0)
6011		return;
6012	DIP_SET(ip, i_ib[i], 0);
6013	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
6014	    0, needj);
6015}
6016
6017static inline struct freeblks *
6018newfreeblks(mp, ip)
6019	struct mount *mp;
6020	struct inode *ip;
6021{
6022	struct freeblks *freeblks;
6023
6024	freeblks = malloc(sizeof(struct freeblks),
6025		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6026	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6027	LIST_INIT(&freeblks->fb_jblkdephd);
6028	LIST_INIT(&freeblks->fb_jwork);
6029	freeblks->fb_ref = 0;
6030	freeblks->fb_cgwait = 0;
6031	freeblks->fb_state = ATTACHED;
6032	freeblks->fb_uid = ip->i_uid;
6033	freeblks->fb_inum = ip->i_number;
6034	freeblks->fb_vtype = ITOV(ip)->v_type;
6035	freeblks->fb_modrev = DIP(ip, i_modrev);
6036	freeblks->fb_devvp = ip->i_devvp;
6037	freeblks->fb_chkcnt = 0;
6038	freeblks->fb_len = 0;
6039
6040	return (freeblks);
6041}
6042
6043static void
6044trunc_indirdep(indirdep, freeblks, bp, off)
6045	struct indirdep *indirdep;
6046	struct freeblks *freeblks;
6047	struct buf *bp;
6048	int off;
6049{
6050	struct allocindir *aip, *aipn;
6051
6052	/*
6053	 * The first set of allocindirs won't be in savedbp.
6054	 */
6055	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6056		if (aip->ai_offset > off)
6057			cancel_allocindir(aip, bp, freeblks, 1);
6058	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6059		if (aip->ai_offset > off)
6060			cancel_allocindir(aip, bp, freeblks, 1);
6061	/*
6062	 * These will exist in savedbp.
6063	 */
6064	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6065		if (aip->ai_offset > off)
6066			cancel_allocindir(aip, NULL, freeblks, 0);
6067	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6068		if (aip->ai_offset > off)
6069			cancel_allocindir(aip, NULL, freeblks, 0);
6070}
6071
6072/*
6073 * Follow the chain of indirects down to lastlbn creating a freework
6074 * structure for each.  This will be used to start indir_trunc() at
6075 * the right offset and create the journal records for the parrtial
6076 * truncation.  A second step will handle the truncated dependencies.
6077 */
6078static int
6079setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6080	struct freeblks *freeblks;
6081	struct inode *ip;
6082	ufs_lbn_t lbn;
6083	ufs_lbn_t lastlbn;
6084	ufs2_daddr_t blkno;
6085{
6086	struct indirdep *indirdep;
6087	struct indirdep *indirn;
6088	struct freework *freework;
6089	struct newblk *newblk;
6090	struct mount *mp;
6091	struct buf *bp;
6092	uint8_t *start;
6093	uint8_t *end;
6094	ufs_lbn_t lbnadd;
6095	int level;
6096	int error;
6097	int off;
6098
6099
6100	freework = NULL;
6101	if (blkno == 0)
6102		return (0);
6103	mp = freeblks->fb_list.wk_mp;
6104	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6105	if ((bp->b_flags & B_CACHE) == 0) {
6106		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6107		bp->b_iocmd = BIO_READ;
6108		bp->b_flags &= ~B_INVAL;
6109		bp->b_ioflags &= ~BIO_ERROR;
6110		vfs_busy_pages(bp, 0);
6111		bp->b_iooffset = dbtob(bp->b_blkno);
6112		bstrategy(bp);
6113		curthread->td_ru.ru_inblock++;
6114		error = bufwait(bp);
6115		if (error) {
6116			brelse(bp);
6117			return (error);
6118		}
6119	}
6120	level = lbn_level(lbn);
6121	lbnadd = lbn_offset(ip->i_fs, level);
6122	/*
6123	 * Compute the offset of the last block we want to keep.  Store
6124	 * in the freework the first block we want to completely free.
6125	 */
6126	off = (lastlbn - -(lbn + level)) / lbnadd;
6127	if (off + 1 == NINDIR(ip->i_fs))
6128		goto nowork;
6129	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6130	    0);
6131	/*
6132	 * Link the freework into the indirdep.  This will prevent any new
6133	 * allocations from proceeding until we are finished with the
6134	 * truncate and the block is written.
6135	 */
6136	ACQUIRE_LOCK(ip->i_ump);
6137	indirdep = indirdep_lookup(mp, ip, bp);
6138	if (indirdep->ir_freeblks)
6139		panic("setup_trunc_indir: indirdep already truncated.");
6140	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6141	freework->fw_indir = indirdep;
6142	/*
6143	 * Cancel any allocindirs that will not make it to disk.
6144	 * We have to do this for all copies of the indirdep that
6145	 * live on this newblk.
6146	 */
6147	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6148		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6149		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6150			trunc_indirdep(indirn, freeblks, bp, off);
6151	} else
6152		trunc_indirdep(indirdep, freeblks, bp, off);
6153	FREE_LOCK(ip->i_ump);
6154	/*
6155	 * Creation is protected by the buf lock. The saveddata is only
6156	 * needed if a full truncation follows a partial truncation but it
6157	 * is difficult to allocate in that case so we fetch it anyway.
6158	 */
6159	if (indirdep->ir_saveddata == NULL)
6160		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6161		    M_SOFTDEP_FLAGS);
6162nowork:
6163	/* Fetch the blkno of the child and the zero start offset. */
6164	if (ip->i_ump->um_fstype == UFS1) {
6165		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6166		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6167	} else {
6168		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6169		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6170	}
6171	if (freework) {
6172		/* Zero the truncated pointers. */
6173		end = bp->b_data + bp->b_bcount;
6174		bzero(start, end - start);
6175		bdwrite(bp);
6176	} else
6177		bqrelse(bp);
6178	if (level == 0)
6179		return (0);
6180	lbn++; /* adjust level */
6181	lbn -= (off * lbnadd);
6182	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6183}
6184
6185/*
6186 * Complete the partial truncation of an indirect block setup by
6187 * setup_trunc_indir().  This zeros the truncated pointers in the saved
6188 * copy and writes them to disk before the freeblks is allowed to complete.
6189 */
6190static void
6191complete_trunc_indir(freework)
6192	struct freework *freework;
6193{
6194	struct freework *fwn;
6195	struct indirdep *indirdep;
6196	struct ufsmount *ump;
6197	struct buf *bp;
6198	uintptr_t start;
6199	int count;
6200
6201	ump = VFSTOUFS(freework->fw_list.wk_mp);
6202	LOCK_OWNED(ump);
6203	indirdep = freework->fw_indir;
6204	for (;;) {
6205		bp = indirdep->ir_bp;
6206		/* See if the block was discarded. */
6207		if (bp == NULL)
6208			break;
6209		/* Inline part of getdirtybuf().  We dont want bremfree. */
6210		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6211			break;
6212		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6213		    LOCK_PTR(ump)) == 0)
6214			BUF_UNLOCK(bp);
6215		ACQUIRE_LOCK(ump);
6216	}
6217	freework->fw_state |= DEPCOMPLETE;
6218	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6219	/*
6220	 * Zero the pointers in the saved copy.
6221	 */
6222	if (indirdep->ir_state & UFS1FMT)
6223		start = sizeof(ufs1_daddr_t);
6224	else
6225		start = sizeof(ufs2_daddr_t);
6226	start *= freework->fw_start;
6227	count = indirdep->ir_savebp->b_bcount - start;
6228	start += (uintptr_t)indirdep->ir_savebp->b_data;
6229	bzero((char *)start, count);
6230	/*
6231	 * We need to start the next truncation in the list if it has not
6232	 * been started yet.
6233	 */
6234	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6235	if (fwn != NULL) {
6236		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6237			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6238		if ((fwn->fw_state & ONWORKLIST) == 0)
6239			freework_enqueue(fwn);
6240	}
6241	/*
6242	 * If bp is NULL the block was fully truncated, restore
6243	 * the saved block list otherwise free it if it is no
6244	 * longer needed.
6245	 */
6246	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6247		if (bp == NULL)
6248			bcopy(indirdep->ir_saveddata,
6249			    indirdep->ir_savebp->b_data,
6250			    indirdep->ir_savebp->b_bcount);
6251		free(indirdep->ir_saveddata, M_INDIRDEP);
6252		indirdep->ir_saveddata = NULL;
6253	}
6254	/*
6255	 * When bp is NULL there is a full truncation pending.  We
6256	 * must wait for this full truncation to be journaled before
6257	 * we can release this freework because the disk pointers will
6258	 * never be written as zero.
6259	 */
6260	if (bp == NULL)  {
6261		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6262			handle_written_freework(freework);
6263		else
6264			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6265			   &freework->fw_list);
6266	} else {
6267		/* Complete when the real copy is written. */
6268		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6269		BUF_UNLOCK(bp);
6270	}
6271}
6272
6273/*
6274 * Calculate the number of blocks we are going to release where datablocks
6275 * is the current total and length is the new file size.
6276 */
6277static ufs2_daddr_t
6278blkcount(fs, datablocks, length)
6279	struct fs *fs;
6280	ufs2_daddr_t datablocks;
6281	off_t length;
6282{
6283	off_t totblks, numblks;
6284
6285	totblks = 0;
6286	numblks = howmany(length, fs->fs_bsize);
6287	if (numblks <= NDADDR) {
6288		totblks = howmany(length, fs->fs_fsize);
6289		goto out;
6290	}
6291        totblks = blkstofrags(fs, numblks);
6292	numblks -= NDADDR;
6293	/*
6294	 * Count all single, then double, then triple indirects required.
6295	 * Subtracting one indirects worth of blocks for each pass
6296	 * acknowledges one of each pointed to by the inode.
6297	 */
6298	for (;;) {
6299		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6300		numblks -= NINDIR(fs);
6301		if (numblks <= 0)
6302			break;
6303		numblks = howmany(numblks, NINDIR(fs));
6304	}
6305out:
6306	totblks = fsbtodb(fs, totblks);
6307	/*
6308	 * Handle sparse files.  We can't reclaim more blocks than the inode
6309	 * references.  We will correct it later in handle_complete_freeblks()
6310	 * when we know the real count.
6311	 */
6312	if (totblks > datablocks)
6313		return (0);
6314	return (datablocks - totblks);
6315}
6316
6317/*
6318 * Handle freeblocks for journaled softupdate filesystems.
6319 *
6320 * Contrary to normal softupdates, we must preserve the block pointers in
6321 * indirects until their subordinates are free.  This is to avoid journaling
6322 * every block that is freed which may consume more space than the journal
6323 * itself.  The recovery program will see the free block journals at the
6324 * base of the truncated area and traverse them to reclaim space.  The
6325 * pointers in the inode may be cleared immediately after the journal
6326 * records are written because each direct and indirect pointer in the
6327 * inode is recorded in a journal.  This permits full truncation to proceed
6328 * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6329 *
6330 * The algorithm is as follows:
6331 * 1) Traverse the in-memory state and create journal entries to release
6332 *    the relevant blocks and full indirect trees.
6333 * 2) Traverse the indirect block chain adding partial truncation freework
6334 *    records to indirects in the path to lastlbn.  The freework will
6335 *    prevent new allocation dependencies from being satisfied in this
6336 *    indirect until the truncation completes.
6337 * 3) Read and lock the inode block, performing an update with the new size
6338 *    and pointers.  This prevents truncated data from becoming valid on
6339 *    disk through step 4.
6340 * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6341 *    eliminate journal work for those records that do not require it.
6342 * 5) Schedule the journal records to be written followed by the inode block.
6343 * 6) Allocate any necessary frags for the end of file.
6344 * 7) Zero any partially truncated blocks.
6345 *
6346 * From this truncation proceeds asynchronously using the freework and
6347 * indir_trunc machinery.  The file will not be extended again into a
6348 * partially truncated indirect block until all work is completed but
6349 * the normal dependency mechanism ensures that it is rolled back/forward
6350 * as appropriate.  Further truncation may occur without delay and is
6351 * serialized in indir_trunc().
6352 */
6353void
6354softdep_journal_freeblocks(ip, cred, length, flags)
6355	struct inode *ip;	/* The inode whose length is to be reduced */
6356	struct ucred *cred;
6357	off_t length;		/* The new length for the file */
6358	int flags;		/* IO_EXT and/or IO_NORMAL */
6359{
6360	struct freeblks *freeblks, *fbn;
6361	struct worklist *wk, *wkn;
6362	struct inodedep *inodedep;
6363	struct jblkdep *jblkdep;
6364	struct allocdirect *adp, *adpn;
6365	struct ufsmount *ump;
6366	struct fs *fs;
6367	struct buf *bp;
6368	struct vnode *vp;
6369	struct mount *mp;
6370	ufs2_daddr_t extblocks, datablocks;
6371	ufs_lbn_t tmpval, lbn, lastlbn;
6372	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6373
6374	fs = ip->i_fs;
6375	ump = ip->i_ump;
6376	mp = UFSTOVFS(ump);
6377	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6378	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6379	vp = ITOV(ip);
6380	needj = 1;
6381	iboff = -1;
6382	allocblock = 0;
6383	extblocks = 0;
6384	datablocks = 0;
6385	frags = 0;
6386	freeblks = newfreeblks(mp, ip);
6387	ACQUIRE_LOCK(ump);
6388	/*
6389	 * If we're truncating a removed file that will never be written
6390	 * we don't need to journal the block frees.  The canceled journals
6391	 * for the allocations will suffice.
6392	 */
6393	dflags = DEPALLOC;
6394	if (IS_SNAPSHOT(ip))
6395		dflags |= NODELAY;
6396	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6397	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6398	    length == 0)
6399		needj = 0;
6400	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6401	    ip->i_number, length, needj);
6402	FREE_LOCK(ump);
6403	/*
6404	 * Calculate the lbn that we are truncating to.  This results in -1
6405	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6406	 * to keep, not the first lbn we want to truncate.
6407	 */
6408	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6409	lastoff = blkoff(fs, length);
6410	/*
6411	 * Compute frags we are keeping in lastlbn.  0 means all.
6412	 */
6413	if (lastlbn >= 0 && lastlbn < NDADDR) {
6414		frags = fragroundup(fs, lastoff);
6415		/* adp offset of last valid allocdirect. */
6416		iboff = lastlbn;
6417	} else if (lastlbn > 0)
6418		iboff = NDADDR;
6419	if (fs->fs_magic == FS_UFS2_MAGIC)
6420		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6421	/*
6422	 * Handle normal data blocks and indirects.  This section saves
6423	 * values used after the inode update to complete frag and indirect
6424	 * truncation.
6425	 */
6426	if ((flags & IO_NORMAL) != 0) {
6427		/*
6428		 * Handle truncation of whole direct and indirect blocks.
6429		 */
6430		for (i = iboff + 1; i < NDADDR; i++)
6431			setup_freedirect(freeblks, ip, i, needj);
6432		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6433		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6434			/* Release a whole indirect tree. */
6435			if (lbn > lastlbn) {
6436				setup_freeindir(freeblks, ip, i, -lbn -i,
6437				    needj);
6438				continue;
6439			}
6440			iboff = i + NDADDR;
6441			/*
6442			 * Traverse partially truncated indirect tree.
6443			 */
6444			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6445				setup_trunc_indir(freeblks, ip, -lbn - i,
6446				    lastlbn, DIP(ip, i_ib[i]));
6447		}
6448		/*
6449		 * Handle partial truncation to a frag boundary.
6450		 */
6451		if (frags) {
6452			ufs2_daddr_t blkno;
6453			long oldfrags;
6454
6455			oldfrags = blksize(fs, ip, lastlbn);
6456			blkno = DIP(ip, i_db[lastlbn]);
6457			if (blkno && oldfrags != frags) {
6458				oldfrags -= frags;
6459				oldfrags = numfrags(ip->i_fs, oldfrags);
6460				blkno += numfrags(ip->i_fs, frags);
6461				newfreework(ump, freeblks, NULL, lastlbn,
6462				    blkno, oldfrags, 0, needj);
6463				if (needj)
6464					adjust_newfreework(freeblks,
6465					    numfrags(ip->i_fs, frags));
6466			} else if (blkno == 0)
6467				allocblock = 1;
6468		}
6469		/*
6470		 * Add a journal record for partial truncate if we are
6471		 * handling indirect blocks.  Non-indirects need no extra
6472		 * journaling.
6473		 */
6474		if (length != 0 && lastlbn >= NDADDR) {
6475			ip->i_flag |= IN_TRUNCATED;
6476			newjtrunc(freeblks, length, 0);
6477		}
6478		ip->i_size = length;
6479		DIP_SET(ip, i_size, ip->i_size);
6480		datablocks = DIP(ip, i_blocks) - extblocks;
6481		if (length != 0)
6482			datablocks = blkcount(ip->i_fs, datablocks, length);
6483		freeblks->fb_len = length;
6484	}
6485	if ((flags & IO_EXT) != 0) {
6486		for (i = 0; i < NXADDR; i++)
6487			setup_freeext(freeblks, ip, i, needj);
6488		ip->i_din2->di_extsize = 0;
6489		datablocks += extblocks;
6490	}
6491#ifdef QUOTA
6492	/* Reference the quotas in case the block count is wrong in the end. */
6493	quotaref(vp, freeblks->fb_quota);
6494	(void) chkdq(ip, -datablocks, NOCRED, 0);
6495#endif
6496	freeblks->fb_chkcnt = -datablocks;
6497	UFS_LOCK(ump);
6498	fs->fs_pendingblocks += datablocks;
6499	UFS_UNLOCK(ump);
6500	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6501	/*
6502	 * Handle truncation of incomplete alloc direct dependencies.  We
6503	 * hold the inode block locked to prevent incomplete dependencies
6504	 * from reaching the disk while we are eliminating those that
6505	 * have been truncated.  This is a partially inlined ffs_update().
6506	 */
6507	ufs_itimes(vp);
6508	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6509	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6510	    (int)fs->fs_bsize, cred, &bp);
6511	if (error) {
6512		brelse(bp);
6513		softdep_error("softdep_journal_freeblocks", error);
6514		return;
6515	}
6516	if (bp->b_bufsize == fs->fs_bsize)
6517		bp->b_flags |= B_CLUSTEROK;
6518	softdep_update_inodeblock(ip, bp, 0);
6519	if (ump->um_fstype == UFS1)
6520		*((struct ufs1_dinode *)bp->b_data +
6521		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6522	else
6523		*((struct ufs2_dinode *)bp->b_data +
6524		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6525	ACQUIRE_LOCK(ump);
6526	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6527	if ((inodedep->id_state & IOSTARTED) != 0)
6528		panic("softdep_setup_freeblocks: inode busy");
6529	/*
6530	 * Add the freeblks structure to the list of operations that
6531	 * must await the zero'ed inode being written to disk. If we
6532	 * still have a bitmap dependency (needj), then the inode
6533	 * has never been written to disk, so we can process the
6534	 * freeblks below once we have deleted the dependencies.
6535	 */
6536	if (needj)
6537		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6538	else
6539		freeblks->fb_state |= COMPLETE;
6540	if ((flags & IO_NORMAL) != 0) {
6541		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6542			if (adp->ad_offset > iboff)
6543				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6544				    freeblks);
6545			/*
6546			 * Truncate the allocdirect.  We could eliminate
6547			 * or modify journal records as well.
6548			 */
6549			else if (adp->ad_offset == iboff && frags)
6550				adp->ad_newsize = frags;
6551		}
6552	}
6553	if ((flags & IO_EXT) != 0)
6554		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6555			cancel_allocdirect(&inodedep->id_extupdt, adp,
6556			    freeblks);
6557	/*
6558	 * Scan the bufwait list for newblock dependencies that will never
6559	 * make it to disk.
6560	 */
6561	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6562		if (wk->wk_type != D_ALLOCDIRECT)
6563			continue;
6564		adp = WK_ALLOCDIRECT(wk);
6565		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6566		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6567			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6568			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6569			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6570		}
6571	}
6572	/*
6573	 * Add journal work.
6574	 */
6575	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6576		add_to_journal(&jblkdep->jb_list);
6577	FREE_LOCK(ump);
6578	bdwrite(bp);
6579	/*
6580	 * Truncate dependency structures beyond length.
6581	 */
6582	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6583	/*
6584	 * This is only set when we need to allocate a fragment because
6585	 * none existed at the end of a frag-sized file.  It handles only
6586	 * allocating a new, zero filled block.
6587	 */
6588	if (allocblock) {
6589		ip->i_size = length - lastoff;
6590		DIP_SET(ip, i_size, ip->i_size);
6591		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6592		if (error != 0) {
6593			softdep_error("softdep_journal_freeblks", error);
6594			return;
6595		}
6596		ip->i_size = length;
6597		DIP_SET(ip, i_size, length);
6598		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6599		allocbuf(bp, frags);
6600		ffs_update(vp, 0);
6601		bawrite(bp);
6602	} else if (lastoff != 0 && vp->v_type != VDIR) {
6603		int size;
6604
6605		/*
6606		 * Zero the end of a truncated frag or block.
6607		 */
6608		size = sblksize(fs, length, lastlbn);
6609		error = bread(vp, lastlbn, size, cred, &bp);
6610		if (error) {
6611			softdep_error("softdep_journal_freeblks", error);
6612			return;
6613		}
6614		bzero((char *)bp->b_data + lastoff, size - lastoff);
6615		bawrite(bp);
6616
6617	}
6618	ACQUIRE_LOCK(ump);
6619	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6620	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6621	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6622	/*
6623	 * We zero earlier truncations so they don't erroneously
6624	 * update i_blocks.
6625	 */
6626	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6627		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6628			fbn->fb_len = 0;
6629	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6630	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6631		freeblks->fb_state |= INPROGRESS;
6632	else
6633		freeblks = NULL;
6634	FREE_LOCK(ump);
6635	if (freeblks)
6636		handle_workitem_freeblocks(freeblks, 0);
6637	trunc_pages(ip, length, extblocks, flags);
6638
6639}
6640
6641/*
6642 * Flush a JOP_SYNC to the journal.
6643 */
6644void
6645softdep_journal_fsync(ip)
6646	struct inode *ip;
6647{
6648	struct jfsync *jfsync;
6649
6650	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
6651	    ("softdep_journal_fsync called on non-softdep filesystem"));
6652	if ((ip->i_flag & IN_TRUNCATED) == 0)
6653		return;
6654	ip->i_flag &= ~IN_TRUNCATED;
6655	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6656	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6657	jfsync->jfs_size = ip->i_size;
6658	jfsync->jfs_ino = ip->i_number;
6659	ACQUIRE_LOCK(ip->i_ump);
6660	add_to_journal(&jfsync->jfs_list);
6661	jwait(&jfsync->jfs_list, MNT_WAIT);
6662	FREE_LOCK(ip->i_ump);
6663}
6664
6665/*
6666 * Block de-allocation dependencies.
6667 *
6668 * When blocks are de-allocated, the on-disk pointers must be nullified before
6669 * the blocks are made available for use by other files.  (The true
6670 * requirement is that old pointers must be nullified before new on-disk
6671 * pointers are set.  We chose this slightly more stringent requirement to
6672 * reduce complexity.) Our implementation handles this dependency by updating
6673 * the inode (or indirect block) appropriately but delaying the actual block
6674 * de-allocation (i.e., freemap and free space count manipulation) until
6675 * after the updated versions reach stable storage.  After the disk is
6676 * updated, the blocks can be safely de-allocated whenever it is convenient.
6677 * This implementation handles only the common case of reducing a file's
6678 * length to zero. Other cases are handled by the conventional synchronous
6679 * write approach.
6680 *
6681 * The ffs implementation with which we worked double-checks
6682 * the state of the block pointers and file size as it reduces
6683 * a file's length.  Some of this code is replicated here in our
6684 * soft updates implementation.  The freeblks->fb_chkcnt field is
6685 * used to transfer a part of this information to the procedure
6686 * that eventually de-allocates the blocks.
6687 *
6688 * This routine should be called from the routine that shortens
6689 * a file's length, before the inode's size or block pointers
6690 * are modified. It will save the block pointer information for
6691 * later release and zero the inode so that the calling routine
6692 * can release it.
6693 */
6694void
6695softdep_setup_freeblocks(ip, length, flags)
6696	struct inode *ip;	/* The inode whose length is to be reduced */
6697	off_t length;		/* The new length for the file */
6698	int flags;		/* IO_EXT and/or IO_NORMAL */
6699{
6700	struct ufs1_dinode *dp1;
6701	struct ufs2_dinode *dp2;
6702	struct freeblks *freeblks;
6703	struct inodedep *inodedep;
6704	struct allocdirect *adp;
6705	struct ufsmount *ump;
6706	struct buf *bp;
6707	struct fs *fs;
6708	ufs2_daddr_t extblocks, datablocks;
6709	struct mount *mp;
6710	int i, delay, error, dflags;
6711	ufs_lbn_t tmpval;
6712	ufs_lbn_t lbn;
6713
6714	ump = ip->i_ump;
6715	mp = UFSTOVFS(ump);
6716	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6717	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6718	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6719	    ip->i_number, length);
6720	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6721	fs = ip->i_fs;
6722	freeblks = newfreeblks(mp, ip);
6723	extblocks = 0;
6724	datablocks = 0;
6725	if (fs->fs_magic == FS_UFS2_MAGIC)
6726		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6727	if ((flags & IO_NORMAL) != 0) {
6728		for (i = 0; i < NDADDR; i++)
6729			setup_freedirect(freeblks, ip, i, 0);
6730		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6731		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6732			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6733		ip->i_size = 0;
6734		DIP_SET(ip, i_size, 0);
6735		datablocks = DIP(ip, i_blocks) - extblocks;
6736	}
6737	if ((flags & IO_EXT) != 0) {
6738		for (i = 0; i < NXADDR; i++)
6739			setup_freeext(freeblks, ip, i, 0);
6740		ip->i_din2->di_extsize = 0;
6741		datablocks += extblocks;
6742	}
6743#ifdef QUOTA
6744	/* Reference the quotas in case the block count is wrong in the end. */
6745	quotaref(ITOV(ip), freeblks->fb_quota);
6746	(void) chkdq(ip, -datablocks, NOCRED, 0);
6747#endif
6748	freeblks->fb_chkcnt = -datablocks;
6749	UFS_LOCK(ump);
6750	fs->fs_pendingblocks += datablocks;
6751	UFS_UNLOCK(ump);
6752	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6753	/*
6754	 * Push the zero'ed inode to to its disk buffer so that we are free
6755	 * to delete its dependencies below. Once the dependencies are gone
6756	 * the buffer can be safely released.
6757	 */
6758	if ((error = bread(ip->i_devvp,
6759	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6760	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6761		brelse(bp);
6762		softdep_error("softdep_setup_freeblocks", error);
6763	}
6764	if (ump->um_fstype == UFS1) {
6765		dp1 = ((struct ufs1_dinode *)bp->b_data +
6766		    ino_to_fsbo(fs, ip->i_number));
6767		ip->i_din1->di_freelink = dp1->di_freelink;
6768		*dp1 = *ip->i_din1;
6769	} else {
6770		dp2 = ((struct ufs2_dinode *)bp->b_data +
6771		    ino_to_fsbo(fs, ip->i_number));
6772		ip->i_din2->di_freelink = dp2->di_freelink;
6773		*dp2 = *ip->i_din2;
6774	}
6775	/*
6776	 * Find and eliminate any inode dependencies.
6777	 */
6778	ACQUIRE_LOCK(ump);
6779	dflags = DEPALLOC;
6780	if (IS_SNAPSHOT(ip))
6781		dflags |= NODELAY;
6782	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6783	if ((inodedep->id_state & IOSTARTED) != 0)
6784		panic("softdep_setup_freeblocks: inode busy");
6785	/*
6786	 * Add the freeblks structure to the list of operations that
6787	 * must await the zero'ed inode being written to disk. If we
6788	 * still have a bitmap dependency (delay == 0), then the inode
6789	 * has never been written to disk, so we can process the
6790	 * freeblks below once we have deleted the dependencies.
6791	 */
6792	delay = (inodedep->id_state & DEPCOMPLETE);
6793	if (delay)
6794		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6795	else
6796		freeblks->fb_state |= COMPLETE;
6797	/*
6798	 * Because the file length has been truncated to zero, any
6799	 * pending block allocation dependency structures associated
6800	 * with this inode are obsolete and can simply be de-allocated.
6801	 * We must first merge the two dependency lists to get rid of
6802	 * any duplicate freefrag structures, then purge the merged list.
6803	 * If we still have a bitmap dependency, then the inode has never
6804	 * been written to disk, so we can free any fragments without delay.
6805	 */
6806	if (flags & IO_NORMAL) {
6807		merge_inode_lists(&inodedep->id_newinoupdt,
6808		    &inodedep->id_inoupdt);
6809		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6810			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6811			    freeblks);
6812	}
6813	if (flags & IO_EXT) {
6814		merge_inode_lists(&inodedep->id_newextupdt,
6815		    &inodedep->id_extupdt);
6816		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6817			cancel_allocdirect(&inodedep->id_extupdt, adp,
6818			    freeblks);
6819	}
6820	FREE_LOCK(ump);
6821	bdwrite(bp);
6822	trunc_dependencies(ip, freeblks, -1, 0, flags);
6823	ACQUIRE_LOCK(ump);
6824	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6825		(void) free_inodedep(inodedep);
6826	freeblks->fb_state |= DEPCOMPLETE;
6827	/*
6828	 * If the inode with zeroed block pointers is now on disk
6829	 * we can start freeing blocks.
6830	 */
6831	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6832		freeblks->fb_state |= INPROGRESS;
6833	else
6834		freeblks = NULL;
6835	FREE_LOCK(ump);
6836	if (freeblks)
6837		handle_workitem_freeblocks(freeblks, 0);
6838	trunc_pages(ip, length, extblocks, flags);
6839}
6840
6841/*
6842 * Eliminate pages from the page cache that back parts of this inode and
6843 * adjust the vnode pager's idea of our size.  This prevents stale data
6844 * from hanging around in the page cache.
6845 */
6846static void
6847trunc_pages(ip, length, extblocks, flags)
6848	struct inode *ip;
6849	off_t length;
6850	ufs2_daddr_t extblocks;
6851	int flags;
6852{
6853	struct vnode *vp;
6854	struct fs *fs;
6855	ufs_lbn_t lbn;
6856	off_t end, extend;
6857
6858	vp = ITOV(ip);
6859	fs = ip->i_fs;
6860	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6861	if ((flags & IO_EXT) != 0)
6862		vn_pages_remove(vp, extend, 0);
6863	if ((flags & IO_NORMAL) == 0)
6864		return;
6865	BO_LOCK(&vp->v_bufobj);
6866	drain_output(vp);
6867	BO_UNLOCK(&vp->v_bufobj);
6868	/*
6869	 * The vnode pager eliminates file pages we eliminate indirects
6870	 * below.
6871	 */
6872	vnode_pager_setsize(vp, length);
6873	/*
6874	 * Calculate the end based on the last indirect we want to keep.  If
6875	 * the block extends into indirects we can just use the negative of
6876	 * its lbn.  Doubles and triples exist at lower numbers so we must
6877	 * be careful not to remove those, if they exist.  double and triple
6878	 * indirect lbns do not overlap with others so it is not important
6879	 * to verify how many levels are required.
6880	 */
6881	lbn = lblkno(fs, length);
6882	if (lbn >= NDADDR) {
6883		/* Calculate the virtual lbn of the triple indirect. */
6884		lbn = -lbn - (NIADDR - 1);
6885		end = OFF_TO_IDX(lblktosize(fs, lbn));
6886	} else
6887		end = extend;
6888	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6889}
6890
6891/*
6892 * See if the buf bp is in the range eliminated by truncation.
6893 */
6894static int
6895trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6896	struct buf *bp;
6897	int *blkoffp;
6898	ufs_lbn_t lastlbn;
6899	int lastoff;
6900	int flags;
6901{
6902	ufs_lbn_t lbn;
6903
6904	*blkoffp = 0;
6905	/* Only match ext/normal blocks as appropriate. */
6906	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6907	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6908		return (0);
6909	/* ALTDATA is always a full truncation. */
6910	if ((bp->b_xflags & BX_ALTDATA) != 0)
6911		return (1);
6912	/* -1 is full truncation. */
6913	if (lastlbn == -1)
6914		return (1);
6915	/*
6916	 * If this is a partial truncate we only want those
6917	 * blocks and indirect blocks that cover the range
6918	 * we're after.
6919	 */
6920	lbn = bp->b_lblkno;
6921	if (lbn < 0)
6922		lbn = -(lbn + lbn_level(lbn));
6923	if (lbn < lastlbn)
6924		return (0);
6925	/* Here we only truncate lblkno if it's partial. */
6926	if (lbn == lastlbn) {
6927		if (lastoff == 0)
6928			return (0);
6929		*blkoffp = lastoff;
6930	}
6931	return (1);
6932}
6933
6934/*
6935 * Eliminate any dependencies that exist in memory beyond lblkno:off
6936 */
6937static void
6938trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6939	struct inode *ip;
6940	struct freeblks *freeblks;
6941	ufs_lbn_t lastlbn;
6942	int lastoff;
6943	int flags;
6944{
6945	struct bufobj *bo;
6946	struct vnode *vp;
6947	struct buf *bp;
6948	struct fs *fs;
6949	int blkoff;
6950
6951	/*
6952	 * We must wait for any I/O in progress to finish so that
6953	 * all potential buffers on the dirty list will be visible.
6954	 * Once they are all there, walk the list and get rid of
6955	 * any dependencies.
6956	 */
6957	fs = ip->i_fs;
6958	vp = ITOV(ip);
6959	bo = &vp->v_bufobj;
6960	BO_LOCK(bo);
6961	drain_output(vp);
6962	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6963		bp->b_vflags &= ~BV_SCANNED;
6964restart:
6965	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6966		if (bp->b_vflags & BV_SCANNED)
6967			continue;
6968		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6969			bp->b_vflags |= BV_SCANNED;
6970			continue;
6971		}
6972		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
6973		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
6974			goto restart;
6975		BO_UNLOCK(bo);
6976		if (deallocate_dependencies(bp, freeblks, blkoff))
6977			bqrelse(bp);
6978		else
6979			brelse(bp);
6980		BO_LOCK(bo);
6981		goto restart;
6982	}
6983	/*
6984	 * Now do the work of vtruncbuf while also matching indirect blocks.
6985	 */
6986	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6987		bp->b_vflags &= ~BV_SCANNED;
6988cleanrestart:
6989	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6990		if (bp->b_vflags & BV_SCANNED)
6991			continue;
6992		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6993			bp->b_vflags |= BV_SCANNED;
6994			continue;
6995		}
6996		if (BUF_LOCK(bp,
6997		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6998		    BO_LOCKPTR(bo)) == ENOLCK) {
6999			BO_LOCK(bo);
7000			goto cleanrestart;
7001		}
7002		bp->b_vflags |= BV_SCANNED;
7003		bremfree(bp);
7004		if (blkoff != 0) {
7005			allocbuf(bp, blkoff);
7006			bqrelse(bp);
7007		} else {
7008			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7009			brelse(bp);
7010		}
7011		BO_LOCK(bo);
7012		goto cleanrestart;
7013	}
7014	drain_output(vp);
7015	BO_UNLOCK(bo);
7016}
7017
7018static int
7019cancel_pagedep(pagedep, freeblks, blkoff)
7020	struct pagedep *pagedep;
7021	struct freeblks *freeblks;
7022	int blkoff;
7023{
7024	struct jremref *jremref;
7025	struct jmvref *jmvref;
7026	struct dirrem *dirrem, *tmp;
7027	int i;
7028
7029	/*
7030	 * Copy any directory remove dependencies to the list
7031	 * to be processed after the freeblks proceeds.  If
7032	 * directory entry never made it to disk they
7033	 * can be dumped directly onto the work list.
7034	 */
7035	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7036		/* Skip this directory removal if it is intended to remain. */
7037		if (dirrem->dm_offset < blkoff)
7038			continue;
7039		/*
7040		 * If there are any dirrems we wait for the journal write
7041		 * to complete and then restart the buf scan as the lock
7042		 * has been dropped.
7043		 */
7044		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7045			jwait(&jremref->jr_list, MNT_WAIT);
7046			return (ERESTART);
7047		}
7048		LIST_REMOVE(dirrem, dm_next);
7049		dirrem->dm_dirinum = pagedep->pd_ino;
7050		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7051	}
7052	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7053		jwait(&jmvref->jm_list, MNT_WAIT);
7054		return (ERESTART);
7055	}
7056	/*
7057	 * When we're partially truncating a pagedep we just want to flush
7058	 * journal entries and return.  There can not be any adds in the
7059	 * truncated portion of the directory and newblk must remain if
7060	 * part of the block remains.
7061	 */
7062	if (blkoff != 0) {
7063		struct diradd *dap;
7064
7065		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7066			if (dap->da_offset > blkoff)
7067				panic("cancel_pagedep: diradd %p off %d > %d",
7068				    dap, dap->da_offset, blkoff);
7069		for (i = 0; i < DAHASHSZ; i++)
7070			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7071				if (dap->da_offset > blkoff)
7072					panic("cancel_pagedep: diradd %p off %d > %d",
7073					    dap, dap->da_offset, blkoff);
7074		return (0);
7075	}
7076	/*
7077	 * There should be no directory add dependencies present
7078	 * as the directory could not be truncated until all
7079	 * children were removed.
7080	 */
7081	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7082	    ("deallocate_dependencies: pendinghd != NULL"));
7083	for (i = 0; i < DAHASHSZ; i++)
7084		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7085		    ("deallocate_dependencies: diraddhd != NULL"));
7086	if ((pagedep->pd_state & NEWBLOCK) != 0)
7087		free_newdirblk(pagedep->pd_newdirblk);
7088	if (free_pagedep(pagedep) == 0)
7089		panic("Failed to free pagedep %p", pagedep);
7090	return (0);
7091}
7092
7093/*
7094 * Reclaim any dependency structures from a buffer that is about to
7095 * be reallocated to a new vnode. The buffer must be locked, thus,
7096 * no I/O completion operations can occur while we are manipulating
7097 * its associated dependencies. The mutex is held so that other I/O's
7098 * associated with related dependencies do not occur.
7099 */
7100static int
7101deallocate_dependencies(bp, freeblks, off)
7102	struct buf *bp;
7103	struct freeblks *freeblks;
7104	int off;
7105{
7106	struct indirdep *indirdep;
7107	struct pagedep *pagedep;
7108	struct allocdirect *adp;
7109	struct worklist *wk, *wkn;
7110	struct ufsmount *ump;
7111
7112	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7113		goto done;
7114	ump = VFSTOUFS(wk->wk_mp);
7115	ACQUIRE_LOCK(ump);
7116	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7117		switch (wk->wk_type) {
7118		case D_INDIRDEP:
7119			indirdep = WK_INDIRDEP(wk);
7120			if (bp->b_lblkno >= 0 ||
7121			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7122				panic("deallocate_dependencies: not indir");
7123			cancel_indirdep(indirdep, bp, freeblks);
7124			continue;
7125
7126		case D_PAGEDEP:
7127			pagedep = WK_PAGEDEP(wk);
7128			if (cancel_pagedep(pagedep, freeblks, off)) {
7129				FREE_LOCK(ump);
7130				return (ERESTART);
7131			}
7132			continue;
7133
7134		case D_ALLOCINDIR:
7135			/*
7136			 * Simply remove the allocindir, we'll find it via
7137			 * the indirdep where we can clear pointers if
7138			 * needed.
7139			 */
7140			WORKLIST_REMOVE(wk);
7141			continue;
7142
7143		case D_FREEWORK:
7144			/*
7145			 * A truncation is waiting for the zero'd pointers
7146			 * to be written.  It can be freed when the freeblks
7147			 * is journaled.
7148			 */
7149			WORKLIST_REMOVE(wk);
7150			wk->wk_state |= ONDEPLIST;
7151			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7152			break;
7153
7154		case D_ALLOCDIRECT:
7155			adp = WK_ALLOCDIRECT(wk);
7156			if (off != 0)
7157				continue;
7158			/* FALLTHROUGH */
7159		default:
7160			panic("deallocate_dependencies: Unexpected type %s",
7161			    TYPENAME(wk->wk_type));
7162			/* NOTREACHED */
7163		}
7164	}
7165	FREE_LOCK(ump);
7166done:
7167	/*
7168	 * Don't throw away this buf, we were partially truncating and
7169	 * some deps may always remain.
7170	 */
7171	if (off) {
7172		allocbuf(bp, off);
7173		bp->b_vflags |= BV_SCANNED;
7174		return (EBUSY);
7175	}
7176	bp->b_flags |= B_INVAL | B_NOCACHE;
7177
7178	return (0);
7179}
7180
7181/*
7182 * An allocdirect is being canceled due to a truncate.  We must make sure
7183 * the journal entry is released in concert with the blkfree that releases
7184 * the storage.  Completed journal entries must not be released until the
7185 * space is no longer pointed to by the inode or in the bitmap.
7186 */
7187static void
7188cancel_allocdirect(adphead, adp, freeblks)
7189	struct allocdirectlst *adphead;
7190	struct allocdirect *adp;
7191	struct freeblks *freeblks;
7192{
7193	struct freework *freework;
7194	struct newblk *newblk;
7195	struct worklist *wk;
7196
7197	TAILQ_REMOVE(adphead, adp, ad_next);
7198	newblk = (struct newblk *)adp;
7199	freework = NULL;
7200	/*
7201	 * Find the correct freework structure.
7202	 */
7203	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7204		if (wk->wk_type != D_FREEWORK)
7205			continue;
7206		freework = WK_FREEWORK(wk);
7207		if (freework->fw_blkno == newblk->nb_newblkno)
7208			break;
7209	}
7210	if (freework == NULL)
7211		panic("cancel_allocdirect: Freework not found");
7212	/*
7213	 * If a newblk exists at all we still have the journal entry that
7214	 * initiated the allocation so we do not need to journal the free.
7215	 */
7216	cancel_jfreeblk(freeblks, freework->fw_blkno);
7217	/*
7218	 * If the journal hasn't been written the jnewblk must be passed
7219	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7220	 * this by linking the journal dependency into the freework to be
7221	 * freed when freework_freeblock() is called.  If the journal has
7222	 * been written we can simply reclaim the journal space when the
7223	 * freeblks work is complete.
7224	 */
7225	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7226	    &freeblks->fb_jwork);
7227	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7228}
7229
7230
7231/*
7232 * Cancel a new block allocation.  May be an indirect or direct block.  We
7233 * remove it from various lists and return any journal record that needs to
7234 * be resolved by the caller.
7235 *
7236 * A special consideration is made for indirects which were never pointed
7237 * at on disk and will never be found once this block is released.
7238 */
7239static struct jnewblk *
7240cancel_newblk(newblk, wk, wkhd)
7241	struct newblk *newblk;
7242	struct worklist *wk;
7243	struct workhead *wkhd;
7244{
7245	struct jnewblk *jnewblk;
7246
7247	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7248
7249	newblk->nb_state |= GOINGAWAY;
7250	/*
7251	 * Previously we traversed the completedhd on each indirdep
7252	 * attached to this newblk to cancel them and gather journal
7253	 * work.  Since we need only the oldest journal segment and
7254	 * the lowest point on the tree will always have the oldest
7255	 * journal segment we are free to release the segments
7256	 * of any subordinates and may leave the indirdep list to
7257	 * indirdep_complete() when this newblk is freed.
7258	 */
7259	if (newblk->nb_state & ONDEPLIST) {
7260		newblk->nb_state &= ~ONDEPLIST;
7261		LIST_REMOVE(newblk, nb_deps);
7262	}
7263	if (newblk->nb_state & ONWORKLIST)
7264		WORKLIST_REMOVE(&newblk->nb_list);
7265	/*
7266	 * If the journal entry hasn't been written we save a pointer to
7267	 * the dependency that frees it until it is written or the
7268	 * superseding operation completes.
7269	 */
7270	jnewblk = newblk->nb_jnewblk;
7271	if (jnewblk != NULL && wk != NULL) {
7272		newblk->nb_jnewblk = NULL;
7273		jnewblk->jn_dep = wk;
7274	}
7275	if (!LIST_EMPTY(&newblk->nb_jwork))
7276		jwork_move(wkhd, &newblk->nb_jwork);
7277	/*
7278	 * When truncating we must free the newdirblk early to remove
7279	 * the pagedep from the hash before returning.
7280	 */
7281	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7282		free_newdirblk(WK_NEWDIRBLK(wk));
7283	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7284		panic("cancel_newblk: extra newdirblk");
7285
7286	return (jnewblk);
7287}
7288
7289/*
7290 * Schedule the freefrag associated with a newblk to be released once
7291 * the pointers are written and the previous block is no longer needed.
7292 */
7293static void
7294newblk_freefrag(newblk)
7295	struct newblk *newblk;
7296{
7297	struct freefrag *freefrag;
7298
7299	if (newblk->nb_freefrag == NULL)
7300		return;
7301	freefrag = newblk->nb_freefrag;
7302	newblk->nb_freefrag = NULL;
7303	freefrag->ff_state |= COMPLETE;
7304	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7305		add_to_worklist(&freefrag->ff_list, 0);
7306}
7307
7308/*
7309 * Free a newblk. Generate a new freefrag work request if appropriate.
7310 * This must be called after the inode pointer and any direct block pointers
7311 * are valid or fully removed via truncate or frag extension.
7312 */
7313static void
7314free_newblk(newblk)
7315	struct newblk *newblk;
7316{
7317	struct indirdep *indirdep;
7318	struct worklist *wk;
7319
7320	KASSERT(newblk->nb_jnewblk == NULL,
7321	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7322	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7323	    ("free_newblk: unclaimed newblk"));
7324	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7325	newblk_freefrag(newblk);
7326	if (newblk->nb_state & ONDEPLIST)
7327		LIST_REMOVE(newblk, nb_deps);
7328	if (newblk->nb_state & ONWORKLIST)
7329		WORKLIST_REMOVE(&newblk->nb_list);
7330	LIST_REMOVE(newblk, nb_hash);
7331	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7332		free_newdirblk(WK_NEWDIRBLK(wk));
7333	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7334		panic("free_newblk: extra newdirblk");
7335	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7336		indirdep_complete(indirdep);
7337	handle_jwork(&newblk->nb_jwork);
7338	WORKITEM_FREE(newblk, D_NEWBLK);
7339}
7340
7341/*
7342 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7343 * This routine must be called with splbio interrupts blocked.
7344 */
7345static void
7346free_newdirblk(newdirblk)
7347	struct newdirblk *newdirblk;
7348{
7349	struct pagedep *pagedep;
7350	struct diradd *dap;
7351	struct worklist *wk;
7352
7353	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7354	WORKLIST_REMOVE(&newdirblk->db_list);
7355	/*
7356	 * If the pagedep is still linked onto the directory buffer
7357	 * dependency chain, then some of the entries on the
7358	 * pd_pendinghd list may not be committed to disk yet. In
7359	 * this case, we will simply clear the NEWBLOCK flag and
7360	 * let the pd_pendinghd list be processed when the pagedep
7361	 * is next written. If the pagedep is no longer on the buffer
7362	 * dependency chain, then all the entries on the pd_pending
7363	 * list are committed to disk and we can free them here.
7364	 */
7365	pagedep = newdirblk->db_pagedep;
7366	pagedep->pd_state &= ~NEWBLOCK;
7367	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7368		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7369			free_diradd(dap, NULL);
7370		/*
7371		 * If no dependencies remain, the pagedep will be freed.
7372		 */
7373		free_pagedep(pagedep);
7374	}
7375	/* Should only ever be one item in the list. */
7376	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7377		WORKLIST_REMOVE(wk);
7378		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7379	}
7380	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7381}
7382
7383/*
7384 * Prepare an inode to be freed. The actual free operation is not
7385 * done until the zero'ed inode has been written to disk.
7386 */
7387void
7388softdep_freefile(pvp, ino, mode)
7389	struct vnode *pvp;
7390	ino_t ino;
7391	int mode;
7392{
7393	struct inode *ip = VTOI(pvp);
7394	struct inodedep *inodedep;
7395	struct freefile *freefile;
7396	struct freeblks *freeblks;
7397	struct ufsmount *ump;
7398
7399	ump = ip->i_ump;
7400	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7401	    ("softdep_freefile called on non-softdep filesystem"));
7402	/*
7403	 * This sets up the inode de-allocation dependency.
7404	 */
7405	freefile = malloc(sizeof(struct freefile),
7406		M_FREEFILE, M_SOFTDEP_FLAGS);
7407	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7408	freefile->fx_mode = mode;
7409	freefile->fx_oldinum = ino;
7410	freefile->fx_devvp = ip->i_devvp;
7411	LIST_INIT(&freefile->fx_jwork);
7412	UFS_LOCK(ump);
7413	ip->i_fs->fs_pendinginodes += 1;
7414	UFS_UNLOCK(ump);
7415
7416	/*
7417	 * If the inodedep does not exist, then the zero'ed inode has
7418	 * been written to disk. If the allocated inode has never been
7419	 * written to disk, then the on-disk inode is zero'ed. In either
7420	 * case we can free the file immediately.  If the journal was
7421	 * canceled before being written the inode will never make it to
7422	 * disk and we must send the canceled journal entrys to
7423	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7424	 * Any blocks waiting on the inode to write can be safely freed
7425	 * here as it will never been written.
7426	 */
7427	ACQUIRE_LOCK(ump);
7428	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7429	if (inodedep) {
7430		/*
7431		 * Clear out freeblks that no longer need to reference
7432		 * this inode.
7433		 */
7434		while ((freeblks =
7435		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7436			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7437			    fb_next);
7438			freeblks->fb_state &= ~ONDEPLIST;
7439		}
7440		/*
7441		 * Remove this inode from the unlinked list.
7442		 */
7443		if (inodedep->id_state & UNLINKED) {
7444			/*
7445			 * Save the journal work to be freed with the bitmap
7446			 * before we clear UNLINKED.  Otherwise it can be lost
7447			 * if the inode block is written.
7448			 */
7449			handle_bufwait(inodedep, &freefile->fx_jwork);
7450			clear_unlinked_inodedep(inodedep);
7451			/*
7452			 * Re-acquire inodedep as we've dropped the
7453			 * soft updates lock in clear_unlinked_inodedep().
7454			 */
7455			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7456		}
7457	}
7458	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7459		FREE_LOCK(ump);
7460		handle_workitem_freefile(freefile);
7461		return;
7462	}
7463	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7464		inodedep->id_state |= GOINGAWAY;
7465	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7466	FREE_LOCK(ump);
7467	if (ip->i_number == ino)
7468		ip->i_flag |= IN_MODIFIED;
7469}
7470
7471/*
7472 * Check to see if an inode has never been written to disk. If
7473 * so free the inodedep and return success, otherwise return failure.
7474 * This routine must be called with splbio interrupts blocked.
7475 *
7476 * If we still have a bitmap dependency, then the inode has never
7477 * been written to disk. Drop the dependency as it is no longer
7478 * necessary since the inode is being deallocated. We set the
7479 * ALLCOMPLETE flags since the bitmap now properly shows that the
7480 * inode is not allocated. Even if the inode is actively being
7481 * written, it has been rolled back to its zero'ed state, so we
7482 * are ensured that a zero inode is what is on the disk. For short
7483 * lived files, this change will usually result in removing all the
7484 * dependencies from the inode so that it can be freed immediately.
7485 */
7486static int
7487check_inode_unwritten(inodedep)
7488	struct inodedep *inodedep;
7489{
7490
7491	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7492
7493	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7494	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7495	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7496	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7497	    !LIST_EMPTY(&inodedep->id_inowait) ||
7498	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7499	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7500	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7501	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7502	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7503	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7504	    inodedep->id_mkdiradd != NULL ||
7505	    inodedep->id_nlinkdelta != 0)
7506		return (0);
7507	/*
7508	 * Another process might be in initiate_write_inodeblock_ufs[12]
7509	 * trying to allocate memory without holding "Softdep Lock".
7510	 */
7511	if ((inodedep->id_state & IOSTARTED) != 0 &&
7512	    inodedep->id_savedino1 == NULL)
7513		return (0);
7514
7515	if (inodedep->id_state & ONDEPLIST)
7516		LIST_REMOVE(inodedep, id_deps);
7517	inodedep->id_state &= ~ONDEPLIST;
7518	inodedep->id_state |= ALLCOMPLETE;
7519	inodedep->id_bmsafemap = NULL;
7520	if (inodedep->id_state & ONWORKLIST)
7521		WORKLIST_REMOVE(&inodedep->id_list);
7522	if (inodedep->id_savedino1 != NULL) {
7523		free(inodedep->id_savedino1, M_SAVEDINO);
7524		inodedep->id_savedino1 = NULL;
7525	}
7526	if (free_inodedep(inodedep) == 0)
7527		panic("check_inode_unwritten: busy inode");
7528	return (1);
7529}
7530
7531/*
7532 * Try to free an inodedep structure. Return 1 if it could be freed.
7533 */
7534static int
7535free_inodedep(inodedep)
7536	struct inodedep *inodedep;
7537{
7538
7539	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7540	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7541	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7542	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7543	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7544	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7545	    !LIST_EMPTY(&inodedep->id_inowait) ||
7546	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7547	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7548	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7549	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7550	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7551	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7552	    inodedep->id_mkdiradd != NULL ||
7553	    inodedep->id_nlinkdelta != 0 ||
7554	    inodedep->id_savedino1 != NULL)
7555		return (0);
7556	if (inodedep->id_state & ONDEPLIST)
7557		LIST_REMOVE(inodedep, id_deps);
7558	LIST_REMOVE(inodedep, id_hash);
7559	WORKITEM_FREE(inodedep, D_INODEDEP);
7560	return (1);
7561}
7562
7563/*
7564 * Free the block referenced by a freework structure.  The parent freeblks
7565 * structure is released and completed when the final cg bitmap reaches
7566 * the disk.  This routine may be freeing a jnewblk which never made it to
7567 * disk in which case we do not have to wait as the operation is undone
7568 * in memory immediately.
7569 */
7570static void
7571freework_freeblock(freework)
7572	struct freework *freework;
7573{
7574	struct freeblks *freeblks;
7575	struct jnewblk *jnewblk;
7576	struct ufsmount *ump;
7577	struct workhead wkhd;
7578	struct fs *fs;
7579	int bsize;
7580	int needj;
7581
7582	ump = VFSTOUFS(freework->fw_list.wk_mp);
7583	LOCK_OWNED(ump);
7584	/*
7585	 * Handle partial truncate separately.
7586	 */
7587	if (freework->fw_indir) {
7588		complete_trunc_indir(freework);
7589		return;
7590	}
7591	freeblks = freework->fw_freeblks;
7592	fs = ump->um_fs;
7593	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7594	bsize = lfragtosize(fs, freework->fw_frags);
7595	LIST_INIT(&wkhd);
7596	/*
7597	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7598	 * on the indirblk hashtable and prevents premature freeing.
7599	 */
7600	freework->fw_state |= DEPCOMPLETE;
7601	/*
7602	 * SUJ needs to wait for the segment referencing freed indirect
7603	 * blocks to expire so that we know the checker will not confuse
7604	 * a re-allocated indirect block with its old contents.
7605	 */
7606	if (needj && freework->fw_lbn <= -NDADDR)
7607		indirblk_insert(freework);
7608	/*
7609	 * If we are canceling an existing jnewblk pass it to the free
7610	 * routine, otherwise pass the freeblk which will ultimately
7611	 * release the freeblks.  If we're not journaling, we can just
7612	 * free the freeblks immediately.
7613	 */
7614	jnewblk = freework->fw_jnewblk;
7615	if (jnewblk != NULL) {
7616		cancel_jnewblk(jnewblk, &wkhd);
7617		needj = 0;
7618	} else if (needj) {
7619		freework->fw_state |= DELAYEDFREE;
7620		freeblks->fb_cgwait++;
7621		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7622	}
7623	FREE_LOCK(ump);
7624	freeblks_free(ump, freeblks, btodb(bsize));
7625	CTR4(KTR_SUJ,
7626	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7627	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7628	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7629	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7630	ACQUIRE_LOCK(ump);
7631	/*
7632	 * The jnewblk will be discarded and the bits in the map never
7633	 * made it to disk.  We can immediately free the freeblk.
7634	 */
7635	if (needj == 0)
7636		handle_written_freework(freework);
7637}
7638
7639/*
7640 * We enqueue freework items that need processing back on the freeblks and
7641 * add the freeblks to the worklist.  This makes it easier to find all work
7642 * required to flush a truncation in process_truncates().
7643 */
7644static void
7645freework_enqueue(freework)
7646	struct freework *freework;
7647{
7648	struct freeblks *freeblks;
7649
7650	freeblks = freework->fw_freeblks;
7651	if ((freework->fw_state & INPROGRESS) == 0)
7652		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7653	if ((freeblks->fb_state &
7654	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7655	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7656		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7657}
7658
7659/*
7660 * Start, continue, or finish the process of freeing an indirect block tree.
7661 * The free operation may be paused at any point with fw_off containing the
7662 * offset to restart from.  This enables us to implement some flow control
7663 * for large truncates which may fan out and generate a huge number of
7664 * dependencies.
7665 */
7666static void
7667handle_workitem_indirblk(freework)
7668	struct freework *freework;
7669{
7670	struct freeblks *freeblks;
7671	struct ufsmount *ump;
7672	struct fs *fs;
7673
7674	freeblks = freework->fw_freeblks;
7675	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7676	fs = ump->um_fs;
7677	if (freework->fw_state & DEPCOMPLETE) {
7678		handle_written_freework(freework);
7679		return;
7680	}
7681	if (freework->fw_off == NINDIR(fs)) {
7682		freework_freeblock(freework);
7683		return;
7684	}
7685	freework->fw_state |= INPROGRESS;
7686	FREE_LOCK(ump);
7687	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7688	    freework->fw_lbn);
7689	ACQUIRE_LOCK(ump);
7690}
7691
7692/*
7693 * Called when a freework structure attached to a cg buf is written.  The
7694 * ref on either the parent or the freeblks structure is released and
7695 * the freeblks is added back to the worklist if there is more work to do.
7696 */
7697static void
7698handle_written_freework(freework)
7699	struct freework *freework;
7700{
7701	struct freeblks *freeblks;
7702	struct freework *parent;
7703
7704	freeblks = freework->fw_freeblks;
7705	parent = freework->fw_parent;
7706	if (freework->fw_state & DELAYEDFREE)
7707		freeblks->fb_cgwait--;
7708	freework->fw_state |= COMPLETE;
7709	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7710		WORKITEM_FREE(freework, D_FREEWORK);
7711	if (parent) {
7712		if (--parent->fw_ref == 0)
7713			freework_enqueue(parent);
7714		return;
7715	}
7716	if (--freeblks->fb_ref != 0)
7717		return;
7718	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7719	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7720		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7721}
7722
7723/*
7724 * This workitem routine performs the block de-allocation.
7725 * The workitem is added to the pending list after the updated
7726 * inode block has been written to disk.  As mentioned above,
7727 * checks regarding the number of blocks de-allocated (compared
7728 * to the number of blocks allocated for the file) are also
7729 * performed in this function.
7730 */
7731static int
7732handle_workitem_freeblocks(freeblks, flags)
7733	struct freeblks *freeblks;
7734	int flags;
7735{
7736	struct freework *freework;
7737	struct newblk *newblk;
7738	struct allocindir *aip;
7739	struct ufsmount *ump;
7740	struct worklist *wk;
7741
7742	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7743	    ("handle_workitem_freeblocks: Journal entries not written."));
7744	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7745	ACQUIRE_LOCK(ump);
7746	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7747		WORKLIST_REMOVE(wk);
7748		switch (wk->wk_type) {
7749		case D_DIRREM:
7750			wk->wk_state |= COMPLETE;
7751			add_to_worklist(wk, 0);
7752			continue;
7753
7754		case D_ALLOCDIRECT:
7755			free_newblk(WK_NEWBLK(wk));
7756			continue;
7757
7758		case D_ALLOCINDIR:
7759			aip = WK_ALLOCINDIR(wk);
7760			freework = NULL;
7761			if (aip->ai_state & DELAYEDFREE) {
7762				FREE_LOCK(ump);
7763				freework = newfreework(ump, freeblks, NULL,
7764				    aip->ai_lbn, aip->ai_newblkno,
7765				    ump->um_fs->fs_frag, 0, 0);
7766				ACQUIRE_LOCK(ump);
7767			}
7768			newblk = WK_NEWBLK(wk);
7769			if (newblk->nb_jnewblk) {
7770				freework->fw_jnewblk = newblk->nb_jnewblk;
7771				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7772				newblk->nb_jnewblk = NULL;
7773			}
7774			free_newblk(newblk);
7775			continue;
7776
7777		case D_FREEWORK:
7778			freework = WK_FREEWORK(wk);
7779			if (freework->fw_lbn <= -NDADDR)
7780				handle_workitem_indirblk(freework);
7781			else
7782				freework_freeblock(freework);
7783			continue;
7784		default:
7785			panic("handle_workitem_freeblocks: Unknown type %s",
7786			    TYPENAME(wk->wk_type));
7787		}
7788	}
7789	if (freeblks->fb_ref != 0) {
7790		freeblks->fb_state &= ~INPROGRESS;
7791		wake_worklist(&freeblks->fb_list);
7792		freeblks = NULL;
7793	}
7794	FREE_LOCK(ump);
7795	if (freeblks)
7796		return handle_complete_freeblocks(freeblks, flags);
7797	return (0);
7798}
7799
7800/*
7801 * Handle completion of block free via truncate.  This allows fs_pending
7802 * to track the actual free block count more closely than if we only updated
7803 * it at the end.  We must be careful to handle cases where the block count
7804 * on free was incorrect.
7805 */
7806static void
7807freeblks_free(ump, freeblks, blocks)
7808	struct ufsmount *ump;
7809	struct freeblks *freeblks;
7810	int blocks;
7811{
7812	struct fs *fs;
7813	ufs2_daddr_t remain;
7814
7815	UFS_LOCK(ump);
7816	remain = -freeblks->fb_chkcnt;
7817	freeblks->fb_chkcnt += blocks;
7818	if (remain > 0) {
7819		if (remain < blocks)
7820			blocks = remain;
7821		fs = ump->um_fs;
7822		fs->fs_pendingblocks -= blocks;
7823	}
7824	UFS_UNLOCK(ump);
7825}
7826
7827/*
7828 * Once all of the freework workitems are complete we can retire the
7829 * freeblocks dependency and any journal work awaiting completion.  This
7830 * can not be called until all other dependencies are stable on disk.
7831 */
7832static int
7833handle_complete_freeblocks(freeblks, flags)
7834	struct freeblks *freeblks;
7835	int flags;
7836{
7837	struct inodedep *inodedep;
7838	struct inode *ip;
7839	struct vnode *vp;
7840	struct fs *fs;
7841	struct ufsmount *ump;
7842	ufs2_daddr_t spare;
7843
7844	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7845	fs = ump->um_fs;
7846	flags = LK_EXCLUSIVE | flags;
7847	spare = freeblks->fb_chkcnt;
7848
7849	/*
7850	 * If we did not release the expected number of blocks we may have
7851	 * to adjust the inode block count here.  Only do so if it wasn't
7852	 * a truncation to zero and the modrev still matches.
7853	 */
7854	if (spare && freeblks->fb_len != 0) {
7855		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7856		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7857			return (EBUSY);
7858		ip = VTOI(vp);
7859		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7860			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7861			ip->i_flag |= IN_CHANGE;
7862			/*
7863			 * We must wait so this happens before the
7864			 * journal is reclaimed.
7865			 */
7866			ffs_update(vp, 1);
7867		}
7868		vput(vp);
7869	}
7870	if (spare < 0) {
7871		UFS_LOCK(ump);
7872		fs->fs_pendingblocks += spare;
7873		UFS_UNLOCK(ump);
7874	}
7875#ifdef QUOTA
7876	/* Handle spare. */
7877	if (spare)
7878		quotaadj(freeblks->fb_quota, ump, -spare);
7879	quotarele(freeblks->fb_quota);
7880#endif
7881	ACQUIRE_LOCK(ump);
7882	if (freeblks->fb_state & ONDEPLIST) {
7883		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7884		    0, &inodedep);
7885		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7886		freeblks->fb_state &= ~ONDEPLIST;
7887		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7888			free_inodedep(inodedep);
7889	}
7890	/*
7891	 * All of the freeblock deps must be complete prior to this call
7892	 * so it's now safe to complete earlier outstanding journal entries.
7893	 */
7894	handle_jwork(&freeblks->fb_jwork);
7895	WORKITEM_FREE(freeblks, D_FREEBLKS);
7896	FREE_LOCK(ump);
7897	return (0);
7898}
7899
7900/*
7901 * Release blocks associated with the freeblks and stored in the indirect
7902 * block dbn. If level is greater than SINGLE, the block is an indirect block
7903 * and recursive calls to indirtrunc must be used to cleanse other indirect
7904 * blocks.
7905 *
7906 * This handles partial and complete truncation of blocks.  Partial is noted
7907 * with goingaway == 0.  In this case the freework is completed after the
7908 * zero'd indirects are written to disk.  For full truncation the freework
7909 * is completed after the block is freed.
7910 */
7911static void
7912indir_trunc(freework, dbn, lbn)
7913	struct freework *freework;
7914	ufs2_daddr_t dbn;
7915	ufs_lbn_t lbn;
7916{
7917	struct freework *nfreework;
7918	struct workhead wkhd;
7919	struct freeblks *freeblks;
7920	struct buf *bp;
7921	struct fs *fs;
7922	struct indirdep *indirdep;
7923	struct ufsmount *ump;
7924	ufs1_daddr_t *bap1 = 0;
7925	ufs2_daddr_t nb, nnb, *bap2 = 0;
7926	ufs_lbn_t lbnadd, nlbn;
7927	int i, nblocks, ufs1fmt;
7928	int freedblocks;
7929	int goingaway;
7930	int freedeps;
7931	int needj;
7932	int level;
7933	int cnt;
7934
7935	freeblks = freework->fw_freeblks;
7936	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7937	fs = ump->um_fs;
7938	/*
7939	 * Get buffer of block pointers to be freed.  There are three cases:
7940	 *
7941	 * 1) Partial truncate caches the indirdep pointer in the freework
7942	 *    which provides us a back copy to the save bp which holds the
7943	 *    pointers we want to clear.  When this completes the zero
7944	 *    pointers are written to the real copy.
7945	 * 2) The indirect is being completely truncated, cancel_indirdep()
7946	 *    eliminated the real copy and placed the indirdep on the saved
7947	 *    copy.  The indirdep and buf are discarded when this completes.
7948	 * 3) The indirect was not in memory, we read a copy off of the disk
7949	 *    using the devvp and drop and invalidate the buffer when we're
7950	 *    done.
7951	 */
7952	goingaway = 1;
7953	indirdep = NULL;
7954	if (freework->fw_indir != NULL) {
7955		goingaway = 0;
7956		indirdep = freework->fw_indir;
7957		bp = indirdep->ir_savebp;
7958		if (bp == NULL || bp->b_blkno != dbn)
7959			panic("indir_trunc: Bad saved buf %p blkno %jd",
7960			    bp, (intmax_t)dbn);
7961	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7962		/*
7963		 * The lock prevents the buf dep list from changing and
7964	 	 * indirects on devvp should only ever have one dependency.
7965		 */
7966		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7967		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7968			panic("indir_trunc: Bad indirdep %p from buf %p",
7969			    indirdep, bp);
7970	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7971	    NOCRED, &bp) != 0) {
7972		brelse(bp);
7973		return;
7974	}
7975	ACQUIRE_LOCK(ump);
7976	/* Protects against a race with complete_trunc_indir(). */
7977	freework->fw_state &= ~INPROGRESS;
7978	/*
7979	 * If we have an indirdep we need to enforce the truncation order
7980	 * and discard it when it is complete.
7981	 */
7982	if (indirdep) {
7983		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7984		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7985			/*
7986			 * Add the complete truncate to the list on the
7987			 * indirdep to enforce in-order processing.
7988			 */
7989			if (freework->fw_indir == NULL)
7990				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7991				    freework, fw_next);
7992			FREE_LOCK(ump);
7993			return;
7994		}
7995		/*
7996		 * If we're goingaway, free the indirdep.  Otherwise it will
7997		 * linger until the write completes.
7998		 */
7999		if (goingaway) {
8000			free_indirdep(indirdep);
8001			ump->softdep_numindirdeps -= 1;
8002		}
8003	}
8004	FREE_LOCK(ump);
8005	/* Initialize pointers depending on block size. */
8006	if (ump->um_fstype == UFS1) {
8007		bap1 = (ufs1_daddr_t *)bp->b_data;
8008		nb = bap1[freework->fw_off];
8009		ufs1fmt = 1;
8010	} else {
8011		bap2 = (ufs2_daddr_t *)bp->b_data;
8012		nb = bap2[freework->fw_off];
8013		ufs1fmt = 0;
8014	}
8015	level = lbn_level(lbn);
8016	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8017	lbnadd = lbn_offset(fs, level);
8018	nblocks = btodb(fs->fs_bsize);
8019	nfreework = freework;
8020	freedeps = 0;
8021	cnt = 0;
8022	/*
8023	 * Reclaim blocks.  Traverses into nested indirect levels and
8024	 * arranges for the current level to be freed when subordinates
8025	 * are free when journaling.
8026	 */
8027	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8028		if (i != NINDIR(fs) - 1) {
8029			if (ufs1fmt)
8030				nnb = bap1[i+1];
8031			else
8032				nnb = bap2[i+1];
8033		} else
8034			nnb = 0;
8035		if (nb == 0)
8036			continue;
8037		cnt++;
8038		if (level != 0) {
8039			nlbn = (lbn + 1) - (i * lbnadd);
8040			if (needj != 0) {
8041				nfreework = newfreework(ump, freeblks, freework,
8042				    nlbn, nb, fs->fs_frag, 0, 0);
8043				freedeps++;
8044			}
8045			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8046		} else {
8047			struct freedep *freedep;
8048
8049			/*
8050			 * Attempt to aggregate freedep dependencies for
8051			 * all blocks being released to the same CG.
8052			 */
8053			LIST_INIT(&wkhd);
8054			if (needj != 0 &&
8055			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8056				freedep = newfreedep(freework);
8057				WORKLIST_INSERT_UNLOCKED(&wkhd,
8058				    &freedep->fd_list);
8059				freedeps++;
8060			}
8061			CTR3(KTR_SUJ,
8062			    "indir_trunc: ino %d blkno %jd size %ld",
8063			    freeblks->fb_inum, nb, fs->fs_bsize);
8064			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8065			    fs->fs_bsize, freeblks->fb_inum,
8066			    freeblks->fb_vtype, &wkhd);
8067		}
8068	}
8069	if (goingaway) {
8070		bp->b_flags |= B_INVAL | B_NOCACHE;
8071		brelse(bp);
8072	}
8073	freedblocks = 0;
8074	if (level == 0)
8075		freedblocks = (nblocks * cnt);
8076	if (needj == 0)
8077		freedblocks += nblocks;
8078	freeblks_free(ump, freeblks, freedblocks);
8079	/*
8080	 * If we are journaling set up the ref counts and offset so this
8081	 * indirect can be completed when its children are free.
8082	 */
8083	if (needj) {
8084		ACQUIRE_LOCK(ump);
8085		freework->fw_off = i;
8086		freework->fw_ref += freedeps;
8087		freework->fw_ref -= NINDIR(fs) + 1;
8088		if (level == 0)
8089			freeblks->fb_cgwait += freedeps;
8090		if (freework->fw_ref == 0)
8091			freework_freeblock(freework);
8092		FREE_LOCK(ump);
8093		return;
8094	}
8095	/*
8096	 * If we're not journaling we can free the indirect now.
8097	 */
8098	dbn = dbtofsb(fs, dbn);
8099	CTR3(KTR_SUJ,
8100	    "indir_trunc 2: ino %d blkno %jd size %ld",
8101	    freeblks->fb_inum, dbn, fs->fs_bsize);
8102	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8103	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8104	/* Non SUJ softdep does single-threaded truncations. */
8105	if (freework->fw_blkno == dbn) {
8106		freework->fw_state |= ALLCOMPLETE;
8107		ACQUIRE_LOCK(ump);
8108		handle_written_freework(freework);
8109		FREE_LOCK(ump);
8110	}
8111	return;
8112}
8113
8114/*
8115 * Cancel an allocindir when it is removed via truncation.  When bp is not
8116 * NULL the indirect never appeared on disk and is scheduled to be freed
8117 * independently of the indir so we can more easily track journal work.
8118 */
8119static void
8120cancel_allocindir(aip, bp, freeblks, trunc)
8121	struct allocindir *aip;
8122	struct buf *bp;
8123	struct freeblks *freeblks;
8124	int trunc;
8125{
8126	struct indirdep *indirdep;
8127	struct freefrag *freefrag;
8128	struct newblk *newblk;
8129
8130	newblk = (struct newblk *)aip;
8131	LIST_REMOVE(aip, ai_next);
8132	/*
8133	 * We must eliminate the pointer in bp if it must be freed on its
8134	 * own due to partial truncate or pending journal work.
8135	 */
8136	if (bp && (trunc || newblk->nb_jnewblk)) {
8137		/*
8138		 * Clear the pointer and mark the aip to be freed
8139		 * directly if it never existed on disk.
8140		 */
8141		aip->ai_state |= DELAYEDFREE;
8142		indirdep = aip->ai_indirdep;
8143		if (indirdep->ir_state & UFS1FMT)
8144			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8145		else
8146			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8147	}
8148	/*
8149	 * When truncating the previous pointer will be freed via
8150	 * savedbp.  Eliminate the freefrag which would dup free.
8151	 */
8152	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8153		newblk->nb_freefrag = NULL;
8154		if (freefrag->ff_jdep)
8155			cancel_jfreefrag(
8156			    WK_JFREEFRAG(freefrag->ff_jdep));
8157		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8158		WORKITEM_FREE(freefrag, D_FREEFRAG);
8159	}
8160	/*
8161	 * If the journal hasn't been written the jnewblk must be passed
8162	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8163	 * this by leaving the journal dependency on the newblk to be freed
8164	 * when a freework is created in handle_workitem_freeblocks().
8165	 */
8166	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8167	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8168}
8169
8170/*
8171 * Create the mkdir dependencies for . and .. in a new directory.  Link them
8172 * in to a newdirblk so any subsequent additions are tracked properly.  The
8173 * caller is responsible for adding the mkdir1 dependency to the journal
8174 * and updating id_mkdiradd.  This function returns with the soft updates
8175 * lock held.
8176 */
8177static struct mkdir *
8178setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8179	struct diradd *dap;
8180	ino_t newinum;
8181	ino_t dinum;
8182	struct buf *newdirbp;
8183	struct mkdir **mkdirp;
8184{
8185	struct newblk *newblk;
8186	struct pagedep *pagedep;
8187	struct inodedep *inodedep;
8188	struct newdirblk *newdirblk = 0;
8189	struct mkdir *mkdir1, *mkdir2;
8190	struct worklist *wk;
8191	struct jaddref *jaddref;
8192	struct ufsmount *ump;
8193	struct mount *mp;
8194
8195	mp = dap->da_list.wk_mp;
8196	ump = VFSTOUFS(mp);
8197	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8198	    M_SOFTDEP_FLAGS);
8199	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8200	LIST_INIT(&newdirblk->db_mkdir);
8201	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8202	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8203	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8204	mkdir1->md_diradd = dap;
8205	mkdir1->md_jaddref = NULL;
8206	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8207	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8208	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8209	mkdir2->md_diradd = dap;
8210	mkdir2->md_jaddref = NULL;
8211	if (MOUNTEDSUJ(mp) == 0) {
8212		mkdir1->md_state |= DEPCOMPLETE;
8213		mkdir2->md_state |= DEPCOMPLETE;
8214	}
8215	/*
8216	 * Dependency on "." and ".." being written to disk.
8217	 */
8218	mkdir1->md_buf = newdirbp;
8219	ACQUIRE_LOCK(VFSTOUFS(mp));
8220	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8221	/*
8222	 * We must link the pagedep, allocdirect, and newdirblk for
8223	 * the initial file page so the pointer to the new directory
8224	 * is not written until the directory contents are live and
8225	 * any subsequent additions are not marked live until the
8226	 * block is reachable via the inode.
8227	 */
8228	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8229		panic("setup_newdir: lost pagedep");
8230	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8231		if (wk->wk_type == D_ALLOCDIRECT)
8232			break;
8233	if (wk == NULL)
8234		panic("setup_newdir: lost allocdirect");
8235	if (pagedep->pd_state & NEWBLOCK)
8236		panic("setup_newdir: NEWBLOCK already set");
8237	newblk = WK_NEWBLK(wk);
8238	pagedep->pd_state |= NEWBLOCK;
8239	pagedep->pd_newdirblk = newdirblk;
8240	newdirblk->db_pagedep = pagedep;
8241	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8242	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8243	/*
8244	 * Look up the inodedep for the parent directory so that we
8245	 * can link mkdir2 into the pending dotdot jaddref or
8246	 * the inode write if there is none.  If the inode is
8247	 * ALLCOMPLETE and no jaddref is present all dependencies have
8248	 * been satisfied and mkdir2 can be freed.
8249	 */
8250	inodedep_lookup(mp, dinum, 0, &inodedep);
8251	if (MOUNTEDSUJ(mp)) {
8252		if (inodedep == NULL)
8253			panic("setup_newdir: Lost parent.");
8254		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8255		    inoreflst);
8256		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8257		    (jaddref->ja_state & MKDIR_PARENT),
8258		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8259		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8260		mkdir2->md_jaddref = jaddref;
8261		jaddref->ja_mkdir = mkdir2;
8262	} else if (inodedep == NULL ||
8263	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8264		dap->da_state &= ~MKDIR_PARENT;
8265		WORKITEM_FREE(mkdir2, D_MKDIR);
8266		mkdir2 = NULL;
8267	} else {
8268		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8269		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8270	}
8271	*mkdirp = mkdir2;
8272
8273	return (mkdir1);
8274}
8275
8276/*
8277 * Directory entry addition dependencies.
8278 *
8279 * When adding a new directory entry, the inode (with its incremented link
8280 * count) must be written to disk before the directory entry's pointer to it.
8281 * Also, if the inode is newly allocated, the corresponding freemap must be
8282 * updated (on disk) before the directory entry's pointer. These requirements
8283 * are met via undo/redo on the directory entry's pointer, which consists
8284 * simply of the inode number.
8285 *
8286 * As directory entries are added and deleted, the free space within a
8287 * directory block can become fragmented.  The ufs filesystem will compact
8288 * a fragmented directory block to make space for a new entry. When this
8289 * occurs, the offsets of previously added entries change. Any "diradd"
8290 * dependency structures corresponding to these entries must be updated with
8291 * the new offsets.
8292 */
8293
8294/*
8295 * This routine is called after the in-memory inode's link
8296 * count has been incremented, but before the directory entry's
8297 * pointer to the inode has been set.
8298 */
8299int
8300softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8301	struct buf *bp;		/* buffer containing directory block */
8302	struct inode *dp;	/* inode for directory */
8303	off_t diroffset;	/* offset of new entry in directory */
8304	ino_t newinum;		/* inode referenced by new directory entry */
8305	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8306	int isnewblk;		/* entry is in a newly allocated block */
8307{
8308	int offset;		/* offset of new entry within directory block */
8309	ufs_lbn_t lbn;		/* block in directory containing new entry */
8310	struct fs *fs;
8311	struct diradd *dap;
8312	struct newblk *newblk;
8313	struct pagedep *pagedep;
8314	struct inodedep *inodedep;
8315	struct newdirblk *newdirblk = 0;
8316	struct mkdir *mkdir1, *mkdir2;
8317	struct jaddref *jaddref;
8318	struct ufsmount *ump;
8319	struct mount *mp;
8320	int isindir;
8321
8322	ump = dp->i_ump;
8323	mp = UFSTOVFS(ump);
8324	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8325	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8326	/*
8327	 * Whiteouts have no dependencies.
8328	 */
8329	if (newinum == WINO) {
8330		if (newdirbp != NULL)
8331			bdwrite(newdirbp);
8332		return (0);
8333	}
8334	jaddref = NULL;
8335	mkdir1 = mkdir2 = NULL;
8336	fs = dp->i_fs;
8337	lbn = lblkno(fs, diroffset);
8338	offset = blkoff(fs, diroffset);
8339	dap = malloc(sizeof(struct diradd), M_DIRADD,
8340		M_SOFTDEP_FLAGS|M_ZERO);
8341	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8342	dap->da_offset = offset;
8343	dap->da_newinum = newinum;
8344	dap->da_state = ATTACHED;
8345	LIST_INIT(&dap->da_jwork);
8346	isindir = bp->b_lblkno >= NDADDR;
8347	if (isnewblk &&
8348	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8349		newdirblk = malloc(sizeof(struct newdirblk),
8350		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8351		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8352		LIST_INIT(&newdirblk->db_mkdir);
8353	}
8354	/*
8355	 * If we're creating a new directory setup the dependencies and set
8356	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8357	 * we can move on.
8358	 */
8359	if (newdirbp == NULL) {
8360		dap->da_state |= DEPCOMPLETE;
8361		ACQUIRE_LOCK(ump);
8362	} else {
8363		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8364		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8365		    &mkdir2);
8366	}
8367	/*
8368	 * Link into parent directory pagedep to await its being written.
8369	 */
8370	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8371#ifdef DEBUG
8372	if (diradd_lookup(pagedep, offset) != NULL)
8373		panic("softdep_setup_directory_add: %p already at off %d\n",
8374		    diradd_lookup(pagedep, offset), offset);
8375#endif
8376	dap->da_pagedep = pagedep;
8377	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8378	    da_pdlist);
8379	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8380	/*
8381	 * If we're journaling, link the diradd into the jaddref so it
8382	 * may be completed after the journal entry is written.  Otherwise,
8383	 * link the diradd into its inodedep.  If the inode is not yet
8384	 * written place it on the bufwait list, otherwise do the post-inode
8385	 * write processing to put it on the id_pendinghd list.
8386	 */
8387	if (MOUNTEDSUJ(mp)) {
8388		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8389		    inoreflst);
8390		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8391		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8392		jaddref->ja_diroff = diroffset;
8393		jaddref->ja_diradd = dap;
8394		add_to_journal(&jaddref->ja_list);
8395	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8396		diradd_inode_written(dap, inodedep);
8397	else
8398		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8399	/*
8400	 * Add the journal entries for . and .. links now that the primary
8401	 * link is written.
8402	 */
8403	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8404		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8405		    inoreflst, if_deps);
8406		KASSERT(jaddref != NULL &&
8407		    jaddref->ja_ino == jaddref->ja_parent &&
8408		    (jaddref->ja_state & MKDIR_BODY),
8409		    ("softdep_setup_directory_add: bad dot jaddref %p",
8410		    jaddref));
8411		mkdir1->md_jaddref = jaddref;
8412		jaddref->ja_mkdir = mkdir1;
8413		/*
8414		 * It is important that the dotdot journal entry
8415		 * is added prior to the dot entry since dot writes
8416		 * both the dot and dotdot links.  These both must
8417		 * be added after the primary link for the journal
8418		 * to remain consistent.
8419		 */
8420		add_to_journal(&mkdir2->md_jaddref->ja_list);
8421		add_to_journal(&jaddref->ja_list);
8422	}
8423	/*
8424	 * If we are adding a new directory remember this diradd so that if
8425	 * we rename it we can keep the dot and dotdot dependencies.  If
8426	 * we are adding a new name for an inode that has a mkdiradd we
8427	 * must be in rename and we have to move the dot and dotdot
8428	 * dependencies to this new name.  The old name is being orphaned
8429	 * soon.
8430	 */
8431	if (mkdir1 != NULL) {
8432		if (inodedep->id_mkdiradd != NULL)
8433			panic("softdep_setup_directory_add: Existing mkdir");
8434		inodedep->id_mkdiradd = dap;
8435	} else if (inodedep->id_mkdiradd)
8436		merge_diradd(inodedep, dap);
8437	if (newdirblk) {
8438		/*
8439		 * There is nothing to do if we are already tracking
8440		 * this block.
8441		 */
8442		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8443			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8444			FREE_LOCK(ump);
8445			return (0);
8446		}
8447		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8448		    == 0)
8449			panic("softdep_setup_directory_add: lost entry");
8450		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8451		pagedep->pd_state |= NEWBLOCK;
8452		pagedep->pd_newdirblk = newdirblk;
8453		newdirblk->db_pagedep = pagedep;
8454		FREE_LOCK(ump);
8455		/*
8456		 * If we extended into an indirect signal direnter to sync.
8457		 */
8458		if (isindir)
8459			return (1);
8460		return (0);
8461	}
8462	FREE_LOCK(ump);
8463	return (0);
8464}
8465
8466/*
8467 * This procedure is called to change the offset of a directory
8468 * entry when compacting a directory block which must be owned
8469 * exclusively by the caller. Note that the actual entry movement
8470 * must be done in this procedure to ensure that no I/O completions
8471 * occur while the move is in progress.
8472 */
8473void
8474softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8475	struct buf *bp;		/* Buffer holding directory block. */
8476	struct inode *dp;	/* inode for directory */
8477	caddr_t base;		/* address of dp->i_offset */
8478	caddr_t oldloc;		/* address of old directory location */
8479	caddr_t newloc;		/* address of new directory location */
8480	int entrysize;		/* size of directory entry */
8481{
8482	int offset, oldoffset, newoffset;
8483	struct pagedep *pagedep;
8484	struct jmvref *jmvref;
8485	struct diradd *dap;
8486	struct direct *de;
8487	struct mount *mp;
8488	ufs_lbn_t lbn;
8489	int flags;
8490
8491	mp = UFSTOVFS(dp->i_ump);
8492	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8493	    ("softdep_change_directoryentry_offset called on "
8494	     "non-softdep filesystem"));
8495	de = (struct direct *)oldloc;
8496	jmvref = NULL;
8497	flags = 0;
8498	/*
8499	 * Moves are always journaled as it would be too complex to
8500	 * determine if any affected adds or removes are present in the
8501	 * journal.
8502	 */
8503	if (MOUNTEDSUJ(mp)) {
8504		flags = DEPALLOC;
8505		jmvref = newjmvref(dp, de->d_ino,
8506		    dp->i_offset + (oldloc - base),
8507		    dp->i_offset + (newloc - base));
8508	}
8509	lbn = lblkno(dp->i_fs, dp->i_offset);
8510	offset = blkoff(dp->i_fs, dp->i_offset);
8511	oldoffset = offset + (oldloc - base);
8512	newoffset = offset + (newloc - base);
8513	ACQUIRE_LOCK(dp->i_ump);
8514	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8515		goto done;
8516	dap = diradd_lookup(pagedep, oldoffset);
8517	if (dap) {
8518		dap->da_offset = newoffset;
8519		newoffset = DIRADDHASH(newoffset);
8520		oldoffset = DIRADDHASH(oldoffset);
8521		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8522		    newoffset != oldoffset) {
8523			LIST_REMOVE(dap, da_pdlist);
8524			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8525			    dap, da_pdlist);
8526		}
8527	}
8528done:
8529	if (jmvref) {
8530		jmvref->jm_pagedep = pagedep;
8531		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8532		add_to_journal(&jmvref->jm_list);
8533	}
8534	bcopy(oldloc, newloc, entrysize);
8535	FREE_LOCK(dp->i_ump);
8536}
8537
8538/*
8539 * Move the mkdir dependencies and journal work from one diradd to another
8540 * when renaming a directory.  The new name must depend on the mkdir deps
8541 * completing as the old name did.  Directories can only have one valid link
8542 * at a time so one must be canonical.
8543 */
8544static void
8545merge_diradd(inodedep, newdap)
8546	struct inodedep *inodedep;
8547	struct diradd *newdap;
8548{
8549	struct diradd *olddap;
8550	struct mkdir *mkdir, *nextmd;
8551	struct ufsmount *ump;
8552	short state;
8553
8554	olddap = inodedep->id_mkdiradd;
8555	inodedep->id_mkdiradd = newdap;
8556	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8557		newdap->da_state &= ~DEPCOMPLETE;
8558		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8559		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8560		     mkdir = nextmd) {
8561			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8562			if (mkdir->md_diradd != olddap)
8563				continue;
8564			mkdir->md_diradd = newdap;
8565			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8566			newdap->da_state |= state;
8567			olddap->da_state &= ~state;
8568			if ((olddap->da_state &
8569			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8570				break;
8571		}
8572		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8573			panic("merge_diradd: unfound ref");
8574	}
8575	/*
8576	 * Any mkdir related journal items are not safe to be freed until
8577	 * the new name is stable.
8578	 */
8579	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8580	olddap->da_state |= DEPCOMPLETE;
8581	complete_diradd(olddap);
8582}
8583
8584/*
8585 * Move the diradd to the pending list when all diradd dependencies are
8586 * complete.
8587 */
8588static void
8589complete_diradd(dap)
8590	struct diradd *dap;
8591{
8592	struct pagedep *pagedep;
8593
8594	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8595		if (dap->da_state & DIRCHG)
8596			pagedep = dap->da_previous->dm_pagedep;
8597		else
8598			pagedep = dap->da_pagedep;
8599		LIST_REMOVE(dap, da_pdlist);
8600		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8601	}
8602}
8603
8604/*
8605 * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8606 * add entries and conditonally journal the remove.
8607 */
8608static void
8609cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8610	struct diradd *dap;
8611	struct dirrem *dirrem;
8612	struct jremref *jremref;
8613	struct jremref *dotremref;
8614	struct jremref *dotdotremref;
8615{
8616	struct inodedep *inodedep;
8617	struct jaddref *jaddref;
8618	struct inoref *inoref;
8619	struct ufsmount *ump;
8620	struct mkdir *mkdir;
8621
8622	/*
8623	 * If no remove references were allocated we're on a non-journaled
8624	 * filesystem and can skip the cancel step.
8625	 */
8626	if (jremref == NULL) {
8627		free_diradd(dap, NULL);
8628		return;
8629	}
8630	/*
8631	 * Cancel the primary name an free it if it does not require
8632	 * journaling.
8633	 */
8634	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8635	    0, &inodedep) != 0) {
8636		/* Abort the addref that reference this diradd.  */
8637		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8638			if (inoref->if_list.wk_type != D_JADDREF)
8639				continue;
8640			jaddref = (struct jaddref *)inoref;
8641			if (jaddref->ja_diradd != dap)
8642				continue;
8643			if (cancel_jaddref(jaddref, inodedep,
8644			    &dirrem->dm_jwork) == 0) {
8645				free_jremref(jremref);
8646				jremref = NULL;
8647			}
8648			break;
8649		}
8650	}
8651	/*
8652	 * Cancel subordinate names and free them if they do not require
8653	 * journaling.
8654	 */
8655	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8656		ump = VFSTOUFS(dap->da_list.wk_mp);
8657		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8658			if (mkdir->md_diradd != dap)
8659				continue;
8660			if ((jaddref = mkdir->md_jaddref) == NULL)
8661				continue;
8662			mkdir->md_jaddref = NULL;
8663			if (mkdir->md_state & MKDIR_PARENT) {
8664				if (cancel_jaddref(jaddref, NULL,
8665				    &dirrem->dm_jwork) == 0) {
8666					free_jremref(dotdotremref);
8667					dotdotremref = NULL;
8668				}
8669			} else {
8670				if (cancel_jaddref(jaddref, inodedep,
8671				    &dirrem->dm_jwork) == 0) {
8672					free_jremref(dotremref);
8673					dotremref = NULL;
8674				}
8675			}
8676		}
8677	}
8678
8679	if (jremref)
8680		journal_jremref(dirrem, jremref, inodedep);
8681	if (dotremref)
8682		journal_jremref(dirrem, dotremref, inodedep);
8683	if (dotdotremref)
8684		journal_jremref(dirrem, dotdotremref, NULL);
8685	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8686	free_diradd(dap, &dirrem->dm_jwork);
8687}
8688
8689/*
8690 * Free a diradd dependency structure. This routine must be called
8691 * with splbio interrupts blocked.
8692 */
8693static void
8694free_diradd(dap, wkhd)
8695	struct diradd *dap;
8696	struct workhead *wkhd;
8697{
8698	struct dirrem *dirrem;
8699	struct pagedep *pagedep;
8700	struct inodedep *inodedep;
8701	struct mkdir *mkdir, *nextmd;
8702	struct ufsmount *ump;
8703
8704	ump = VFSTOUFS(dap->da_list.wk_mp);
8705	LOCK_OWNED(ump);
8706	LIST_REMOVE(dap, da_pdlist);
8707	if (dap->da_state & ONWORKLIST)
8708		WORKLIST_REMOVE(&dap->da_list);
8709	if ((dap->da_state & DIRCHG) == 0) {
8710		pagedep = dap->da_pagedep;
8711	} else {
8712		dirrem = dap->da_previous;
8713		pagedep = dirrem->dm_pagedep;
8714		dirrem->dm_dirinum = pagedep->pd_ino;
8715		dirrem->dm_state |= COMPLETE;
8716		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8717			add_to_worklist(&dirrem->dm_list, 0);
8718	}
8719	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8720	    0, &inodedep) != 0)
8721		if (inodedep->id_mkdiradd == dap)
8722			inodedep->id_mkdiradd = NULL;
8723	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8724		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8725		     mkdir = nextmd) {
8726			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8727			if (mkdir->md_diradd != dap)
8728				continue;
8729			dap->da_state &=
8730			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8731			LIST_REMOVE(mkdir, md_mkdirs);
8732			if (mkdir->md_state & ONWORKLIST)
8733				WORKLIST_REMOVE(&mkdir->md_list);
8734			if (mkdir->md_jaddref != NULL)
8735				panic("free_diradd: Unexpected jaddref");
8736			WORKITEM_FREE(mkdir, D_MKDIR);
8737			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8738				break;
8739		}
8740		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8741			panic("free_diradd: unfound ref");
8742	}
8743	if (inodedep)
8744		free_inodedep(inodedep);
8745	/*
8746	 * Free any journal segments waiting for the directory write.
8747	 */
8748	handle_jwork(&dap->da_jwork);
8749	WORKITEM_FREE(dap, D_DIRADD);
8750}
8751
8752/*
8753 * Directory entry removal dependencies.
8754 *
8755 * When removing a directory entry, the entry's inode pointer must be
8756 * zero'ed on disk before the corresponding inode's link count is decremented
8757 * (possibly freeing the inode for re-use). This dependency is handled by
8758 * updating the directory entry but delaying the inode count reduction until
8759 * after the directory block has been written to disk. After this point, the
8760 * inode count can be decremented whenever it is convenient.
8761 */
8762
8763/*
8764 * This routine should be called immediately after removing
8765 * a directory entry.  The inode's link count should not be
8766 * decremented by the calling procedure -- the soft updates
8767 * code will do this task when it is safe.
8768 */
8769void
8770softdep_setup_remove(bp, dp, ip, isrmdir)
8771	struct buf *bp;		/* buffer containing directory block */
8772	struct inode *dp;	/* inode for the directory being modified */
8773	struct inode *ip;	/* inode for directory entry being removed */
8774	int isrmdir;		/* indicates if doing RMDIR */
8775{
8776	struct dirrem *dirrem, *prevdirrem;
8777	struct inodedep *inodedep;
8778	int direct;
8779
8780	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
8781	    ("softdep_setup_remove called on non-softdep filesystem"));
8782	/*
8783	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8784	 * newdirrem() to setup the full directory remove which requires
8785	 * isrmdir > 1.
8786	 */
8787	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8788	/*
8789	 * Add the dirrem to the inodedep's pending remove list for quick
8790	 * discovery later.
8791	 */
8792	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8793	    &inodedep) == 0)
8794		panic("softdep_setup_remove: Lost inodedep.");
8795	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8796	dirrem->dm_state |= ONDEPLIST;
8797	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8798
8799	/*
8800	 * If the COMPLETE flag is clear, then there were no active
8801	 * entries and we want to roll back to a zeroed entry until
8802	 * the new inode is committed to disk. If the COMPLETE flag is
8803	 * set then we have deleted an entry that never made it to
8804	 * disk. If the entry we deleted resulted from a name change,
8805	 * then the old name still resides on disk. We cannot delete
8806	 * its inode (returned to us in prevdirrem) until the zeroed
8807	 * directory entry gets to disk. The new inode has never been
8808	 * referenced on the disk, so can be deleted immediately.
8809	 */
8810	if ((dirrem->dm_state & COMPLETE) == 0) {
8811		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8812		    dm_next);
8813		FREE_LOCK(ip->i_ump);
8814	} else {
8815		if (prevdirrem != NULL)
8816			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8817			    prevdirrem, dm_next);
8818		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8819		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8820		FREE_LOCK(ip->i_ump);
8821		if (direct)
8822			handle_workitem_remove(dirrem, 0);
8823	}
8824}
8825
8826/*
8827 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8828 * pd_pendinghd list of a pagedep.
8829 */
8830static struct diradd *
8831diradd_lookup(pagedep, offset)
8832	struct pagedep *pagedep;
8833	int offset;
8834{
8835	struct diradd *dap;
8836
8837	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8838		if (dap->da_offset == offset)
8839			return (dap);
8840	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8841		if (dap->da_offset == offset)
8842			return (dap);
8843	return (NULL);
8844}
8845
8846/*
8847 * Search for a .. diradd dependency in a directory that is being removed.
8848 * If the directory was renamed to a new parent we have a diradd rather
8849 * than a mkdir for the .. entry.  We need to cancel it now before
8850 * it is found in truncate().
8851 */
8852static struct jremref *
8853cancel_diradd_dotdot(ip, dirrem, jremref)
8854	struct inode *ip;
8855	struct dirrem *dirrem;
8856	struct jremref *jremref;
8857{
8858	struct pagedep *pagedep;
8859	struct diradd *dap;
8860	struct worklist *wk;
8861
8862	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8863	    &pagedep) == 0)
8864		return (jremref);
8865	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8866	if (dap == NULL)
8867		return (jremref);
8868	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8869	/*
8870	 * Mark any journal work as belonging to the parent so it is freed
8871	 * with the .. reference.
8872	 */
8873	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8874		wk->wk_state |= MKDIR_PARENT;
8875	return (NULL);
8876}
8877
8878/*
8879 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8880 * replace it with a dirrem/diradd pair as a result of re-parenting a
8881 * directory.  This ensures that we don't simultaneously have a mkdir and
8882 * a diradd for the same .. entry.
8883 */
8884static struct jremref *
8885cancel_mkdir_dotdot(ip, dirrem, jremref)
8886	struct inode *ip;
8887	struct dirrem *dirrem;
8888	struct jremref *jremref;
8889{
8890	struct inodedep *inodedep;
8891	struct jaddref *jaddref;
8892	struct ufsmount *ump;
8893	struct mkdir *mkdir;
8894	struct diradd *dap;
8895
8896	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8897	    &inodedep) == 0)
8898		return (jremref);
8899	dap = inodedep->id_mkdiradd;
8900	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8901		return (jremref);
8902	ump = VFSTOUFS(inodedep->id_list.wk_mp);
8903	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8904	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8905		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8906			break;
8907	if (mkdir == NULL)
8908		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8909	if ((jaddref = mkdir->md_jaddref) != NULL) {
8910		mkdir->md_jaddref = NULL;
8911		jaddref->ja_state &= ~MKDIR_PARENT;
8912		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8913		    &inodedep) == 0)
8914			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8915		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8916			journal_jremref(dirrem, jremref, inodedep);
8917			jremref = NULL;
8918		}
8919	}
8920	if (mkdir->md_state & ONWORKLIST)
8921		WORKLIST_REMOVE(&mkdir->md_list);
8922	mkdir->md_state |= ALLCOMPLETE;
8923	complete_mkdir(mkdir);
8924	return (jremref);
8925}
8926
8927static void
8928journal_jremref(dirrem, jremref, inodedep)
8929	struct dirrem *dirrem;
8930	struct jremref *jremref;
8931	struct inodedep *inodedep;
8932{
8933
8934	if (inodedep == NULL)
8935		if (inodedep_lookup(jremref->jr_list.wk_mp,
8936		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8937			panic("journal_jremref: Lost inodedep");
8938	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8939	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8940	add_to_journal(&jremref->jr_list);
8941}
8942
8943static void
8944dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8945	struct dirrem *dirrem;
8946	struct jremref *jremref;
8947	struct jremref *dotremref;
8948	struct jremref *dotdotremref;
8949{
8950	struct inodedep *inodedep;
8951
8952
8953	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8954	    &inodedep) == 0)
8955		panic("dirrem_journal: Lost inodedep");
8956	journal_jremref(dirrem, jremref, inodedep);
8957	if (dotremref)
8958		journal_jremref(dirrem, dotremref, inodedep);
8959	if (dotdotremref)
8960		journal_jremref(dirrem, dotdotremref, NULL);
8961}
8962
8963/*
8964 * Allocate a new dirrem if appropriate and return it along with
8965 * its associated pagedep. Called without a lock, returns with lock.
8966 */
8967static struct dirrem *
8968newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8969	struct buf *bp;		/* buffer containing directory block */
8970	struct inode *dp;	/* inode for the directory being modified */
8971	struct inode *ip;	/* inode for directory entry being removed */
8972	int isrmdir;		/* indicates if doing RMDIR */
8973	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8974{
8975	int offset;
8976	ufs_lbn_t lbn;
8977	struct diradd *dap;
8978	struct dirrem *dirrem;
8979	struct pagedep *pagedep;
8980	struct jremref *jremref;
8981	struct jremref *dotremref;
8982	struct jremref *dotdotremref;
8983	struct vnode *dvp;
8984
8985	/*
8986	 * Whiteouts have no deletion dependencies.
8987	 */
8988	if (ip == NULL)
8989		panic("newdirrem: whiteout");
8990	dvp = ITOV(dp);
8991	/*
8992	 * If we are over our limit, try to improve the situation.
8993	 * Limiting the number of dirrem structures will also limit
8994	 * the number of freefile and freeblks structures.
8995	 */
8996	ACQUIRE_LOCK(ip->i_ump);
8997	if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2)
8998		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8999	FREE_LOCK(ip->i_ump);
9000	dirrem = malloc(sizeof(struct dirrem),
9001		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
9002	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9003	LIST_INIT(&dirrem->dm_jremrefhd);
9004	LIST_INIT(&dirrem->dm_jwork);
9005	dirrem->dm_state = isrmdir ? RMDIR : 0;
9006	dirrem->dm_oldinum = ip->i_number;
9007	*prevdirremp = NULL;
9008	/*
9009	 * Allocate remove reference structures to track journal write
9010	 * dependencies.  We will always have one for the link and
9011	 * when doing directories we will always have one more for dot.
9012	 * When renaming a directory we skip the dotdot link change so
9013	 * this is not needed.
9014	 */
9015	jremref = dotremref = dotdotremref = NULL;
9016	if (DOINGSUJ(dvp)) {
9017		if (isrmdir) {
9018			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9019			    ip->i_effnlink + 2);
9020			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9021			    ip->i_effnlink + 1);
9022			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9023			    dp->i_effnlink + 1);
9024			dotdotremref->jr_state |= MKDIR_PARENT;
9025		} else
9026			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9027			    ip->i_effnlink + 1);
9028	}
9029	ACQUIRE_LOCK(ip->i_ump);
9030	lbn = lblkno(dp->i_fs, dp->i_offset);
9031	offset = blkoff(dp->i_fs, dp->i_offset);
9032	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
9033	    &pagedep);
9034	dirrem->dm_pagedep = pagedep;
9035	dirrem->dm_offset = offset;
9036	/*
9037	 * If we're renaming a .. link to a new directory, cancel any
9038	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9039	 * the jremref is preserved for any potential diradd in this
9040	 * location.  This can not coincide with a rmdir.
9041	 */
9042	if (dp->i_offset == DOTDOT_OFFSET) {
9043		if (isrmdir)
9044			panic("newdirrem: .. directory change during remove?");
9045		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9046	}
9047	/*
9048	 * If we're removing a directory search for the .. dependency now and
9049	 * cancel it.  Any pending journal work will be added to the dirrem
9050	 * to be completed when the workitem remove completes.
9051	 */
9052	if (isrmdir)
9053		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9054	/*
9055	 * Check for a diradd dependency for the same directory entry.
9056	 * If present, then both dependencies become obsolete and can
9057	 * be de-allocated.
9058	 */
9059	dap = diradd_lookup(pagedep, offset);
9060	if (dap == NULL) {
9061		/*
9062		 * Link the jremref structures into the dirrem so they are
9063		 * written prior to the pagedep.
9064		 */
9065		if (jremref)
9066			dirrem_journal(dirrem, jremref, dotremref,
9067			    dotdotremref);
9068		return (dirrem);
9069	}
9070	/*
9071	 * Must be ATTACHED at this point.
9072	 */
9073	if ((dap->da_state & ATTACHED) == 0)
9074		panic("newdirrem: not ATTACHED");
9075	if (dap->da_newinum != ip->i_number)
9076		panic("newdirrem: inum %ju should be %ju",
9077		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9078	/*
9079	 * If we are deleting a changed name that never made it to disk,
9080	 * then return the dirrem describing the previous inode (which
9081	 * represents the inode currently referenced from this entry on disk).
9082	 */
9083	if ((dap->da_state & DIRCHG) != 0) {
9084		*prevdirremp = dap->da_previous;
9085		dap->da_state &= ~DIRCHG;
9086		dap->da_pagedep = pagedep;
9087	}
9088	/*
9089	 * We are deleting an entry that never made it to disk.
9090	 * Mark it COMPLETE so we can delete its inode immediately.
9091	 */
9092	dirrem->dm_state |= COMPLETE;
9093	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9094#ifdef SUJ_DEBUG
9095	if (isrmdir == 0) {
9096		struct worklist *wk;
9097
9098		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9099			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9100				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9101	}
9102#endif
9103
9104	return (dirrem);
9105}
9106
9107/*
9108 * Directory entry change dependencies.
9109 *
9110 * Changing an existing directory entry requires that an add operation
9111 * be completed first followed by a deletion. The semantics for the addition
9112 * are identical to the description of adding a new entry above except
9113 * that the rollback is to the old inode number rather than zero. Once
9114 * the addition dependency is completed, the removal is done as described
9115 * in the removal routine above.
9116 */
9117
9118/*
9119 * This routine should be called immediately after changing
9120 * a directory entry.  The inode's link count should not be
9121 * decremented by the calling procedure -- the soft updates
9122 * code will perform this task when it is safe.
9123 */
9124void
9125softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9126	struct buf *bp;		/* buffer containing directory block */
9127	struct inode *dp;	/* inode for the directory being modified */
9128	struct inode *ip;	/* inode for directory entry being removed */
9129	ino_t newinum;		/* new inode number for changed entry */
9130	int isrmdir;		/* indicates if doing RMDIR */
9131{
9132	int offset;
9133	struct diradd *dap = NULL;
9134	struct dirrem *dirrem, *prevdirrem;
9135	struct pagedep *pagedep;
9136	struct inodedep *inodedep;
9137	struct jaddref *jaddref;
9138	struct mount *mp;
9139
9140	offset = blkoff(dp->i_fs, dp->i_offset);
9141	mp = UFSTOVFS(dp->i_ump);
9142	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9143	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9144
9145	/*
9146	 * Whiteouts do not need diradd dependencies.
9147	 */
9148	if (newinum != WINO) {
9149		dap = malloc(sizeof(struct diradd),
9150		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9151		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9152		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9153		dap->da_offset = offset;
9154		dap->da_newinum = newinum;
9155		LIST_INIT(&dap->da_jwork);
9156	}
9157
9158	/*
9159	 * Allocate a new dirrem and ACQUIRE_LOCK.
9160	 */
9161	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9162	pagedep = dirrem->dm_pagedep;
9163	/*
9164	 * The possible values for isrmdir:
9165	 *	0 - non-directory file rename
9166	 *	1 - directory rename within same directory
9167	 *   inum - directory rename to new directory of given inode number
9168	 * When renaming to a new directory, we are both deleting and
9169	 * creating a new directory entry, so the link count on the new
9170	 * directory should not change. Thus we do not need the followup
9171	 * dirrem which is usually done in handle_workitem_remove. We set
9172	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9173	 * followup dirrem.
9174	 */
9175	if (isrmdir > 1)
9176		dirrem->dm_state |= DIRCHG;
9177
9178	/*
9179	 * Whiteouts have no additional dependencies,
9180	 * so just put the dirrem on the correct list.
9181	 */
9182	if (newinum == WINO) {
9183		if ((dirrem->dm_state & COMPLETE) == 0) {
9184			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9185			    dm_next);
9186		} else {
9187			dirrem->dm_dirinum = pagedep->pd_ino;
9188			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9189				add_to_worklist(&dirrem->dm_list, 0);
9190		}
9191		FREE_LOCK(dp->i_ump);
9192		return;
9193	}
9194	/*
9195	 * Add the dirrem to the inodedep's pending remove list for quick
9196	 * discovery later.  A valid nlinkdelta ensures that this lookup
9197	 * will not fail.
9198	 */
9199	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9200		panic("softdep_setup_directory_change: Lost inodedep.");
9201	dirrem->dm_state |= ONDEPLIST;
9202	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9203
9204	/*
9205	 * If the COMPLETE flag is clear, then there were no active
9206	 * entries and we want to roll back to the previous inode until
9207	 * the new inode is committed to disk. If the COMPLETE flag is
9208	 * set, then we have deleted an entry that never made it to disk.
9209	 * If the entry we deleted resulted from a name change, then the old
9210	 * inode reference still resides on disk. Any rollback that we do
9211	 * needs to be to that old inode (returned to us in prevdirrem). If
9212	 * the entry we deleted resulted from a create, then there is
9213	 * no entry on the disk, so we want to roll back to zero rather
9214	 * than the uncommitted inode. In either of the COMPLETE cases we
9215	 * want to immediately free the unwritten and unreferenced inode.
9216	 */
9217	if ((dirrem->dm_state & COMPLETE) == 0) {
9218		dap->da_previous = dirrem;
9219	} else {
9220		if (prevdirrem != NULL) {
9221			dap->da_previous = prevdirrem;
9222		} else {
9223			dap->da_state &= ~DIRCHG;
9224			dap->da_pagedep = pagedep;
9225		}
9226		dirrem->dm_dirinum = pagedep->pd_ino;
9227		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9228			add_to_worklist(&dirrem->dm_list, 0);
9229	}
9230	/*
9231	 * Lookup the jaddref for this journal entry.  We must finish
9232	 * initializing it and make the diradd write dependent on it.
9233	 * If we're not journaling, put it on the id_bufwait list if the
9234	 * inode is not yet written. If it is written, do the post-inode
9235	 * write processing to put it on the id_pendinghd list.
9236	 */
9237	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9238	if (MOUNTEDSUJ(mp)) {
9239		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9240		    inoreflst);
9241		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9242		    ("softdep_setup_directory_change: bad jaddref %p",
9243		    jaddref));
9244		jaddref->ja_diroff = dp->i_offset;
9245		jaddref->ja_diradd = dap;
9246		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9247		    dap, da_pdlist);
9248		add_to_journal(&jaddref->ja_list);
9249	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9250		dap->da_state |= COMPLETE;
9251		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9252		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9253	} else {
9254		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9255		    dap, da_pdlist);
9256		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9257	}
9258	/*
9259	 * If we're making a new name for a directory that has not been
9260	 * committed when need to move the dot and dotdot references to
9261	 * this new name.
9262	 */
9263	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9264		merge_diradd(inodedep, dap);
9265	FREE_LOCK(dp->i_ump);
9266}
9267
9268/*
9269 * Called whenever the link count on an inode is changed.
9270 * It creates an inode dependency so that the new reference(s)
9271 * to the inode cannot be committed to disk until the updated
9272 * inode has been written.
9273 */
9274void
9275softdep_change_linkcnt(ip)
9276	struct inode *ip;	/* the inode with the increased link count */
9277{
9278	struct inodedep *inodedep;
9279	int dflags;
9280
9281	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
9282	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9283	ACQUIRE_LOCK(ip->i_ump);
9284	dflags = DEPALLOC;
9285	if (IS_SNAPSHOT(ip))
9286		dflags |= NODELAY;
9287	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9288	if (ip->i_nlink < ip->i_effnlink)
9289		panic("softdep_change_linkcnt: bad delta");
9290	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9291	FREE_LOCK(ip->i_ump);
9292}
9293
9294/*
9295 * Attach a sbdep dependency to the superblock buf so that we can keep
9296 * track of the head of the linked list of referenced but unlinked inodes.
9297 */
9298void
9299softdep_setup_sbupdate(ump, fs, bp)
9300	struct ufsmount *ump;
9301	struct fs *fs;
9302	struct buf *bp;
9303{
9304	struct sbdep *sbdep;
9305	struct worklist *wk;
9306
9307	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9308	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9309	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9310		if (wk->wk_type == D_SBDEP)
9311			break;
9312	if (wk != NULL)
9313		return;
9314	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9315	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9316	sbdep->sb_fs = fs;
9317	sbdep->sb_ump = ump;
9318	ACQUIRE_LOCK(ump);
9319	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9320	FREE_LOCK(ump);
9321}
9322
9323/*
9324 * Return the first unlinked inodedep which is ready to be the head of the
9325 * list.  The inodedep and all those after it must have valid next pointers.
9326 */
9327static struct inodedep *
9328first_unlinked_inodedep(ump)
9329	struct ufsmount *ump;
9330{
9331	struct inodedep *inodedep;
9332	struct inodedep *idp;
9333
9334	LOCK_OWNED(ump);
9335	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9336	    inodedep; inodedep = idp) {
9337		if ((inodedep->id_state & UNLINKNEXT) == 0)
9338			return (NULL);
9339		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9340		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9341			break;
9342		if ((inodedep->id_state & UNLINKPREV) == 0)
9343			break;
9344	}
9345	return (inodedep);
9346}
9347
9348/*
9349 * Set the sujfree unlinked head pointer prior to writing a superblock.
9350 */
9351static void
9352initiate_write_sbdep(sbdep)
9353	struct sbdep *sbdep;
9354{
9355	struct inodedep *inodedep;
9356	struct fs *bpfs;
9357	struct fs *fs;
9358
9359	bpfs = sbdep->sb_fs;
9360	fs = sbdep->sb_ump->um_fs;
9361	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9362	if (inodedep) {
9363		fs->fs_sujfree = inodedep->id_ino;
9364		inodedep->id_state |= UNLINKPREV;
9365	} else
9366		fs->fs_sujfree = 0;
9367	bpfs->fs_sujfree = fs->fs_sujfree;
9368}
9369
9370/*
9371 * After a superblock is written determine whether it must be written again
9372 * due to a changing unlinked list head.
9373 */
9374static int
9375handle_written_sbdep(sbdep, bp)
9376	struct sbdep *sbdep;
9377	struct buf *bp;
9378{
9379	struct inodedep *inodedep;
9380	struct mount *mp;
9381	struct fs *fs;
9382
9383	LOCK_OWNED(sbdep->sb_ump);
9384	fs = sbdep->sb_fs;
9385	mp = UFSTOVFS(sbdep->sb_ump);
9386	/*
9387	 * If the superblock doesn't match the in-memory list start over.
9388	 */
9389	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9390	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9391	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9392		bdirty(bp);
9393		return (1);
9394	}
9395	WORKITEM_FREE(sbdep, D_SBDEP);
9396	if (fs->fs_sujfree == 0)
9397		return (0);
9398	/*
9399	 * Now that we have a record of this inode in stable store allow it
9400	 * to be written to free up pending work.  Inodes may see a lot of
9401	 * write activity after they are unlinked which we must not hold up.
9402	 */
9403	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9404		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9405			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9406			    inodedep, inodedep->id_state);
9407		if (inodedep->id_state & UNLINKONLIST)
9408			break;
9409		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9410	}
9411
9412	return (0);
9413}
9414
9415/*
9416 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9417 */
9418static void
9419unlinked_inodedep(mp, inodedep)
9420	struct mount *mp;
9421	struct inodedep *inodedep;
9422{
9423	struct ufsmount *ump;
9424
9425	ump = VFSTOUFS(mp);
9426	LOCK_OWNED(ump);
9427	if (MOUNTEDSUJ(mp) == 0)
9428		return;
9429	ump->um_fs->fs_fmod = 1;
9430	if (inodedep->id_state & UNLINKED)
9431		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9432	inodedep->id_state |= UNLINKED;
9433	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9434}
9435
9436/*
9437 * Remove an inodedep from the unlinked inodedep list.  This may require
9438 * disk writes if the inode has made it that far.
9439 */
9440static void
9441clear_unlinked_inodedep(inodedep)
9442	struct inodedep *inodedep;
9443{
9444	struct ufsmount *ump;
9445	struct inodedep *idp;
9446	struct inodedep *idn;
9447	struct fs *fs;
9448	struct buf *bp;
9449	ino_t ino;
9450	ino_t nino;
9451	ino_t pino;
9452	int error;
9453
9454	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9455	fs = ump->um_fs;
9456	ino = inodedep->id_ino;
9457	error = 0;
9458	for (;;) {
9459		LOCK_OWNED(ump);
9460		KASSERT((inodedep->id_state & UNLINKED) != 0,
9461		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9462		    inodedep));
9463		/*
9464		 * If nothing has yet been written simply remove us from
9465		 * the in memory list and return.  This is the most common
9466		 * case where handle_workitem_remove() loses the final
9467		 * reference.
9468		 */
9469		if ((inodedep->id_state & UNLINKLINKS) == 0)
9470			break;
9471		/*
9472		 * If we have a NEXT pointer and no PREV pointer we can simply
9473		 * clear NEXT's PREV and remove ourselves from the list.  Be
9474		 * careful not to clear PREV if the superblock points at
9475		 * next as well.
9476		 */
9477		idn = TAILQ_NEXT(inodedep, id_unlinked);
9478		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9479			if (idn && fs->fs_sujfree != idn->id_ino)
9480				idn->id_state &= ~UNLINKPREV;
9481			break;
9482		}
9483		/*
9484		 * Here we have an inodedep which is actually linked into
9485		 * the list.  We must remove it by forcing a write to the
9486		 * link before us, whether it be the superblock or an inode.
9487		 * Unfortunately the list may change while we're waiting
9488		 * on the buf lock for either resource so we must loop until
9489		 * we lock the right one.  If both the superblock and an
9490		 * inode point to this inode we must clear the inode first
9491		 * followed by the superblock.
9492		 */
9493		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9494		pino = 0;
9495		if (idp && (idp->id_state & UNLINKNEXT))
9496			pino = idp->id_ino;
9497		FREE_LOCK(ump);
9498		if (pino == 0) {
9499			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9500			    (int)fs->fs_sbsize, 0, 0, 0);
9501		} else {
9502			error = bread(ump->um_devvp,
9503			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9504			    (int)fs->fs_bsize, NOCRED, &bp);
9505			if (error)
9506				brelse(bp);
9507		}
9508		ACQUIRE_LOCK(ump);
9509		if (error)
9510			break;
9511		/* If the list has changed restart the loop. */
9512		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9513		nino = 0;
9514		if (idp && (idp->id_state & UNLINKNEXT))
9515			nino = idp->id_ino;
9516		if (nino != pino ||
9517		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9518			FREE_LOCK(ump);
9519			brelse(bp);
9520			ACQUIRE_LOCK(ump);
9521			continue;
9522		}
9523		nino = 0;
9524		idn = TAILQ_NEXT(inodedep, id_unlinked);
9525		if (idn)
9526			nino = idn->id_ino;
9527		/*
9528		 * Remove us from the in memory list.  After this we cannot
9529		 * access the inodedep.
9530		 */
9531		KASSERT((inodedep->id_state & UNLINKED) != 0,
9532		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9533		    inodedep));
9534		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9535		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9536		FREE_LOCK(ump);
9537		/*
9538		 * The predecessor's next pointer is manually updated here
9539		 * so that the NEXT flag is never cleared for an element
9540		 * that is in the list.
9541		 */
9542		if (pino == 0) {
9543			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9544			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9545			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9546			    bp);
9547		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9548			((struct ufs1_dinode *)bp->b_data +
9549			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9550		else
9551			((struct ufs2_dinode *)bp->b_data +
9552			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9553		/*
9554		 * If the bwrite fails we have no recourse to recover.  The
9555		 * filesystem is corrupted already.
9556		 */
9557		bwrite(bp);
9558		ACQUIRE_LOCK(ump);
9559		/*
9560		 * If the superblock pointer still needs to be cleared force
9561		 * a write here.
9562		 */
9563		if (fs->fs_sujfree == ino) {
9564			FREE_LOCK(ump);
9565			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9566			    (int)fs->fs_sbsize, 0, 0, 0);
9567			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9568			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9569			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9570			    bp);
9571			bwrite(bp);
9572			ACQUIRE_LOCK(ump);
9573		}
9574
9575		if (fs->fs_sujfree != ino)
9576			return;
9577		panic("clear_unlinked_inodedep: Failed to clear free head");
9578	}
9579	if (inodedep->id_ino == fs->fs_sujfree)
9580		panic("clear_unlinked_inodedep: Freeing head of free list");
9581	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9582	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9583	return;
9584}
9585
9586/*
9587 * This workitem decrements the inode's link count.
9588 * If the link count reaches zero, the file is removed.
9589 */
9590static int
9591handle_workitem_remove(dirrem, flags)
9592	struct dirrem *dirrem;
9593	int flags;
9594{
9595	struct inodedep *inodedep;
9596	struct workhead dotdotwk;
9597	struct worklist *wk;
9598	struct ufsmount *ump;
9599	struct mount *mp;
9600	struct vnode *vp;
9601	struct inode *ip;
9602	ino_t oldinum;
9603
9604	if (dirrem->dm_state & ONWORKLIST)
9605		panic("handle_workitem_remove: dirrem %p still on worklist",
9606		    dirrem);
9607	oldinum = dirrem->dm_oldinum;
9608	mp = dirrem->dm_list.wk_mp;
9609	ump = VFSTOUFS(mp);
9610	flags |= LK_EXCLUSIVE;
9611	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9612		return (EBUSY);
9613	ip = VTOI(vp);
9614	ACQUIRE_LOCK(ump);
9615	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9616		panic("handle_workitem_remove: lost inodedep");
9617	if (dirrem->dm_state & ONDEPLIST)
9618		LIST_REMOVE(dirrem, dm_inonext);
9619	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9620	    ("handle_workitem_remove:  Journal entries not written."));
9621
9622	/*
9623	 * Move all dependencies waiting on the remove to complete
9624	 * from the dirrem to the inode inowait list to be completed
9625	 * after the inode has been updated and written to disk.  Any
9626	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9627	 * is removed.
9628	 */
9629	LIST_INIT(&dotdotwk);
9630	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9631		WORKLIST_REMOVE(wk);
9632		if (wk->wk_state & MKDIR_PARENT) {
9633			wk->wk_state &= ~MKDIR_PARENT;
9634			WORKLIST_INSERT(&dotdotwk, wk);
9635			continue;
9636		}
9637		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9638	}
9639	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9640	/*
9641	 * Normal file deletion.
9642	 */
9643	if ((dirrem->dm_state & RMDIR) == 0) {
9644		ip->i_nlink--;
9645		DIP_SET(ip, i_nlink, ip->i_nlink);
9646		ip->i_flag |= IN_CHANGE;
9647		if (ip->i_nlink < ip->i_effnlink)
9648			panic("handle_workitem_remove: bad file delta");
9649		if (ip->i_nlink == 0)
9650			unlinked_inodedep(mp, inodedep);
9651		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9652		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9653		    ("handle_workitem_remove: worklist not empty. %s",
9654		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9655		WORKITEM_FREE(dirrem, D_DIRREM);
9656		FREE_LOCK(ump);
9657		goto out;
9658	}
9659	/*
9660	 * Directory deletion. Decrement reference count for both the
9661	 * just deleted parent directory entry and the reference for ".".
9662	 * Arrange to have the reference count on the parent decremented
9663	 * to account for the loss of "..".
9664	 */
9665	ip->i_nlink -= 2;
9666	DIP_SET(ip, i_nlink, ip->i_nlink);
9667	ip->i_flag |= IN_CHANGE;
9668	if (ip->i_nlink < ip->i_effnlink)
9669		panic("handle_workitem_remove: bad dir delta");
9670	if (ip->i_nlink == 0)
9671		unlinked_inodedep(mp, inodedep);
9672	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9673	/*
9674	 * Rename a directory to a new parent. Since, we are both deleting
9675	 * and creating a new directory entry, the link count on the new
9676	 * directory should not change. Thus we skip the followup dirrem.
9677	 */
9678	if (dirrem->dm_state & DIRCHG) {
9679		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9680		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9681		WORKITEM_FREE(dirrem, D_DIRREM);
9682		FREE_LOCK(ump);
9683		goto out;
9684	}
9685	dirrem->dm_state = ONDEPLIST;
9686	dirrem->dm_oldinum = dirrem->dm_dirinum;
9687	/*
9688	 * Place the dirrem on the parent's diremhd list.
9689	 */
9690	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9691		panic("handle_workitem_remove: lost dir inodedep");
9692	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9693	/*
9694	 * If the allocated inode has never been written to disk, then
9695	 * the on-disk inode is zero'ed and we can remove the file
9696	 * immediately.  When journaling if the inode has been marked
9697	 * unlinked and not DEPCOMPLETE we know it can never be written.
9698	 */
9699	inodedep_lookup(mp, oldinum, 0, &inodedep);
9700	if (inodedep == NULL ||
9701	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9702	    check_inode_unwritten(inodedep)) {
9703		FREE_LOCK(ump);
9704		vput(vp);
9705		return handle_workitem_remove(dirrem, flags);
9706	}
9707	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9708	FREE_LOCK(ump);
9709	ip->i_flag |= IN_CHANGE;
9710out:
9711	ffs_update(vp, 0);
9712	vput(vp);
9713	return (0);
9714}
9715
9716/*
9717 * Inode de-allocation dependencies.
9718 *
9719 * When an inode's link count is reduced to zero, it can be de-allocated. We
9720 * found it convenient to postpone de-allocation until after the inode is
9721 * written to disk with its new link count (zero).  At this point, all of the
9722 * on-disk inode's block pointers are nullified and, with careful dependency
9723 * list ordering, all dependencies related to the inode will be satisfied and
9724 * the corresponding dependency structures de-allocated.  So, if/when the
9725 * inode is reused, there will be no mixing of old dependencies with new
9726 * ones.  This artificial dependency is set up by the block de-allocation
9727 * procedure above (softdep_setup_freeblocks) and completed by the
9728 * following procedure.
9729 */
9730static void
9731handle_workitem_freefile(freefile)
9732	struct freefile *freefile;
9733{
9734	struct workhead wkhd;
9735	struct fs *fs;
9736	struct inodedep *idp;
9737	struct ufsmount *ump;
9738	int error;
9739
9740	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9741	fs = ump->um_fs;
9742#ifdef DEBUG
9743	ACQUIRE_LOCK(ump);
9744	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9745	FREE_LOCK(ump);
9746	if (error)
9747		panic("handle_workitem_freefile: inodedep %p survived", idp);
9748#endif
9749	UFS_LOCK(ump);
9750	fs->fs_pendinginodes -= 1;
9751	UFS_UNLOCK(ump);
9752	LIST_INIT(&wkhd);
9753	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9754	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9755	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9756		softdep_error("handle_workitem_freefile", error);
9757	ACQUIRE_LOCK(ump);
9758	WORKITEM_FREE(freefile, D_FREEFILE);
9759	FREE_LOCK(ump);
9760}
9761
9762
9763/*
9764 * Helper function which unlinks marker element from work list and returns
9765 * the next element on the list.
9766 */
9767static __inline struct worklist *
9768markernext(struct worklist *marker)
9769{
9770	struct worklist *next;
9771
9772	next = LIST_NEXT(marker, wk_list);
9773	LIST_REMOVE(marker, wk_list);
9774	return next;
9775}
9776
9777/*
9778 * Disk writes.
9779 *
9780 * The dependency structures constructed above are most actively used when file
9781 * system blocks are written to disk.  No constraints are placed on when a
9782 * block can be written, but unsatisfied update dependencies are made safe by
9783 * modifying (or replacing) the source memory for the duration of the disk
9784 * write.  When the disk write completes, the memory block is again brought
9785 * up-to-date.
9786 *
9787 * In-core inode structure reclamation.
9788 *
9789 * Because there are a finite number of "in-core" inode structures, they are
9790 * reused regularly.  By transferring all inode-related dependencies to the
9791 * in-memory inode block and indexing them separately (via "inodedep"s), we
9792 * can allow "in-core" inode structures to be reused at any time and avoid
9793 * any increase in contention.
9794 *
9795 * Called just before entering the device driver to initiate a new disk I/O.
9796 * The buffer must be locked, thus, no I/O completion operations can occur
9797 * while we are manipulating its associated dependencies.
9798 */
9799static void
9800softdep_disk_io_initiation(bp)
9801	struct buf *bp;		/* structure describing disk write to occur */
9802{
9803	struct worklist *wk;
9804	struct worklist marker;
9805	struct inodedep *inodedep;
9806	struct freeblks *freeblks;
9807	struct jblkdep *jblkdep;
9808	struct newblk *newblk;
9809	struct ufsmount *ump;
9810
9811	/*
9812	 * We only care about write operations. There should never
9813	 * be dependencies for reads.
9814	 */
9815	if (bp->b_iocmd != BIO_WRITE)
9816		panic("softdep_disk_io_initiation: not write");
9817
9818	if (bp->b_vflags & BV_BKGRDINPROG)
9819		panic("softdep_disk_io_initiation: Writing buffer with "
9820		    "background write in progress: %p", bp);
9821
9822	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9823		return;
9824	ump = VFSTOUFS(wk->wk_mp);
9825
9826	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9827	PHOLD(curproc);			/* Don't swap out kernel stack */
9828	ACQUIRE_LOCK(ump);
9829	/*
9830	 * Do any necessary pre-I/O processing.
9831	 */
9832	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9833	     wk = markernext(&marker)) {
9834		LIST_INSERT_AFTER(wk, &marker, wk_list);
9835		switch (wk->wk_type) {
9836
9837		case D_PAGEDEP:
9838			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9839			continue;
9840
9841		case D_INODEDEP:
9842			inodedep = WK_INODEDEP(wk);
9843			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9844				initiate_write_inodeblock_ufs1(inodedep, bp);
9845			else
9846				initiate_write_inodeblock_ufs2(inodedep, bp);
9847			continue;
9848
9849		case D_INDIRDEP:
9850			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9851			continue;
9852
9853		case D_BMSAFEMAP:
9854			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9855			continue;
9856
9857		case D_JSEG:
9858			WK_JSEG(wk)->js_buf = NULL;
9859			continue;
9860
9861		case D_FREEBLKS:
9862			freeblks = WK_FREEBLKS(wk);
9863			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9864			/*
9865			 * We have to wait for the freeblks to be journaled
9866			 * before we can write an inodeblock with updated
9867			 * pointers.  Be careful to arrange the marker so
9868			 * we revisit the freeblks if it's not removed by
9869			 * the first jwait().
9870			 */
9871			if (jblkdep != NULL) {
9872				LIST_REMOVE(&marker, wk_list);
9873				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9874				jwait(&jblkdep->jb_list, MNT_WAIT);
9875			}
9876			continue;
9877		case D_ALLOCDIRECT:
9878		case D_ALLOCINDIR:
9879			/*
9880			 * We have to wait for the jnewblk to be journaled
9881			 * before we can write to a block if the contents
9882			 * may be confused with an earlier file's indirect
9883			 * at recovery time.  Handle the marker as described
9884			 * above.
9885			 */
9886			newblk = WK_NEWBLK(wk);
9887			if (newblk->nb_jnewblk != NULL &&
9888			    indirblk_lookup(newblk->nb_list.wk_mp,
9889			    newblk->nb_newblkno)) {
9890				LIST_REMOVE(&marker, wk_list);
9891				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9892				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9893			}
9894			continue;
9895
9896		case D_SBDEP:
9897			initiate_write_sbdep(WK_SBDEP(wk));
9898			continue;
9899
9900		case D_MKDIR:
9901		case D_FREEWORK:
9902		case D_FREEDEP:
9903		case D_JSEGDEP:
9904			continue;
9905
9906		default:
9907			panic("handle_disk_io_initiation: Unexpected type %s",
9908			    TYPENAME(wk->wk_type));
9909			/* NOTREACHED */
9910		}
9911	}
9912	FREE_LOCK(ump);
9913	PRELE(curproc);			/* Allow swapout of kernel stack */
9914}
9915
9916/*
9917 * Called from within the procedure above to deal with unsatisfied
9918 * allocation dependencies in a directory. The buffer must be locked,
9919 * thus, no I/O completion operations can occur while we are
9920 * manipulating its associated dependencies.
9921 */
9922static void
9923initiate_write_filepage(pagedep, bp)
9924	struct pagedep *pagedep;
9925	struct buf *bp;
9926{
9927	struct jremref *jremref;
9928	struct jmvref *jmvref;
9929	struct dirrem *dirrem;
9930	struct diradd *dap;
9931	struct direct *ep;
9932	int i;
9933
9934	if (pagedep->pd_state & IOSTARTED) {
9935		/*
9936		 * This can only happen if there is a driver that does not
9937		 * understand chaining. Here biodone will reissue the call
9938		 * to strategy for the incomplete buffers.
9939		 */
9940		printf("initiate_write_filepage: already started\n");
9941		return;
9942	}
9943	pagedep->pd_state |= IOSTARTED;
9944	/*
9945	 * Wait for all journal remove dependencies to hit the disk.
9946	 * We can not allow any potentially conflicting directory adds
9947	 * to be visible before removes and rollback is too difficult.
9948	 * The soft updates lock may be dropped and re-acquired, however
9949	 * we hold the buf locked so the dependency can not go away.
9950	 */
9951	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9952		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9953			jwait(&jremref->jr_list, MNT_WAIT);
9954	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9955		jwait(&jmvref->jm_list, MNT_WAIT);
9956	for (i = 0; i < DAHASHSZ; i++) {
9957		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9958			ep = (struct direct *)
9959			    ((char *)bp->b_data + dap->da_offset);
9960			if (ep->d_ino != dap->da_newinum)
9961				panic("%s: dir inum %ju != new %ju",
9962				    "initiate_write_filepage",
9963				    (uintmax_t)ep->d_ino,
9964				    (uintmax_t)dap->da_newinum);
9965			if (dap->da_state & DIRCHG)
9966				ep->d_ino = dap->da_previous->dm_oldinum;
9967			else
9968				ep->d_ino = 0;
9969			dap->da_state &= ~ATTACHED;
9970			dap->da_state |= UNDONE;
9971		}
9972	}
9973}
9974
9975/*
9976 * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9977 * Note that any bug fixes made to this routine must be done in the
9978 * version found below.
9979 *
9980 * Called from within the procedure above to deal with unsatisfied
9981 * allocation dependencies in an inodeblock. The buffer must be
9982 * locked, thus, no I/O completion operations can occur while we
9983 * are manipulating its associated dependencies.
9984 */
9985static void
9986initiate_write_inodeblock_ufs1(inodedep, bp)
9987	struct inodedep *inodedep;
9988	struct buf *bp;			/* The inode block */
9989{
9990	struct allocdirect *adp, *lastadp;
9991	struct ufs1_dinode *dp;
9992	struct ufs1_dinode *sip;
9993	struct inoref *inoref;
9994	struct ufsmount *ump;
9995	struct fs *fs;
9996	ufs_lbn_t i;
9997#ifdef INVARIANTS
9998	ufs_lbn_t prevlbn = 0;
9999#endif
10000	int deplist;
10001
10002	if (inodedep->id_state & IOSTARTED)
10003		panic("initiate_write_inodeblock_ufs1: already started");
10004	inodedep->id_state |= IOSTARTED;
10005	fs = inodedep->id_fs;
10006	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10007	LOCK_OWNED(ump);
10008	dp = (struct ufs1_dinode *)bp->b_data +
10009	    ino_to_fsbo(fs, inodedep->id_ino);
10010
10011	/*
10012	 * If we're on the unlinked list but have not yet written our
10013	 * next pointer initialize it here.
10014	 */
10015	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10016		struct inodedep *inon;
10017
10018		inon = TAILQ_NEXT(inodedep, id_unlinked);
10019		dp->di_freelink = inon ? inon->id_ino : 0;
10020	}
10021	/*
10022	 * If the bitmap is not yet written, then the allocated
10023	 * inode cannot be written to disk.
10024	 */
10025	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10026		if (inodedep->id_savedino1 != NULL)
10027			panic("initiate_write_inodeblock_ufs1: I/O underway");
10028		FREE_LOCK(ump);
10029		sip = malloc(sizeof(struct ufs1_dinode),
10030		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10031		ACQUIRE_LOCK(ump);
10032		inodedep->id_savedino1 = sip;
10033		*inodedep->id_savedino1 = *dp;
10034		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10035		dp->di_gen = inodedep->id_savedino1->di_gen;
10036		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10037		return;
10038	}
10039	/*
10040	 * If no dependencies, then there is nothing to roll back.
10041	 */
10042	inodedep->id_savedsize = dp->di_size;
10043	inodedep->id_savedextsize = 0;
10044	inodedep->id_savednlink = dp->di_nlink;
10045	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10046	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10047		return;
10048	/*
10049	 * Revert the link count to that of the first unwritten journal entry.
10050	 */
10051	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10052	if (inoref)
10053		dp->di_nlink = inoref->if_nlink;
10054	/*
10055	 * Set the dependencies to busy.
10056	 */
10057	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10058	     adp = TAILQ_NEXT(adp, ad_next)) {
10059#ifdef INVARIANTS
10060		if (deplist != 0 && prevlbn >= adp->ad_offset)
10061			panic("softdep_write_inodeblock: lbn order");
10062		prevlbn = adp->ad_offset;
10063		if (adp->ad_offset < NDADDR &&
10064		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10065			panic("%s: direct pointer #%jd mismatch %d != %jd",
10066			    "softdep_write_inodeblock",
10067			    (intmax_t)adp->ad_offset,
10068			    dp->di_db[adp->ad_offset],
10069			    (intmax_t)adp->ad_newblkno);
10070		if (adp->ad_offset >= NDADDR &&
10071		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10072			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10073			    "softdep_write_inodeblock",
10074			    (intmax_t)adp->ad_offset - NDADDR,
10075			    dp->di_ib[adp->ad_offset - NDADDR],
10076			    (intmax_t)adp->ad_newblkno);
10077		deplist |= 1 << adp->ad_offset;
10078		if ((adp->ad_state & ATTACHED) == 0)
10079			panic("softdep_write_inodeblock: Unknown state 0x%x",
10080			    adp->ad_state);
10081#endif /* INVARIANTS */
10082		adp->ad_state &= ~ATTACHED;
10083		adp->ad_state |= UNDONE;
10084	}
10085	/*
10086	 * The on-disk inode cannot claim to be any larger than the last
10087	 * fragment that has been written. Otherwise, the on-disk inode
10088	 * might have fragments that were not the last block in the file
10089	 * which would corrupt the filesystem.
10090	 */
10091	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10092	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10093		if (adp->ad_offset >= NDADDR)
10094			break;
10095		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10096		/* keep going until hitting a rollback to a frag */
10097		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10098			continue;
10099		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10100		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10101#ifdef INVARIANTS
10102			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10103				panic("softdep_write_inodeblock: lost dep1");
10104#endif /* INVARIANTS */
10105			dp->di_db[i] = 0;
10106		}
10107		for (i = 0; i < NIADDR; i++) {
10108#ifdef INVARIANTS
10109			if (dp->di_ib[i] != 0 &&
10110			    (deplist & ((1 << NDADDR) << i)) == 0)
10111				panic("softdep_write_inodeblock: lost dep2");
10112#endif /* INVARIANTS */
10113			dp->di_ib[i] = 0;
10114		}
10115		return;
10116	}
10117	/*
10118	 * If we have zero'ed out the last allocated block of the file,
10119	 * roll back the size to the last currently allocated block.
10120	 * We know that this last allocated block is a full-sized as
10121	 * we already checked for fragments in the loop above.
10122	 */
10123	if (lastadp != NULL &&
10124	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10125		for (i = lastadp->ad_offset; i >= 0; i--)
10126			if (dp->di_db[i] != 0)
10127				break;
10128		dp->di_size = (i + 1) * fs->fs_bsize;
10129	}
10130	/*
10131	 * The only dependencies are for indirect blocks.
10132	 *
10133	 * The file size for indirect block additions is not guaranteed.
10134	 * Such a guarantee would be non-trivial to achieve. The conventional
10135	 * synchronous write implementation also does not make this guarantee.
10136	 * Fsck should catch and fix discrepancies. Arguably, the file size
10137	 * can be over-estimated without destroying integrity when the file
10138	 * moves into the indirect blocks (i.e., is large). If we want to
10139	 * postpone fsck, we are stuck with this argument.
10140	 */
10141	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10142		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10143}
10144
10145/*
10146 * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10147 * Note that any bug fixes made to this routine must be done in the
10148 * version found above.
10149 *
10150 * Called from within the procedure above to deal with unsatisfied
10151 * allocation dependencies in an inodeblock. The buffer must be
10152 * locked, thus, no I/O completion operations can occur while we
10153 * are manipulating its associated dependencies.
10154 */
10155static void
10156initiate_write_inodeblock_ufs2(inodedep, bp)
10157	struct inodedep *inodedep;
10158	struct buf *bp;			/* The inode block */
10159{
10160	struct allocdirect *adp, *lastadp;
10161	struct ufs2_dinode *dp;
10162	struct ufs2_dinode *sip;
10163	struct inoref *inoref;
10164	struct ufsmount *ump;
10165	struct fs *fs;
10166	ufs_lbn_t i;
10167#ifdef INVARIANTS
10168	ufs_lbn_t prevlbn = 0;
10169#endif
10170	int deplist;
10171
10172	if (inodedep->id_state & IOSTARTED)
10173		panic("initiate_write_inodeblock_ufs2: already started");
10174	inodedep->id_state |= IOSTARTED;
10175	fs = inodedep->id_fs;
10176	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10177	LOCK_OWNED(ump);
10178	dp = (struct ufs2_dinode *)bp->b_data +
10179	    ino_to_fsbo(fs, inodedep->id_ino);
10180
10181	/*
10182	 * If we're on the unlinked list but have not yet written our
10183	 * next pointer initialize it here.
10184	 */
10185	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10186		struct inodedep *inon;
10187
10188		inon = TAILQ_NEXT(inodedep, id_unlinked);
10189		dp->di_freelink = inon ? inon->id_ino : 0;
10190	}
10191	/*
10192	 * If the bitmap is not yet written, then the allocated
10193	 * inode cannot be written to disk.
10194	 */
10195	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10196		if (inodedep->id_savedino2 != NULL)
10197			panic("initiate_write_inodeblock_ufs2: I/O underway");
10198		FREE_LOCK(ump);
10199		sip = malloc(sizeof(struct ufs2_dinode),
10200		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10201		ACQUIRE_LOCK(ump);
10202		inodedep->id_savedino2 = sip;
10203		*inodedep->id_savedino2 = *dp;
10204		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10205		dp->di_gen = inodedep->id_savedino2->di_gen;
10206		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10207		return;
10208	}
10209	/*
10210	 * If no dependencies, then there is nothing to roll back.
10211	 */
10212	inodedep->id_savedsize = dp->di_size;
10213	inodedep->id_savedextsize = dp->di_extsize;
10214	inodedep->id_savednlink = dp->di_nlink;
10215	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10216	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10217	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10218		return;
10219	/*
10220	 * Revert the link count to that of the first unwritten journal entry.
10221	 */
10222	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10223	if (inoref)
10224		dp->di_nlink = inoref->if_nlink;
10225
10226	/*
10227	 * Set the ext data dependencies to busy.
10228	 */
10229	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10230	     adp = TAILQ_NEXT(adp, ad_next)) {
10231#ifdef INVARIANTS
10232		if (deplist != 0 && prevlbn >= adp->ad_offset)
10233			panic("softdep_write_inodeblock: lbn order");
10234		prevlbn = adp->ad_offset;
10235		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10236			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10237			    "softdep_write_inodeblock",
10238			    (intmax_t)adp->ad_offset,
10239			    (intmax_t)dp->di_extb[adp->ad_offset],
10240			    (intmax_t)adp->ad_newblkno);
10241		deplist |= 1 << adp->ad_offset;
10242		if ((adp->ad_state & ATTACHED) == 0)
10243			panic("softdep_write_inodeblock: Unknown state 0x%x",
10244			    adp->ad_state);
10245#endif /* INVARIANTS */
10246		adp->ad_state &= ~ATTACHED;
10247		adp->ad_state |= UNDONE;
10248	}
10249	/*
10250	 * The on-disk inode cannot claim to be any larger than the last
10251	 * fragment that has been written. Otherwise, the on-disk inode
10252	 * might have fragments that were not the last block in the ext
10253	 * data which would corrupt the filesystem.
10254	 */
10255	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10256	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10257		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10258		/* keep going until hitting a rollback to a frag */
10259		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10260			continue;
10261		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10262		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10263#ifdef INVARIANTS
10264			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10265				panic("softdep_write_inodeblock: lost dep1");
10266#endif /* INVARIANTS */
10267			dp->di_extb[i] = 0;
10268		}
10269		lastadp = NULL;
10270		break;
10271	}
10272	/*
10273	 * If we have zero'ed out the last allocated block of the ext
10274	 * data, roll back the size to the last currently allocated block.
10275	 * We know that this last allocated block is a full-sized as
10276	 * we already checked for fragments in the loop above.
10277	 */
10278	if (lastadp != NULL &&
10279	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10280		for (i = lastadp->ad_offset; i >= 0; i--)
10281			if (dp->di_extb[i] != 0)
10282				break;
10283		dp->di_extsize = (i + 1) * fs->fs_bsize;
10284	}
10285	/*
10286	 * Set the file data dependencies to busy.
10287	 */
10288	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10289	     adp = TAILQ_NEXT(adp, ad_next)) {
10290#ifdef INVARIANTS
10291		if (deplist != 0 && prevlbn >= adp->ad_offset)
10292			panic("softdep_write_inodeblock: lbn order");
10293		if ((adp->ad_state & ATTACHED) == 0)
10294			panic("inodedep %p and adp %p not attached", inodedep, adp);
10295		prevlbn = adp->ad_offset;
10296		if (adp->ad_offset < NDADDR &&
10297		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10298			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10299			    "softdep_write_inodeblock",
10300			    (intmax_t)adp->ad_offset,
10301			    (intmax_t)dp->di_db[adp->ad_offset],
10302			    (intmax_t)adp->ad_newblkno);
10303		if (adp->ad_offset >= NDADDR &&
10304		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10305			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10306			    "softdep_write_inodeblock:",
10307			    (intmax_t)adp->ad_offset - NDADDR,
10308			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10309			    (intmax_t)adp->ad_newblkno);
10310		deplist |= 1 << adp->ad_offset;
10311		if ((adp->ad_state & ATTACHED) == 0)
10312			panic("softdep_write_inodeblock: Unknown state 0x%x",
10313			    adp->ad_state);
10314#endif /* INVARIANTS */
10315		adp->ad_state &= ~ATTACHED;
10316		adp->ad_state |= UNDONE;
10317	}
10318	/*
10319	 * The on-disk inode cannot claim to be any larger than the last
10320	 * fragment that has been written. Otherwise, the on-disk inode
10321	 * might have fragments that were not the last block in the file
10322	 * which would corrupt the filesystem.
10323	 */
10324	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10325	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10326		if (adp->ad_offset >= NDADDR)
10327			break;
10328		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10329		/* keep going until hitting a rollback to a frag */
10330		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10331			continue;
10332		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10333		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10334#ifdef INVARIANTS
10335			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10336				panic("softdep_write_inodeblock: lost dep2");
10337#endif /* INVARIANTS */
10338			dp->di_db[i] = 0;
10339		}
10340		for (i = 0; i < NIADDR; i++) {
10341#ifdef INVARIANTS
10342			if (dp->di_ib[i] != 0 &&
10343			    (deplist & ((1 << NDADDR) << i)) == 0)
10344				panic("softdep_write_inodeblock: lost dep3");
10345#endif /* INVARIANTS */
10346			dp->di_ib[i] = 0;
10347		}
10348		return;
10349	}
10350	/*
10351	 * If we have zero'ed out the last allocated block of the file,
10352	 * roll back the size to the last currently allocated block.
10353	 * We know that this last allocated block is a full-sized as
10354	 * we already checked for fragments in the loop above.
10355	 */
10356	if (lastadp != NULL &&
10357	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10358		for (i = lastadp->ad_offset; i >= 0; i--)
10359			if (dp->di_db[i] != 0)
10360				break;
10361		dp->di_size = (i + 1) * fs->fs_bsize;
10362	}
10363	/*
10364	 * The only dependencies are for indirect blocks.
10365	 *
10366	 * The file size for indirect block additions is not guaranteed.
10367	 * Such a guarantee would be non-trivial to achieve. The conventional
10368	 * synchronous write implementation also does not make this guarantee.
10369	 * Fsck should catch and fix discrepancies. Arguably, the file size
10370	 * can be over-estimated without destroying integrity when the file
10371	 * moves into the indirect blocks (i.e., is large). If we want to
10372	 * postpone fsck, we are stuck with this argument.
10373	 */
10374	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10375		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10376}
10377
10378/*
10379 * Cancel an indirdep as a result of truncation.  Release all of the
10380 * children allocindirs and place their journal work on the appropriate
10381 * list.
10382 */
10383static void
10384cancel_indirdep(indirdep, bp, freeblks)
10385	struct indirdep *indirdep;
10386	struct buf *bp;
10387	struct freeblks *freeblks;
10388{
10389	struct allocindir *aip;
10390
10391	/*
10392	 * None of the indirect pointers will ever be visible,
10393	 * so they can simply be tossed. GOINGAWAY ensures
10394	 * that allocated pointers will be saved in the buffer
10395	 * cache until they are freed. Note that they will
10396	 * only be able to be found by their physical address
10397	 * since the inode mapping the logical address will
10398	 * be gone. The save buffer used for the safe copy
10399	 * was allocated in setup_allocindir_phase2 using
10400	 * the physical address so it could be used for this
10401	 * purpose. Hence we swap the safe copy with the real
10402	 * copy, allowing the safe copy to be freed and holding
10403	 * on to the real copy for later use in indir_trunc.
10404	 */
10405	if (indirdep->ir_state & GOINGAWAY)
10406		panic("cancel_indirdep: already gone");
10407	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10408		indirdep->ir_state |= DEPCOMPLETE;
10409		LIST_REMOVE(indirdep, ir_next);
10410	}
10411	indirdep->ir_state |= GOINGAWAY;
10412	VFSTOUFS(indirdep->ir_list.wk_mp)->softdep_numindirdeps += 1;
10413	/*
10414	 * Pass in bp for blocks still have journal writes
10415	 * pending so we can cancel them on their own.
10416	 */
10417	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10418		cancel_allocindir(aip, bp, freeblks, 0);
10419	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10420		cancel_allocindir(aip, NULL, freeblks, 0);
10421	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10422		cancel_allocindir(aip, NULL, freeblks, 0);
10423	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10424		cancel_allocindir(aip, NULL, freeblks, 0);
10425	/*
10426	 * If there are pending partial truncations we need to keep the
10427	 * old block copy around until they complete.  This is because
10428	 * the current b_data is not a perfect superset of the available
10429	 * blocks.
10430	 */
10431	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10432		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10433	else
10434		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10435	WORKLIST_REMOVE(&indirdep->ir_list);
10436	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10437	indirdep->ir_bp = NULL;
10438	indirdep->ir_freeblks = freeblks;
10439}
10440
10441/*
10442 * Free an indirdep once it no longer has new pointers to track.
10443 */
10444static void
10445free_indirdep(indirdep)
10446	struct indirdep *indirdep;
10447{
10448
10449	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10450	    ("free_indirdep: Indir trunc list not empty."));
10451	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10452	    ("free_indirdep: Complete head not empty."));
10453	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10454	    ("free_indirdep: write head not empty."));
10455	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10456	    ("free_indirdep: done head not empty."));
10457	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10458	    ("free_indirdep: deplist head not empty."));
10459	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10460	    ("free_indirdep: %p still on newblk list.", indirdep));
10461	KASSERT(indirdep->ir_saveddata == NULL,
10462	    ("free_indirdep: %p still has saved data.", indirdep));
10463	if (indirdep->ir_state & ONWORKLIST)
10464		WORKLIST_REMOVE(&indirdep->ir_list);
10465	WORKITEM_FREE(indirdep, D_INDIRDEP);
10466}
10467
10468/*
10469 * Called before a write to an indirdep.  This routine is responsible for
10470 * rolling back pointers to a safe state which includes only those
10471 * allocindirs which have been completed.
10472 */
10473static void
10474initiate_write_indirdep(indirdep, bp)
10475	struct indirdep *indirdep;
10476	struct buf *bp;
10477{
10478	struct ufsmount *ump;
10479
10480	indirdep->ir_state |= IOSTARTED;
10481	if (indirdep->ir_state & GOINGAWAY)
10482		panic("disk_io_initiation: indirdep gone");
10483	/*
10484	 * If there are no remaining dependencies, this will be writing
10485	 * the real pointers.
10486	 */
10487	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10488	    TAILQ_EMPTY(&indirdep->ir_trunc))
10489		return;
10490	/*
10491	 * Replace up-to-date version with safe version.
10492	 */
10493	if (indirdep->ir_saveddata == NULL) {
10494		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10495		LOCK_OWNED(ump);
10496		FREE_LOCK(ump);
10497		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10498		    M_SOFTDEP_FLAGS);
10499		ACQUIRE_LOCK(ump);
10500	}
10501	indirdep->ir_state &= ~ATTACHED;
10502	indirdep->ir_state |= UNDONE;
10503	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10504	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10505	    bp->b_bcount);
10506}
10507
10508/*
10509 * Called when an inode has been cleared in a cg bitmap.  This finally
10510 * eliminates any canceled jaddrefs
10511 */
10512void
10513softdep_setup_inofree(mp, bp, ino, wkhd)
10514	struct mount *mp;
10515	struct buf *bp;
10516	ino_t ino;
10517	struct workhead *wkhd;
10518{
10519	struct worklist *wk, *wkn;
10520	struct inodedep *inodedep;
10521	struct ufsmount *ump;
10522	uint8_t *inosused;
10523	struct cg *cgp;
10524	struct fs *fs;
10525
10526	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10527	    ("softdep_setup_inofree called on non-softdep filesystem"));
10528	ump = VFSTOUFS(mp);
10529	ACQUIRE_LOCK(ump);
10530	fs = ump->um_fs;
10531	cgp = (struct cg *)bp->b_data;
10532	inosused = cg_inosused(cgp);
10533	if (isset(inosused, ino % fs->fs_ipg))
10534		panic("softdep_setup_inofree: inode %ju not freed.",
10535		    (uintmax_t)ino);
10536	if (inodedep_lookup(mp, ino, 0, &inodedep))
10537		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10538		    (uintmax_t)ino, inodedep);
10539	if (wkhd) {
10540		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10541			if (wk->wk_type != D_JADDREF)
10542				continue;
10543			WORKLIST_REMOVE(wk);
10544			/*
10545			 * We can free immediately even if the jaddref
10546			 * isn't attached in a background write as now
10547			 * the bitmaps are reconciled.
10548			 */
10549			wk->wk_state |= COMPLETE | ATTACHED;
10550			free_jaddref(WK_JADDREF(wk));
10551		}
10552		jwork_move(&bp->b_dep, wkhd);
10553	}
10554	FREE_LOCK(ump);
10555}
10556
10557
10558/*
10559 * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10560 * map.  Any dependencies waiting for the write to clear are added to the
10561 * buf's list and any jnewblks that are being canceled are discarded
10562 * immediately.
10563 */
10564void
10565softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10566	struct mount *mp;
10567	struct buf *bp;
10568	ufs2_daddr_t blkno;
10569	int frags;
10570	struct workhead *wkhd;
10571{
10572	struct bmsafemap *bmsafemap;
10573	struct jnewblk *jnewblk;
10574	struct ufsmount *ump;
10575	struct worklist *wk;
10576	struct fs *fs;
10577#ifdef SUJ_DEBUG
10578	uint8_t *blksfree;
10579	struct cg *cgp;
10580	ufs2_daddr_t jstart;
10581	ufs2_daddr_t jend;
10582	ufs2_daddr_t end;
10583	long bno;
10584	int i;
10585#endif
10586
10587	CTR3(KTR_SUJ,
10588	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10589	    blkno, frags, wkhd);
10590
10591	ump = VFSTOUFS(mp);
10592	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10593	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10594	ACQUIRE_LOCK(ump);
10595	/* Lookup the bmsafemap so we track when it is dirty. */
10596	fs = ump->um_fs;
10597	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10598	/*
10599	 * Detach any jnewblks which have been canceled.  They must linger
10600	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10601	 * an unjournaled allocation from hitting the disk.
10602	 */
10603	if (wkhd) {
10604		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10605			CTR2(KTR_SUJ,
10606			    "softdep_setup_blkfree: blkno %jd wk type %d",
10607			    blkno, wk->wk_type);
10608			WORKLIST_REMOVE(wk);
10609			if (wk->wk_type != D_JNEWBLK) {
10610				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10611				continue;
10612			}
10613			jnewblk = WK_JNEWBLK(wk);
10614			KASSERT(jnewblk->jn_state & GOINGAWAY,
10615			    ("softdep_setup_blkfree: jnewblk not canceled."));
10616#ifdef SUJ_DEBUG
10617			/*
10618			 * Assert that this block is free in the bitmap
10619			 * before we discard the jnewblk.
10620			 */
10621			cgp = (struct cg *)bp->b_data;
10622			blksfree = cg_blksfree(cgp);
10623			bno = dtogd(fs, jnewblk->jn_blkno);
10624			for (i = jnewblk->jn_oldfrags;
10625			    i < jnewblk->jn_frags; i++) {
10626				if (isset(blksfree, bno + i))
10627					continue;
10628				panic("softdep_setup_blkfree: not free");
10629			}
10630#endif
10631			/*
10632			 * Even if it's not attached we can free immediately
10633			 * as the new bitmap is correct.
10634			 */
10635			wk->wk_state |= COMPLETE | ATTACHED;
10636			free_jnewblk(jnewblk);
10637		}
10638	}
10639
10640#ifdef SUJ_DEBUG
10641	/*
10642	 * Assert that we are not freeing a block which has an outstanding
10643	 * allocation dependency.
10644	 */
10645	fs = VFSTOUFS(mp)->um_fs;
10646	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10647	end = blkno + frags;
10648	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10649		/*
10650		 * Don't match against blocks that will be freed when the
10651		 * background write is done.
10652		 */
10653		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10654		    (COMPLETE | DEPCOMPLETE))
10655			continue;
10656		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10657		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10658		if ((blkno >= jstart && blkno < jend) ||
10659		    (end > jstart && end <= jend)) {
10660			printf("state 0x%X %jd - %d %d dep %p\n",
10661			    jnewblk->jn_state, jnewblk->jn_blkno,
10662			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10663			    jnewblk->jn_dep);
10664			panic("softdep_setup_blkfree: "
10665			    "%jd-%jd(%d) overlaps with %jd-%jd",
10666			    blkno, end, frags, jstart, jend);
10667		}
10668	}
10669#endif
10670	FREE_LOCK(ump);
10671}
10672
10673/*
10674 * Revert a block allocation when the journal record that describes it
10675 * is not yet written.
10676 */
10677static int
10678jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10679	struct jnewblk *jnewblk;
10680	struct fs *fs;
10681	struct cg *cgp;
10682	uint8_t *blksfree;
10683{
10684	ufs1_daddr_t fragno;
10685	long cgbno, bbase;
10686	int frags, blk;
10687	int i;
10688
10689	frags = 0;
10690	cgbno = dtogd(fs, jnewblk->jn_blkno);
10691	/*
10692	 * We have to test which frags need to be rolled back.  We may
10693	 * be operating on a stale copy when doing background writes.
10694	 */
10695	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10696		if (isclr(blksfree, cgbno + i))
10697			frags++;
10698	if (frags == 0)
10699		return (0);
10700	/*
10701	 * This is mostly ffs_blkfree() sans some validation and
10702	 * superblock updates.
10703	 */
10704	if (frags == fs->fs_frag) {
10705		fragno = fragstoblks(fs, cgbno);
10706		ffs_setblock(fs, blksfree, fragno);
10707		ffs_clusteracct(fs, cgp, fragno, 1);
10708		cgp->cg_cs.cs_nbfree++;
10709	} else {
10710		cgbno += jnewblk->jn_oldfrags;
10711		bbase = cgbno - fragnum(fs, cgbno);
10712		/* Decrement the old frags.  */
10713		blk = blkmap(fs, blksfree, bbase);
10714		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10715		/* Deallocate the fragment */
10716		for (i = 0; i < frags; i++)
10717			setbit(blksfree, cgbno + i);
10718		cgp->cg_cs.cs_nffree += frags;
10719		/* Add back in counts associated with the new frags */
10720		blk = blkmap(fs, blksfree, bbase);
10721		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10722		/* If a complete block has been reassembled, account for it. */
10723		fragno = fragstoblks(fs, bbase);
10724		if (ffs_isblock(fs, blksfree, fragno)) {
10725			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10726			ffs_clusteracct(fs, cgp, fragno, 1);
10727			cgp->cg_cs.cs_nbfree++;
10728		}
10729	}
10730	stat_jnewblk++;
10731	jnewblk->jn_state &= ~ATTACHED;
10732	jnewblk->jn_state |= UNDONE;
10733
10734	return (frags);
10735}
10736
10737static void
10738initiate_write_bmsafemap(bmsafemap, bp)
10739	struct bmsafemap *bmsafemap;
10740	struct buf *bp;			/* The cg block. */
10741{
10742	struct jaddref *jaddref;
10743	struct jnewblk *jnewblk;
10744	uint8_t *inosused;
10745	uint8_t *blksfree;
10746	struct cg *cgp;
10747	struct fs *fs;
10748	ino_t ino;
10749
10750	if (bmsafemap->sm_state & IOSTARTED)
10751		return;
10752	bmsafemap->sm_state |= IOSTARTED;
10753	/*
10754	 * Clear any inode allocations which are pending journal writes.
10755	 */
10756	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10757		cgp = (struct cg *)bp->b_data;
10758		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10759		inosused = cg_inosused(cgp);
10760		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10761			ino = jaddref->ja_ino % fs->fs_ipg;
10762			if (isset(inosused, ino)) {
10763				if ((jaddref->ja_mode & IFMT) == IFDIR)
10764					cgp->cg_cs.cs_ndir--;
10765				cgp->cg_cs.cs_nifree++;
10766				clrbit(inosused, ino);
10767				jaddref->ja_state &= ~ATTACHED;
10768				jaddref->ja_state |= UNDONE;
10769				stat_jaddref++;
10770			} else
10771				panic("initiate_write_bmsafemap: inode %ju "
10772				    "marked free", (uintmax_t)jaddref->ja_ino);
10773		}
10774	}
10775	/*
10776	 * Clear any block allocations which are pending journal writes.
10777	 */
10778	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10779		cgp = (struct cg *)bp->b_data;
10780		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10781		blksfree = cg_blksfree(cgp);
10782		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10783			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10784				continue;
10785			panic("initiate_write_bmsafemap: block %jd "
10786			    "marked free", jnewblk->jn_blkno);
10787		}
10788	}
10789	/*
10790	 * Move allocation lists to the written lists so they can be
10791	 * cleared once the block write is complete.
10792	 */
10793	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10794	    inodedep, id_deps);
10795	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10796	    newblk, nb_deps);
10797	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10798	    wk_list);
10799}
10800
10801/*
10802 * This routine is called during the completion interrupt
10803 * service routine for a disk write (from the procedure called
10804 * by the device driver to inform the filesystem caches of
10805 * a request completion).  It should be called early in this
10806 * procedure, before the block is made available to other
10807 * processes or other routines are called.
10808 *
10809 */
10810static void
10811softdep_disk_write_complete(bp)
10812	struct buf *bp;		/* describes the completed disk write */
10813{
10814	struct worklist *wk;
10815	struct worklist *owk;
10816	struct ufsmount *ump;
10817	struct workhead reattach;
10818	struct freeblks *freeblks;
10819	struct buf *sbp;
10820
10821	/*
10822	 * If an error occurred while doing the write, then the data
10823	 * has not hit the disk and the dependencies cannot be unrolled.
10824	 */
10825	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10826		return;
10827	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
10828		return;
10829	ump = VFSTOUFS(wk->wk_mp);
10830	LIST_INIT(&reattach);
10831	/*
10832	 * This lock must not be released anywhere in this code segment.
10833	 */
10834	sbp = NULL;
10835	owk = NULL;
10836	ACQUIRE_LOCK(ump);
10837	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10838		WORKLIST_REMOVE(wk);
10839		dep_write[wk->wk_type]++;
10840		if (wk == owk)
10841			panic("duplicate worklist: %p\n", wk);
10842		owk = wk;
10843		switch (wk->wk_type) {
10844
10845		case D_PAGEDEP:
10846			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10847				WORKLIST_INSERT(&reattach, wk);
10848			continue;
10849
10850		case D_INODEDEP:
10851			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10852				WORKLIST_INSERT(&reattach, wk);
10853			continue;
10854
10855		case D_BMSAFEMAP:
10856			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10857				WORKLIST_INSERT(&reattach, wk);
10858			continue;
10859
10860		case D_MKDIR:
10861			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10862			continue;
10863
10864		case D_ALLOCDIRECT:
10865			wk->wk_state |= COMPLETE;
10866			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10867			continue;
10868
10869		case D_ALLOCINDIR:
10870			wk->wk_state |= COMPLETE;
10871			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10872			continue;
10873
10874		case D_INDIRDEP:
10875			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10876				WORKLIST_INSERT(&reattach, wk);
10877			continue;
10878
10879		case D_FREEBLKS:
10880			wk->wk_state |= COMPLETE;
10881			freeblks = WK_FREEBLKS(wk);
10882			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10883			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10884				add_to_worklist(wk, WK_NODELAY);
10885			continue;
10886
10887		case D_FREEWORK:
10888			handle_written_freework(WK_FREEWORK(wk));
10889			break;
10890
10891		case D_JSEGDEP:
10892			free_jsegdep(WK_JSEGDEP(wk));
10893			continue;
10894
10895		case D_JSEG:
10896			handle_written_jseg(WK_JSEG(wk), bp);
10897			continue;
10898
10899		case D_SBDEP:
10900			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10901				WORKLIST_INSERT(&reattach, wk);
10902			continue;
10903
10904		case D_FREEDEP:
10905			free_freedep(WK_FREEDEP(wk));
10906			continue;
10907
10908		default:
10909			panic("handle_disk_write_complete: Unknown type %s",
10910			    TYPENAME(wk->wk_type));
10911			/* NOTREACHED */
10912		}
10913	}
10914	/*
10915	 * Reattach any requests that must be redone.
10916	 */
10917	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10918		WORKLIST_REMOVE(wk);
10919		WORKLIST_INSERT(&bp->b_dep, wk);
10920	}
10921	FREE_LOCK(ump);
10922	if (sbp)
10923		brelse(sbp);
10924}
10925
10926/*
10927 * Called from within softdep_disk_write_complete above. Note that
10928 * this routine is always called from interrupt level with further
10929 * splbio interrupts blocked.
10930 */
10931static void
10932handle_allocdirect_partdone(adp, wkhd)
10933	struct allocdirect *adp;	/* the completed allocdirect */
10934	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10935{
10936	struct allocdirectlst *listhead;
10937	struct allocdirect *listadp;
10938	struct inodedep *inodedep;
10939	long bsize;
10940
10941	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10942		return;
10943	/*
10944	 * The on-disk inode cannot claim to be any larger than the last
10945	 * fragment that has been written. Otherwise, the on-disk inode
10946	 * might have fragments that were not the last block in the file
10947	 * which would corrupt the filesystem. Thus, we cannot free any
10948	 * allocdirects after one whose ad_oldblkno claims a fragment as
10949	 * these blocks must be rolled back to zero before writing the inode.
10950	 * We check the currently active set of allocdirects in id_inoupdt
10951	 * or id_extupdt as appropriate.
10952	 */
10953	inodedep = adp->ad_inodedep;
10954	bsize = inodedep->id_fs->fs_bsize;
10955	if (adp->ad_state & EXTDATA)
10956		listhead = &inodedep->id_extupdt;
10957	else
10958		listhead = &inodedep->id_inoupdt;
10959	TAILQ_FOREACH(listadp, listhead, ad_next) {
10960		/* found our block */
10961		if (listadp == adp)
10962			break;
10963		/* continue if ad_oldlbn is not a fragment */
10964		if (listadp->ad_oldsize == 0 ||
10965		    listadp->ad_oldsize == bsize)
10966			continue;
10967		/* hit a fragment */
10968		return;
10969	}
10970	/*
10971	 * If we have reached the end of the current list without
10972	 * finding the just finished dependency, then it must be
10973	 * on the future dependency list. Future dependencies cannot
10974	 * be freed until they are moved to the current list.
10975	 */
10976	if (listadp == NULL) {
10977#ifdef DEBUG
10978		if (adp->ad_state & EXTDATA)
10979			listhead = &inodedep->id_newextupdt;
10980		else
10981			listhead = &inodedep->id_newinoupdt;
10982		TAILQ_FOREACH(listadp, listhead, ad_next)
10983			/* found our block */
10984			if (listadp == adp)
10985				break;
10986		if (listadp == NULL)
10987			panic("handle_allocdirect_partdone: lost dep");
10988#endif /* DEBUG */
10989		return;
10990	}
10991	/*
10992	 * If we have found the just finished dependency, then queue
10993	 * it along with anything that follows it that is complete.
10994	 * Since the pointer has not yet been written in the inode
10995	 * as the dependency prevents it, place the allocdirect on the
10996	 * bufwait list where it will be freed once the pointer is
10997	 * valid.
10998	 */
10999	if (wkhd == NULL)
11000		wkhd = &inodedep->id_bufwait;
11001	for (; adp; adp = listadp) {
11002		listadp = TAILQ_NEXT(adp, ad_next);
11003		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11004			return;
11005		TAILQ_REMOVE(listhead, adp, ad_next);
11006		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11007	}
11008}
11009
11010/*
11011 * Called from within softdep_disk_write_complete above.  This routine
11012 * completes successfully written allocindirs.
11013 */
11014static void
11015handle_allocindir_partdone(aip)
11016	struct allocindir *aip;		/* the completed allocindir */
11017{
11018	struct indirdep *indirdep;
11019
11020	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11021		return;
11022	indirdep = aip->ai_indirdep;
11023	LIST_REMOVE(aip, ai_next);
11024	/*
11025	 * Don't set a pointer while the buffer is undergoing IO or while
11026	 * we have active truncations.
11027	 */
11028	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11029		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11030		return;
11031	}
11032	if (indirdep->ir_state & UFS1FMT)
11033		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11034		    aip->ai_newblkno;
11035	else
11036		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11037		    aip->ai_newblkno;
11038	/*
11039	 * Await the pointer write before freeing the allocindir.
11040	 */
11041	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11042}
11043
11044/*
11045 * Release segments held on a jwork list.
11046 */
11047static void
11048handle_jwork(wkhd)
11049	struct workhead *wkhd;
11050{
11051	struct worklist *wk;
11052
11053	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11054		WORKLIST_REMOVE(wk);
11055		switch (wk->wk_type) {
11056		case D_JSEGDEP:
11057			free_jsegdep(WK_JSEGDEP(wk));
11058			continue;
11059		case D_FREEDEP:
11060			free_freedep(WK_FREEDEP(wk));
11061			continue;
11062		case D_FREEFRAG:
11063			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11064			WORKITEM_FREE(wk, D_FREEFRAG);
11065			continue;
11066		case D_FREEWORK:
11067			handle_written_freework(WK_FREEWORK(wk));
11068			continue;
11069		default:
11070			panic("handle_jwork: Unknown type %s\n",
11071			    TYPENAME(wk->wk_type));
11072		}
11073	}
11074}
11075
11076/*
11077 * Handle the bufwait list on an inode when it is safe to release items
11078 * held there.  This normally happens after an inode block is written but
11079 * may be delayed and handled later if there are pending journal items that
11080 * are not yet safe to be released.
11081 */
11082static struct freefile *
11083handle_bufwait(inodedep, refhd)
11084	struct inodedep *inodedep;
11085	struct workhead *refhd;
11086{
11087	struct jaddref *jaddref;
11088	struct freefile *freefile;
11089	struct worklist *wk;
11090
11091	freefile = NULL;
11092	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11093		WORKLIST_REMOVE(wk);
11094		switch (wk->wk_type) {
11095		case D_FREEFILE:
11096			/*
11097			 * We defer adding freefile to the worklist
11098			 * until all other additions have been made to
11099			 * ensure that it will be done after all the
11100			 * old blocks have been freed.
11101			 */
11102			if (freefile != NULL)
11103				panic("handle_bufwait: freefile");
11104			freefile = WK_FREEFILE(wk);
11105			continue;
11106
11107		case D_MKDIR:
11108			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11109			continue;
11110
11111		case D_DIRADD:
11112			diradd_inode_written(WK_DIRADD(wk), inodedep);
11113			continue;
11114
11115		case D_FREEFRAG:
11116			wk->wk_state |= COMPLETE;
11117			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11118				add_to_worklist(wk, 0);
11119			continue;
11120
11121		case D_DIRREM:
11122			wk->wk_state |= COMPLETE;
11123			add_to_worklist(wk, 0);
11124			continue;
11125
11126		case D_ALLOCDIRECT:
11127		case D_ALLOCINDIR:
11128			free_newblk(WK_NEWBLK(wk));
11129			continue;
11130
11131		case D_JNEWBLK:
11132			wk->wk_state |= COMPLETE;
11133			free_jnewblk(WK_JNEWBLK(wk));
11134			continue;
11135
11136		/*
11137		 * Save freed journal segments and add references on
11138		 * the supplied list which will delay their release
11139		 * until the cg bitmap is cleared on disk.
11140		 */
11141		case D_JSEGDEP:
11142			if (refhd == NULL)
11143				free_jsegdep(WK_JSEGDEP(wk));
11144			else
11145				WORKLIST_INSERT(refhd, wk);
11146			continue;
11147
11148		case D_JADDREF:
11149			jaddref = WK_JADDREF(wk);
11150			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11151			    if_deps);
11152			/*
11153			 * Transfer any jaddrefs to the list to be freed with
11154			 * the bitmap if we're handling a removed file.
11155			 */
11156			if (refhd == NULL) {
11157				wk->wk_state |= COMPLETE;
11158				free_jaddref(jaddref);
11159			} else
11160				WORKLIST_INSERT(refhd, wk);
11161			continue;
11162
11163		default:
11164			panic("handle_bufwait: Unknown type %p(%s)",
11165			    wk, TYPENAME(wk->wk_type));
11166			/* NOTREACHED */
11167		}
11168	}
11169	return (freefile);
11170}
11171/*
11172 * Called from within softdep_disk_write_complete above to restore
11173 * in-memory inode block contents to their most up-to-date state. Note
11174 * that this routine is always called from interrupt level with further
11175 * splbio interrupts blocked.
11176 */
11177static int
11178handle_written_inodeblock(inodedep, bp)
11179	struct inodedep *inodedep;
11180	struct buf *bp;		/* buffer containing the inode block */
11181{
11182	struct freefile *freefile;
11183	struct allocdirect *adp, *nextadp;
11184	struct ufs1_dinode *dp1 = NULL;
11185	struct ufs2_dinode *dp2 = NULL;
11186	struct workhead wkhd;
11187	int hadchanges, fstype;
11188	ino_t freelink;
11189
11190	LIST_INIT(&wkhd);
11191	hadchanges = 0;
11192	freefile = NULL;
11193	if ((inodedep->id_state & IOSTARTED) == 0)
11194		panic("handle_written_inodeblock: not started");
11195	inodedep->id_state &= ~IOSTARTED;
11196	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11197		fstype = UFS1;
11198		dp1 = (struct ufs1_dinode *)bp->b_data +
11199		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11200		freelink = dp1->di_freelink;
11201	} else {
11202		fstype = UFS2;
11203		dp2 = (struct ufs2_dinode *)bp->b_data +
11204		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11205		freelink = dp2->di_freelink;
11206	}
11207	/*
11208	 * Leave this inodeblock dirty until it's in the list.
11209	 */
11210	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11211		struct inodedep *inon;
11212
11213		inon = TAILQ_NEXT(inodedep, id_unlinked);
11214		if ((inon == NULL && freelink == 0) ||
11215		    (inon && inon->id_ino == freelink)) {
11216			if (inon)
11217				inon->id_state |= UNLINKPREV;
11218			inodedep->id_state |= UNLINKNEXT;
11219		}
11220		hadchanges = 1;
11221	}
11222	/*
11223	 * If we had to rollback the inode allocation because of
11224	 * bitmaps being incomplete, then simply restore it.
11225	 * Keep the block dirty so that it will not be reclaimed until
11226	 * all associated dependencies have been cleared and the
11227	 * corresponding updates written to disk.
11228	 */
11229	if (inodedep->id_savedino1 != NULL) {
11230		hadchanges = 1;
11231		if (fstype == UFS1)
11232			*dp1 = *inodedep->id_savedino1;
11233		else
11234			*dp2 = *inodedep->id_savedino2;
11235		free(inodedep->id_savedino1, M_SAVEDINO);
11236		inodedep->id_savedino1 = NULL;
11237		if ((bp->b_flags & B_DELWRI) == 0)
11238			stat_inode_bitmap++;
11239		bdirty(bp);
11240		/*
11241		 * If the inode is clear here and GOINGAWAY it will never
11242		 * be written.  Process the bufwait and clear any pending
11243		 * work which may include the freefile.
11244		 */
11245		if (inodedep->id_state & GOINGAWAY)
11246			goto bufwait;
11247		return (1);
11248	}
11249	inodedep->id_state |= COMPLETE;
11250	/*
11251	 * Roll forward anything that had to be rolled back before
11252	 * the inode could be updated.
11253	 */
11254	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11255		nextadp = TAILQ_NEXT(adp, ad_next);
11256		if (adp->ad_state & ATTACHED)
11257			panic("handle_written_inodeblock: new entry");
11258		if (fstype == UFS1) {
11259			if (adp->ad_offset < NDADDR) {
11260				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11261					panic("%s %s #%jd mismatch %d != %jd",
11262					    "handle_written_inodeblock:",
11263					    "direct pointer",
11264					    (intmax_t)adp->ad_offset,
11265					    dp1->di_db[adp->ad_offset],
11266					    (intmax_t)adp->ad_oldblkno);
11267				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11268			} else {
11269				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11270					panic("%s: %s #%jd allocated as %d",
11271					    "handle_written_inodeblock",
11272					    "indirect pointer",
11273					    (intmax_t)adp->ad_offset - NDADDR,
11274					    dp1->di_ib[adp->ad_offset - NDADDR]);
11275				dp1->di_ib[adp->ad_offset - NDADDR] =
11276				    adp->ad_newblkno;
11277			}
11278		} else {
11279			if (adp->ad_offset < NDADDR) {
11280				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11281					panic("%s: %s #%jd %s %jd != %jd",
11282					    "handle_written_inodeblock",
11283					    "direct pointer",
11284					    (intmax_t)adp->ad_offset, "mismatch",
11285					    (intmax_t)dp2->di_db[adp->ad_offset],
11286					    (intmax_t)adp->ad_oldblkno);
11287				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11288			} else {
11289				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11290					panic("%s: %s #%jd allocated as %jd",
11291					    "handle_written_inodeblock",
11292					    "indirect pointer",
11293					    (intmax_t)adp->ad_offset - NDADDR,
11294					    (intmax_t)
11295					    dp2->di_ib[adp->ad_offset - NDADDR]);
11296				dp2->di_ib[adp->ad_offset - NDADDR] =
11297				    adp->ad_newblkno;
11298			}
11299		}
11300		adp->ad_state &= ~UNDONE;
11301		adp->ad_state |= ATTACHED;
11302		hadchanges = 1;
11303	}
11304	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11305		nextadp = TAILQ_NEXT(adp, ad_next);
11306		if (adp->ad_state & ATTACHED)
11307			panic("handle_written_inodeblock: new entry");
11308		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11309			panic("%s: direct pointers #%jd %s %jd != %jd",
11310			    "handle_written_inodeblock",
11311			    (intmax_t)adp->ad_offset, "mismatch",
11312			    (intmax_t)dp2->di_extb[adp->ad_offset],
11313			    (intmax_t)adp->ad_oldblkno);
11314		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11315		adp->ad_state &= ~UNDONE;
11316		adp->ad_state |= ATTACHED;
11317		hadchanges = 1;
11318	}
11319	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11320		stat_direct_blk_ptrs++;
11321	/*
11322	 * Reset the file size to its most up-to-date value.
11323	 */
11324	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11325		panic("handle_written_inodeblock: bad size");
11326	if (inodedep->id_savednlink > LINK_MAX)
11327		panic("handle_written_inodeblock: Invalid link count "
11328		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11329	if (fstype == UFS1) {
11330		if (dp1->di_nlink != inodedep->id_savednlink) {
11331			dp1->di_nlink = inodedep->id_savednlink;
11332			hadchanges = 1;
11333		}
11334		if (dp1->di_size != inodedep->id_savedsize) {
11335			dp1->di_size = inodedep->id_savedsize;
11336			hadchanges = 1;
11337		}
11338	} else {
11339		if (dp2->di_nlink != inodedep->id_savednlink) {
11340			dp2->di_nlink = inodedep->id_savednlink;
11341			hadchanges = 1;
11342		}
11343		if (dp2->di_size != inodedep->id_savedsize) {
11344			dp2->di_size = inodedep->id_savedsize;
11345			hadchanges = 1;
11346		}
11347		if (dp2->di_extsize != inodedep->id_savedextsize) {
11348			dp2->di_extsize = inodedep->id_savedextsize;
11349			hadchanges = 1;
11350		}
11351	}
11352	inodedep->id_savedsize = -1;
11353	inodedep->id_savedextsize = -1;
11354	inodedep->id_savednlink = -1;
11355	/*
11356	 * If there were any rollbacks in the inode block, then it must be
11357	 * marked dirty so that its will eventually get written back in
11358	 * its correct form.
11359	 */
11360	if (hadchanges)
11361		bdirty(bp);
11362bufwait:
11363	/*
11364	 * Process any allocdirects that completed during the update.
11365	 */
11366	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11367		handle_allocdirect_partdone(adp, &wkhd);
11368	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11369		handle_allocdirect_partdone(adp, &wkhd);
11370	/*
11371	 * Process deallocations that were held pending until the
11372	 * inode had been written to disk. Freeing of the inode
11373	 * is delayed until after all blocks have been freed to
11374	 * avoid creation of new <vfsid, inum, lbn> triples
11375	 * before the old ones have been deleted.  Completely
11376	 * unlinked inodes are not processed until the unlinked
11377	 * inode list is written or the last reference is removed.
11378	 */
11379	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11380		freefile = handle_bufwait(inodedep, NULL);
11381		if (freefile && !LIST_EMPTY(&wkhd)) {
11382			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11383			freefile = NULL;
11384		}
11385	}
11386	/*
11387	 * Move rolled forward dependency completions to the bufwait list
11388	 * now that those that were already written have been processed.
11389	 */
11390	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11391		panic("handle_written_inodeblock: bufwait but no changes");
11392	jwork_move(&inodedep->id_bufwait, &wkhd);
11393
11394	if (freefile != NULL) {
11395		/*
11396		 * If the inode is goingaway it was never written.  Fake up
11397		 * the state here so free_inodedep() can succeed.
11398		 */
11399		if (inodedep->id_state & GOINGAWAY)
11400			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11401		if (free_inodedep(inodedep) == 0)
11402			panic("handle_written_inodeblock: live inodedep %p",
11403			    inodedep);
11404		add_to_worklist(&freefile->fx_list, 0);
11405		return (0);
11406	}
11407
11408	/*
11409	 * If no outstanding dependencies, free it.
11410	 */
11411	if (free_inodedep(inodedep) ||
11412	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11413	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11414	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11415	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11416		return (0);
11417	return (hadchanges);
11418}
11419
11420static int
11421handle_written_indirdep(indirdep, bp, bpp)
11422	struct indirdep *indirdep;
11423	struct buf *bp;
11424	struct buf **bpp;
11425{
11426	struct allocindir *aip;
11427	struct buf *sbp;
11428	int chgs;
11429
11430	if (indirdep->ir_state & GOINGAWAY)
11431		panic("handle_written_indirdep: indirdep gone");
11432	if ((indirdep->ir_state & IOSTARTED) == 0)
11433		panic("handle_written_indirdep: IO not started");
11434	chgs = 0;
11435	/*
11436	 * If there were rollbacks revert them here.
11437	 */
11438	if (indirdep->ir_saveddata) {
11439		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11440		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11441			free(indirdep->ir_saveddata, M_INDIRDEP);
11442			indirdep->ir_saveddata = NULL;
11443		}
11444		chgs = 1;
11445	}
11446	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11447	indirdep->ir_state |= ATTACHED;
11448	/*
11449	 * Move allocindirs with written pointers to the completehd if
11450	 * the indirdep's pointer is not yet written.  Otherwise
11451	 * free them here.
11452	 */
11453	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11454		LIST_REMOVE(aip, ai_next);
11455		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11456			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11457			    ai_next);
11458			newblk_freefrag(&aip->ai_block);
11459			continue;
11460		}
11461		free_newblk(&aip->ai_block);
11462	}
11463	/*
11464	 * Move allocindirs that have finished dependency processing from
11465	 * the done list to the write list after updating the pointers.
11466	 */
11467	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11468		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11469			handle_allocindir_partdone(aip);
11470			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11471				panic("disk_write_complete: not gone");
11472			chgs = 1;
11473		}
11474	}
11475	/*
11476	 * Preserve the indirdep if there were any changes or if it is not
11477	 * yet valid on disk.
11478	 */
11479	if (chgs) {
11480		stat_indir_blk_ptrs++;
11481		bdirty(bp);
11482		return (1);
11483	}
11484	/*
11485	 * If there were no changes we can discard the savedbp and detach
11486	 * ourselves from the buf.  We are only carrying completed pointers
11487	 * in this case.
11488	 */
11489	sbp = indirdep->ir_savebp;
11490	sbp->b_flags |= B_INVAL | B_NOCACHE;
11491	indirdep->ir_savebp = NULL;
11492	indirdep->ir_bp = NULL;
11493	if (*bpp != NULL)
11494		panic("handle_written_indirdep: bp already exists.");
11495	*bpp = sbp;
11496	/*
11497	 * The indirdep may not be freed until its parent points at it.
11498	 */
11499	if (indirdep->ir_state & DEPCOMPLETE)
11500		free_indirdep(indirdep);
11501
11502	return (0);
11503}
11504
11505/*
11506 * Process a diradd entry after its dependent inode has been written.
11507 * This routine must be called with splbio interrupts blocked.
11508 */
11509static void
11510diradd_inode_written(dap, inodedep)
11511	struct diradd *dap;
11512	struct inodedep *inodedep;
11513{
11514
11515	dap->da_state |= COMPLETE;
11516	complete_diradd(dap);
11517	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11518}
11519
11520/*
11521 * Returns true if the bmsafemap will have rollbacks when written.  Must only
11522 * be called with the soft updates lock and the buf lock on the cg held.
11523 */
11524static int
11525bmsafemap_backgroundwrite(bmsafemap, bp)
11526	struct bmsafemap *bmsafemap;
11527	struct buf *bp;
11528{
11529	int dirty;
11530
11531	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11532	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11533	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11534	/*
11535	 * If we're initiating a background write we need to process the
11536	 * rollbacks as they exist now, not as they exist when IO starts.
11537	 * No other consumers will look at the contents of the shadowed
11538	 * buf so this is safe to do here.
11539	 */
11540	if (bp->b_xflags & BX_BKGRDMARKER)
11541		initiate_write_bmsafemap(bmsafemap, bp);
11542
11543	return (dirty);
11544}
11545
11546/*
11547 * Re-apply an allocation when a cg write is complete.
11548 */
11549static int
11550jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11551	struct jnewblk *jnewblk;
11552	struct fs *fs;
11553	struct cg *cgp;
11554	uint8_t *blksfree;
11555{
11556	ufs1_daddr_t fragno;
11557	ufs2_daddr_t blkno;
11558	long cgbno, bbase;
11559	int frags, blk;
11560	int i;
11561
11562	frags = 0;
11563	cgbno = dtogd(fs, jnewblk->jn_blkno);
11564	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11565		if (isclr(blksfree, cgbno + i))
11566			panic("jnewblk_rollforward: re-allocated fragment");
11567		frags++;
11568	}
11569	if (frags == fs->fs_frag) {
11570		blkno = fragstoblks(fs, cgbno);
11571		ffs_clrblock(fs, blksfree, (long)blkno);
11572		ffs_clusteracct(fs, cgp, blkno, -1);
11573		cgp->cg_cs.cs_nbfree--;
11574	} else {
11575		bbase = cgbno - fragnum(fs, cgbno);
11576		cgbno += jnewblk->jn_oldfrags;
11577                /* If a complete block had been reassembled, account for it. */
11578		fragno = fragstoblks(fs, bbase);
11579		if (ffs_isblock(fs, blksfree, fragno)) {
11580			cgp->cg_cs.cs_nffree += fs->fs_frag;
11581			ffs_clusteracct(fs, cgp, fragno, -1);
11582			cgp->cg_cs.cs_nbfree--;
11583		}
11584		/* Decrement the old frags.  */
11585		blk = blkmap(fs, blksfree, bbase);
11586		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11587		/* Allocate the fragment */
11588		for (i = 0; i < frags; i++)
11589			clrbit(blksfree, cgbno + i);
11590		cgp->cg_cs.cs_nffree -= frags;
11591		/* Add back in counts associated with the new frags */
11592		blk = blkmap(fs, blksfree, bbase);
11593		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11594	}
11595	return (frags);
11596}
11597
11598/*
11599 * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11600 * changes if it's not a background write.  Set all written dependencies
11601 * to DEPCOMPLETE and free the structure if possible.
11602 */
11603static int
11604handle_written_bmsafemap(bmsafemap, bp)
11605	struct bmsafemap *bmsafemap;
11606	struct buf *bp;
11607{
11608	struct newblk *newblk;
11609	struct inodedep *inodedep;
11610	struct jaddref *jaddref, *jatmp;
11611	struct jnewblk *jnewblk, *jntmp;
11612	struct ufsmount *ump;
11613	uint8_t *inosused;
11614	uint8_t *blksfree;
11615	struct cg *cgp;
11616	struct fs *fs;
11617	ino_t ino;
11618	int foreground;
11619	int chgs;
11620
11621	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11622		panic("initiate_write_bmsafemap: Not started\n");
11623	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11624	chgs = 0;
11625	bmsafemap->sm_state &= ~IOSTARTED;
11626	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11627	/*
11628	 * Release journal work that was waiting on the write.
11629	 */
11630	handle_jwork(&bmsafemap->sm_freewr);
11631
11632	/*
11633	 * Restore unwritten inode allocation pending jaddref writes.
11634	 */
11635	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11636		cgp = (struct cg *)bp->b_data;
11637		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11638		inosused = cg_inosused(cgp);
11639		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11640		    ja_bmdeps, jatmp) {
11641			if ((jaddref->ja_state & UNDONE) == 0)
11642				continue;
11643			ino = jaddref->ja_ino % fs->fs_ipg;
11644			if (isset(inosused, ino))
11645				panic("handle_written_bmsafemap: "
11646				    "re-allocated inode");
11647			/* Do the roll-forward only if it's a real copy. */
11648			if (foreground) {
11649				if ((jaddref->ja_mode & IFMT) == IFDIR)
11650					cgp->cg_cs.cs_ndir++;
11651				cgp->cg_cs.cs_nifree--;
11652				setbit(inosused, ino);
11653				chgs = 1;
11654			}
11655			jaddref->ja_state &= ~UNDONE;
11656			jaddref->ja_state |= ATTACHED;
11657			free_jaddref(jaddref);
11658		}
11659	}
11660	/*
11661	 * Restore any block allocations which are pending journal writes.
11662	 */
11663	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11664		cgp = (struct cg *)bp->b_data;
11665		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11666		blksfree = cg_blksfree(cgp);
11667		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11668		    jntmp) {
11669			if ((jnewblk->jn_state & UNDONE) == 0)
11670				continue;
11671			/* Do the roll-forward only if it's a real copy. */
11672			if (foreground &&
11673			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11674				chgs = 1;
11675			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11676			jnewblk->jn_state |= ATTACHED;
11677			free_jnewblk(jnewblk);
11678		}
11679	}
11680	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11681		newblk->nb_state |= DEPCOMPLETE;
11682		newblk->nb_state &= ~ONDEPLIST;
11683		newblk->nb_bmsafemap = NULL;
11684		LIST_REMOVE(newblk, nb_deps);
11685		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11686			handle_allocdirect_partdone(
11687			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11688		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11689			handle_allocindir_partdone(
11690			    WK_ALLOCINDIR(&newblk->nb_list));
11691		else if (newblk->nb_list.wk_type != D_NEWBLK)
11692			panic("handle_written_bmsafemap: Unexpected type: %s",
11693			    TYPENAME(newblk->nb_list.wk_type));
11694	}
11695	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11696		inodedep->id_state |= DEPCOMPLETE;
11697		inodedep->id_state &= ~ONDEPLIST;
11698		LIST_REMOVE(inodedep, id_deps);
11699		inodedep->id_bmsafemap = NULL;
11700	}
11701	LIST_REMOVE(bmsafemap, sm_next);
11702	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11703	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11704	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11705	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11706	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11707		LIST_REMOVE(bmsafemap, sm_hash);
11708		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11709		return (0);
11710	}
11711	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11712	if (foreground)
11713		bdirty(bp);
11714	return (1);
11715}
11716
11717/*
11718 * Try to free a mkdir dependency.
11719 */
11720static void
11721complete_mkdir(mkdir)
11722	struct mkdir *mkdir;
11723{
11724	struct diradd *dap;
11725
11726	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11727		return;
11728	LIST_REMOVE(mkdir, md_mkdirs);
11729	dap = mkdir->md_diradd;
11730	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11731	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11732		dap->da_state |= DEPCOMPLETE;
11733		complete_diradd(dap);
11734	}
11735	WORKITEM_FREE(mkdir, D_MKDIR);
11736}
11737
11738/*
11739 * Handle the completion of a mkdir dependency.
11740 */
11741static void
11742handle_written_mkdir(mkdir, type)
11743	struct mkdir *mkdir;
11744	int type;
11745{
11746
11747	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11748		panic("handle_written_mkdir: bad type");
11749	mkdir->md_state |= COMPLETE;
11750	complete_mkdir(mkdir);
11751}
11752
11753static int
11754free_pagedep(pagedep)
11755	struct pagedep *pagedep;
11756{
11757	int i;
11758
11759	if (pagedep->pd_state & NEWBLOCK)
11760		return (0);
11761	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11762		return (0);
11763	for (i = 0; i < DAHASHSZ; i++)
11764		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11765			return (0);
11766	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11767		return (0);
11768	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11769		return (0);
11770	if (pagedep->pd_state & ONWORKLIST)
11771		WORKLIST_REMOVE(&pagedep->pd_list);
11772	LIST_REMOVE(pagedep, pd_hash);
11773	WORKITEM_FREE(pagedep, D_PAGEDEP);
11774
11775	return (1);
11776}
11777
11778/*
11779 * Called from within softdep_disk_write_complete above.
11780 * A write operation was just completed. Removed inodes can
11781 * now be freed and associated block pointers may be committed.
11782 * Note that this routine is always called from interrupt level
11783 * with further splbio interrupts blocked.
11784 */
11785static int
11786handle_written_filepage(pagedep, bp)
11787	struct pagedep *pagedep;
11788	struct buf *bp;		/* buffer containing the written page */
11789{
11790	struct dirrem *dirrem;
11791	struct diradd *dap, *nextdap;
11792	struct direct *ep;
11793	int i, chgs;
11794
11795	if ((pagedep->pd_state & IOSTARTED) == 0)
11796		panic("handle_written_filepage: not started");
11797	pagedep->pd_state &= ~IOSTARTED;
11798	/*
11799	 * Process any directory removals that have been committed.
11800	 */
11801	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11802		LIST_REMOVE(dirrem, dm_next);
11803		dirrem->dm_state |= COMPLETE;
11804		dirrem->dm_dirinum = pagedep->pd_ino;
11805		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11806		    ("handle_written_filepage: Journal entries not written."));
11807		add_to_worklist(&dirrem->dm_list, 0);
11808	}
11809	/*
11810	 * Free any directory additions that have been committed.
11811	 * If it is a newly allocated block, we have to wait until
11812	 * the on-disk directory inode claims the new block.
11813	 */
11814	if ((pagedep->pd_state & NEWBLOCK) == 0)
11815		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11816			free_diradd(dap, NULL);
11817	/*
11818	 * Uncommitted directory entries must be restored.
11819	 */
11820	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11821		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11822		     dap = nextdap) {
11823			nextdap = LIST_NEXT(dap, da_pdlist);
11824			if (dap->da_state & ATTACHED)
11825				panic("handle_written_filepage: attached");
11826			ep = (struct direct *)
11827			    ((char *)bp->b_data + dap->da_offset);
11828			ep->d_ino = dap->da_newinum;
11829			dap->da_state &= ~UNDONE;
11830			dap->da_state |= ATTACHED;
11831			chgs = 1;
11832			/*
11833			 * If the inode referenced by the directory has
11834			 * been written out, then the dependency can be
11835			 * moved to the pending list.
11836			 */
11837			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11838				LIST_REMOVE(dap, da_pdlist);
11839				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11840				    da_pdlist);
11841			}
11842		}
11843	}
11844	/*
11845	 * If there were any rollbacks in the directory, then it must be
11846	 * marked dirty so that its will eventually get written back in
11847	 * its correct form.
11848	 */
11849	if (chgs) {
11850		if ((bp->b_flags & B_DELWRI) == 0)
11851			stat_dir_entry++;
11852		bdirty(bp);
11853		return (1);
11854	}
11855	/*
11856	 * If we are not waiting for a new directory block to be
11857	 * claimed by its inode, then the pagedep will be freed.
11858	 * Otherwise it will remain to track any new entries on
11859	 * the page in case they are fsync'ed.
11860	 */
11861	free_pagedep(pagedep);
11862	return (0);
11863}
11864
11865/*
11866 * Writing back in-core inode structures.
11867 *
11868 * The filesystem only accesses an inode's contents when it occupies an
11869 * "in-core" inode structure.  These "in-core" structures are separate from
11870 * the page frames used to cache inode blocks.  Only the latter are
11871 * transferred to/from the disk.  So, when the updated contents of the
11872 * "in-core" inode structure are copied to the corresponding in-memory inode
11873 * block, the dependencies are also transferred.  The following procedure is
11874 * called when copying a dirty "in-core" inode to a cached inode block.
11875 */
11876
11877/*
11878 * Called when an inode is loaded from disk. If the effective link count
11879 * differed from the actual link count when it was last flushed, then we
11880 * need to ensure that the correct effective link count is put back.
11881 */
11882void
11883softdep_load_inodeblock(ip)
11884	struct inode *ip;	/* the "in_core" copy of the inode */
11885{
11886	struct inodedep *inodedep;
11887
11888	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
11889	    ("softdep_load_inodeblock called on non-softdep filesystem"));
11890	/*
11891	 * Check for alternate nlink count.
11892	 */
11893	ip->i_effnlink = ip->i_nlink;
11894	ACQUIRE_LOCK(ip->i_ump);
11895	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11896	    &inodedep) == 0) {
11897		FREE_LOCK(ip->i_ump);
11898		return;
11899	}
11900	ip->i_effnlink -= inodedep->id_nlinkdelta;
11901	FREE_LOCK(ip->i_ump);
11902}
11903
11904/*
11905 * This routine is called just before the "in-core" inode
11906 * information is to be copied to the in-memory inode block.
11907 * Recall that an inode block contains several inodes. If
11908 * the force flag is set, then the dependencies will be
11909 * cleared so that the update can always be made. Note that
11910 * the buffer is locked when this routine is called, so we
11911 * will never be in the middle of writing the inode block
11912 * to disk.
11913 */
11914void
11915softdep_update_inodeblock(ip, bp, waitfor)
11916	struct inode *ip;	/* the "in_core" copy of the inode */
11917	struct buf *bp;		/* the buffer containing the inode block */
11918	int waitfor;		/* nonzero => update must be allowed */
11919{
11920	struct inodedep *inodedep;
11921	struct inoref *inoref;
11922	struct ufsmount *ump;
11923	struct worklist *wk;
11924	struct mount *mp;
11925	struct buf *ibp;
11926	struct fs *fs;
11927	int error;
11928
11929	ump = ip->i_ump;
11930	mp = UFSTOVFS(ump);
11931	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
11932	    ("softdep_update_inodeblock called on non-softdep filesystem"));
11933	fs = ip->i_fs;
11934	/*
11935	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11936	 * does not have access to the in-core ip so must write directly into
11937	 * the inode block buffer when setting freelink.
11938	 */
11939	if (fs->fs_magic == FS_UFS1_MAGIC)
11940		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11941		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11942	else
11943		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11944		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11945	/*
11946	 * If the effective link count is not equal to the actual link
11947	 * count, then we must track the difference in an inodedep while
11948	 * the inode is (potentially) tossed out of the cache. Otherwise,
11949	 * if there is no existing inodedep, then there are no dependencies
11950	 * to track.
11951	 */
11952	ACQUIRE_LOCK(ump);
11953again:
11954	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11955		FREE_LOCK(ump);
11956		if (ip->i_effnlink != ip->i_nlink)
11957			panic("softdep_update_inodeblock: bad link count");
11958		return;
11959	}
11960	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11961		panic("softdep_update_inodeblock: bad delta");
11962	/*
11963	 * If we're flushing all dependencies we must also move any waiting
11964	 * for journal writes onto the bufwait list prior to I/O.
11965	 */
11966	if (waitfor) {
11967		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11968			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11969			    == DEPCOMPLETE) {
11970				jwait(&inoref->if_list, MNT_WAIT);
11971				goto again;
11972			}
11973		}
11974	}
11975	/*
11976	 * Changes have been initiated. Anything depending on these
11977	 * changes cannot occur until this inode has been written.
11978	 */
11979	inodedep->id_state &= ~COMPLETE;
11980	if ((inodedep->id_state & ONWORKLIST) == 0)
11981		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11982	/*
11983	 * Any new dependencies associated with the incore inode must
11984	 * now be moved to the list associated with the buffer holding
11985	 * the in-memory copy of the inode. Once merged process any
11986	 * allocdirects that are completed by the merger.
11987	 */
11988	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11989	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11990		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11991		    NULL);
11992	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11993	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11994		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11995		    NULL);
11996	/*
11997	 * Now that the inode has been pushed into the buffer, the
11998	 * operations dependent on the inode being written to disk
11999	 * can be moved to the id_bufwait so that they will be
12000	 * processed when the buffer I/O completes.
12001	 */
12002	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12003		WORKLIST_REMOVE(wk);
12004		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12005	}
12006	/*
12007	 * Newly allocated inodes cannot be written until the bitmap
12008	 * that allocates them have been written (indicated by
12009	 * DEPCOMPLETE being set in id_state). If we are doing a
12010	 * forced sync (e.g., an fsync on a file), we force the bitmap
12011	 * to be written so that the update can be done.
12012	 */
12013	if (waitfor == 0) {
12014		FREE_LOCK(ump);
12015		return;
12016	}
12017retry:
12018	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12019		FREE_LOCK(ump);
12020		return;
12021	}
12022	ibp = inodedep->id_bmsafemap->sm_buf;
12023	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12024	if (ibp == NULL) {
12025		/*
12026		 * If ibp came back as NULL, the dependency could have been
12027		 * freed while we slept.  Look it up again, and check to see
12028		 * that it has completed.
12029		 */
12030		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12031			goto retry;
12032		FREE_LOCK(ump);
12033		return;
12034	}
12035	FREE_LOCK(ump);
12036	if ((error = bwrite(ibp)) != 0)
12037		softdep_error("softdep_update_inodeblock: bwrite", error);
12038}
12039
12040/*
12041 * Merge the a new inode dependency list (such as id_newinoupdt) into an
12042 * old inode dependency list (such as id_inoupdt). This routine must be
12043 * called with splbio interrupts blocked.
12044 */
12045static void
12046merge_inode_lists(newlisthead, oldlisthead)
12047	struct allocdirectlst *newlisthead;
12048	struct allocdirectlst *oldlisthead;
12049{
12050	struct allocdirect *listadp, *newadp;
12051
12052	newadp = TAILQ_FIRST(newlisthead);
12053	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12054		if (listadp->ad_offset < newadp->ad_offset) {
12055			listadp = TAILQ_NEXT(listadp, ad_next);
12056			continue;
12057		}
12058		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12059		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12060		if (listadp->ad_offset == newadp->ad_offset) {
12061			allocdirect_merge(oldlisthead, newadp,
12062			    listadp);
12063			listadp = newadp;
12064		}
12065		newadp = TAILQ_FIRST(newlisthead);
12066	}
12067	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12068		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12069		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12070	}
12071}
12072
12073/*
12074 * If we are doing an fsync, then we must ensure that any directory
12075 * entries for the inode have been written after the inode gets to disk.
12076 */
12077int
12078softdep_fsync(vp)
12079	struct vnode *vp;	/* the "in_core" copy of the inode */
12080{
12081	struct inodedep *inodedep;
12082	struct pagedep *pagedep;
12083	struct inoref *inoref;
12084	struct ufsmount *ump;
12085	struct worklist *wk;
12086	struct diradd *dap;
12087	struct mount *mp;
12088	struct vnode *pvp;
12089	struct inode *ip;
12090	struct buf *bp;
12091	struct fs *fs;
12092	struct thread *td = curthread;
12093	int error, flushparent, pagedep_new_block;
12094	ino_t parentino;
12095	ufs_lbn_t lbn;
12096
12097	ip = VTOI(vp);
12098	fs = ip->i_fs;
12099	ump = ip->i_ump;
12100	mp = vp->v_mount;
12101	if (MOUNTEDSOFTDEP(mp) == 0)
12102		return (0);
12103	ACQUIRE_LOCK(ump);
12104restart:
12105	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12106		FREE_LOCK(ump);
12107		return (0);
12108	}
12109	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12110		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12111		    == DEPCOMPLETE) {
12112			jwait(&inoref->if_list, MNT_WAIT);
12113			goto restart;
12114		}
12115	}
12116	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12117	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12118	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12119	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12120	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12121		panic("softdep_fsync: pending ops %p", inodedep);
12122	for (error = 0, flushparent = 0; ; ) {
12123		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12124			break;
12125		if (wk->wk_type != D_DIRADD)
12126			panic("softdep_fsync: Unexpected type %s",
12127			    TYPENAME(wk->wk_type));
12128		dap = WK_DIRADD(wk);
12129		/*
12130		 * Flush our parent if this directory entry has a MKDIR_PARENT
12131		 * dependency or is contained in a newly allocated block.
12132		 */
12133		if (dap->da_state & DIRCHG)
12134			pagedep = dap->da_previous->dm_pagedep;
12135		else
12136			pagedep = dap->da_pagedep;
12137		parentino = pagedep->pd_ino;
12138		lbn = pagedep->pd_lbn;
12139		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12140			panic("softdep_fsync: dirty");
12141		if ((dap->da_state & MKDIR_PARENT) ||
12142		    (pagedep->pd_state & NEWBLOCK))
12143			flushparent = 1;
12144		else
12145			flushparent = 0;
12146		/*
12147		 * If we are being fsync'ed as part of vgone'ing this vnode,
12148		 * then we will not be able to release and recover the
12149		 * vnode below, so we just have to give up on writing its
12150		 * directory entry out. It will eventually be written, just
12151		 * not now, but then the user was not asking to have it
12152		 * written, so we are not breaking any promises.
12153		 */
12154		if (vp->v_iflag & VI_DOOMED)
12155			break;
12156		/*
12157		 * We prevent deadlock by always fetching inodes from the
12158		 * root, moving down the directory tree. Thus, when fetching
12159		 * our parent directory, we first try to get the lock. If
12160		 * that fails, we must unlock ourselves before requesting
12161		 * the lock on our parent. See the comment in ufs_lookup
12162		 * for details on possible races.
12163		 */
12164		FREE_LOCK(ump);
12165		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12166		    FFSV_FORCEINSMQ)) {
12167			error = vfs_busy(mp, MBF_NOWAIT);
12168			if (error != 0) {
12169				vfs_ref(mp);
12170				VOP_UNLOCK(vp, 0);
12171				error = vfs_busy(mp, 0);
12172				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12173				vfs_rel(mp);
12174				if (error != 0)
12175					return (ENOENT);
12176				if (vp->v_iflag & VI_DOOMED) {
12177					vfs_unbusy(mp);
12178					return (ENOENT);
12179				}
12180			}
12181			VOP_UNLOCK(vp, 0);
12182			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12183			    &pvp, FFSV_FORCEINSMQ);
12184			vfs_unbusy(mp);
12185			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12186			if (vp->v_iflag & VI_DOOMED) {
12187				if (error == 0)
12188					vput(pvp);
12189				error = ENOENT;
12190			}
12191			if (error != 0)
12192				return (error);
12193		}
12194		/*
12195		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12196		 * that are contained in direct blocks will be resolved by
12197		 * doing a ffs_update. Pagedeps contained in indirect blocks
12198		 * may require a complete sync'ing of the directory. So, we
12199		 * try the cheap and fast ffs_update first, and if that fails,
12200		 * then we do the slower ffs_syncvnode of the directory.
12201		 */
12202		if (flushparent) {
12203			int locked;
12204
12205			if ((error = ffs_update(pvp, 1)) != 0) {
12206				vput(pvp);
12207				return (error);
12208			}
12209			ACQUIRE_LOCK(ump);
12210			locked = 1;
12211			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12212				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12213					if (wk->wk_type != D_DIRADD)
12214						panic("softdep_fsync: Unexpected type %s",
12215						      TYPENAME(wk->wk_type));
12216					dap = WK_DIRADD(wk);
12217					if (dap->da_state & DIRCHG)
12218						pagedep = dap->da_previous->dm_pagedep;
12219					else
12220						pagedep = dap->da_pagedep;
12221					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12222					FREE_LOCK(ump);
12223					locked = 0;
12224					if (pagedep_new_block && (error =
12225					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12226						vput(pvp);
12227						return (error);
12228					}
12229				}
12230			}
12231			if (locked)
12232				FREE_LOCK(ump);
12233		}
12234		/*
12235		 * Flush directory page containing the inode's name.
12236		 */
12237		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12238		    &bp);
12239		if (error == 0)
12240			error = bwrite(bp);
12241		else
12242			brelse(bp);
12243		vput(pvp);
12244		if (error != 0)
12245			return (error);
12246		ACQUIRE_LOCK(ump);
12247		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12248			break;
12249	}
12250	FREE_LOCK(ump);
12251	return (0);
12252}
12253
12254/*
12255 * Flush all the dirty bitmaps associated with the block device
12256 * before flushing the rest of the dirty blocks so as to reduce
12257 * the number of dependencies that will have to be rolled back.
12258 *
12259 * XXX Unused?
12260 */
12261void
12262softdep_fsync_mountdev(vp)
12263	struct vnode *vp;
12264{
12265	struct buf *bp, *nbp;
12266	struct worklist *wk;
12267	struct bufobj *bo;
12268
12269	if (!vn_isdisk(vp, NULL))
12270		panic("softdep_fsync_mountdev: vnode not a disk");
12271	bo = &vp->v_bufobj;
12272restart:
12273	BO_LOCK(bo);
12274	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12275		/*
12276		 * If it is already scheduled, skip to the next buffer.
12277		 */
12278		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12279			continue;
12280
12281		if ((bp->b_flags & B_DELWRI) == 0)
12282			panic("softdep_fsync_mountdev: not dirty");
12283		/*
12284		 * We are only interested in bitmaps with outstanding
12285		 * dependencies.
12286		 */
12287		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12288		    wk->wk_type != D_BMSAFEMAP ||
12289		    (bp->b_vflags & BV_BKGRDINPROG)) {
12290			BUF_UNLOCK(bp);
12291			continue;
12292		}
12293		BO_UNLOCK(bo);
12294		bremfree(bp);
12295		(void) bawrite(bp);
12296		goto restart;
12297	}
12298	drain_output(vp);
12299	BO_UNLOCK(bo);
12300}
12301
12302/*
12303 * Sync all cylinder groups that were dirty at the time this function is
12304 * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12305 * is used to flush freedep activity that may be holding up writes to a
12306 * indirect block.
12307 */
12308static int
12309sync_cgs(mp, waitfor)
12310	struct mount *mp;
12311	int waitfor;
12312{
12313	struct bmsafemap *bmsafemap;
12314	struct bmsafemap *sentinel;
12315	struct ufsmount *ump;
12316	struct buf *bp;
12317	int error;
12318
12319	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12320	sentinel->sm_cg = -1;
12321	ump = VFSTOUFS(mp);
12322	error = 0;
12323	ACQUIRE_LOCK(ump);
12324	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12325	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12326	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12327		/* Skip sentinels and cgs with no work to release. */
12328		if (bmsafemap->sm_cg == -1 ||
12329		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12330		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12331			LIST_REMOVE(sentinel, sm_next);
12332			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12333			continue;
12334		}
12335		/*
12336		 * If we don't get the lock and we're waiting try again, if
12337		 * not move on to the next buf and try to sync it.
12338		 */
12339		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12340		if (bp == NULL && waitfor == MNT_WAIT)
12341			continue;
12342		LIST_REMOVE(sentinel, sm_next);
12343		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12344		if (bp == NULL)
12345			continue;
12346		FREE_LOCK(ump);
12347		if (waitfor == MNT_NOWAIT)
12348			bawrite(bp);
12349		else
12350			error = bwrite(bp);
12351		ACQUIRE_LOCK(ump);
12352		if (error)
12353			break;
12354	}
12355	LIST_REMOVE(sentinel, sm_next);
12356	FREE_LOCK(ump);
12357	free(sentinel, M_BMSAFEMAP);
12358	return (error);
12359}
12360
12361/*
12362 * This routine is called when we are trying to synchronously flush a
12363 * file. This routine must eliminate any filesystem metadata dependencies
12364 * so that the syncing routine can succeed.
12365 */
12366int
12367softdep_sync_metadata(struct vnode *vp)
12368{
12369	struct inode *ip;
12370	int error;
12371
12372	ip = VTOI(vp);
12373	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12374	    ("softdep_sync_metadata called on non-softdep filesystem"));
12375	/*
12376	 * Ensure that any direct block dependencies have been cleared,
12377	 * truncations are started, and inode references are journaled.
12378	 */
12379	ACQUIRE_LOCK(ip->i_ump);
12380	/*
12381	 * Write all journal records to prevent rollbacks on devvp.
12382	 */
12383	if (vp->v_type == VCHR)
12384		softdep_flushjournal(vp->v_mount);
12385	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12386	/*
12387	 * Ensure that all truncates are written so we won't find deps on
12388	 * indirect blocks.
12389	 */
12390	process_truncates(vp);
12391	FREE_LOCK(ip->i_ump);
12392
12393	return (error);
12394}
12395
12396/*
12397 * This routine is called when we are attempting to sync a buf with
12398 * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12399 * other IO it can but returns EBUSY if the buffer is not yet able to
12400 * be written.  Dependencies which will not cause rollbacks will always
12401 * return 0.
12402 */
12403int
12404softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12405{
12406	struct indirdep *indirdep;
12407	struct pagedep *pagedep;
12408	struct allocindir *aip;
12409	struct newblk *newblk;
12410	struct ufsmount *ump;
12411	struct buf *nbp;
12412	struct worklist *wk;
12413	int i, error;
12414
12415	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12416	    ("softdep_sync_buf called on non-softdep filesystem"));
12417	/*
12418	 * For VCHR we just don't want to force flush any dependencies that
12419	 * will cause rollbacks.
12420	 */
12421	if (vp->v_type == VCHR) {
12422		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12423			return (EBUSY);
12424		return (0);
12425	}
12426	ump = VTOI(vp)->i_ump;
12427	ACQUIRE_LOCK(ump);
12428	/*
12429	 * As we hold the buffer locked, none of its dependencies
12430	 * will disappear.
12431	 */
12432	error = 0;
12433top:
12434	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12435		switch (wk->wk_type) {
12436
12437		case D_ALLOCDIRECT:
12438		case D_ALLOCINDIR:
12439			newblk = WK_NEWBLK(wk);
12440			if (newblk->nb_jnewblk != NULL) {
12441				if (waitfor == MNT_NOWAIT) {
12442					error = EBUSY;
12443					goto out_unlock;
12444				}
12445				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12446				goto top;
12447			}
12448			if (newblk->nb_state & DEPCOMPLETE ||
12449			    waitfor == MNT_NOWAIT)
12450				continue;
12451			nbp = newblk->nb_bmsafemap->sm_buf;
12452			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12453			if (nbp == NULL)
12454				goto top;
12455			FREE_LOCK(ump);
12456			if ((error = bwrite(nbp)) != 0)
12457				goto out;
12458			ACQUIRE_LOCK(ump);
12459			continue;
12460
12461		case D_INDIRDEP:
12462			indirdep = WK_INDIRDEP(wk);
12463			if (waitfor == MNT_NOWAIT) {
12464				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12465				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12466					error = EBUSY;
12467					goto out_unlock;
12468				}
12469			}
12470			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12471				panic("softdep_sync_buf: truncation pending.");
12472		restart:
12473			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12474				newblk = (struct newblk *)aip;
12475				if (newblk->nb_jnewblk != NULL) {
12476					jwait(&newblk->nb_jnewblk->jn_list,
12477					    waitfor);
12478					goto restart;
12479				}
12480				if (newblk->nb_state & DEPCOMPLETE)
12481					continue;
12482				nbp = newblk->nb_bmsafemap->sm_buf;
12483				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12484				if (nbp == NULL)
12485					goto restart;
12486				FREE_LOCK(ump);
12487				if ((error = bwrite(nbp)) != 0)
12488					goto out;
12489				ACQUIRE_LOCK(ump);
12490				goto restart;
12491			}
12492			continue;
12493
12494		case D_PAGEDEP:
12495			/*
12496			 * Only flush directory entries in synchronous passes.
12497			 */
12498			if (waitfor != MNT_WAIT) {
12499				error = EBUSY;
12500				goto out_unlock;
12501			}
12502			/*
12503			 * While syncing snapshots, we must allow recursive
12504			 * lookups.
12505			 */
12506			BUF_AREC(bp);
12507			/*
12508			 * We are trying to sync a directory that may
12509			 * have dependencies on both its own metadata
12510			 * and/or dependencies on the inodes of any
12511			 * recently allocated files. We walk its diradd
12512			 * lists pushing out the associated inode.
12513			 */
12514			pagedep = WK_PAGEDEP(wk);
12515			for (i = 0; i < DAHASHSZ; i++) {
12516				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12517					continue;
12518				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12519				    &pagedep->pd_diraddhd[i]))) {
12520					BUF_NOREC(bp);
12521					goto out_unlock;
12522				}
12523			}
12524			BUF_NOREC(bp);
12525			continue;
12526
12527		case D_FREEWORK:
12528		case D_FREEDEP:
12529		case D_JSEGDEP:
12530		case D_JNEWBLK:
12531			continue;
12532
12533		default:
12534			panic("softdep_sync_buf: Unknown type %s",
12535			    TYPENAME(wk->wk_type));
12536			/* NOTREACHED */
12537		}
12538	}
12539out_unlock:
12540	FREE_LOCK(ump);
12541out:
12542	return (error);
12543}
12544
12545/*
12546 * Flush the dependencies associated with an inodedep.
12547 * Called with splbio blocked.
12548 */
12549static int
12550flush_inodedep_deps(vp, mp, ino)
12551	struct vnode *vp;
12552	struct mount *mp;
12553	ino_t ino;
12554{
12555	struct inodedep *inodedep;
12556	struct inoref *inoref;
12557	struct ufsmount *ump;
12558	int error, waitfor;
12559
12560	/*
12561	 * This work is done in two passes. The first pass grabs most
12562	 * of the buffers and begins asynchronously writing them. The
12563	 * only way to wait for these asynchronous writes is to sleep
12564	 * on the filesystem vnode which may stay busy for a long time
12565	 * if the filesystem is active. So, instead, we make a second
12566	 * pass over the dependencies blocking on each write. In the
12567	 * usual case we will be blocking against a write that we
12568	 * initiated, so when it is done the dependency will have been
12569	 * resolved. Thus the second pass is expected to end quickly.
12570	 * We give a brief window at the top of the loop to allow
12571	 * any pending I/O to complete.
12572	 */
12573	ump = VFSTOUFS(mp);
12574	LOCK_OWNED(ump);
12575	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12576		if (error)
12577			return (error);
12578		FREE_LOCK(ump);
12579		ACQUIRE_LOCK(ump);
12580restart:
12581		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12582			return (0);
12583		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12584			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12585			    == DEPCOMPLETE) {
12586				jwait(&inoref->if_list, MNT_WAIT);
12587				goto restart;
12588			}
12589		}
12590		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12591		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12592		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12593		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12594			continue;
12595		/*
12596		 * If pass2, we are done, otherwise do pass 2.
12597		 */
12598		if (waitfor == MNT_WAIT)
12599			break;
12600		waitfor = MNT_WAIT;
12601	}
12602	/*
12603	 * Try freeing inodedep in case all dependencies have been removed.
12604	 */
12605	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12606		(void) free_inodedep(inodedep);
12607	return (0);
12608}
12609
12610/*
12611 * Flush an inode dependency list.
12612 * Called with splbio blocked.
12613 */
12614static int
12615flush_deplist(listhead, waitfor, errorp)
12616	struct allocdirectlst *listhead;
12617	int waitfor;
12618	int *errorp;
12619{
12620	struct allocdirect *adp;
12621	struct newblk *newblk;
12622	struct ufsmount *ump;
12623	struct buf *bp;
12624
12625	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12626		return (0);
12627	ump = VFSTOUFS(adp->ad_list.wk_mp);
12628	LOCK_OWNED(ump);
12629	TAILQ_FOREACH(adp, listhead, ad_next) {
12630		newblk = (struct newblk *)adp;
12631		if (newblk->nb_jnewblk != NULL) {
12632			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12633			return (1);
12634		}
12635		if (newblk->nb_state & DEPCOMPLETE)
12636			continue;
12637		bp = newblk->nb_bmsafemap->sm_buf;
12638		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12639		if (bp == NULL) {
12640			if (waitfor == MNT_NOWAIT)
12641				continue;
12642			return (1);
12643		}
12644		FREE_LOCK(ump);
12645		if (waitfor == MNT_NOWAIT)
12646			bawrite(bp);
12647		else
12648			*errorp = bwrite(bp);
12649		ACQUIRE_LOCK(ump);
12650		return (1);
12651	}
12652	return (0);
12653}
12654
12655/*
12656 * Flush dependencies associated with an allocdirect block.
12657 */
12658static int
12659flush_newblk_dep(vp, mp, lbn)
12660	struct vnode *vp;
12661	struct mount *mp;
12662	ufs_lbn_t lbn;
12663{
12664	struct newblk *newblk;
12665	struct ufsmount *ump;
12666	struct bufobj *bo;
12667	struct inode *ip;
12668	struct buf *bp;
12669	ufs2_daddr_t blkno;
12670	int error;
12671
12672	error = 0;
12673	bo = &vp->v_bufobj;
12674	ip = VTOI(vp);
12675	blkno = DIP(ip, i_db[lbn]);
12676	if (blkno == 0)
12677		panic("flush_newblk_dep: Missing block");
12678	ump = VFSTOUFS(mp);
12679	ACQUIRE_LOCK(ump);
12680	/*
12681	 * Loop until all dependencies related to this block are satisfied.
12682	 * We must be careful to restart after each sleep in case a write
12683	 * completes some part of this process for us.
12684	 */
12685	for (;;) {
12686		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12687			FREE_LOCK(ump);
12688			break;
12689		}
12690		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12691			panic("flush_newblk_deps: Bad newblk %p", newblk);
12692		/*
12693		 * Flush the journal.
12694		 */
12695		if (newblk->nb_jnewblk != NULL) {
12696			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12697			continue;
12698		}
12699		/*
12700		 * Write the bitmap dependency.
12701		 */
12702		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12703			bp = newblk->nb_bmsafemap->sm_buf;
12704			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12705			if (bp == NULL)
12706				continue;
12707			FREE_LOCK(ump);
12708			error = bwrite(bp);
12709			if (error)
12710				break;
12711			ACQUIRE_LOCK(ump);
12712			continue;
12713		}
12714		/*
12715		 * Write the buffer.
12716		 */
12717		FREE_LOCK(ump);
12718		BO_LOCK(bo);
12719		bp = gbincore(bo, lbn);
12720		if (bp != NULL) {
12721			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12722			    LK_INTERLOCK, BO_LOCKPTR(bo));
12723			if (error == ENOLCK) {
12724				ACQUIRE_LOCK(ump);
12725				continue; /* Slept, retry */
12726			}
12727			if (error != 0)
12728				break;	/* Failed */
12729			if (bp->b_flags & B_DELWRI) {
12730				bremfree(bp);
12731				error = bwrite(bp);
12732				if (error)
12733					break;
12734			} else
12735				BUF_UNLOCK(bp);
12736		} else
12737			BO_UNLOCK(bo);
12738		/*
12739		 * We have to wait for the direct pointers to
12740		 * point at the newdirblk before the dependency
12741		 * will go away.
12742		 */
12743		error = ffs_update(vp, 1);
12744		if (error)
12745			break;
12746		ACQUIRE_LOCK(ump);
12747	}
12748	return (error);
12749}
12750
12751/*
12752 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12753 * Called with splbio blocked.
12754 */
12755static int
12756flush_pagedep_deps(pvp, mp, diraddhdp)
12757	struct vnode *pvp;
12758	struct mount *mp;
12759	struct diraddhd *diraddhdp;
12760{
12761	struct inodedep *inodedep;
12762	struct inoref *inoref;
12763	struct ufsmount *ump;
12764	struct diradd *dap;
12765	struct vnode *vp;
12766	int error = 0;
12767	struct buf *bp;
12768	ino_t inum;
12769	struct diraddhd unfinished;
12770
12771	LIST_INIT(&unfinished);
12772	ump = VFSTOUFS(mp);
12773	LOCK_OWNED(ump);
12774restart:
12775	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12776		/*
12777		 * Flush ourselves if this directory entry
12778		 * has a MKDIR_PARENT dependency.
12779		 */
12780		if (dap->da_state & MKDIR_PARENT) {
12781			FREE_LOCK(ump);
12782			if ((error = ffs_update(pvp, 1)) != 0)
12783				break;
12784			ACQUIRE_LOCK(ump);
12785			/*
12786			 * If that cleared dependencies, go on to next.
12787			 */
12788			if (dap != LIST_FIRST(diraddhdp))
12789				continue;
12790			/*
12791			 * All MKDIR_PARENT dependencies and all the
12792			 * NEWBLOCK pagedeps that are contained in direct
12793			 * blocks were resolved by doing above ffs_update.
12794			 * Pagedeps contained in indirect blocks may
12795			 * require a complete sync'ing of the directory.
12796			 * We are in the midst of doing a complete sync,
12797			 * so if they are not resolved in this pass we
12798			 * defer them for now as they will be sync'ed by
12799			 * our caller shortly.
12800			 */
12801			LIST_REMOVE(dap, da_pdlist);
12802			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
12803			continue;
12804		}
12805		/*
12806		 * A newly allocated directory must have its "." and
12807		 * ".." entries written out before its name can be
12808		 * committed in its parent.
12809		 */
12810		inum = dap->da_newinum;
12811		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12812			panic("flush_pagedep_deps: lost inode1");
12813		/*
12814		 * Wait for any pending journal adds to complete so we don't
12815		 * cause rollbacks while syncing.
12816		 */
12817		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12818			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12819			    == DEPCOMPLETE) {
12820				jwait(&inoref->if_list, MNT_WAIT);
12821				goto restart;
12822			}
12823		}
12824		if (dap->da_state & MKDIR_BODY) {
12825			FREE_LOCK(ump);
12826			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12827			    FFSV_FORCEINSMQ)))
12828				break;
12829			error = flush_newblk_dep(vp, mp, 0);
12830			/*
12831			 * If we still have the dependency we might need to
12832			 * update the vnode to sync the new link count to
12833			 * disk.
12834			 */
12835			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12836				error = ffs_update(vp, 1);
12837			vput(vp);
12838			if (error != 0)
12839				break;
12840			ACQUIRE_LOCK(ump);
12841			/*
12842			 * If that cleared dependencies, go on to next.
12843			 */
12844			if (dap != LIST_FIRST(diraddhdp))
12845				continue;
12846			if (dap->da_state & MKDIR_BODY) {
12847				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12848				    &inodedep);
12849				panic("flush_pagedep_deps: MKDIR_BODY "
12850				    "inodedep %p dap %p vp %p",
12851				    inodedep, dap, vp);
12852			}
12853		}
12854		/*
12855		 * Flush the inode on which the directory entry depends.
12856		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12857		 * the only remaining dependency is that the updated inode
12858		 * count must get pushed to disk. The inode has already
12859		 * been pushed into its inode buffer (via VOP_UPDATE) at
12860		 * the time of the reference count change. So we need only
12861		 * locate that buffer, ensure that there will be no rollback
12862		 * caused by a bitmap dependency, then write the inode buffer.
12863		 */
12864retry:
12865		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12866			panic("flush_pagedep_deps: lost inode");
12867		/*
12868		 * If the inode still has bitmap dependencies,
12869		 * push them to disk.
12870		 */
12871		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12872			bp = inodedep->id_bmsafemap->sm_buf;
12873			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12874			if (bp == NULL)
12875				goto retry;
12876			FREE_LOCK(ump);
12877			if ((error = bwrite(bp)) != 0)
12878				break;
12879			ACQUIRE_LOCK(ump);
12880			if (dap != LIST_FIRST(diraddhdp))
12881				continue;
12882		}
12883		/*
12884		 * If the inode is still sitting in a buffer waiting
12885		 * to be written or waiting for the link count to be
12886		 * adjusted update it here to flush it to disk.
12887		 */
12888		if (dap == LIST_FIRST(diraddhdp)) {
12889			FREE_LOCK(ump);
12890			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12891			    FFSV_FORCEINSMQ)))
12892				break;
12893			error = ffs_update(vp, 1);
12894			vput(vp);
12895			if (error)
12896				break;
12897			ACQUIRE_LOCK(ump);
12898		}
12899		/*
12900		 * If we have failed to get rid of all the dependencies
12901		 * then something is seriously wrong.
12902		 */
12903		if (dap == LIST_FIRST(diraddhdp)) {
12904			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12905			panic("flush_pagedep_deps: failed to flush "
12906			    "inodedep %p ino %ju dap %p",
12907			    inodedep, (uintmax_t)inum, dap);
12908		}
12909	}
12910	if (error)
12911		ACQUIRE_LOCK(ump);
12912	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
12913		LIST_REMOVE(dap, da_pdlist);
12914		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
12915	}
12916	return (error);
12917}
12918
12919/*
12920 * A large burst of file addition or deletion activity can drive the
12921 * memory load excessively high. First attempt to slow things down
12922 * using the techniques below. If that fails, this routine requests
12923 * the offending operations to fall back to running synchronously
12924 * until the memory load returns to a reasonable level.
12925 */
12926int
12927softdep_slowdown(vp)
12928	struct vnode *vp;
12929{
12930	struct ufsmount *ump;
12931	int jlow;
12932	int max_softdeps_hard;
12933
12934	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12935	    ("softdep_slowdown called on non-softdep filesystem"));
12936	ump = VFSTOUFS(vp->v_mount);
12937	ACQUIRE_LOCK(ump);
12938	jlow = 0;
12939	/*
12940	 * Check for journal space if needed.
12941	 */
12942	if (DOINGSUJ(vp)) {
12943		if (journal_space(ump, 0) == 0)
12944			jlow = 1;
12945	}
12946	max_softdeps_hard = max_softdeps * 11 / 10;
12947	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12948	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12949	    VFSTOUFS(vp->v_mount)->softdep_numindirdeps < maxindirdeps &&
12950	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12951		FREE_LOCK(ump);
12952  		return (0);
12953	}
12954	if (VFSTOUFS(vp->v_mount)->softdep_numindirdeps >= maxindirdeps || jlow)
12955		softdep_speedup();
12956	stat_sync_limit_hit += 1;
12957	FREE_LOCK(ump);
12958	if (DOINGSUJ(vp))
12959		return (0);
12960	return (1);
12961}
12962
12963/*
12964 * Called by the allocation routines when they are about to fail
12965 * in the hope that we can free up the requested resource (inodes
12966 * or disk space).
12967 *
12968 * First check to see if the work list has anything on it. If it has,
12969 * clean up entries until we successfully free the requested resource.
12970 * Because this process holds inodes locked, we cannot handle any remove
12971 * requests that might block on a locked inode as that could lead to
12972 * deadlock. If the worklist yields none of the requested resource,
12973 * start syncing out vnodes to free up the needed space.
12974 */
12975int
12976softdep_request_cleanup(fs, vp, cred, resource)
12977	struct fs *fs;
12978	struct vnode *vp;
12979	struct ucred *cred;
12980	int resource;
12981{
12982	struct ufsmount *ump;
12983	struct mount *mp;
12984	struct vnode *lvp, *mvp;
12985	long starttime;
12986	ufs2_daddr_t needed;
12987	int error;
12988
12989	/*
12990	 * If we are being called because of a process doing a
12991	 * copy-on-write, then it is not safe to process any
12992	 * worklist items as we will recurse into the copyonwrite
12993	 * routine.  This will result in an incoherent snapshot.
12994	 * If the vnode that we hold is a snapshot, we must avoid
12995	 * handling other resources that could cause deadlock.
12996	 */
12997	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
12998		return (0);
12999
13000	if (resource == FLUSH_BLOCKS_WAIT)
13001		stat_cleanup_blkrequests += 1;
13002	else
13003		stat_cleanup_inorequests += 1;
13004
13005	mp = vp->v_mount;
13006	ump = VFSTOUFS(mp);
13007	mtx_assert(UFS_MTX(ump), MA_OWNED);
13008	UFS_UNLOCK(ump);
13009	error = ffs_update(vp, 1);
13010	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13011		UFS_LOCK(ump);
13012		return (0);
13013	}
13014	/*
13015	 * If we are in need of resources, consider pausing for
13016	 * tickdelay to give ourselves some breathing room.
13017	 */
13018	ACQUIRE_LOCK(ump);
13019	process_removes(vp);
13020	process_truncates(vp);
13021	request_cleanup(UFSTOVFS(ump), resource);
13022	FREE_LOCK(ump);
13023	/*
13024	 * Now clean up at least as many resources as we will need.
13025	 *
13026	 * When requested to clean up inodes, the number that are needed
13027	 * is set by the number of simultaneous writers (mnt_writeopcount)
13028	 * plus a bit of slop (2) in case some more writers show up while
13029	 * we are cleaning.
13030	 *
13031	 * When requested to free up space, the amount of space that
13032	 * we need is enough blocks to allocate a full-sized segment
13033	 * (fs_contigsumsize). The number of such segments that will
13034	 * be needed is set by the number of simultaneous writers
13035	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13036	 * writers show up while we are cleaning.
13037	 *
13038	 * Additionally, if we are unpriviledged and allocating space,
13039	 * we need to ensure that we clean up enough blocks to get the
13040	 * needed number of blocks over the threshhold of the minimum
13041	 * number of blocks required to be kept free by the filesystem
13042	 * (fs_minfree).
13043	 */
13044	if (resource == FLUSH_INODES_WAIT) {
13045		needed = vp->v_mount->mnt_writeopcount + 2;
13046	} else if (resource == FLUSH_BLOCKS_WAIT) {
13047		needed = (vp->v_mount->mnt_writeopcount + 2) *
13048		    fs->fs_contigsumsize;
13049		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13050			needed += fragstoblks(fs,
13051			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13052			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13053	} else {
13054		UFS_LOCK(ump);
13055		printf("softdep_request_cleanup: Unknown resource type %d\n",
13056		    resource);
13057		return (0);
13058	}
13059	starttime = time_second;
13060retry:
13061	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13062	    fs->fs_cstotal.cs_nbfree <= needed) ||
13063	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13064	    fs->fs_cstotal.cs_nifree <= needed)) {
13065		ACQUIRE_LOCK(ump);
13066		if (ump->softdep_on_worklist > 0 &&
13067		    process_worklist_item(UFSTOVFS(ump),
13068		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13069			stat_worklist_push += 1;
13070		FREE_LOCK(ump);
13071	}
13072	/*
13073	 * If we still need resources and there are no more worklist
13074	 * entries to process to obtain them, we have to start flushing
13075	 * the dirty vnodes to force the release of additional requests
13076	 * to the worklist that we can then process to reap addition
13077	 * resources. We walk the vnodes associated with the mount point
13078	 * until we get the needed worklist requests that we can reap.
13079	 */
13080	if ((resource == FLUSH_BLOCKS_WAIT &&
13081	     fs->fs_cstotal.cs_nbfree <= needed) ||
13082	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13083	     fs->fs_cstotal.cs_nifree <= needed)) {
13084		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13085			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13086				VI_UNLOCK(lvp);
13087				continue;
13088			}
13089			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13090			    curthread))
13091				continue;
13092			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13093				vput(lvp);
13094				continue;
13095			}
13096			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13097			vput(lvp);
13098		}
13099		lvp = ump->um_devvp;
13100		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13101			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13102			VOP_UNLOCK(lvp, 0);
13103		}
13104		if (ump->softdep_on_worklist > 0) {
13105			stat_cleanup_retries += 1;
13106			goto retry;
13107		}
13108		stat_cleanup_failures += 1;
13109	}
13110	if (time_second - starttime > stat_cleanup_high_delay)
13111		stat_cleanup_high_delay = time_second - starttime;
13112	UFS_LOCK(ump);
13113	return (1);
13114}
13115
13116/*
13117 * If memory utilization has gotten too high, deliberately slow things
13118 * down and speed up the I/O processing.
13119 */
13120static int
13121request_cleanup(mp, resource)
13122	struct mount *mp;
13123	int resource;
13124{
13125	struct thread *td = curthread;
13126	struct ufsmount *ump;
13127
13128	ump = VFSTOUFS(mp);
13129	LOCK_OWNED(ump);
13130	/*
13131	 * We never hold up the filesystem syncer or buf daemon.
13132	 */
13133	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13134		return (0);
13135	/*
13136	 * First check to see if the work list has gotten backlogged.
13137	 * If it has, co-opt this process to help clean up two entries.
13138	 * Because this process may hold inodes locked, we cannot
13139	 * handle any remove requests that might block on a locked
13140	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13141	 * to avoid recursively processing the worklist.
13142	 */
13143	if (ump->softdep_on_worklist > max_softdeps / 10) {
13144		td->td_pflags |= TDP_SOFTDEP;
13145		process_worklist_item(mp, 2, LK_NOWAIT);
13146		td->td_pflags &= ~TDP_SOFTDEP;
13147		stat_worklist_push += 2;
13148		return(1);
13149	}
13150	/*
13151	 * Next, we attempt to speed up the syncer process. If that
13152	 * is successful, then we allow the process to continue.
13153	 */
13154	if (softdep_speedup() &&
13155	    resource != FLUSH_BLOCKS_WAIT &&
13156	    resource != FLUSH_INODES_WAIT)
13157		return(0);
13158	/*
13159	 * If we are resource constrained on inode dependencies, try
13160	 * flushing some dirty inodes. Otherwise, we are constrained
13161	 * by file deletions, so try accelerating flushes of directories
13162	 * with removal dependencies. We would like to do the cleanup
13163	 * here, but we probably hold an inode locked at this point and
13164	 * that might deadlock against one that we try to clean. So,
13165	 * the best that we can do is request the syncer daemon to do
13166	 * the cleanup for us.
13167	 */
13168	switch (resource) {
13169
13170	case FLUSH_INODES:
13171	case FLUSH_INODES_WAIT:
13172		stat_ino_limit_push += 1;
13173		req_clear_inodedeps += 1;
13174		stat_countp = &stat_ino_limit_hit;
13175		break;
13176
13177	case FLUSH_BLOCKS:
13178	case FLUSH_BLOCKS_WAIT:
13179		stat_blk_limit_push += 1;
13180		req_clear_remove += 1;
13181		stat_countp = &stat_blk_limit_hit;
13182		break;
13183
13184	default:
13185		panic("request_cleanup: unknown type");
13186	}
13187	/*
13188	 * Hopefully the syncer daemon will catch up and awaken us.
13189	 * We wait at most tickdelay before proceeding in any case.
13190	 */
13191	proc_waiting += 1;
13192	if (callout_pending(&softdep_callout) == FALSE)
13193		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13194		    pause_timer, 0);
13195
13196	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13197	proc_waiting -= 1;
13198	return (1);
13199}
13200
13201/*
13202 * Awaken processes pausing in request_cleanup and clear proc_waiting
13203 * to indicate that there is no longer a timer running. Pause_timer
13204 * will be called with the global softdep mutex (&lk) locked.
13205 */
13206static void
13207pause_timer(arg)
13208	void *arg;
13209{
13210
13211	rw_assert(&lk, RA_WLOCKED);
13212	/*
13213	 * The callout_ API has acquired mtx and will hold it around this
13214	 * function call.
13215	 */
13216	*stat_countp += 1;
13217	wakeup_one(&proc_waiting);
13218	if (proc_waiting > 0)
13219		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13220		    pause_timer, 0);
13221}
13222
13223/*
13224 * If requested, try removing inode or removal dependencies.
13225 */
13226static void
13227check_clear_deps(mp)
13228	struct mount *mp;
13229{
13230
13231	rw_assert(&lk, RA_WLOCKED);
13232	/*
13233	 * If we are suspended, it may be because of our using
13234	 * too many inodedeps, so help clear them out.
13235	 */
13236	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13237		clear_inodedeps(mp);
13238	/*
13239	 * General requests for cleanup of backed up dependencies
13240	 */
13241	if (req_clear_inodedeps) {
13242		req_clear_inodedeps -= 1;
13243		clear_inodedeps(mp);
13244		wakeup_one(&proc_waiting);
13245	}
13246	if (req_clear_remove) {
13247		req_clear_remove -= 1;
13248		clear_remove(mp);
13249		wakeup_one(&proc_waiting);
13250	}
13251}
13252
13253/*
13254 * Flush out a directory with at least one removal dependency in an effort to
13255 * reduce the number of dirrem, freefile, and freeblks dependency structures.
13256 */
13257static void
13258clear_remove(mp)
13259	struct mount *mp;
13260{
13261	struct pagedep_hashhead *pagedephd;
13262	struct pagedep *pagedep;
13263	struct ufsmount *ump;
13264	struct vnode *vp;
13265	struct bufobj *bo;
13266	int error, cnt;
13267	ino_t ino;
13268
13269	ump = VFSTOUFS(mp);
13270	LOCK_OWNED(ump);
13271
13272	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13273		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13274		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13275			ump->pagedep_nextclean = 0;
13276		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13277			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13278				continue;
13279			ino = pagedep->pd_ino;
13280			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13281				continue;
13282			FREE_LOCK(ump);
13283
13284			/*
13285			 * Let unmount clear deps
13286			 */
13287			error = vfs_busy(mp, MBF_NOWAIT);
13288			if (error != 0)
13289				goto finish_write;
13290			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13291			     FFSV_FORCEINSMQ);
13292			vfs_unbusy(mp);
13293			if (error != 0) {
13294				softdep_error("clear_remove: vget", error);
13295				goto finish_write;
13296			}
13297			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13298				softdep_error("clear_remove: fsync", error);
13299			bo = &vp->v_bufobj;
13300			BO_LOCK(bo);
13301			drain_output(vp);
13302			BO_UNLOCK(bo);
13303			vput(vp);
13304		finish_write:
13305			vn_finished_write(mp);
13306			ACQUIRE_LOCK(ump);
13307			return;
13308		}
13309	}
13310}
13311
13312/*
13313 * Clear out a block of dirty inodes in an effort to reduce
13314 * the number of inodedep dependency structures.
13315 */
13316static void
13317clear_inodedeps(mp)
13318	struct mount *mp;
13319{
13320	struct inodedep_hashhead *inodedephd;
13321	struct inodedep *inodedep;
13322	struct ufsmount *ump;
13323	struct vnode *vp;
13324	struct fs *fs;
13325	int error, cnt;
13326	ino_t firstino, lastino, ino;
13327
13328	ump = VFSTOUFS(mp);
13329	fs = ump->um_fs;
13330	LOCK_OWNED(ump);
13331	/*
13332	 * Pick a random inode dependency to be cleared.
13333	 * We will then gather up all the inodes in its block
13334	 * that have dependencies and flush them out.
13335	 */
13336	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13337		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13338		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13339			ump->inodedep_nextclean = 0;
13340		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13341			break;
13342	}
13343	if (inodedep == NULL)
13344		return;
13345	/*
13346	 * Find the last inode in the block with dependencies.
13347	 */
13348	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13349	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13350		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13351			break;
13352	/*
13353	 * Asynchronously push all but the last inode with dependencies.
13354	 * Synchronously push the last inode with dependencies to ensure
13355	 * that the inode block gets written to free up the inodedeps.
13356	 */
13357	for (ino = firstino; ino <= lastino; ino++) {
13358		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13359			continue;
13360		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13361			continue;
13362		FREE_LOCK(ump);
13363		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13364		if (error != 0) {
13365			vn_finished_write(mp);
13366			ACQUIRE_LOCK(ump);
13367			return;
13368		}
13369		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13370		    FFSV_FORCEINSMQ)) != 0) {
13371			softdep_error("clear_inodedeps: vget", error);
13372			vfs_unbusy(mp);
13373			vn_finished_write(mp);
13374			ACQUIRE_LOCK(ump);
13375			return;
13376		}
13377		vfs_unbusy(mp);
13378		if (ino == lastino) {
13379			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13380				softdep_error("clear_inodedeps: fsync1", error);
13381		} else {
13382			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13383				softdep_error("clear_inodedeps: fsync2", error);
13384			BO_LOCK(&vp->v_bufobj);
13385			drain_output(vp);
13386			BO_UNLOCK(&vp->v_bufobj);
13387		}
13388		vput(vp);
13389		vn_finished_write(mp);
13390		ACQUIRE_LOCK(ump);
13391	}
13392}
13393
13394void
13395softdep_buf_append(bp, wkhd)
13396	struct buf *bp;
13397	struct workhead *wkhd;
13398{
13399	struct worklist *wk;
13400	struct ufsmount *ump;
13401
13402	if ((wk = LIST_FIRST(wkhd)) == NULL)
13403		return;
13404	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13405	    ("softdep_buf_append called on non-softdep filesystem"));
13406	ump = VFSTOUFS(wk->wk_mp);
13407	ACQUIRE_LOCK(ump);
13408	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13409		WORKLIST_REMOVE(wk);
13410		WORKLIST_INSERT(&bp->b_dep, wk);
13411	}
13412	FREE_LOCK(ump);
13413
13414}
13415
13416void
13417softdep_inode_append(ip, cred, wkhd)
13418	struct inode *ip;
13419	struct ucred *cred;
13420	struct workhead *wkhd;
13421{
13422	struct buf *bp;
13423	struct fs *fs;
13424	int error;
13425
13426	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
13427	    ("softdep_inode_append called on non-softdep filesystem"));
13428	fs = ip->i_fs;
13429	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13430	    (int)fs->fs_bsize, cred, &bp);
13431	if (error) {
13432		bqrelse(bp);
13433		softdep_freework(wkhd);
13434		return;
13435	}
13436	softdep_buf_append(bp, wkhd);
13437	bqrelse(bp);
13438}
13439
13440void
13441softdep_freework(wkhd)
13442	struct workhead *wkhd;
13443{
13444	struct worklist *wk;
13445	struct ufsmount *ump;
13446
13447	if ((wk = LIST_FIRST(wkhd)) == NULL)
13448		return;
13449	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13450	    ("softdep_freework called on non-softdep filesystem"));
13451	ump = VFSTOUFS(wk->wk_mp);
13452	ACQUIRE_LOCK(ump);
13453	handle_jwork(wkhd);
13454	FREE_LOCK(ump);
13455}
13456
13457/*
13458 * Function to determine if the buffer has outstanding dependencies
13459 * that will cause a roll-back if the buffer is written. If wantcount
13460 * is set, return number of dependencies, otherwise just yes or no.
13461 */
13462static int
13463softdep_count_dependencies(bp, wantcount)
13464	struct buf *bp;
13465	int wantcount;
13466{
13467	struct worklist *wk;
13468	struct ufsmount *ump;
13469	struct bmsafemap *bmsafemap;
13470	struct freework *freework;
13471	struct inodedep *inodedep;
13472	struct indirdep *indirdep;
13473	struct freeblks *freeblks;
13474	struct allocindir *aip;
13475	struct pagedep *pagedep;
13476	struct dirrem *dirrem;
13477	struct newblk *newblk;
13478	struct mkdir *mkdir;
13479	struct diradd *dap;
13480	int i, retval;
13481
13482	retval = 0;
13483	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13484		return (0);
13485	ump = VFSTOUFS(wk->wk_mp);
13486	ACQUIRE_LOCK(ump);
13487	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13488		switch (wk->wk_type) {
13489
13490		case D_INODEDEP:
13491			inodedep = WK_INODEDEP(wk);
13492			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13493				/* bitmap allocation dependency */
13494				retval += 1;
13495				if (!wantcount)
13496					goto out;
13497			}
13498			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13499				/* direct block pointer dependency */
13500				retval += 1;
13501				if (!wantcount)
13502					goto out;
13503			}
13504			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13505				/* direct block pointer dependency */
13506				retval += 1;
13507				if (!wantcount)
13508					goto out;
13509			}
13510			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13511				/* Add reference dependency. */
13512				retval += 1;
13513				if (!wantcount)
13514					goto out;
13515			}
13516			continue;
13517
13518		case D_INDIRDEP:
13519			indirdep = WK_INDIRDEP(wk);
13520
13521			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13522				/* indirect truncation dependency */
13523				retval += 1;
13524				if (!wantcount)
13525					goto out;
13526			}
13527
13528			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13529				/* indirect block pointer dependency */
13530				retval += 1;
13531				if (!wantcount)
13532					goto out;
13533			}
13534			continue;
13535
13536		case D_PAGEDEP:
13537			pagedep = WK_PAGEDEP(wk);
13538			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13539				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13540					/* Journal remove ref dependency. */
13541					retval += 1;
13542					if (!wantcount)
13543						goto out;
13544				}
13545			}
13546			for (i = 0; i < DAHASHSZ; i++) {
13547
13548				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13549					/* directory entry dependency */
13550					retval += 1;
13551					if (!wantcount)
13552						goto out;
13553				}
13554			}
13555			continue;
13556
13557		case D_BMSAFEMAP:
13558			bmsafemap = WK_BMSAFEMAP(wk);
13559			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13560				/* Add reference dependency. */
13561				retval += 1;
13562				if (!wantcount)
13563					goto out;
13564			}
13565			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13566				/* Allocate block dependency. */
13567				retval += 1;
13568				if (!wantcount)
13569					goto out;
13570			}
13571			continue;
13572
13573		case D_FREEBLKS:
13574			freeblks = WK_FREEBLKS(wk);
13575			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13576				/* Freeblk journal dependency. */
13577				retval += 1;
13578				if (!wantcount)
13579					goto out;
13580			}
13581			continue;
13582
13583		case D_ALLOCDIRECT:
13584		case D_ALLOCINDIR:
13585			newblk = WK_NEWBLK(wk);
13586			if (newblk->nb_jnewblk) {
13587				/* Journal allocate dependency. */
13588				retval += 1;
13589				if (!wantcount)
13590					goto out;
13591			}
13592			continue;
13593
13594		case D_MKDIR:
13595			mkdir = WK_MKDIR(wk);
13596			if (mkdir->md_jaddref) {
13597				/* Journal reference dependency. */
13598				retval += 1;
13599				if (!wantcount)
13600					goto out;
13601			}
13602			continue;
13603
13604		case D_FREEWORK:
13605		case D_FREEDEP:
13606		case D_JSEGDEP:
13607		case D_JSEG:
13608		case D_SBDEP:
13609			/* never a dependency on these blocks */
13610			continue;
13611
13612		default:
13613			panic("softdep_count_dependencies: Unexpected type %s",
13614			    TYPENAME(wk->wk_type));
13615			/* NOTREACHED */
13616		}
13617	}
13618out:
13619	FREE_LOCK(ump);
13620	return retval;
13621}
13622
13623/*
13624 * Acquire exclusive access to a buffer.
13625 * Must be called with a locked mtx parameter.
13626 * Return acquired buffer or NULL on failure.
13627 */
13628static struct buf *
13629getdirtybuf(bp, lock, waitfor)
13630	struct buf *bp;
13631	struct rwlock *lock;
13632	int waitfor;
13633{
13634	int error;
13635
13636	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13637		if (waitfor != MNT_WAIT)
13638			return (NULL);
13639		error = BUF_LOCK(bp,
13640		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13641		/*
13642		 * Even if we sucessfully acquire bp here, we have dropped
13643		 * lock, which may violates our guarantee.
13644		 */
13645		if (error == 0)
13646			BUF_UNLOCK(bp);
13647		else if (error != ENOLCK)
13648			panic("getdirtybuf: inconsistent lock: %d", error);
13649		rw_wlock(lock);
13650		return (NULL);
13651	}
13652	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13653		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
13654			rw_wunlock(lock);
13655			BO_LOCK(bp->b_bufobj);
13656			BUF_UNLOCK(bp);
13657			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13658				bp->b_vflags |= BV_BKGRDWAIT;
13659				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13660				       PRIBIO | PDROP, "getbuf", 0);
13661			} else
13662				BO_UNLOCK(bp->b_bufobj);
13663			rw_wlock(lock);
13664			return (NULL);
13665		}
13666		BUF_UNLOCK(bp);
13667		if (waitfor != MNT_WAIT)
13668			return (NULL);
13669		/*
13670		 * The lock argument must be bp->b_vp's mutex in
13671		 * this case.
13672		 */
13673#ifdef	DEBUG_VFS_LOCKS
13674		if (bp->b_vp->v_type != VCHR)
13675			ASSERT_BO_WLOCKED(bp->b_bufobj);
13676#endif
13677		bp->b_vflags |= BV_BKGRDWAIT;
13678		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13679		return (NULL);
13680	}
13681	if ((bp->b_flags & B_DELWRI) == 0) {
13682		BUF_UNLOCK(bp);
13683		return (NULL);
13684	}
13685	bremfree(bp);
13686	return (bp);
13687}
13688
13689
13690/*
13691 * Check if it is safe to suspend the file system now.  On entry,
13692 * the vnode interlock for devvp should be held.  Return 0 with
13693 * the mount interlock held if the file system can be suspended now,
13694 * otherwise return EAGAIN with the mount interlock held.
13695 */
13696int
13697softdep_check_suspend(struct mount *mp,
13698		      struct vnode *devvp,
13699		      int softdep_depcnt,
13700		      int softdep_accdepcnt,
13701		      int secondary_writes,
13702		      int secondary_accwrites)
13703{
13704	struct bufobj *bo;
13705	struct ufsmount *ump;
13706	int error;
13707
13708	bo = &devvp->v_bufobj;
13709	ASSERT_BO_WLOCKED(bo);
13710
13711	/*
13712	 * If we are not running with soft updates, then we need only
13713	 * deal with secondary writes as we try to suspend.
13714	 */
13715	if (MOUNTEDSOFTDEP(mp) == 0) {
13716		MNT_ILOCK(mp);
13717		while (mp->mnt_secondary_writes != 0) {
13718			BO_UNLOCK(bo);
13719			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
13720			    (PUSER - 1) | PDROP, "secwr", 0);
13721			BO_LOCK(bo);
13722			MNT_ILOCK(mp);
13723		}
13724
13725		/*
13726		 * Reasons for needing more work before suspend:
13727		 * - Dirty buffers on devvp.
13728		 * - Secondary writes occurred after start of vnode sync loop
13729		 */
13730		error = 0;
13731		if (bo->bo_numoutput > 0 ||
13732		    bo->bo_dirty.bv_cnt > 0 ||
13733		    secondary_writes != 0 ||
13734		    mp->mnt_secondary_writes != 0 ||
13735		    secondary_accwrites != mp->mnt_secondary_accwrites)
13736			error = EAGAIN;
13737		BO_UNLOCK(bo);
13738		return (error);
13739	}
13740
13741	/*
13742	 * If we are running with soft updates, then we need to coordinate
13743	 * with them as we try to suspend.
13744	 */
13745	ump = VFSTOUFS(mp);
13746	for (;;) {
13747		if (!TRY_ACQUIRE_LOCK(ump)) {
13748			BO_UNLOCK(bo);
13749			ACQUIRE_LOCK(ump);
13750			FREE_LOCK(ump);
13751			BO_LOCK(bo);
13752			continue;
13753		}
13754		MNT_ILOCK(mp);
13755		if (mp->mnt_secondary_writes != 0) {
13756			FREE_LOCK(ump);
13757			BO_UNLOCK(bo);
13758			msleep(&mp->mnt_secondary_writes,
13759			       MNT_MTX(mp),
13760			       (PUSER - 1) | PDROP, "secwr", 0);
13761			BO_LOCK(bo);
13762			continue;
13763		}
13764		break;
13765	}
13766
13767	/*
13768	 * Reasons for needing more work before suspend:
13769	 * - Dirty buffers on devvp.
13770	 * - Softdep activity occurred after start of vnode sync loop
13771	 * - Secondary writes occurred after start of vnode sync loop
13772	 */
13773	error = 0;
13774	if (bo->bo_numoutput > 0 ||
13775	    bo->bo_dirty.bv_cnt > 0 ||
13776	    softdep_depcnt != 0 ||
13777	    ump->softdep_deps != 0 ||
13778	    softdep_accdepcnt != ump->softdep_accdeps ||
13779	    secondary_writes != 0 ||
13780	    mp->mnt_secondary_writes != 0 ||
13781	    secondary_accwrites != mp->mnt_secondary_accwrites)
13782		error = EAGAIN;
13783	FREE_LOCK(ump);
13784	BO_UNLOCK(bo);
13785	return (error);
13786}
13787
13788
13789/*
13790 * Get the number of dependency structures for the file system, both
13791 * the current number and the total number allocated.  These will
13792 * later be used to detect that softdep processing has occurred.
13793 */
13794void
13795softdep_get_depcounts(struct mount *mp,
13796		      int *softdep_depsp,
13797		      int *softdep_accdepsp)
13798{
13799	struct ufsmount *ump;
13800
13801	if (MOUNTEDSOFTDEP(mp) == 0) {
13802		*softdep_depsp = 0;
13803		*softdep_accdepsp = 0;
13804		return;
13805	}
13806	ump = VFSTOUFS(mp);
13807	ACQUIRE_LOCK(ump);
13808	*softdep_depsp = ump->softdep_deps;
13809	*softdep_accdepsp = ump->softdep_accdeps;
13810	FREE_LOCK(ump);
13811}
13812
13813/*
13814 * Wait for pending output on a vnode to complete.
13815 * Must be called with vnode lock and interlock locked.
13816 *
13817 * XXX: Should just be a call to bufobj_wwait().
13818 */
13819static void
13820drain_output(vp)
13821	struct vnode *vp;
13822{
13823	struct bufobj *bo;
13824
13825	bo = &vp->v_bufobj;
13826	ASSERT_VOP_LOCKED(vp, "drain_output");
13827	ASSERT_BO_WLOCKED(bo);
13828
13829	while (bo->bo_numoutput) {
13830		bo->bo_flag |= BO_WWAIT;
13831		msleep((caddr_t)&bo->bo_numoutput,
13832		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
13833	}
13834}
13835
13836/*
13837 * Called whenever a buffer that is being invalidated or reallocated
13838 * contains dependencies. This should only happen if an I/O error has
13839 * occurred. The routine is called with the buffer locked.
13840 */
13841static void
13842softdep_deallocate_dependencies(bp)
13843	struct buf *bp;
13844{
13845
13846	if ((bp->b_ioflags & BIO_ERROR) == 0)
13847		panic("softdep_deallocate_dependencies: dangling deps");
13848	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
13849		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13850	else
13851		printf("softdep_deallocate_dependencies: "
13852		    "got error %d while accessing filesystem\n", bp->b_error);
13853	if (bp->b_error != ENXIO)
13854		panic("softdep_deallocate_dependencies: unrecovered I/O error");
13855}
13856
13857/*
13858 * Function to handle asynchronous write errors in the filesystem.
13859 */
13860static void
13861softdep_error(func, error)
13862	char *func;
13863	int error;
13864{
13865
13866	/* XXX should do something better! */
13867	printf("%s: got error %d while accessing filesystem\n", func, error);
13868}
13869
13870#ifdef DDB
13871
13872static void
13873inodedep_print(struct inodedep *inodedep, int verbose)
13874{
13875	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13876	    " saveino %p\n",
13877	    inodedep, inodedep->id_fs, inodedep->id_state,
13878	    (intmax_t)inodedep->id_ino,
13879	    (intmax_t)fsbtodb(inodedep->id_fs,
13880	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13881	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13882	    inodedep->id_savedino1);
13883
13884	if (verbose == 0)
13885		return;
13886
13887	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13888	    "mkdiradd %p\n",
13889	    LIST_FIRST(&inodedep->id_pendinghd),
13890	    LIST_FIRST(&inodedep->id_bufwait),
13891	    LIST_FIRST(&inodedep->id_inowait),
13892	    TAILQ_FIRST(&inodedep->id_inoreflst),
13893	    inodedep->id_mkdiradd);
13894	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13895	    TAILQ_FIRST(&inodedep->id_inoupdt),
13896	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13897	    TAILQ_FIRST(&inodedep->id_extupdt),
13898	    TAILQ_FIRST(&inodedep->id_newextupdt));
13899}
13900
13901DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13902{
13903
13904	if (have_addr == 0) {
13905		db_printf("Address required\n");
13906		return;
13907	}
13908	inodedep_print((struct inodedep*)addr, 1);
13909}
13910
13911DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13912{
13913	struct inodedep_hashhead *inodedephd;
13914	struct inodedep *inodedep;
13915	struct ufsmount *ump;
13916	int cnt;
13917
13918	if (have_addr == 0) {
13919		db_printf("Address required\n");
13920		return;
13921	}
13922	ump = (struct ufsmount *)addr;
13923	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
13924		inodedephd = &ump->inodedep_hashtbl[cnt];
13925		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13926			inodedep_print(inodedep, 0);
13927		}
13928	}
13929}
13930
13931DB_SHOW_COMMAND(worklist, db_show_worklist)
13932{
13933	struct worklist *wk;
13934
13935	if (have_addr == 0) {
13936		db_printf("Address required\n");
13937		return;
13938	}
13939	wk = (struct worklist *)addr;
13940	printf("worklist: %p type %s state 0x%X\n",
13941	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13942}
13943
13944DB_SHOW_COMMAND(workhead, db_show_workhead)
13945{
13946	struct workhead *wkhd;
13947	struct worklist *wk;
13948	int i;
13949
13950	if (have_addr == 0) {
13951		db_printf("Address required\n");
13952		return;
13953	}
13954	wkhd = (struct workhead *)addr;
13955	wk = LIST_FIRST(wkhd);
13956	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13957		db_printf("worklist: %p type %s state 0x%X",
13958		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13959	if (i == 100)
13960		db_printf("workhead overflow");
13961	printf("\n");
13962}
13963
13964
13965DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13966{
13967	struct mkdirlist *mkdirlisthd;
13968	struct jaddref *jaddref;
13969	struct diradd *diradd;
13970	struct mkdir *mkdir;
13971
13972	if (have_addr == 0) {
13973		db_printf("Address required\n");
13974		return;
13975	}
13976	mkdirlisthd = (struct mkdirlist *)addr;
13977	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
13978		diradd = mkdir->md_diradd;
13979		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13980		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13981		if ((jaddref = mkdir->md_jaddref) != NULL)
13982			db_printf(" jaddref %p jaddref state 0x%X",
13983			    jaddref, jaddref->ja_state);
13984		db_printf("\n");
13985	}
13986}
13987
13988/* exported to ffs_vfsops.c */
13989extern void db_print_ffs(struct ufsmount *ump);
13990void
13991db_print_ffs(struct ufsmount *ump)
13992{
13993	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
13994	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
13995	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
13996	    ump->softdep_deps, ump->softdep_req);
13997}
13998
13999#endif /* DDB */
14000
14001#endif /* SOFTUPDATES */
14002