fire.c revision 262621
1/*-
2 * Copyright (c) 1999, 2000 Matthew R. Green
3 * Copyright (c) 2001 - 2003 by Thomas Moestl <tmm@FreeBSD.org>
4 * Copyright (c) 2009 by Marius Strobl <marius@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 *    derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: NetBSD: psycho.c,v 1.39 2001/10/07 20:30:41 eeh Exp
31 *	from: FreeBSD: psycho.c 183152 2008-09-18 19:45:22Z marius
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: stable/10/sys/sparc64/pci/fire.c 262621 2014-02-28 20:31:07Z dim $");
36
37/*
38 * Driver for `Fire' JBus to PCI Express and `Oberon' Uranus to PCI Express
39 * bridges
40 */
41
42#include "opt_fire.h"
43#include "opt_ofw_pci.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/bus.h>
48#include <sys/interrupt.h>
49#include <sys/kernel.h>
50#include <sys/lock.h>
51#include <sys/malloc.h>
52#include <sys/module.h>
53#include <sys/mutex.h>
54#include <sys/pciio.h>
55#include <sys/pcpu.h>
56#include <sys/rman.h>
57#include <sys/smp.h>
58#include <sys/sysctl.h>
59#include <sys/timetc.h>
60
61#include <dev/ofw/ofw_bus.h>
62#include <dev/ofw/ofw_pci.h>
63#include <dev/ofw/openfirm.h>
64
65#include <vm/vm.h>
66#include <vm/pmap.h>
67
68#include <machine/bus.h>
69#include <machine/bus_common.h>
70#include <machine/bus_private.h>
71#include <machine/fsr.h>
72#include <machine/iommureg.h>
73#include <machine/iommuvar.h>
74#include <machine/pmap.h>
75#include <machine/resource.h>
76
77#include <dev/pci/pcireg.h>
78#include <dev/pci/pcivar.h>
79
80#include <sparc64/pci/ofw_pci.h>
81#include <sparc64/pci/firereg.h>
82#include <sparc64/pci/firevar.h>
83
84#include "pcib_if.h"
85
86struct fire_msiqarg;
87
88static const struct fire_desc *fire_get_desc(device_t dev);
89static void fire_dmamap_sync(bus_dma_tag_t dt __unused, bus_dmamap_t map,
90    bus_dmasync_op_t op);
91static int fire_get_intrmap(struct fire_softc *sc, u_int ino,
92    bus_addr_t *intrmapptr, bus_addr_t *intrclrptr);
93static void fire_intr_assign(void *arg);
94static void fire_intr_clear(void *arg);
95static void fire_intr_disable(void *arg);
96static void fire_intr_enable(void *arg);
97static int fire_intr_register(struct fire_softc *sc, u_int ino);
98static inline void fire_msiq_common(struct intr_vector *iv,
99    struct fire_msiqarg *fmqa);
100static void fire_msiq_filter(void *cookie);
101static void fire_msiq_handler(void *cookie);
102static void fire_set_intr(struct fire_softc *sc, u_int index, u_int ino,
103    driver_filter_t handler, void *arg);
104static timecounter_get_t fire_get_timecount;
105
106/* Interrupt handlers */
107static driver_filter_t fire_dmc_pec;
108static driver_filter_t fire_pcie;
109static driver_filter_t fire_xcb;
110
111/*
112 * Methods
113 */
114static bus_activate_resource_t fire_activate_resource;
115static bus_adjust_resource_t fire_adjust_resource;
116static pcib_alloc_msi_t fire_alloc_msi;
117static pcib_alloc_msix_t fire_alloc_msix;
118static bus_alloc_resource_t fire_alloc_resource;
119static device_attach_t fire_attach;
120static bus_get_dma_tag_t fire_get_dma_tag;
121static ofw_bus_get_node_t fire_get_node;
122static pcib_map_msi_t fire_map_msi;
123static pcib_maxslots_t fire_maxslots;
124static device_probe_t fire_probe;
125static pcib_read_config_t fire_read_config;
126static bus_read_ivar_t fire_read_ivar;
127static pcib_release_msi_t fire_release_msi;
128static pcib_release_msix_t fire_release_msix;
129static pcib_route_interrupt_t fire_route_interrupt;
130static bus_setup_intr_t fire_setup_intr;
131static bus_teardown_intr_t fire_teardown_intr;
132static pcib_write_config_t fire_write_config;
133
134static device_method_t fire_methods[] = {
135	/* Device interface */
136	DEVMETHOD(device_probe,		fire_probe),
137	DEVMETHOD(device_attach,	fire_attach),
138	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
139	DEVMETHOD(device_suspend,	bus_generic_suspend),
140	DEVMETHOD(device_resume,	bus_generic_resume),
141
142	/* Bus interface */
143	DEVMETHOD(bus_read_ivar,	fire_read_ivar),
144	DEVMETHOD(bus_setup_intr,	fire_setup_intr),
145	DEVMETHOD(bus_teardown_intr,	fire_teardown_intr),
146	DEVMETHOD(bus_alloc_resource,	fire_alloc_resource),
147	DEVMETHOD(bus_activate_resource, fire_activate_resource),
148	DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
149	DEVMETHOD(bus_adjust_resource,	fire_adjust_resource),
150	DEVMETHOD(bus_release_resource,	bus_generic_release_resource),
151	DEVMETHOD(bus_get_dma_tag,	fire_get_dma_tag),
152
153	/* pcib interface */
154	DEVMETHOD(pcib_maxslots,	fire_maxslots),
155	DEVMETHOD(pcib_read_config,	fire_read_config),
156	DEVMETHOD(pcib_write_config,	fire_write_config),
157	DEVMETHOD(pcib_route_interrupt,	fire_route_interrupt),
158	DEVMETHOD(pcib_alloc_msi,	fire_alloc_msi),
159	DEVMETHOD(pcib_release_msi,	fire_release_msi),
160	DEVMETHOD(pcib_alloc_msix,	fire_alloc_msix),
161	DEVMETHOD(pcib_release_msix,	fire_release_msix),
162	DEVMETHOD(pcib_map_msi,		fire_map_msi),
163
164	/* ofw_bus interface */
165	DEVMETHOD(ofw_bus_get_node,	fire_get_node),
166
167	DEVMETHOD_END
168};
169
170static devclass_t fire_devclass;
171
172DEFINE_CLASS_0(pcib, fire_driver, fire_methods, sizeof(struct fire_softc));
173EARLY_DRIVER_MODULE(fire, nexus, fire_driver, fire_devclass, 0, 0,
174    BUS_PASS_BUS);
175MODULE_DEPEND(fire, nexus, 1, 1, 1);
176
177static const struct intr_controller fire_ic = {
178	fire_intr_enable,
179	fire_intr_disable,
180	fire_intr_assign,
181	fire_intr_clear
182};
183
184struct fire_icarg {
185	struct fire_softc	*fica_sc;
186	bus_addr_t		fica_map;
187	bus_addr_t		fica_clr;
188};
189
190static const struct intr_controller fire_msiqc_filter = {
191	fire_intr_enable,
192	fire_intr_disable,
193	fire_intr_assign,
194	NULL
195};
196
197struct fire_msiqarg {
198	struct fire_icarg	fmqa_fica;
199	struct mtx		fmqa_mtx;
200	struct fo_msiq_record	*fmqa_base;
201	uint64_t		fmqa_head;
202	uint64_t		fmqa_tail;
203	uint32_t		fmqa_msiq;
204	uint32_t		fmqa_msi;
205};
206
207#define	FIRE_PERF_CNT_QLTY	100
208
209#define	FIRE_SPC_BARRIER(spc, sc, offs, len, flags)			\
210	bus_barrier((sc)->sc_mem_res[(spc)], (offs), (len), (flags))
211#define	FIRE_SPC_READ_8(spc, sc, offs)					\
212	bus_read_8((sc)->sc_mem_res[(spc)], (offs))
213#define	FIRE_SPC_WRITE_8(spc, sc, offs, v)				\
214	bus_write_8((sc)->sc_mem_res[(spc)], (offs), (v))
215
216#ifndef FIRE_DEBUG
217#define	FIRE_SPC_SET(spc, sc, offs, reg, v)				\
218	FIRE_SPC_WRITE_8((spc), (sc), (offs), (v))
219#else
220#define	FIRE_SPC_SET(spc, sc, offs, reg, v) do {			\
221	device_printf((sc)->sc_dev, reg " 0x%016llx -> 0x%016llx\n",	\
222	    (unsigned long long)FIRE_SPC_READ_8((spc), (sc), (offs)),	\
223	    (unsigned long long)(v));					\
224	FIRE_SPC_WRITE_8((spc), (sc), (offs), (v));			\
225	} while (0)
226#endif
227
228#define	FIRE_PCI_BARRIER(sc, offs, len, flags)				\
229	FIRE_SPC_BARRIER(FIRE_PCI, (sc), (offs), len, flags)
230#define	FIRE_PCI_READ_8(sc, offs)					\
231	FIRE_SPC_READ_8(FIRE_PCI, (sc), (offs))
232#define	FIRE_PCI_WRITE_8(sc, offs, v)					\
233	FIRE_SPC_WRITE_8(FIRE_PCI, (sc), (offs), (v))
234#define	FIRE_CTRL_BARRIER(sc, offs, len, flags)				\
235	FIRE_SPC_BARRIER(FIRE_CTRL, (sc), (offs), len, flags)
236#define	FIRE_CTRL_READ_8(sc, offs)					\
237	FIRE_SPC_READ_8(FIRE_CTRL, (sc), (offs))
238#define	FIRE_CTRL_WRITE_8(sc, offs, v)					\
239	FIRE_SPC_WRITE_8(FIRE_CTRL, (sc), (offs), (v))
240
241#define	FIRE_PCI_SET(sc, offs, v)					\
242	FIRE_SPC_SET(FIRE_PCI, (sc), (offs), # offs, (v))
243#define	FIRE_CTRL_SET(sc, offs, v)					\
244	FIRE_SPC_SET(FIRE_CTRL, (sc), (offs), # offs, (v))
245
246struct fire_desc {
247	const char	*fd_string;
248	int		fd_mode;
249	const char	*fd_name;
250};
251
252static const struct fire_desc fire_compats[] = {
253	{ "pciex108e,80f0",	FIRE_MODE_FIRE,		"Fire" },
254#if 0
255	{ "pciex108e,80f8",	FIRE_MODE_OBERON,	"Oberon" },
256#endif
257	{ NULL,			0,			NULL }
258};
259
260static const struct fire_desc *
261fire_get_desc(device_t dev)
262{
263	const struct fire_desc *desc;
264	const char *compat;
265
266	compat = ofw_bus_get_compat(dev);
267	if (compat == NULL)
268		return (NULL);
269	for (desc = fire_compats; desc->fd_string != NULL; desc++)
270		if (strcmp(desc->fd_string, compat) == 0)
271			return (desc);
272	return (NULL);
273}
274
275static int
276fire_probe(device_t dev)
277{
278	const char *dtype;
279
280	dtype = ofw_bus_get_type(dev);
281	if (dtype != NULL && strcmp(dtype, OFW_TYPE_PCIE) == 0 &&
282	    fire_get_desc(dev) != NULL) {
283		device_set_desc(dev, "Sun Host-PCIe bridge");
284		return (BUS_PROBE_GENERIC);
285	}
286	return (ENXIO);
287}
288
289static int
290fire_attach(device_t dev)
291{
292	struct fire_softc *sc;
293	const struct fire_desc *desc;
294	struct ofw_pci_msi_ranges msi_ranges;
295	struct ofw_pci_msi_addr_ranges msi_addr_ranges;
296	struct ofw_pci_msi_eq_to_devino msi_eq_to_devino;
297	struct fire_msiqarg *fmqa;
298	struct timecounter *tc;
299	struct ofw_pci_ranges *range;
300	uint64_t ino_bitmap, val;
301	phandle_t node;
302	uint32_t prop, prop_array[2];
303	int i, j, mode;
304	u_int lw;
305	uint16_t mps;
306
307	sc = device_get_softc(dev);
308	node = ofw_bus_get_node(dev);
309	desc = fire_get_desc(dev);
310	mode = desc->fd_mode;
311
312	sc->sc_dev = dev;
313	sc->sc_node = node;
314	sc->sc_mode = mode;
315	sc->sc_flags = 0;
316
317	mtx_init(&sc->sc_msi_mtx, "msi_mtx", NULL, MTX_DEF);
318	mtx_init(&sc->sc_pcib_mtx, "pcib_mtx", NULL, MTX_SPIN);
319
320	/*
321	 * Fire and Oberon have two register banks:
322	 * (0) per-PBM PCI Express configuration and status registers
323	 * (1) (shared) Fire/Oberon controller configuration and status
324	 *     registers
325	 */
326	for (i = 0; i < FIRE_NREG; i++) {
327		j = i;
328		sc->sc_mem_res[i] = bus_alloc_resource_any(dev,
329		    SYS_RES_MEMORY, &j, RF_ACTIVE);
330		if (sc->sc_mem_res[i] == NULL)
331			panic("%s: could not allocate register bank %d",
332			    __func__, i);
333	}
334
335	if (OF_getprop(node, "portid", &sc->sc_ign, sizeof(sc->sc_ign)) == -1)
336		panic("%s: could not determine IGN", __func__);
337	if (OF_getprop(node, "module-revision#", &prop, sizeof(prop)) == -1)
338		panic("%s: could not determine module-revision", __func__);
339
340	device_printf(dev, "%s, module-revision %d, IGN %#x\n",
341	    desc->fd_name, prop, sc->sc_ign);
342
343	/*
344	 * Hunt through all the interrupt mapping regs and register
345	 * the interrupt controller for our interrupt vectors.  We do
346	 * this early in order to be able to catch stray interrupts.
347	 */
348	i = OF_getprop(node, "ino-bitmap", (void *)prop_array,
349	    sizeof(prop_array));
350	if (i == -1)
351		panic("%s: could not get ino-bitmap", __func__);
352	ino_bitmap = ((uint64_t)prop_array[1] << 32) | prop_array[0];
353	for (i = 0; i <= FO_MAX_INO; i++) {
354		if ((ino_bitmap & (1ULL << i)) == 0)
355			continue;
356		j = fire_intr_register(sc, i);
357		if (j != 0)
358			device_printf(dev, "could not register interrupt "
359			    "controller for INO %d (%d)\n", i, j);
360	}
361
362	/* JBC/UBC module initialization */
363	FIRE_CTRL_SET(sc, FO_XBC_ERR_LOG_EN, ~0ULL);
364	FIRE_CTRL_SET(sc, FO_XBC_ERR_STAT_CLR, ~0ULL);
365	/* not enabled by OpenSolaris */
366	FIRE_CTRL_SET(sc, FO_XBC_INT_EN, ~0ULL);
367	if (sc->sc_mode == FIRE_MODE_FIRE) {
368		FIRE_CTRL_SET(sc, FIRE_JBUS_PAR_CTRL,
369		    FIRE_JBUS_PAR_CTRL_P_EN);
370		FIRE_CTRL_SET(sc, FIRE_JBC_FATAL_RST_EN,
371		    ((1ULL << FIRE_JBC_FATAL_RST_EN_SPARE_P_INT_SHFT) &
372		    FIRE_JBC_FATAL_RST_EN_SPARE_P_INT_MASK) |
373		    FIRE_JBC_FATAL_RST_EN_MB_PEA_P_INT |
374		    FIRE_JBC_FATAL_RST_EN_CPE_P_INT |
375		    FIRE_JBC_FATAL_RST_EN_APE_P_INT |
376		    FIRE_JBC_FATAL_RST_EN_PIO_CPE_INT |
377		    FIRE_JBC_FATAL_RST_EN_JTCEEW_P_INT |
378		    FIRE_JBC_FATAL_RST_EN_JTCEEI_P_INT |
379		    FIRE_JBC_FATAL_RST_EN_JTCEER_P_INT);
380		FIRE_CTRL_SET(sc, FIRE_JBC_CORE_BLOCK_INT_EN, ~0ULL);
381	}
382
383	/* TLU initialization */
384	FIRE_PCI_SET(sc, FO_PCI_TLU_OEVENT_STAT_CLR,
385	    FO_PCI_TLU_OEVENT_S_MASK | FO_PCI_TLU_OEVENT_P_MASK);
386	/* not enabled by OpenSolaris */
387	FIRE_PCI_SET(sc, FO_PCI_TLU_OEVENT_INT_EN,
388	    FO_PCI_TLU_OEVENT_S_MASK | FO_PCI_TLU_OEVENT_P_MASK);
389	FIRE_PCI_SET(sc, FO_PCI_TLU_UERR_STAT_CLR,
390	    FO_PCI_TLU_UERR_INT_S_MASK | FO_PCI_TLU_UERR_INT_P_MASK);
391	/* not enabled by OpenSolaris */
392	FIRE_PCI_SET(sc, FO_PCI_TLU_UERR_INT_EN,
393	    FO_PCI_TLU_UERR_INT_S_MASK | FO_PCI_TLU_UERR_INT_P_MASK);
394	FIRE_PCI_SET(sc, FO_PCI_TLU_CERR_STAT_CLR,
395	    FO_PCI_TLU_CERR_INT_S_MASK | FO_PCI_TLU_CERR_INT_P_MASK);
396	/* not enabled by OpenSolaris */
397	FIRE_PCI_SET(sc, FO_PCI_TLU_CERR_INT_EN,
398	    FO_PCI_TLU_CERR_INT_S_MASK | FO_PCI_TLU_CERR_INT_P_MASK);
399	val = FIRE_PCI_READ_8(sc, FO_PCI_TLU_CTRL) |
400	    ((FO_PCI_TLU_CTRL_L0S_TIM_DFLT << FO_PCI_TLU_CTRL_L0S_TIM_SHFT) &
401	    FO_PCI_TLU_CTRL_L0S_TIM_MASK) |
402	    ((FO_PCI_TLU_CTRL_CFG_DFLT << FO_PCI_TLU_CTRL_CFG_SHFT) &
403	    FO_PCI_TLU_CTRL_CFG_MASK);
404	if (sc->sc_mode == FIRE_MODE_OBERON)
405		val &= ~FO_PCI_TLU_CTRL_NWPR_EN;
406	val |= FO_PCI_TLU_CTRL_CFG_REMAIN_DETECT_QUIET;
407	FIRE_PCI_SET(sc, FO_PCI_TLU_CTRL, val);
408	FIRE_PCI_SET(sc, FO_PCI_TLU_DEV_CTRL, 0);
409	FIRE_PCI_SET(sc, FO_PCI_TLU_LNK_CTRL, FO_PCI_TLU_LNK_CTRL_CLK);
410
411	/* DLU/LPU initialization */
412	if (sc->sc_mode == FIRE_MODE_OBERON)
413		FIRE_PCI_SET(sc, FO_PCI_LPU_INT_MASK, 0);
414	else
415		FIRE_PCI_SET(sc, FO_PCI_LPU_RST, 0);
416	FIRE_PCI_SET(sc, FO_PCI_LPU_LNK_LYR_CFG,
417	    FO_PCI_LPU_LNK_LYR_CFG_VC0_EN);
418	FIRE_PCI_SET(sc, FO_PCI_LPU_FLW_CTRL_UPDT_CTRL,
419	    FO_PCI_LPU_FLW_CTRL_UPDT_CTRL_FC0_NP_EN |
420	    FO_PCI_LPU_FLW_CTRL_UPDT_CTRL_FC0_P_EN);
421	if (sc->sc_mode == FIRE_MODE_OBERON)
422		FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_RPLY_TMR_THRS,
423		    (OBERON_PCI_LPU_TXLNK_RPLY_TMR_THRS_DFLT <<
424		    FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_SHFT) &
425		    FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_MASK);
426	else {
427		switch ((FIRE_PCI_READ_8(sc, FO_PCI_TLU_LNK_STAT) &
428		    FO_PCI_TLU_LNK_STAT_WDTH_MASK) >>
429		    FO_PCI_TLU_LNK_STAT_WDTH_SHFT) {
430		case 1:
431			lw = 0;
432			break;
433		case 4:
434			lw = 1;
435			break;
436		case 8:
437			lw = 2;
438			break;
439		case 16:
440			lw = 3;
441			break;
442		default:
443			lw = 0;
444		}
445		mps = (FIRE_PCI_READ_8(sc, FO_PCI_TLU_CTRL) &
446		    FO_PCI_TLU_CTRL_CFG_MPS_MASK) >>
447		    FO_PCI_TLU_CTRL_CFG_MPS_SHFT;
448		i = sizeof(fire_freq_nak_tmr_thrs) /
449		    sizeof(*fire_freq_nak_tmr_thrs);
450		if (mps >= i)
451			mps = i - 1;
452		FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_FREQ_LAT_TMR_THRS,
453		    (fire_freq_nak_tmr_thrs[mps][lw] <<
454		    FO_PCI_LPU_TXLNK_FREQ_LAT_TMR_THRS_SHFT) &
455		    FO_PCI_LPU_TXLNK_FREQ_LAT_TMR_THRS_MASK);
456		FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_RPLY_TMR_THRS,
457		    (fire_rply_tmr_thrs[mps][lw] <<
458		    FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_SHFT) &
459		    FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_MASK);
460		FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_RTR_FIFO_PTR,
461		    ((FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_TL_DFLT <<
462		    FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_TL_SHFT) &
463		    FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_TL_MASK) |
464		    ((FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_HD_DFLT <<
465		    FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_HD_SHFT) &
466		    FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_HD_MASK));
467		FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG2,
468		    (FO_PCI_LPU_LTSSM_CFG2_12_TO_DFLT <<
469		    FO_PCI_LPU_LTSSM_CFG2_12_TO_SHFT) &
470		    FO_PCI_LPU_LTSSM_CFG2_12_TO_MASK);
471		FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG3,
472		    (FO_PCI_LPU_LTSSM_CFG3_2_TO_DFLT <<
473		    FO_PCI_LPU_LTSSM_CFG3_2_TO_SHFT) &
474		    FO_PCI_LPU_LTSSM_CFG3_2_TO_MASK);
475		FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG4,
476		    ((FO_PCI_LPU_LTSSM_CFG4_DATA_RATE_DFLT <<
477		    FO_PCI_LPU_LTSSM_CFG4_DATA_RATE_SHFT) &
478		    FO_PCI_LPU_LTSSM_CFG4_DATA_RATE_MASK) |
479		    ((FO_PCI_LPU_LTSSM_CFG4_N_FTS_DFLT <<
480		    FO_PCI_LPU_LTSSM_CFG4_N_FTS_SHFT) &
481		    FO_PCI_LPU_LTSSM_CFG4_N_FTS_MASK));
482		FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG5, 0);
483	}
484
485	/* ILU initialization */
486	FIRE_PCI_SET(sc, FO_PCI_ILU_ERR_STAT_CLR, ~0ULL);
487	/* not enabled by OpenSolaris */
488	FIRE_PCI_SET(sc, FO_PCI_ILU_INT_EN, ~0ULL);
489
490	/* IMU initialization */
491	FIRE_PCI_SET(sc, FO_PCI_IMU_ERR_STAT_CLR, ~0ULL);
492	FIRE_PCI_SET(sc, FO_PCI_IMU_INT_EN,
493	    FIRE_PCI_READ_8(sc, FO_PCI_IMU_INT_EN) &
494	    ~(FO_PCI_IMU_ERR_INT_FATAL_MES_NOT_EN_S |
495	    FO_PCI_IMU_ERR_INT_NFATAL_MES_NOT_EN_S |
496	    FO_PCI_IMU_ERR_INT_COR_MES_NOT_EN_S |
497	    FO_PCI_IMU_ERR_INT_FATAL_MES_NOT_EN_P |
498	    FO_PCI_IMU_ERR_INT_NFATAL_MES_NOT_EN_P |
499	    FO_PCI_IMU_ERR_INT_COR_MES_NOT_EN_P));
500
501	/* MMU initialization */
502	FIRE_PCI_SET(sc, FO_PCI_MMU_ERR_STAT_CLR,
503	    FO_PCI_MMU_ERR_INT_S_MASK | FO_PCI_MMU_ERR_INT_P_MASK);
504	/* not enabled by OpenSolaris */
505	FIRE_PCI_SET(sc, FO_PCI_MMU_INT_EN,
506	    FO_PCI_MMU_ERR_INT_S_MASK | FO_PCI_MMU_ERR_INT_P_MASK);
507
508	/* DMC initialization */
509	FIRE_PCI_SET(sc, FO_PCI_DMC_CORE_BLOCK_INT_EN, ~0ULL);
510	FIRE_PCI_SET(sc, FO_PCI_DMC_DBG_SEL_PORTA, 0);
511	FIRE_PCI_SET(sc, FO_PCI_DMC_DBG_SEL_PORTB, 0);
512
513	/* PEC initialization */
514	FIRE_PCI_SET(sc, FO_PCI_PEC_CORE_BLOCK_INT_EN, ~0ULL);
515
516	/* Establish handlers for interesting interrupts. */
517	if ((ino_bitmap & (1ULL << FO_DMC_PEC_INO)) != 0)
518		fire_set_intr(sc, 1, FO_DMC_PEC_INO, fire_dmc_pec, sc);
519	if ((ino_bitmap & (1ULL << FO_XCB_INO)) != 0)
520		fire_set_intr(sc, 0, FO_XCB_INO, fire_xcb, sc);
521
522	/* MSI/MSI-X support */
523	if (OF_getprop(node, "#msi", &sc->sc_msi_count,
524	    sizeof(sc->sc_msi_count)) == -1)
525		panic("%s: could not determine MSI count", __func__);
526	if (OF_getprop(node, "msi-ranges", &msi_ranges,
527	    sizeof(msi_ranges)) == -1)
528		sc->sc_msi_first = 0;
529	else
530		sc->sc_msi_first = msi_ranges.first;
531	if (OF_getprop(node, "msi-data-mask", &sc->sc_msi_data_mask,
532	    sizeof(sc->sc_msi_data_mask)) == -1)
533		panic("%s: could not determine MSI data mask", __func__);
534	if (OF_getprop(node, "msix-data-width", &sc->sc_msix_data_width,
535	    sizeof(sc->sc_msix_data_width)) > 0)
536		sc->sc_flags |= FIRE_MSIX;
537	if (OF_getprop(node, "msi-address-ranges", &msi_addr_ranges,
538	    sizeof(msi_addr_ranges)) == -1)
539		panic("%s: could not determine MSI address ranges", __func__);
540	sc->sc_msi_addr32 = OFW_PCI_MSI_ADDR_RANGE_32(&msi_addr_ranges);
541	sc->sc_msi_addr64 = OFW_PCI_MSI_ADDR_RANGE_64(&msi_addr_ranges);
542	if (OF_getprop(node, "#msi-eqs", &sc->sc_msiq_count,
543	    sizeof(sc->sc_msiq_count)) == -1)
544		panic("%s: could not determine MSI event queue count",
545		    __func__);
546	if (OF_getprop(node, "msi-eq-size", &sc->sc_msiq_size,
547	    sizeof(sc->sc_msiq_size)) == -1)
548		panic("%s: could not determine MSI event queue size",
549		    __func__);
550	if (OF_getprop(node, "msi-eq-to-devino", &msi_eq_to_devino,
551	    sizeof(msi_eq_to_devino)) == -1 &&
552	    OF_getprop(node, "msi-eq-devino", &msi_eq_to_devino,
553	    sizeof(msi_eq_to_devino)) == -1) {
554		sc->sc_msiq_first = 0;
555		sc->sc_msiq_ino_first = FO_EQ_FIRST_INO;
556	} else {
557		sc->sc_msiq_first = msi_eq_to_devino.eq_first;
558		sc->sc_msiq_ino_first = msi_eq_to_devino.devino_first;
559	}
560	if (sc->sc_msiq_ino_first < FO_EQ_FIRST_INO ||
561	    sc->sc_msiq_ino_first + sc->sc_msiq_count - 1 > FO_EQ_LAST_INO)
562		panic("%s: event queues exceed INO range", __func__);
563	sc->sc_msi_bitmap = malloc(roundup2(sc->sc_msi_count, NBBY) / NBBY,
564	    M_DEVBUF, M_NOWAIT | M_ZERO);
565	if (sc->sc_msi_bitmap == NULL)
566		panic("%s: could not malloc MSI bitmap", __func__);
567	sc->sc_msi_msiq_table = malloc(sc->sc_msi_count *
568	    sizeof(*sc->sc_msi_msiq_table), M_DEVBUF, M_NOWAIT | M_ZERO);
569	if (sc->sc_msi_msiq_table == NULL)
570		panic("%s: could not malloc MSI-MSI event queue table",
571		    __func__);
572	sc->sc_msiq_bitmap = malloc(roundup2(sc->sc_msiq_count, NBBY) / NBBY,
573	    M_DEVBUF, M_NOWAIT | M_ZERO);
574	if (sc->sc_msiq_bitmap == NULL)
575		panic("%s: could not malloc MSI event queue bitmap", __func__);
576	j = FO_EQ_RECORD_SIZE * FO_EQ_NRECORDS * sc->sc_msiq_count;
577	sc->sc_msiq = contigmalloc(j, M_DEVBUF, M_NOWAIT, 0, ~0UL,
578	    FO_EQ_ALIGNMENT, 0);
579	if (sc->sc_msiq == NULL)
580		panic("%s: could not contigmalloc MSI event queue", __func__);
581	memset(sc->sc_msiq, 0, j);
582	FIRE_PCI_SET(sc, FO_PCI_EQ_BASE_ADDR, FO_PCI_EQ_BASE_ADDR_BYPASS |
583	    (pmap_kextract((vm_offset_t)sc->sc_msiq) &
584	    FO_PCI_EQ_BASE_ADDR_MASK));
585	for (i = 0; i < sc->sc_msi_count; i++) {
586		j = (i + sc->sc_msi_first) << 3;
587		FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + j,
588		    FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + j) &
589		    ~FO_PCI_MSI_MAP_V);
590	}
591	for (i = 0; i < sc->sc_msiq_count; i++) {
592		j = i + sc->sc_msiq_ino_first;
593		if ((ino_bitmap & (1ULL << j)) == 0) {
594			mtx_lock(&sc->sc_msi_mtx);
595			setbit(sc->sc_msiq_bitmap, i);
596			mtx_unlock(&sc->sc_msi_mtx);
597		}
598		fmqa = intr_vectors[INTMAP_VEC(sc->sc_ign, j)].iv_icarg;
599		mtx_init(&fmqa->fmqa_mtx, "msiq_mtx", NULL, MTX_SPIN);
600		fmqa->fmqa_base =
601		    (struct fo_msiq_record *)((caddr_t)sc->sc_msiq +
602		    (FO_EQ_RECORD_SIZE * FO_EQ_NRECORDS * i));
603		j = i + sc->sc_msiq_first;
604		fmqa->fmqa_msiq = j;
605		j <<= 3;
606		fmqa->fmqa_head = FO_PCI_EQ_HD_BASE + j;
607		fmqa->fmqa_tail = FO_PCI_EQ_TL_BASE + j;
608		FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + j,
609		    FO_PCI_EQ_CTRL_CLR_COVERR | FO_PCI_EQ_CTRL_CLR_E2I |
610		    FO_PCI_EQ_CTRL_CLR_DIS);
611		FIRE_PCI_WRITE_8(sc, fmqa->fmqa_tail,
612		    (0 << FO_PCI_EQ_TL_SHFT) & FO_PCI_EQ_TL_MASK);
613		FIRE_PCI_WRITE_8(sc, fmqa->fmqa_head,
614		    (0 << FO_PCI_EQ_HD_SHFT) & FO_PCI_EQ_HD_MASK);
615	}
616	FIRE_PCI_SET(sc, FO_PCI_MSI_32_BIT_ADDR, sc->sc_msi_addr32 &
617	    FO_PCI_MSI_32_BIT_ADDR_MASK);
618	FIRE_PCI_SET(sc, FO_PCI_MSI_64_BIT_ADDR, sc->sc_msi_addr64 &
619	    FO_PCI_MSI_64_BIT_ADDR_MASK);
620
621	/*
622	 * Establish a handler for interesting PCIe messages and disable
623	 * unintersting ones.
624	 */
625	mtx_lock(&sc->sc_msi_mtx);
626	for (i = 0; i < sc->sc_msiq_count; i++) {
627		if (isclr(sc->sc_msiq_bitmap, i) != 0) {
628			j = i;
629			break;
630		}
631	}
632	if (i == sc->sc_msiq_count) {
633		mtx_unlock(&sc->sc_msi_mtx);
634		panic("%s: no spare event queue for PCIe messages", __func__);
635	}
636	setbit(sc->sc_msiq_bitmap, j);
637	mtx_unlock(&sc->sc_msi_mtx);
638	i = INTMAP_VEC(sc->sc_ign, j + sc->sc_msiq_ino_first);
639	if (bus_set_resource(dev, SYS_RES_IRQ, 2, i, 1) != 0)
640		panic("%s: failed to add interrupt for PCIe messages",
641		    __func__);
642	fire_set_intr(sc, 2, INTINO(i), fire_pcie, intr_vectors[i].iv_icarg);
643	j += sc->sc_msiq_first;
644	/*
645	 * "Please note that setting the EQNUM field to a value larger than
646	 * 35 will yield unpredictable results."
647	 */
648	if (j > 35)
649		panic("%s: invalid queue for PCIe messages (%d)",
650		    __func__, j);
651	FIRE_PCI_SET(sc, FO_PCI_ERR_COR, FO_PCI_ERR_PME_V |
652	    ((j << FO_PCI_ERR_PME_EQNUM_SHFT) & FO_PCI_ERR_PME_EQNUM_MASK));
653	FIRE_PCI_SET(sc, FO_PCI_ERR_NONFATAL, FO_PCI_ERR_PME_V |
654	    ((j << FO_PCI_ERR_PME_EQNUM_SHFT) & FO_PCI_ERR_PME_EQNUM_MASK));
655	FIRE_PCI_SET(sc, FO_PCI_ERR_FATAL, FO_PCI_ERR_PME_V |
656	    ((j << FO_PCI_ERR_PME_EQNUM_SHFT) & FO_PCI_ERR_PME_EQNUM_MASK));
657	FIRE_PCI_SET(sc, FO_PCI_PM_PME, 0);
658	FIRE_PCI_SET(sc, FO_PCI_PME_TO_ACK, 0);
659	FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_SET_BASE + (j << 3),
660	    FO_PCI_EQ_CTRL_SET_EN);
661
662#define	TC_COUNTER_MAX_MASK	0xffffffff
663
664	/*
665	 * Setup JBC/UBC performance counter 0 in bus cycle counting
666	 * mode as timecounter.
667	 */
668	if (device_get_unit(dev) == 0) {
669		FIRE_CTRL_SET(sc, FO_XBC_PRF_CNT0, 0);
670		FIRE_CTRL_SET(sc, FO_XBC_PRF_CNT1, 0);
671		FIRE_CTRL_SET(sc, FO_XBC_PRF_CNT_SEL,
672		    (FO_XBC_PRF_CNT_NONE << FO_XBC_PRF_CNT_CNT1_SHFT) |
673		    (FO_XBC_PRF_CNT_XB_CLK << FO_XBC_PRF_CNT_CNT0_SHFT));
674		tc = malloc(sizeof(*tc), M_DEVBUF, M_NOWAIT | M_ZERO);
675		if (tc == NULL)
676			panic("%s: could not malloc timecounter", __func__);
677		tc->tc_get_timecount = fire_get_timecount;
678		tc->tc_counter_mask = TC_COUNTER_MAX_MASK;
679		if (OF_getprop(OF_peer(0), "clock-frequency", &prop,
680		    sizeof(prop)) == -1)
681			panic("%s: could not determine clock frequency",
682			    __func__);
683		tc->tc_frequency = prop;
684		tc->tc_name = strdup(device_get_nameunit(dev), M_DEVBUF);
685		tc->tc_priv = sc;
686		/*
687		 * Due to initial problems with the JBus-driven performance
688		 * counters not advancing which might be firmware dependent
689		 * ensure that it actually works.
690		 */
691		if (fire_get_timecount(tc) - fire_get_timecount(tc) != 0)
692			tc->tc_quality = FIRE_PERF_CNT_QLTY;
693		else
694			tc->tc_quality = -FIRE_PERF_CNT_QLTY;
695		tc_init(tc);
696	}
697
698	/*
699	 * Set up the IOMMU.  Both Fire and Oberon have one per PBM, but
700	 * neither has a streaming buffer.
701	 */
702	memcpy(&sc->sc_dma_methods, &iommu_dma_methods,
703	    sizeof(sc->sc_dma_methods));
704	sc->sc_is.is_flags = IOMMU_FIRE | IOMMU_PRESERVE_PROM;
705	if (sc->sc_mode == FIRE_MODE_OBERON) {
706		sc->sc_is.is_flags |= IOMMU_FLUSH_CACHE;
707		sc->sc_is.is_pmaxaddr = IOMMU_MAXADDR(OBERON_IOMMU_BITS);
708	} else {
709		sc->sc_dma_methods.dm_dmamap_sync = fire_dmamap_sync;
710		sc->sc_is.is_pmaxaddr = IOMMU_MAXADDR(FIRE_IOMMU_BITS);
711	}
712	sc->sc_is.is_sb[0] = sc->sc_is.is_sb[1] = 0;
713	/* Punch in our copies. */
714	sc->sc_is.is_bustag = rman_get_bustag(sc->sc_mem_res[FIRE_PCI]);
715	sc->sc_is.is_bushandle = rman_get_bushandle(sc->sc_mem_res[FIRE_PCI]);
716	sc->sc_is.is_iommu = FO_PCI_MMU;
717	val = FIRE_PCI_READ_8(sc, FO_PCI_MMU + IMR_CTL);
718	iommu_init(device_get_nameunit(sc->sc_dev), &sc->sc_is, 7, -1, 0);
719#ifdef FIRE_DEBUG
720	device_printf(dev, "FO_PCI_MMU + IMR_CTL 0x%016llx -> 0x%016llx\n",
721	    (long long unsigned)val, (long long unsigned)sc->sc_is.is_cr);
722#endif
723
724	/* Initialize memory and I/O rmans. */
725	sc->sc_pci_io_rman.rm_type = RMAN_ARRAY;
726	sc->sc_pci_io_rman.rm_descr = "Fire PCI I/O Ports";
727	if (rman_init(&sc->sc_pci_io_rman) != 0 ||
728	    rman_manage_region(&sc->sc_pci_io_rman, 0, FO_IO_SIZE) != 0)
729		panic("%s: failed to set up I/O rman", __func__);
730	sc->sc_pci_mem_rman.rm_type = RMAN_ARRAY;
731	sc->sc_pci_mem_rman.rm_descr = "Fire PCI Memory";
732	if (rman_init(&sc->sc_pci_mem_rman) != 0 ||
733	    rman_manage_region(&sc->sc_pci_mem_rman, 0, FO_MEM_SIZE) != 0)
734		panic("%s: failed to set up memory rman", __func__);
735
736	i = OF_getprop_alloc(node, "ranges", sizeof(*range), (void **)&range);
737	/*
738	 * Make sure that the expected ranges are present.  The
739	 * OFW_PCI_CS_MEM64 one is not currently used though.
740	 */
741	if (i != FIRE_NRANGE)
742		panic("%s: unsupported number of ranges", __func__);
743	/*
744	 * Find the addresses of the various bus spaces.
745	 * There should not be multiple ones of one kind.
746	 * The physical start addresses of the ranges are the configuration,
747	 * memory and I/O handles.
748	 */
749	for (i = 0; i < FIRE_NRANGE; i++) {
750		j = OFW_PCI_RANGE_CS(&range[i]);
751		if (sc->sc_pci_bh[j] != 0)
752			panic("%s: duplicate range for space %d",
753			    __func__, j);
754		sc->sc_pci_bh[j] = OFW_PCI_RANGE_PHYS(&range[i]);
755	}
756	free(range, M_OFWPROP);
757
758	/* Allocate our tags. */
759	sc->sc_pci_iot = sparc64_alloc_bus_tag(NULL, rman_get_bustag(
760	    sc->sc_mem_res[FIRE_PCI]), PCI_IO_BUS_SPACE, NULL);
761	if (sc->sc_pci_iot == NULL)
762		panic("%s: could not allocate PCI I/O tag", __func__);
763	sc->sc_pci_cfgt = sparc64_alloc_bus_tag(NULL, rman_get_bustag(
764	    sc->sc_mem_res[FIRE_PCI]), PCI_CONFIG_BUS_SPACE, NULL);
765	if (sc->sc_pci_cfgt == NULL)
766		panic("%s: could not allocate PCI configuration space tag",
767		    __func__);
768	if (bus_dma_tag_create(bus_get_dma_tag(dev), 8, 0x100000000,
769	    sc->sc_is.is_pmaxaddr, ~0, NULL, NULL, sc->sc_is.is_pmaxaddr,
770	    0xff, 0xffffffff, 0, NULL, NULL, &sc->sc_pci_dmat) != 0)
771		panic("%s: could not create PCI DMA tag", __func__);
772	/* Customize the tag. */
773	sc->sc_pci_dmat->dt_cookie = &sc->sc_is;
774	sc->sc_pci_dmat->dt_mt = &sc->sc_dma_methods;
775
776	/*
777	 * Get the bus range from the firmware.
778	 * NB: Neither Fire nor Oberon support PCI bus reenumeration.
779	 */
780	i = OF_getprop(node, "bus-range", (void *)prop_array,
781	    sizeof(prop_array));
782	if (i == -1)
783		panic("%s: could not get bus-range", __func__);
784	if (i != sizeof(prop_array))
785		panic("%s: broken bus-range (%d)", __func__, i);
786	sc->sc_pci_secbus = prop_array[0];
787	sc->sc_pci_subbus = prop_array[1];
788	if (bootverbose != 0)
789		device_printf(dev, "bus range %u to %u; PCI bus %d\n",
790		    sc->sc_pci_secbus, sc->sc_pci_subbus, sc->sc_pci_secbus);
791
792	ofw_bus_setup_iinfo(node, &sc->sc_pci_iinfo, sizeof(ofw_pci_intr_t));
793
794#define	FIRE_SYSCTL_ADD_UINT(name, arg, desc)				\
795	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),			\
796	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,	\
797	    (name), CTLFLAG_RD, (arg), 0, (desc))
798
799	FIRE_SYSCTL_ADD_UINT("ilu_err", &sc->sc_stats_ilu_err,
800	    "ILU unknown errors");
801	FIRE_SYSCTL_ADD_UINT("jbc_ce_async", &sc->sc_stats_jbc_ce_async,
802	    "JBC correctable errors");
803	FIRE_SYSCTL_ADD_UINT("jbc_unsol_int", &sc->sc_stats_jbc_unsol_int,
804	    "JBC unsolicited interrupt ACK/NACK errors");
805	FIRE_SYSCTL_ADD_UINT("jbc_unsol_rd", &sc->sc_stats_jbc_unsol_rd,
806	    "JBC unsolicited read response errors");
807	FIRE_SYSCTL_ADD_UINT("mmu_err", &sc->sc_stats_mmu_err, "MMU errors");
808	FIRE_SYSCTL_ADD_UINT("tlu_ce", &sc->sc_stats_tlu_ce,
809	    "DLU/TLU correctable errors");
810	FIRE_SYSCTL_ADD_UINT("tlu_oe_non_fatal",
811	    &sc->sc_stats_tlu_oe_non_fatal,
812	    "DLU/TLU other event non-fatal errors summary"),
813	FIRE_SYSCTL_ADD_UINT("tlu_oe_rx_err", &sc->sc_stats_tlu_oe_rx_err,
814	    "DLU/TLU receive other event errors"),
815	FIRE_SYSCTL_ADD_UINT("tlu_oe_tx_err", &sc->sc_stats_tlu_oe_tx_err,
816	    "DLU/TLU transmit other event errors"),
817	FIRE_SYSCTL_ADD_UINT("ubc_dmardue", &sc->sc_stats_ubc_dmardue,
818	    "UBC DMARDUE erros");
819
820#undef FIRE_SYSCTL_ADD_UINT
821
822	device_add_child(dev, "pci", -1);
823	return (bus_generic_attach(dev));
824}
825
826static void
827fire_set_intr(struct fire_softc *sc, u_int index, u_int ino,
828    driver_filter_t handler, void *arg)
829{
830	u_long vec;
831	int rid;
832
833	rid = index;
834	sc->sc_irq_res[index] = bus_alloc_resource_any(sc->sc_dev,
835	    SYS_RES_IRQ, &rid, RF_ACTIVE);
836	if (sc->sc_irq_res[index] == NULL ||
837	    INTINO(vec = rman_get_start(sc->sc_irq_res[index])) != ino ||
838	    INTIGN(vec) != sc->sc_ign ||
839	    intr_vectors[vec].iv_ic != &fire_ic ||
840	    bus_setup_intr(sc->sc_dev, sc->sc_irq_res[index],
841	    INTR_TYPE_MISC | INTR_BRIDGE, handler, NULL, arg,
842	    &sc->sc_ihand[index]) != 0)
843		panic("%s: failed to set up interrupt %d", __func__, index);
844}
845
846static int
847fire_intr_register(struct fire_softc *sc, u_int ino)
848{
849	struct fire_icarg *fica;
850	bus_addr_t intrclr, intrmap;
851	int error;
852
853	if (fire_get_intrmap(sc, ino, &intrmap, &intrclr) == 0)
854		return (ENXIO);
855	fica = malloc((ino >= FO_EQ_FIRST_INO && ino <= FO_EQ_LAST_INO) ?
856	    sizeof(struct fire_msiqarg) : sizeof(struct fire_icarg), M_DEVBUF,
857	    M_NOWAIT | M_ZERO);
858	if (fica == NULL)
859		return (ENOMEM);
860	fica->fica_sc = sc;
861	fica->fica_map = intrmap;
862	fica->fica_clr = intrclr;
863	error = (intr_controller_register(INTMAP_VEC(sc->sc_ign, ino),
864	    &fire_ic, fica));
865	if (error != 0)
866		free(fica, M_DEVBUF);
867	return (error);
868}
869
870static int
871fire_get_intrmap(struct fire_softc *sc, u_int ino, bus_addr_t *intrmapptr,
872    bus_addr_t *intrclrptr)
873{
874
875	if (ino > FO_MAX_INO) {
876		device_printf(sc->sc_dev, "out of range INO %d requested\n",
877		    ino);
878		return (0);
879	}
880
881	ino <<= 3;
882	if (intrmapptr != NULL)
883		*intrmapptr = FO_PCI_INT_MAP_BASE + ino;
884	if (intrclrptr != NULL)
885		*intrclrptr = FO_PCI_INT_CLR_BASE + ino;
886	return (1);
887}
888
889/*
890 * Interrupt handlers
891 */
892static int
893fire_dmc_pec(void *arg)
894{
895	struct fire_softc *sc;
896	device_t dev;
897	uint64_t cestat, dmcstat, ilustat, imustat, mcstat, mmustat, mmutfar;
898	uint64_t mmutfsr, oestat, pecstat, uestat, val;
899	u_int fatal, oenfatal;
900
901	fatal = 0;
902	sc = arg;
903	dev = sc->sc_dev;
904	mtx_lock_spin(&sc->sc_pcib_mtx);
905	mcstat = FIRE_PCI_READ_8(sc, FO_PCI_MULTI_CORE_ERR_STAT);
906	if ((mcstat & FO_PCI_MULTI_CORE_ERR_STAT_DMC) != 0) {
907		dmcstat = FIRE_PCI_READ_8(sc, FO_PCI_DMC_CORE_BLOCK_ERR_STAT);
908		if ((dmcstat & FO_PCI_DMC_CORE_BLOCK_INT_EN_IMU) != 0) {
909			imustat = FIRE_PCI_READ_8(sc, FO_PCI_IMU_INT_STAT);
910			device_printf(dev, "IMU error %#llx\n",
911			    (unsigned long long)imustat);
912			if ((imustat &
913			    FO_PCI_IMU_ERR_INT_EQ_NOT_EN_P) != 0) {
914				fatal = 1;
915				val = FIRE_PCI_READ_8(sc,
916				    FO_PCI_IMU_SCS_ERR_LOG);
917				device_printf(dev, "SCS error log %#llx\n",
918				    (unsigned long long)val);
919			}
920			if ((imustat & FO_PCI_IMU_ERR_INT_EQ_OVER_P) != 0) {
921				fatal = 1;
922				val = FIRE_PCI_READ_8(sc,
923				    FO_PCI_IMU_EQS_ERR_LOG);
924				device_printf(dev, "EQS error log %#llx\n",
925				    (unsigned long long)val);
926			}
927			if ((imustat & (FO_PCI_IMU_ERR_INT_MSI_MAL_ERR_P |
928			    FO_PCI_IMU_ERR_INT_MSI_PAR_ERR_P |
929			    FO_PCI_IMU_ERR_INT_PMEACK_MES_NOT_EN_P |
930			    FO_PCI_IMU_ERR_INT_PMPME_MES_NOT_EN_P |
931			    FO_PCI_IMU_ERR_INT_FATAL_MES_NOT_EN_P |
932			    FO_PCI_IMU_ERR_INT_NFATAL_MES_NOT_EN_P |
933			    FO_PCI_IMU_ERR_INT_COR_MES_NOT_EN_P |
934			    FO_PCI_IMU_ERR_INT_MSI_NOT_EN_P)) != 0) {
935				fatal = 1;
936				val = FIRE_PCI_READ_8(sc,
937				    FO_PCI_IMU_RDS_ERR_LOG);
938				device_printf(dev, "RDS error log %#llx\n",
939				    (unsigned long long)val);
940			}
941		}
942		if ((dmcstat & FO_PCI_DMC_CORE_BLOCK_INT_EN_MMU) != 0) {
943			fatal = 1;
944			mmustat = FIRE_PCI_READ_8(sc, FO_PCI_MMU_INT_STAT);
945			mmutfar = FIRE_PCI_READ_8(sc,
946			    FO_PCI_MMU_TRANS_FAULT_ADDR);
947			mmutfsr = FIRE_PCI_READ_8(sc,
948			    FO_PCI_MMU_TRANS_FAULT_STAT);
949			if ((mmustat & (FO_PCI_MMU_ERR_INT_TBW_DPE_P |
950			    FO_PCI_MMU_ERR_INT_TBW_ERR_P |
951			    FO_PCI_MMU_ERR_INT_TBW_UDE_P |
952			    FO_PCI_MMU_ERR_INT_TBW_DME_P |
953			    FO_PCI_MMU_ERR_INT_TTC_CAE_P |
954			    FIRE_PCI_MMU_ERR_INT_TTC_DPE_P |
955			    OBERON_PCI_MMU_ERR_INT_TTC_DUE_P |
956			    FO_PCI_MMU_ERR_INT_TRN_ERR_P)) != 0)
957				fatal = 1;
958			else {
959				sc->sc_stats_mmu_err++;
960				FIRE_PCI_WRITE_8(sc, FO_PCI_MMU_ERR_STAT_CLR,
961				    mmustat);
962			}
963			device_printf(dev,
964			    "MMU error %#llx: TFAR %#llx TFSR %#llx\n",
965			    (unsigned long long)mmustat,
966			    (unsigned long long)mmutfar,
967			    (unsigned long long)mmutfsr);
968		}
969	}
970	if ((mcstat & FO_PCI_MULTI_CORE_ERR_STAT_PEC) != 0) {
971		pecstat = FIRE_PCI_READ_8(sc, FO_PCI_PEC_CORE_BLOCK_INT_STAT);
972		if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_UERR) != 0) {
973			fatal = 1;
974			uestat = FIRE_PCI_READ_8(sc,
975			    FO_PCI_TLU_UERR_INT_STAT);
976			device_printf(dev,
977			    "DLU/TLU uncorrectable error %#llx\n",
978			    (unsigned long long)uestat);
979			if ((uestat & (FO_PCI_TLU_UERR_INT_UR_P |
980			    OBERON_PCI_TLU_UERR_INT_POIS_P |
981			    FO_PCI_TLU_UERR_INT_MFP_P |
982			    FO_PCI_TLU_UERR_INT_ROF_P |
983			    FO_PCI_TLU_UERR_INT_UC_P |
984			    FIRE_PCI_TLU_UERR_INT_PP_P |
985			    OBERON_PCI_TLU_UERR_INT_POIS_P)) != 0) {
986				val = FIRE_PCI_READ_8(sc,
987				    FO_PCI_TLU_RX_UERR_HDR1_LOG);
988				device_printf(dev,
989				    "receive header log %#llx\n",
990				    (unsigned long long)val);
991				val = FIRE_PCI_READ_8(sc,
992				    FO_PCI_TLU_RX_UERR_HDR2_LOG);
993				device_printf(dev,
994				    "receive header log 2 %#llx\n",
995				    (unsigned long long)val);
996			}
997			if ((uestat & FO_PCI_TLU_UERR_INT_CTO_P) != 0) {
998				val = FIRE_PCI_READ_8(sc,
999				    FO_PCI_TLU_TX_UERR_HDR1_LOG);
1000				device_printf(dev,
1001				    "transmit header log %#llx\n",
1002				    (unsigned long long)val);
1003				val = FIRE_PCI_READ_8(sc,
1004				    FO_PCI_TLU_TX_UERR_HDR2_LOG);
1005				device_printf(dev,
1006				    "transmit header log 2 %#llx\n",
1007				    (unsigned long long)val);
1008			}
1009			if ((uestat & FO_PCI_TLU_UERR_INT_DLP_P) != 0) {
1010				val = FIRE_PCI_READ_8(sc,
1011				    FO_PCI_LPU_LNK_LYR_INT_STAT);
1012				device_printf(dev,
1013				    "link layer interrupt and status %#llx\n",
1014				    (unsigned long long)val);
1015			}
1016			if ((uestat & FO_PCI_TLU_UERR_INT_TE_P) != 0) {
1017				val = FIRE_PCI_READ_8(sc,
1018				    FO_PCI_LPU_PHY_LYR_INT_STAT);
1019				device_printf(dev,
1020				    "phy layer interrupt and status %#llx\n",
1021				    (unsigned long long)val);
1022			}
1023		}
1024		if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_CERR) != 0) {
1025			sc->sc_stats_tlu_ce++;
1026			cestat = FIRE_PCI_READ_8(sc,
1027			    FO_PCI_TLU_CERR_INT_STAT);
1028			device_printf(dev,
1029			    "DLU/TLU correctable error %#llx\n",
1030			    (unsigned long long)cestat);
1031			val = FIRE_PCI_READ_8(sc,
1032			    FO_PCI_LPU_LNK_LYR_INT_STAT);
1033			device_printf(dev,
1034			    "link layer interrupt and status %#llx\n",
1035			    (unsigned long long)val);
1036			if ((cestat & FO_PCI_TLU_CERR_INT_RE_P) != 0) {
1037				FIRE_PCI_WRITE_8(sc,
1038				    FO_PCI_LPU_LNK_LYR_INT_STAT, val);
1039				val = FIRE_PCI_READ_8(sc,
1040				    FO_PCI_LPU_PHY_LYR_INT_STAT);
1041				device_printf(dev,
1042				    "phy layer interrupt and status %#llx\n",
1043				    (unsigned long long)val);
1044			}
1045			FIRE_PCI_WRITE_8(sc, FO_PCI_TLU_CERR_STAT_CLR,
1046			    cestat);
1047		}
1048		if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_OEVENT) != 0) {
1049			oenfatal = 0;
1050			oestat = FIRE_PCI_READ_8(sc,
1051			    FO_PCI_TLU_OEVENT_INT_STAT);
1052			device_printf(dev, "DLU/TLU other event %#llx\n",
1053			    (unsigned long long)oestat);
1054			if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
1055			    FO_PCI_TLU_OEVENT_MRC_P |
1056			    FO_PCI_TLU_OEVENT_WUC_P |
1057			    FO_PCI_TLU_OEVENT_RUC_P |
1058			    FO_PCI_TLU_OEVENT_CRS_P)) != 0) {
1059				val = FIRE_PCI_READ_8(sc,
1060				    FO_PCI_TLU_RX_OEVENT_HDR1_LOG);
1061				device_printf(dev,
1062				    "receive header log %#llx\n",
1063				    (unsigned long long)val);
1064				val = FIRE_PCI_READ_8(sc,
1065				    FO_PCI_TLU_RX_OEVENT_HDR2_LOG);
1066				device_printf(dev,
1067				    "receive header log 2 %#llx\n",
1068				    (unsigned long long)val);
1069				if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
1070				    FO_PCI_TLU_OEVENT_MRC_P |
1071				    FO_PCI_TLU_OEVENT_WUC_P |
1072				    FO_PCI_TLU_OEVENT_RUC_P)) != 0)
1073					fatal = 1;
1074				else {
1075					sc->sc_stats_tlu_oe_rx_err++;
1076					oenfatal = 1;
1077				}
1078			}
1079			if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
1080			    FO_PCI_TLU_OEVENT_CTO_P |
1081			    FO_PCI_TLU_OEVENT_WUC_P |
1082			    FO_PCI_TLU_OEVENT_RUC_P)) != 0) {
1083				val = FIRE_PCI_READ_8(sc,
1084				    FO_PCI_TLU_TX_OEVENT_HDR1_LOG);
1085				device_printf(dev,
1086				    "transmit header log %#llx\n",
1087				    (unsigned long long)val);
1088				val = FIRE_PCI_READ_8(sc,
1089				    FO_PCI_TLU_TX_OEVENT_HDR2_LOG);
1090				device_printf(dev,
1091				    "transmit header log 2 %#llx\n",
1092				    (unsigned long long)val);
1093				if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
1094				    FO_PCI_TLU_OEVENT_CTO_P |
1095				    FO_PCI_TLU_OEVENT_WUC_P |
1096				    FO_PCI_TLU_OEVENT_RUC_P)) != 0)
1097					fatal = 1;
1098				else {
1099					sc->sc_stats_tlu_oe_tx_err++;
1100					oenfatal = 1;
1101				}
1102			}
1103			if ((oestat & (FO_PCI_TLU_OEVENT_ERO_P |
1104			    FO_PCI_TLU_OEVENT_EMP_P |
1105			    FO_PCI_TLU_OEVENT_EPE_P |
1106			    FIRE_PCI_TLU_OEVENT_ERP_P |
1107			    OBERON_PCI_TLU_OEVENT_ERBU_P |
1108			    FIRE_PCI_TLU_OEVENT_EIP_P |
1109			    OBERON_PCI_TLU_OEVENT_EIUE_P)) != 0) {
1110				fatal = 1;
1111				val = FIRE_PCI_READ_8(sc,
1112				    FO_PCI_LPU_LNK_LYR_INT_STAT);
1113				device_printf(dev,
1114				    "link layer interrupt and status %#llx\n",
1115				    (unsigned long long)val);
1116			}
1117			if ((oestat & (FO_PCI_TLU_OEVENT_IIP_P |
1118			    FO_PCI_TLU_OEVENT_EDP_P |
1119			    FIRE_PCI_TLU_OEVENT_EHP_P |
1120			    OBERON_PCI_TLU_OEVENT_TLUEITMO_S |
1121			    FO_PCI_TLU_OEVENT_ERU_P)) != 0)
1122				fatal = 1;
1123			if ((oestat & (FO_PCI_TLU_OEVENT_NFP_P |
1124			    FO_PCI_TLU_OEVENT_LWC_P |
1125			    FO_PCI_TLU_OEVENT_LIN_P |
1126			    FO_PCI_TLU_OEVENT_LRS_P |
1127			    FO_PCI_TLU_OEVENT_LDN_P |
1128			    FO_PCI_TLU_OEVENT_LUP_P)) != 0)
1129				oenfatal = 1;
1130			if (oenfatal != 0) {
1131				sc->sc_stats_tlu_oe_non_fatal++;
1132				FIRE_PCI_WRITE_8(sc,
1133				    FO_PCI_TLU_OEVENT_STAT_CLR, oestat);
1134				if ((oestat & FO_PCI_TLU_OEVENT_LIN_P) != 0)
1135					FIRE_PCI_WRITE_8(sc,
1136					    FO_PCI_LPU_LNK_LYR_INT_STAT,
1137					    FIRE_PCI_READ_8(sc,
1138					    FO_PCI_LPU_LNK_LYR_INT_STAT));
1139			}
1140		}
1141		if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_ILU) != 0) {
1142			ilustat = FIRE_PCI_READ_8(sc, FO_PCI_ILU_INT_STAT);
1143			device_printf(dev, "ILU error %#llx\n",
1144			    (unsigned long long)ilustat);
1145			if ((ilustat & (FIRE_PCI_ILU_ERR_INT_IHB_PE_P |
1146			    FIRE_PCI_ILU_ERR_INT_IHB_PE_P)) != 0)
1147			    fatal = 1;
1148			else {
1149				sc->sc_stats_ilu_err++;
1150				FIRE_PCI_WRITE_8(sc, FO_PCI_ILU_INT_STAT,
1151				    ilustat);
1152			}
1153		}
1154	}
1155	mtx_unlock_spin(&sc->sc_pcib_mtx);
1156	if (fatal != 0)
1157		panic("%s: fatal DMC/PEC error",
1158		    device_get_nameunit(sc->sc_dev));
1159	return (FILTER_HANDLED);
1160}
1161
1162static int
1163fire_xcb(void *arg)
1164{
1165	struct fire_softc *sc;
1166	device_t dev;
1167	uint64_t errstat, intstat, val;
1168	u_int fatal;
1169
1170	fatal = 0;
1171	sc = arg;
1172	dev = sc->sc_dev;
1173	mtx_lock_spin(&sc->sc_pcib_mtx);
1174	if (sc->sc_mode == FIRE_MODE_OBERON) {
1175		intstat = FIRE_CTRL_READ_8(sc, FO_XBC_INT_STAT);
1176		device_printf(dev, "UBC error: interrupt status %#llx\n",
1177		    (unsigned long long)intstat);
1178		if ((intstat & ~(OBERON_UBC_ERR_INT_DMARDUEB_P |
1179		    OBERON_UBC_ERR_INT_DMARDUEA_P)) != 0)
1180			fatal = 1;
1181		else
1182			sc->sc_stats_ubc_dmardue++;
1183		if (fatal != 0) {
1184			mtx_unlock_spin(&sc->sc_pcib_mtx);
1185			panic("%s: fatal UBC core block error",
1186			    device_get_nameunit(sc->sc_dev));
1187		} else {
1188			FIRE_CTRL_SET(sc, FO_XBC_ERR_STAT_CLR, ~0ULL);
1189			mtx_unlock_spin(&sc->sc_pcib_mtx);
1190		}
1191	} else {
1192		errstat = FIRE_CTRL_READ_8(sc, FIRE_JBC_CORE_BLOCK_ERR_STAT);
1193		if ((errstat & (FIRE_JBC_CORE_BLOCK_ERR_STAT_MERGE |
1194		    FIRE_JBC_CORE_BLOCK_ERR_STAT_JBCINT |
1195		    FIRE_JBC_CORE_BLOCK_ERR_STAT_DMCINT)) != 0) {
1196			intstat = FIRE_CTRL_READ_8(sc, FO_XBC_INT_STAT);
1197			device_printf(dev, "JBC interrupt status %#llx\n",
1198			    (unsigned long long)intstat);
1199			if ((intstat & FIRE_JBC_ERR_INT_EBUS_TO_P) != 0) {
1200				val = FIRE_CTRL_READ_8(sc,
1201				    FIRE_JBC_CSR_ERR_LOG);
1202				device_printf(dev, "CSR error log %#llx\n",
1203				    (unsigned long long)val);
1204			}
1205			if ((intstat & (FIRE_JBC_ERR_INT_UNSOL_RD_P |
1206			    FIRE_JBC_ERR_INT_UNSOL_INT_P)) != 0) {
1207				if ((intstat &
1208				    FIRE_JBC_ERR_INT_UNSOL_RD_P) != 0)
1209					sc->sc_stats_jbc_unsol_rd++;
1210				if ((intstat &
1211				    FIRE_JBC_ERR_INT_UNSOL_INT_P) != 0)
1212					sc->sc_stats_jbc_unsol_int++;
1213				val = FIRE_CTRL_READ_8(sc,
1214				    FIRE_DMCINT_IDC_ERR_LOG);
1215				device_printf(dev,
1216				    "DMCINT IDC error log %#llx\n",
1217				    (unsigned long long)val);
1218			}
1219			if ((intstat & (FIRE_JBC_ERR_INT_MB_PER_P |
1220			    FIRE_JBC_ERR_INT_MB_PEW_P)) != 0) {
1221				fatal = 1;
1222				val = FIRE_CTRL_READ_8(sc,
1223				    FIRE_MERGE_TRANS_ERR_LOG);
1224				device_printf(dev,
1225				    "merge transaction error log %#llx\n",
1226				    (unsigned long long)val);
1227			}
1228			if ((intstat & FIRE_JBC_ERR_INT_IJP_P) != 0) {
1229				fatal = 1;
1230				val = FIRE_CTRL_READ_8(sc,
1231				    FIRE_JBCINT_OTRANS_ERR_LOG);
1232				device_printf(dev,
1233				    "JBCINT out transaction error log "
1234				    "%#llx\n", (unsigned long long)val);
1235				val = FIRE_CTRL_READ_8(sc,
1236				    FIRE_JBCINT_OTRANS_ERR_LOG2);
1237				device_printf(dev,
1238				    "JBCINT out transaction error log 2 "
1239				    "%#llx\n", (unsigned long long)val);
1240			}
1241			if ((intstat & (FIRE_JBC_ERR_INT_UE_ASYN_P |
1242			    FIRE_JBC_ERR_INT_CE_ASYN_P |
1243			    FIRE_JBC_ERR_INT_JTE_P | FIRE_JBC_ERR_INT_JBE_P |
1244			    FIRE_JBC_ERR_INT_JUE_P |
1245			    FIRE_JBC_ERR_INT_ICISE_P |
1246			    FIRE_JBC_ERR_INT_WR_DPE_P |
1247			    FIRE_JBC_ERR_INT_RD_DPE_P |
1248			    FIRE_JBC_ERR_INT_ILL_BMW_P |
1249			    FIRE_JBC_ERR_INT_ILL_BMR_P |
1250			    FIRE_JBC_ERR_INT_BJC_P)) != 0) {
1251				if ((intstat & (FIRE_JBC_ERR_INT_UE_ASYN_P |
1252				    FIRE_JBC_ERR_INT_JTE_P |
1253				    FIRE_JBC_ERR_INT_JBE_P |
1254				    FIRE_JBC_ERR_INT_JUE_P |
1255				    FIRE_JBC_ERR_INT_ICISE_P |
1256				    FIRE_JBC_ERR_INT_WR_DPE_P |
1257				    FIRE_JBC_ERR_INT_RD_DPE_P |
1258				    FIRE_JBC_ERR_INT_ILL_BMW_P |
1259				    FIRE_JBC_ERR_INT_ILL_BMR_P |
1260				    FIRE_JBC_ERR_INT_BJC_P)) != 0)
1261					fatal = 1;
1262				else
1263					sc->sc_stats_jbc_ce_async++;
1264				val = FIRE_CTRL_READ_8(sc,
1265				    FIRE_JBCINT_ITRANS_ERR_LOG);
1266				device_printf(dev,
1267				    "JBCINT in transaction error log %#llx\n",
1268				    (unsigned long long)val);
1269				val = FIRE_CTRL_READ_8(sc,
1270				    FIRE_JBCINT_ITRANS_ERR_LOG2);
1271				device_printf(dev,
1272				    "JBCINT in transaction error log 2 "
1273				    "%#llx\n", (unsigned long long)val);
1274			}
1275			if ((intstat & (FIRE_JBC_ERR_INT_PIO_UNMAP_RD_P |
1276			    FIRE_JBC_ERR_INT_ILL_ACC_RD_P |
1277			    FIRE_JBC_ERR_INT_PIO_UNMAP_P |
1278			    FIRE_JBC_ERR_INT_PIO_DPE_P |
1279			    FIRE_JBC_ERR_INT_PIO_CPE_P |
1280			    FIRE_JBC_ERR_INT_ILL_ACC_P)) != 0) {
1281				fatal = 1;
1282				val = FIRE_CTRL_READ_8(sc,
1283				    FIRE_JBC_CSR_ERR_LOG);
1284				device_printf(dev,
1285				    "DMCINT ODCD error log %#llx\n",
1286				    (unsigned long long)val);
1287			}
1288			if ((intstat & (FIRE_JBC_ERR_INT_MB_PEA_P |
1289			    FIRE_JBC_ERR_INT_CPE_P | FIRE_JBC_ERR_INT_APE_P |
1290			    FIRE_JBC_ERR_INT_PIO_CPE_P |
1291			    FIRE_JBC_ERR_INT_JTCEEW_P |
1292			    FIRE_JBC_ERR_INT_JTCEEI_P |
1293			    FIRE_JBC_ERR_INT_JTCEER_P)) != 0) {
1294				fatal = 1;
1295				val = FIRE_CTRL_READ_8(sc,
1296				    FIRE_FATAL_ERR_LOG);
1297				device_printf(dev, "fatal error log %#llx\n",
1298				    (unsigned long long)val);
1299				val = FIRE_CTRL_READ_8(sc,
1300				    FIRE_FATAL_ERR_LOG2);
1301				device_printf(dev, "fatal error log 2 "
1302				    "%#llx\n", (unsigned long long)val);
1303			}
1304			if (fatal != 0) {
1305				mtx_unlock_spin(&sc->sc_pcib_mtx);
1306				panic("%s: fatal JBC core block error",
1307				    device_get_nameunit(sc->sc_dev));
1308			} else {
1309				FIRE_CTRL_SET(sc, FO_XBC_ERR_STAT_CLR, ~0ULL);
1310				mtx_unlock_spin(&sc->sc_pcib_mtx);
1311			}
1312		} else {
1313			mtx_unlock_spin(&sc->sc_pcib_mtx);
1314			panic("%s: unknown JCB core block error status %#llx",
1315			    device_get_nameunit(sc->sc_dev),
1316			    (unsigned long long)errstat);
1317		}
1318	}
1319	return (FILTER_HANDLED);
1320}
1321
1322static int
1323fire_pcie(void *arg)
1324{
1325	struct fire_msiqarg *fmqa;
1326	struct fire_softc *sc;
1327	struct fo_msiq_record *qrec;
1328	device_t dev;
1329	uint64_t word0;
1330	u_int head, msg, msiq;
1331
1332	fmqa = arg;
1333	sc = fmqa->fmqa_fica.fica_sc;
1334	dev = sc->sc_dev;
1335	msiq = fmqa->fmqa_msiq;
1336	mtx_lock_spin(&fmqa->fmqa_mtx);
1337	head = (FIRE_PCI_READ_8(sc, fmqa->fmqa_head) & FO_PCI_EQ_HD_MASK) >>
1338	    FO_PCI_EQ_HD_SHFT;
1339	qrec = &fmqa->fmqa_base[head];
1340	word0 = qrec->fomqr_word0;
1341	for (;;) {
1342		KASSERT((word0 & FO_MQR_WORD0_FMT_TYPE_MSG) != 0,
1343		    ("%s: received non-PCIe message in event queue %d "
1344		    "(word0 %#llx)", device_get_nameunit(dev), msiq,
1345		    (unsigned long long)word0));
1346		msg = (word0 & FO_MQR_WORD0_DATA0_MASK) >>
1347		    FO_MQR_WORD0_DATA0_SHFT;
1348
1349#define	PCIE_MSG_CODE_ERR_COR		0x30
1350#define	PCIE_MSG_CODE_ERR_NONFATAL	0x31
1351#define	PCIE_MSG_CODE_ERR_FATAL		0x33
1352
1353		if (msg == PCIE_MSG_CODE_ERR_COR)
1354			device_printf(dev, "correctable PCIe error\n");
1355		else if (msg == PCIE_MSG_CODE_ERR_NONFATAL ||
1356		    msg == PCIE_MSG_CODE_ERR_FATAL)
1357			panic("%s: %sfatal PCIe error",
1358			    device_get_nameunit(dev),
1359			    msg == PCIE_MSG_CODE_ERR_NONFATAL ? "non-" : "");
1360		else
1361			panic("%s: received unknown PCIe message %#x",
1362			    device_get_nameunit(dev), msg);
1363		qrec->fomqr_word0 &= ~FO_MQR_WORD0_FMT_TYPE_MASK;
1364		head = (head + 1) % sc->sc_msiq_size;
1365		qrec = &fmqa->fmqa_base[head];
1366		word0 = qrec->fomqr_word0;
1367		if (__predict_true((word0 & FO_MQR_WORD0_FMT_TYPE_MASK) == 0))
1368			break;
1369	}
1370	FIRE_PCI_WRITE_8(sc, fmqa->fmqa_head, (head & FO_PCI_EQ_HD_MASK) <<
1371	    FO_PCI_EQ_HD_SHFT);
1372	if ((FIRE_PCI_READ_8(sc, fmqa->fmqa_tail) &
1373	    FO_PCI_EQ_TL_OVERR) != 0) {
1374		device_printf(dev, "event queue %d overflow\n", msiq);
1375		msiq <<= 3;
1376		FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq,
1377		    FIRE_PCI_READ_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq) |
1378		    FO_PCI_EQ_CTRL_CLR_COVERR);
1379	}
1380	mtx_unlock_spin(&fmqa->fmqa_mtx);
1381	return (FILTER_HANDLED);
1382}
1383
1384static int
1385fire_maxslots(device_t dev)
1386{
1387
1388	return (1);
1389}
1390
1391static uint32_t
1392fire_read_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg,
1393    int width)
1394{
1395	struct fire_softc *sc;
1396	bus_space_handle_t bh;
1397	u_long offset = 0;
1398	uint32_t r, wrd;
1399	int i;
1400	uint16_t shrt;
1401	uint8_t byte;
1402
1403	sc = device_get_softc(dev);
1404	if (bus < sc->sc_pci_secbus || bus > sc->sc_pci_subbus ||
1405	    slot > PCI_SLOTMAX || func > PCI_FUNCMAX || reg > PCIE_REGMAX)
1406		return (-1);
1407
1408	offset = FO_CONF_OFF(bus, slot, func, reg);
1409	bh = sc->sc_pci_bh[OFW_PCI_CS_CONFIG];
1410	switch (width) {
1411	case 1:
1412		i = bus_space_peek_1(sc->sc_pci_cfgt, bh, offset, &byte);
1413		r = byte;
1414		break;
1415	case 2:
1416		i = bus_space_peek_2(sc->sc_pci_cfgt, bh, offset, &shrt);
1417		r = shrt;
1418		break;
1419	case 4:
1420		i = bus_space_peek_4(sc->sc_pci_cfgt, bh, offset, &wrd);
1421		r = wrd;
1422		break;
1423	default:
1424		panic("%s: bad width", __func__);
1425		/* NOTREACHED */
1426	}
1427
1428	if (i) {
1429#ifdef FIRE_DEBUG
1430		printf("%s: read data error reading: %d.%d.%d: 0x%x\n",
1431		    __func__, bus, slot, func, reg);
1432#endif
1433		r = -1;
1434	}
1435	return (r);
1436}
1437
1438static void
1439fire_write_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg,
1440    uint32_t val, int width)
1441{
1442	struct fire_softc *sc;
1443	bus_space_handle_t bh;
1444	u_long offset = 0;
1445
1446	sc = device_get_softc(dev);
1447	if (bus < sc->sc_pci_secbus || bus > sc->sc_pci_subbus ||
1448	    slot > PCI_SLOTMAX || func > PCI_FUNCMAX || reg > PCIE_REGMAX)
1449		return;
1450
1451	offset = FO_CONF_OFF(bus, slot, func, reg);
1452	bh = sc->sc_pci_bh[OFW_PCI_CS_CONFIG];
1453	switch (width) {
1454	case 1:
1455		bus_space_write_1(sc->sc_pci_cfgt, bh, offset, val);
1456		break;
1457	case 2:
1458		bus_space_write_2(sc->sc_pci_cfgt, bh, offset, val);
1459		break;
1460	case 4:
1461		bus_space_write_4(sc->sc_pci_cfgt, bh, offset, val);
1462		break;
1463	default:
1464		panic("%s: bad width", __func__);
1465		/* NOTREACHED */
1466	}
1467}
1468
1469static int
1470fire_route_interrupt(device_t bridge, device_t dev, int pin)
1471{
1472	struct fire_softc *sc;
1473	struct ofw_pci_register reg;
1474	ofw_pci_intr_t pintr, mintr;
1475	uint8_t maskbuf[sizeof(reg) + sizeof(pintr)];
1476
1477	sc = device_get_softc(bridge);
1478	pintr = pin;
1479	if (ofw_bus_lookup_imap(ofw_bus_get_node(dev), &sc->sc_pci_iinfo,
1480	    &reg, sizeof(reg), &pintr, sizeof(pintr), &mintr, sizeof(mintr),
1481	    NULL, maskbuf) != 0)
1482		return (mintr);
1483
1484	device_printf(bridge, "could not route pin %d for device %d.%d\n",
1485	    pin, pci_get_slot(dev), pci_get_function(dev));
1486	return (PCI_INVALID_IRQ);
1487}
1488
1489static int
1490fire_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
1491{
1492	struct fire_softc *sc;
1493
1494	sc = device_get_softc(dev);
1495	switch (which) {
1496	case PCIB_IVAR_DOMAIN:
1497		*result = device_get_unit(dev);
1498		return (0);
1499	case PCIB_IVAR_BUS:
1500		*result = sc->sc_pci_secbus;
1501		return (0);
1502	}
1503	return (ENOENT);
1504}
1505
1506static void
1507fire_dmamap_sync(bus_dma_tag_t dt __unused, bus_dmamap_t map,
1508    bus_dmasync_op_t op)
1509{
1510	static u_char buf[VIS_BLOCKSIZE] __aligned(VIS_BLOCKSIZE);
1511	register_t reg, s;
1512
1513	if ((map->dm_flags & DMF_LOADED) == 0)
1514		return;
1515
1516	if ((op & BUS_DMASYNC_POSTREAD) != 0) {
1517		s = intr_disable();
1518		reg = rd(fprs);
1519		wr(fprs, reg | FPRS_FEF, 0);
1520		__asm __volatile("stda %%f0, [%0] %1"
1521		    : : "r" (buf), "n" (ASI_BLK_COMMIT_S));
1522		membar(Sync);
1523		wr(fprs, reg, 0);
1524		intr_restore(s);
1525	} else if ((op & BUS_DMASYNC_PREWRITE) != 0)
1526		membar(Sync);
1527}
1528
1529static void
1530fire_intr_enable(void *arg)
1531{
1532	struct intr_vector *iv;
1533	struct fire_icarg *fica;
1534	struct fire_softc *sc;
1535	struct pcpu *pc;
1536	uint64_t mr;
1537	u_int ctrl, i;
1538
1539	iv = arg;
1540	fica = iv->iv_icarg;
1541	sc = fica->fica_sc;
1542	mr = FO_PCI_IMAP_V;
1543	if (sc->sc_mode == FIRE_MODE_OBERON)
1544		mr |= (iv->iv_mid << OBERON_PCI_IMAP_T_DESTID_SHFT) &
1545		    OBERON_PCI_IMAP_T_DESTID_MASK;
1546	else
1547		mr |= (iv->iv_mid << FIRE_PCI_IMAP_T_JPID_SHFT) &
1548		    FIRE_PCI_IMAP_T_JPID_MASK;
1549	/*
1550	 * Given that all mondos for the same target are required to use the
1551	 * same interrupt controller we just use the CPU ID for indexing the
1552	 * latter.
1553	 */
1554	ctrl = 0;
1555	for (i = 0; i < mp_ncpus; ++i) {
1556		pc = pcpu_find(i);
1557		if (pc == NULL || iv->iv_mid != pc->pc_mid)
1558			continue;
1559		ctrl = pc->pc_cpuid % 4;
1560		break;
1561	}
1562	mr |= (1ULL << ctrl) << FO_PCI_IMAP_INT_CTRL_NUM_SHFT &
1563	    FO_PCI_IMAP_INT_CTRL_NUM_MASK;
1564	FIRE_PCI_WRITE_8(sc, fica->fica_map, mr);
1565}
1566
1567static void
1568fire_intr_disable(void *arg)
1569{
1570	struct intr_vector *iv;
1571	struct fire_icarg *fica;
1572	struct fire_softc *sc;
1573
1574	iv = arg;
1575	fica = iv->iv_icarg;
1576	sc = fica->fica_sc;
1577	FIRE_PCI_WRITE_8(sc, fica->fica_map,
1578	    FIRE_PCI_READ_8(sc, fica->fica_map) & ~FO_PCI_IMAP_V);
1579}
1580
1581static void
1582fire_intr_assign(void *arg)
1583{
1584	struct intr_vector *iv;
1585	struct fire_icarg *fica;
1586	struct fire_softc *sc;
1587	uint64_t mr;
1588
1589	iv = arg;
1590	fica = iv->iv_icarg;
1591	sc = fica->fica_sc;
1592	mr = FIRE_PCI_READ_8(sc, fica->fica_map);
1593	if ((mr & FO_PCI_IMAP_V) != 0) {
1594		FIRE_PCI_WRITE_8(sc, fica->fica_map, mr & ~FO_PCI_IMAP_V);
1595		FIRE_PCI_BARRIER(sc, fica->fica_map, 8,
1596		    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
1597	}
1598	while (FIRE_PCI_READ_8(sc, fica->fica_clr) != INTCLR_IDLE)
1599		;
1600	if ((mr & FO_PCI_IMAP_V) != 0)
1601		fire_intr_enable(arg);
1602}
1603
1604static void
1605fire_intr_clear(void *arg)
1606{
1607	struct intr_vector *iv;
1608	struct fire_icarg *fica;
1609
1610	iv = arg;
1611	fica = iv->iv_icarg;
1612	FIRE_PCI_WRITE_8(fica->fica_sc, fica->fica_clr, INTCLR_IDLE);
1613}
1614
1615/*
1616 * Given that the event queue implementation matches our current MD and MI
1617 * interrupt frameworks like square pegs fit into round holes we are generous
1618 * and use one event queue per MSI for now, which limits us to 35 MSIs/MSI-Xs
1619 * per Host-PCIe-bridge (we use one event queue for the PCIe error messages).
1620 * This seems tolerable as long as most devices just use one MSI/MSI-X anyway.
1621 * Adding knowledge about MSIs/MSI-Xs to the MD interrupt code should allow us
1622 * to decouple the 1:1 mapping at the cost of no longer being able to bind
1623 * MSIs/MSI-Xs to specific CPUs as we currently have no reliable way to
1624 * quiesce a device while we move its MSIs/MSI-Xs to another event queue.
1625 */
1626
1627static int
1628fire_alloc_msi(device_t dev, device_t child, int count, int maxcount __unused,
1629    int *irqs)
1630{
1631	struct fire_softc *sc;
1632	u_int i, j, msiqrun;
1633
1634	if (powerof2(count) == 0 || count > 32)
1635		return (EINVAL);
1636
1637	sc = device_get_softc(dev);
1638	mtx_lock(&sc->sc_msi_mtx);
1639	msiqrun = 0;
1640	for (i = 0; i < sc->sc_msiq_count; i++) {
1641		for (j = i; j < i + count; j++) {
1642			if (isclr(sc->sc_msiq_bitmap, j) == 0)
1643				break;
1644		}
1645		if (j == i + count) {
1646			msiqrun = i;
1647			break;
1648		}
1649	}
1650	if (i == sc->sc_msiq_count) {
1651		mtx_unlock(&sc->sc_msi_mtx);
1652		return (ENXIO);
1653	}
1654	for (i = 0; i + count < sc->sc_msi_count; i += count) {
1655		for (j = i; j < i + count; j++)
1656			if (isclr(sc->sc_msi_bitmap, j) == 0)
1657				break;
1658		if (j == i + count) {
1659			for (j = 0; j < count; j++) {
1660				setbit(sc->sc_msiq_bitmap, msiqrun + j);
1661				setbit(sc->sc_msi_bitmap, i + j);
1662				sc->sc_msi_msiq_table[i + j] = msiqrun + j;
1663				irqs[j] = sc->sc_msi_first + i + j;
1664			}
1665			mtx_unlock(&sc->sc_msi_mtx);
1666			return (0);
1667		}
1668	}
1669	mtx_unlock(&sc->sc_msi_mtx);
1670	return (ENXIO);
1671}
1672
1673static int
1674fire_release_msi(device_t dev, device_t child, int count, int *irqs)
1675{
1676	struct fire_softc *sc;
1677	u_int i;
1678
1679	sc = device_get_softc(dev);
1680	mtx_lock(&sc->sc_msi_mtx);
1681	for (i = 0; i < count; i++) {
1682		clrbit(sc->sc_msiq_bitmap,
1683		    sc->sc_msi_msiq_table[irqs[i] - sc->sc_msi_first]);
1684		clrbit(sc->sc_msi_bitmap, irqs[i] - sc->sc_msi_first);
1685	}
1686	mtx_unlock(&sc->sc_msi_mtx);
1687	return (0);
1688}
1689
1690static int
1691fire_alloc_msix(device_t dev, device_t child, int *irq)
1692{
1693	struct fire_softc *sc;
1694	int i, msiq;
1695
1696	sc = device_get_softc(dev);
1697	if ((sc->sc_flags & FIRE_MSIX) == 0)
1698		return (ENXIO);
1699	mtx_lock(&sc->sc_msi_mtx);
1700	msiq = 0;
1701	for (i = 0; i < sc->sc_msiq_count; i++) {
1702		if (isclr(sc->sc_msiq_bitmap, i) != 0) {
1703			msiq = i;
1704			break;
1705		}
1706	}
1707	if (i == sc->sc_msiq_count) {
1708		mtx_unlock(&sc->sc_msi_mtx);
1709		return (ENXIO);
1710	}
1711	for (i = sc->sc_msi_count - 1; i >= 0; i--) {
1712		if (isclr(sc->sc_msi_bitmap, i) != 0) {
1713			setbit(sc->sc_msiq_bitmap, msiq);
1714			setbit(sc->sc_msi_bitmap, i);
1715			sc->sc_msi_msiq_table[i] = msiq;
1716			*irq = sc->sc_msi_first + i;
1717			mtx_unlock(&sc->sc_msi_mtx);
1718			return (0);
1719		}
1720	}
1721	mtx_unlock(&sc->sc_msi_mtx);
1722	return (ENXIO);
1723}
1724
1725static int
1726fire_release_msix(device_t dev, device_t child, int irq)
1727{
1728	struct fire_softc *sc;
1729
1730	sc = device_get_softc(dev);
1731	if ((sc->sc_flags & FIRE_MSIX) == 0)
1732		return (ENXIO);
1733	mtx_lock(&sc->sc_msi_mtx);
1734	clrbit(sc->sc_msiq_bitmap,
1735	    sc->sc_msi_msiq_table[irq - sc->sc_msi_first]);
1736	clrbit(sc->sc_msi_bitmap, irq - sc->sc_msi_first);
1737	mtx_unlock(&sc->sc_msi_mtx);
1738	return (0);
1739}
1740
1741static int
1742fire_map_msi(device_t dev, device_t child, int irq, uint64_t *addr,
1743    uint32_t *data)
1744{
1745	struct fire_softc *sc;
1746	struct pci_devinfo *dinfo;
1747
1748	sc = device_get_softc(dev);
1749	dinfo = device_get_ivars(child);
1750	if (dinfo->cfg.msi.msi_alloc > 0) {
1751		if ((irq & ~sc->sc_msi_data_mask) != 0) {
1752			device_printf(dev, "invalid MSI 0x%x\n", irq);
1753			return (EINVAL);
1754		}
1755	} else {
1756		if ((sc->sc_flags & FIRE_MSIX) == 0)
1757			return (ENXIO);
1758		if (fls(irq) > sc->sc_msix_data_width) {
1759			device_printf(dev, "invalid MSI-X 0x%x\n", irq);
1760			return (EINVAL);
1761		}
1762	}
1763	if (dinfo->cfg.msi.msi_alloc > 0 &&
1764	    (dinfo->cfg.msi.msi_ctrl & PCIM_MSICTRL_64BIT) == 0)
1765		*addr = sc->sc_msi_addr32;
1766	else
1767		*addr = sc->sc_msi_addr64;
1768	*data = irq;
1769	return (0);
1770}
1771
1772static void
1773fire_msiq_handler(void *cookie)
1774{
1775	struct intr_vector *iv;
1776	struct fire_msiqarg *fmqa;
1777
1778	iv = cookie;
1779	fmqa = iv->iv_icarg;
1780	/*
1781	 * Note that since fire_intr_clear() will clear the event queue
1782	 * interrupt after the handler associated with the MSI [sic] has
1783	 * been executed we have to protect the access to the event queue as
1784	 * otherwise nested event queue interrupts cause corruption of the
1785	 * event queue on MP machines.  Obviously especially when abandoning
1786	 * the 1:1 mapping it would be better to not clear the event queue
1787	 * interrupt after each handler invocation but only once when the
1788	 * outstanding MSIs have been processed but unfortunately that
1789	 * doesn't work well and leads to interrupt storms with controllers/
1790	 * drivers which don't mask interrupts while the handler is executed.
1791	 * Maybe delaying clearing the MSI until after the handler has been
1792	 * executed could be used to work around this but that's not the
1793	 * intended usage and might in turn cause lost MSIs.
1794	 */
1795	mtx_lock_spin(&fmqa->fmqa_mtx);
1796	fire_msiq_common(iv, fmqa);
1797	mtx_unlock_spin(&fmqa->fmqa_mtx);
1798}
1799
1800static void
1801fire_msiq_filter(void *cookie)
1802{
1803	struct intr_vector *iv;
1804	struct fire_msiqarg *fmqa;
1805
1806	iv = cookie;
1807	fmqa = iv->iv_icarg;
1808	/*
1809	 * For filters we don't use fire_intr_clear() since it would clear
1810	 * the event queue interrupt while we're still processing the event
1811	 * queue as filters and associated post-filter handler are executed
1812	 * directly, which in turn would lead to lost MSIs.  So we clear the
1813	 * event queue interrupt only once after processing the event queue.
1814	 * Given that this still guarantees the filters to not be executed
1815	 * concurrently and no other CPU can clear the event queue interrupt
1816	 * while the event queue is still processed, we don't even need to
1817	 * interlock the access to the event queue in this case.
1818	 */
1819	critical_enter();
1820	fire_msiq_common(iv, fmqa);
1821	FIRE_PCI_WRITE_8(fmqa->fmqa_fica.fica_sc, fmqa->fmqa_fica.fica_clr,
1822	    INTCLR_IDLE);
1823	critical_exit();
1824}
1825
1826static inline void
1827fire_msiq_common(struct intr_vector *iv, struct fire_msiqarg *fmqa)
1828{
1829	struct fire_softc *sc;
1830	struct fo_msiq_record *qrec;
1831	device_t dev;
1832	uint64_t word0;
1833	u_int head, msi, msiq;
1834
1835	sc = fmqa->fmqa_fica.fica_sc;
1836	dev = sc->sc_dev;
1837	msiq = fmqa->fmqa_msiq;
1838	head = (FIRE_PCI_READ_8(sc, fmqa->fmqa_head) & FO_PCI_EQ_HD_MASK) >>
1839	    FO_PCI_EQ_HD_SHFT;
1840	qrec = &fmqa->fmqa_base[head];
1841	word0 = qrec->fomqr_word0;
1842	for (;;) {
1843		if (__predict_false((word0 & FO_MQR_WORD0_FMT_TYPE_MASK) == 0))
1844			break;
1845		KASSERT((word0 & FO_MQR_WORD0_FMT_TYPE_MSI64) != 0 ||
1846		    (word0 & FO_MQR_WORD0_FMT_TYPE_MSI32) != 0,
1847		    ("%s: received non-MSI/MSI-X message in event queue %d "
1848		    "(word0 %#llx)", device_get_nameunit(dev), msiq,
1849		    (unsigned long long)word0));
1850		msi = (word0 & FO_MQR_WORD0_DATA0_MASK) >>
1851		    FO_MQR_WORD0_DATA0_SHFT;
1852		/*
1853		 * Sanity check the MSI/MSI-X as long as we use a 1:1 mapping.
1854		 */
1855		KASSERT(msi == fmqa->fmqa_msi,
1856		    ("%s: received non-matching MSI/MSI-X in event queue %d "
1857		    "(%d versus %d)", device_get_nameunit(dev), msiq, msi,
1858		    fmqa->fmqa_msi));
1859		FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_CLR_BASE + (msi << 3),
1860		    FO_PCI_MSI_CLR_EQWR_N);
1861		if (__predict_false(intr_event_handle(iv->iv_event,
1862		    NULL) != 0))
1863			printf("stray MSI/MSI-X in event queue %d\n", msiq);
1864		qrec->fomqr_word0 &= ~FO_MQR_WORD0_FMT_TYPE_MASK;
1865		head = (head + 1) % sc->sc_msiq_size;
1866		qrec = &fmqa->fmqa_base[head];
1867		word0 = qrec->fomqr_word0;
1868	}
1869	FIRE_PCI_WRITE_8(sc, fmqa->fmqa_head, (head & FO_PCI_EQ_HD_MASK) <<
1870	    FO_PCI_EQ_HD_SHFT);
1871	if (__predict_false((FIRE_PCI_READ_8(sc, fmqa->fmqa_tail) &
1872	    FO_PCI_EQ_TL_OVERR) != 0)) {
1873		device_printf(dev, "event queue %d overflow\n", msiq);
1874		msiq <<= 3;
1875		FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq,
1876		    FIRE_PCI_READ_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq) |
1877		    FO_PCI_EQ_CTRL_CLR_COVERR);
1878	}
1879}
1880
1881static int
1882fire_setup_intr(device_t dev, device_t child, struct resource *ires,
1883    int flags, driver_filter_t *filt, driver_intr_t *intr, void *arg,
1884    void **cookiep)
1885{
1886	struct fire_softc *sc;
1887	struct fire_msiqarg *fmqa;
1888	u_long vec;
1889	int error;
1890	u_int msi, msiq;
1891
1892	sc = device_get_softc(dev);
1893	/*
1894	 * XXX this assumes that a device only has one INTx, while in fact
1895	 * Cassini+ and Saturn can use all four the firmware has assigned
1896	 * to them, but so does pci(4).
1897	 */
1898	if (rman_get_rid(ires) != 0) {
1899		msi = rman_get_start(ires);
1900		msiq = sc->sc_msi_msiq_table[msi - sc->sc_msi_first];
1901		vec = INTMAP_VEC(sc->sc_ign, sc->sc_msiq_ino_first + msiq);
1902		msiq += sc->sc_msiq_first;
1903		if (intr_vectors[vec].iv_ic != &fire_ic) {
1904			device_printf(dev,
1905			    "invalid interrupt controller for vector 0x%lx\n",
1906			    vec);
1907			return (EINVAL);
1908		}
1909		/*
1910		 * The MD interrupt code needs the vector rather than the MSI.
1911		 */
1912		rman_set_start(ires, vec);
1913		rman_set_end(ires, vec);
1914		error = bus_generic_setup_intr(dev, child, ires, flags, filt,
1915		    intr, arg, cookiep);
1916		rman_set_start(ires, msi);
1917		rman_set_end(ires, msi);
1918		if (error != 0)
1919			return (error);
1920		fmqa = intr_vectors[vec].iv_icarg;
1921		/*
1922		 * XXX inject our event queue handler.
1923		 */
1924		if (filt != NULL) {
1925			intr_vectors[vec].iv_func = fire_msiq_filter;
1926			intr_vectors[vec].iv_ic = &fire_msiqc_filter;
1927			/*
1928			 * Ensure the event queue interrupt is cleared, it
1929			 * might have triggered before.  Given we supply NULL
1930			 * as ic_clear, inthand_add() won't do this for us.
1931			 */
1932			FIRE_PCI_WRITE_8(sc, fmqa->fmqa_fica.fica_clr,
1933			    INTCLR_IDLE);
1934		} else
1935			intr_vectors[vec].iv_func = fire_msiq_handler;
1936		/* Record the MSI/MSI-X as long as we we use a 1:1 mapping. */
1937		fmqa->fmqa_msi = msi;
1938		FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_SET_BASE + (msiq << 3),
1939		    FO_PCI_EQ_CTRL_SET_EN);
1940		msi <<= 3;
1941		FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + msi,
1942		    (FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + msi) &
1943		    ~FO_PCI_MSI_MAP_EQNUM_MASK) |
1944		    ((msiq << FO_PCI_MSI_MAP_EQNUM_SHFT) &
1945		    FO_PCI_MSI_MAP_EQNUM_MASK));
1946		FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_CLR_BASE + msi,
1947		    FO_PCI_MSI_CLR_EQWR_N);
1948		FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + msi,
1949		    FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + msi) |
1950		    FO_PCI_MSI_MAP_V);
1951		return (error);
1952	}
1953
1954	/*
1955	 * Make sure the vector is fully specified and we registered
1956	 * our interrupt controller for it.
1957	 */
1958	vec = rman_get_start(ires);
1959	if (INTIGN(vec) != sc->sc_ign) {
1960		device_printf(dev, "invalid interrupt vector 0x%lx\n", vec);
1961		return (EINVAL);
1962	}
1963	if (intr_vectors[vec].iv_ic != &fire_ic) {
1964		device_printf(dev,
1965		    "invalid interrupt controller for vector 0x%lx\n", vec);
1966		return (EINVAL);
1967	}
1968	return (bus_generic_setup_intr(dev, child, ires, flags, filt, intr,
1969	    arg, cookiep));
1970}
1971
1972static int
1973fire_teardown_intr(device_t dev, device_t child, struct resource *ires,
1974    void *cookie)
1975{
1976	struct fire_softc *sc;
1977	u_long vec;
1978	int error;
1979	u_int msi, msiq;
1980
1981	sc = device_get_softc(dev);
1982	if (rman_get_rid(ires) != 0) {
1983		msi = rman_get_start(ires);
1984		msiq = sc->sc_msi_msiq_table[msi - sc->sc_msi_first];
1985		vec = INTMAP_VEC(sc->sc_ign, msiq + sc->sc_msiq_ino_first);
1986		msiq += sc->sc_msiq_first;
1987		msi <<= 3;
1988		FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + msi,
1989		    FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + msi) &
1990		    ~FO_PCI_MSI_MAP_V);
1991		msiq <<= 3;
1992		FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq,
1993		    FO_PCI_EQ_CTRL_CLR_COVERR | FO_PCI_EQ_CTRL_CLR_E2I |
1994		    FO_PCI_EQ_CTRL_CLR_DIS);
1995		FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_TL_BASE + msiq,
1996		    (0 << FO_PCI_EQ_TL_SHFT) & FO_PCI_EQ_TL_MASK);
1997		FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_HD_BASE + msiq,
1998		    (0 << FO_PCI_EQ_HD_SHFT) & FO_PCI_EQ_HD_MASK);
1999		intr_vectors[vec].iv_ic = &fire_ic;
2000		/*
2001		 * The MD interrupt code needs the vector rather than the MSI.
2002		 */
2003		rman_set_start(ires, vec);
2004		rman_set_end(ires, vec);
2005		error = bus_generic_teardown_intr(dev, child, ires, cookie);
2006		msi >>= 3;
2007		rman_set_start(ires, msi);
2008		rman_set_end(ires, msi);
2009		return (error);
2010	}
2011	return (bus_generic_teardown_intr(dev, child, ires, cookie));
2012}
2013
2014static struct resource *
2015fire_alloc_resource(device_t bus, device_t child, int type, int *rid,
2016    u_long start, u_long end, u_long count, u_int flags)
2017{
2018	struct fire_softc *sc;
2019	struct resource *rv;
2020	struct rman *rm;
2021
2022	sc = device_get_softc(bus);
2023	switch (type) {
2024	case SYS_RES_IRQ:
2025		/*
2026		 * XXX: Don't accept blank ranges for now, only single
2027		 * interrupts.  The other case should not happen with
2028		 * the MI PCI code...
2029		 * XXX: This may return a resource that is out of the
2030		 * range that was specified.  Is this correct...?
2031		 */
2032		if (start != end)
2033			panic("%s: XXX: interrupt range", __func__);
2034		if (*rid == 0)
2035			start = end = INTMAP_VEC(sc->sc_ign, end);
2036		return (bus_generic_alloc_resource(bus, child, type, rid,
2037		    start, end, count, flags));
2038	case SYS_RES_MEMORY:
2039		rm = &sc->sc_pci_mem_rman;
2040		break;
2041	case SYS_RES_IOPORT:
2042		rm = &sc->sc_pci_io_rman;
2043		break;
2044	default:
2045		return (NULL);
2046	}
2047
2048	rv = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
2049	    child);
2050	if (rv == NULL)
2051		return (NULL);
2052	rman_set_rid(rv, *rid);
2053
2054	if ((flags & RF_ACTIVE) != 0 && bus_activate_resource(child, type,
2055	    *rid, rv) != 0) {
2056		rman_release_resource(rv);
2057		return (NULL);
2058	}
2059	return (rv);
2060}
2061
2062static int
2063fire_activate_resource(device_t bus, device_t child, int type, int rid,
2064    struct resource *r)
2065{
2066	struct fire_softc *sc;
2067	struct bus_space_tag *tag;
2068
2069	sc = device_get_softc(bus);
2070	switch (type) {
2071	case SYS_RES_IRQ:
2072		return (bus_generic_activate_resource(bus, child, type, rid,
2073		    r));
2074	case SYS_RES_MEMORY:
2075		tag = sparc64_alloc_bus_tag(r, rman_get_bustag(
2076		    sc->sc_mem_res[FIRE_PCI]), PCI_MEMORY_BUS_SPACE, NULL);
2077		if (tag == NULL)
2078			return (ENOMEM);
2079		rman_set_bustag(r, tag);
2080		rman_set_bushandle(r, sc->sc_pci_bh[OFW_PCI_CS_MEM32] +
2081		    rman_get_start(r));
2082		break;
2083	case SYS_RES_IOPORT:
2084		rman_set_bustag(r, sc->sc_pci_iot);
2085		rman_set_bushandle(r, sc->sc_pci_bh[OFW_PCI_CS_IO] +
2086		    rman_get_start(r));
2087		break;
2088	}
2089	return (rman_activate_resource(r));
2090}
2091
2092static int
2093fire_adjust_resource(device_t bus, device_t child, int type,
2094    struct resource *r, u_long start, u_long end)
2095{
2096	struct fire_softc *sc;
2097	struct rman *rm;
2098
2099	sc = device_get_softc(bus);
2100	switch (type) {
2101	case SYS_RES_IRQ:
2102		return (bus_generic_adjust_resource(bus, child, type, r,
2103		    start, end));
2104	case SYS_RES_MEMORY:
2105		rm = &sc->sc_pci_mem_rman;
2106		break;
2107	case SYS_RES_IOPORT:
2108		rm = &sc->sc_pci_io_rman;
2109		break;
2110	default:
2111		return (EINVAL);
2112	}
2113	if (rman_is_region_manager(r, rm) == 0)
2114		return (EINVAL);
2115	return (rman_adjust_resource(r, start, end));
2116}
2117
2118static bus_dma_tag_t
2119fire_get_dma_tag(device_t bus, device_t child __unused)
2120{
2121	struct fire_softc *sc;
2122
2123	sc = device_get_softc(bus);
2124	return (sc->sc_pci_dmat);
2125}
2126
2127static phandle_t
2128fire_get_node(device_t bus, device_t child __unused)
2129{
2130	struct fire_softc *sc;
2131
2132	sc = device_get_softc(bus);
2133	/* We only have one child, the PCI bus, which needs our own node. */
2134	return (sc->sc_node);
2135}
2136
2137static u_int
2138fire_get_timecount(struct timecounter *tc)
2139{
2140	struct fire_softc *sc;
2141
2142	sc = tc->tc_priv;
2143	return (FIRE_CTRL_READ_8(sc, FO_XBC_PRF_CNT0) & TC_COUNTER_MAX_MASK);
2144}
2145