pmap.c revision 270439
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: stable/10/sys/powerpc/booke/pmap.c 270439 2014-08-24 07:53:15Z kib $");
53
54#include <sys/param.h>
55#include <sys/malloc.h>
56#include <sys/ktr.h>
57#include <sys/proc.h>
58#include <sys/user.h>
59#include <sys/queue.h>
60#include <sys/systm.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/rwlock.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#ifdef  DEBUG
96#define debugf(fmt, args...) printf(fmt, ##args)
97#else
98#define debugf(fmt, args...)
99#endif
100
101#define TODO			panic("%s: not implemented", __func__);
102
103extern int dumpsys_minidump;
104
105extern unsigned char _etext[];
106extern unsigned char _end[];
107
108extern uint32_t *bootinfo;
109
110#ifdef SMP
111extern uint32_t bp_ntlb1s;
112#endif
113
114vm_paddr_t kernload;
115vm_offset_t kernstart;
116vm_size_t kernsize;
117
118/* Message buffer and tables. */
119static vm_offset_t data_start;
120static vm_size_t data_end;
121
122/* Phys/avail memory regions. */
123static struct mem_region *availmem_regions;
124static int availmem_regions_sz;
125static struct mem_region *physmem_regions;
126static int physmem_regions_sz;
127
128/* Reserved KVA space and mutex for mmu_booke_zero_page. */
129static vm_offset_t zero_page_va;
130static struct mtx zero_page_mutex;
131
132static struct mtx tlbivax_mutex;
133
134/*
135 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
136 * by idle thred only, no lock required.
137 */
138static vm_offset_t zero_page_idle_va;
139
140/* Reserved KVA space and mutex for mmu_booke_copy_page. */
141static vm_offset_t copy_page_src_va;
142static vm_offset_t copy_page_dst_va;
143static struct mtx copy_page_mutex;
144
145/**************************************************************************/
146/* PMAP */
147/**************************************************************************/
148
149static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
150    vm_prot_t, u_int flags, int8_t psind);
151
152unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
153unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
154
155/*
156 * If user pmap is processed with mmu_booke_remove and the resident count
157 * drops to 0, there are no more pages to remove, so we need not continue.
158 */
159#define PMAP_REMOVE_DONE(pmap) \
160	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
161
162extern void tid_flush(tlbtid_t);
163
164/**************************************************************************/
165/* TLB and TID handling */
166/**************************************************************************/
167
168/* Translation ID busy table */
169static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
170
171/*
172 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
173 * core revisions and should be read from h/w registers during early config.
174 */
175uint32_t tlb0_entries;
176uint32_t tlb0_ways;
177uint32_t tlb0_entries_per_way;
178
179#define TLB0_ENTRIES		(tlb0_entries)
180#define TLB0_WAYS		(tlb0_ways)
181#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
182
183#define TLB1_ENTRIES 16
184
185/* In-ram copy of the TLB1 */
186static tlb_entry_t tlb1[TLB1_ENTRIES];
187
188/* Next free entry in the TLB1 */
189static unsigned int tlb1_idx;
190static vm_offset_t tlb1_map_base = VM_MAX_KERNEL_ADDRESS;
191
192static tlbtid_t tid_alloc(struct pmap *);
193
194static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
195
196static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
197static void tlb1_write_entry(unsigned int);
198static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
199static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
200
201static vm_size_t tsize2size(unsigned int);
202static unsigned int size2tsize(vm_size_t);
203static unsigned int ilog2(unsigned int);
204
205static void set_mas4_defaults(void);
206
207static inline void tlb0_flush_entry(vm_offset_t);
208static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
209
210/**************************************************************************/
211/* Page table management */
212/**************************************************************************/
213
214static struct rwlock_padalign pvh_global_lock;
215
216/* Data for the pv entry allocation mechanism */
217static uma_zone_t pvzone;
218static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
219
220#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
221
222#ifndef PMAP_SHPGPERPROC
223#define PMAP_SHPGPERPROC	200
224#endif
225
226static void ptbl_init(void);
227static struct ptbl_buf *ptbl_buf_alloc(void);
228static void ptbl_buf_free(struct ptbl_buf *);
229static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
230
231static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t);
232static void ptbl_free(mmu_t, pmap_t, unsigned int);
233static void ptbl_hold(mmu_t, pmap_t, unsigned int);
234static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
235
236static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
237static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
238static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
239static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
240
241static pv_entry_t pv_alloc(void);
242static void pv_free(pv_entry_t);
243static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
244static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
245
246/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
247#define PTBL_BUFS		(128 * 16)
248
249struct ptbl_buf {
250	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
251	vm_offset_t kva;		/* va of mapping */
252};
253
254/* ptbl free list and a lock used for access synchronization. */
255static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
256static struct mtx ptbl_buf_freelist_lock;
257
258/* Base address of kva space allocated fot ptbl bufs. */
259static vm_offset_t ptbl_buf_pool_vabase;
260
261/* Pointer to ptbl_buf structures. */
262static struct ptbl_buf *ptbl_bufs;
263
264void pmap_bootstrap_ap(volatile uint32_t *);
265
266/*
267 * Kernel MMU interface
268 */
269static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
270static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
271static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
272    vm_size_t, vm_offset_t);
273static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
274static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
275    vm_offset_t, vm_page_t *, vm_offset_t, int);
276static int		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
277    vm_prot_t, u_int flags, int8_t psind);
278static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
279    vm_page_t, vm_prot_t);
280static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
281    vm_prot_t);
282static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
283static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
284    vm_prot_t);
285static void		mmu_booke_init(mmu_t);
286static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
287static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
288static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
289static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
290static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
291    int);
292static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
293    vm_paddr_t *);
294static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
295    vm_object_t, vm_pindex_t, vm_size_t);
296static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
297static void		mmu_booke_page_init(mmu_t, vm_page_t);
298static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
299static void		mmu_booke_pinit(mmu_t, pmap_t);
300static void		mmu_booke_pinit0(mmu_t, pmap_t);
301static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
302    vm_prot_t);
303static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
304static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
305static void		mmu_booke_release(mmu_t, pmap_t);
306static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
307static void		mmu_booke_remove_all(mmu_t, vm_page_t);
308static void		mmu_booke_remove_write(mmu_t, vm_page_t);
309static void		mmu_booke_zero_page(mmu_t, vm_page_t);
310static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
311static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
312static void		mmu_booke_activate(mmu_t, struct thread *);
313static void		mmu_booke_deactivate(mmu_t, struct thread *);
314static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
315static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
316static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
317static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
319static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
320static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
321static void		mmu_booke_kremove(mmu_t, vm_offset_t);
322static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
323static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
324    vm_size_t);
325static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
326    vm_size_t, vm_size_t *);
327static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
328    vm_size_t, vm_offset_t);
329static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
330
331static mmu_method_t mmu_booke_methods[] = {
332	/* pmap dispatcher interface */
333	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
334	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
335	MMUMETHOD(mmu_copy,		mmu_booke_copy),
336	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
337	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
338	MMUMETHOD(mmu_enter,		mmu_booke_enter),
339	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
340	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
341	MMUMETHOD(mmu_extract,		mmu_booke_extract),
342	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
343	MMUMETHOD(mmu_init,		mmu_booke_init),
344	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
345	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
346	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
347	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
348	MMUMETHOD(mmu_map,		mmu_booke_map),
349	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
350	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
351	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
352	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
353	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
354	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
355	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
356	MMUMETHOD(mmu_protect,		mmu_booke_protect),
357	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
358	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
359	MMUMETHOD(mmu_release,		mmu_booke_release),
360	MMUMETHOD(mmu_remove,		mmu_booke_remove),
361	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
362	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
363	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
364	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
365	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
366	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
367	MMUMETHOD(mmu_activate,		mmu_booke_activate),
368	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
369
370	/* Internal interfaces */
371	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
372	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
373	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
374	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
375	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
376	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
377	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
378/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
379	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
380
381	/* dumpsys() support */
382	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
383	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
384	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
385
386	{ 0, 0 }
387};
388
389MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
390
391static __inline uint32_t
392tlb_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
393{
394	uint32_t attrib;
395	int i;
396
397	if (ma != VM_MEMATTR_DEFAULT) {
398		switch (ma) {
399		case VM_MEMATTR_UNCACHEABLE:
400			return (PTE_I | PTE_G);
401		case VM_MEMATTR_WRITE_COMBINING:
402		case VM_MEMATTR_WRITE_BACK:
403		case VM_MEMATTR_PREFETCHABLE:
404			return (PTE_I);
405		case VM_MEMATTR_WRITE_THROUGH:
406			return (PTE_W | PTE_M);
407		}
408	}
409
410	/*
411	 * Assume the page is cache inhibited and access is guarded unless
412	 * it's in our available memory array.
413	 */
414	attrib = _TLB_ENTRY_IO;
415	for (i = 0; i < physmem_regions_sz; i++) {
416		if ((pa >= physmem_regions[i].mr_start) &&
417		    (pa < (physmem_regions[i].mr_start +
418		     physmem_regions[i].mr_size))) {
419			attrib = _TLB_ENTRY_MEM;
420			break;
421		}
422	}
423
424	return (attrib);
425}
426
427static inline void
428tlb_miss_lock(void)
429{
430#ifdef SMP
431	struct pcpu *pc;
432
433	if (!smp_started)
434		return;
435
436	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
437		if (pc != pcpup) {
438
439			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
440			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
441
442			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
443			    ("tlb_miss_lock: tried to lock self"));
444
445			tlb_lock(pc->pc_booke_tlb_lock);
446
447			CTR1(KTR_PMAP, "%s: locked", __func__);
448		}
449	}
450#endif
451}
452
453static inline void
454tlb_miss_unlock(void)
455{
456#ifdef SMP
457	struct pcpu *pc;
458
459	if (!smp_started)
460		return;
461
462	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
463		if (pc != pcpup) {
464			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
465			    __func__, pc->pc_cpuid);
466
467			tlb_unlock(pc->pc_booke_tlb_lock);
468
469			CTR1(KTR_PMAP, "%s: unlocked", __func__);
470		}
471	}
472#endif
473}
474
475/* Return number of entries in TLB0. */
476static __inline void
477tlb0_get_tlbconf(void)
478{
479	uint32_t tlb0_cfg;
480
481	tlb0_cfg = mfspr(SPR_TLB0CFG);
482	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
483	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
484	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
485}
486
487/* Initialize pool of kva ptbl buffers. */
488static void
489ptbl_init(void)
490{
491	int i;
492
493	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
494	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
495	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
496	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
497
498	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
499	TAILQ_INIT(&ptbl_buf_freelist);
500
501	for (i = 0; i < PTBL_BUFS; i++) {
502		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
503		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
504	}
505}
506
507/* Get a ptbl_buf from the freelist. */
508static struct ptbl_buf *
509ptbl_buf_alloc(void)
510{
511	struct ptbl_buf *buf;
512
513	mtx_lock(&ptbl_buf_freelist_lock);
514	buf = TAILQ_FIRST(&ptbl_buf_freelist);
515	if (buf != NULL)
516		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
517	mtx_unlock(&ptbl_buf_freelist_lock);
518
519	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
520
521	return (buf);
522}
523
524/* Return ptbl buff to free pool. */
525static void
526ptbl_buf_free(struct ptbl_buf *buf)
527{
528
529	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
530
531	mtx_lock(&ptbl_buf_freelist_lock);
532	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
533	mtx_unlock(&ptbl_buf_freelist_lock);
534}
535
536/*
537 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
538 */
539static void
540ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
541{
542	struct ptbl_buf *pbuf;
543
544	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
545
546	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
547
548	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
549		if (pbuf->kva == (vm_offset_t)ptbl) {
550			/* Remove from pmap ptbl buf list. */
551			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
552
553			/* Free corresponding ptbl buf. */
554			ptbl_buf_free(pbuf);
555			break;
556		}
557}
558
559/* Allocate page table. */
560static pte_t *
561ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep)
562{
563	vm_page_t mtbl[PTBL_PAGES];
564	vm_page_t m;
565	struct ptbl_buf *pbuf;
566	unsigned int pidx;
567	pte_t *ptbl;
568	int i, j;
569
570	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
571	    (pmap == kernel_pmap), pdir_idx);
572
573	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
574	    ("ptbl_alloc: invalid pdir_idx"));
575	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
576	    ("pte_alloc: valid ptbl entry exists!"));
577
578	pbuf = ptbl_buf_alloc();
579	if (pbuf == NULL)
580		panic("pte_alloc: couldn't alloc kernel virtual memory");
581
582	ptbl = (pte_t *)pbuf->kva;
583
584	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
585
586	/* Allocate ptbl pages, this will sleep! */
587	for (i = 0; i < PTBL_PAGES; i++) {
588		pidx = (PTBL_PAGES * pdir_idx) + i;
589		while ((m = vm_page_alloc(NULL, pidx,
590		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
591			PMAP_UNLOCK(pmap);
592			rw_wunlock(&pvh_global_lock);
593			if (nosleep) {
594				ptbl_free_pmap_ptbl(pmap, ptbl);
595				for (j = 0; j < i; j++)
596					vm_page_free(mtbl[j]);
597				atomic_subtract_int(&cnt.v_wire_count, i);
598				return (NULL);
599			}
600			VM_WAIT;
601			rw_wlock(&pvh_global_lock);
602			PMAP_LOCK(pmap);
603		}
604		mtbl[i] = m;
605	}
606
607	/* Map allocated pages into kernel_pmap. */
608	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
609
610	/* Zero whole ptbl. */
611	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
612
613	/* Add pbuf to the pmap ptbl bufs list. */
614	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
615
616	return (ptbl);
617}
618
619/* Free ptbl pages and invalidate pdir entry. */
620static void
621ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
622{
623	pte_t *ptbl;
624	vm_paddr_t pa;
625	vm_offset_t va;
626	vm_page_t m;
627	int i;
628
629	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
630	    (pmap == kernel_pmap), pdir_idx);
631
632	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
633	    ("ptbl_free: invalid pdir_idx"));
634
635	ptbl = pmap->pm_pdir[pdir_idx];
636
637	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
638
639	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
640
641	/*
642	 * Invalidate the pdir entry as soon as possible, so that other CPUs
643	 * don't attempt to look up the page tables we are releasing.
644	 */
645	mtx_lock_spin(&tlbivax_mutex);
646	tlb_miss_lock();
647
648	pmap->pm_pdir[pdir_idx] = NULL;
649
650	tlb_miss_unlock();
651	mtx_unlock_spin(&tlbivax_mutex);
652
653	for (i = 0; i < PTBL_PAGES; i++) {
654		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
655		pa = pte_vatopa(mmu, kernel_pmap, va);
656		m = PHYS_TO_VM_PAGE(pa);
657		vm_page_free_zero(m);
658		atomic_subtract_int(&cnt.v_wire_count, 1);
659		mmu_booke_kremove(mmu, va);
660	}
661
662	ptbl_free_pmap_ptbl(pmap, ptbl);
663}
664
665/*
666 * Decrement ptbl pages hold count and attempt to free ptbl pages.
667 * Called when removing pte entry from ptbl.
668 *
669 * Return 1 if ptbl pages were freed.
670 */
671static int
672ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
673{
674	pte_t *ptbl;
675	vm_paddr_t pa;
676	vm_page_t m;
677	int i;
678
679	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
680	    (pmap == kernel_pmap), pdir_idx);
681
682	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
683	    ("ptbl_unhold: invalid pdir_idx"));
684	KASSERT((pmap != kernel_pmap),
685	    ("ptbl_unhold: unholding kernel ptbl!"));
686
687	ptbl = pmap->pm_pdir[pdir_idx];
688
689	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
690	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
691	    ("ptbl_unhold: non kva ptbl"));
692
693	/* decrement hold count */
694	for (i = 0; i < PTBL_PAGES; i++) {
695		pa = pte_vatopa(mmu, kernel_pmap,
696		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
697		m = PHYS_TO_VM_PAGE(pa);
698		m->wire_count--;
699	}
700
701	/*
702	 * Free ptbl pages if there are no pte etries in this ptbl.
703	 * wire_count has the same value for all ptbl pages, so check the last
704	 * page.
705	 */
706	if (m->wire_count == 0) {
707		ptbl_free(mmu, pmap, pdir_idx);
708
709		//debugf("ptbl_unhold: e (freed ptbl)\n");
710		return (1);
711	}
712
713	return (0);
714}
715
716/*
717 * Increment hold count for ptbl pages. This routine is used when a new pte
718 * entry is being inserted into the ptbl.
719 */
720static void
721ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
722{
723	vm_paddr_t pa;
724	pte_t *ptbl;
725	vm_page_t m;
726	int i;
727
728	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
729	    pdir_idx);
730
731	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
732	    ("ptbl_hold: invalid pdir_idx"));
733	KASSERT((pmap != kernel_pmap),
734	    ("ptbl_hold: holding kernel ptbl!"));
735
736	ptbl = pmap->pm_pdir[pdir_idx];
737
738	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
739
740	for (i = 0; i < PTBL_PAGES; i++) {
741		pa = pte_vatopa(mmu, kernel_pmap,
742		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
743		m = PHYS_TO_VM_PAGE(pa);
744		m->wire_count++;
745	}
746}
747
748/* Allocate pv_entry structure. */
749pv_entry_t
750pv_alloc(void)
751{
752	pv_entry_t pv;
753
754	pv_entry_count++;
755	if (pv_entry_count > pv_entry_high_water)
756		pagedaemon_wakeup();
757	pv = uma_zalloc(pvzone, M_NOWAIT);
758
759	return (pv);
760}
761
762/* Free pv_entry structure. */
763static __inline void
764pv_free(pv_entry_t pve)
765{
766
767	pv_entry_count--;
768	uma_zfree(pvzone, pve);
769}
770
771
772/* Allocate and initialize pv_entry structure. */
773static void
774pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
775{
776	pv_entry_t pve;
777
778	//int su = (pmap == kernel_pmap);
779	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
780	//	(u_int32_t)pmap, va, (u_int32_t)m);
781
782	pve = pv_alloc();
783	if (pve == NULL)
784		panic("pv_insert: no pv entries!");
785
786	pve->pv_pmap = pmap;
787	pve->pv_va = va;
788
789	/* add to pv_list */
790	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
791	rw_assert(&pvh_global_lock, RA_WLOCKED);
792
793	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
794
795	//debugf("pv_insert: e\n");
796}
797
798/* Destroy pv entry. */
799static void
800pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
801{
802	pv_entry_t pve;
803
804	//int su = (pmap == kernel_pmap);
805	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
806
807	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
808	rw_assert(&pvh_global_lock, RA_WLOCKED);
809
810	/* find pv entry */
811	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
812		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
813			/* remove from pv_list */
814			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
815			if (TAILQ_EMPTY(&m->md.pv_list))
816				vm_page_aflag_clear(m, PGA_WRITEABLE);
817
818			/* free pv entry struct */
819			pv_free(pve);
820			break;
821		}
822	}
823
824	//debugf("pv_remove: e\n");
825}
826
827/*
828 * Clean pte entry, try to free page table page if requested.
829 *
830 * Return 1 if ptbl pages were freed, otherwise return 0.
831 */
832static int
833pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
834{
835	unsigned int pdir_idx = PDIR_IDX(va);
836	unsigned int ptbl_idx = PTBL_IDX(va);
837	vm_page_t m;
838	pte_t *ptbl;
839	pte_t *pte;
840
841	//int su = (pmap == kernel_pmap);
842	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
843	//		su, (u_int32_t)pmap, va, flags);
844
845	ptbl = pmap->pm_pdir[pdir_idx];
846	KASSERT(ptbl, ("pte_remove: null ptbl"));
847
848	pte = &ptbl[ptbl_idx];
849
850	if (pte == NULL || !PTE_ISVALID(pte))
851		return (0);
852
853	if (PTE_ISWIRED(pte))
854		pmap->pm_stats.wired_count--;
855
856	/* Handle managed entry. */
857	if (PTE_ISMANAGED(pte)) {
858		/* Get vm_page_t for mapped pte. */
859		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
860
861		if (PTE_ISMODIFIED(pte))
862			vm_page_dirty(m);
863
864		if (PTE_ISREFERENCED(pte))
865			vm_page_aflag_set(m, PGA_REFERENCED);
866
867		pv_remove(pmap, va, m);
868	}
869
870	mtx_lock_spin(&tlbivax_mutex);
871	tlb_miss_lock();
872
873	tlb0_flush_entry(va);
874	pte->flags = 0;
875	pte->rpn = 0;
876
877	tlb_miss_unlock();
878	mtx_unlock_spin(&tlbivax_mutex);
879
880	pmap->pm_stats.resident_count--;
881
882	if (flags & PTBL_UNHOLD) {
883		//debugf("pte_remove: e (unhold)\n");
884		return (ptbl_unhold(mmu, pmap, pdir_idx));
885	}
886
887	//debugf("pte_remove: e\n");
888	return (0);
889}
890
891/*
892 * Insert PTE for a given page and virtual address.
893 */
894static int
895pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags,
896    boolean_t nosleep)
897{
898	unsigned int pdir_idx = PDIR_IDX(va);
899	unsigned int ptbl_idx = PTBL_IDX(va);
900	pte_t *ptbl, *pte;
901
902	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
903	    pmap == kernel_pmap, pmap, va);
904
905	/* Get the page table pointer. */
906	ptbl = pmap->pm_pdir[pdir_idx];
907
908	if (ptbl == NULL) {
909		/* Allocate page table pages. */
910		ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep);
911		if (ptbl == NULL) {
912			KASSERT(nosleep, ("nosleep and NULL ptbl"));
913			return (ENOMEM);
914		}
915	} else {
916		/*
917		 * Check if there is valid mapping for requested
918		 * va, if there is, remove it.
919		 */
920		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
921		if (PTE_ISVALID(pte)) {
922			pte_remove(mmu, pmap, va, PTBL_HOLD);
923		} else {
924			/*
925			 * pte is not used, increment hold count
926			 * for ptbl pages.
927			 */
928			if (pmap != kernel_pmap)
929				ptbl_hold(mmu, pmap, pdir_idx);
930		}
931	}
932
933	/*
934	 * Insert pv_entry into pv_list for mapped page if part of managed
935	 * memory.
936	 */
937	if ((m->oflags & VPO_UNMANAGED) == 0) {
938		flags |= PTE_MANAGED;
939
940		/* Create and insert pv entry. */
941		pv_insert(pmap, va, m);
942	}
943
944	pmap->pm_stats.resident_count++;
945
946	mtx_lock_spin(&tlbivax_mutex);
947	tlb_miss_lock();
948
949	tlb0_flush_entry(va);
950	if (pmap->pm_pdir[pdir_idx] == NULL) {
951		/*
952		 * If we just allocated a new page table, hook it in
953		 * the pdir.
954		 */
955		pmap->pm_pdir[pdir_idx] = ptbl;
956	}
957	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
958	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
959	pte->flags |= (PTE_VALID | flags);
960
961	tlb_miss_unlock();
962	mtx_unlock_spin(&tlbivax_mutex);
963	return (0);
964}
965
966/* Return the pa for the given pmap/va. */
967static vm_paddr_t
968pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
969{
970	vm_paddr_t pa = 0;
971	pte_t *pte;
972
973	pte = pte_find(mmu, pmap, va);
974	if ((pte != NULL) && PTE_ISVALID(pte))
975		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
976	return (pa);
977}
978
979/* Get a pointer to a PTE in a page table. */
980static pte_t *
981pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
982{
983	unsigned int pdir_idx = PDIR_IDX(va);
984	unsigned int ptbl_idx = PTBL_IDX(va);
985
986	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
987
988	if (pmap->pm_pdir[pdir_idx])
989		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
990
991	return (NULL);
992}
993
994/**************************************************************************/
995/* PMAP related */
996/**************************************************************************/
997
998/*
999 * This is called during booke_init, before the system is really initialized.
1000 */
1001static void
1002mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
1003{
1004	vm_offset_t phys_kernelend;
1005	struct mem_region *mp, *mp1;
1006	int cnt, i, j;
1007	u_int s, e, sz;
1008	u_int phys_avail_count;
1009	vm_size_t physsz, hwphyssz, kstack0_sz;
1010	vm_offset_t kernel_pdir, kstack0, va;
1011	vm_paddr_t kstack0_phys;
1012	void *dpcpu;
1013	pte_t *pte;
1014
1015	debugf("mmu_booke_bootstrap: entered\n");
1016
1017	/* Initialize invalidation mutex */
1018	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1019
1020	/* Read TLB0 size and associativity. */
1021	tlb0_get_tlbconf();
1022
1023	/*
1024	 * Align kernel start and end address (kernel image).
1025	 * Note that kernel end does not necessarily relate to kernsize.
1026	 * kernsize is the size of the kernel that is actually mapped.
1027	 * Also note that "start - 1" is deliberate. With SMP, the
1028	 * entry point is exactly a page from the actual load address.
1029	 * As such, trunc_page() has no effect and we're off by a page.
1030	 * Since we always have the ELF header between the load address
1031	 * and the entry point, we can safely subtract 1 to compensate.
1032	 */
1033	kernstart = trunc_page(start - 1);
1034	data_start = round_page(kernelend);
1035	data_end = data_start;
1036
1037	/*
1038	 * Addresses of preloaded modules (like file systems) use
1039	 * physical addresses. Make sure we relocate those into
1040	 * virtual addresses.
1041	 */
1042	preload_addr_relocate = kernstart - kernload;
1043
1044	/* Allocate the dynamic per-cpu area. */
1045	dpcpu = (void *)data_end;
1046	data_end += DPCPU_SIZE;
1047
1048	/* Allocate space for the message buffer. */
1049	msgbufp = (struct msgbuf *)data_end;
1050	data_end += msgbufsize;
1051	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1052	    data_end);
1053
1054	data_end = round_page(data_end);
1055
1056	/* Allocate space for ptbl_bufs. */
1057	ptbl_bufs = (struct ptbl_buf *)data_end;
1058	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1059	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1060	    data_end);
1061
1062	data_end = round_page(data_end);
1063
1064	/* Allocate PTE tables for kernel KVA. */
1065	kernel_pdir = data_end;
1066	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1067	    PDIR_SIZE - 1) / PDIR_SIZE;
1068	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1069	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1070	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1071
1072	debugf(" data_end: 0x%08x\n", data_end);
1073	if (data_end - kernstart > kernsize) {
1074		kernsize += tlb1_mapin_region(kernstart + kernsize,
1075		    kernload + kernsize, (data_end - kernstart) - kernsize);
1076	}
1077	data_end = kernstart + kernsize;
1078	debugf(" updated data_end: 0x%08x\n", data_end);
1079
1080	/*
1081	 * Clear the structures - note we can only do it safely after the
1082	 * possible additional TLB1 translations are in place (above) so that
1083	 * all range up to the currently calculated 'data_end' is covered.
1084	 */
1085	dpcpu_init(dpcpu, 0);
1086	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1087	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1088
1089	/*******************************************************/
1090	/* Set the start and end of kva. */
1091	/*******************************************************/
1092	virtual_avail = round_page(data_end);
1093	virtual_end = VM_MAX_KERNEL_ADDRESS;
1094
1095	/* Allocate KVA space for page zero/copy operations. */
1096	zero_page_va = virtual_avail;
1097	virtual_avail += PAGE_SIZE;
1098	zero_page_idle_va = virtual_avail;
1099	virtual_avail += PAGE_SIZE;
1100	copy_page_src_va = virtual_avail;
1101	virtual_avail += PAGE_SIZE;
1102	copy_page_dst_va = virtual_avail;
1103	virtual_avail += PAGE_SIZE;
1104	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1105	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1106	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1107	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1108
1109	/* Initialize page zero/copy mutexes. */
1110	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1111	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1112
1113	/* Allocate KVA space for ptbl bufs. */
1114	ptbl_buf_pool_vabase = virtual_avail;
1115	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1116	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1117	    ptbl_buf_pool_vabase, virtual_avail);
1118
1119	/* Calculate corresponding physical addresses for the kernel region. */
1120	phys_kernelend = kernload + kernsize;
1121	debugf("kernel image and allocated data:\n");
1122	debugf(" kernload    = 0x%08x\n", kernload);
1123	debugf(" kernstart   = 0x%08x\n", kernstart);
1124	debugf(" kernsize    = 0x%08x\n", kernsize);
1125
1126	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1127		panic("mmu_booke_bootstrap: phys_avail too small");
1128
1129	/*
1130	 * Remove kernel physical address range from avail regions list. Page
1131	 * align all regions.  Non-page aligned memory isn't very interesting
1132	 * to us.  Also, sort the entries for ascending addresses.
1133	 */
1134
1135	/* Retrieve phys/avail mem regions */
1136	mem_regions(&physmem_regions, &physmem_regions_sz,
1137	    &availmem_regions, &availmem_regions_sz);
1138	sz = 0;
1139	cnt = availmem_regions_sz;
1140	debugf("processing avail regions:\n");
1141	for (mp = availmem_regions; mp->mr_size; mp++) {
1142		s = mp->mr_start;
1143		e = mp->mr_start + mp->mr_size;
1144		debugf(" %08x-%08x -> ", s, e);
1145		/* Check whether this region holds all of the kernel. */
1146		if (s < kernload && e > phys_kernelend) {
1147			availmem_regions[cnt].mr_start = phys_kernelend;
1148			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1149			e = kernload;
1150		}
1151		/* Look whether this regions starts within the kernel. */
1152		if (s >= kernload && s < phys_kernelend) {
1153			if (e <= phys_kernelend)
1154				goto empty;
1155			s = phys_kernelend;
1156		}
1157		/* Now look whether this region ends within the kernel. */
1158		if (e > kernload && e <= phys_kernelend) {
1159			if (s >= kernload)
1160				goto empty;
1161			e = kernload;
1162		}
1163		/* Now page align the start and size of the region. */
1164		s = round_page(s);
1165		e = trunc_page(e);
1166		if (e < s)
1167			e = s;
1168		sz = e - s;
1169		debugf("%08x-%08x = %x\n", s, e, sz);
1170
1171		/* Check whether some memory is left here. */
1172		if (sz == 0) {
1173		empty:
1174			memmove(mp, mp + 1,
1175			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1176			cnt--;
1177			mp--;
1178			continue;
1179		}
1180
1181		/* Do an insertion sort. */
1182		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1183			if (s < mp1->mr_start)
1184				break;
1185		if (mp1 < mp) {
1186			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1187			mp1->mr_start = s;
1188			mp1->mr_size = sz;
1189		} else {
1190			mp->mr_start = s;
1191			mp->mr_size = sz;
1192		}
1193	}
1194	availmem_regions_sz = cnt;
1195
1196	/*******************************************************/
1197	/* Steal physical memory for kernel stack from the end */
1198	/* of the first avail region                           */
1199	/*******************************************************/
1200	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1201	kstack0_phys = availmem_regions[0].mr_start +
1202	    availmem_regions[0].mr_size;
1203	kstack0_phys -= kstack0_sz;
1204	availmem_regions[0].mr_size -= kstack0_sz;
1205
1206	/*******************************************************/
1207	/* Fill in phys_avail table, based on availmem_regions */
1208	/*******************************************************/
1209	phys_avail_count = 0;
1210	physsz = 0;
1211	hwphyssz = 0;
1212	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1213
1214	debugf("fill in phys_avail:\n");
1215	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1216
1217		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1218		    availmem_regions[i].mr_start,
1219		    availmem_regions[i].mr_start +
1220		        availmem_regions[i].mr_size,
1221		    availmem_regions[i].mr_size);
1222
1223		if (hwphyssz != 0 &&
1224		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1225			debugf(" hw.physmem adjust\n");
1226			if (physsz < hwphyssz) {
1227				phys_avail[j] = availmem_regions[i].mr_start;
1228				phys_avail[j + 1] =
1229				    availmem_regions[i].mr_start +
1230				    hwphyssz - physsz;
1231				physsz = hwphyssz;
1232				phys_avail_count++;
1233			}
1234			break;
1235		}
1236
1237		phys_avail[j] = availmem_regions[i].mr_start;
1238		phys_avail[j + 1] = availmem_regions[i].mr_start +
1239		    availmem_regions[i].mr_size;
1240		phys_avail_count++;
1241		physsz += availmem_regions[i].mr_size;
1242	}
1243	physmem = btoc(physsz);
1244
1245	/* Calculate the last available physical address. */
1246	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1247		;
1248	Maxmem = powerpc_btop(phys_avail[i + 1]);
1249
1250	debugf("Maxmem = 0x%08lx\n", Maxmem);
1251	debugf("phys_avail_count = %d\n", phys_avail_count);
1252	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1253	    physmem);
1254
1255	/*******************************************************/
1256	/* Initialize (statically allocated) kernel pmap. */
1257	/*******************************************************/
1258	PMAP_LOCK_INIT(kernel_pmap);
1259	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1260
1261	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1262	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1263	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1264	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1265
1266	/* Initialize kernel pdir */
1267	for (i = 0; i < kernel_ptbls; i++)
1268		kernel_pmap->pm_pdir[kptbl_min + i] =
1269		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1270
1271	for (i = 0; i < MAXCPU; i++) {
1272		kernel_pmap->pm_tid[i] = TID_KERNEL;
1273
1274		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1275		tidbusy[i][0] = kernel_pmap;
1276	}
1277
1278	/*
1279	 * Fill in PTEs covering kernel code and data. They are not required
1280	 * for address translation, as this area is covered by static TLB1
1281	 * entries, but for pte_vatopa() to work correctly with kernel area
1282	 * addresses.
1283	 */
1284	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1285		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1286		pte->rpn = kernload + (va - kernstart);
1287		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1288		    PTE_VALID;
1289	}
1290	/* Mark kernel_pmap active on all CPUs */
1291	CPU_FILL(&kernel_pmap->pm_active);
1292
1293 	/*
1294	 * Initialize the global pv list lock.
1295	 */
1296	rw_init(&pvh_global_lock, "pmap pv global");
1297
1298	/*******************************************************/
1299	/* Final setup */
1300	/*******************************************************/
1301
1302	/* Enter kstack0 into kernel map, provide guard page */
1303	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1304	thread0.td_kstack = kstack0;
1305	thread0.td_kstack_pages = KSTACK_PAGES;
1306
1307	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1308	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1309	    kstack0_phys, kstack0_phys + kstack0_sz);
1310	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1311
1312	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1313	for (i = 0; i < KSTACK_PAGES; i++) {
1314		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1315		kstack0 += PAGE_SIZE;
1316		kstack0_phys += PAGE_SIZE;
1317	}
1318
1319	debugf("virtual_avail = %08x\n", virtual_avail);
1320	debugf("virtual_end   = %08x\n", virtual_end);
1321
1322	debugf("mmu_booke_bootstrap: exit\n");
1323}
1324
1325void
1326pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1327{
1328	int i;
1329
1330	/*
1331	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1332	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1333	 * these values directly to (re)program AP's TLB1 hardware.
1334	 */
1335	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1336		/* Skip invalid entries */
1337		if (!(tlb1[i].mas1 & MAS1_VALID))
1338			continue;
1339
1340		tlb1_write_entry(i);
1341	}
1342
1343	set_mas4_defaults();
1344}
1345
1346/*
1347 * Get the physical page address for the given pmap/virtual address.
1348 */
1349static vm_paddr_t
1350mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1351{
1352	vm_paddr_t pa;
1353
1354	PMAP_LOCK(pmap);
1355	pa = pte_vatopa(mmu, pmap, va);
1356	PMAP_UNLOCK(pmap);
1357
1358	return (pa);
1359}
1360
1361/*
1362 * Extract the physical page address associated with the given
1363 * kernel virtual address.
1364 */
1365static vm_paddr_t
1366mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1367{
1368	int i;
1369
1370	/* Check TLB1 mappings */
1371	for (i = 0; i < tlb1_idx; i++) {
1372		if (!(tlb1[i].mas1 & MAS1_VALID))
1373			continue;
1374		if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size)
1375			return (tlb1[i].phys + (va - tlb1[i].virt));
1376	}
1377
1378	return (pte_vatopa(mmu, kernel_pmap, va));
1379}
1380
1381/*
1382 * Initialize the pmap module.
1383 * Called by vm_init, to initialize any structures that the pmap
1384 * system needs to map virtual memory.
1385 */
1386static void
1387mmu_booke_init(mmu_t mmu)
1388{
1389	int shpgperproc = PMAP_SHPGPERPROC;
1390
1391	/*
1392	 * Initialize the address space (zone) for the pv entries.  Set a
1393	 * high water mark so that the system can recover from excessive
1394	 * numbers of pv entries.
1395	 */
1396	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1397	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1398
1399	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1400	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1401
1402	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1403	pv_entry_high_water = 9 * (pv_entry_max / 10);
1404
1405	uma_zone_reserve_kva(pvzone, pv_entry_max);
1406
1407	/* Pre-fill pvzone with initial number of pv entries. */
1408	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1409
1410	/* Initialize ptbl allocation. */
1411	ptbl_init();
1412}
1413
1414/*
1415 * Map a list of wired pages into kernel virtual address space.  This is
1416 * intended for temporary mappings which do not need page modification or
1417 * references recorded.  Existing mappings in the region are overwritten.
1418 */
1419static void
1420mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1421{
1422	vm_offset_t va;
1423
1424	va = sva;
1425	while (count-- > 0) {
1426		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1427		va += PAGE_SIZE;
1428		m++;
1429	}
1430}
1431
1432/*
1433 * Remove page mappings from kernel virtual address space.  Intended for
1434 * temporary mappings entered by mmu_booke_qenter.
1435 */
1436static void
1437mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1438{
1439	vm_offset_t va;
1440
1441	va = sva;
1442	while (count-- > 0) {
1443		mmu_booke_kremove(mmu, va);
1444		va += PAGE_SIZE;
1445	}
1446}
1447
1448/*
1449 * Map a wired page into kernel virtual address space.
1450 */
1451static void
1452mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1453{
1454
1455	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1456}
1457
1458static void
1459mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1460{
1461	unsigned int pdir_idx = PDIR_IDX(va);
1462	unsigned int ptbl_idx = PTBL_IDX(va);
1463	uint32_t flags;
1464	pte_t *pte;
1465
1466	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1467	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1468
1469	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1470	flags |= tlb_calc_wimg(pa, ma);
1471
1472	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1473
1474	mtx_lock_spin(&tlbivax_mutex);
1475	tlb_miss_lock();
1476
1477	if (PTE_ISVALID(pte)) {
1478
1479		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1480
1481		/* Flush entry from TLB0 */
1482		tlb0_flush_entry(va);
1483	}
1484
1485	pte->rpn = pa & ~PTE_PA_MASK;
1486	pte->flags = flags;
1487
1488	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1489	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1490	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1491
1492	/* Flush the real memory from the instruction cache. */
1493	if ((flags & (PTE_I | PTE_G)) == 0) {
1494		__syncicache((void *)va, PAGE_SIZE);
1495	}
1496
1497	tlb_miss_unlock();
1498	mtx_unlock_spin(&tlbivax_mutex);
1499}
1500
1501/*
1502 * Remove a page from kernel page table.
1503 */
1504static void
1505mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1506{
1507	unsigned int pdir_idx = PDIR_IDX(va);
1508	unsigned int ptbl_idx = PTBL_IDX(va);
1509	pte_t *pte;
1510
1511//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1512
1513	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1514	    (va <= VM_MAX_KERNEL_ADDRESS)),
1515	    ("mmu_booke_kremove: invalid va"));
1516
1517	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1518
1519	if (!PTE_ISVALID(pte)) {
1520
1521		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1522
1523		return;
1524	}
1525
1526	mtx_lock_spin(&tlbivax_mutex);
1527	tlb_miss_lock();
1528
1529	/* Invalidate entry in TLB0, update PTE. */
1530	tlb0_flush_entry(va);
1531	pte->flags = 0;
1532	pte->rpn = 0;
1533
1534	tlb_miss_unlock();
1535	mtx_unlock_spin(&tlbivax_mutex);
1536}
1537
1538/*
1539 * Initialize pmap associated with process 0.
1540 */
1541static void
1542mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1543{
1544
1545	PMAP_LOCK_INIT(pmap);
1546	mmu_booke_pinit(mmu, pmap);
1547	PCPU_SET(curpmap, pmap);
1548}
1549
1550/*
1551 * Initialize a preallocated and zeroed pmap structure,
1552 * such as one in a vmspace structure.
1553 */
1554static void
1555mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1556{
1557	int i;
1558
1559	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1560	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1561
1562	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1563
1564	for (i = 0; i < MAXCPU; i++)
1565		pmap->pm_tid[i] = TID_NONE;
1566	CPU_ZERO(&kernel_pmap->pm_active);
1567	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1568	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1569	TAILQ_INIT(&pmap->pm_ptbl_list);
1570}
1571
1572/*
1573 * Release any resources held by the given physical map.
1574 * Called when a pmap initialized by mmu_booke_pinit is being released.
1575 * Should only be called if the map contains no valid mappings.
1576 */
1577static void
1578mmu_booke_release(mmu_t mmu, pmap_t pmap)
1579{
1580
1581	KASSERT(pmap->pm_stats.resident_count == 0,
1582	    ("pmap_release: pmap resident count %ld != 0",
1583	    pmap->pm_stats.resident_count));
1584}
1585
1586/*
1587 * Insert the given physical page at the specified virtual address in the
1588 * target physical map with the protection requested. If specified the page
1589 * will be wired down.
1590 */
1591static int
1592mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1593    vm_prot_t prot, u_int flags, int8_t psind)
1594{
1595	int error;
1596
1597	rw_wlock(&pvh_global_lock);
1598	PMAP_LOCK(pmap);
1599	error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind);
1600	rw_wunlock(&pvh_global_lock);
1601	PMAP_UNLOCK(pmap);
1602	return (error);
1603}
1604
1605static int
1606mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1607    vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1608{
1609	pte_t *pte;
1610	vm_paddr_t pa;
1611	uint32_t flags;
1612	int error, su, sync;
1613
1614	pa = VM_PAGE_TO_PHYS(m);
1615	su = (pmap == kernel_pmap);
1616	sync = 0;
1617
1618	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1619	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1620	//		(u_int32_t)pmap, su, pmap->pm_tid,
1621	//		(u_int32_t)m, va, pa, prot, flags);
1622
1623	if (su) {
1624		KASSERT(((va >= virtual_avail) &&
1625		    (va <= VM_MAX_KERNEL_ADDRESS)),
1626		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1627	} else {
1628		KASSERT((va <= VM_MAXUSER_ADDRESS),
1629		    ("mmu_booke_enter_locked: user pmap, non user va"));
1630	}
1631	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1632		VM_OBJECT_ASSERT_LOCKED(m->object);
1633
1634	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1635
1636	/*
1637	 * If there is an existing mapping, and the physical address has not
1638	 * changed, must be protection or wiring change.
1639	 */
1640	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1641	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1642
1643		/*
1644		 * Before actually updating pte->flags we calculate and
1645		 * prepare its new value in a helper var.
1646		 */
1647		flags = pte->flags;
1648		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1649
1650		/* Wiring change, just update stats. */
1651		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1652			if (!PTE_ISWIRED(pte)) {
1653				flags |= PTE_WIRED;
1654				pmap->pm_stats.wired_count++;
1655			}
1656		} else {
1657			if (PTE_ISWIRED(pte)) {
1658				flags &= ~PTE_WIRED;
1659				pmap->pm_stats.wired_count--;
1660			}
1661		}
1662
1663		if (prot & VM_PROT_WRITE) {
1664			/* Add write permissions. */
1665			flags |= PTE_SW;
1666			if (!su)
1667				flags |= PTE_UW;
1668
1669			if ((flags & PTE_MANAGED) != 0)
1670				vm_page_aflag_set(m, PGA_WRITEABLE);
1671		} else {
1672			/* Handle modified pages, sense modify status. */
1673
1674			/*
1675			 * The PTE_MODIFIED flag could be set by underlying
1676			 * TLB misses since we last read it (above), possibly
1677			 * other CPUs could update it so we check in the PTE
1678			 * directly rather than rely on that saved local flags
1679			 * copy.
1680			 */
1681			if (PTE_ISMODIFIED(pte))
1682				vm_page_dirty(m);
1683		}
1684
1685		if (prot & VM_PROT_EXECUTE) {
1686			flags |= PTE_SX;
1687			if (!su)
1688				flags |= PTE_UX;
1689
1690			/*
1691			 * Check existing flags for execute permissions: if we
1692			 * are turning execute permissions on, icache should
1693			 * be flushed.
1694			 */
1695			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1696				sync++;
1697		}
1698
1699		flags &= ~PTE_REFERENCED;
1700
1701		/*
1702		 * The new flags value is all calculated -- only now actually
1703		 * update the PTE.
1704		 */
1705		mtx_lock_spin(&tlbivax_mutex);
1706		tlb_miss_lock();
1707
1708		tlb0_flush_entry(va);
1709		pte->flags = flags;
1710
1711		tlb_miss_unlock();
1712		mtx_unlock_spin(&tlbivax_mutex);
1713
1714	} else {
1715		/*
1716		 * If there is an existing mapping, but it's for a different
1717		 * physical address, pte_enter() will delete the old mapping.
1718		 */
1719		//if ((pte != NULL) && PTE_ISVALID(pte))
1720		//	debugf("mmu_booke_enter_locked: replace\n");
1721		//else
1722		//	debugf("mmu_booke_enter_locked: new\n");
1723
1724		/* Now set up the flags and install the new mapping. */
1725		flags = (PTE_SR | PTE_VALID);
1726		flags |= PTE_M;
1727
1728		if (!su)
1729			flags |= PTE_UR;
1730
1731		if (prot & VM_PROT_WRITE) {
1732			flags |= PTE_SW;
1733			if (!su)
1734				flags |= PTE_UW;
1735
1736			if ((m->oflags & VPO_UNMANAGED) == 0)
1737				vm_page_aflag_set(m, PGA_WRITEABLE);
1738		}
1739
1740		if (prot & VM_PROT_EXECUTE) {
1741			flags |= PTE_SX;
1742			if (!su)
1743				flags |= PTE_UX;
1744		}
1745
1746		/* If its wired update stats. */
1747		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1748			flags |= PTE_WIRED;
1749
1750		error = pte_enter(mmu, pmap, m, va, flags,
1751		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1752		if (error != 0)
1753			return (KERN_RESOURCE_SHORTAGE);
1754
1755		if ((flags & PMAP_ENTER_WIRED) != 0)
1756			pmap->pm_stats.wired_count++;
1757
1758		/* Flush the real memory from the instruction cache. */
1759		if (prot & VM_PROT_EXECUTE)
1760			sync++;
1761	}
1762
1763	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1764		__syncicache((void *)va, PAGE_SIZE);
1765		sync = 0;
1766	}
1767
1768	return (KERN_SUCCESS);
1769}
1770
1771/*
1772 * Maps a sequence of resident pages belonging to the same object.
1773 * The sequence begins with the given page m_start.  This page is
1774 * mapped at the given virtual address start.  Each subsequent page is
1775 * mapped at a virtual address that is offset from start by the same
1776 * amount as the page is offset from m_start within the object.  The
1777 * last page in the sequence is the page with the largest offset from
1778 * m_start that can be mapped at a virtual address less than the given
1779 * virtual address end.  Not every virtual page between start and end
1780 * is mapped; only those for which a resident page exists with the
1781 * corresponding offset from m_start are mapped.
1782 */
1783static void
1784mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1785    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1786{
1787	vm_page_t m;
1788	vm_pindex_t diff, psize;
1789
1790	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1791
1792	psize = atop(end - start);
1793	m = m_start;
1794	rw_wlock(&pvh_global_lock);
1795	PMAP_LOCK(pmap);
1796	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1797		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1798		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1799		    PMAP_ENTER_NOSLEEP, 0);
1800		m = TAILQ_NEXT(m, listq);
1801	}
1802	rw_wunlock(&pvh_global_lock);
1803	PMAP_UNLOCK(pmap);
1804}
1805
1806static void
1807mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1808    vm_prot_t prot)
1809{
1810
1811	rw_wlock(&pvh_global_lock);
1812	PMAP_LOCK(pmap);
1813	mmu_booke_enter_locked(mmu, pmap, va, m,
1814	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP,
1815	    0);
1816	rw_wunlock(&pvh_global_lock);
1817	PMAP_UNLOCK(pmap);
1818}
1819
1820/*
1821 * Remove the given range of addresses from the specified map.
1822 *
1823 * It is assumed that the start and end are properly rounded to the page size.
1824 */
1825static void
1826mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1827{
1828	pte_t *pte;
1829	uint8_t hold_flag;
1830
1831	int su = (pmap == kernel_pmap);
1832
1833	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1834	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1835
1836	if (su) {
1837		KASSERT(((va >= virtual_avail) &&
1838		    (va <= VM_MAX_KERNEL_ADDRESS)),
1839		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1840	} else {
1841		KASSERT((va <= VM_MAXUSER_ADDRESS),
1842		    ("mmu_booke_remove: user pmap, non user va"));
1843	}
1844
1845	if (PMAP_REMOVE_DONE(pmap)) {
1846		//debugf("mmu_booke_remove: e (empty)\n");
1847		return;
1848	}
1849
1850	hold_flag = PTBL_HOLD_FLAG(pmap);
1851	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1852
1853	rw_wlock(&pvh_global_lock);
1854	PMAP_LOCK(pmap);
1855	for (; va < endva; va += PAGE_SIZE) {
1856		pte = pte_find(mmu, pmap, va);
1857		if ((pte != NULL) && PTE_ISVALID(pte))
1858			pte_remove(mmu, pmap, va, hold_flag);
1859	}
1860	PMAP_UNLOCK(pmap);
1861	rw_wunlock(&pvh_global_lock);
1862
1863	//debugf("mmu_booke_remove: e\n");
1864}
1865
1866/*
1867 * Remove physical page from all pmaps in which it resides.
1868 */
1869static void
1870mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1871{
1872	pv_entry_t pv, pvn;
1873	uint8_t hold_flag;
1874
1875	rw_wlock(&pvh_global_lock);
1876	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1877		pvn = TAILQ_NEXT(pv, pv_link);
1878
1879		PMAP_LOCK(pv->pv_pmap);
1880		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1881		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1882		PMAP_UNLOCK(pv->pv_pmap);
1883	}
1884	vm_page_aflag_clear(m, PGA_WRITEABLE);
1885	rw_wunlock(&pvh_global_lock);
1886}
1887
1888/*
1889 * Map a range of physical addresses into kernel virtual address space.
1890 */
1891static vm_offset_t
1892mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1893    vm_paddr_t pa_end, int prot)
1894{
1895	vm_offset_t sva = *virt;
1896	vm_offset_t va = sva;
1897
1898	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1899	//		sva, pa_start, pa_end);
1900
1901	while (pa_start < pa_end) {
1902		mmu_booke_kenter(mmu, va, pa_start);
1903		va += PAGE_SIZE;
1904		pa_start += PAGE_SIZE;
1905	}
1906	*virt = va;
1907
1908	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1909	return (sva);
1910}
1911
1912/*
1913 * The pmap must be activated before it's address space can be accessed in any
1914 * way.
1915 */
1916static void
1917mmu_booke_activate(mmu_t mmu, struct thread *td)
1918{
1919	pmap_t pmap;
1920	u_int cpuid;
1921
1922	pmap = &td->td_proc->p_vmspace->vm_pmap;
1923
1924	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1925	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1926
1927	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1928
1929	sched_pin();
1930
1931	cpuid = PCPU_GET(cpuid);
1932	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1933	PCPU_SET(curpmap, pmap);
1934
1935	if (pmap->pm_tid[cpuid] == TID_NONE)
1936		tid_alloc(pmap);
1937
1938	/* Load PID0 register with pmap tid value. */
1939	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1940	__asm __volatile("isync");
1941
1942	sched_unpin();
1943
1944	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1945	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1946}
1947
1948/*
1949 * Deactivate the specified process's address space.
1950 */
1951static void
1952mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1953{
1954	pmap_t pmap;
1955
1956	pmap = &td->td_proc->p_vmspace->vm_pmap;
1957
1958	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1959	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1960
1961	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1962	PCPU_SET(curpmap, NULL);
1963}
1964
1965/*
1966 * Copy the range specified by src_addr/len
1967 * from the source map to the range dst_addr/len
1968 * in the destination map.
1969 *
1970 * This routine is only advisory and need not do anything.
1971 */
1972static void
1973mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1974    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1975{
1976
1977}
1978
1979/*
1980 * Set the physical protection on the specified range of this map as requested.
1981 */
1982static void
1983mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1984    vm_prot_t prot)
1985{
1986	vm_offset_t va;
1987	vm_page_t m;
1988	pte_t *pte;
1989
1990	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1991		mmu_booke_remove(mmu, pmap, sva, eva);
1992		return;
1993	}
1994
1995	if (prot & VM_PROT_WRITE)
1996		return;
1997
1998	PMAP_LOCK(pmap);
1999	for (va = sva; va < eva; va += PAGE_SIZE) {
2000		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2001			if (PTE_ISVALID(pte)) {
2002				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2003
2004				mtx_lock_spin(&tlbivax_mutex);
2005				tlb_miss_lock();
2006
2007				/* Handle modified pages. */
2008				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
2009					vm_page_dirty(m);
2010
2011				tlb0_flush_entry(va);
2012				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2013
2014				tlb_miss_unlock();
2015				mtx_unlock_spin(&tlbivax_mutex);
2016			}
2017		}
2018	}
2019	PMAP_UNLOCK(pmap);
2020}
2021
2022/*
2023 * Clear the write and modified bits in each of the given page's mappings.
2024 */
2025static void
2026mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2027{
2028	pv_entry_t pv;
2029	pte_t *pte;
2030
2031	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2032	    ("mmu_booke_remove_write: page %p is not managed", m));
2033
2034	/*
2035	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2036	 * set by another thread while the object is locked.  Thus,
2037	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2038	 */
2039	VM_OBJECT_ASSERT_WLOCKED(m->object);
2040	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2041		return;
2042	rw_wlock(&pvh_global_lock);
2043	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2044		PMAP_LOCK(pv->pv_pmap);
2045		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2046			if (PTE_ISVALID(pte)) {
2047				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2048
2049				mtx_lock_spin(&tlbivax_mutex);
2050				tlb_miss_lock();
2051
2052				/* Handle modified pages. */
2053				if (PTE_ISMODIFIED(pte))
2054					vm_page_dirty(m);
2055
2056				/* Flush mapping from TLB0. */
2057				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2058
2059				tlb_miss_unlock();
2060				mtx_unlock_spin(&tlbivax_mutex);
2061			}
2062		}
2063		PMAP_UNLOCK(pv->pv_pmap);
2064	}
2065	vm_page_aflag_clear(m, PGA_WRITEABLE);
2066	rw_wunlock(&pvh_global_lock);
2067}
2068
2069static void
2070mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2071{
2072	pte_t *pte;
2073	pmap_t pmap;
2074	vm_page_t m;
2075	vm_offset_t addr;
2076	vm_paddr_t pa;
2077	int active, valid;
2078
2079	va = trunc_page(va);
2080	sz = round_page(sz);
2081
2082	rw_wlock(&pvh_global_lock);
2083	pmap = PCPU_GET(curpmap);
2084	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2085	while (sz > 0) {
2086		PMAP_LOCK(pm);
2087		pte = pte_find(mmu, pm, va);
2088		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2089		if (valid)
2090			pa = PTE_PA(pte);
2091		PMAP_UNLOCK(pm);
2092		if (valid) {
2093			if (!active) {
2094				/* Create a mapping in the active pmap. */
2095				addr = 0;
2096				m = PHYS_TO_VM_PAGE(pa);
2097				PMAP_LOCK(pmap);
2098				pte_enter(mmu, pmap, m, addr,
2099				    PTE_SR | PTE_VALID | PTE_UR, FALSE);
2100				__syncicache((void *)addr, PAGE_SIZE);
2101				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2102				PMAP_UNLOCK(pmap);
2103			} else
2104				__syncicache((void *)va, PAGE_SIZE);
2105		}
2106		va += PAGE_SIZE;
2107		sz -= PAGE_SIZE;
2108	}
2109	rw_wunlock(&pvh_global_lock);
2110}
2111
2112/*
2113 * Atomically extract and hold the physical page with the given
2114 * pmap and virtual address pair if that mapping permits the given
2115 * protection.
2116 */
2117static vm_page_t
2118mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2119    vm_prot_t prot)
2120{
2121	pte_t *pte;
2122	vm_page_t m;
2123	uint32_t pte_wbit;
2124	vm_paddr_t pa;
2125
2126	m = NULL;
2127	pa = 0;
2128	PMAP_LOCK(pmap);
2129retry:
2130	pte = pte_find(mmu, pmap, va);
2131	if ((pte != NULL) && PTE_ISVALID(pte)) {
2132		if (pmap == kernel_pmap)
2133			pte_wbit = PTE_SW;
2134		else
2135			pte_wbit = PTE_UW;
2136
2137		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2138			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2139				goto retry;
2140			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2141			vm_page_hold(m);
2142		}
2143	}
2144
2145	PA_UNLOCK_COND(pa);
2146	PMAP_UNLOCK(pmap);
2147	return (m);
2148}
2149
2150/*
2151 * Initialize a vm_page's machine-dependent fields.
2152 */
2153static void
2154mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2155{
2156
2157	TAILQ_INIT(&m->md.pv_list);
2158}
2159
2160/*
2161 * mmu_booke_zero_page_area zeros the specified hardware page by
2162 * mapping it into virtual memory and using bzero to clear
2163 * its contents.
2164 *
2165 * off and size must reside within a single page.
2166 */
2167static void
2168mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2169{
2170	vm_offset_t va;
2171
2172	/* XXX KASSERT off and size are within a single page? */
2173
2174	mtx_lock(&zero_page_mutex);
2175	va = zero_page_va;
2176
2177	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2178	bzero((caddr_t)va + off, size);
2179	mmu_booke_kremove(mmu, va);
2180
2181	mtx_unlock(&zero_page_mutex);
2182}
2183
2184/*
2185 * mmu_booke_zero_page zeros the specified hardware page.
2186 */
2187static void
2188mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2189{
2190
2191	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2192}
2193
2194/*
2195 * mmu_booke_copy_page copies the specified (machine independent) page by
2196 * mapping the page into virtual memory and using memcopy to copy the page,
2197 * one machine dependent page at a time.
2198 */
2199static void
2200mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2201{
2202	vm_offset_t sva, dva;
2203
2204	sva = copy_page_src_va;
2205	dva = copy_page_dst_va;
2206
2207	mtx_lock(&copy_page_mutex);
2208	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2209	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2210	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2211	mmu_booke_kremove(mmu, dva);
2212	mmu_booke_kremove(mmu, sva);
2213	mtx_unlock(&copy_page_mutex);
2214}
2215
2216static inline void
2217mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2218    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2219{
2220	void *a_cp, *b_cp;
2221	vm_offset_t a_pg_offset, b_pg_offset;
2222	int cnt;
2223
2224	mtx_lock(&copy_page_mutex);
2225	while (xfersize > 0) {
2226		a_pg_offset = a_offset & PAGE_MASK;
2227		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2228		mmu_booke_kenter(mmu, copy_page_src_va,
2229		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2230		a_cp = (char *)copy_page_src_va + a_pg_offset;
2231		b_pg_offset = b_offset & PAGE_MASK;
2232		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2233		mmu_booke_kenter(mmu, copy_page_dst_va,
2234		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2235		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2236		bcopy(a_cp, b_cp, cnt);
2237		mmu_booke_kremove(mmu, copy_page_dst_va);
2238		mmu_booke_kremove(mmu, copy_page_src_va);
2239		a_offset += cnt;
2240		b_offset += cnt;
2241		xfersize -= cnt;
2242	}
2243	mtx_unlock(&copy_page_mutex);
2244}
2245
2246/*
2247 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2248 * into virtual memory and using bzero to clear its contents. This is intended
2249 * to be called from the vm_pagezero process only and outside of Giant. No
2250 * lock is required.
2251 */
2252static void
2253mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2254{
2255	vm_offset_t va;
2256
2257	va = zero_page_idle_va;
2258	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2259	bzero((caddr_t)va, PAGE_SIZE);
2260	mmu_booke_kremove(mmu, va);
2261}
2262
2263/*
2264 * Return whether or not the specified physical page was modified
2265 * in any of physical maps.
2266 */
2267static boolean_t
2268mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2269{
2270	pte_t *pte;
2271	pv_entry_t pv;
2272	boolean_t rv;
2273
2274	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2275	    ("mmu_booke_is_modified: page %p is not managed", m));
2276	rv = FALSE;
2277
2278	/*
2279	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2280	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2281	 * is clear, no PTEs can be modified.
2282	 */
2283	VM_OBJECT_ASSERT_WLOCKED(m->object);
2284	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2285		return (rv);
2286	rw_wlock(&pvh_global_lock);
2287	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2288		PMAP_LOCK(pv->pv_pmap);
2289		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2290		    PTE_ISVALID(pte)) {
2291			if (PTE_ISMODIFIED(pte))
2292				rv = TRUE;
2293		}
2294		PMAP_UNLOCK(pv->pv_pmap);
2295		if (rv)
2296			break;
2297	}
2298	rw_wunlock(&pvh_global_lock);
2299	return (rv);
2300}
2301
2302/*
2303 * Return whether or not the specified virtual address is eligible
2304 * for prefault.
2305 */
2306static boolean_t
2307mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2308{
2309
2310	return (FALSE);
2311}
2312
2313/*
2314 * Return whether or not the specified physical page was referenced
2315 * in any physical maps.
2316 */
2317static boolean_t
2318mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2319{
2320	pte_t *pte;
2321	pv_entry_t pv;
2322	boolean_t rv;
2323
2324	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2325	    ("mmu_booke_is_referenced: page %p is not managed", m));
2326	rv = FALSE;
2327	rw_wlock(&pvh_global_lock);
2328	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2329		PMAP_LOCK(pv->pv_pmap);
2330		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2331		    PTE_ISVALID(pte)) {
2332			if (PTE_ISREFERENCED(pte))
2333				rv = TRUE;
2334		}
2335		PMAP_UNLOCK(pv->pv_pmap);
2336		if (rv)
2337			break;
2338	}
2339	rw_wunlock(&pvh_global_lock);
2340	return (rv);
2341}
2342
2343/*
2344 * Clear the modify bits on the specified physical page.
2345 */
2346static void
2347mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2348{
2349	pte_t *pte;
2350	pv_entry_t pv;
2351
2352	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2353	    ("mmu_booke_clear_modify: page %p is not managed", m));
2354	VM_OBJECT_ASSERT_WLOCKED(m->object);
2355	KASSERT(!vm_page_xbusied(m),
2356	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2357
2358	/*
2359	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2360	 * If the object containing the page is locked and the page is not
2361	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2362	 */
2363	if ((m->aflags & PGA_WRITEABLE) == 0)
2364		return;
2365	rw_wlock(&pvh_global_lock);
2366	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2367		PMAP_LOCK(pv->pv_pmap);
2368		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2369		    PTE_ISVALID(pte)) {
2370			mtx_lock_spin(&tlbivax_mutex);
2371			tlb_miss_lock();
2372
2373			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2374				tlb0_flush_entry(pv->pv_va);
2375				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2376				    PTE_REFERENCED);
2377			}
2378
2379			tlb_miss_unlock();
2380			mtx_unlock_spin(&tlbivax_mutex);
2381		}
2382		PMAP_UNLOCK(pv->pv_pmap);
2383	}
2384	rw_wunlock(&pvh_global_lock);
2385}
2386
2387/*
2388 * Return a count of reference bits for a page, clearing those bits.
2389 * It is not necessary for every reference bit to be cleared, but it
2390 * is necessary that 0 only be returned when there are truly no
2391 * reference bits set.
2392 *
2393 * XXX: The exact number of bits to check and clear is a matter that
2394 * should be tested and standardized at some point in the future for
2395 * optimal aging of shared pages.
2396 */
2397static int
2398mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2399{
2400	pte_t *pte;
2401	pv_entry_t pv;
2402	int count;
2403
2404	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2405	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2406	count = 0;
2407	rw_wlock(&pvh_global_lock);
2408	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2409		PMAP_LOCK(pv->pv_pmap);
2410		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2411		    PTE_ISVALID(pte)) {
2412			if (PTE_ISREFERENCED(pte)) {
2413				mtx_lock_spin(&tlbivax_mutex);
2414				tlb_miss_lock();
2415
2416				tlb0_flush_entry(pv->pv_va);
2417				pte->flags &= ~PTE_REFERENCED;
2418
2419				tlb_miss_unlock();
2420				mtx_unlock_spin(&tlbivax_mutex);
2421
2422				if (++count > 4) {
2423					PMAP_UNLOCK(pv->pv_pmap);
2424					break;
2425				}
2426			}
2427		}
2428		PMAP_UNLOCK(pv->pv_pmap);
2429	}
2430	rw_wunlock(&pvh_global_lock);
2431	return (count);
2432}
2433
2434/*
2435 * Change wiring attribute for a map/virtual-address pair.
2436 */
2437static void
2438mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2439{
2440	pte_t *pte;
2441
2442	PMAP_LOCK(pmap);
2443	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2444		if (wired) {
2445			if (!PTE_ISWIRED(pte)) {
2446				pte->flags |= PTE_WIRED;
2447				pmap->pm_stats.wired_count++;
2448			}
2449		} else {
2450			if (PTE_ISWIRED(pte)) {
2451				pte->flags &= ~PTE_WIRED;
2452				pmap->pm_stats.wired_count--;
2453			}
2454		}
2455	}
2456	PMAP_UNLOCK(pmap);
2457}
2458
2459/*
2460 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2461 * page.  This count may be changed upwards or downwards in the future; it is
2462 * only necessary that true be returned for a small subset of pmaps for proper
2463 * page aging.
2464 */
2465static boolean_t
2466mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2467{
2468	pv_entry_t pv;
2469	int loops;
2470	boolean_t rv;
2471
2472	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2473	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2474	loops = 0;
2475	rv = FALSE;
2476	rw_wlock(&pvh_global_lock);
2477	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2478		if (pv->pv_pmap == pmap) {
2479			rv = TRUE;
2480			break;
2481		}
2482		if (++loops >= 16)
2483			break;
2484	}
2485	rw_wunlock(&pvh_global_lock);
2486	return (rv);
2487}
2488
2489/*
2490 * Return the number of managed mappings to the given physical page that are
2491 * wired.
2492 */
2493static int
2494mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2495{
2496	pv_entry_t pv;
2497	pte_t *pte;
2498	int count = 0;
2499
2500	if ((m->oflags & VPO_UNMANAGED) != 0)
2501		return (count);
2502	rw_wlock(&pvh_global_lock);
2503	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2504		PMAP_LOCK(pv->pv_pmap);
2505		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2506			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2507				count++;
2508		PMAP_UNLOCK(pv->pv_pmap);
2509	}
2510	rw_wunlock(&pvh_global_lock);
2511	return (count);
2512}
2513
2514static int
2515mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2516{
2517	int i;
2518	vm_offset_t va;
2519
2520	/*
2521	 * This currently does not work for entries that
2522	 * overlap TLB1 entries.
2523	 */
2524	for (i = 0; i < tlb1_idx; i ++) {
2525		if (tlb1_iomapped(i, pa, size, &va) == 0)
2526			return (0);
2527	}
2528
2529	return (EFAULT);
2530}
2531
2532vm_offset_t
2533mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2534    vm_size_t *sz)
2535{
2536	vm_paddr_t pa, ppa;
2537	vm_offset_t va;
2538	vm_size_t gran;
2539
2540	/* Raw physical memory dumps don't have a virtual address. */
2541	if (md->md_vaddr == ~0UL) {
2542		/* We always map a 256MB page at 256M. */
2543		gran = 256 * 1024 * 1024;
2544		pa = md->md_paddr + ofs;
2545		ppa = pa & ~(gran - 1);
2546		ofs = pa - ppa;
2547		va = gran;
2548		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2549		if (*sz > (gran - ofs))
2550			*sz = gran - ofs;
2551		return (va + ofs);
2552	}
2553
2554	/* Minidumps are based on virtual memory addresses. */
2555	va = md->md_vaddr + ofs;
2556	if (va >= kernstart + kernsize) {
2557		gran = PAGE_SIZE - (va & PAGE_MASK);
2558		if (*sz > gran)
2559			*sz = gran;
2560	}
2561	return (va);
2562}
2563
2564void
2565mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2566    vm_offset_t va)
2567{
2568
2569	/* Raw physical memory dumps don't have a virtual address. */
2570	if (md->md_vaddr == ~0UL) {
2571		tlb1_idx--;
2572		tlb1[tlb1_idx].mas1 = 0;
2573		tlb1[tlb1_idx].mas2 = 0;
2574		tlb1[tlb1_idx].mas3 = 0;
2575		tlb1_write_entry(tlb1_idx);
2576		return;
2577	}
2578
2579	/* Minidumps are based on virtual memory addresses. */
2580	/* Nothing to do... */
2581}
2582
2583struct pmap_md *
2584mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2585{
2586	static struct pmap_md md;
2587	pte_t *pte;
2588	vm_offset_t va;
2589
2590	if (dumpsys_minidump) {
2591		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2592		if (prev == NULL) {
2593			/* 1st: kernel .data and .bss. */
2594			md.md_index = 1;
2595			md.md_vaddr = trunc_page((uintptr_t)_etext);
2596			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2597			return (&md);
2598		}
2599		switch (prev->md_index) {
2600		case 1:
2601			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2602			md.md_index = 2;
2603			md.md_vaddr = data_start;
2604			md.md_size = data_end - data_start;
2605			break;
2606		case 2:
2607			/* 3rd: kernel VM. */
2608			va = prev->md_vaddr + prev->md_size;
2609			/* Find start of next chunk (from va). */
2610			while (va < virtual_end) {
2611				/* Don't dump the buffer cache. */
2612				if (va >= kmi.buffer_sva &&
2613				    va < kmi.buffer_eva) {
2614					va = kmi.buffer_eva;
2615					continue;
2616				}
2617				pte = pte_find(mmu, kernel_pmap, va);
2618				if (pte != NULL && PTE_ISVALID(pte))
2619					break;
2620				va += PAGE_SIZE;
2621			}
2622			if (va < virtual_end) {
2623				md.md_vaddr = va;
2624				va += PAGE_SIZE;
2625				/* Find last page in chunk. */
2626				while (va < virtual_end) {
2627					/* Don't run into the buffer cache. */
2628					if (va == kmi.buffer_sva)
2629						break;
2630					pte = pte_find(mmu, kernel_pmap, va);
2631					if (pte == NULL || !PTE_ISVALID(pte))
2632						break;
2633					va += PAGE_SIZE;
2634				}
2635				md.md_size = va - md.md_vaddr;
2636				break;
2637			}
2638			md.md_index = 3;
2639			/* FALLTHROUGH */
2640		default:
2641			return (NULL);
2642		}
2643	} else { /* minidumps */
2644		mem_regions(&physmem_regions, &physmem_regions_sz,
2645		    &availmem_regions, &availmem_regions_sz);
2646
2647		if (prev == NULL) {
2648			/* first physical chunk. */
2649			md.md_paddr = physmem_regions[0].mr_start;
2650			md.md_size = physmem_regions[0].mr_size;
2651			md.md_vaddr = ~0UL;
2652			md.md_index = 1;
2653		} else if (md.md_index < physmem_regions_sz) {
2654			md.md_paddr = physmem_regions[md.md_index].mr_start;
2655			md.md_size = physmem_regions[md.md_index].mr_size;
2656			md.md_vaddr = ~0UL;
2657			md.md_index++;
2658		} else {
2659			/* There's no next physical chunk. */
2660			return (NULL);
2661		}
2662	}
2663
2664	return (&md);
2665}
2666
2667/*
2668 * Map a set of physical memory pages into the kernel virtual address space.
2669 * Return a pointer to where it is mapped. This routine is intended to be used
2670 * for mapping device memory, NOT real memory.
2671 */
2672static void *
2673mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2674{
2675
2676	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2677}
2678
2679static void *
2680mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2681{
2682	void *res;
2683	uintptr_t va;
2684	vm_size_t sz;
2685	int i;
2686
2687	/*
2688	 * Check if this is premapped in TLB1. Note: this should probably also
2689	 * check whether a sequence of TLB1 entries exist that match the
2690	 * requirement, but now only checks the easy case.
2691	 */
2692	if (ma == VM_MEMATTR_DEFAULT) {
2693		for (i = 0; i < tlb1_idx; i++) {
2694			if (!(tlb1[i].mas1 & MAS1_VALID))
2695				continue;
2696			if (pa >= tlb1[i].phys &&
2697			    (pa + size) <= (tlb1[i].phys + tlb1[i].size))
2698				return (void *)(tlb1[i].virt +
2699				    (pa - tlb1[i].phys));
2700		}
2701	}
2702
2703	size = roundup(size, PAGE_SIZE);
2704
2705	/*
2706	 * We leave a hole for device direct mapping between the maximum user
2707	 * address (0x8000000) and the minimum KVA address (0xc0000000). If
2708	 * devices are in there, just map them 1:1. If not, map them to the
2709	 * device mapping area about VM_MAX_KERNEL_ADDRESS. These mapped
2710	 * addresses should be pulled from an allocator, but since we do not
2711	 * ever free TLB1 entries, it is safe just to increment a counter.
2712	 * Note that there isn't a lot of address space here (128 MB) and it
2713	 * is not at all difficult to imagine running out, since that is a 4:1
2714	 * compression from the 0xc0000000 - 0xf0000000 address space that gets
2715	 * mapped there.
2716	 */
2717	if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) &&
2718	    (pa + size - 1) < VM_MIN_KERNEL_ADDRESS)
2719		va = pa;
2720	else
2721		va = atomic_fetchadd_int(&tlb1_map_base, size);
2722	res = (void *)va;
2723
2724	do {
2725		sz = 1 << (ilog2(size) & ~1);
2726		if (bootverbose)
2727			printf("Wiring VA=%x to PA=%x (size=%x), "
2728			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2729		tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma));
2730		size -= sz;
2731		pa += sz;
2732		va += sz;
2733	} while (size > 0);
2734
2735	return (res);
2736}
2737
2738/*
2739 * 'Unmap' a range mapped by mmu_booke_mapdev().
2740 */
2741static void
2742mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2743{
2744#ifdef SUPPORTS_SHRINKING_TLB1
2745	vm_offset_t base, offset;
2746
2747	/*
2748	 * Unmap only if this is inside kernel virtual space.
2749	 */
2750	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2751		base = trunc_page(va);
2752		offset = va & PAGE_MASK;
2753		size = roundup(offset + size, PAGE_SIZE);
2754		kva_free(base, size);
2755	}
2756#endif
2757}
2758
2759/*
2760 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2761 * specified pmap. This eliminates the blast of soft faults on process startup
2762 * and immediately after an mmap.
2763 */
2764static void
2765mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2766    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2767{
2768
2769	VM_OBJECT_ASSERT_WLOCKED(object);
2770	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2771	    ("mmu_booke_object_init_pt: non-device object"));
2772}
2773
2774/*
2775 * Perform the pmap work for mincore.
2776 */
2777static int
2778mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2779    vm_paddr_t *locked_pa)
2780{
2781
2782	/* XXX: this should be implemented at some point */
2783	return (0);
2784}
2785
2786/**************************************************************************/
2787/* TID handling */
2788/**************************************************************************/
2789
2790/*
2791 * Allocate a TID. If necessary, steal one from someone else.
2792 * The new TID is flushed from the TLB before returning.
2793 */
2794static tlbtid_t
2795tid_alloc(pmap_t pmap)
2796{
2797	tlbtid_t tid;
2798	int thiscpu;
2799
2800	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2801
2802	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2803
2804	thiscpu = PCPU_GET(cpuid);
2805
2806	tid = PCPU_GET(tid_next);
2807	if (tid > TID_MAX)
2808		tid = TID_MIN;
2809	PCPU_SET(tid_next, tid + 1);
2810
2811	/* If we are stealing TID then clear the relevant pmap's field */
2812	if (tidbusy[thiscpu][tid] != NULL) {
2813
2814		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2815
2816		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2817
2818		/* Flush all entries from TLB0 matching this TID. */
2819		tid_flush(tid);
2820	}
2821
2822	tidbusy[thiscpu][tid] = pmap;
2823	pmap->pm_tid[thiscpu] = tid;
2824	__asm __volatile("msync; isync");
2825
2826	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2827	    PCPU_GET(tid_next));
2828
2829	return (tid);
2830}
2831
2832/**************************************************************************/
2833/* TLB0 handling */
2834/**************************************************************************/
2835
2836static void
2837tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2838    uint32_t mas7)
2839{
2840	int as;
2841	char desc[3];
2842	tlbtid_t tid;
2843	vm_size_t size;
2844	unsigned int tsize;
2845
2846	desc[2] = '\0';
2847	if (mas1 & MAS1_VALID)
2848		desc[0] = 'V';
2849	else
2850		desc[0] = ' ';
2851
2852	if (mas1 & MAS1_IPROT)
2853		desc[1] = 'P';
2854	else
2855		desc[1] = ' ';
2856
2857	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2858	tid = MAS1_GETTID(mas1);
2859
2860	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2861	size = 0;
2862	if (tsize)
2863		size = tsize2size(tsize);
2864
2865	debugf("%3d: (%s) [AS=%d] "
2866	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2867	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2868	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2869}
2870
2871/* Convert TLB0 va and way number to tlb0[] table index. */
2872static inline unsigned int
2873tlb0_tableidx(vm_offset_t va, unsigned int way)
2874{
2875	unsigned int idx;
2876
2877	idx = (way * TLB0_ENTRIES_PER_WAY);
2878	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2879	return (idx);
2880}
2881
2882/*
2883 * Invalidate TLB0 entry.
2884 */
2885static inline void
2886tlb0_flush_entry(vm_offset_t va)
2887{
2888
2889	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2890
2891	mtx_assert(&tlbivax_mutex, MA_OWNED);
2892
2893	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2894	__asm __volatile("isync; msync");
2895	__asm __volatile("tlbsync; msync");
2896
2897	CTR1(KTR_PMAP, "%s: e", __func__);
2898}
2899
2900/* Print out contents of the MAS registers for each TLB0 entry */
2901void
2902tlb0_print_tlbentries(void)
2903{
2904	uint32_t mas0, mas1, mas2, mas3, mas7;
2905	int entryidx, way, idx;
2906
2907	debugf("TLB0 entries:\n");
2908	for (way = 0; way < TLB0_WAYS; way ++)
2909		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2910
2911			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2912			mtspr(SPR_MAS0, mas0);
2913			__asm __volatile("isync");
2914
2915			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2916			mtspr(SPR_MAS2, mas2);
2917
2918			__asm __volatile("isync; tlbre");
2919
2920			mas1 = mfspr(SPR_MAS1);
2921			mas2 = mfspr(SPR_MAS2);
2922			mas3 = mfspr(SPR_MAS3);
2923			mas7 = mfspr(SPR_MAS7);
2924
2925			idx = tlb0_tableidx(mas2, way);
2926			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2927		}
2928}
2929
2930/**************************************************************************/
2931/* TLB1 handling */
2932/**************************************************************************/
2933
2934/*
2935 * TLB1 mapping notes:
2936 *
2937 * TLB1[0]	Kernel text and data.
2938 * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2939 *		windows, other devices mappings.
2940 */
2941
2942/*
2943 * Write given entry to TLB1 hardware.
2944 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2945 */
2946static void
2947tlb1_write_entry(unsigned int idx)
2948{
2949	uint32_t mas0, mas7;
2950
2951	//debugf("tlb1_write_entry: s\n");
2952
2953	/* Clear high order RPN bits */
2954	mas7 = 0;
2955
2956	/* Select entry */
2957	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2958	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2959
2960	mtspr(SPR_MAS0, mas0);
2961	__asm __volatile("isync");
2962	mtspr(SPR_MAS1, tlb1[idx].mas1);
2963	__asm __volatile("isync");
2964	mtspr(SPR_MAS2, tlb1[idx].mas2);
2965	__asm __volatile("isync");
2966	mtspr(SPR_MAS3, tlb1[idx].mas3);
2967	__asm __volatile("isync");
2968	mtspr(SPR_MAS7, mas7);
2969	__asm __volatile("isync; tlbwe; isync; msync");
2970
2971	//debugf("tlb1_write_entry: e\n");
2972}
2973
2974/*
2975 * Return the largest uint value log such that 2^log <= num.
2976 */
2977static unsigned int
2978ilog2(unsigned int num)
2979{
2980	int lz;
2981
2982	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2983	return (31 - lz);
2984}
2985
2986/*
2987 * Convert TLB TSIZE value to mapped region size.
2988 */
2989static vm_size_t
2990tsize2size(unsigned int tsize)
2991{
2992
2993	/*
2994	 * size = 4^tsize KB
2995	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2996	 */
2997
2998	return ((1 << (2 * tsize)) * 1024);
2999}
3000
3001/*
3002 * Convert region size (must be power of 4) to TLB TSIZE value.
3003 */
3004static unsigned int
3005size2tsize(vm_size_t size)
3006{
3007
3008	return (ilog2(size) / 2 - 5);
3009}
3010
3011/*
3012 * Register permanent kernel mapping in TLB1.
3013 *
3014 * Entries are created starting from index 0 (current free entry is
3015 * kept in tlb1_idx) and are not supposed to be invalidated.
3016 */
3017static int
3018tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
3019    uint32_t flags)
3020{
3021	uint32_t ts, tid;
3022	int tsize, index;
3023
3024	index = atomic_fetchadd_int(&tlb1_idx, 1);
3025	if (index >= TLB1_ENTRIES) {
3026		printf("tlb1_set_entry: TLB1 full!\n");
3027		return (-1);
3028	}
3029
3030	/* Convert size to TSIZE */
3031	tsize = size2tsize(size);
3032
3033	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3034	/* XXX TS is hard coded to 0 for now as we only use single address space */
3035	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3036
3037	/*
3038	 * Atomicity is preserved by the atomic increment above since nothing
3039	 * is ever removed from tlb1.
3040	 */
3041
3042	tlb1[index].phys = pa;
3043	tlb1[index].virt = va;
3044	tlb1[index].size = size;
3045	tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3046	tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3047	tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags;
3048
3049	/* Set supervisor RWX permission bits */
3050	tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3051
3052	tlb1_write_entry(index);
3053
3054	/*
3055	 * XXX in general TLB1 updates should be propagated between CPUs,
3056	 * since current design assumes to have the same TLB1 set-up on all
3057	 * cores.
3058	 */
3059	return (0);
3060}
3061
3062/*
3063 * Map in contiguous RAM region into the TLB1 using maximum of
3064 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3065 *
3066 * If necessary round up last entry size and return total size
3067 * used by all allocated entries.
3068 */
3069vm_size_t
3070tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3071{
3072	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3073	vm_size_t mapped, pgsz, base, mask;
3074	int idx, nents;
3075
3076	/* Round up to the next 1M */
3077	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3078
3079	mapped = 0;
3080	idx = 0;
3081	base = va;
3082	pgsz = 64*1024*1024;
3083	while (mapped < size) {
3084		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3085			while (pgsz > (size - mapped))
3086				pgsz >>= 2;
3087			pgs[idx++] = pgsz;
3088			mapped += pgsz;
3089		}
3090
3091		/* We under-map. Correct for this. */
3092		if (mapped < size) {
3093			while (pgs[idx - 1] == pgsz) {
3094				idx--;
3095				mapped -= pgsz;
3096			}
3097			/* XXX We may increase beyond out starting point. */
3098			pgsz <<= 2;
3099			pgs[idx++] = pgsz;
3100			mapped += pgsz;
3101		}
3102	}
3103
3104	nents = idx;
3105	mask = pgs[0] - 1;
3106	/* Align address to the boundary */
3107	if (va & mask) {
3108		va = (va + mask) & ~mask;
3109		pa = (pa + mask) & ~mask;
3110	}
3111
3112	for (idx = 0; idx < nents; idx++) {
3113		pgsz = pgs[idx];
3114		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3115		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3116		pa += pgsz;
3117		va += pgsz;
3118	}
3119
3120	mapped = (va - base);
3121	printf("mapped size 0x%08x (wasted space 0x%08x)\n",
3122	    mapped, mapped - size);
3123	return (mapped);
3124}
3125
3126/*
3127 * TLB1 initialization routine, to be called after the very first
3128 * assembler level setup done in locore.S.
3129 */
3130void
3131tlb1_init()
3132{
3133	uint32_t mas0, mas1, mas2, mas3;
3134	uint32_t tsz;
3135	u_int i;
3136
3137	if (bootinfo != NULL && bootinfo[0] != 1) {
3138		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3139	} else
3140		tlb1_idx = 1;
3141
3142	/* The first entry/entries are used to map the kernel. */
3143	for (i = 0; i < tlb1_idx; i++) {
3144		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3145		mtspr(SPR_MAS0, mas0);
3146		__asm __volatile("isync; tlbre");
3147
3148		mas1 = mfspr(SPR_MAS1);
3149		if ((mas1 & MAS1_VALID) == 0)
3150			continue;
3151
3152		mas2 = mfspr(SPR_MAS2);
3153		mas3 = mfspr(SPR_MAS3);
3154
3155		tlb1[i].mas1 = mas1;
3156		tlb1[i].mas2 = mfspr(SPR_MAS2);
3157		tlb1[i].mas3 = mas3;
3158		tlb1[i].virt = mas2 & MAS2_EPN_MASK;
3159		tlb1[i].phys = mas3 & MAS3_RPN;
3160
3161		if (i == 0)
3162			kernload = mas3 & MAS3_RPN;
3163
3164		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3165		tlb1[i].size = (tsz > 0) ? tsize2size(tsz) : 0;
3166		kernsize += tlb1[i].size;
3167	}
3168
3169#ifdef SMP
3170	bp_ntlb1s = tlb1_idx;
3171#endif
3172
3173	/* Purge the remaining entries */
3174	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3175		tlb1_write_entry(i);
3176
3177	/* Setup TLB miss defaults */
3178	set_mas4_defaults();
3179}
3180
3181vm_offset_t
3182pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3183{
3184	vm_paddr_t pa_base;
3185	vm_offset_t va, sz;
3186	int i;
3187
3188	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3189
3190	for (i = 0; i < tlb1_idx; i++) {
3191		if (!(tlb1[i].mas1 & MAS1_VALID))
3192			continue;
3193		if (pa >= tlb1[i].phys && (pa + size) <=
3194		    (tlb1[i].phys + tlb1[i].size))
3195			return (tlb1[i].virt + (pa - tlb1[i].phys));
3196	}
3197
3198	pa_base = trunc_page(pa);
3199	size = roundup(size + (pa - pa_base), PAGE_SIZE);
3200	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
3201	va = tlb1_map_base + (pa - pa_base);
3202
3203	do {
3204		sz = 1 << (ilog2(size) & ~1);
3205		tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_IO);
3206		size -= sz;
3207		pa_base += sz;
3208		tlb1_map_base += sz;
3209	} while (size > 0);
3210
3211#ifdef SMP
3212	bp_ntlb1s = tlb1_idx;
3213#endif
3214
3215	return (va);
3216}
3217
3218/*
3219 * Setup MAS4 defaults.
3220 * These values are loaded to MAS0-2 on a TLB miss.
3221 */
3222static void
3223set_mas4_defaults(void)
3224{
3225	uint32_t mas4;
3226
3227	/* Defaults: TLB0, PID0, TSIZED=4K */
3228	mas4 = MAS4_TLBSELD0;
3229	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3230#ifdef SMP
3231	mas4 |= MAS4_MD;
3232#endif
3233	mtspr(SPR_MAS4, mas4);
3234	__asm __volatile("isync");
3235}
3236
3237/*
3238 * Print out contents of the MAS registers for each TLB1 entry
3239 */
3240void
3241tlb1_print_tlbentries(void)
3242{
3243	uint32_t mas0, mas1, mas2, mas3, mas7;
3244	int i;
3245
3246	debugf("TLB1 entries:\n");
3247	for (i = 0; i < TLB1_ENTRIES; i++) {
3248
3249		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3250		mtspr(SPR_MAS0, mas0);
3251
3252		__asm __volatile("isync; tlbre");
3253
3254		mas1 = mfspr(SPR_MAS1);
3255		mas2 = mfspr(SPR_MAS2);
3256		mas3 = mfspr(SPR_MAS3);
3257		mas7 = mfspr(SPR_MAS7);
3258
3259		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3260	}
3261}
3262
3263/*
3264 * Print out contents of the in-ram tlb1 table.
3265 */
3266void
3267tlb1_print_entries(void)
3268{
3269	int i;
3270
3271	debugf("tlb1[] table entries:\n");
3272	for (i = 0; i < TLB1_ENTRIES; i++)
3273		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3274}
3275
3276/*
3277 * Return 0 if the physical IO range is encompassed by one of the
3278 * the TLB1 entries, otherwise return related error code.
3279 */
3280static int
3281tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3282{
3283	uint32_t prot;
3284	vm_paddr_t pa_start;
3285	vm_paddr_t pa_end;
3286	unsigned int entry_tsize;
3287	vm_size_t entry_size;
3288
3289	*va = (vm_offset_t)NULL;
3290
3291	/* Skip invalid entries */
3292	if (!(tlb1[i].mas1 & MAS1_VALID))
3293		return (EINVAL);
3294
3295	/*
3296	 * The entry must be cache-inhibited, guarded, and r/w
3297	 * so it can function as an i/o page
3298	 */
3299	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3300	if (prot != (MAS2_I | MAS2_G))
3301		return (EPERM);
3302
3303	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3304	if (prot != (MAS3_SR | MAS3_SW))
3305		return (EPERM);
3306
3307	/* The address should be within the entry range. */
3308	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3309	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3310
3311	entry_size = tsize2size(entry_tsize);
3312	pa_start = tlb1[i].mas3 & MAS3_RPN;
3313	pa_end = pa_start + entry_size - 1;
3314
3315	if ((pa < pa_start) || ((pa + size) > pa_end))
3316		return (ERANGE);
3317
3318	/* Return virtual address of this mapping. */
3319	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3320	return (0);
3321}
3322