pmap.c revision 266001
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: stable/10/sys/powerpc/booke/pmap.c 266001 2014-05-14 03:09:37Z ian $");
53
54#include <sys/param.h>
55#include <sys/malloc.h>
56#include <sys/ktr.h>
57#include <sys/proc.h>
58#include <sys/user.h>
59#include <sys/queue.h>
60#include <sys/systm.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/rwlock.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#ifdef  DEBUG
96#define debugf(fmt, args...) printf(fmt, ##args)
97#else
98#define debugf(fmt, args...)
99#endif
100
101#define TODO			panic("%s: not implemented", __func__);
102
103extern int dumpsys_minidump;
104
105extern unsigned char _etext[];
106extern unsigned char _end[];
107
108extern uint32_t *bootinfo;
109
110#ifdef SMP
111extern uint32_t bp_ntlb1s;
112#endif
113
114vm_paddr_t kernload;
115vm_offset_t kernstart;
116vm_size_t kernsize;
117
118/* Message buffer and tables. */
119static vm_offset_t data_start;
120static vm_size_t data_end;
121
122/* Phys/avail memory regions. */
123static struct mem_region *availmem_regions;
124static int availmem_regions_sz;
125static struct mem_region *physmem_regions;
126static int physmem_regions_sz;
127
128/* Reserved KVA space and mutex for mmu_booke_zero_page. */
129static vm_offset_t zero_page_va;
130static struct mtx zero_page_mutex;
131
132static struct mtx tlbivax_mutex;
133
134/*
135 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
136 * by idle thred only, no lock required.
137 */
138static vm_offset_t zero_page_idle_va;
139
140/* Reserved KVA space and mutex for mmu_booke_copy_page. */
141static vm_offset_t copy_page_src_va;
142static vm_offset_t copy_page_dst_va;
143static struct mtx copy_page_mutex;
144
145/**************************************************************************/
146/* PMAP */
147/**************************************************************************/
148
149static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
150    vm_prot_t, boolean_t);
151
152unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
153unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
154
155/*
156 * If user pmap is processed with mmu_booke_remove and the resident count
157 * drops to 0, there are no more pages to remove, so we need not continue.
158 */
159#define PMAP_REMOVE_DONE(pmap) \
160	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
161
162extern void tid_flush(tlbtid_t);
163
164/**************************************************************************/
165/* TLB and TID handling */
166/**************************************************************************/
167
168/* Translation ID busy table */
169static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
170
171/*
172 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
173 * core revisions and should be read from h/w registers during early config.
174 */
175uint32_t tlb0_entries;
176uint32_t tlb0_ways;
177uint32_t tlb0_entries_per_way;
178
179#define TLB0_ENTRIES		(tlb0_entries)
180#define TLB0_WAYS		(tlb0_ways)
181#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
182
183#define TLB1_ENTRIES 16
184
185/* In-ram copy of the TLB1 */
186static tlb_entry_t tlb1[TLB1_ENTRIES];
187
188/* Next free entry in the TLB1 */
189static unsigned int tlb1_idx;
190static vm_offset_t tlb1_map_base = VM_MAX_KERNEL_ADDRESS;
191
192static tlbtid_t tid_alloc(struct pmap *);
193
194static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
195
196static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
197static void tlb1_write_entry(unsigned int);
198static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
199static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
200
201static vm_size_t tsize2size(unsigned int);
202static unsigned int size2tsize(vm_size_t);
203static unsigned int ilog2(unsigned int);
204
205static void set_mas4_defaults(void);
206
207static inline void tlb0_flush_entry(vm_offset_t);
208static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
209
210/**************************************************************************/
211/* Page table management */
212/**************************************************************************/
213
214static struct rwlock_padalign pvh_global_lock;
215
216/* Data for the pv entry allocation mechanism */
217static uma_zone_t pvzone;
218static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
219
220#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
221
222#ifndef PMAP_SHPGPERPROC
223#define PMAP_SHPGPERPROC	200
224#endif
225
226static void ptbl_init(void);
227static struct ptbl_buf *ptbl_buf_alloc(void);
228static void ptbl_buf_free(struct ptbl_buf *);
229static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
230
231static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
232static void ptbl_free(mmu_t, pmap_t, unsigned int);
233static void ptbl_hold(mmu_t, pmap_t, unsigned int);
234static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
235
236static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
237static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
238static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
239static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
240
241static pv_entry_t pv_alloc(void);
242static void pv_free(pv_entry_t);
243static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
244static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
245
246/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
247#define PTBL_BUFS		(128 * 16)
248
249struct ptbl_buf {
250	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
251	vm_offset_t kva;		/* va of mapping */
252};
253
254/* ptbl free list and a lock used for access synchronization. */
255static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
256static struct mtx ptbl_buf_freelist_lock;
257
258/* Base address of kva space allocated fot ptbl bufs. */
259static vm_offset_t ptbl_buf_pool_vabase;
260
261/* Pointer to ptbl_buf structures. */
262static struct ptbl_buf *ptbl_bufs;
263
264void pmap_bootstrap_ap(volatile uint32_t *);
265
266/*
267 * Kernel MMU interface
268 */
269static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
270static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
271static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
272    vm_size_t, vm_offset_t);
273static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
274static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
275    vm_offset_t, vm_page_t *, vm_offset_t, int);
276static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
277    vm_prot_t, boolean_t);
278static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
279    vm_page_t, vm_prot_t);
280static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
281    vm_prot_t);
282static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
283static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
284    vm_prot_t);
285static void		mmu_booke_init(mmu_t);
286static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
287static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
288static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
289static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
290static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
291    int);
292static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
293    vm_paddr_t *);
294static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
295    vm_object_t, vm_pindex_t, vm_size_t);
296static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
297static void		mmu_booke_page_init(mmu_t, vm_page_t);
298static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
299static void		mmu_booke_pinit(mmu_t, pmap_t);
300static void		mmu_booke_pinit0(mmu_t, pmap_t);
301static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
302    vm_prot_t);
303static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
304static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
305static void		mmu_booke_release(mmu_t, pmap_t);
306static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
307static void		mmu_booke_remove_all(mmu_t, vm_page_t);
308static void		mmu_booke_remove_write(mmu_t, vm_page_t);
309static void		mmu_booke_zero_page(mmu_t, vm_page_t);
310static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
311static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
312static void		mmu_booke_activate(mmu_t, struct thread *);
313static void		mmu_booke_deactivate(mmu_t, struct thread *);
314static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
315static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
316static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
317static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
319static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
320static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
321static void		mmu_booke_kremove(mmu_t, vm_offset_t);
322static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
323static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
324    vm_size_t);
325static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
326    vm_size_t, vm_size_t *);
327static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
328    vm_size_t, vm_offset_t);
329static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
330
331static mmu_method_t mmu_booke_methods[] = {
332	/* pmap dispatcher interface */
333	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
334	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
335	MMUMETHOD(mmu_copy,		mmu_booke_copy),
336	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
337	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
338	MMUMETHOD(mmu_enter,		mmu_booke_enter),
339	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
340	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
341	MMUMETHOD(mmu_extract,		mmu_booke_extract),
342	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
343	MMUMETHOD(mmu_init,		mmu_booke_init),
344	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
345	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
346	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
347	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
348	MMUMETHOD(mmu_map,		mmu_booke_map),
349	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
350	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
351	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
352	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
353	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
354	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
355	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
356	MMUMETHOD(mmu_protect,		mmu_booke_protect),
357	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
358	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
359	MMUMETHOD(mmu_release,		mmu_booke_release),
360	MMUMETHOD(mmu_remove,		mmu_booke_remove),
361	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
362	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
363	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
364	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
365	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
366	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
367	MMUMETHOD(mmu_activate,		mmu_booke_activate),
368	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
369
370	/* Internal interfaces */
371	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
372	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
373	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
374	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
375	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
376	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
377	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
378/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
379	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
380
381	/* dumpsys() support */
382	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
383	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
384	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
385
386	{ 0, 0 }
387};
388
389MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
390
391static __inline uint32_t
392tlb_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
393{
394	uint32_t attrib;
395	int i;
396
397	if (ma != VM_MEMATTR_DEFAULT) {
398		switch (ma) {
399		case VM_MEMATTR_UNCACHEABLE:
400			return (PTE_I | PTE_G);
401		case VM_MEMATTR_WRITE_COMBINING:
402		case VM_MEMATTR_WRITE_BACK:
403		case VM_MEMATTR_PREFETCHABLE:
404			return (PTE_I);
405		case VM_MEMATTR_WRITE_THROUGH:
406			return (PTE_W | PTE_M);
407		}
408	}
409
410	/*
411	 * Assume the page is cache inhibited and access is guarded unless
412	 * it's in our available memory array.
413	 */
414	attrib = _TLB_ENTRY_IO;
415	for (i = 0; i < physmem_regions_sz; i++) {
416		if ((pa >= physmem_regions[i].mr_start) &&
417		    (pa < (physmem_regions[i].mr_start +
418		     physmem_regions[i].mr_size))) {
419			attrib = _TLB_ENTRY_MEM;
420			break;
421		}
422	}
423
424	return (attrib);
425}
426
427static inline void
428tlb_miss_lock(void)
429{
430#ifdef SMP
431	struct pcpu *pc;
432
433	if (!smp_started)
434		return;
435
436	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
437		if (pc != pcpup) {
438
439			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
440			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
441
442			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
443			    ("tlb_miss_lock: tried to lock self"));
444
445			tlb_lock(pc->pc_booke_tlb_lock);
446
447			CTR1(KTR_PMAP, "%s: locked", __func__);
448		}
449	}
450#endif
451}
452
453static inline void
454tlb_miss_unlock(void)
455{
456#ifdef SMP
457	struct pcpu *pc;
458
459	if (!smp_started)
460		return;
461
462	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
463		if (pc != pcpup) {
464			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
465			    __func__, pc->pc_cpuid);
466
467			tlb_unlock(pc->pc_booke_tlb_lock);
468
469			CTR1(KTR_PMAP, "%s: unlocked", __func__);
470		}
471	}
472#endif
473}
474
475/* Return number of entries in TLB0. */
476static __inline void
477tlb0_get_tlbconf(void)
478{
479	uint32_t tlb0_cfg;
480
481	tlb0_cfg = mfspr(SPR_TLB0CFG);
482	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
483	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
484	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
485}
486
487/* Initialize pool of kva ptbl buffers. */
488static void
489ptbl_init(void)
490{
491	int i;
492
493	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
494	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
495	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
496	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
497
498	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
499	TAILQ_INIT(&ptbl_buf_freelist);
500
501	for (i = 0; i < PTBL_BUFS; i++) {
502		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
503		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
504	}
505}
506
507/* Get a ptbl_buf from the freelist. */
508static struct ptbl_buf *
509ptbl_buf_alloc(void)
510{
511	struct ptbl_buf *buf;
512
513	mtx_lock(&ptbl_buf_freelist_lock);
514	buf = TAILQ_FIRST(&ptbl_buf_freelist);
515	if (buf != NULL)
516		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
517	mtx_unlock(&ptbl_buf_freelist_lock);
518
519	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
520
521	return (buf);
522}
523
524/* Return ptbl buff to free pool. */
525static void
526ptbl_buf_free(struct ptbl_buf *buf)
527{
528
529	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
530
531	mtx_lock(&ptbl_buf_freelist_lock);
532	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
533	mtx_unlock(&ptbl_buf_freelist_lock);
534}
535
536/*
537 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
538 */
539static void
540ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
541{
542	struct ptbl_buf *pbuf;
543
544	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
545
546	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
547
548	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
549		if (pbuf->kva == (vm_offset_t)ptbl) {
550			/* Remove from pmap ptbl buf list. */
551			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
552
553			/* Free corresponding ptbl buf. */
554			ptbl_buf_free(pbuf);
555			break;
556		}
557}
558
559/* Allocate page table. */
560static pte_t *
561ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
562{
563	vm_page_t mtbl[PTBL_PAGES];
564	vm_page_t m;
565	struct ptbl_buf *pbuf;
566	unsigned int pidx;
567	pte_t *ptbl;
568	int i;
569
570	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
571	    (pmap == kernel_pmap), pdir_idx);
572
573	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
574	    ("ptbl_alloc: invalid pdir_idx"));
575	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
576	    ("pte_alloc: valid ptbl entry exists!"));
577
578	pbuf = ptbl_buf_alloc();
579	if (pbuf == NULL)
580		panic("pte_alloc: couldn't alloc kernel virtual memory");
581
582	ptbl = (pte_t *)pbuf->kva;
583
584	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
585
586	/* Allocate ptbl pages, this will sleep! */
587	for (i = 0; i < PTBL_PAGES; i++) {
588		pidx = (PTBL_PAGES * pdir_idx) + i;
589		while ((m = vm_page_alloc(NULL, pidx,
590		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
591
592			PMAP_UNLOCK(pmap);
593			rw_wunlock(&pvh_global_lock);
594			VM_WAIT;
595			rw_wlock(&pvh_global_lock);
596			PMAP_LOCK(pmap);
597		}
598		mtbl[i] = m;
599	}
600
601	/* Map allocated pages into kernel_pmap. */
602	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
603
604	/* Zero whole ptbl. */
605	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
606
607	/* Add pbuf to the pmap ptbl bufs list. */
608	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
609
610	return (ptbl);
611}
612
613/* Free ptbl pages and invalidate pdir entry. */
614static void
615ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
616{
617	pte_t *ptbl;
618	vm_paddr_t pa;
619	vm_offset_t va;
620	vm_page_t m;
621	int i;
622
623	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
624	    (pmap == kernel_pmap), pdir_idx);
625
626	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
627	    ("ptbl_free: invalid pdir_idx"));
628
629	ptbl = pmap->pm_pdir[pdir_idx];
630
631	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
632
633	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
634
635	/*
636	 * Invalidate the pdir entry as soon as possible, so that other CPUs
637	 * don't attempt to look up the page tables we are releasing.
638	 */
639	mtx_lock_spin(&tlbivax_mutex);
640	tlb_miss_lock();
641
642	pmap->pm_pdir[pdir_idx] = NULL;
643
644	tlb_miss_unlock();
645	mtx_unlock_spin(&tlbivax_mutex);
646
647	for (i = 0; i < PTBL_PAGES; i++) {
648		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
649		pa = pte_vatopa(mmu, kernel_pmap, va);
650		m = PHYS_TO_VM_PAGE(pa);
651		vm_page_free_zero(m);
652		atomic_subtract_int(&cnt.v_wire_count, 1);
653		mmu_booke_kremove(mmu, va);
654	}
655
656	ptbl_free_pmap_ptbl(pmap, ptbl);
657}
658
659/*
660 * Decrement ptbl pages hold count and attempt to free ptbl pages.
661 * Called when removing pte entry from ptbl.
662 *
663 * Return 1 if ptbl pages were freed.
664 */
665static int
666ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
667{
668	pte_t *ptbl;
669	vm_paddr_t pa;
670	vm_page_t m;
671	int i;
672
673	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
674	    (pmap == kernel_pmap), pdir_idx);
675
676	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
677	    ("ptbl_unhold: invalid pdir_idx"));
678	KASSERT((pmap != kernel_pmap),
679	    ("ptbl_unhold: unholding kernel ptbl!"));
680
681	ptbl = pmap->pm_pdir[pdir_idx];
682
683	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
684	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
685	    ("ptbl_unhold: non kva ptbl"));
686
687	/* decrement hold count */
688	for (i = 0; i < PTBL_PAGES; i++) {
689		pa = pte_vatopa(mmu, kernel_pmap,
690		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
691		m = PHYS_TO_VM_PAGE(pa);
692		m->wire_count--;
693	}
694
695	/*
696	 * Free ptbl pages if there are no pte etries in this ptbl.
697	 * wire_count has the same value for all ptbl pages, so check the last
698	 * page.
699	 */
700	if (m->wire_count == 0) {
701		ptbl_free(mmu, pmap, pdir_idx);
702
703		//debugf("ptbl_unhold: e (freed ptbl)\n");
704		return (1);
705	}
706
707	return (0);
708}
709
710/*
711 * Increment hold count for ptbl pages. This routine is used when a new pte
712 * entry is being inserted into the ptbl.
713 */
714static void
715ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
716{
717	vm_paddr_t pa;
718	pte_t *ptbl;
719	vm_page_t m;
720	int i;
721
722	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
723	    pdir_idx);
724
725	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
726	    ("ptbl_hold: invalid pdir_idx"));
727	KASSERT((pmap != kernel_pmap),
728	    ("ptbl_hold: holding kernel ptbl!"));
729
730	ptbl = pmap->pm_pdir[pdir_idx];
731
732	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
733
734	for (i = 0; i < PTBL_PAGES; i++) {
735		pa = pte_vatopa(mmu, kernel_pmap,
736		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
737		m = PHYS_TO_VM_PAGE(pa);
738		m->wire_count++;
739	}
740}
741
742/* Allocate pv_entry structure. */
743pv_entry_t
744pv_alloc(void)
745{
746	pv_entry_t pv;
747
748	pv_entry_count++;
749	if (pv_entry_count > pv_entry_high_water)
750		pagedaemon_wakeup();
751	pv = uma_zalloc(pvzone, M_NOWAIT);
752
753	return (pv);
754}
755
756/* Free pv_entry structure. */
757static __inline void
758pv_free(pv_entry_t pve)
759{
760
761	pv_entry_count--;
762	uma_zfree(pvzone, pve);
763}
764
765
766/* Allocate and initialize pv_entry structure. */
767static void
768pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
769{
770	pv_entry_t pve;
771
772	//int su = (pmap == kernel_pmap);
773	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
774	//	(u_int32_t)pmap, va, (u_int32_t)m);
775
776	pve = pv_alloc();
777	if (pve == NULL)
778		panic("pv_insert: no pv entries!");
779
780	pve->pv_pmap = pmap;
781	pve->pv_va = va;
782
783	/* add to pv_list */
784	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
785	rw_assert(&pvh_global_lock, RA_WLOCKED);
786
787	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
788
789	//debugf("pv_insert: e\n");
790}
791
792/* Destroy pv entry. */
793static void
794pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
795{
796	pv_entry_t pve;
797
798	//int su = (pmap == kernel_pmap);
799	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
800
801	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
802	rw_assert(&pvh_global_lock, RA_WLOCKED);
803
804	/* find pv entry */
805	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
806		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
807			/* remove from pv_list */
808			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
809			if (TAILQ_EMPTY(&m->md.pv_list))
810				vm_page_aflag_clear(m, PGA_WRITEABLE);
811
812			/* free pv entry struct */
813			pv_free(pve);
814			break;
815		}
816	}
817
818	//debugf("pv_remove: e\n");
819}
820
821/*
822 * Clean pte entry, try to free page table page if requested.
823 *
824 * Return 1 if ptbl pages were freed, otherwise return 0.
825 */
826static int
827pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
828{
829	unsigned int pdir_idx = PDIR_IDX(va);
830	unsigned int ptbl_idx = PTBL_IDX(va);
831	vm_page_t m;
832	pte_t *ptbl;
833	pte_t *pte;
834
835	//int su = (pmap == kernel_pmap);
836	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
837	//		su, (u_int32_t)pmap, va, flags);
838
839	ptbl = pmap->pm_pdir[pdir_idx];
840	KASSERT(ptbl, ("pte_remove: null ptbl"));
841
842	pte = &ptbl[ptbl_idx];
843
844	if (pte == NULL || !PTE_ISVALID(pte))
845		return (0);
846
847	if (PTE_ISWIRED(pte))
848		pmap->pm_stats.wired_count--;
849
850	/* Handle managed entry. */
851	if (PTE_ISMANAGED(pte)) {
852		/* Get vm_page_t for mapped pte. */
853		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
854
855		if (PTE_ISMODIFIED(pte))
856			vm_page_dirty(m);
857
858		if (PTE_ISREFERENCED(pte))
859			vm_page_aflag_set(m, PGA_REFERENCED);
860
861		pv_remove(pmap, va, m);
862	}
863
864	mtx_lock_spin(&tlbivax_mutex);
865	tlb_miss_lock();
866
867	tlb0_flush_entry(va);
868	pte->flags = 0;
869	pte->rpn = 0;
870
871	tlb_miss_unlock();
872	mtx_unlock_spin(&tlbivax_mutex);
873
874	pmap->pm_stats.resident_count--;
875
876	if (flags & PTBL_UNHOLD) {
877		//debugf("pte_remove: e (unhold)\n");
878		return (ptbl_unhold(mmu, pmap, pdir_idx));
879	}
880
881	//debugf("pte_remove: e\n");
882	return (0);
883}
884
885/*
886 * Insert PTE for a given page and virtual address.
887 */
888static void
889pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
890{
891	unsigned int pdir_idx = PDIR_IDX(va);
892	unsigned int ptbl_idx = PTBL_IDX(va);
893	pte_t *ptbl, *pte;
894
895	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
896	    pmap == kernel_pmap, pmap, va);
897
898	/* Get the page table pointer. */
899	ptbl = pmap->pm_pdir[pdir_idx];
900
901	if (ptbl == NULL) {
902		/* Allocate page table pages. */
903		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
904	} else {
905		/*
906		 * Check if there is valid mapping for requested
907		 * va, if there is, remove it.
908		 */
909		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
910		if (PTE_ISVALID(pte)) {
911			pte_remove(mmu, pmap, va, PTBL_HOLD);
912		} else {
913			/*
914			 * pte is not used, increment hold count
915			 * for ptbl pages.
916			 */
917			if (pmap != kernel_pmap)
918				ptbl_hold(mmu, pmap, pdir_idx);
919		}
920	}
921
922	/*
923	 * Insert pv_entry into pv_list for mapped page if part of managed
924	 * memory.
925	 */
926	if ((m->oflags & VPO_UNMANAGED) == 0) {
927		flags |= PTE_MANAGED;
928
929		/* Create and insert pv entry. */
930		pv_insert(pmap, va, m);
931	}
932
933	pmap->pm_stats.resident_count++;
934
935	mtx_lock_spin(&tlbivax_mutex);
936	tlb_miss_lock();
937
938	tlb0_flush_entry(va);
939	if (pmap->pm_pdir[pdir_idx] == NULL) {
940		/*
941		 * If we just allocated a new page table, hook it in
942		 * the pdir.
943		 */
944		pmap->pm_pdir[pdir_idx] = ptbl;
945	}
946	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
947	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
948	pte->flags |= (PTE_VALID | flags);
949
950	tlb_miss_unlock();
951	mtx_unlock_spin(&tlbivax_mutex);
952}
953
954/* Return the pa for the given pmap/va. */
955static vm_paddr_t
956pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
957{
958	vm_paddr_t pa = 0;
959	pte_t *pte;
960
961	pte = pte_find(mmu, pmap, va);
962	if ((pte != NULL) && PTE_ISVALID(pte))
963		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
964	return (pa);
965}
966
967/* Get a pointer to a PTE in a page table. */
968static pte_t *
969pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
970{
971	unsigned int pdir_idx = PDIR_IDX(va);
972	unsigned int ptbl_idx = PTBL_IDX(va);
973
974	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
975
976	if (pmap->pm_pdir[pdir_idx])
977		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
978
979	return (NULL);
980}
981
982/**************************************************************************/
983/* PMAP related */
984/**************************************************************************/
985
986/*
987 * This is called during booke_init, before the system is really initialized.
988 */
989static void
990mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
991{
992	vm_offset_t phys_kernelend;
993	struct mem_region *mp, *mp1;
994	int cnt, i, j;
995	u_int s, e, sz;
996	u_int phys_avail_count;
997	vm_size_t physsz, hwphyssz, kstack0_sz;
998	vm_offset_t kernel_pdir, kstack0, va;
999	vm_paddr_t kstack0_phys;
1000	void *dpcpu;
1001	pte_t *pte;
1002
1003	debugf("mmu_booke_bootstrap: entered\n");
1004
1005	/* Initialize invalidation mutex */
1006	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1007
1008	/* Read TLB0 size and associativity. */
1009	tlb0_get_tlbconf();
1010
1011	/*
1012	 * Align kernel start and end address (kernel image).
1013	 * Note that kernel end does not necessarily relate to kernsize.
1014	 * kernsize is the size of the kernel that is actually mapped.
1015	 * Also note that "start - 1" is deliberate. With SMP, the
1016	 * entry point is exactly a page from the actual load address.
1017	 * As such, trunc_page() has no effect and we're off by a page.
1018	 * Since we always have the ELF header between the load address
1019	 * and the entry point, we can safely subtract 1 to compensate.
1020	 */
1021	kernstart = trunc_page(start - 1);
1022	data_start = round_page(kernelend);
1023	data_end = data_start;
1024
1025	/*
1026	 * Addresses of preloaded modules (like file systems) use
1027	 * physical addresses. Make sure we relocate those into
1028	 * virtual addresses.
1029	 */
1030	preload_addr_relocate = kernstart - kernload;
1031
1032	/* Allocate the dynamic per-cpu area. */
1033	dpcpu = (void *)data_end;
1034	data_end += DPCPU_SIZE;
1035
1036	/* Allocate space for the message buffer. */
1037	msgbufp = (struct msgbuf *)data_end;
1038	data_end += msgbufsize;
1039	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1040	    data_end);
1041
1042	data_end = round_page(data_end);
1043
1044	/* Allocate space for ptbl_bufs. */
1045	ptbl_bufs = (struct ptbl_buf *)data_end;
1046	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1047	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1048	    data_end);
1049
1050	data_end = round_page(data_end);
1051
1052	/* Allocate PTE tables for kernel KVA. */
1053	kernel_pdir = data_end;
1054	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1055	    PDIR_SIZE - 1) / PDIR_SIZE;
1056	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1057	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1058	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1059
1060	debugf(" data_end: 0x%08x\n", data_end);
1061	if (data_end - kernstart > kernsize) {
1062		kernsize += tlb1_mapin_region(kernstart + kernsize,
1063		    kernload + kernsize, (data_end - kernstart) - kernsize);
1064	}
1065	data_end = kernstart + kernsize;
1066	debugf(" updated data_end: 0x%08x\n", data_end);
1067
1068	/*
1069	 * Clear the structures - note we can only do it safely after the
1070	 * possible additional TLB1 translations are in place (above) so that
1071	 * all range up to the currently calculated 'data_end' is covered.
1072	 */
1073	dpcpu_init(dpcpu, 0);
1074	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1075	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1076
1077	/*******************************************************/
1078	/* Set the start and end of kva. */
1079	/*******************************************************/
1080	virtual_avail = round_page(data_end);
1081	virtual_end = VM_MAX_KERNEL_ADDRESS;
1082
1083	/* Allocate KVA space for page zero/copy operations. */
1084	zero_page_va = virtual_avail;
1085	virtual_avail += PAGE_SIZE;
1086	zero_page_idle_va = virtual_avail;
1087	virtual_avail += PAGE_SIZE;
1088	copy_page_src_va = virtual_avail;
1089	virtual_avail += PAGE_SIZE;
1090	copy_page_dst_va = virtual_avail;
1091	virtual_avail += PAGE_SIZE;
1092	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1093	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1094	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1095	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1096
1097	/* Initialize page zero/copy mutexes. */
1098	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1099	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1100
1101	/* Allocate KVA space for ptbl bufs. */
1102	ptbl_buf_pool_vabase = virtual_avail;
1103	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1104	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1105	    ptbl_buf_pool_vabase, virtual_avail);
1106
1107	/* Calculate corresponding physical addresses for the kernel region. */
1108	phys_kernelend = kernload + kernsize;
1109	debugf("kernel image and allocated data:\n");
1110	debugf(" kernload    = 0x%08x\n", kernload);
1111	debugf(" kernstart   = 0x%08x\n", kernstart);
1112	debugf(" kernsize    = 0x%08x\n", kernsize);
1113
1114	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1115		panic("mmu_booke_bootstrap: phys_avail too small");
1116
1117	/*
1118	 * Remove kernel physical address range from avail regions list. Page
1119	 * align all regions.  Non-page aligned memory isn't very interesting
1120	 * to us.  Also, sort the entries for ascending addresses.
1121	 */
1122
1123	/* Retrieve phys/avail mem regions */
1124	mem_regions(&physmem_regions, &physmem_regions_sz,
1125	    &availmem_regions, &availmem_regions_sz);
1126	sz = 0;
1127	cnt = availmem_regions_sz;
1128	debugf("processing avail regions:\n");
1129	for (mp = availmem_regions; mp->mr_size; mp++) {
1130		s = mp->mr_start;
1131		e = mp->mr_start + mp->mr_size;
1132		debugf(" %08x-%08x -> ", s, e);
1133		/* Check whether this region holds all of the kernel. */
1134		if (s < kernload && e > phys_kernelend) {
1135			availmem_regions[cnt].mr_start = phys_kernelend;
1136			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1137			e = kernload;
1138		}
1139		/* Look whether this regions starts within the kernel. */
1140		if (s >= kernload && s < phys_kernelend) {
1141			if (e <= phys_kernelend)
1142				goto empty;
1143			s = phys_kernelend;
1144		}
1145		/* Now look whether this region ends within the kernel. */
1146		if (e > kernload && e <= phys_kernelend) {
1147			if (s >= kernload)
1148				goto empty;
1149			e = kernload;
1150		}
1151		/* Now page align the start and size of the region. */
1152		s = round_page(s);
1153		e = trunc_page(e);
1154		if (e < s)
1155			e = s;
1156		sz = e - s;
1157		debugf("%08x-%08x = %x\n", s, e, sz);
1158
1159		/* Check whether some memory is left here. */
1160		if (sz == 0) {
1161		empty:
1162			memmove(mp, mp + 1,
1163			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1164			cnt--;
1165			mp--;
1166			continue;
1167		}
1168
1169		/* Do an insertion sort. */
1170		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1171			if (s < mp1->mr_start)
1172				break;
1173		if (mp1 < mp) {
1174			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1175			mp1->mr_start = s;
1176			mp1->mr_size = sz;
1177		} else {
1178			mp->mr_start = s;
1179			mp->mr_size = sz;
1180		}
1181	}
1182	availmem_regions_sz = cnt;
1183
1184	/*******************************************************/
1185	/* Steal physical memory for kernel stack from the end */
1186	/* of the first avail region                           */
1187	/*******************************************************/
1188	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1189	kstack0_phys = availmem_regions[0].mr_start +
1190	    availmem_regions[0].mr_size;
1191	kstack0_phys -= kstack0_sz;
1192	availmem_regions[0].mr_size -= kstack0_sz;
1193
1194	/*******************************************************/
1195	/* Fill in phys_avail table, based on availmem_regions */
1196	/*******************************************************/
1197	phys_avail_count = 0;
1198	physsz = 0;
1199	hwphyssz = 0;
1200	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1201
1202	debugf("fill in phys_avail:\n");
1203	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1204
1205		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1206		    availmem_regions[i].mr_start,
1207		    availmem_regions[i].mr_start +
1208		        availmem_regions[i].mr_size,
1209		    availmem_regions[i].mr_size);
1210
1211		if (hwphyssz != 0 &&
1212		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1213			debugf(" hw.physmem adjust\n");
1214			if (physsz < hwphyssz) {
1215				phys_avail[j] = availmem_regions[i].mr_start;
1216				phys_avail[j + 1] =
1217				    availmem_regions[i].mr_start +
1218				    hwphyssz - physsz;
1219				physsz = hwphyssz;
1220				phys_avail_count++;
1221			}
1222			break;
1223		}
1224
1225		phys_avail[j] = availmem_regions[i].mr_start;
1226		phys_avail[j + 1] = availmem_regions[i].mr_start +
1227		    availmem_regions[i].mr_size;
1228		phys_avail_count++;
1229		physsz += availmem_regions[i].mr_size;
1230	}
1231	physmem = btoc(physsz);
1232
1233	/* Calculate the last available physical address. */
1234	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1235		;
1236	Maxmem = powerpc_btop(phys_avail[i + 1]);
1237
1238	debugf("Maxmem = 0x%08lx\n", Maxmem);
1239	debugf("phys_avail_count = %d\n", phys_avail_count);
1240	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1241	    physmem);
1242
1243	/*******************************************************/
1244	/* Initialize (statically allocated) kernel pmap. */
1245	/*******************************************************/
1246	PMAP_LOCK_INIT(kernel_pmap);
1247	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1248
1249	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1250	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1251	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1252	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1253
1254	/* Initialize kernel pdir */
1255	for (i = 0; i < kernel_ptbls; i++)
1256		kernel_pmap->pm_pdir[kptbl_min + i] =
1257		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1258
1259	for (i = 0; i < MAXCPU; i++) {
1260		kernel_pmap->pm_tid[i] = TID_KERNEL;
1261
1262		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1263		tidbusy[i][0] = kernel_pmap;
1264	}
1265
1266	/*
1267	 * Fill in PTEs covering kernel code and data. They are not required
1268	 * for address translation, as this area is covered by static TLB1
1269	 * entries, but for pte_vatopa() to work correctly with kernel area
1270	 * addresses.
1271	 */
1272	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1273		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1274		pte->rpn = kernload + (va - kernstart);
1275		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1276		    PTE_VALID;
1277	}
1278	/* Mark kernel_pmap active on all CPUs */
1279	CPU_FILL(&kernel_pmap->pm_active);
1280
1281 	/*
1282	 * Initialize the global pv list lock.
1283	 */
1284	rw_init(&pvh_global_lock, "pmap pv global");
1285
1286	/*******************************************************/
1287	/* Final setup */
1288	/*******************************************************/
1289
1290	/* Enter kstack0 into kernel map, provide guard page */
1291	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1292	thread0.td_kstack = kstack0;
1293	thread0.td_kstack_pages = KSTACK_PAGES;
1294
1295	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1296	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1297	    kstack0_phys, kstack0_phys + kstack0_sz);
1298	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1299
1300	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1301	for (i = 0; i < KSTACK_PAGES; i++) {
1302		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1303		kstack0 += PAGE_SIZE;
1304		kstack0_phys += PAGE_SIZE;
1305	}
1306
1307	debugf("virtual_avail = %08x\n", virtual_avail);
1308	debugf("virtual_end   = %08x\n", virtual_end);
1309
1310	debugf("mmu_booke_bootstrap: exit\n");
1311}
1312
1313void
1314pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1315{
1316	int i;
1317
1318	/*
1319	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1320	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1321	 * these values directly to (re)program AP's TLB1 hardware.
1322	 */
1323	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1324		/* Skip invalid entries */
1325		if (!(tlb1[i].mas1 & MAS1_VALID))
1326			continue;
1327
1328		tlb1_write_entry(i);
1329	}
1330
1331	set_mas4_defaults();
1332}
1333
1334/*
1335 * Get the physical page address for the given pmap/virtual address.
1336 */
1337static vm_paddr_t
1338mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1339{
1340	vm_paddr_t pa;
1341
1342	PMAP_LOCK(pmap);
1343	pa = pte_vatopa(mmu, pmap, va);
1344	PMAP_UNLOCK(pmap);
1345
1346	return (pa);
1347}
1348
1349/*
1350 * Extract the physical page address associated with the given
1351 * kernel virtual address.
1352 */
1353static vm_paddr_t
1354mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1355{
1356	int i;
1357
1358	/* Check TLB1 mappings */
1359	for (i = 0; i < tlb1_idx; i++) {
1360		if (!(tlb1[i].mas1 & MAS1_VALID))
1361			continue;
1362		if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size)
1363			return (tlb1[i].phys + (va - tlb1[i].virt));
1364	}
1365
1366	return (pte_vatopa(mmu, kernel_pmap, va));
1367}
1368
1369/*
1370 * Initialize the pmap module.
1371 * Called by vm_init, to initialize any structures that the pmap
1372 * system needs to map virtual memory.
1373 */
1374static void
1375mmu_booke_init(mmu_t mmu)
1376{
1377	int shpgperproc = PMAP_SHPGPERPROC;
1378
1379	/*
1380	 * Initialize the address space (zone) for the pv entries.  Set a
1381	 * high water mark so that the system can recover from excessive
1382	 * numbers of pv entries.
1383	 */
1384	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1385	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1386
1387	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1388	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1389
1390	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1391	pv_entry_high_water = 9 * (pv_entry_max / 10);
1392
1393	uma_zone_reserve_kva(pvzone, pv_entry_max);
1394
1395	/* Pre-fill pvzone with initial number of pv entries. */
1396	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1397
1398	/* Initialize ptbl allocation. */
1399	ptbl_init();
1400}
1401
1402/*
1403 * Map a list of wired pages into kernel virtual address space.  This is
1404 * intended for temporary mappings which do not need page modification or
1405 * references recorded.  Existing mappings in the region are overwritten.
1406 */
1407static void
1408mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1409{
1410	vm_offset_t va;
1411
1412	va = sva;
1413	while (count-- > 0) {
1414		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1415		va += PAGE_SIZE;
1416		m++;
1417	}
1418}
1419
1420/*
1421 * Remove page mappings from kernel virtual address space.  Intended for
1422 * temporary mappings entered by mmu_booke_qenter.
1423 */
1424static void
1425mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1426{
1427	vm_offset_t va;
1428
1429	va = sva;
1430	while (count-- > 0) {
1431		mmu_booke_kremove(mmu, va);
1432		va += PAGE_SIZE;
1433	}
1434}
1435
1436/*
1437 * Map a wired page into kernel virtual address space.
1438 */
1439static void
1440mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1441{
1442
1443	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1444}
1445
1446static void
1447mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1448{
1449	unsigned int pdir_idx = PDIR_IDX(va);
1450	unsigned int ptbl_idx = PTBL_IDX(va);
1451	uint32_t flags;
1452	pte_t *pte;
1453
1454	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1455	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1456
1457	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1458	flags |= tlb_calc_wimg(pa, ma);
1459
1460	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1461
1462	mtx_lock_spin(&tlbivax_mutex);
1463	tlb_miss_lock();
1464
1465	if (PTE_ISVALID(pte)) {
1466
1467		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1468
1469		/* Flush entry from TLB0 */
1470		tlb0_flush_entry(va);
1471	}
1472
1473	pte->rpn = pa & ~PTE_PA_MASK;
1474	pte->flags = flags;
1475
1476	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1477	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1478	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1479
1480	/* Flush the real memory from the instruction cache. */
1481	if ((flags & (PTE_I | PTE_G)) == 0) {
1482		__syncicache((void *)va, PAGE_SIZE);
1483	}
1484
1485	tlb_miss_unlock();
1486	mtx_unlock_spin(&tlbivax_mutex);
1487}
1488
1489/*
1490 * Remove a page from kernel page table.
1491 */
1492static void
1493mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1494{
1495	unsigned int pdir_idx = PDIR_IDX(va);
1496	unsigned int ptbl_idx = PTBL_IDX(va);
1497	pte_t *pte;
1498
1499//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1500
1501	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1502	    (va <= VM_MAX_KERNEL_ADDRESS)),
1503	    ("mmu_booke_kremove: invalid va"));
1504
1505	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1506
1507	if (!PTE_ISVALID(pte)) {
1508
1509		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1510
1511		return;
1512	}
1513
1514	mtx_lock_spin(&tlbivax_mutex);
1515	tlb_miss_lock();
1516
1517	/* Invalidate entry in TLB0, update PTE. */
1518	tlb0_flush_entry(va);
1519	pte->flags = 0;
1520	pte->rpn = 0;
1521
1522	tlb_miss_unlock();
1523	mtx_unlock_spin(&tlbivax_mutex);
1524}
1525
1526/*
1527 * Initialize pmap associated with process 0.
1528 */
1529static void
1530mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1531{
1532
1533	PMAP_LOCK_INIT(pmap);
1534	mmu_booke_pinit(mmu, pmap);
1535	PCPU_SET(curpmap, pmap);
1536}
1537
1538/*
1539 * Initialize a preallocated and zeroed pmap structure,
1540 * such as one in a vmspace structure.
1541 */
1542static void
1543mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1544{
1545	int i;
1546
1547	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1548	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1549
1550	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1551
1552	for (i = 0; i < MAXCPU; i++)
1553		pmap->pm_tid[i] = TID_NONE;
1554	CPU_ZERO(&kernel_pmap->pm_active);
1555	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1556	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1557	TAILQ_INIT(&pmap->pm_ptbl_list);
1558}
1559
1560/*
1561 * Release any resources held by the given physical map.
1562 * Called when a pmap initialized by mmu_booke_pinit is being released.
1563 * Should only be called if the map contains no valid mappings.
1564 */
1565static void
1566mmu_booke_release(mmu_t mmu, pmap_t pmap)
1567{
1568
1569	KASSERT(pmap->pm_stats.resident_count == 0,
1570	    ("pmap_release: pmap resident count %ld != 0",
1571	    pmap->pm_stats.resident_count));
1572}
1573
1574/*
1575 * Insert the given physical page at the specified virtual address in the
1576 * target physical map with the protection requested. If specified the page
1577 * will be wired down.
1578 */
1579static void
1580mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1581    vm_prot_t prot, boolean_t wired)
1582{
1583
1584	rw_wlock(&pvh_global_lock);
1585	PMAP_LOCK(pmap);
1586	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1587	rw_wunlock(&pvh_global_lock);
1588	PMAP_UNLOCK(pmap);
1589}
1590
1591static void
1592mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1593    vm_prot_t prot, boolean_t wired)
1594{
1595	pte_t *pte;
1596	vm_paddr_t pa;
1597	uint32_t flags;
1598	int su, sync;
1599
1600	pa = VM_PAGE_TO_PHYS(m);
1601	su = (pmap == kernel_pmap);
1602	sync = 0;
1603
1604	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1605	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1606	//		(u_int32_t)pmap, su, pmap->pm_tid,
1607	//		(u_int32_t)m, va, pa, prot, wired);
1608
1609	if (su) {
1610		KASSERT(((va >= virtual_avail) &&
1611		    (va <= VM_MAX_KERNEL_ADDRESS)),
1612		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1613	} else {
1614		KASSERT((va <= VM_MAXUSER_ADDRESS),
1615		    ("mmu_booke_enter_locked: user pmap, non user va"));
1616	}
1617	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1618		VM_OBJECT_ASSERT_LOCKED(m->object);
1619
1620	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1621
1622	/*
1623	 * If there is an existing mapping, and the physical address has not
1624	 * changed, must be protection or wiring change.
1625	 */
1626	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1627	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1628
1629		/*
1630		 * Before actually updating pte->flags we calculate and
1631		 * prepare its new value in a helper var.
1632		 */
1633		flags = pte->flags;
1634		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1635
1636		/* Wiring change, just update stats. */
1637		if (wired) {
1638			if (!PTE_ISWIRED(pte)) {
1639				flags |= PTE_WIRED;
1640				pmap->pm_stats.wired_count++;
1641			}
1642		} else {
1643			if (PTE_ISWIRED(pte)) {
1644				flags &= ~PTE_WIRED;
1645				pmap->pm_stats.wired_count--;
1646			}
1647		}
1648
1649		if (prot & VM_PROT_WRITE) {
1650			/* Add write permissions. */
1651			flags |= PTE_SW;
1652			if (!su)
1653				flags |= PTE_UW;
1654
1655			if ((flags & PTE_MANAGED) != 0)
1656				vm_page_aflag_set(m, PGA_WRITEABLE);
1657		} else {
1658			/* Handle modified pages, sense modify status. */
1659
1660			/*
1661			 * The PTE_MODIFIED flag could be set by underlying
1662			 * TLB misses since we last read it (above), possibly
1663			 * other CPUs could update it so we check in the PTE
1664			 * directly rather than rely on that saved local flags
1665			 * copy.
1666			 */
1667			if (PTE_ISMODIFIED(pte))
1668				vm_page_dirty(m);
1669		}
1670
1671		if (prot & VM_PROT_EXECUTE) {
1672			flags |= PTE_SX;
1673			if (!su)
1674				flags |= PTE_UX;
1675
1676			/*
1677			 * Check existing flags for execute permissions: if we
1678			 * are turning execute permissions on, icache should
1679			 * be flushed.
1680			 */
1681			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1682				sync++;
1683		}
1684
1685		flags &= ~PTE_REFERENCED;
1686
1687		/*
1688		 * The new flags value is all calculated -- only now actually
1689		 * update the PTE.
1690		 */
1691		mtx_lock_spin(&tlbivax_mutex);
1692		tlb_miss_lock();
1693
1694		tlb0_flush_entry(va);
1695		pte->flags = flags;
1696
1697		tlb_miss_unlock();
1698		mtx_unlock_spin(&tlbivax_mutex);
1699
1700	} else {
1701		/*
1702		 * If there is an existing mapping, but it's for a different
1703		 * physical address, pte_enter() will delete the old mapping.
1704		 */
1705		//if ((pte != NULL) && PTE_ISVALID(pte))
1706		//	debugf("mmu_booke_enter_locked: replace\n");
1707		//else
1708		//	debugf("mmu_booke_enter_locked: new\n");
1709
1710		/* Now set up the flags and install the new mapping. */
1711		flags = (PTE_SR | PTE_VALID);
1712		flags |= PTE_M;
1713
1714		if (!su)
1715			flags |= PTE_UR;
1716
1717		if (prot & VM_PROT_WRITE) {
1718			flags |= PTE_SW;
1719			if (!su)
1720				flags |= PTE_UW;
1721
1722			if ((m->oflags & VPO_UNMANAGED) == 0)
1723				vm_page_aflag_set(m, PGA_WRITEABLE);
1724		}
1725
1726		if (prot & VM_PROT_EXECUTE) {
1727			flags |= PTE_SX;
1728			if (!su)
1729				flags |= PTE_UX;
1730		}
1731
1732		/* If its wired update stats. */
1733		if (wired) {
1734			pmap->pm_stats.wired_count++;
1735			flags |= PTE_WIRED;
1736		}
1737
1738		pte_enter(mmu, pmap, m, va, flags);
1739
1740		/* Flush the real memory from the instruction cache. */
1741		if (prot & VM_PROT_EXECUTE)
1742			sync++;
1743	}
1744
1745	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1746		__syncicache((void *)va, PAGE_SIZE);
1747		sync = 0;
1748	}
1749}
1750
1751/*
1752 * Maps a sequence of resident pages belonging to the same object.
1753 * The sequence begins with the given page m_start.  This page is
1754 * mapped at the given virtual address start.  Each subsequent page is
1755 * mapped at a virtual address that is offset from start by the same
1756 * amount as the page is offset from m_start within the object.  The
1757 * last page in the sequence is the page with the largest offset from
1758 * m_start that can be mapped at a virtual address less than the given
1759 * virtual address end.  Not every virtual page between start and end
1760 * is mapped; only those for which a resident page exists with the
1761 * corresponding offset from m_start are mapped.
1762 */
1763static void
1764mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1765    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1766{
1767	vm_page_t m;
1768	vm_pindex_t diff, psize;
1769
1770	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1771
1772	psize = atop(end - start);
1773	m = m_start;
1774	rw_wlock(&pvh_global_lock);
1775	PMAP_LOCK(pmap);
1776	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1777		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1778		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1779		m = TAILQ_NEXT(m, listq);
1780	}
1781	rw_wunlock(&pvh_global_lock);
1782	PMAP_UNLOCK(pmap);
1783}
1784
1785static void
1786mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1787    vm_prot_t prot)
1788{
1789
1790	rw_wlock(&pvh_global_lock);
1791	PMAP_LOCK(pmap);
1792	mmu_booke_enter_locked(mmu, pmap, va, m,
1793	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1794	rw_wunlock(&pvh_global_lock);
1795	PMAP_UNLOCK(pmap);
1796}
1797
1798/*
1799 * Remove the given range of addresses from the specified map.
1800 *
1801 * It is assumed that the start and end are properly rounded to the page size.
1802 */
1803static void
1804mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1805{
1806	pte_t *pte;
1807	uint8_t hold_flag;
1808
1809	int su = (pmap == kernel_pmap);
1810
1811	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1812	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1813
1814	if (su) {
1815		KASSERT(((va >= virtual_avail) &&
1816		    (va <= VM_MAX_KERNEL_ADDRESS)),
1817		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1818	} else {
1819		KASSERT((va <= VM_MAXUSER_ADDRESS),
1820		    ("mmu_booke_remove: user pmap, non user va"));
1821	}
1822
1823	if (PMAP_REMOVE_DONE(pmap)) {
1824		//debugf("mmu_booke_remove: e (empty)\n");
1825		return;
1826	}
1827
1828	hold_flag = PTBL_HOLD_FLAG(pmap);
1829	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1830
1831	rw_wlock(&pvh_global_lock);
1832	PMAP_LOCK(pmap);
1833	for (; va < endva; va += PAGE_SIZE) {
1834		pte = pte_find(mmu, pmap, va);
1835		if ((pte != NULL) && PTE_ISVALID(pte))
1836			pte_remove(mmu, pmap, va, hold_flag);
1837	}
1838	PMAP_UNLOCK(pmap);
1839	rw_wunlock(&pvh_global_lock);
1840
1841	//debugf("mmu_booke_remove: e\n");
1842}
1843
1844/*
1845 * Remove physical page from all pmaps in which it resides.
1846 */
1847static void
1848mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1849{
1850	pv_entry_t pv, pvn;
1851	uint8_t hold_flag;
1852
1853	rw_wlock(&pvh_global_lock);
1854	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1855		pvn = TAILQ_NEXT(pv, pv_link);
1856
1857		PMAP_LOCK(pv->pv_pmap);
1858		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1859		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1860		PMAP_UNLOCK(pv->pv_pmap);
1861	}
1862	vm_page_aflag_clear(m, PGA_WRITEABLE);
1863	rw_wunlock(&pvh_global_lock);
1864}
1865
1866/*
1867 * Map a range of physical addresses into kernel virtual address space.
1868 */
1869static vm_offset_t
1870mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1871    vm_paddr_t pa_end, int prot)
1872{
1873	vm_offset_t sva = *virt;
1874	vm_offset_t va = sva;
1875
1876	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1877	//		sva, pa_start, pa_end);
1878
1879	while (pa_start < pa_end) {
1880		mmu_booke_kenter(mmu, va, pa_start);
1881		va += PAGE_SIZE;
1882		pa_start += PAGE_SIZE;
1883	}
1884	*virt = va;
1885
1886	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1887	return (sva);
1888}
1889
1890/*
1891 * The pmap must be activated before it's address space can be accessed in any
1892 * way.
1893 */
1894static void
1895mmu_booke_activate(mmu_t mmu, struct thread *td)
1896{
1897	pmap_t pmap;
1898	u_int cpuid;
1899
1900	pmap = &td->td_proc->p_vmspace->vm_pmap;
1901
1902	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1903	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1904
1905	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1906
1907	sched_pin();
1908
1909	cpuid = PCPU_GET(cpuid);
1910	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1911	PCPU_SET(curpmap, pmap);
1912
1913	if (pmap->pm_tid[cpuid] == TID_NONE)
1914		tid_alloc(pmap);
1915
1916	/* Load PID0 register with pmap tid value. */
1917	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1918	__asm __volatile("isync");
1919
1920	sched_unpin();
1921
1922	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1923	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1924}
1925
1926/*
1927 * Deactivate the specified process's address space.
1928 */
1929static void
1930mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1931{
1932	pmap_t pmap;
1933
1934	pmap = &td->td_proc->p_vmspace->vm_pmap;
1935
1936	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1937	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1938
1939	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1940	PCPU_SET(curpmap, NULL);
1941}
1942
1943/*
1944 * Copy the range specified by src_addr/len
1945 * from the source map to the range dst_addr/len
1946 * in the destination map.
1947 *
1948 * This routine is only advisory and need not do anything.
1949 */
1950static void
1951mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1952    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1953{
1954
1955}
1956
1957/*
1958 * Set the physical protection on the specified range of this map as requested.
1959 */
1960static void
1961mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1962    vm_prot_t prot)
1963{
1964	vm_offset_t va;
1965	vm_page_t m;
1966	pte_t *pte;
1967
1968	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1969		mmu_booke_remove(mmu, pmap, sva, eva);
1970		return;
1971	}
1972
1973	if (prot & VM_PROT_WRITE)
1974		return;
1975
1976	PMAP_LOCK(pmap);
1977	for (va = sva; va < eva; va += PAGE_SIZE) {
1978		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1979			if (PTE_ISVALID(pte)) {
1980				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1981
1982				mtx_lock_spin(&tlbivax_mutex);
1983				tlb_miss_lock();
1984
1985				/* Handle modified pages. */
1986				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1987					vm_page_dirty(m);
1988
1989				tlb0_flush_entry(va);
1990				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1991
1992				tlb_miss_unlock();
1993				mtx_unlock_spin(&tlbivax_mutex);
1994			}
1995		}
1996	}
1997	PMAP_UNLOCK(pmap);
1998}
1999
2000/*
2001 * Clear the write and modified bits in each of the given page's mappings.
2002 */
2003static void
2004mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2005{
2006	pv_entry_t pv;
2007	pte_t *pte;
2008
2009	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2010	    ("mmu_booke_remove_write: page %p is not managed", m));
2011
2012	/*
2013	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2014	 * set by another thread while the object is locked.  Thus,
2015	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2016	 */
2017	VM_OBJECT_ASSERT_WLOCKED(m->object);
2018	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2019		return;
2020	rw_wlock(&pvh_global_lock);
2021	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2022		PMAP_LOCK(pv->pv_pmap);
2023		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2024			if (PTE_ISVALID(pte)) {
2025				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2026
2027				mtx_lock_spin(&tlbivax_mutex);
2028				tlb_miss_lock();
2029
2030				/* Handle modified pages. */
2031				if (PTE_ISMODIFIED(pte))
2032					vm_page_dirty(m);
2033
2034				/* Flush mapping from TLB0. */
2035				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2036
2037				tlb_miss_unlock();
2038				mtx_unlock_spin(&tlbivax_mutex);
2039			}
2040		}
2041		PMAP_UNLOCK(pv->pv_pmap);
2042	}
2043	vm_page_aflag_clear(m, PGA_WRITEABLE);
2044	rw_wunlock(&pvh_global_lock);
2045}
2046
2047static void
2048mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2049{
2050	pte_t *pte;
2051	pmap_t pmap;
2052	vm_page_t m;
2053	vm_offset_t addr;
2054	vm_paddr_t pa;
2055	int active, valid;
2056
2057	va = trunc_page(va);
2058	sz = round_page(sz);
2059
2060	rw_wlock(&pvh_global_lock);
2061	pmap = PCPU_GET(curpmap);
2062	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2063	while (sz > 0) {
2064		PMAP_LOCK(pm);
2065		pte = pte_find(mmu, pm, va);
2066		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2067		if (valid)
2068			pa = PTE_PA(pte);
2069		PMAP_UNLOCK(pm);
2070		if (valid) {
2071			if (!active) {
2072				/* Create a mapping in the active pmap. */
2073				addr = 0;
2074				m = PHYS_TO_VM_PAGE(pa);
2075				PMAP_LOCK(pmap);
2076				pte_enter(mmu, pmap, m, addr,
2077				    PTE_SR | PTE_VALID | PTE_UR);
2078				__syncicache((void *)addr, PAGE_SIZE);
2079				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2080				PMAP_UNLOCK(pmap);
2081			} else
2082				__syncicache((void *)va, PAGE_SIZE);
2083		}
2084		va += PAGE_SIZE;
2085		sz -= PAGE_SIZE;
2086	}
2087	rw_wunlock(&pvh_global_lock);
2088}
2089
2090/*
2091 * Atomically extract and hold the physical page with the given
2092 * pmap and virtual address pair if that mapping permits the given
2093 * protection.
2094 */
2095static vm_page_t
2096mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2097    vm_prot_t prot)
2098{
2099	pte_t *pte;
2100	vm_page_t m;
2101	uint32_t pte_wbit;
2102	vm_paddr_t pa;
2103
2104	m = NULL;
2105	pa = 0;
2106	PMAP_LOCK(pmap);
2107retry:
2108	pte = pte_find(mmu, pmap, va);
2109	if ((pte != NULL) && PTE_ISVALID(pte)) {
2110		if (pmap == kernel_pmap)
2111			pte_wbit = PTE_SW;
2112		else
2113			pte_wbit = PTE_UW;
2114
2115		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2116			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2117				goto retry;
2118			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2119			vm_page_hold(m);
2120		}
2121	}
2122
2123	PA_UNLOCK_COND(pa);
2124	PMAP_UNLOCK(pmap);
2125	return (m);
2126}
2127
2128/*
2129 * Initialize a vm_page's machine-dependent fields.
2130 */
2131static void
2132mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2133{
2134
2135	TAILQ_INIT(&m->md.pv_list);
2136}
2137
2138/*
2139 * mmu_booke_zero_page_area zeros the specified hardware page by
2140 * mapping it into virtual memory and using bzero to clear
2141 * its contents.
2142 *
2143 * off and size must reside within a single page.
2144 */
2145static void
2146mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2147{
2148	vm_offset_t va;
2149
2150	/* XXX KASSERT off and size are within a single page? */
2151
2152	mtx_lock(&zero_page_mutex);
2153	va = zero_page_va;
2154
2155	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2156	bzero((caddr_t)va + off, size);
2157	mmu_booke_kremove(mmu, va);
2158
2159	mtx_unlock(&zero_page_mutex);
2160}
2161
2162/*
2163 * mmu_booke_zero_page zeros the specified hardware page.
2164 */
2165static void
2166mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2167{
2168
2169	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2170}
2171
2172/*
2173 * mmu_booke_copy_page copies the specified (machine independent) page by
2174 * mapping the page into virtual memory and using memcopy to copy the page,
2175 * one machine dependent page at a time.
2176 */
2177static void
2178mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2179{
2180	vm_offset_t sva, dva;
2181
2182	sva = copy_page_src_va;
2183	dva = copy_page_dst_va;
2184
2185	mtx_lock(&copy_page_mutex);
2186	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2187	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2188	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2189	mmu_booke_kremove(mmu, dva);
2190	mmu_booke_kremove(mmu, sva);
2191	mtx_unlock(&copy_page_mutex);
2192}
2193
2194static inline void
2195mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2196    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2197{
2198	void *a_cp, *b_cp;
2199	vm_offset_t a_pg_offset, b_pg_offset;
2200	int cnt;
2201
2202	mtx_lock(&copy_page_mutex);
2203	while (xfersize > 0) {
2204		a_pg_offset = a_offset & PAGE_MASK;
2205		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2206		mmu_booke_kenter(mmu, copy_page_src_va,
2207		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2208		a_cp = (char *)copy_page_src_va + a_pg_offset;
2209		b_pg_offset = b_offset & PAGE_MASK;
2210		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2211		mmu_booke_kenter(mmu, copy_page_dst_va,
2212		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2213		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2214		bcopy(a_cp, b_cp, cnt);
2215		mmu_booke_kremove(mmu, copy_page_dst_va);
2216		mmu_booke_kremove(mmu, copy_page_src_va);
2217		a_offset += cnt;
2218		b_offset += cnt;
2219		xfersize -= cnt;
2220	}
2221	mtx_unlock(&copy_page_mutex);
2222}
2223
2224/*
2225 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2226 * into virtual memory and using bzero to clear its contents. This is intended
2227 * to be called from the vm_pagezero process only and outside of Giant. No
2228 * lock is required.
2229 */
2230static void
2231mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2232{
2233	vm_offset_t va;
2234
2235	va = zero_page_idle_va;
2236	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2237	bzero((caddr_t)va, PAGE_SIZE);
2238	mmu_booke_kremove(mmu, va);
2239}
2240
2241/*
2242 * Return whether or not the specified physical page was modified
2243 * in any of physical maps.
2244 */
2245static boolean_t
2246mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2247{
2248	pte_t *pte;
2249	pv_entry_t pv;
2250	boolean_t rv;
2251
2252	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2253	    ("mmu_booke_is_modified: page %p is not managed", m));
2254	rv = FALSE;
2255
2256	/*
2257	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2258	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2259	 * is clear, no PTEs can be modified.
2260	 */
2261	VM_OBJECT_ASSERT_WLOCKED(m->object);
2262	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2263		return (rv);
2264	rw_wlock(&pvh_global_lock);
2265	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2266		PMAP_LOCK(pv->pv_pmap);
2267		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2268		    PTE_ISVALID(pte)) {
2269			if (PTE_ISMODIFIED(pte))
2270				rv = TRUE;
2271		}
2272		PMAP_UNLOCK(pv->pv_pmap);
2273		if (rv)
2274			break;
2275	}
2276	rw_wunlock(&pvh_global_lock);
2277	return (rv);
2278}
2279
2280/*
2281 * Return whether or not the specified virtual address is eligible
2282 * for prefault.
2283 */
2284static boolean_t
2285mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2286{
2287
2288	return (FALSE);
2289}
2290
2291/*
2292 * Return whether or not the specified physical page was referenced
2293 * in any physical maps.
2294 */
2295static boolean_t
2296mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2297{
2298	pte_t *pte;
2299	pv_entry_t pv;
2300	boolean_t rv;
2301
2302	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2303	    ("mmu_booke_is_referenced: page %p is not managed", m));
2304	rv = FALSE;
2305	rw_wlock(&pvh_global_lock);
2306	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2307		PMAP_LOCK(pv->pv_pmap);
2308		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2309		    PTE_ISVALID(pte)) {
2310			if (PTE_ISREFERENCED(pte))
2311				rv = TRUE;
2312		}
2313		PMAP_UNLOCK(pv->pv_pmap);
2314		if (rv)
2315			break;
2316	}
2317	rw_wunlock(&pvh_global_lock);
2318	return (rv);
2319}
2320
2321/*
2322 * Clear the modify bits on the specified physical page.
2323 */
2324static void
2325mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2326{
2327	pte_t *pte;
2328	pv_entry_t pv;
2329
2330	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2331	    ("mmu_booke_clear_modify: page %p is not managed", m));
2332	VM_OBJECT_ASSERT_WLOCKED(m->object);
2333	KASSERT(!vm_page_xbusied(m),
2334	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2335
2336	/*
2337	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2338	 * If the object containing the page is locked and the page is not
2339	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2340	 */
2341	if ((m->aflags & PGA_WRITEABLE) == 0)
2342		return;
2343	rw_wlock(&pvh_global_lock);
2344	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2345		PMAP_LOCK(pv->pv_pmap);
2346		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2347		    PTE_ISVALID(pte)) {
2348			mtx_lock_spin(&tlbivax_mutex);
2349			tlb_miss_lock();
2350
2351			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2352				tlb0_flush_entry(pv->pv_va);
2353				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2354				    PTE_REFERENCED);
2355			}
2356
2357			tlb_miss_unlock();
2358			mtx_unlock_spin(&tlbivax_mutex);
2359		}
2360		PMAP_UNLOCK(pv->pv_pmap);
2361	}
2362	rw_wunlock(&pvh_global_lock);
2363}
2364
2365/*
2366 * Return a count of reference bits for a page, clearing those bits.
2367 * It is not necessary for every reference bit to be cleared, but it
2368 * is necessary that 0 only be returned when there are truly no
2369 * reference bits set.
2370 *
2371 * XXX: The exact number of bits to check and clear is a matter that
2372 * should be tested and standardized at some point in the future for
2373 * optimal aging of shared pages.
2374 */
2375static int
2376mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2377{
2378	pte_t *pte;
2379	pv_entry_t pv;
2380	int count;
2381
2382	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2383	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2384	count = 0;
2385	rw_wlock(&pvh_global_lock);
2386	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2387		PMAP_LOCK(pv->pv_pmap);
2388		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2389		    PTE_ISVALID(pte)) {
2390			if (PTE_ISREFERENCED(pte)) {
2391				mtx_lock_spin(&tlbivax_mutex);
2392				tlb_miss_lock();
2393
2394				tlb0_flush_entry(pv->pv_va);
2395				pte->flags &= ~PTE_REFERENCED;
2396
2397				tlb_miss_unlock();
2398				mtx_unlock_spin(&tlbivax_mutex);
2399
2400				if (++count > 4) {
2401					PMAP_UNLOCK(pv->pv_pmap);
2402					break;
2403				}
2404			}
2405		}
2406		PMAP_UNLOCK(pv->pv_pmap);
2407	}
2408	rw_wunlock(&pvh_global_lock);
2409	return (count);
2410}
2411
2412/*
2413 * Change wiring attribute for a map/virtual-address pair.
2414 */
2415static void
2416mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2417{
2418	pte_t *pte;
2419
2420	PMAP_LOCK(pmap);
2421	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2422		if (wired) {
2423			if (!PTE_ISWIRED(pte)) {
2424				pte->flags |= PTE_WIRED;
2425				pmap->pm_stats.wired_count++;
2426			}
2427		} else {
2428			if (PTE_ISWIRED(pte)) {
2429				pte->flags &= ~PTE_WIRED;
2430				pmap->pm_stats.wired_count--;
2431			}
2432		}
2433	}
2434	PMAP_UNLOCK(pmap);
2435}
2436
2437/*
2438 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2439 * page.  This count may be changed upwards or downwards in the future; it is
2440 * only necessary that true be returned for a small subset of pmaps for proper
2441 * page aging.
2442 */
2443static boolean_t
2444mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2445{
2446	pv_entry_t pv;
2447	int loops;
2448	boolean_t rv;
2449
2450	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2451	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2452	loops = 0;
2453	rv = FALSE;
2454	rw_wlock(&pvh_global_lock);
2455	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2456		if (pv->pv_pmap == pmap) {
2457			rv = TRUE;
2458			break;
2459		}
2460		if (++loops >= 16)
2461			break;
2462	}
2463	rw_wunlock(&pvh_global_lock);
2464	return (rv);
2465}
2466
2467/*
2468 * Return the number of managed mappings to the given physical page that are
2469 * wired.
2470 */
2471static int
2472mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2473{
2474	pv_entry_t pv;
2475	pte_t *pte;
2476	int count = 0;
2477
2478	if ((m->oflags & VPO_UNMANAGED) != 0)
2479		return (count);
2480	rw_wlock(&pvh_global_lock);
2481	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2482		PMAP_LOCK(pv->pv_pmap);
2483		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2484			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2485				count++;
2486		PMAP_UNLOCK(pv->pv_pmap);
2487	}
2488	rw_wunlock(&pvh_global_lock);
2489	return (count);
2490}
2491
2492static int
2493mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2494{
2495	int i;
2496	vm_offset_t va;
2497
2498	/*
2499	 * This currently does not work for entries that
2500	 * overlap TLB1 entries.
2501	 */
2502	for (i = 0; i < tlb1_idx; i ++) {
2503		if (tlb1_iomapped(i, pa, size, &va) == 0)
2504			return (0);
2505	}
2506
2507	return (EFAULT);
2508}
2509
2510vm_offset_t
2511mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2512    vm_size_t *sz)
2513{
2514	vm_paddr_t pa, ppa;
2515	vm_offset_t va;
2516	vm_size_t gran;
2517
2518	/* Raw physical memory dumps don't have a virtual address. */
2519	if (md->md_vaddr == ~0UL) {
2520		/* We always map a 256MB page at 256M. */
2521		gran = 256 * 1024 * 1024;
2522		pa = md->md_paddr + ofs;
2523		ppa = pa & ~(gran - 1);
2524		ofs = pa - ppa;
2525		va = gran;
2526		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2527		if (*sz > (gran - ofs))
2528			*sz = gran - ofs;
2529		return (va + ofs);
2530	}
2531
2532	/* Minidumps are based on virtual memory addresses. */
2533	va = md->md_vaddr + ofs;
2534	if (va >= kernstart + kernsize) {
2535		gran = PAGE_SIZE - (va & PAGE_MASK);
2536		if (*sz > gran)
2537			*sz = gran;
2538	}
2539	return (va);
2540}
2541
2542void
2543mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2544    vm_offset_t va)
2545{
2546
2547	/* Raw physical memory dumps don't have a virtual address. */
2548	if (md->md_vaddr == ~0UL) {
2549		tlb1_idx--;
2550		tlb1[tlb1_idx].mas1 = 0;
2551		tlb1[tlb1_idx].mas2 = 0;
2552		tlb1[tlb1_idx].mas3 = 0;
2553		tlb1_write_entry(tlb1_idx);
2554		return;
2555	}
2556
2557	/* Minidumps are based on virtual memory addresses. */
2558	/* Nothing to do... */
2559}
2560
2561struct pmap_md *
2562mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2563{
2564	static struct pmap_md md;
2565	pte_t *pte;
2566	vm_offset_t va;
2567
2568	if (dumpsys_minidump) {
2569		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2570		if (prev == NULL) {
2571			/* 1st: kernel .data and .bss. */
2572			md.md_index = 1;
2573			md.md_vaddr = trunc_page((uintptr_t)_etext);
2574			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2575			return (&md);
2576		}
2577		switch (prev->md_index) {
2578		case 1:
2579			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2580			md.md_index = 2;
2581			md.md_vaddr = data_start;
2582			md.md_size = data_end - data_start;
2583			break;
2584		case 2:
2585			/* 3rd: kernel VM. */
2586			va = prev->md_vaddr + prev->md_size;
2587			/* Find start of next chunk (from va). */
2588			while (va < virtual_end) {
2589				/* Don't dump the buffer cache. */
2590				if (va >= kmi.buffer_sva &&
2591				    va < kmi.buffer_eva) {
2592					va = kmi.buffer_eva;
2593					continue;
2594				}
2595				pte = pte_find(mmu, kernel_pmap, va);
2596				if (pte != NULL && PTE_ISVALID(pte))
2597					break;
2598				va += PAGE_SIZE;
2599			}
2600			if (va < virtual_end) {
2601				md.md_vaddr = va;
2602				va += PAGE_SIZE;
2603				/* Find last page in chunk. */
2604				while (va < virtual_end) {
2605					/* Don't run into the buffer cache. */
2606					if (va == kmi.buffer_sva)
2607						break;
2608					pte = pte_find(mmu, kernel_pmap, va);
2609					if (pte == NULL || !PTE_ISVALID(pte))
2610						break;
2611					va += PAGE_SIZE;
2612				}
2613				md.md_size = va - md.md_vaddr;
2614				break;
2615			}
2616			md.md_index = 3;
2617			/* FALLTHROUGH */
2618		default:
2619			return (NULL);
2620		}
2621	} else { /* minidumps */
2622		mem_regions(&physmem_regions, &physmem_regions_sz,
2623		    &availmem_regions, &availmem_regions_sz);
2624
2625		if (prev == NULL) {
2626			/* first physical chunk. */
2627			md.md_paddr = physmem_regions[0].mr_start;
2628			md.md_size = physmem_regions[0].mr_size;
2629			md.md_vaddr = ~0UL;
2630			md.md_index = 1;
2631		} else if (md.md_index < physmem_regions_sz) {
2632			md.md_paddr = physmem_regions[md.md_index].mr_start;
2633			md.md_size = physmem_regions[md.md_index].mr_size;
2634			md.md_vaddr = ~0UL;
2635			md.md_index++;
2636		} else {
2637			/* There's no next physical chunk. */
2638			return (NULL);
2639		}
2640	}
2641
2642	return (&md);
2643}
2644
2645/*
2646 * Map a set of physical memory pages into the kernel virtual address space.
2647 * Return a pointer to where it is mapped. This routine is intended to be used
2648 * for mapping device memory, NOT real memory.
2649 */
2650static void *
2651mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2652{
2653
2654	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2655}
2656
2657static void *
2658mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2659{
2660	void *res;
2661	uintptr_t va;
2662	vm_size_t sz;
2663	int i;
2664
2665	/*
2666	 * Check if this is premapped in TLB1. Note: this should probably also
2667	 * check whether a sequence of TLB1 entries exist that match the
2668	 * requirement, but now only checks the easy case.
2669	 */
2670	if (ma == VM_MEMATTR_DEFAULT) {
2671		for (i = 0; i < tlb1_idx; i++) {
2672			if (!(tlb1[i].mas1 & MAS1_VALID))
2673				continue;
2674			if (pa >= tlb1[i].phys &&
2675			    (pa + size) <= (tlb1[i].phys + tlb1[i].size))
2676				return (void *)(tlb1[i].virt +
2677				    (pa - tlb1[i].phys));
2678		}
2679	}
2680
2681	size = roundup(size, PAGE_SIZE);
2682
2683	/*
2684	 * We leave a hole for device direct mapping between the maximum user
2685	 * address (0x8000000) and the minimum KVA address (0xc0000000). If
2686	 * devices are in there, just map them 1:1. If not, map them to the
2687	 * device mapping area about VM_MAX_KERNEL_ADDRESS. These mapped
2688	 * addresses should be pulled from an allocator, but since we do not
2689	 * ever free TLB1 entries, it is safe just to increment a counter.
2690	 * Note that there isn't a lot of address space here (128 MB) and it
2691	 * is not at all difficult to imagine running out, since that is a 4:1
2692	 * compression from the 0xc0000000 - 0xf0000000 address space that gets
2693	 * mapped there.
2694	 */
2695	if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) &&
2696	    (pa + size - 1) < VM_MIN_KERNEL_ADDRESS)
2697		va = pa;
2698	else
2699		va = atomic_fetchadd_int(&tlb1_map_base, size);
2700	res = (void *)va;
2701
2702	do {
2703		sz = 1 << (ilog2(size) & ~1);
2704		if (bootverbose)
2705			printf("Wiring VA=%x to PA=%x (size=%x), "
2706			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2707		tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma));
2708		size -= sz;
2709		pa += sz;
2710		va += sz;
2711	} while (size > 0);
2712
2713	return (res);
2714}
2715
2716/*
2717 * 'Unmap' a range mapped by mmu_booke_mapdev().
2718 */
2719static void
2720mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2721{
2722#ifdef SUPPORTS_SHRINKING_TLB1
2723	vm_offset_t base, offset;
2724
2725	/*
2726	 * Unmap only if this is inside kernel virtual space.
2727	 */
2728	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2729		base = trunc_page(va);
2730		offset = va & PAGE_MASK;
2731		size = roundup(offset + size, PAGE_SIZE);
2732		kva_free(base, size);
2733	}
2734#endif
2735}
2736
2737/*
2738 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2739 * specified pmap. This eliminates the blast of soft faults on process startup
2740 * and immediately after an mmap.
2741 */
2742static void
2743mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2744    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2745{
2746
2747	VM_OBJECT_ASSERT_WLOCKED(object);
2748	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2749	    ("mmu_booke_object_init_pt: non-device object"));
2750}
2751
2752/*
2753 * Perform the pmap work for mincore.
2754 */
2755static int
2756mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2757    vm_paddr_t *locked_pa)
2758{
2759
2760	/* XXX: this should be implemented at some point */
2761	return (0);
2762}
2763
2764/**************************************************************************/
2765/* TID handling */
2766/**************************************************************************/
2767
2768/*
2769 * Allocate a TID. If necessary, steal one from someone else.
2770 * The new TID is flushed from the TLB before returning.
2771 */
2772static tlbtid_t
2773tid_alloc(pmap_t pmap)
2774{
2775	tlbtid_t tid;
2776	int thiscpu;
2777
2778	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2779
2780	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2781
2782	thiscpu = PCPU_GET(cpuid);
2783
2784	tid = PCPU_GET(tid_next);
2785	if (tid > TID_MAX)
2786		tid = TID_MIN;
2787	PCPU_SET(tid_next, tid + 1);
2788
2789	/* If we are stealing TID then clear the relevant pmap's field */
2790	if (tidbusy[thiscpu][tid] != NULL) {
2791
2792		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2793
2794		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2795
2796		/* Flush all entries from TLB0 matching this TID. */
2797		tid_flush(tid);
2798	}
2799
2800	tidbusy[thiscpu][tid] = pmap;
2801	pmap->pm_tid[thiscpu] = tid;
2802	__asm __volatile("msync; isync");
2803
2804	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2805	    PCPU_GET(tid_next));
2806
2807	return (tid);
2808}
2809
2810/**************************************************************************/
2811/* TLB0 handling */
2812/**************************************************************************/
2813
2814static void
2815tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2816    uint32_t mas7)
2817{
2818	int as;
2819	char desc[3];
2820	tlbtid_t tid;
2821	vm_size_t size;
2822	unsigned int tsize;
2823
2824	desc[2] = '\0';
2825	if (mas1 & MAS1_VALID)
2826		desc[0] = 'V';
2827	else
2828		desc[0] = ' ';
2829
2830	if (mas1 & MAS1_IPROT)
2831		desc[1] = 'P';
2832	else
2833		desc[1] = ' ';
2834
2835	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2836	tid = MAS1_GETTID(mas1);
2837
2838	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2839	size = 0;
2840	if (tsize)
2841		size = tsize2size(tsize);
2842
2843	debugf("%3d: (%s) [AS=%d] "
2844	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2845	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2846	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2847}
2848
2849/* Convert TLB0 va and way number to tlb0[] table index. */
2850static inline unsigned int
2851tlb0_tableidx(vm_offset_t va, unsigned int way)
2852{
2853	unsigned int idx;
2854
2855	idx = (way * TLB0_ENTRIES_PER_WAY);
2856	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2857	return (idx);
2858}
2859
2860/*
2861 * Invalidate TLB0 entry.
2862 */
2863static inline void
2864tlb0_flush_entry(vm_offset_t va)
2865{
2866
2867	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2868
2869	mtx_assert(&tlbivax_mutex, MA_OWNED);
2870
2871	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2872	__asm __volatile("isync; msync");
2873	__asm __volatile("tlbsync; msync");
2874
2875	CTR1(KTR_PMAP, "%s: e", __func__);
2876}
2877
2878/* Print out contents of the MAS registers for each TLB0 entry */
2879void
2880tlb0_print_tlbentries(void)
2881{
2882	uint32_t mas0, mas1, mas2, mas3, mas7;
2883	int entryidx, way, idx;
2884
2885	debugf("TLB0 entries:\n");
2886	for (way = 0; way < TLB0_WAYS; way ++)
2887		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2888
2889			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2890			mtspr(SPR_MAS0, mas0);
2891			__asm __volatile("isync");
2892
2893			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2894			mtspr(SPR_MAS2, mas2);
2895
2896			__asm __volatile("isync; tlbre");
2897
2898			mas1 = mfspr(SPR_MAS1);
2899			mas2 = mfspr(SPR_MAS2);
2900			mas3 = mfspr(SPR_MAS3);
2901			mas7 = mfspr(SPR_MAS7);
2902
2903			idx = tlb0_tableidx(mas2, way);
2904			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2905		}
2906}
2907
2908/**************************************************************************/
2909/* TLB1 handling */
2910/**************************************************************************/
2911
2912/*
2913 * TLB1 mapping notes:
2914 *
2915 * TLB1[0]	Kernel text and data.
2916 * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2917 *		windows, other devices mappings.
2918 */
2919
2920/*
2921 * Write given entry to TLB1 hardware.
2922 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2923 */
2924static void
2925tlb1_write_entry(unsigned int idx)
2926{
2927	uint32_t mas0, mas7;
2928
2929	//debugf("tlb1_write_entry: s\n");
2930
2931	/* Clear high order RPN bits */
2932	mas7 = 0;
2933
2934	/* Select entry */
2935	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2936	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2937
2938	mtspr(SPR_MAS0, mas0);
2939	__asm __volatile("isync");
2940	mtspr(SPR_MAS1, tlb1[idx].mas1);
2941	__asm __volatile("isync");
2942	mtspr(SPR_MAS2, tlb1[idx].mas2);
2943	__asm __volatile("isync");
2944	mtspr(SPR_MAS3, tlb1[idx].mas3);
2945	__asm __volatile("isync");
2946	mtspr(SPR_MAS7, mas7);
2947	__asm __volatile("isync; tlbwe; isync; msync");
2948
2949	//debugf("tlb1_write_entry: e\n");
2950}
2951
2952/*
2953 * Return the largest uint value log such that 2^log <= num.
2954 */
2955static unsigned int
2956ilog2(unsigned int num)
2957{
2958	int lz;
2959
2960	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2961	return (31 - lz);
2962}
2963
2964/*
2965 * Convert TLB TSIZE value to mapped region size.
2966 */
2967static vm_size_t
2968tsize2size(unsigned int tsize)
2969{
2970
2971	/*
2972	 * size = 4^tsize KB
2973	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2974	 */
2975
2976	return ((1 << (2 * tsize)) * 1024);
2977}
2978
2979/*
2980 * Convert region size (must be power of 4) to TLB TSIZE value.
2981 */
2982static unsigned int
2983size2tsize(vm_size_t size)
2984{
2985
2986	return (ilog2(size) / 2 - 5);
2987}
2988
2989/*
2990 * Register permanent kernel mapping in TLB1.
2991 *
2992 * Entries are created starting from index 0 (current free entry is
2993 * kept in tlb1_idx) and are not supposed to be invalidated.
2994 */
2995static int
2996tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2997    uint32_t flags)
2998{
2999	uint32_t ts, tid;
3000	int tsize, index;
3001
3002	index = atomic_fetchadd_int(&tlb1_idx, 1);
3003	if (index >= TLB1_ENTRIES) {
3004		printf("tlb1_set_entry: TLB1 full!\n");
3005		return (-1);
3006	}
3007
3008	/* Convert size to TSIZE */
3009	tsize = size2tsize(size);
3010
3011	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3012	/* XXX TS is hard coded to 0 for now as we only use single address space */
3013	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3014
3015	/*
3016	 * Atomicity is preserved by the atomic increment above since nothing
3017	 * is ever removed from tlb1.
3018	 */
3019
3020	tlb1[index].phys = pa;
3021	tlb1[index].virt = va;
3022	tlb1[index].size = size;
3023	tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3024	tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3025	tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags;
3026
3027	/* Set supervisor RWX permission bits */
3028	tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3029
3030	tlb1_write_entry(index);
3031
3032	/*
3033	 * XXX in general TLB1 updates should be propagated between CPUs,
3034	 * since current design assumes to have the same TLB1 set-up on all
3035	 * cores.
3036	 */
3037	return (0);
3038}
3039
3040/*
3041 * Map in contiguous RAM region into the TLB1 using maximum of
3042 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3043 *
3044 * If necessary round up last entry size and return total size
3045 * used by all allocated entries.
3046 */
3047vm_size_t
3048tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3049{
3050	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3051	vm_size_t mapped, pgsz, base, mask;
3052	int idx, nents;
3053
3054	/* Round up to the next 1M */
3055	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3056
3057	mapped = 0;
3058	idx = 0;
3059	base = va;
3060	pgsz = 64*1024*1024;
3061	while (mapped < size) {
3062		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3063			while (pgsz > (size - mapped))
3064				pgsz >>= 2;
3065			pgs[idx++] = pgsz;
3066			mapped += pgsz;
3067		}
3068
3069		/* We under-map. Correct for this. */
3070		if (mapped < size) {
3071			while (pgs[idx - 1] == pgsz) {
3072				idx--;
3073				mapped -= pgsz;
3074			}
3075			/* XXX We may increase beyond out starting point. */
3076			pgsz <<= 2;
3077			pgs[idx++] = pgsz;
3078			mapped += pgsz;
3079		}
3080	}
3081
3082	nents = idx;
3083	mask = pgs[0] - 1;
3084	/* Align address to the boundary */
3085	if (va & mask) {
3086		va = (va + mask) & ~mask;
3087		pa = (pa + mask) & ~mask;
3088	}
3089
3090	for (idx = 0; idx < nents; idx++) {
3091		pgsz = pgs[idx];
3092		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3093		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3094		pa += pgsz;
3095		va += pgsz;
3096	}
3097
3098	mapped = (va - base);
3099	printf("mapped size 0x%08x (wasted space 0x%08x)\n",
3100	    mapped, mapped - size);
3101	return (mapped);
3102}
3103
3104/*
3105 * TLB1 initialization routine, to be called after the very first
3106 * assembler level setup done in locore.S.
3107 */
3108void
3109tlb1_init()
3110{
3111	uint32_t mas0, mas1, mas2, mas3;
3112	uint32_t tsz;
3113	u_int i;
3114
3115	if (bootinfo != NULL && bootinfo[0] != 1) {
3116		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3117	} else
3118		tlb1_idx = 1;
3119
3120	/* The first entry/entries are used to map the kernel. */
3121	for (i = 0; i < tlb1_idx; i++) {
3122		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3123		mtspr(SPR_MAS0, mas0);
3124		__asm __volatile("isync; tlbre");
3125
3126		mas1 = mfspr(SPR_MAS1);
3127		if ((mas1 & MAS1_VALID) == 0)
3128			continue;
3129
3130		mas2 = mfspr(SPR_MAS2);
3131		mas3 = mfspr(SPR_MAS3);
3132
3133		tlb1[i].mas1 = mas1;
3134		tlb1[i].mas2 = mfspr(SPR_MAS2);
3135		tlb1[i].mas3 = mas3;
3136		tlb1[i].virt = mas2 & MAS2_EPN_MASK;
3137		tlb1[i].phys = mas3 & MAS3_RPN;
3138
3139		if (i == 0)
3140			kernload = mas3 & MAS3_RPN;
3141
3142		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3143		tlb1[i].size = (tsz > 0) ? tsize2size(tsz) : 0;
3144		kernsize += tlb1[i].size;
3145	}
3146
3147#ifdef SMP
3148	bp_ntlb1s = tlb1_idx;
3149#endif
3150
3151	/* Purge the remaining entries */
3152	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3153		tlb1_write_entry(i);
3154
3155	/* Setup TLB miss defaults */
3156	set_mas4_defaults();
3157}
3158
3159vm_offset_t
3160pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3161{
3162	vm_paddr_t pa_base;
3163	vm_offset_t va, sz;
3164	int i;
3165
3166	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3167
3168	for (i = 0; i < tlb1_idx; i++) {
3169		if (!(tlb1[i].mas1 & MAS1_VALID))
3170			continue;
3171		if (pa >= tlb1[i].phys && (pa + size) <=
3172		    (tlb1[i].phys + tlb1[i].size))
3173			return (tlb1[i].virt + (pa - tlb1[i].phys));
3174	}
3175
3176	pa_base = trunc_page(pa);
3177	size = roundup(size + (pa - pa_base), PAGE_SIZE);
3178	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
3179	va = tlb1_map_base + (pa - pa_base);
3180
3181	do {
3182		sz = 1 << (ilog2(size) & ~1);
3183		tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_IO);
3184		size -= sz;
3185		pa_base += sz;
3186		tlb1_map_base += sz;
3187	} while (size > 0);
3188
3189#ifdef SMP
3190	bp_ntlb1s = tlb1_idx;
3191#endif
3192
3193	return (va);
3194}
3195
3196/*
3197 * Setup MAS4 defaults.
3198 * These values are loaded to MAS0-2 on a TLB miss.
3199 */
3200static void
3201set_mas4_defaults(void)
3202{
3203	uint32_t mas4;
3204
3205	/* Defaults: TLB0, PID0, TSIZED=4K */
3206	mas4 = MAS4_TLBSELD0;
3207	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3208#ifdef SMP
3209	mas4 |= MAS4_MD;
3210#endif
3211	mtspr(SPR_MAS4, mas4);
3212	__asm __volatile("isync");
3213}
3214
3215/*
3216 * Print out contents of the MAS registers for each TLB1 entry
3217 */
3218void
3219tlb1_print_tlbentries(void)
3220{
3221	uint32_t mas0, mas1, mas2, mas3, mas7;
3222	int i;
3223
3224	debugf("TLB1 entries:\n");
3225	for (i = 0; i < TLB1_ENTRIES; i++) {
3226
3227		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3228		mtspr(SPR_MAS0, mas0);
3229
3230		__asm __volatile("isync; tlbre");
3231
3232		mas1 = mfspr(SPR_MAS1);
3233		mas2 = mfspr(SPR_MAS2);
3234		mas3 = mfspr(SPR_MAS3);
3235		mas7 = mfspr(SPR_MAS7);
3236
3237		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3238	}
3239}
3240
3241/*
3242 * Print out contents of the in-ram tlb1 table.
3243 */
3244void
3245tlb1_print_entries(void)
3246{
3247	int i;
3248
3249	debugf("tlb1[] table entries:\n");
3250	for (i = 0; i < TLB1_ENTRIES; i++)
3251		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3252}
3253
3254/*
3255 * Return 0 if the physical IO range is encompassed by one of the
3256 * the TLB1 entries, otherwise return related error code.
3257 */
3258static int
3259tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3260{
3261	uint32_t prot;
3262	vm_paddr_t pa_start;
3263	vm_paddr_t pa_end;
3264	unsigned int entry_tsize;
3265	vm_size_t entry_size;
3266
3267	*va = (vm_offset_t)NULL;
3268
3269	/* Skip invalid entries */
3270	if (!(tlb1[i].mas1 & MAS1_VALID))
3271		return (EINVAL);
3272
3273	/*
3274	 * The entry must be cache-inhibited, guarded, and r/w
3275	 * so it can function as an i/o page
3276	 */
3277	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3278	if (prot != (MAS2_I | MAS2_G))
3279		return (EPERM);
3280
3281	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3282	if (prot != (MAS3_SR | MAS3_SW))
3283		return (EPERM);
3284
3285	/* The address should be within the entry range. */
3286	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3287	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3288
3289	entry_size = tsize2size(entry_tsize);
3290	pa_start = tlb1[i].mas3 & MAS3_RPN;
3291	pa_end = pa_start + entry_size - 1;
3292
3293	if ((pa < pa_start) || ((pa + size) > pa_end))
3294		return (ERANGE);
3295
3296	/* Return virtual address of this mapping. */
3297	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3298	return (0);
3299}
3300