pmap.c revision 265998
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: stable/10/sys/powerpc/booke/pmap.c 265998 2014-05-14 01:16:05Z ian $");
53
54#include <sys/param.h>
55#include <sys/malloc.h>
56#include <sys/ktr.h>
57#include <sys/proc.h>
58#include <sys/user.h>
59#include <sys/queue.h>
60#include <sys/systm.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/rwlock.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#ifdef  DEBUG
96#define debugf(fmt, args...) printf(fmt, ##args)
97#else
98#define debugf(fmt, args...)
99#endif
100
101#define TODO			panic("%s: not implemented", __func__);
102
103extern struct mtx sched_lock;
104
105extern int dumpsys_minidump;
106
107extern unsigned char _etext[];
108extern unsigned char _end[];
109
110extern uint32_t *bootinfo;
111
112#ifdef SMP
113extern uint32_t bp_ntlb1s;
114#endif
115
116vm_paddr_t kernload;
117vm_offset_t kernstart;
118vm_size_t kernsize;
119
120/* Message buffer and tables. */
121static vm_offset_t data_start;
122static vm_size_t data_end;
123
124/* Phys/avail memory regions. */
125static struct mem_region *availmem_regions;
126static int availmem_regions_sz;
127static struct mem_region *physmem_regions;
128static int physmem_regions_sz;
129
130/* Reserved KVA space and mutex for mmu_booke_zero_page. */
131static vm_offset_t zero_page_va;
132static struct mtx zero_page_mutex;
133
134static struct mtx tlbivax_mutex;
135
136/*
137 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
138 * by idle thred only, no lock required.
139 */
140static vm_offset_t zero_page_idle_va;
141
142/* Reserved KVA space and mutex for mmu_booke_copy_page. */
143static vm_offset_t copy_page_src_va;
144static vm_offset_t copy_page_dst_va;
145static struct mtx copy_page_mutex;
146
147/**************************************************************************/
148/* PMAP */
149/**************************************************************************/
150
151static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
152    vm_prot_t, boolean_t);
153
154unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
155unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
156
157/*
158 * If user pmap is processed with mmu_booke_remove and the resident count
159 * drops to 0, there are no more pages to remove, so we need not continue.
160 */
161#define PMAP_REMOVE_DONE(pmap) \
162	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
163
164extern void tid_flush(tlbtid_t);
165
166/**************************************************************************/
167/* TLB and TID handling */
168/**************************************************************************/
169
170/* Translation ID busy table */
171static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
172
173/*
174 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
175 * core revisions and should be read from h/w registers during early config.
176 */
177uint32_t tlb0_entries;
178uint32_t tlb0_ways;
179uint32_t tlb0_entries_per_way;
180
181#define TLB0_ENTRIES		(tlb0_entries)
182#define TLB0_WAYS		(tlb0_ways)
183#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
184
185#define TLB1_ENTRIES 16
186
187/* In-ram copy of the TLB1 */
188static tlb_entry_t tlb1[TLB1_ENTRIES];
189
190/* Next free entry in the TLB1 */
191static unsigned int tlb1_idx;
192static vm_offset_t tlb1_map_base = VM_MAX_KERNEL_ADDRESS;
193
194static tlbtid_t tid_alloc(struct pmap *);
195
196static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
197
198static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
199static void tlb1_write_entry(unsigned int);
200static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
201static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
202
203static vm_size_t tsize2size(unsigned int);
204static unsigned int size2tsize(vm_size_t);
205static unsigned int ilog2(unsigned int);
206
207static void set_mas4_defaults(void);
208
209static inline void tlb0_flush_entry(vm_offset_t);
210static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
211
212/**************************************************************************/
213/* Page table management */
214/**************************************************************************/
215
216static struct rwlock_padalign pvh_global_lock;
217
218/* Data for the pv entry allocation mechanism */
219static uma_zone_t pvzone;
220static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
221
222#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
223
224#ifndef PMAP_SHPGPERPROC
225#define PMAP_SHPGPERPROC	200
226#endif
227
228static void ptbl_init(void);
229static struct ptbl_buf *ptbl_buf_alloc(void);
230static void ptbl_buf_free(struct ptbl_buf *);
231static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
232
233static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
234static void ptbl_free(mmu_t, pmap_t, unsigned int);
235static void ptbl_hold(mmu_t, pmap_t, unsigned int);
236static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
237
238static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
239static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
240static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
241static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
242
243static pv_entry_t pv_alloc(void);
244static void pv_free(pv_entry_t);
245static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
246static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
247
248/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
249#define PTBL_BUFS		(128 * 16)
250
251struct ptbl_buf {
252	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
253	vm_offset_t kva;		/* va of mapping */
254};
255
256/* ptbl free list and a lock used for access synchronization. */
257static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
258static struct mtx ptbl_buf_freelist_lock;
259
260/* Base address of kva space allocated fot ptbl bufs. */
261static vm_offset_t ptbl_buf_pool_vabase;
262
263/* Pointer to ptbl_buf structures. */
264static struct ptbl_buf *ptbl_bufs;
265
266void pmap_bootstrap_ap(volatile uint32_t *);
267
268/*
269 * Kernel MMU interface
270 */
271static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
272static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
273static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
274    vm_size_t, vm_offset_t);
275static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
276static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
277    vm_offset_t, vm_page_t *, vm_offset_t, int);
278static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
279    vm_prot_t, boolean_t);
280static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
281    vm_page_t, vm_prot_t);
282static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
283    vm_prot_t);
284static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
285static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
286    vm_prot_t);
287static void		mmu_booke_init(mmu_t);
288static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
289static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
290static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
291static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
292static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
293    int);
294static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
295    vm_paddr_t *);
296static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
297    vm_object_t, vm_pindex_t, vm_size_t);
298static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
299static void		mmu_booke_page_init(mmu_t, vm_page_t);
300static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
301static void		mmu_booke_pinit(mmu_t, pmap_t);
302static void		mmu_booke_pinit0(mmu_t, pmap_t);
303static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
304    vm_prot_t);
305static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
306static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
307static void		mmu_booke_release(mmu_t, pmap_t);
308static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
309static void		mmu_booke_remove_all(mmu_t, vm_page_t);
310static void		mmu_booke_remove_write(mmu_t, vm_page_t);
311static void		mmu_booke_zero_page(mmu_t, vm_page_t);
312static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
313static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
314static void		mmu_booke_activate(mmu_t, struct thread *);
315static void		mmu_booke_deactivate(mmu_t, struct thread *);
316static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
317static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
318static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
319static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
320static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
321static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
322static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
323static void		mmu_booke_kremove(mmu_t, vm_offset_t);
324static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
325static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
326    vm_size_t);
327static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
328    vm_size_t, vm_size_t *);
329static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
330    vm_size_t, vm_offset_t);
331static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
332
333static mmu_method_t mmu_booke_methods[] = {
334	/* pmap dispatcher interface */
335	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
336	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
337	MMUMETHOD(mmu_copy,		mmu_booke_copy),
338	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
339	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
340	MMUMETHOD(mmu_enter,		mmu_booke_enter),
341	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
342	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
343	MMUMETHOD(mmu_extract,		mmu_booke_extract),
344	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
345	MMUMETHOD(mmu_init,		mmu_booke_init),
346	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
347	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
348	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
349	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
350	MMUMETHOD(mmu_map,		mmu_booke_map),
351	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
352	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
353	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
354	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
355	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
356	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
357	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
358	MMUMETHOD(mmu_protect,		mmu_booke_protect),
359	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
360	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
361	MMUMETHOD(mmu_release,		mmu_booke_release),
362	MMUMETHOD(mmu_remove,		mmu_booke_remove),
363	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
364	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
365	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
366	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
367	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
368	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
369	MMUMETHOD(mmu_activate,		mmu_booke_activate),
370	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
371
372	/* Internal interfaces */
373	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
374	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
375	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
376	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
377	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
378	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
379	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
380/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
381	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
382
383	/* dumpsys() support */
384	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
385	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
386	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
387
388	{ 0, 0 }
389};
390
391MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
392
393static __inline uint32_t
394tlb_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
395{
396	uint32_t attrib;
397	int i;
398
399	if (ma != VM_MEMATTR_DEFAULT) {
400		switch (ma) {
401		case VM_MEMATTR_UNCACHEABLE:
402			return (PTE_I | PTE_G);
403		case VM_MEMATTR_WRITE_COMBINING:
404		case VM_MEMATTR_WRITE_BACK:
405		case VM_MEMATTR_PREFETCHABLE:
406			return (PTE_I);
407		case VM_MEMATTR_WRITE_THROUGH:
408			return (PTE_W | PTE_M);
409		}
410	}
411
412	/*
413	 * Assume the page is cache inhibited and access is guarded unless
414	 * it's in our available memory array.
415	 */
416	attrib = _TLB_ENTRY_IO;
417	for (i = 0; i < physmem_regions_sz; i++) {
418		if ((pa >= physmem_regions[i].mr_start) &&
419		    (pa < (physmem_regions[i].mr_start +
420		     physmem_regions[i].mr_size))) {
421			attrib = _TLB_ENTRY_MEM;
422			break;
423		}
424	}
425
426	return (attrib);
427}
428
429static inline void
430tlb_miss_lock(void)
431{
432#ifdef SMP
433	struct pcpu *pc;
434
435	if (!smp_started)
436		return;
437
438	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
439		if (pc != pcpup) {
440
441			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
442			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
443
444			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
445			    ("tlb_miss_lock: tried to lock self"));
446
447			tlb_lock(pc->pc_booke_tlb_lock);
448
449			CTR1(KTR_PMAP, "%s: locked", __func__);
450		}
451	}
452#endif
453}
454
455static inline void
456tlb_miss_unlock(void)
457{
458#ifdef SMP
459	struct pcpu *pc;
460
461	if (!smp_started)
462		return;
463
464	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
465		if (pc != pcpup) {
466			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
467			    __func__, pc->pc_cpuid);
468
469			tlb_unlock(pc->pc_booke_tlb_lock);
470
471			CTR1(KTR_PMAP, "%s: unlocked", __func__);
472		}
473	}
474#endif
475}
476
477/* Return number of entries in TLB0. */
478static __inline void
479tlb0_get_tlbconf(void)
480{
481	uint32_t tlb0_cfg;
482
483	tlb0_cfg = mfspr(SPR_TLB0CFG);
484	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
485	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
486	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
487}
488
489/* Initialize pool of kva ptbl buffers. */
490static void
491ptbl_init(void)
492{
493	int i;
494
495	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
496	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
497	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
498	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
499
500	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
501	TAILQ_INIT(&ptbl_buf_freelist);
502
503	for (i = 0; i < PTBL_BUFS; i++) {
504		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
505		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
506	}
507}
508
509/* Get a ptbl_buf from the freelist. */
510static struct ptbl_buf *
511ptbl_buf_alloc(void)
512{
513	struct ptbl_buf *buf;
514
515	mtx_lock(&ptbl_buf_freelist_lock);
516	buf = TAILQ_FIRST(&ptbl_buf_freelist);
517	if (buf != NULL)
518		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
519	mtx_unlock(&ptbl_buf_freelist_lock);
520
521	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
522
523	return (buf);
524}
525
526/* Return ptbl buff to free pool. */
527static void
528ptbl_buf_free(struct ptbl_buf *buf)
529{
530
531	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
532
533	mtx_lock(&ptbl_buf_freelist_lock);
534	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
535	mtx_unlock(&ptbl_buf_freelist_lock);
536}
537
538/*
539 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
540 */
541static void
542ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
543{
544	struct ptbl_buf *pbuf;
545
546	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
547
548	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
549
550	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
551		if (pbuf->kva == (vm_offset_t)ptbl) {
552			/* Remove from pmap ptbl buf list. */
553			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
554
555			/* Free corresponding ptbl buf. */
556			ptbl_buf_free(pbuf);
557			break;
558		}
559}
560
561/* Allocate page table. */
562static pte_t *
563ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
564{
565	vm_page_t mtbl[PTBL_PAGES];
566	vm_page_t m;
567	struct ptbl_buf *pbuf;
568	unsigned int pidx;
569	pte_t *ptbl;
570	int i;
571
572	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
573	    (pmap == kernel_pmap), pdir_idx);
574
575	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
576	    ("ptbl_alloc: invalid pdir_idx"));
577	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
578	    ("pte_alloc: valid ptbl entry exists!"));
579
580	pbuf = ptbl_buf_alloc();
581	if (pbuf == NULL)
582		panic("pte_alloc: couldn't alloc kernel virtual memory");
583
584	ptbl = (pte_t *)pbuf->kva;
585
586	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
587
588	/* Allocate ptbl pages, this will sleep! */
589	for (i = 0; i < PTBL_PAGES; i++) {
590		pidx = (PTBL_PAGES * pdir_idx) + i;
591		while ((m = vm_page_alloc(NULL, pidx,
592		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
593
594			PMAP_UNLOCK(pmap);
595			rw_wunlock(&pvh_global_lock);
596			VM_WAIT;
597			rw_wlock(&pvh_global_lock);
598			PMAP_LOCK(pmap);
599		}
600		mtbl[i] = m;
601	}
602
603	/* Map allocated pages into kernel_pmap. */
604	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
605
606	/* Zero whole ptbl. */
607	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
608
609	/* Add pbuf to the pmap ptbl bufs list. */
610	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
611
612	return (ptbl);
613}
614
615/* Free ptbl pages and invalidate pdir entry. */
616static void
617ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
618{
619	pte_t *ptbl;
620	vm_paddr_t pa;
621	vm_offset_t va;
622	vm_page_t m;
623	int i;
624
625	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
626	    (pmap == kernel_pmap), pdir_idx);
627
628	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
629	    ("ptbl_free: invalid pdir_idx"));
630
631	ptbl = pmap->pm_pdir[pdir_idx];
632
633	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
634
635	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
636
637	/*
638	 * Invalidate the pdir entry as soon as possible, so that other CPUs
639	 * don't attempt to look up the page tables we are releasing.
640	 */
641	mtx_lock_spin(&tlbivax_mutex);
642	tlb_miss_lock();
643
644	pmap->pm_pdir[pdir_idx] = NULL;
645
646	tlb_miss_unlock();
647	mtx_unlock_spin(&tlbivax_mutex);
648
649	for (i = 0; i < PTBL_PAGES; i++) {
650		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
651		pa = pte_vatopa(mmu, kernel_pmap, va);
652		m = PHYS_TO_VM_PAGE(pa);
653		vm_page_free_zero(m);
654		atomic_subtract_int(&cnt.v_wire_count, 1);
655		mmu_booke_kremove(mmu, va);
656	}
657
658	ptbl_free_pmap_ptbl(pmap, ptbl);
659}
660
661/*
662 * Decrement ptbl pages hold count and attempt to free ptbl pages.
663 * Called when removing pte entry from ptbl.
664 *
665 * Return 1 if ptbl pages were freed.
666 */
667static int
668ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
669{
670	pte_t *ptbl;
671	vm_paddr_t pa;
672	vm_page_t m;
673	int i;
674
675	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
676	    (pmap == kernel_pmap), pdir_idx);
677
678	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
679	    ("ptbl_unhold: invalid pdir_idx"));
680	KASSERT((pmap != kernel_pmap),
681	    ("ptbl_unhold: unholding kernel ptbl!"));
682
683	ptbl = pmap->pm_pdir[pdir_idx];
684
685	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
686	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
687	    ("ptbl_unhold: non kva ptbl"));
688
689	/* decrement hold count */
690	for (i = 0; i < PTBL_PAGES; i++) {
691		pa = pte_vatopa(mmu, kernel_pmap,
692		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
693		m = PHYS_TO_VM_PAGE(pa);
694		m->wire_count--;
695	}
696
697	/*
698	 * Free ptbl pages if there are no pte etries in this ptbl.
699	 * wire_count has the same value for all ptbl pages, so check the last
700	 * page.
701	 */
702	if (m->wire_count == 0) {
703		ptbl_free(mmu, pmap, pdir_idx);
704
705		//debugf("ptbl_unhold: e (freed ptbl)\n");
706		return (1);
707	}
708
709	return (0);
710}
711
712/*
713 * Increment hold count for ptbl pages. This routine is used when a new pte
714 * entry is being inserted into the ptbl.
715 */
716static void
717ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
718{
719	vm_paddr_t pa;
720	pte_t *ptbl;
721	vm_page_t m;
722	int i;
723
724	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
725	    pdir_idx);
726
727	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
728	    ("ptbl_hold: invalid pdir_idx"));
729	KASSERT((pmap != kernel_pmap),
730	    ("ptbl_hold: holding kernel ptbl!"));
731
732	ptbl = pmap->pm_pdir[pdir_idx];
733
734	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
735
736	for (i = 0; i < PTBL_PAGES; i++) {
737		pa = pte_vatopa(mmu, kernel_pmap,
738		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
739		m = PHYS_TO_VM_PAGE(pa);
740		m->wire_count++;
741	}
742}
743
744/* Allocate pv_entry structure. */
745pv_entry_t
746pv_alloc(void)
747{
748	pv_entry_t pv;
749
750	pv_entry_count++;
751	if (pv_entry_count > pv_entry_high_water)
752		pagedaemon_wakeup();
753	pv = uma_zalloc(pvzone, M_NOWAIT);
754
755	return (pv);
756}
757
758/* Free pv_entry structure. */
759static __inline void
760pv_free(pv_entry_t pve)
761{
762
763	pv_entry_count--;
764	uma_zfree(pvzone, pve);
765}
766
767
768/* Allocate and initialize pv_entry structure. */
769static void
770pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
771{
772	pv_entry_t pve;
773
774	//int su = (pmap == kernel_pmap);
775	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
776	//	(u_int32_t)pmap, va, (u_int32_t)m);
777
778	pve = pv_alloc();
779	if (pve == NULL)
780		panic("pv_insert: no pv entries!");
781
782	pve->pv_pmap = pmap;
783	pve->pv_va = va;
784
785	/* add to pv_list */
786	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
787	rw_assert(&pvh_global_lock, RA_WLOCKED);
788
789	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
790
791	//debugf("pv_insert: e\n");
792}
793
794/* Destroy pv entry. */
795static void
796pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
797{
798	pv_entry_t pve;
799
800	//int su = (pmap == kernel_pmap);
801	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
802
803	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
804	rw_assert(&pvh_global_lock, RA_WLOCKED);
805
806	/* find pv entry */
807	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
808		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
809			/* remove from pv_list */
810			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
811			if (TAILQ_EMPTY(&m->md.pv_list))
812				vm_page_aflag_clear(m, PGA_WRITEABLE);
813
814			/* free pv entry struct */
815			pv_free(pve);
816			break;
817		}
818	}
819
820	//debugf("pv_remove: e\n");
821}
822
823/*
824 * Clean pte entry, try to free page table page if requested.
825 *
826 * Return 1 if ptbl pages were freed, otherwise return 0.
827 */
828static int
829pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
830{
831	unsigned int pdir_idx = PDIR_IDX(va);
832	unsigned int ptbl_idx = PTBL_IDX(va);
833	vm_page_t m;
834	pte_t *ptbl;
835	pte_t *pte;
836
837	//int su = (pmap == kernel_pmap);
838	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
839	//		su, (u_int32_t)pmap, va, flags);
840
841	ptbl = pmap->pm_pdir[pdir_idx];
842	KASSERT(ptbl, ("pte_remove: null ptbl"));
843
844	pte = &ptbl[ptbl_idx];
845
846	if (pte == NULL || !PTE_ISVALID(pte))
847		return (0);
848
849	if (PTE_ISWIRED(pte))
850		pmap->pm_stats.wired_count--;
851
852	/* Handle managed entry. */
853	if (PTE_ISMANAGED(pte)) {
854		/* Get vm_page_t for mapped pte. */
855		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
856
857		if (PTE_ISMODIFIED(pte))
858			vm_page_dirty(m);
859
860		if (PTE_ISREFERENCED(pte))
861			vm_page_aflag_set(m, PGA_REFERENCED);
862
863		pv_remove(pmap, va, m);
864	}
865
866	mtx_lock_spin(&tlbivax_mutex);
867	tlb_miss_lock();
868
869	tlb0_flush_entry(va);
870	pte->flags = 0;
871	pte->rpn = 0;
872
873	tlb_miss_unlock();
874	mtx_unlock_spin(&tlbivax_mutex);
875
876	pmap->pm_stats.resident_count--;
877
878	if (flags & PTBL_UNHOLD) {
879		//debugf("pte_remove: e (unhold)\n");
880		return (ptbl_unhold(mmu, pmap, pdir_idx));
881	}
882
883	//debugf("pte_remove: e\n");
884	return (0);
885}
886
887/*
888 * Insert PTE for a given page and virtual address.
889 */
890static void
891pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
892{
893	unsigned int pdir_idx = PDIR_IDX(va);
894	unsigned int ptbl_idx = PTBL_IDX(va);
895	pte_t *ptbl, *pte;
896
897	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
898	    pmap == kernel_pmap, pmap, va);
899
900	/* Get the page table pointer. */
901	ptbl = pmap->pm_pdir[pdir_idx];
902
903	if (ptbl == NULL) {
904		/* Allocate page table pages. */
905		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
906	} else {
907		/*
908		 * Check if there is valid mapping for requested
909		 * va, if there is, remove it.
910		 */
911		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
912		if (PTE_ISVALID(pte)) {
913			pte_remove(mmu, pmap, va, PTBL_HOLD);
914		} else {
915			/*
916			 * pte is not used, increment hold count
917			 * for ptbl pages.
918			 */
919			if (pmap != kernel_pmap)
920				ptbl_hold(mmu, pmap, pdir_idx);
921		}
922	}
923
924	/*
925	 * Insert pv_entry into pv_list for mapped page if part of managed
926	 * memory.
927	 */
928	if ((m->oflags & VPO_UNMANAGED) == 0) {
929		flags |= PTE_MANAGED;
930
931		/* Create and insert pv entry. */
932		pv_insert(pmap, va, m);
933	}
934
935	pmap->pm_stats.resident_count++;
936
937	mtx_lock_spin(&tlbivax_mutex);
938	tlb_miss_lock();
939
940	tlb0_flush_entry(va);
941	if (pmap->pm_pdir[pdir_idx] == NULL) {
942		/*
943		 * If we just allocated a new page table, hook it in
944		 * the pdir.
945		 */
946		pmap->pm_pdir[pdir_idx] = ptbl;
947	}
948	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
949	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
950	pte->flags |= (PTE_VALID | flags);
951
952	tlb_miss_unlock();
953	mtx_unlock_spin(&tlbivax_mutex);
954}
955
956/* Return the pa for the given pmap/va. */
957static vm_paddr_t
958pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
959{
960	vm_paddr_t pa = 0;
961	pte_t *pte;
962
963	pte = pte_find(mmu, pmap, va);
964	if ((pte != NULL) && PTE_ISVALID(pte))
965		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
966	return (pa);
967}
968
969/* Get a pointer to a PTE in a page table. */
970static pte_t *
971pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
972{
973	unsigned int pdir_idx = PDIR_IDX(va);
974	unsigned int ptbl_idx = PTBL_IDX(va);
975
976	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
977
978	if (pmap->pm_pdir[pdir_idx])
979		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
980
981	return (NULL);
982}
983
984/**************************************************************************/
985/* PMAP related */
986/**************************************************************************/
987
988/*
989 * This is called during booke_init, before the system is really initialized.
990 */
991static void
992mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
993{
994	vm_offset_t phys_kernelend;
995	struct mem_region *mp, *mp1;
996	int cnt, i, j;
997	u_int s, e, sz;
998	u_int phys_avail_count;
999	vm_size_t physsz, hwphyssz, kstack0_sz;
1000	vm_offset_t kernel_pdir, kstack0, va;
1001	vm_paddr_t kstack0_phys;
1002	void *dpcpu;
1003	pte_t *pte;
1004
1005	debugf("mmu_booke_bootstrap: entered\n");
1006
1007	/* Initialize invalidation mutex */
1008	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1009
1010	/* Read TLB0 size and associativity. */
1011	tlb0_get_tlbconf();
1012
1013	/*
1014	 * Align kernel start and end address (kernel image).
1015	 * Note that kernel end does not necessarily relate to kernsize.
1016	 * kernsize is the size of the kernel that is actually mapped.
1017	 * Also note that "start - 1" is deliberate. With SMP, the
1018	 * entry point is exactly a page from the actual load address.
1019	 * As such, trunc_page() has no effect and we're off by a page.
1020	 * Since we always have the ELF header between the load address
1021	 * and the entry point, we can safely subtract 1 to compensate.
1022	 */
1023	kernstart = trunc_page(start - 1);
1024	data_start = round_page(kernelend);
1025	data_end = data_start;
1026
1027	/*
1028	 * Addresses of preloaded modules (like file systems) use
1029	 * physical addresses. Make sure we relocate those into
1030	 * virtual addresses.
1031	 */
1032	preload_addr_relocate = kernstart - kernload;
1033
1034	/* Allocate the dynamic per-cpu area. */
1035	dpcpu = (void *)data_end;
1036	data_end += DPCPU_SIZE;
1037
1038	/* Allocate space for the message buffer. */
1039	msgbufp = (struct msgbuf *)data_end;
1040	data_end += msgbufsize;
1041	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1042	    data_end);
1043
1044	data_end = round_page(data_end);
1045
1046	/* Allocate space for ptbl_bufs. */
1047	ptbl_bufs = (struct ptbl_buf *)data_end;
1048	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1049	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1050	    data_end);
1051
1052	data_end = round_page(data_end);
1053
1054	/* Allocate PTE tables for kernel KVA. */
1055	kernel_pdir = data_end;
1056	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1057	    PDIR_SIZE - 1) / PDIR_SIZE;
1058	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1059	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1060	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1061
1062	debugf(" data_end: 0x%08x\n", data_end);
1063	if (data_end - kernstart > kernsize) {
1064		kernsize += tlb1_mapin_region(kernstart + kernsize,
1065		    kernload + kernsize, (data_end - kernstart) - kernsize);
1066	}
1067	data_end = kernstart + kernsize;
1068	debugf(" updated data_end: 0x%08x\n", data_end);
1069
1070	/*
1071	 * Clear the structures - note we can only do it safely after the
1072	 * possible additional TLB1 translations are in place (above) so that
1073	 * all range up to the currently calculated 'data_end' is covered.
1074	 */
1075	dpcpu_init(dpcpu, 0);
1076	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1077	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1078
1079	/*******************************************************/
1080	/* Set the start and end of kva. */
1081	/*******************************************************/
1082	virtual_avail = round_page(data_end);
1083	virtual_end = VM_MAX_KERNEL_ADDRESS;
1084
1085	/* Allocate KVA space for page zero/copy operations. */
1086	zero_page_va = virtual_avail;
1087	virtual_avail += PAGE_SIZE;
1088	zero_page_idle_va = virtual_avail;
1089	virtual_avail += PAGE_SIZE;
1090	copy_page_src_va = virtual_avail;
1091	virtual_avail += PAGE_SIZE;
1092	copy_page_dst_va = virtual_avail;
1093	virtual_avail += PAGE_SIZE;
1094	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1095	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1096	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1097	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1098
1099	/* Initialize page zero/copy mutexes. */
1100	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1101	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1102
1103	/* Allocate KVA space for ptbl bufs. */
1104	ptbl_buf_pool_vabase = virtual_avail;
1105	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1106	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1107	    ptbl_buf_pool_vabase, virtual_avail);
1108
1109	/* Calculate corresponding physical addresses for the kernel region. */
1110	phys_kernelend = kernload + kernsize;
1111	debugf("kernel image and allocated data:\n");
1112	debugf(" kernload    = 0x%08x\n", kernload);
1113	debugf(" kernstart   = 0x%08x\n", kernstart);
1114	debugf(" kernsize    = 0x%08x\n", kernsize);
1115
1116	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1117		panic("mmu_booke_bootstrap: phys_avail too small");
1118
1119	/*
1120	 * Remove kernel physical address range from avail regions list. Page
1121	 * align all regions.  Non-page aligned memory isn't very interesting
1122	 * to us.  Also, sort the entries for ascending addresses.
1123	 */
1124
1125	/* Retrieve phys/avail mem regions */
1126	mem_regions(&physmem_regions, &physmem_regions_sz,
1127	    &availmem_regions, &availmem_regions_sz);
1128	sz = 0;
1129	cnt = availmem_regions_sz;
1130	debugf("processing avail regions:\n");
1131	for (mp = availmem_regions; mp->mr_size; mp++) {
1132		s = mp->mr_start;
1133		e = mp->mr_start + mp->mr_size;
1134		debugf(" %08x-%08x -> ", s, e);
1135		/* Check whether this region holds all of the kernel. */
1136		if (s < kernload && e > phys_kernelend) {
1137			availmem_regions[cnt].mr_start = phys_kernelend;
1138			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1139			e = kernload;
1140		}
1141		/* Look whether this regions starts within the kernel. */
1142		if (s >= kernload && s < phys_kernelend) {
1143			if (e <= phys_kernelend)
1144				goto empty;
1145			s = phys_kernelend;
1146		}
1147		/* Now look whether this region ends within the kernel. */
1148		if (e > kernload && e <= phys_kernelend) {
1149			if (s >= kernload)
1150				goto empty;
1151			e = kernload;
1152		}
1153		/* Now page align the start and size of the region. */
1154		s = round_page(s);
1155		e = trunc_page(e);
1156		if (e < s)
1157			e = s;
1158		sz = e - s;
1159		debugf("%08x-%08x = %x\n", s, e, sz);
1160
1161		/* Check whether some memory is left here. */
1162		if (sz == 0) {
1163		empty:
1164			memmove(mp, mp + 1,
1165			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1166			cnt--;
1167			mp--;
1168			continue;
1169		}
1170
1171		/* Do an insertion sort. */
1172		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1173			if (s < mp1->mr_start)
1174				break;
1175		if (mp1 < mp) {
1176			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1177			mp1->mr_start = s;
1178			mp1->mr_size = sz;
1179		} else {
1180			mp->mr_start = s;
1181			mp->mr_size = sz;
1182		}
1183	}
1184	availmem_regions_sz = cnt;
1185
1186	/*******************************************************/
1187	/* Steal physical memory for kernel stack from the end */
1188	/* of the first avail region                           */
1189	/*******************************************************/
1190	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1191	kstack0_phys = availmem_regions[0].mr_start +
1192	    availmem_regions[0].mr_size;
1193	kstack0_phys -= kstack0_sz;
1194	availmem_regions[0].mr_size -= kstack0_sz;
1195
1196	/*******************************************************/
1197	/* Fill in phys_avail table, based on availmem_regions */
1198	/*******************************************************/
1199	phys_avail_count = 0;
1200	physsz = 0;
1201	hwphyssz = 0;
1202	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1203
1204	debugf("fill in phys_avail:\n");
1205	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1206
1207		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1208		    availmem_regions[i].mr_start,
1209		    availmem_regions[i].mr_start +
1210		        availmem_regions[i].mr_size,
1211		    availmem_regions[i].mr_size);
1212
1213		if (hwphyssz != 0 &&
1214		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1215			debugf(" hw.physmem adjust\n");
1216			if (physsz < hwphyssz) {
1217				phys_avail[j] = availmem_regions[i].mr_start;
1218				phys_avail[j + 1] =
1219				    availmem_regions[i].mr_start +
1220				    hwphyssz - physsz;
1221				physsz = hwphyssz;
1222				phys_avail_count++;
1223			}
1224			break;
1225		}
1226
1227		phys_avail[j] = availmem_regions[i].mr_start;
1228		phys_avail[j + 1] = availmem_regions[i].mr_start +
1229		    availmem_regions[i].mr_size;
1230		phys_avail_count++;
1231		physsz += availmem_regions[i].mr_size;
1232	}
1233	physmem = btoc(physsz);
1234
1235	/* Calculate the last available physical address. */
1236	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1237		;
1238	Maxmem = powerpc_btop(phys_avail[i + 1]);
1239
1240	debugf("Maxmem = 0x%08lx\n", Maxmem);
1241	debugf("phys_avail_count = %d\n", phys_avail_count);
1242	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1243	    physmem);
1244
1245	/*******************************************************/
1246	/* Initialize (statically allocated) kernel pmap. */
1247	/*******************************************************/
1248	PMAP_LOCK_INIT(kernel_pmap);
1249	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1250
1251	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1252	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1253	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1254	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1255
1256	/* Initialize kernel pdir */
1257	for (i = 0; i < kernel_ptbls; i++)
1258		kernel_pmap->pm_pdir[kptbl_min + i] =
1259		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1260
1261	for (i = 0; i < MAXCPU; i++) {
1262		kernel_pmap->pm_tid[i] = TID_KERNEL;
1263
1264		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1265		tidbusy[i][0] = kernel_pmap;
1266	}
1267
1268	/*
1269	 * Fill in PTEs covering kernel code and data. They are not required
1270	 * for address translation, as this area is covered by static TLB1
1271	 * entries, but for pte_vatopa() to work correctly with kernel area
1272	 * addresses.
1273	 */
1274	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1275		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1276		pte->rpn = kernload + (va - kernstart);
1277		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1278		    PTE_VALID;
1279	}
1280	/* Mark kernel_pmap active on all CPUs */
1281	CPU_FILL(&kernel_pmap->pm_active);
1282
1283 	/*
1284	 * Initialize the global pv list lock.
1285	 */
1286	rw_init(&pvh_global_lock, "pmap pv global");
1287
1288	/*******************************************************/
1289	/* Final setup */
1290	/*******************************************************/
1291
1292	/* Enter kstack0 into kernel map, provide guard page */
1293	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1294	thread0.td_kstack = kstack0;
1295	thread0.td_kstack_pages = KSTACK_PAGES;
1296
1297	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1298	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1299	    kstack0_phys, kstack0_phys + kstack0_sz);
1300	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1301
1302	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1303	for (i = 0; i < KSTACK_PAGES; i++) {
1304		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1305		kstack0 += PAGE_SIZE;
1306		kstack0_phys += PAGE_SIZE;
1307	}
1308
1309	debugf("virtual_avail = %08x\n", virtual_avail);
1310	debugf("virtual_end   = %08x\n", virtual_end);
1311
1312	debugf("mmu_booke_bootstrap: exit\n");
1313}
1314
1315void
1316pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1317{
1318	int i;
1319
1320	/*
1321	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1322	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1323	 * these values directly to (re)program AP's TLB1 hardware.
1324	 */
1325	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1326		/* Skip invalid entries */
1327		if (!(tlb1[i].mas1 & MAS1_VALID))
1328			continue;
1329
1330		tlb1_write_entry(i);
1331	}
1332
1333	set_mas4_defaults();
1334}
1335
1336/*
1337 * Get the physical page address for the given pmap/virtual address.
1338 */
1339static vm_paddr_t
1340mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1341{
1342	vm_paddr_t pa;
1343
1344	PMAP_LOCK(pmap);
1345	pa = pte_vatopa(mmu, pmap, va);
1346	PMAP_UNLOCK(pmap);
1347
1348	return (pa);
1349}
1350
1351/*
1352 * Extract the physical page address associated with the given
1353 * kernel virtual address.
1354 */
1355static vm_paddr_t
1356mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1357{
1358	int i;
1359
1360	/* Check TLB1 mappings */
1361	for (i = 0; i < tlb1_idx; i++) {
1362		if (!(tlb1[i].mas1 & MAS1_VALID))
1363			continue;
1364		if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size)
1365			return (tlb1[i].phys + (va - tlb1[i].virt));
1366	}
1367
1368	return (pte_vatopa(mmu, kernel_pmap, va));
1369}
1370
1371/*
1372 * Initialize the pmap module.
1373 * Called by vm_init, to initialize any structures that the pmap
1374 * system needs to map virtual memory.
1375 */
1376static void
1377mmu_booke_init(mmu_t mmu)
1378{
1379	int shpgperproc = PMAP_SHPGPERPROC;
1380
1381	/*
1382	 * Initialize the address space (zone) for the pv entries.  Set a
1383	 * high water mark so that the system can recover from excessive
1384	 * numbers of pv entries.
1385	 */
1386	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1387	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1388
1389	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1390	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1391
1392	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1393	pv_entry_high_water = 9 * (pv_entry_max / 10);
1394
1395	uma_zone_reserve_kva(pvzone, pv_entry_max);
1396
1397	/* Pre-fill pvzone with initial number of pv entries. */
1398	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1399
1400	/* Initialize ptbl allocation. */
1401	ptbl_init();
1402}
1403
1404/*
1405 * Map a list of wired pages into kernel virtual address space.  This is
1406 * intended for temporary mappings which do not need page modification or
1407 * references recorded.  Existing mappings in the region are overwritten.
1408 */
1409static void
1410mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1411{
1412	vm_offset_t va;
1413
1414	va = sva;
1415	while (count-- > 0) {
1416		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1417		va += PAGE_SIZE;
1418		m++;
1419	}
1420}
1421
1422/*
1423 * Remove page mappings from kernel virtual address space.  Intended for
1424 * temporary mappings entered by mmu_booke_qenter.
1425 */
1426static void
1427mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1428{
1429	vm_offset_t va;
1430
1431	va = sva;
1432	while (count-- > 0) {
1433		mmu_booke_kremove(mmu, va);
1434		va += PAGE_SIZE;
1435	}
1436}
1437
1438/*
1439 * Map a wired page into kernel virtual address space.
1440 */
1441static void
1442mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1443{
1444
1445	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1446}
1447
1448static void
1449mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1450{
1451	unsigned int pdir_idx = PDIR_IDX(va);
1452	unsigned int ptbl_idx = PTBL_IDX(va);
1453	uint32_t flags;
1454	pte_t *pte;
1455
1456	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1457	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1458
1459	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1460	flags |= tlb_calc_wimg(pa, ma);
1461
1462	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1463
1464	mtx_lock_spin(&tlbivax_mutex);
1465	tlb_miss_lock();
1466
1467	if (PTE_ISVALID(pte)) {
1468
1469		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1470
1471		/* Flush entry from TLB0 */
1472		tlb0_flush_entry(va);
1473	}
1474
1475	pte->rpn = pa & ~PTE_PA_MASK;
1476	pte->flags = flags;
1477
1478	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1479	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1480	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1481
1482	/* Flush the real memory from the instruction cache. */
1483	if ((flags & (PTE_I | PTE_G)) == 0) {
1484		__syncicache((void *)va, PAGE_SIZE);
1485	}
1486
1487	tlb_miss_unlock();
1488	mtx_unlock_spin(&tlbivax_mutex);
1489}
1490
1491/*
1492 * Remove a page from kernel page table.
1493 */
1494static void
1495mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1496{
1497	unsigned int pdir_idx = PDIR_IDX(va);
1498	unsigned int ptbl_idx = PTBL_IDX(va);
1499	pte_t *pte;
1500
1501//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1502
1503	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1504	    (va <= VM_MAX_KERNEL_ADDRESS)),
1505	    ("mmu_booke_kremove: invalid va"));
1506
1507	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1508
1509	if (!PTE_ISVALID(pte)) {
1510
1511		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1512
1513		return;
1514	}
1515
1516	mtx_lock_spin(&tlbivax_mutex);
1517	tlb_miss_lock();
1518
1519	/* Invalidate entry in TLB0, update PTE. */
1520	tlb0_flush_entry(va);
1521	pte->flags = 0;
1522	pte->rpn = 0;
1523
1524	tlb_miss_unlock();
1525	mtx_unlock_spin(&tlbivax_mutex);
1526}
1527
1528/*
1529 * Initialize pmap associated with process 0.
1530 */
1531static void
1532mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1533{
1534
1535	PMAP_LOCK_INIT(pmap);
1536	mmu_booke_pinit(mmu, pmap);
1537	PCPU_SET(curpmap, pmap);
1538}
1539
1540/*
1541 * Initialize a preallocated and zeroed pmap structure,
1542 * such as one in a vmspace structure.
1543 */
1544static void
1545mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1546{
1547	int i;
1548
1549	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1550	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1551
1552	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1553
1554	for (i = 0; i < MAXCPU; i++)
1555		pmap->pm_tid[i] = TID_NONE;
1556	CPU_ZERO(&kernel_pmap->pm_active);
1557	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1558	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1559	TAILQ_INIT(&pmap->pm_ptbl_list);
1560}
1561
1562/*
1563 * Release any resources held by the given physical map.
1564 * Called when a pmap initialized by mmu_booke_pinit is being released.
1565 * Should only be called if the map contains no valid mappings.
1566 */
1567static void
1568mmu_booke_release(mmu_t mmu, pmap_t pmap)
1569{
1570
1571	KASSERT(pmap->pm_stats.resident_count == 0,
1572	    ("pmap_release: pmap resident count %ld != 0",
1573	    pmap->pm_stats.resident_count));
1574}
1575
1576/*
1577 * Insert the given physical page at the specified virtual address in the
1578 * target physical map with the protection requested. If specified the page
1579 * will be wired down.
1580 */
1581static void
1582mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1583    vm_prot_t prot, boolean_t wired)
1584{
1585
1586	rw_wlock(&pvh_global_lock);
1587	PMAP_LOCK(pmap);
1588	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1589	rw_wunlock(&pvh_global_lock);
1590	PMAP_UNLOCK(pmap);
1591}
1592
1593static void
1594mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1595    vm_prot_t prot, boolean_t wired)
1596{
1597	pte_t *pte;
1598	vm_paddr_t pa;
1599	uint32_t flags;
1600	int su, sync;
1601
1602	pa = VM_PAGE_TO_PHYS(m);
1603	su = (pmap == kernel_pmap);
1604	sync = 0;
1605
1606	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1607	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1608	//		(u_int32_t)pmap, su, pmap->pm_tid,
1609	//		(u_int32_t)m, va, pa, prot, wired);
1610
1611	if (su) {
1612		KASSERT(((va >= virtual_avail) &&
1613		    (va <= VM_MAX_KERNEL_ADDRESS)),
1614		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1615	} else {
1616		KASSERT((va <= VM_MAXUSER_ADDRESS),
1617		    ("mmu_booke_enter_locked: user pmap, non user va"));
1618	}
1619	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1620		VM_OBJECT_ASSERT_LOCKED(m->object);
1621
1622	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1623
1624	/*
1625	 * If there is an existing mapping, and the physical address has not
1626	 * changed, must be protection or wiring change.
1627	 */
1628	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1629	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1630
1631		/*
1632		 * Before actually updating pte->flags we calculate and
1633		 * prepare its new value in a helper var.
1634		 */
1635		flags = pte->flags;
1636		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1637
1638		/* Wiring change, just update stats. */
1639		if (wired) {
1640			if (!PTE_ISWIRED(pte)) {
1641				flags |= PTE_WIRED;
1642				pmap->pm_stats.wired_count++;
1643			}
1644		} else {
1645			if (PTE_ISWIRED(pte)) {
1646				flags &= ~PTE_WIRED;
1647				pmap->pm_stats.wired_count--;
1648			}
1649		}
1650
1651		if (prot & VM_PROT_WRITE) {
1652			/* Add write permissions. */
1653			flags |= PTE_SW;
1654			if (!su)
1655				flags |= PTE_UW;
1656
1657			if ((flags & PTE_MANAGED) != 0)
1658				vm_page_aflag_set(m, PGA_WRITEABLE);
1659		} else {
1660			/* Handle modified pages, sense modify status. */
1661
1662			/*
1663			 * The PTE_MODIFIED flag could be set by underlying
1664			 * TLB misses since we last read it (above), possibly
1665			 * other CPUs could update it so we check in the PTE
1666			 * directly rather than rely on that saved local flags
1667			 * copy.
1668			 */
1669			if (PTE_ISMODIFIED(pte))
1670				vm_page_dirty(m);
1671		}
1672
1673		if (prot & VM_PROT_EXECUTE) {
1674			flags |= PTE_SX;
1675			if (!su)
1676				flags |= PTE_UX;
1677
1678			/*
1679			 * Check existing flags for execute permissions: if we
1680			 * are turning execute permissions on, icache should
1681			 * be flushed.
1682			 */
1683			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1684				sync++;
1685		}
1686
1687		flags &= ~PTE_REFERENCED;
1688
1689		/*
1690		 * The new flags value is all calculated -- only now actually
1691		 * update the PTE.
1692		 */
1693		mtx_lock_spin(&tlbivax_mutex);
1694		tlb_miss_lock();
1695
1696		tlb0_flush_entry(va);
1697		pte->flags = flags;
1698
1699		tlb_miss_unlock();
1700		mtx_unlock_spin(&tlbivax_mutex);
1701
1702	} else {
1703		/*
1704		 * If there is an existing mapping, but it's for a different
1705		 * physical address, pte_enter() will delete the old mapping.
1706		 */
1707		//if ((pte != NULL) && PTE_ISVALID(pte))
1708		//	debugf("mmu_booke_enter_locked: replace\n");
1709		//else
1710		//	debugf("mmu_booke_enter_locked: new\n");
1711
1712		/* Now set up the flags and install the new mapping. */
1713		flags = (PTE_SR | PTE_VALID);
1714		flags |= PTE_M;
1715
1716		if (!su)
1717			flags |= PTE_UR;
1718
1719		if (prot & VM_PROT_WRITE) {
1720			flags |= PTE_SW;
1721			if (!su)
1722				flags |= PTE_UW;
1723
1724			if ((m->oflags & VPO_UNMANAGED) == 0)
1725				vm_page_aflag_set(m, PGA_WRITEABLE);
1726		}
1727
1728		if (prot & VM_PROT_EXECUTE) {
1729			flags |= PTE_SX;
1730			if (!su)
1731				flags |= PTE_UX;
1732		}
1733
1734		/* If its wired update stats. */
1735		if (wired) {
1736			pmap->pm_stats.wired_count++;
1737			flags |= PTE_WIRED;
1738		}
1739
1740		pte_enter(mmu, pmap, m, va, flags);
1741
1742		/* Flush the real memory from the instruction cache. */
1743		if (prot & VM_PROT_EXECUTE)
1744			sync++;
1745	}
1746
1747	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1748		__syncicache((void *)va, PAGE_SIZE);
1749		sync = 0;
1750	}
1751}
1752
1753/*
1754 * Maps a sequence of resident pages belonging to the same object.
1755 * The sequence begins with the given page m_start.  This page is
1756 * mapped at the given virtual address start.  Each subsequent page is
1757 * mapped at a virtual address that is offset from start by the same
1758 * amount as the page is offset from m_start within the object.  The
1759 * last page in the sequence is the page with the largest offset from
1760 * m_start that can be mapped at a virtual address less than the given
1761 * virtual address end.  Not every virtual page between start and end
1762 * is mapped; only those for which a resident page exists with the
1763 * corresponding offset from m_start are mapped.
1764 */
1765static void
1766mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1767    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1768{
1769	vm_page_t m;
1770	vm_pindex_t diff, psize;
1771
1772	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1773
1774	psize = atop(end - start);
1775	m = m_start;
1776	rw_wlock(&pvh_global_lock);
1777	PMAP_LOCK(pmap);
1778	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1779		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1780		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1781		m = TAILQ_NEXT(m, listq);
1782	}
1783	rw_wunlock(&pvh_global_lock);
1784	PMAP_UNLOCK(pmap);
1785}
1786
1787static void
1788mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1789    vm_prot_t prot)
1790{
1791
1792	rw_wlock(&pvh_global_lock);
1793	PMAP_LOCK(pmap);
1794	mmu_booke_enter_locked(mmu, pmap, va, m,
1795	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1796	rw_wunlock(&pvh_global_lock);
1797	PMAP_UNLOCK(pmap);
1798}
1799
1800/*
1801 * Remove the given range of addresses from the specified map.
1802 *
1803 * It is assumed that the start and end are properly rounded to the page size.
1804 */
1805static void
1806mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1807{
1808	pte_t *pte;
1809	uint8_t hold_flag;
1810
1811	int su = (pmap == kernel_pmap);
1812
1813	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1814	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1815
1816	if (su) {
1817		KASSERT(((va >= virtual_avail) &&
1818		    (va <= VM_MAX_KERNEL_ADDRESS)),
1819		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1820	} else {
1821		KASSERT((va <= VM_MAXUSER_ADDRESS),
1822		    ("mmu_booke_remove: user pmap, non user va"));
1823	}
1824
1825	if (PMAP_REMOVE_DONE(pmap)) {
1826		//debugf("mmu_booke_remove: e (empty)\n");
1827		return;
1828	}
1829
1830	hold_flag = PTBL_HOLD_FLAG(pmap);
1831	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1832
1833	rw_wlock(&pvh_global_lock);
1834	PMAP_LOCK(pmap);
1835	for (; va < endva; va += PAGE_SIZE) {
1836		pte = pte_find(mmu, pmap, va);
1837		if ((pte != NULL) && PTE_ISVALID(pte))
1838			pte_remove(mmu, pmap, va, hold_flag);
1839	}
1840	PMAP_UNLOCK(pmap);
1841	rw_wunlock(&pvh_global_lock);
1842
1843	//debugf("mmu_booke_remove: e\n");
1844}
1845
1846/*
1847 * Remove physical page from all pmaps in which it resides.
1848 */
1849static void
1850mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1851{
1852	pv_entry_t pv, pvn;
1853	uint8_t hold_flag;
1854
1855	rw_wlock(&pvh_global_lock);
1856	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1857		pvn = TAILQ_NEXT(pv, pv_link);
1858
1859		PMAP_LOCK(pv->pv_pmap);
1860		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1861		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1862		PMAP_UNLOCK(pv->pv_pmap);
1863	}
1864	vm_page_aflag_clear(m, PGA_WRITEABLE);
1865	rw_wunlock(&pvh_global_lock);
1866}
1867
1868/*
1869 * Map a range of physical addresses into kernel virtual address space.
1870 */
1871static vm_offset_t
1872mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1873    vm_paddr_t pa_end, int prot)
1874{
1875	vm_offset_t sva = *virt;
1876	vm_offset_t va = sva;
1877
1878	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1879	//		sva, pa_start, pa_end);
1880
1881	while (pa_start < pa_end) {
1882		mmu_booke_kenter(mmu, va, pa_start);
1883		va += PAGE_SIZE;
1884		pa_start += PAGE_SIZE;
1885	}
1886	*virt = va;
1887
1888	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1889	return (sva);
1890}
1891
1892/*
1893 * The pmap must be activated before it's address space can be accessed in any
1894 * way.
1895 */
1896static void
1897mmu_booke_activate(mmu_t mmu, struct thread *td)
1898{
1899	pmap_t pmap;
1900	u_int cpuid;
1901
1902	pmap = &td->td_proc->p_vmspace->vm_pmap;
1903
1904	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1905	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1906
1907	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1908
1909	mtx_lock_spin(&sched_lock);
1910
1911	cpuid = PCPU_GET(cpuid);
1912	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1913	PCPU_SET(curpmap, pmap);
1914
1915	if (pmap->pm_tid[cpuid] == TID_NONE)
1916		tid_alloc(pmap);
1917
1918	/* Load PID0 register with pmap tid value. */
1919	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1920	__asm __volatile("isync");
1921
1922	mtx_unlock_spin(&sched_lock);
1923
1924	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1925	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1926}
1927
1928/*
1929 * Deactivate the specified process's address space.
1930 */
1931static void
1932mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1933{
1934	pmap_t pmap;
1935
1936	pmap = &td->td_proc->p_vmspace->vm_pmap;
1937
1938	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1939	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1940
1941	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1942	PCPU_SET(curpmap, NULL);
1943}
1944
1945/*
1946 * Copy the range specified by src_addr/len
1947 * from the source map to the range dst_addr/len
1948 * in the destination map.
1949 *
1950 * This routine is only advisory and need not do anything.
1951 */
1952static void
1953mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1954    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1955{
1956
1957}
1958
1959/*
1960 * Set the physical protection on the specified range of this map as requested.
1961 */
1962static void
1963mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1964    vm_prot_t prot)
1965{
1966	vm_offset_t va;
1967	vm_page_t m;
1968	pte_t *pte;
1969
1970	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1971		mmu_booke_remove(mmu, pmap, sva, eva);
1972		return;
1973	}
1974
1975	if (prot & VM_PROT_WRITE)
1976		return;
1977
1978	PMAP_LOCK(pmap);
1979	for (va = sva; va < eva; va += PAGE_SIZE) {
1980		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1981			if (PTE_ISVALID(pte)) {
1982				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1983
1984				mtx_lock_spin(&tlbivax_mutex);
1985				tlb_miss_lock();
1986
1987				/* Handle modified pages. */
1988				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1989					vm_page_dirty(m);
1990
1991				tlb0_flush_entry(va);
1992				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1993
1994				tlb_miss_unlock();
1995				mtx_unlock_spin(&tlbivax_mutex);
1996			}
1997		}
1998	}
1999	PMAP_UNLOCK(pmap);
2000}
2001
2002/*
2003 * Clear the write and modified bits in each of the given page's mappings.
2004 */
2005static void
2006mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2007{
2008	pv_entry_t pv;
2009	pte_t *pte;
2010
2011	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2012	    ("mmu_booke_remove_write: page %p is not managed", m));
2013
2014	/*
2015	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2016	 * set by another thread while the object is locked.  Thus,
2017	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2018	 */
2019	VM_OBJECT_ASSERT_WLOCKED(m->object);
2020	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2021		return;
2022	rw_wlock(&pvh_global_lock);
2023	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2024		PMAP_LOCK(pv->pv_pmap);
2025		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2026			if (PTE_ISVALID(pte)) {
2027				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2028
2029				mtx_lock_spin(&tlbivax_mutex);
2030				tlb_miss_lock();
2031
2032				/* Handle modified pages. */
2033				if (PTE_ISMODIFIED(pte))
2034					vm_page_dirty(m);
2035
2036				/* Flush mapping from TLB0. */
2037				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2038
2039				tlb_miss_unlock();
2040				mtx_unlock_spin(&tlbivax_mutex);
2041			}
2042		}
2043		PMAP_UNLOCK(pv->pv_pmap);
2044	}
2045	vm_page_aflag_clear(m, PGA_WRITEABLE);
2046	rw_wunlock(&pvh_global_lock);
2047}
2048
2049static void
2050mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2051{
2052	pte_t *pte;
2053	pmap_t pmap;
2054	vm_page_t m;
2055	vm_offset_t addr;
2056	vm_paddr_t pa;
2057	int active, valid;
2058
2059	va = trunc_page(va);
2060	sz = round_page(sz);
2061
2062	rw_wlock(&pvh_global_lock);
2063	pmap = PCPU_GET(curpmap);
2064	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2065	while (sz > 0) {
2066		PMAP_LOCK(pm);
2067		pte = pte_find(mmu, pm, va);
2068		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2069		if (valid)
2070			pa = PTE_PA(pte);
2071		PMAP_UNLOCK(pm);
2072		if (valid) {
2073			if (!active) {
2074				/* Create a mapping in the active pmap. */
2075				addr = 0;
2076				m = PHYS_TO_VM_PAGE(pa);
2077				PMAP_LOCK(pmap);
2078				pte_enter(mmu, pmap, m, addr,
2079				    PTE_SR | PTE_VALID | PTE_UR);
2080				__syncicache((void *)addr, PAGE_SIZE);
2081				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2082				PMAP_UNLOCK(pmap);
2083			} else
2084				__syncicache((void *)va, PAGE_SIZE);
2085		}
2086		va += PAGE_SIZE;
2087		sz -= PAGE_SIZE;
2088	}
2089	rw_wunlock(&pvh_global_lock);
2090}
2091
2092/*
2093 * Atomically extract and hold the physical page with the given
2094 * pmap and virtual address pair if that mapping permits the given
2095 * protection.
2096 */
2097static vm_page_t
2098mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2099    vm_prot_t prot)
2100{
2101	pte_t *pte;
2102	vm_page_t m;
2103	uint32_t pte_wbit;
2104	vm_paddr_t pa;
2105
2106	m = NULL;
2107	pa = 0;
2108	PMAP_LOCK(pmap);
2109retry:
2110	pte = pte_find(mmu, pmap, va);
2111	if ((pte != NULL) && PTE_ISVALID(pte)) {
2112		if (pmap == kernel_pmap)
2113			pte_wbit = PTE_SW;
2114		else
2115			pte_wbit = PTE_UW;
2116
2117		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2118			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2119				goto retry;
2120			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2121			vm_page_hold(m);
2122		}
2123	}
2124
2125	PA_UNLOCK_COND(pa);
2126	PMAP_UNLOCK(pmap);
2127	return (m);
2128}
2129
2130/*
2131 * Initialize a vm_page's machine-dependent fields.
2132 */
2133static void
2134mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2135{
2136
2137	TAILQ_INIT(&m->md.pv_list);
2138}
2139
2140/*
2141 * mmu_booke_zero_page_area zeros the specified hardware page by
2142 * mapping it into virtual memory and using bzero to clear
2143 * its contents.
2144 *
2145 * off and size must reside within a single page.
2146 */
2147static void
2148mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2149{
2150	vm_offset_t va;
2151
2152	/* XXX KASSERT off and size are within a single page? */
2153
2154	mtx_lock(&zero_page_mutex);
2155	va = zero_page_va;
2156
2157	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2158	bzero((caddr_t)va + off, size);
2159	mmu_booke_kremove(mmu, va);
2160
2161	mtx_unlock(&zero_page_mutex);
2162}
2163
2164/*
2165 * mmu_booke_zero_page zeros the specified hardware page.
2166 */
2167static void
2168mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2169{
2170
2171	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2172}
2173
2174/*
2175 * mmu_booke_copy_page copies the specified (machine independent) page by
2176 * mapping the page into virtual memory and using memcopy to copy the page,
2177 * one machine dependent page at a time.
2178 */
2179static void
2180mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2181{
2182	vm_offset_t sva, dva;
2183
2184	sva = copy_page_src_va;
2185	dva = copy_page_dst_va;
2186
2187	mtx_lock(&copy_page_mutex);
2188	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2189	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2190	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2191	mmu_booke_kremove(mmu, dva);
2192	mmu_booke_kremove(mmu, sva);
2193	mtx_unlock(&copy_page_mutex);
2194}
2195
2196static inline void
2197mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2198    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2199{
2200	void *a_cp, *b_cp;
2201	vm_offset_t a_pg_offset, b_pg_offset;
2202	int cnt;
2203
2204	mtx_lock(&copy_page_mutex);
2205	while (xfersize > 0) {
2206		a_pg_offset = a_offset & PAGE_MASK;
2207		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2208		mmu_booke_kenter(mmu, copy_page_src_va,
2209		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2210		a_cp = (char *)copy_page_src_va + a_pg_offset;
2211		b_pg_offset = b_offset & PAGE_MASK;
2212		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2213		mmu_booke_kenter(mmu, copy_page_dst_va,
2214		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2215		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2216		bcopy(a_cp, b_cp, cnt);
2217		mmu_booke_kremove(mmu, copy_page_dst_va);
2218		mmu_booke_kremove(mmu, copy_page_src_va);
2219		a_offset += cnt;
2220		b_offset += cnt;
2221		xfersize -= cnt;
2222	}
2223	mtx_unlock(&copy_page_mutex);
2224}
2225
2226/*
2227 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2228 * into virtual memory and using bzero to clear its contents. This is intended
2229 * to be called from the vm_pagezero process only and outside of Giant. No
2230 * lock is required.
2231 */
2232static void
2233mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2234{
2235	vm_offset_t va;
2236
2237	va = zero_page_idle_va;
2238	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2239	bzero((caddr_t)va, PAGE_SIZE);
2240	mmu_booke_kremove(mmu, va);
2241}
2242
2243/*
2244 * Return whether or not the specified physical page was modified
2245 * in any of physical maps.
2246 */
2247static boolean_t
2248mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2249{
2250	pte_t *pte;
2251	pv_entry_t pv;
2252	boolean_t rv;
2253
2254	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2255	    ("mmu_booke_is_modified: page %p is not managed", m));
2256	rv = FALSE;
2257
2258	/*
2259	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2260	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2261	 * is clear, no PTEs can be modified.
2262	 */
2263	VM_OBJECT_ASSERT_WLOCKED(m->object);
2264	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2265		return (rv);
2266	rw_wlock(&pvh_global_lock);
2267	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2268		PMAP_LOCK(pv->pv_pmap);
2269		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2270		    PTE_ISVALID(pte)) {
2271			if (PTE_ISMODIFIED(pte))
2272				rv = TRUE;
2273		}
2274		PMAP_UNLOCK(pv->pv_pmap);
2275		if (rv)
2276			break;
2277	}
2278	rw_wunlock(&pvh_global_lock);
2279	return (rv);
2280}
2281
2282/*
2283 * Return whether or not the specified virtual address is eligible
2284 * for prefault.
2285 */
2286static boolean_t
2287mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2288{
2289
2290	return (FALSE);
2291}
2292
2293/*
2294 * Return whether or not the specified physical page was referenced
2295 * in any physical maps.
2296 */
2297static boolean_t
2298mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2299{
2300	pte_t *pte;
2301	pv_entry_t pv;
2302	boolean_t rv;
2303
2304	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2305	    ("mmu_booke_is_referenced: page %p is not managed", m));
2306	rv = FALSE;
2307	rw_wlock(&pvh_global_lock);
2308	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2309		PMAP_LOCK(pv->pv_pmap);
2310		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2311		    PTE_ISVALID(pte)) {
2312			if (PTE_ISREFERENCED(pte))
2313				rv = TRUE;
2314		}
2315		PMAP_UNLOCK(pv->pv_pmap);
2316		if (rv)
2317			break;
2318	}
2319	rw_wunlock(&pvh_global_lock);
2320	return (rv);
2321}
2322
2323/*
2324 * Clear the modify bits on the specified physical page.
2325 */
2326static void
2327mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2328{
2329	pte_t *pte;
2330	pv_entry_t pv;
2331
2332	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2333	    ("mmu_booke_clear_modify: page %p is not managed", m));
2334	VM_OBJECT_ASSERT_WLOCKED(m->object);
2335	KASSERT(!vm_page_xbusied(m),
2336	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2337
2338	/*
2339	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2340	 * If the object containing the page is locked and the page is not
2341	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2342	 */
2343	if ((m->aflags & PGA_WRITEABLE) == 0)
2344		return;
2345	rw_wlock(&pvh_global_lock);
2346	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2347		PMAP_LOCK(pv->pv_pmap);
2348		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2349		    PTE_ISVALID(pte)) {
2350			mtx_lock_spin(&tlbivax_mutex);
2351			tlb_miss_lock();
2352
2353			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2354				tlb0_flush_entry(pv->pv_va);
2355				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2356				    PTE_REFERENCED);
2357			}
2358
2359			tlb_miss_unlock();
2360			mtx_unlock_spin(&tlbivax_mutex);
2361		}
2362		PMAP_UNLOCK(pv->pv_pmap);
2363	}
2364	rw_wunlock(&pvh_global_lock);
2365}
2366
2367/*
2368 * Return a count of reference bits for a page, clearing those bits.
2369 * It is not necessary for every reference bit to be cleared, but it
2370 * is necessary that 0 only be returned when there are truly no
2371 * reference bits set.
2372 *
2373 * XXX: The exact number of bits to check and clear is a matter that
2374 * should be tested and standardized at some point in the future for
2375 * optimal aging of shared pages.
2376 */
2377static int
2378mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2379{
2380	pte_t *pte;
2381	pv_entry_t pv;
2382	int count;
2383
2384	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2385	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2386	count = 0;
2387	rw_wlock(&pvh_global_lock);
2388	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2389		PMAP_LOCK(pv->pv_pmap);
2390		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2391		    PTE_ISVALID(pte)) {
2392			if (PTE_ISREFERENCED(pte)) {
2393				mtx_lock_spin(&tlbivax_mutex);
2394				tlb_miss_lock();
2395
2396				tlb0_flush_entry(pv->pv_va);
2397				pte->flags &= ~PTE_REFERENCED;
2398
2399				tlb_miss_unlock();
2400				mtx_unlock_spin(&tlbivax_mutex);
2401
2402				if (++count > 4) {
2403					PMAP_UNLOCK(pv->pv_pmap);
2404					break;
2405				}
2406			}
2407		}
2408		PMAP_UNLOCK(pv->pv_pmap);
2409	}
2410	rw_wunlock(&pvh_global_lock);
2411	return (count);
2412}
2413
2414/*
2415 * Change wiring attribute for a map/virtual-address pair.
2416 */
2417static void
2418mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2419{
2420	pte_t *pte;
2421
2422	PMAP_LOCK(pmap);
2423	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2424		if (wired) {
2425			if (!PTE_ISWIRED(pte)) {
2426				pte->flags |= PTE_WIRED;
2427				pmap->pm_stats.wired_count++;
2428			}
2429		} else {
2430			if (PTE_ISWIRED(pte)) {
2431				pte->flags &= ~PTE_WIRED;
2432				pmap->pm_stats.wired_count--;
2433			}
2434		}
2435	}
2436	PMAP_UNLOCK(pmap);
2437}
2438
2439/*
2440 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2441 * page.  This count may be changed upwards or downwards in the future; it is
2442 * only necessary that true be returned for a small subset of pmaps for proper
2443 * page aging.
2444 */
2445static boolean_t
2446mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2447{
2448	pv_entry_t pv;
2449	int loops;
2450	boolean_t rv;
2451
2452	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2453	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2454	loops = 0;
2455	rv = FALSE;
2456	rw_wlock(&pvh_global_lock);
2457	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2458		if (pv->pv_pmap == pmap) {
2459			rv = TRUE;
2460			break;
2461		}
2462		if (++loops >= 16)
2463			break;
2464	}
2465	rw_wunlock(&pvh_global_lock);
2466	return (rv);
2467}
2468
2469/*
2470 * Return the number of managed mappings to the given physical page that are
2471 * wired.
2472 */
2473static int
2474mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2475{
2476	pv_entry_t pv;
2477	pte_t *pte;
2478	int count = 0;
2479
2480	if ((m->oflags & VPO_UNMANAGED) != 0)
2481		return (count);
2482	rw_wlock(&pvh_global_lock);
2483	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2484		PMAP_LOCK(pv->pv_pmap);
2485		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2486			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2487				count++;
2488		PMAP_UNLOCK(pv->pv_pmap);
2489	}
2490	rw_wunlock(&pvh_global_lock);
2491	return (count);
2492}
2493
2494static int
2495mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2496{
2497	int i;
2498	vm_offset_t va;
2499
2500	/*
2501	 * This currently does not work for entries that
2502	 * overlap TLB1 entries.
2503	 */
2504	for (i = 0; i < tlb1_idx; i ++) {
2505		if (tlb1_iomapped(i, pa, size, &va) == 0)
2506			return (0);
2507	}
2508
2509	return (EFAULT);
2510}
2511
2512vm_offset_t
2513mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2514    vm_size_t *sz)
2515{
2516	vm_paddr_t pa, ppa;
2517	vm_offset_t va;
2518	vm_size_t gran;
2519
2520	/* Raw physical memory dumps don't have a virtual address. */
2521	if (md->md_vaddr == ~0UL) {
2522		/* We always map a 256MB page at 256M. */
2523		gran = 256 * 1024 * 1024;
2524		pa = md->md_paddr + ofs;
2525		ppa = pa & ~(gran - 1);
2526		ofs = pa - ppa;
2527		va = gran;
2528		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2529		if (*sz > (gran - ofs))
2530			*sz = gran - ofs;
2531		return (va + ofs);
2532	}
2533
2534	/* Minidumps are based on virtual memory addresses. */
2535	va = md->md_vaddr + ofs;
2536	if (va >= kernstart + kernsize) {
2537		gran = PAGE_SIZE - (va & PAGE_MASK);
2538		if (*sz > gran)
2539			*sz = gran;
2540	}
2541	return (va);
2542}
2543
2544void
2545mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2546    vm_offset_t va)
2547{
2548
2549	/* Raw physical memory dumps don't have a virtual address. */
2550	if (md->md_vaddr == ~0UL) {
2551		tlb1_idx--;
2552		tlb1[tlb1_idx].mas1 = 0;
2553		tlb1[tlb1_idx].mas2 = 0;
2554		tlb1[tlb1_idx].mas3 = 0;
2555		tlb1_write_entry(tlb1_idx);
2556		return;
2557	}
2558
2559	/* Minidumps are based on virtual memory addresses. */
2560	/* Nothing to do... */
2561}
2562
2563struct pmap_md *
2564mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2565{
2566	static struct pmap_md md;
2567	pte_t *pte;
2568	vm_offset_t va;
2569
2570	if (dumpsys_minidump) {
2571		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2572		if (prev == NULL) {
2573			/* 1st: kernel .data and .bss. */
2574			md.md_index = 1;
2575			md.md_vaddr = trunc_page((uintptr_t)_etext);
2576			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2577			return (&md);
2578		}
2579		switch (prev->md_index) {
2580		case 1:
2581			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2582			md.md_index = 2;
2583			md.md_vaddr = data_start;
2584			md.md_size = data_end - data_start;
2585			break;
2586		case 2:
2587			/* 3rd: kernel VM. */
2588			va = prev->md_vaddr + prev->md_size;
2589			/* Find start of next chunk (from va). */
2590			while (va < virtual_end) {
2591				/* Don't dump the buffer cache. */
2592				if (va >= kmi.buffer_sva &&
2593				    va < kmi.buffer_eva) {
2594					va = kmi.buffer_eva;
2595					continue;
2596				}
2597				pte = pte_find(mmu, kernel_pmap, va);
2598				if (pte != NULL && PTE_ISVALID(pte))
2599					break;
2600				va += PAGE_SIZE;
2601			}
2602			if (va < virtual_end) {
2603				md.md_vaddr = va;
2604				va += PAGE_SIZE;
2605				/* Find last page in chunk. */
2606				while (va < virtual_end) {
2607					/* Don't run into the buffer cache. */
2608					if (va == kmi.buffer_sva)
2609						break;
2610					pte = pte_find(mmu, kernel_pmap, va);
2611					if (pte == NULL || !PTE_ISVALID(pte))
2612						break;
2613					va += PAGE_SIZE;
2614				}
2615				md.md_size = va - md.md_vaddr;
2616				break;
2617			}
2618			md.md_index = 3;
2619			/* FALLTHROUGH */
2620		default:
2621			return (NULL);
2622		}
2623	} else { /* minidumps */
2624		mem_regions(&physmem_regions, &physmem_regions_sz,
2625		    &availmem_regions, &availmem_regions_sz);
2626
2627		if (prev == NULL) {
2628			/* first physical chunk. */
2629			md.md_paddr = physmem_regions[0].mr_start;
2630			md.md_size = physmem_regions[0].mr_size;
2631			md.md_vaddr = ~0UL;
2632			md.md_index = 1;
2633		} else if (md.md_index < physmem_regions_sz) {
2634			md.md_paddr = physmem_regions[md.md_index].mr_start;
2635			md.md_size = physmem_regions[md.md_index].mr_size;
2636			md.md_vaddr = ~0UL;
2637			md.md_index++;
2638		} else {
2639			/* There's no next physical chunk. */
2640			return (NULL);
2641		}
2642	}
2643
2644	return (&md);
2645}
2646
2647/*
2648 * Map a set of physical memory pages into the kernel virtual address space.
2649 * Return a pointer to where it is mapped. This routine is intended to be used
2650 * for mapping device memory, NOT real memory.
2651 */
2652static void *
2653mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2654{
2655
2656	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2657}
2658
2659static void *
2660mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2661{
2662	void *res;
2663	uintptr_t va;
2664	vm_size_t sz;
2665	int i;
2666
2667	/*
2668	 * Check if this is premapped in TLB1. Note: this should probably also
2669	 * check whether a sequence of TLB1 entries exist that match the
2670	 * requirement, but now only checks the easy case.
2671	 */
2672	if (ma == VM_MEMATTR_DEFAULT) {
2673		for (i = 0; i < tlb1_idx; i++) {
2674			if (!(tlb1[i].mas1 & MAS1_VALID))
2675				continue;
2676			if (pa >= tlb1[i].phys &&
2677			    (pa + size) <= (tlb1[i].phys + tlb1[i].size))
2678				return (void *)(tlb1[i].virt +
2679				    (pa - tlb1[i].phys));
2680		}
2681	}
2682
2683	size = roundup(size, PAGE_SIZE);
2684
2685	/*
2686	 * We leave a hole for device direct mapping between the maximum user
2687	 * address (0x8000000) and the minimum KVA address (0xc0000000). If
2688	 * devices are in there, just map them 1:1. If not, map them to the
2689	 * device mapping area about VM_MAX_KERNEL_ADDRESS. These mapped
2690	 * addresses should be pulled from an allocator, but since we do not
2691	 * ever free TLB1 entries, it is safe just to increment a counter.
2692	 * Note that there isn't a lot of address space here (128 MB) and it
2693	 * is not at all difficult to imagine running out, since that is a 4:1
2694	 * compression from the 0xc0000000 - 0xf0000000 address space that gets
2695	 * mapped there.
2696	 */
2697	if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) &&
2698	    (pa + size - 1) < VM_MIN_KERNEL_ADDRESS)
2699		va = pa;
2700	else
2701		va = atomic_fetchadd_int(&tlb1_map_base, size);
2702	res = (void *)va;
2703
2704	do {
2705		sz = 1 << (ilog2(size) & ~1);
2706		if (bootverbose)
2707			printf("Wiring VA=%x to PA=%x (size=%x), "
2708			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2709		tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma));
2710		size -= sz;
2711		pa += sz;
2712		va += sz;
2713	} while (size > 0);
2714
2715	return (res);
2716}
2717
2718/*
2719 * 'Unmap' a range mapped by mmu_booke_mapdev().
2720 */
2721static void
2722mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2723{
2724#ifdef SUPPORTS_SHRINKING_TLB1
2725	vm_offset_t base, offset;
2726
2727	/*
2728	 * Unmap only if this is inside kernel virtual space.
2729	 */
2730	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2731		base = trunc_page(va);
2732		offset = va & PAGE_MASK;
2733		size = roundup(offset + size, PAGE_SIZE);
2734		kva_free(base, size);
2735	}
2736#endif
2737}
2738
2739/*
2740 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2741 * specified pmap. This eliminates the blast of soft faults on process startup
2742 * and immediately after an mmap.
2743 */
2744static void
2745mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2746    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2747{
2748
2749	VM_OBJECT_ASSERT_WLOCKED(object);
2750	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2751	    ("mmu_booke_object_init_pt: non-device object"));
2752}
2753
2754/*
2755 * Perform the pmap work for mincore.
2756 */
2757static int
2758mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2759    vm_paddr_t *locked_pa)
2760{
2761
2762	TODO;
2763	return (0);
2764}
2765
2766/**************************************************************************/
2767/* TID handling */
2768/**************************************************************************/
2769
2770/*
2771 * Allocate a TID. If necessary, steal one from someone else.
2772 * The new TID is flushed from the TLB before returning.
2773 */
2774static tlbtid_t
2775tid_alloc(pmap_t pmap)
2776{
2777	tlbtid_t tid;
2778	int thiscpu;
2779
2780	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2781
2782	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2783
2784	thiscpu = PCPU_GET(cpuid);
2785
2786	tid = PCPU_GET(tid_next);
2787	if (tid > TID_MAX)
2788		tid = TID_MIN;
2789	PCPU_SET(tid_next, tid + 1);
2790
2791	/* If we are stealing TID then clear the relevant pmap's field */
2792	if (tidbusy[thiscpu][tid] != NULL) {
2793
2794		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2795
2796		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2797
2798		/* Flush all entries from TLB0 matching this TID. */
2799		tid_flush(tid);
2800	}
2801
2802	tidbusy[thiscpu][tid] = pmap;
2803	pmap->pm_tid[thiscpu] = tid;
2804	__asm __volatile("msync; isync");
2805
2806	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2807	    PCPU_GET(tid_next));
2808
2809	return (tid);
2810}
2811
2812/**************************************************************************/
2813/* TLB0 handling */
2814/**************************************************************************/
2815
2816static void
2817tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2818    uint32_t mas7)
2819{
2820	int as;
2821	char desc[3];
2822	tlbtid_t tid;
2823	vm_size_t size;
2824	unsigned int tsize;
2825
2826	desc[2] = '\0';
2827	if (mas1 & MAS1_VALID)
2828		desc[0] = 'V';
2829	else
2830		desc[0] = ' ';
2831
2832	if (mas1 & MAS1_IPROT)
2833		desc[1] = 'P';
2834	else
2835		desc[1] = ' ';
2836
2837	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2838	tid = MAS1_GETTID(mas1);
2839
2840	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2841	size = 0;
2842	if (tsize)
2843		size = tsize2size(tsize);
2844
2845	debugf("%3d: (%s) [AS=%d] "
2846	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2847	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2848	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2849}
2850
2851/* Convert TLB0 va and way number to tlb0[] table index. */
2852static inline unsigned int
2853tlb0_tableidx(vm_offset_t va, unsigned int way)
2854{
2855	unsigned int idx;
2856
2857	idx = (way * TLB0_ENTRIES_PER_WAY);
2858	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2859	return (idx);
2860}
2861
2862/*
2863 * Invalidate TLB0 entry.
2864 */
2865static inline void
2866tlb0_flush_entry(vm_offset_t va)
2867{
2868
2869	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2870
2871	mtx_assert(&tlbivax_mutex, MA_OWNED);
2872
2873	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2874	__asm __volatile("isync; msync");
2875	__asm __volatile("tlbsync; msync");
2876
2877	CTR1(KTR_PMAP, "%s: e", __func__);
2878}
2879
2880/* Print out contents of the MAS registers for each TLB0 entry */
2881void
2882tlb0_print_tlbentries(void)
2883{
2884	uint32_t mas0, mas1, mas2, mas3, mas7;
2885	int entryidx, way, idx;
2886
2887	debugf("TLB0 entries:\n");
2888	for (way = 0; way < TLB0_WAYS; way ++)
2889		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2890
2891			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2892			mtspr(SPR_MAS0, mas0);
2893			__asm __volatile("isync");
2894
2895			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2896			mtspr(SPR_MAS2, mas2);
2897
2898			__asm __volatile("isync; tlbre");
2899
2900			mas1 = mfspr(SPR_MAS1);
2901			mas2 = mfspr(SPR_MAS2);
2902			mas3 = mfspr(SPR_MAS3);
2903			mas7 = mfspr(SPR_MAS7);
2904
2905			idx = tlb0_tableidx(mas2, way);
2906			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2907		}
2908}
2909
2910/**************************************************************************/
2911/* TLB1 handling */
2912/**************************************************************************/
2913
2914/*
2915 * TLB1 mapping notes:
2916 *
2917 * TLB1[0]	Kernel text and data.
2918 * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2919 *		windows, other devices mappings.
2920 */
2921
2922/*
2923 * Write given entry to TLB1 hardware.
2924 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2925 */
2926static void
2927tlb1_write_entry(unsigned int idx)
2928{
2929	uint32_t mas0, mas7;
2930
2931	//debugf("tlb1_write_entry: s\n");
2932
2933	/* Clear high order RPN bits */
2934	mas7 = 0;
2935
2936	/* Select entry */
2937	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2938	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2939
2940	mtspr(SPR_MAS0, mas0);
2941	__asm __volatile("isync");
2942	mtspr(SPR_MAS1, tlb1[idx].mas1);
2943	__asm __volatile("isync");
2944	mtspr(SPR_MAS2, tlb1[idx].mas2);
2945	__asm __volatile("isync");
2946	mtspr(SPR_MAS3, tlb1[idx].mas3);
2947	__asm __volatile("isync");
2948	mtspr(SPR_MAS7, mas7);
2949	__asm __volatile("isync; tlbwe; isync; msync");
2950
2951	//debugf("tlb1_write_entry: e\n");
2952}
2953
2954/*
2955 * Return the largest uint value log such that 2^log <= num.
2956 */
2957static unsigned int
2958ilog2(unsigned int num)
2959{
2960	int lz;
2961
2962	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2963	return (31 - lz);
2964}
2965
2966/*
2967 * Convert TLB TSIZE value to mapped region size.
2968 */
2969static vm_size_t
2970tsize2size(unsigned int tsize)
2971{
2972
2973	/*
2974	 * size = 4^tsize KB
2975	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2976	 */
2977
2978	return ((1 << (2 * tsize)) * 1024);
2979}
2980
2981/*
2982 * Convert region size (must be power of 4) to TLB TSIZE value.
2983 */
2984static unsigned int
2985size2tsize(vm_size_t size)
2986{
2987
2988	return (ilog2(size) / 2 - 5);
2989}
2990
2991/*
2992 * Register permanent kernel mapping in TLB1.
2993 *
2994 * Entries are created starting from index 0 (current free entry is
2995 * kept in tlb1_idx) and are not supposed to be invalidated.
2996 */
2997static int
2998tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2999    uint32_t flags)
3000{
3001	uint32_t ts, tid;
3002	int tsize, index;
3003
3004	index = atomic_fetchadd_int(&tlb1_idx, 1);
3005	if (index >= TLB1_ENTRIES) {
3006		printf("tlb1_set_entry: TLB1 full!\n");
3007		return (-1);
3008	}
3009
3010	/* Convert size to TSIZE */
3011	tsize = size2tsize(size);
3012
3013	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3014	/* XXX TS is hard coded to 0 for now as we only use single address space */
3015	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3016
3017	/*
3018	 * Atomicity is preserved by the atomic increment above since nothing
3019	 * is ever removed from tlb1.
3020	 */
3021
3022	tlb1[index].phys = pa;
3023	tlb1[index].virt = va;
3024	tlb1[index].size = size;
3025	tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3026	tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3027	tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags;
3028
3029	/* Set supervisor RWX permission bits */
3030	tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3031
3032	tlb1_write_entry(index);
3033
3034	/*
3035	 * XXX in general TLB1 updates should be propagated between CPUs,
3036	 * since current design assumes to have the same TLB1 set-up on all
3037	 * cores.
3038	 */
3039	return (0);
3040}
3041
3042/*
3043 * Map in contiguous RAM region into the TLB1 using maximum of
3044 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3045 *
3046 * If necessary round up last entry size and return total size
3047 * used by all allocated entries.
3048 */
3049vm_size_t
3050tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3051{
3052	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3053	vm_size_t mapped, pgsz, base, mask;
3054	int idx, nents;
3055
3056	/* Round up to the next 1M */
3057	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3058
3059	mapped = 0;
3060	idx = 0;
3061	base = va;
3062	pgsz = 64*1024*1024;
3063	while (mapped < size) {
3064		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3065			while (pgsz > (size - mapped))
3066				pgsz >>= 2;
3067			pgs[idx++] = pgsz;
3068			mapped += pgsz;
3069		}
3070
3071		/* We under-map. Correct for this. */
3072		if (mapped < size) {
3073			while (pgs[idx - 1] == pgsz) {
3074				idx--;
3075				mapped -= pgsz;
3076			}
3077			/* XXX We may increase beyond out starting point. */
3078			pgsz <<= 2;
3079			pgs[idx++] = pgsz;
3080			mapped += pgsz;
3081		}
3082	}
3083
3084	nents = idx;
3085	mask = pgs[0] - 1;
3086	/* Align address to the boundary */
3087	if (va & mask) {
3088		va = (va + mask) & ~mask;
3089		pa = (pa + mask) & ~mask;
3090	}
3091
3092	for (idx = 0; idx < nents; idx++) {
3093		pgsz = pgs[idx];
3094		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3095		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3096		pa += pgsz;
3097		va += pgsz;
3098	}
3099
3100	mapped = (va - base);
3101	printf("mapped size 0x%08x (wasted space 0x%08x)\n",
3102	    mapped, mapped - size);
3103	return (mapped);
3104}
3105
3106/*
3107 * TLB1 initialization routine, to be called after the very first
3108 * assembler level setup done in locore.S.
3109 */
3110void
3111tlb1_init()
3112{
3113	uint32_t mas0, mas1, mas2, mas3;
3114	uint32_t tsz;
3115	u_int i;
3116
3117	if (bootinfo != NULL && bootinfo[0] != 1) {
3118		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3119	} else
3120		tlb1_idx = 1;
3121
3122	/* The first entry/entries are used to map the kernel. */
3123	for (i = 0; i < tlb1_idx; i++) {
3124		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3125		mtspr(SPR_MAS0, mas0);
3126		__asm __volatile("isync; tlbre");
3127
3128		mas1 = mfspr(SPR_MAS1);
3129		if ((mas1 & MAS1_VALID) == 0)
3130			continue;
3131
3132		mas2 = mfspr(SPR_MAS2);
3133		mas3 = mfspr(SPR_MAS3);
3134
3135		tlb1[i].mas1 = mas1;
3136		tlb1[i].mas2 = mfspr(SPR_MAS2);
3137		tlb1[i].mas3 = mas3;
3138		tlb1[i].virt = mas2 & MAS2_EPN_MASK;
3139		tlb1[i].phys = mas3 & MAS3_RPN;
3140
3141		if (i == 0)
3142			kernload = mas3 & MAS3_RPN;
3143
3144		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3145		tlb1[i].size = (tsz > 0) ? tsize2size(tsz) : 0;
3146		kernsize += tlb1[i].size;
3147	}
3148
3149#ifdef SMP
3150	bp_ntlb1s = tlb1_idx;
3151#endif
3152
3153	/* Purge the remaining entries */
3154	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3155		tlb1_write_entry(i);
3156
3157	/* Setup TLB miss defaults */
3158	set_mas4_defaults();
3159}
3160
3161vm_offset_t
3162pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3163{
3164	vm_paddr_t pa_base;
3165	vm_offset_t va, sz;
3166	int i;
3167
3168	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3169
3170	for (i = 0; i < tlb1_idx; i++) {
3171		if (!(tlb1[i].mas1 & MAS1_VALID))
3172			continue;
3173		if (pa >= tlb1[i].phys && (pa + size) <=
3174		    (tlb1[i].phys + tlb1[i].size))
3175			return (tlb1[i].virt + (pa - tlb1[i].phys));
3176	}
3177
3178	pa_base = trunc_page(pa);
3179	size = roundup(size + (pa - pa_base), PAGE_SIZE);
3180	va = tlb1_map_base + (pa - pa_base);
3181
3182	do {
3183		sz = 1 << (ilog2(size) & ~1);
3184		tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_IO);
3185		size -= sz;
3186		pa_base += sz;
3187		tlb1_map_base += sz;
3188	} while (size > 0);
3189
3190#ifdef SMP
3191	bp_ntlb1s = tlb1_idx;
3192#endif
3193
3194	return (va);
3195}
3196
3197/*
3198 * Setup MAS4 defaults.
3199 * These values are loaded to MAS0-2 on a TLB miss.
3200 */
3201static void
3202set_mas4_defaults(void)
3203{
3204	uint32_t mas4;
3205
3206	/* Defaults: TLB0, PID0, TSIZED=4K */
3207	mas4 = MAS4_TLBSELD0;
3208	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3209#ifdef SMP
3210	mas4 |= MAS4_MD;
3211#endif
3212	mtspr(SPR_MAS4, mas4);
3213	__asm __volatile("isync");
3214}
3215
3216/*
3217 * Print out contents of the MAS registers for each TLB1 entry
3218 */
3219void
3220tlb1_print_tlbentries(void)
3221{
3222	uint32_t mas0, mas1, mas2, mas3, mas7;
3223	int i;
3224
3225	debugf("TLB1 entries:\n");
3226	for (i = 0; i < TLB1_ENTRIES; i++) {
3227
3228		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3229		mtspr(SPR_MAS0, mas0);
3230
3231		__asm __volatile("isync; tlbre");
3232
3233		mas1 = mfspr(SPR_MAS1);
3234		mas2 = mfspr(SPR_MAS2);
3235		mas3 = mfspr(SPR_MAS3);
3236		mas7 = mfspr(SPR_MAS7);
3237
3238		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3239	}
3240}
3241
3242/*
3243 * Print out contents of the in-ram tlb1 table.
3244 */
3245void
3246tlb1_print_entries(void)
3247{
3248	int i;
3249
3250	debugf("tlb1[] table entries:\n");
3251	for (i = 0; i < TLB1_ENTRIES; i++)
3252		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3253}
3254
3255/*
3256 * Return 0 if the physical IO range is encompassed by one of the
3257 * the TLB1 entries, otherwise return related error code.
3258 */
3259static int
3260tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3261{
3262	uint32_t prot;
3263	vm_paddr_t pa_start;
3264	vm_paddr_t pa_end;
3265	unsigned int entry_tsize;
3266	vm_size_t entry_size;
3267
3268	*va = (vm_offset_t)NULL;
3269
3270	/* Skip invalid entries */
3271	if (!(tlb1[i].mas1 & MAS1_VALID))
3272		return (EINVAL);
3273
3274	/*
3275	 * The entry must be cache-inhibited, guarded, and r/w
3276	 * so it can function as an i/o page
3277	 */
3278	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3279	if (prot != (MAS2_I | MAS2_G))
3280		return (EPERM);
3281
3282	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3283	if (prot != (MAS3_SR | MAS3_SW))
3284		return (EPERM);
3285
3286	/* The address should be within the entry range. */
3287	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3288	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3289
3290	entry_size = tsize2size(entry_tsize);
3291	pa_start = tlb1[i].mas3 & MAS3_RPN;
3292	pa_end = pa_start + entry_size - 1;
3293
3294	if ((pa < pa_start) || ((pa + size) > pa_end))
3295		return (ERANGE);
3296
3297	/* Return virtual address of this mapping. */
3298	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3299	return (0);
3300}
3301