pmap.c revision 265996
1/*-
2 * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3 * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * Some hw specific parts of this pmap were derived or influenced
27 * by NetBSD's ibm4xx pmap module. More generic code is shared with
28 * a few other pmap modules from the FreeBSD tree.
29 */
30
31 /*
32  * VM layout notes:
33  *
34  * Kernel and user threads run within one common virtual address space
35  * defined by AS=0.
36  *
37  * Virtual address space layout:
38  * -----------------------------
39  * 0x0000_0000 - 0xafff_ffff	: user process
40  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43  * 0xc100_0000 - 0xfeef_ffff	: KVA
44  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49  */
50
51#include <sys/cdefs.h>
52__FBSDID("$FreeBSD: stable/10/sys/powerpc/booke/pmap.c 265996 2014-05-14 00:51:26Z ian $");
53
54#include <sys/param.h>
55#include <sys/malloc.h>
56#include <sys/ktr.h>
57#include <sys/proc.h>
58#include <sys/user.h>
59#include <sys/queue.h>
60#include <sys/systm.h>
61#include <sys/kernel.h>
62#include <sys/linker.h>
63#include <sys/msgbuf.h>
64#include <sys/lock.h>
65#include <sys/mutex.h>
66#include <sys/rwlock.h>
67#include <sys/sched.h>
68#include <sys/smp.h>
69#include <sys/vmmeter.h>
70
71#include <vm/vm.h>
72#include <vm/vm_page.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_object.h>
77#include <vm/vm_param.h>
78#include <vm/vm_map.h>
79#include <vm/vm_pager.h>
80#include <vm/uma.h>
81
82#include <machine/cpu.h>
83#include <machine/pcb.h>
84#include <machine/platform.h>
85
86#include <machine/tlb.h>
87#include <machine/spr.h>
88#include <machine/md_var.h>
89#include <machine/mmuvar.h>
90#include <machine/pmap.h>
91#include <machine/pte.h>
92
93#include "mmu_if.h"
94
95#ifdef  DEBUG
96#define debugf(fmt, args...) printf(fmt, ##args)
97#else
98#define debugf(fmt, args...)
99#endif
100
101#define TODO			panic("%s: not implemented", __func__);
102
103extern struct mtx sched_lock;
104
105extern int dumpsys_minidump;
106
107extern unsigned char _etext[];
108extern unsigned char _end[];
109
110extern uint32_t *bootinfo;
111
112#ifdef SMP
113extern uint32_t bp_ntlb1s;
114#endif
115
116vm_paddr_t kernload;
117vm_offset_t kernstart;
118vm_size_t kernsize;
119
120/* Message buffer and tables. */
121static vm_offset_t data_start;
122static vm_size_t data_end;
123
124/* Phys/avail memory regions. */
125static struct mem_region *availmem_regions;
126static int availmem_regions_sz;
127static struct mem_region *physmem_regions;
128static int physmem_regions_sz;
129
130/* Reserved KVA space and mutex for mmu_booke_zero_page. */
131static vm_offset_t zero_page_va;
132static struct mtx zero_page_mutex;
133
134static struct mtx tlbivax_mutex;
135
136/*
137 * Reserved KVA space for mmu_booke_zero_page_idle. This is used
138 * by idle thred only, no lock required.
139 */
140static vm_offset_t zero_page_idle_va;
141
142/* Reserved KVA space and mutex for mmu_booke_copy_page. */
143static vm_offset_t copy_page_src_va;
144static vm_offset_t copy_page_dst_va;
145static struct mtx copy_page_mutex;
146
147/**************************************************************************/
148/* PMAP */
149/**************************************************************************/
150
151static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
152    vm_prot_t, boolean_t);
153
154unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
155unsigned int kernel_ptbls;	/* Number of KVA ptbls. */
156
157/*
158 * If user pmap is processed with mmu_booke_remove and the resident count
159 * drops to 0, there are no more pages to remove, so we need not continue.
160 */
161#define PMAP_REMOVE_DONE(pmap) \
162	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
163
164extern void tid_flush(tlbtid_t);
165
166/**************************************************************************/
167/* TLB and TID handling */
168/**************************************************************************/
169
170/* Translation ID busy table */
171static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
172
173/*
174 * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
175 * core revisions and should be read from h/w registers during early config.
176 */
177uint32_t tlb0_entries;
178uint32_t tlb0_ways;
179uint32_t tlb0_entries_per_way;
180
181#define TLB0_ENTRIES		(tlb0_entries)
182#define TLB0_WAYS		(tlb0_ways)
183#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
184
185#define TLB1_ENTRIES 16
186
187/* In-ram copy of the TLB1 */
188static tlb_entry_t tlb1[TLB1_ENTRIES];
189
190/* Next free entry in the TLB1 */
191static unsigned int tlb1_idx;
192
193static tlbtid_t tid_alloc(struct pmap *);
194
195static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
196
197static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
198static void tlb1_write_entry(unsigned int);
199static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
200static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
201
202static vm_size_t tsize2size(unsigned int);
203static unsigned int size2tsize(vm_size_t);
204static unsigned int ilog2(unsigned int);
205
206static void set_mas4_defaults(void);
207
208static inline void tlb0_flush_entry(vm_offset_t);
209static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
210
211/**************************************************************************/
212/* Page table management */
213/**************************************************************************/
214
215static struct rwlock_padalign pvh_global_lock;
216
217/* Data for the pv entry allocation mechanism */
218static uma_zone_t pvzone;
219static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
220
221#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
222
223#ifndef PMAP_SHPGPERPROC
224#define PMAP_SHPGPERPROC	200
225#endif
226
227static void ptbl_init(void);
228static struct ptbl_buf *ptbl_buf_alloc(void);
229static void ptbl_buf_free(struct ptbl_buf *);
230static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
231
232static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
233static void ptbl_free(mmu_t, pmap_t, unsigned int);
234static void ptbl_hold(mmu_t, pmap_t, unsigned int);
235static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
236
237static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
238static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
239static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
240static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
241
242static pv_entry_t pv_alloc(void);
243static void pv_free(pv_entry_t);
244static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
245static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
246
247/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
248#define PTBL_BUFS		(128 * 16)
249
250struct ptbl_buf {
251	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
252	vm_offset_t kva;		/* va of mapping */
253};
254
255/* ptbl free list and a lock used for access synchronization. */
256static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
257static struct mtx ptbl_buf_freelist_lock;
258
259/* Base address of kva space allocated fot ptbl bufs. */
260static vm_offset_t ptbl_buf_pool_vabase;
261
262/* Pointer to ptbl_buf structures. */
263static struct ptbl_buf *ptbl_bufs;
264
265void pmap_bootstrap_ap(volatile uint32_t *);
266
267/*
268 * Kernel MMU interface
269 */
270static void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
271static void		mmu_booke_clear_modify(mmu_t, vm_page_t);
272static void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
273    vm_size_t, vm_offset_t);
274static void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
275static void		mmu_booke_copy_pages(mmu_t, vm_page_t *,
276    vm_offset_t, vm_page_t *, vm_offset_t, int);
277static void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
278    vm_prot_t, boolean_t);
279static void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
280    vm_page_t, vm_prot_t);
281static void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
282    vm_prot_t);
283static vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
284static vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
285    vm_prot_t);
286static void		mmu_booke_init(mmu_t);
287static boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
288static boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
289static boolean_t	mmu_booke_is_referenced(mmu_t, vm_page_t);
290static int		mmu_booke_ts_referenced(mmu_t, vm_page_t);
291static vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
292    int);
293static int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
294    vm_paddr_t *);
295static void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
296    vm_object_t, vm_pindex_t, vm_size_t);
297static boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
298static void		mmu_booke_page_init(mmu_t, vm_page_t);
299static int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
300static void		mmu_booke_pinit(mmu_t, pmap_t);
301static void		mmu_booke_pinit0(mmu_t, pmap_t);
302static void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
303    vm_prot_t);
304static void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
305static void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
306static void		mmu_booke_release(mmu_t, pmap_t);
307static void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
308static void		mmu_booke_remove_all(mmu_t, vm_page_t);
309static void		mmu_booke_remove_write(mmu_t, vm_page_t);
310static void		mmu_booke_zero_page(mmu_t, vm_page_t);
311static void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
312static void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
313static void		mmu_booke_activate(mmu_t, struct thread *);
314static void		mmu_booke_deactivate(mmu_t, struct thread *);
315static void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
316static void		*mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
317static void		*mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
318static void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
319static vm_paddr_t	mmu_booke_kextract(mmu_t, vm_offset_t);
320static void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
321static void		mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
322static void		mmu_booke_kremove(mmu_t, vm_offset_t);
323static boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
324static void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
325    vm_size_t);
326static vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
327    vm_size_t, vm_size_t *);
328static void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
329    vm_size_t, vm_offset_t);
330static struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
331
332static mmu_method_t mmu_booke_methods[] = {
333	/* pmap dispatcher interface */
334	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
335	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
336	MMUMETHOD(mmu_copy,		mmu_booke_copy),
337	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
338	MMUMETHOD(mmu_copy_pages,	mmu_booke_copy_pages),
339	MMUMETHOD(mmu_enter,		mmu_booke_enter),
340	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
341	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
342	MMUMETHOD(mmu_extract,		mmu_booke_extract),
343	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
344	MMUMETHOD(mmu_init,		mmu_booke_init),
345	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
346	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
347	MMUMETHOD(mmu_is_referenced,	mmu_booke_is_referenced),
348	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
349	MMUMETHOD(mmu_map,		mmu_booke_map),
350	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
351	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
352	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
353	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
354	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
355	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
356	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
357	MMUMETHOD(mmu_protect,		mmu_booke_protect),
358	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
359	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
360	MMUMETHOD(mmu_release,		mmu_booke_release),
361	MMUMETHOD(mmu_remove,		mmu_booke_remove),
362	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
363	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
364	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
365	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
366	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
367	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
368	MMUMETHOD(mmu_activate,		mmu_booke_activate),
369	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
370
371	/* Internal interfaces */
372	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
373	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
374	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
375	MMUMETHOD(mmu_mapdev_attr,	mmu_booke_mapdev_attr),
376	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
377	MMUMETHOD(mmu_kenter_attr,	mmu_booke_kenter_attr),
378	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
379/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
380	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
381
382	/* dumpsys() support */
383	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
384	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
385	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
386
387	{ 0, 0 }
388};
389
390MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
391
392static __inline uint32_t
393tlb_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
394{
395	uint32_t attrib;
396	int i;
397
398	if (ma != VM_MEMATTR_DEFAULT) {
399		switch (ma) {
400		case VM_MEMATTR_UNCACHEABLE:
401			return (PTE_I | PTE_G);
402		case VM_MEMATTR_WRITE_COMBINING:
403		case VM_MEMATTR_WRITE_BACK:
404		case VM_MEMATTR_PREFETCHABLE:
405			return (PTE_I);
406		case VM_MEMATTR_WRITE_THROUGH:
407			return (PTE_W | PTE_M);
408		}
409	}
410
411	/*
412	 * Assume the page is cache inhibited and access is guarded unless
413	 * it's in our available memory array.
414	 */
415	attrib = _TLB_ENTRY_IO;
416	for (i = 0; i < physmem_regions_sz; i++) {
417		if ((pa >= physmem_regions[i].mr_start) &&
418		    (pa < (physmem_regions[i].mr_start +
419		     physmem_regions[i].mr_size))) {
420			attrib = _TLB_ENTRY_MEM;
421			break;
422		}
423	}
424
425	return (attrib);
426}
427
428static inline void
429tlb_miss_lock(void)
430{
431#ifdef SMP
432	struct pcpu *pc;
433
434	if (!smp_started)
435		return;
436
437	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
438		if (pc != pcpup) {
439
440			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
441			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
442
443			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
444			    ("tlb_miss_lock: tried to lock self"));
445
446			tlb_lock(pc->pc_booke_tlb_lock);
447
448			CTR1(KTR_PMAP, "%s: locked", __func__);
449		}
450	}
451#endif
452}
453
454static inline void
455tlb_miss_unlock(void)
456{
457#ifdef SMP
458	struct pcpu *pc;
459
460	if (!smp_started)
461		return;
462
463	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
464		if (pc != pcpup) {
465			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
466			    __func__, pc->pc_cpuid);
467
468			tlb_unlock(pc->pc_booke_tlb_lock);
469
470			CTR1(KTR_PMAP, "%s: unlocked", __func__);
471		}
472	}
473#endif
474}
475
476/* Return number of entries in TLB0. */
477static __inline void
478tlb0_get_tlbconf(void)
479{
480	uint32_t tlb0_cfg;
481
482	tlb0_cfg = mfspr(SPR_TLB0CFG);
483	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
484	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
485	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
486}
487
488/* Initialize pool of kva ptbl buffers. */
489static void
490ptbl_init(void)
491{
492	int i;
493
494	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
495	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
496	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
497	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
498
499	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
500	TAILQ_INIT(&ptbl_buf_freelist);
501
502	for (i = 0; i < PTBL_BUFS; i++) {
503		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
504		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
505	}
506}
507
508/* Get a ptbl_buf from the freelist. */
509static struct ptbl_buf *
510ptbl_buf_alloc(void)
511{
512	struct ptbl_buf *buf;
513
514	mtx_lock(&ptbl_buf_freelist_lock);
515	buf = TAILQ_FIRST(&ptbl_buf_freelist);
516	if (buf != NULL)
517		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
518	mtx_unlock(&ptbl_buf_freelist_lock);
519
520	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
521
522	return (buf);
523}
524
525/* Return ptbl buff to free pool. */
526static void
527ptbl_buf_free(struct ptbl_buf *buf)
528{
529
530	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
531
532	mtx_lock(&ptbl_buf_freelist_lock);
533	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
534	mtx_unlock(&ptbl_buf_freelist_lock);
535}
536
537/*
538 * Search the list of allocated ptbl bufs and find on list of allocated ptbls
539 */
540static void
541ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
542{
543	struct ptbl_buf *pbuf;
544
545	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
546
547	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
548
549	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
550		if (pbuf->kva == (vm_offset_t)ptbl) {
551			/* Remove from pmap ptbl buf list. */
552			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
553
554			/* Free corresponding ptbl buf. */
555			ptbl_buf_free(pbuf);
556			break;
557		}
558}
559
560/* Allocate page table. */
561static pte_t *
562ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
563{
564	vm_page_t mtbl[PTBL_PAGES];
565	vm_page_t m;
566	struct ptbl_buf *pbuf;
567	unsigned int pidx;
568	pte_t *ptbl;
569	int i;
570
571	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
572	    (pmap == kernel_pmap), pdir_idx);
573
574	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
575	    ("ptbl_alloc: invalid pdir_idx"));
576	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
577	    ("pte_alloc: valid ptbl entry exists!"));
578
579	pbuf = ptbl_buf_alloc();
580	if (pbuf == NULL)
581		panic("pte_alloc: couldn't alloc kernel virtual memory");
582
583	ptbl = (pte_t *)pbuf->kva;
584
585	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
586
587	/* Allocate ptbl pages, this will sleep! */
588	for (i = 0; i < PTBL_PAGES; i++) {
589		pidx = (PTBL_PAGES * pdir_idx) + i;
590		while ((m = vm_page_alloc(NULL, pidx,
591		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
592
593			PMAP_UNLOCK(pmap);
594			rw_wunlock(&pvh_global_lock);
595			VM_WAIT;
596			rw_wlock(&pvh_global_lock);
597			PMAP_LOCK(pmap);
598		}
599		mtbl[i] = m;
600	}
601
602	/* Map allocated pages into kernel_pmap. */
603	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
604
605	/* Zero whole ptbl. */
606	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
607
608	/* Add pbuf to the pmap ptbl bufs list. */
609	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
610
611	return (ptbl);
612}
613
614/* Free ptbl pages and invalidate pdir entry. */
615static void
616ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
617{
618	pte_t *ptbl;
619	vm_paddr_t pa;
620	vm_offset_t va;
621	vm_page_t m;
622	int i;
623
624	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
625	    (pmap == kernel_pmap), pdir_idx);
626
627	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
628	    ("ptbl_free: invalid pdir_idx"));
629
630	ptbl = pmap->pm_pdir[pdir_idx];
631
632	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
633
634	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
635
636	/*
637	 * Invalidate the pdir entry as soon as possible, so that other CPUs
638	 * don't attempt to look up the page tables we are releasing.
639	 */
640	mtx_lock_spin(&tlbivax_mutex);
641	tlb_miss_lock();
642
643	pmap->pm_pdir[pdir_idx] = NULL;
644
645	tlb_miss_unlock();
646	mtx_unlock_spin(&tlbivax_mutex);
647
648	for (i = 0; i < PTBL_PAGES; i++) {
649		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
650		pa = pte_vatopa(mmu, kernel_pmap, va);
651		m = PHYS_TO_VM_PAGE(pa);
652		vm_page_free_zero(m);
653		atomic_subtract_int(&cnt.v_wire_count, 1);
654		mmu_booke_kremove(mmu, va);
655	}
656
657	ptbl_free_pmap_ptbl(pmap, ptbl);
658}
659
660/*
661 * Decrement ptbl pages hold count and attempt to free ptbl pages.
662 * Called when removing pte entry from ptbl.
663 *
664 * Return 1 if ptbl pages were freed.
665 */
666static int
667ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
668{
669	pte_t *ptbl;
670	vm_paddr_t pa;
671	vm_page_t m;
672	int i;
673
674	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
675	    (pmap == kernel_pmap), pdir_idx);
676
677	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
678	    ("ptbl_unhold: invalid pdir_idx"));
679	KASSERT((pmap != kernel_pmap),
680	    ("ptbl_unhold: unholding kernel ptbl!"));
681
682	ptbl = pmap->pm_pdir[pdir_idx];
683
684	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
685	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
686	    ("ptbl_unhold: non kva ptbl"));
687
688	/* decrement hold count */
689	for (i = 0; i < PTBL_PAGES; i++) {
690		pa = pte_vatopa(mmu, kernel_pmap,
691		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
692		m = PHYS_TO_VM_PAGE(pa);
693		m->wire_count--;
694	}
695
696	/*
697	 * Free ptbl pages if there are no pte etries in this ptbl.
698	 * wire_count has the same value for all ptbl pages, so check the last
699	 * page.
700	 */
701	if (m->wire_count == 0) {
702		ptbl_free(mmu, pmap, pdir_idx);
703
704		//debugf("ptbl_unhold: e (freed ptbl)\n");
705		return (1);
706	}
707
708	return (0);
709}
710
711/*
712 * Increment hold count for ptbl pages. This routine is used when a new pte
713 * entry is being inserted into the ptbl.
714 */
715static void
716ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
717{
718	vm_paddr_t pa;
719	pte_t *ptbl;
720	vm_page_t m;
721	int i;
722
723	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
724	    pdir_idx);
725
726	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
727	    ("ptbl_hold: invalid pdir_idx"));
728	KASSERT((pmap != kernel_pmap),
729	    ("ptbl_hold: holding kernel ptbl!"));
730
731	ptbl = pmap->pm_pdir[pdir_idx];
732
733	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
734
735	for (i = 0; i < PTBL_PAGES; i++) {
736		pa = pte_vatopa(mmu, kernel_pmap,
737		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
738		m = PHYS_TO_VM_PAGE(pa);
739		m->wire_count++;
740	}
741}
742
743/* Allocate pv_entry structure. */
744pv_entry_t
745pv_alloc(void)
746{
747	pv_entry_t pv;
748
749	pv_entry_count++;
750	if (pv_entry_count > pv_entry_high_water)
751		pagedaemon_wakeup();
752	pv = uma_zalloc(pvzone, M_NOWAIT);
753
754	return (pv);
755}
756
757/* Free pv_entry structure. */
758static __inline void
759pv_free(pv_entry_t pve)
760{
761
762	pv_entry_count--;
763	uma_zfree(pvzone, pve);
764}
765
766
767/* Allocate and initialize pv_entry structure. */
768static void
769pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
770{
771	pv_entry_t pve;
772
773	//int su = (pmap == kernel_pmap);
774	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
775	//	(u_int32_t)pmap, va, (u_int32_t)m);
776
777	pve = pv_alloc();
778	if (pve == NULL)
779		panic("pv_insert: no pv entries!");
780
781	pve->pv_pmap = pmap;
782	pve->pv_va = va;
783
784	/* add to pv_list */
785	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
786	rw_assert(&pvh_global_lock, RA_WLOCKED);
787
788	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
789
790	//debugf("pv_insert: e\n");
791}
792
793/* Destroy pv entry. */
794static void
795pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
796{
797	pv_entry_t pve;
798
799	//int su = (pmap == kernel_pmap);
800	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
801
802	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
803	rw_assert(&pvh_global_lock, RA_WLOCKED);
804
805	/* find pv entry */
806	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
807		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
808			/* remove from pv_list */
809			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
810			if (TAILQ_EMPTY(&m->md.pv_list))
811				vm_page_aflag_clear(m, PGA_WRITEABLE);
812
813			/* free pv entry struct */
814			pv_free(pve);
815			break;
816		}
817	}
818
819	//debugf("pv_remove: e\n");
820}
821
822/*
823 * Clean pte entry, try to free page table page if requested.
824 *
825 * Return 1 if ptbl pages were freed, otherwise return 0.
826 */
827static int
828pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
829{
830	unsigned int pdir_idx = PDIR_IDX(va);
831	unsigned int ptbl_idx = PTBL_IDX(va);
832	vm_page_t m;
833	pte_t *ptbl;
834	pte_t *pte;
835
836	//int su = (pmap == kernel_pmap);
837	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
838	//		su, (u_int32_t)pmap, va, flags);
839
840	ptbl = pmap->pm_pdir[pdir_idx];
841	KASSERT(ptbl, ("pte_remove: null ptbl"));
842
843	pte = &ptbl[ptbl_idx];
844
845	if (pte == NULL || !PTE_ISVALID(pte))
846		return (0);
847
848	if (PTE_ISWIRED(pte))
849		pmap->pm_stats.wired_count--;
850
851	/* Handle managed entry. */
852	if (PTE_ISMANAGED(pte)) {
853		/* Get vm_page_t for mapped pte. */
854		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
855
856		if (PTE_ISMODIFIED(pte))
857			vm_page_dirty(m);
858
859		if (PTE_ISREFERENCED(pte))
860			vm_page_aflag_set(m, PGA_REFERENCED);
861
862		pv_remove(pmap, va, m);
863	}
864
865	mtx_lock_spin(&tlbivax_mutex);
866	tlb_miss_lock();
867
868	tlb0_flush_entry(va);
869	pte->flags = 0;
870	pte->rpn = 0;
871
872	tlb_miss_unlock();
873	mtx_unlock_spin(&tlbivax_mutex);
874
875	pmap->pm_stats.resident_count--;
876
877	if (flags & PTBL_UNHOLD) {
878		//debugf("pte_remove: e (unhold)\n");
879		return (ptbl_unhold(mmu, pmap, pdir_idx));
880	}
881
882	//debugf("pte_remove: e\n");
883	return (0);
884}
885
886/*
887 * Insert PTE for a given page and virtual address.
888 */
889static void
890pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
891{
892	unsigned int pdir_idx = PDIR_IDX(va);
893	unsigned int ptbl_idx = PTBL_IDX(va);
894	pte_t *ptbl, *pte;
895
896	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
897	    pmap == kernel_pmap, pmap, va);
898
899	/* Get the page table pointer. */
900	ptbl = pmap->pm_pdir[pdir_idx];
901
902	if (ptbl == NULL) {
903		/* Allocate page table pages. */
904		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
905	} else {
906		/*
907		 * Check if there is valid mapping for requested
908		 * va, if there is, remove it.
909		 */
910		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
911		if (PTE_ISVALID(pte)) {
912			pte_remove(mmu, pmap, va, PTBL_HOLD);
913		} else {
914			/*
915			 * pte is not used, increment hold count
916			 * for ptbl pages.
917			 */
918			if (pmap != kernel_pmap)
919				ptbl_hold(mmu, pmap, pdir_idx);
920		}
921	}
922
923	/*
924	 * Insert pv_entry into pv_list for mapped page if part of managed
925	 * memory.
926	 */
927	if ((m->oflags & VPO_UNMANAGED) == 0) {
928		flags |= PTE_MANAGED;
929
930		/* Create and insert pv entry. */
931		pv_insert(pmap, va, m);
932	}
933
934	pmap->pm_stats.resident_count++;
935
936	mtx_lock_spin(&tlbivax_mutex);
937	tlb_miss_lock();
938
939	tlb0_flush_entry(va);
940	if (pmap->pm_pdir[pdir_idx] == NULL) {
941		/*
942		 * If we just allocated a new page table, hook it in
943		 * the pdir.
944		 */
945		pmap->pm_pdir[pdir_idx] = ptbl;
946	}
947	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
948	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
949	pte->flags |= (PTE_VALID | flags);
950
951	tlb_miss_unlock();
952	mtx_unlock_spin(&tlbivax_mutex);
953}
954
955/* Return the pa for the given pmap/va. */
956static vm_paddr_t
957pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
958{
959	vm_paddr_t pa = 0;
960	pte_t *pte;
961
962	pte = pte_find(mmu, pmap, va);
963	if ((pte != NULL) && PTE_ISVALID(pte))
964		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
965	return (pa);
966}
967
968/* Get a pointer to a PTE in a page table. */
969static pte_t *
970pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
971{
972	unsigned int pdir_idx = PDIR_IDX(va);
973	unsigned int ptbl_idx = PTBL_IDX(va);
974
975	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
976
977	if (pmap->pm_pdir[pdir_idx])
978		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
979
980	return (NULL);
981}
982
983/**************************************************************************/
984/* PMAP related */
985/**************************************************************************/
986
987/*
988 * This is called during booke_init, before the system is really initialized.
989 */
990static void
991mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
992{
993	vm_offset_t phys_kernelend;
994	struct mem_region *mp, *mp1;
995	int cnt, i, j;
996	u_int s, e, sz;
997	u_int phys_avail_count;
998	vm_size_t physsz, hwphyssz, kstack0_sz;
999	vm_offset_t kernel_pdir, kstack0, va;
1000	vm_paddr_t kstack0_phys;
1001	void *dpcpu;
1002	pte_t *pte;
1003
1004	debugf("mmu_booke_bootstrap: entered\n");
1005
1006	/* Initialize invalidation mutex */
1007	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
1008
1009	/* Read TLB0 size and associativity. */
1010	tlb0_get_tlbconf();
1011
1012	/*
1013	 * Align kernel start and end address (kernel image).
1014	 * Note that kernel end does not necessarily relate to kernsize.
1015	 * kernsize is the size of the kernel that is actually mapped.
1016	 * Also note that "start - 1" is deliberate. With SMP, the
1017	 * entry point is exactly a page from the actual load address.
1018	 * As such, trunc_page() has no effect and we're off by a page.
1019	 * Since we always have the ELF header between the load address
1020	 * and the entry point, we can safely subtract 1 to compensate.
1021	 */
1022	kernstart = trunc_page(start - 1);
1023	data_start = round_page(kernelend);
1024	data_end = data_start;
1025
1026	/*
1027	 * Addresses of preloaded modules (like file systems) use
1028	 * physical addresses. Make sure we relocate those into
1029	 * virtual addresses.
1030	 */
1031	preload_addr_relocate = kernstart - kernload;
1032
1033	/* Allocate the dynamic per-cpu area. */
1034	dpcpu = (void *)data_end;
1035	data_end += DPCPU_SIZE;
1036
1037	/* Allocate space for the message buffer. */
1038	msgbufp = (struct msgbuf *)data_end;
1039	data_end += msgbufsize;
1040	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
1041	    data_end);
1042
1043	data_end = round_page(data_end);
1044
1045	/* Allocate space for ptbl_bufs. */
1046	ptbl_bufs = (struct ptbl_buf *)data_end;
1047	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1048	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1049	    data_end);
1050
1051	data_end = round_page(data_end);
1052
1053	/* Allocate PTE tables for kernel KVA. */
1054	kernel_pdir = data_end;
1055	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1056	    PDIR_SIZE - 1) / PDIR_SIZE;
1057	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1058	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1059	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1060
1061	debugf(" data_end: 0x%08x\n", data_end);
1062	if (data_end - kernstart > kernsize) {
1063		kernsize += tlb1_mapin_region(kernstart + kernsize,
1064		    kernload + kernsize, (data_end - kernstart) - kernsize);
1065	}
1066	data_end = kernstart + kernsize;
1067	debugf(" updated data_end: 0x%08x\n", data_end);
1068
1069	/*
1070	 * Clear the structures - note we can only do it safely after the
1071	 * possible additional TLB1 translations are in place (above) so that
1072	 * all range up to the currently calculated 'data_end' is covered.
1073	 */
1074	dpcpu_init(dpcpu, 0);
1075	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1076	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1077
1078	/*******************************************************/
1079	/* Set the start and end of kva. */
1080	/*******************************************************/
1081	virtual_avail = round_page(data_end);
1082	virtual_end = VM_MAX_KERNEL_ADDRESS;
1083
1084	/* Allocate KVA space for page zero/copy operations. */
1085	zero_page_va = virtual_avail;
1086	virtual_avail += PAGE_SIZE;
1087	zero_page_idle_va = virtual_avail;
1088	virtual_avail += PAGE_SIZE;
1089	copy_page_src_va = virtual_avail;
1090	virtual_avail += PAGE_SIZE;
1091	copy_page_dst_va = virtual_avail;
1092	virtual_avail += PAGE_SIZE;
1093	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1094	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1095	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1096	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1097
1098	/* Initialize page zero/copy mutexes. */
1099	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1100	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1101
1102	/* Allocate KVA space for ptbl bufs. */
1103	ptbl_buf_pool_vabase = virtual_avail;
1104	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1105	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1106	    ptbl_buf_pool_vabase, virtual_avail);
1107
1108	/* Calculate corresponding physical addresses for the kernel region. */
1109	phys_kernelend = kernload + kernsize;
1110	debugf("kernel image and allocated data:\n");
1111	debugf(" kernload    = 0x%08x\n", kernload);
1112	debugf(" kernstart   = 0x%08x\n", kernstart);
1113	debugf(" kernsize    = 0x%08x\n", kernsize);
1114
1115	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1116		panic("mmu_booke_bootstrap: phys_avail too small");
1117
1118	/*
1119	 * Remove kernel physical address range from avail regions list. Page
1120	 * align all regions.  Non-page aligned memory isn't very interesting
1121	 * to us.  Also, sort the entries for ascending addresses.
1122	 */
1123
1124	/* Retrieve phys/avail mem regions */
1125	mem_regions(&physmem_regions, &physmem_regions_sz,
1126	    &availmem_regions, &availmem_regions_sz);
1127	sz = 0;
1128	cnt = availmem_regions_sz;
1129	debugf("processing avail regions:\n");
1130	for (mp = availmem_regions; mp->mr_size; mp++) {
1131		s = mp->mr_start;
1132		e = mp->mr_start + mp->mr_size;
1133		debugf(" %08x-%08x -> ", s, e);
1134		/* Check whether this region holds all of the kernel. */
1135		if (s < kernload && e > phys_kernelend) {
1136			availmem_regions[cnt].mr_start = phys_kernelend;
1137			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1138			e = kernload;
1139		}
1140		/* Look whether this regions starts within the kernel. */
1141		if (s >= kernload && s < phys_kernelend) {
1142			if (e <= phys_kernelend)
1143				goto empty;
1144			s = phys_kernelend;
1145		}
1146		/* Now look whether this region ends within the kernel. */
1147		if (e > kernload && e <= phys_kernelend) {
1148			if (s >= kernload)
1149				goto empty;
1150			e = kernload;
1151		}
1152		/* Now page align the start and size of the region. */
1153		s = round_page(s);
1154		e = trunc_page(e);
1155		if (e < s)
1156			e = s;
1157		sz = e - s;
1158		debugf("%08x-%08x = %x\n", s, e, sz);
1159
1160		/* Check whether some memory is left here. */
1161		if (sz == 0) {
1162		empty:
1163			memmove(mp, mp + 1,
1164			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1165			cnt--;
1166			mp--;
1167			continue;
1168		}
1169
1170		/* Do an insertion sort. */
1171		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1172			if (s < mp1->mr_start)
1173				break;
1174		if (mp1 < mp) {
1175			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1176			mp1->mr_start = s;
1177			mp1->mr_size = sz;
1178		} else {
1179			mp->mr_start = s;
1180			mp->mr_size = sz;
1181		}
1182	}
1183	availmem_regions_sz = cnt;
1184
1185	/*******************************************************/
1186	/* Steal physical memory for kernel stack from the end */
1187	/* of the first avail region                           */
1188	/*******************************************************/
1189	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1190	kstack0_phys = availmem_regions[0].mr_start +
1191	    availmem_regions[0].mr_size;
1192	kstack0_phys -= kstack0_sz;
1193	availmem_regions[0].mr_size -= kstack0_sz;
1194
1195	/*******************************************************/
1196	/* Fill in phys_avail table, based on availmem_regions */
1197	/*******************************************************/
1198	phys_avail_count = 0;
1199	physsz = 0;
1200	hwphyssz = 0;
1201	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1202
1203	debugf("fill in phys_avail:\n");
1204	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1205
1206		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1207		    availmem_regions[i].mr_start,
1208		    availmem_regions[i].mr_start +
1209		        availmem_regions[i].mr_size,
1210		    availmem_regions[i].mr_size);
1211
1212		if (hwphyssz != 0 &&
1213		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1214			debugf(" hw.physmem adjust\n");
1215			if (physsz < hwphyssz) {
1216				phys_avail[j] = availmem_regions[i].mr_start;
1217				phys_avail[j + 1] =
1218				    availmem_regions[i].mr_start +
1219				    hwphyssz - physsz;
1220				physsz = hwphyssz;
1221				phys_avail_count++;
1222			}
1223			break;
1224		}
1225
1226		phys_avail[j] = availmem_regions[i].mr_start;
1227		phys_avail[j + 1] = availmem_regions[i].mr_start +
1228		    availmem_regions[i].mr_size;
1229		phys_avail_count++;
1230		physsz += availmem_regions[i].mr_size;
1231	}
1232	physmem = btoc(physsz);
1233
1234	/* Calculate the last available physical address. */
1235	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1236		;
1237	Maxmem = powerpc_btop(phys_avail[i + 1]);
1238
1239	debugf("Maxmem = 0x%08lx\n", Maxmem);
1240	debugf("phys_avail_count = %d\n", phys_avail_count);
1241	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1242	    physmem);
1243
1244	/*******************************************************/
1245	/* Initialize (statically allocated) kernel pmap. */
1246	/*******************************************************/
1247	PMAP_LOCK_INIT(kernel_pmap);
1248	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1249
1250	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1251	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1252	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1253	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1254
1255	/* Initialize kernel pdir */
1256	for (i = 0; i < kernel_ptbls; i++)
1257		kernel_pmap->pm_pdir[kptbl_min + i] =
1258		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1259
1260	for (i = 0; i < MAXCPU; i++) {
1261		kernel_pmap->pm_tid[i] = TID_KERNEL;
1262
1263		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1264		tidbusy[i][0] = kernel_pmap;
1265	}
1266
1267	/*
1268	 * Fill in PTEs covering kernel code and data. They are not required
1269	 * for address translation, as this area is covered by static TLB1
1270	 * entries, but for pte_vatopa() to work correctly with kernel area
1271	 * addresses.
1272	 */
1273	for (va = kernstart; va < data_end; va += PAGE_SIZE) {
1274		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1275		pte->rpn = kernload + (va - kernstart);
1276		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1277		    PTE_VALID;
1278	}
1279	/* Mark kernel_pmap active on all CPUs */
1280	CPU_FILL(&kernel_pmap->pm_active);
1281
1282 	/*
1283	 * Initialize the global pv list lock.
1284	 */
1285	rw_init(&pvh_global_lock, "pmap pv global");
1286
1287	/*******************************************************/
1288	/* Final setup */
1289	/*******************************************************/
1290
1291	/* Enter kstack0 into kernel map, provide guard page */
1292	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1293	thread0.td_kstack = kstack0;
1294	thread0.td_kstack_pages = KSTACK_PAGES;
1295
1296	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1297	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1298	    kstack0_phys, kstack0_phys + kstack0_sz);
1299	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1300
1301	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1302	for (i = 0; i < KSTACK_PAGES; i++) {
1303		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1304		kstack0 += PAGE_SIZE;
1305		kstack0_phys += PAGE_SIZE;
1306	}
1307
1308	debugf("virtual_avail = %08x\n", virtual_avail);
1309	debugf("virtual_end   = %08x\n", virtual_end);
1310
1311	debugf("mmu_booke_bootstrap: exit\n");
1312}
1313
1314void
1315pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1316{
1317	int i;
1318
1319	/*
1320	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1321	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1322	 * these values directly to (re)program AP's TLB1 hardware.
1323	 */
1324	for (i = bp_ntlb1s; i < tlb1_idx; i++) {
1325		/* Skip invalid entries */
1326		if (!(tlb1[i].mas1 & MAS1_VALID))
1327			continue;
1328
1329		tlb1_write_entry(i);
1330	}
1331
1332	set_mas4_defaults();
1333}
1334
1335/*
1336 * Get the physical page address for the given pmap/virtual address.
1337 */
1338static vm_paddr_t
1339mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1340{
1341	vm_paddr_t pa;
1342
1343	PMAP_LOCK(pmap);
1344	pa = pte_vatopa(mmu, pmap, va);
1345	PMAP_UNLOCK(pmap);
1346
1347	return (pa);
1348}
1349
1350/*
1351 * Extract the physical page address associated with the given
1352 * kernel virtual address.
1353 */
1354static vm_paddr_t
1355mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1356{
1357	int i;
1358
1359	/* Check TLB1 mappings */
1360	for (i = 0; i < tlb1_idx; i++) {
1361		if (!(tlb1[i].mas1 & MAS1_VALID))
1362			continue;
1363		if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size)
1364			return (tlb1[i].phys + (va - tlb1[i].virt));
1365	}
1366
1367	return (pte_vatopa(mmu, kernel_pmap, va));
1368}
1369
1370/*
1371 * Initialize the pmap module.
1372 * Called by vm_init, to initialize any structures that the pmap
1373 * system needs to map virtual memory.
1374 */
1375static void
1376mmu_booke_init(mmu_t mmu)
1377{
1378	int shpgperproc = PMAP_SHPGPERPROC;
1379
1380	/*
1381	 * Initialize the address space (zone) for the pv entries.  Set a
1382	 * high water mark so that the system can recover from excessive
1383	 * numbers of pv entries.
1384	 */
1385	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1386	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1387
1388	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1389	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1390
1391	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1392	pv_entry_high_water = 9 * (pv_entry_max / 10);
1393
1394	uma_zone_reserve_kva(pvzone, pv_entry_max);
1395
1396	/* Pre-fill pvzone with initial number of pv entries. */
1397	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1398
1399	/* Initialize ptbl allocation. */
1400	ptbl_init();
1401}
1402
1403/*
1404 * Map a list of wired pages into kernel virtual address space.  This is
1405 * intended for temporary mappings which do not need page modification or
1406 * references recorded.  Existing mappings in the region are overwritten.
1407 */
1408static void
1409mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1410{
1411	vm_offset_t va;
1412
1413	va = sva;
1414	while (count-- > 0) {
1415		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1416		va += PAGE_SIZE;
1417		m++;
1418	}
1419}
1420
1421/*
1422 * Remove page mappings from kernel virtual address space.  Intended for
1423 * temporary mappings entered by mmu_booke_qenter.
1424 */
1425static void
1426mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1427{
1428	vm_offset_t va;
1429
1430	va = sva;
1431	while (count-- > 0) {
1432		mmu_booke_kremove(mmu, va);
1433		va += PAGE_SIZE;
1434	}
1435}
1436
1437/*
1438 * Map a wired page into kernel virtual address space.
1439 */
1440static void
1441mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1442{
1443
1444	mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1445}
1446
1447static void
1448mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1449{
1450	unsigned int pdir_idx = PDIR_IDX(va);
1451	unsigned int ptbl_idx = PTBL_IDX(va);
1452	uint32_t flags;
1453	pte_t *pte;
1454
1455	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1456	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1457
1458	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1459	flags |= tlb_calc_wimg(pa, ma);
1460
1461	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1462
1463	mtx_lock_spin(&tlbivax_mutex);
1464	tlb_miss_lock();
1465
1466	if (PTE_ISVALID(pte)) {
1467
1468		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1469
1470		/* Flush entry from TLB0 */
1471		tlb0_flush_entry(va);
1472	}
1473
1474	pte->rpn = pa & ~PTE_PA_MASK;
1475	pte->flags = flags;
1476
1477	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1478	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1479	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1480
1481	/* Flush the real memory from the instruction cache. */
1482	if ((flags & (PTE_I | PTE_G)) == 0) {
1483		__syncicache((void *)va, PAGE_SIZE);
1484	}
1485
1486	tlb_miss_unlock();
1487	mtx_unlock_spin(&tlbivax_mutex);
1488}
1489
1490/*
1491 * Remove a page from kernel page table.
1492 */
1493static void
1494mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1495{
1496	unsigned int pdir_idx = PDIR_IDX(va);
1497	unsigned int ptbl_idx = PTBL_IDX(va);
1498	pte_t *pte;
1499
1500//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1501
1502	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1503	    (va <= VM_MAX_KERNEL_ADDRESS)),
1504	    ("mmu_booke_kremove: invalid va"));
1505
1506	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1507
1508	if (!PTE_ISVALID(pte)) {
1509
1510		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1511
1512		return;
1513	}
1514
1515	mtx_lock_spin(&tlbivax_mutex);
1516	tlb_miss_lock();
1517
1518	/* Invalidate entry in TLB0, update PTE. */
1519	tlb0_flush_entry(va);
1520	pte->flags = 0;
1521	pte->rpn = 0;
1522
1523	tlb_miss_unlock();
1524	mtx_unlock_spin(&tlbivax_mutex);
1525}
1526
1527/*
1528 * Initialize pmap associated with process 0.
1529 */
1530static void
1531mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1532{
1533
1534	PMAP_LOCK_INIT(pmap);
1535	mmu_booke_pinit(mmu, pmap);
1536	PCPU_SET(curpmap, pmap);
1537}
1538
1539/*
1540 * Initialize a preallocated and zeroed pmap structure,
1541 * such as one in a vmspace structure.
1542 */
1543static void
1544mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1545{
1546	int i;
1547
1548	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1549	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1550
1551	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1552
1553	for (i = 0; i < MAXCPU; i++)
1554		pmap->pm_tid[i] = TID_NONE;
1555	CPU_ZERO(&kernel_pmap->pm_active);
1556	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1557	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1558	TAILQ_INIT(&pmap->pm_ptbl_list);
1559}
1560
1561/*
1562 * Release any resources held by the given physical map.
1563 * Called when a pmap initialized by mmu_booke_pinit is being released.
1564 * Should only be called if the map contains no valid mappings.
1565 */
1566static void
1567mmu_booke_release(mmu_t mmu, pmap_t pmap)
1568{
1569
1570	KASSERT(pmap->pm_stats.resident_count == 0,
1571	    ("pmap_release: pmap resident count %ld != 0",
1572	    pmap->pm_stats.resident_count));
1573}
1574
1575/*
1576 * Insert the given physical page at the specified virtual address in the
1577 * target physical map with the protection requested. If specified the page
1578 * will be wired down.
1579 */
1580static void
1581mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1582    vm_prot_t prot, boolean_t wired)
1583{
1584
1585	rw_wlock(&pvh_global_lock);
1586	PMAP_LOCK(pmap);
1587	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1588	rw_wunlock(&pvh_global_lock);
1589	PMAP_UNLOCK(pmap);
1590}
1591
1592static void
1593mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1594    vm_prot_t prot, boolean_t wired)
1595{
1596	pte_t *pte;
1597	vm_paddr_t pa;
1598	uint32_t flags;
1599	int su, sync;
1600
1601	pa = VM_PAGE_TO_PHYS(m);
1602	su = (pmap == kernel_pmap);
1603	sync = 0;
1604
1605	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1606	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1607	//		(u_int32_t)pmap, su, pmap->pm_tid,
1608	//		(u_int32_t)m, va, pa, prot, wired);
1609
1610	if (su) {
1611		KASSERT(((va >= virtual_avail) &&
1612		    (va <= VM_MAX_KERNEL_ADDRESS)),
1613		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1614	} else {
1615		KASSERT((va <= VM_MAXUSER_ADDRESS),
1616		    ("mmu_booke_enter_locked: user pmap, non user va"));
1617	}
1618	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1619		VM_OBJECT_ASSERT_LOCKED(m->object);
1620
1621	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1622
1623	/*
1624	 * If there is an existing mapping, and the physical address has not
1625	 * changed, must be protection or wiring change.
1626	 */
1627	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1628	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1629
1630		/*
1631		 * Before actually updating pte->flags we calculate and
1632		 * prepare its new value in a helper var.
1633		 */
1634		flags = pte->flags;
1635		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1636
1637		/* Wiring change, just update stats. */
1638		if (wired) {
1639			if (!PTE_ISWIRED(pte)) {
1640				flags |= PTE_WIRED;
1641				pmap->pm_stats.wired_count++;
1642			}
1643		} else {
1644			if (PTE_ISWIRED(pte)) {
1645				flags &= ~PTE_WIRED;
1646				pmap->pm_stats.wired_count--;
1647			}
1648		}
1649
1650		if (prot & VM_PROT_WRITE) {
1651			/* Add write permissions. */
1652			flags |= PTE_SW;
1653			if (!su)
1654				flags |= PTE_UW;
1655
1656			if ((flags & PTE_MANAGED) != 0)
1657				vm_page_aflag_set(m, PGA_WRITEABLE);
1658		} else {
1659			/* Handle modified pages, sense modify status. */
1660
1661			/*
1662			 * The PTE_MODIFIED flag could be set by underlying
1663			 * TLB misses since we last read it (above), possibly
1664			 * other CPUs could update it so we check in the PTE
1665			 * directly rather than rely on that saved local flags
1666			 * copy.
1667			 */
1668			if (PTE_ISMODIFIED(pte))
1669				vm_page_dirty(m);
1670		}
1671
1672		if (prot & VM_PROT_EXECUTE) {
1673			flags |= PTE_SX;
1674			if (!su)
1675				flags |= PTE_UX;
1676
1677			/*
1678			 * Check existing flags for execute permissions: if we
1679			 * are turning execute permissions on, icache should
1680			 * be flushed.
1681			 */
1682			if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
1683				sync++;
1684		}
1685
1686		flags &= ~PTE_REFERENCED;
1687
1688		/*
1689		 * The new flags value is all calculated -- only now actually
1690		 * update the PTE.
1691		 */
1692		mtx_lock_spin(&tlbivax_mutex);
1693		tlb_miss_lock();
1694
1695		tlb0_flush_entry(va);
1696		pte->flags = flags;
1697
1698		tlb_miss_unlock();
1699		mtx_unlock_spin(&tlbivax_mutex);
1700
1701	} else {
1702		/*
1703		 * If there is an existing mapping, but it's for a different
1704		 * physical address, pte_enter() will delete the old mapping.
1705		 */
1706		//if ((pte != NULL) && PTE_ISVALID(pte))
1707		//	debugf("mmu_booke_enter_locked: replace\n");
1708		//else
1709		//	debugf("mmu_booke_enter_locked: new\n");
1710
1711		/* Now set up the flags and install the new mapping. */
1712		flags = (PTE_SR | PTE_VALID);
1713		flags |= PTE_M;
1714
1715		if (!su)
1716			flags |= PTE_UR;
1717
1718		if (prot & VM_PROT_WRITE) {
1719			flags |= PTE_SW;
1720			if (!su)
1721				flags |= PTE_UW;
1722
1723			if ((m->oflags & VPO_UNMANAGED) == 0)
1724				vm_page_aflag_set(m, PGA_WRITEABLE);
1725		}
1726
1727		if (prot & VM_PROT_EXECUTE) {
1728			flags |= PTE_SX;
1729			if (!su)
1730				flags |= PTE_UX;
1731		}
1732
1733		/* If its wired update stats. */
1734		if (wired) {
1735			pmap->pm_stats.wired_count++;
1736			flags |= PTE_WIRED;
1737		}
1738
1739		pte_enter(mmu, pmap, m, va, flags);
1740
1741		/* Flush the real memory from the instruction cache. */
1742		if (prot & VM_PROT_EXECUTE)
1743			sync++;
1744	}
1745
1746	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1747		__syncicache((void *)va, PAGE_SIZE);
1748		sync = 0;
1749	}
1750}
1751
1752/*
1753 * Maps a sequence of resident pages belonging to the same object.
1754 * The sequence begins with the given page m_start.  This page is
1755 * mapped at the given virtual address start.  Each subsequent page is
1756 * mapped at a virtual address that is offset from start by the same
1757 * amount as the page is offset from m_start within the object.  The
1758 * last page in the sequence is the page with the largest offset from
1759 * m_start that can be mapped at a virtual address less than the given
1760 * virtual address end.  Not every virtual page between start and end
1761 * is mapped; only those for which a resident page exists with the
1762 * corresponding offset from m_start are mapped.
1763 */
1764static void
1765mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1766    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1767{
1768	vm_page_t m;
1769	vm_pindex_t diff, psize;
1770
1771	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1772
1773	psize = atop(end - start);
1774	m = m_start;
1775	rw_wlock(&pvh_global_lock);
1776	PMAP_LOCK(pmap);
1777	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1778		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1779		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1780		m = TAILQ_NEXT(m, listq);
1781	}
1782	rw_wunlock(&pvh_global_lock);
1783	PMAP_UNLOCK(pmap);
1784}
1785
1786static void
1787mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1788    vm_prot_t prot)
1789{
1790
1791	rw_wlock(&pvh_global_lock);
1792	PMAP_LOCK(pmap);
1793	mmu_booke_enter_locked(mmu, pmap, va, m,
1794	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1795	rw_wunlock(&pvh_global_lock);
1796	PMAP_UNLOCK(pmap);
1797}
1798
1799/*
1800 * Remove the given range of addresses from the specified map.
1801 *
1802 * It is assumed that the start and end are properly rounded to the page size.
1803 */
1804static void
1805mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1806{
1807	pte_t *pte;
1808	uint8_t hold_flag;
1809
1810	int su = (pmap == kernel_pmap);
1811
1812	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1813	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1814
1815	if (su) {
1816		KASSERT(((va >= virtual_avail) &&
1817		    (va <= VM_MAX_KERNEL_ADDRESS)),
1818		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1819	} else {
1820		KASSERT((va <= VM_MAXUSER_ADDRESS),
1821		    ("mmu_booke_remove: user pmap, non user va"));
1822	}
1823
1824	if (PMAP_REMOVE_DONE(pmap)) {
1825		//debugf("mmu_booke_remove: e (empty)\n");
1826		return;
1827	}
1828
1829	hold_flag = PTBL_HOLD_FLAG(pmap);
1830	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1831
1832	rw_wlock(&pvh_global_lock);
1833	PMAP_LOCK(pmap);
1834	for (; va < endva; va += PAGE_SIZE) {
1835		pte = pte_find(mmu, pmap, va);
1836		if ((pte != NULL) && PTE_ISVALID(pte))
1837			pte_remove(mmu, pmap, va, hold_flag);
1838	}
1839	PMAP_UNLOCK(pmap);
1840	rw_wunlock(&pvh_global_lock);
1841
1842	//debugf("mmu_booke_remove: e\n");
1843}
1844
1845/*
1846 * Remove physical page from all pmaps in which it resides.
1847 */
1848static void
1849mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1850{
1851	pv_entry_t pv, pvn;
1852	uint8_t hold_flag;
1853
1854	rw_wlock(&pvh_global_lock);
1855	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1856		pvn = TAILQ_NEXT(pv, pv_link);
1857
1858		PMAP_LOCK(pv->pv_pmap);
1859		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1860		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1861		PMAP_UNLOCK(pv->pv_pmap);
1862	}
1863	vm_page_aflag_clear(m, PGA_WRITEABLE);
1864	rw_wunlock(&pvh_global_lock);
1865}
1866
1867/*
1868 * Map a range of physical addresses into kernel virtual address space.
1869 */
1870static vm_offset_t
1871mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1872    vm_paddr_t pa_end, int prot)
1873{
1874	vm_offset_t sva = *virt;
1875	vm_offset_t va = sva;
1876
1877	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1878	//		sva, pa_start, pa_end);
1879
1880	while (pa_start < pa_end) {
1881		mmu_booke_kenter(mmu, va, pa_start);
1882		va += PAGE_SIZE;
1883		pa_start += PAGE_SIZE;
1884	}
1885	*virt = va;
1886
1887	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1888	return (sva);
1889}
1890
1891/*
1892 * The pmap must be activated before it's address space can be accessed in any
1893 * way.
1894 */
1895static void
1896mmu_booke_activate(mmu_t mmu, struct thread *td)
1897{
1898	pmap_t pmap;
1899	u_int cpuid;
1900
1901	pmap = &td->td_proc->p_vmspace->vm_pmap;
1902
1903	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1904	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1905
1906	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1907
1908	mtx_lock_spin(&sched_lock);
1909
1910	cpuid = PCPU_GET(cpuid);
1911	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1912	PCPU_SET(curpmap, pmap);
1913
1914	if (pmap->pm_tid[cpuid] == TID_NONE)
1915		tid_alloc(pmap);
1916
1917	/* Load PID0 register with pmap tid value. */
1918	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1919	__asm __volatile("isync");
1920
1921	mtx_unlock_spin(&sched_lock);
1922
1923	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1924	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1925}
1926
1927/*
1928 * Deactivate the specified process's address space.
1929 */
1930static void
1931mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1932{
1933	pmap_t pmap;
1934
1935	pmap = &td->td_proc->p_vmspace->vm_pmap;
1936
1937	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1938	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1939
1940	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1941	PCPU_SET(curpmap, NULL);
1942}
1943
1944/*
1945 * Copy the range specified by src_addr/len
1946 * from the source map to the range dst_addr/len
1947 * in the destination map.
1948 *
1949 * This routine is only advisory and need not do anything.
1950 */
1951static void
1952mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1953    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1954{
1955
1956}
1957
1958/*
1959 * Set the physical protection on the specified range of this map as requested.
1960 */
1961static void
1962mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1963    vm_prot_t prot)
1964{
1965	vm_offset_t va;
1966	vm_page_t m;
1967	pte_t *pte;
1968
1969	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1970		mmu_booke_remove(mmu, pmap, sva, eva);
1971		return;
1972	}
1973
1974	if (prot & VM_PROT_WRITE)
1975		return;
1976
1977	PMAP_LOCK(pmap);
1978	for (va = sva; va < eva; va += PAGE_SIZE) {
1979		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1980			if (PTE_ISVALID(pte)) {
1981				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1982
1983				mtx_lock_spin(&tlbivax_mutex);
1984				tlb_miss_lock();
1985
1986				/* Handle modified pages. */
1987				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1988					vm_page_dirty(m);
1989
1990				tlb0_flush_entry(va);
1991				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1992
1993				tlb_miss_unlock();
1994				mtx_unlock_spin(&tlbivax_mutex);
1995			}
1996		}
1997	}
1998	PMAP_UNLOCK(pmap);
1999}
2000
2001/*
2002 * Clear the write and modified bits in each of the given page's mappings.
2003 */
2004static void
2005mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
2006{
2007	pv_entry_t pv;
2008	pte_t *pte;
2009
2010	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2011	    ("mmu_booke_remove_write: page %p is not managed", m));
2012
2013	/*
2014	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2015	 * set by another thread while the object is locked.  Thus,
2016	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2017	 */
2018	VM_OBJECT_ASSERT_WLOCKED(m->object);
2019	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2020		return;
2021	rw_wlock(&pvh_global_lock);
2022	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2023		PMAP_LOCK(pv->pv_pmap);
2024		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2025			if (PTE_ISVALID(pte)) {
2026				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2027
2028				mtx_lock_spin(&tlbivax_mutex);
2029				tlb_miss_lock();
2030
2031				/* Handle modified pages. */
2032				if (PTE_ISMODIFIED(pte))
2033					vm_page_dirty(m);
2034
2035				/* Flush mapping from TLB0. */
2036				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
2037
2038				tlb_miss_unlock();
2039				mtx_unlock_spin(&tlbivax_mutex);
2040			}
2041		}
2042		PMAP_UNLOCK(pv->pv_pmap);
2043	}
2044	vm_page_aflag_clear(m, PGA_WRITEABLE);
2045	rw_wunlock(&pvh_global_lock);
2046}
2047
2048static void
2049mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2050{
2051	pte_t *pte;
2052	pmap_t pmap;
2053	vm_page_t m;
2054	vm_offset_t addr;
2055	vm_paddr_t pa;
2056	int active, valid;
2057
2058	va = trunc_page(va);
2059	sz = round_page(sz);
2060
2061	rw_wlock(&pvh_global_lock);
2062	pmap = PCPU_GET(curpmap);
2063	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
2064	while (sz > 0) {
2065		PMAP_LOCK(pm);
2066		pte = pte_find(mmu, pm, va);
2067		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2068		if (valid)
2069			pa = PTE_PA(pte);
2070		PMAP_UNLOCK(pm);
2071		if (valid) {
2072			if (!active) {
2073				/* Create a mapping in the active pmap. */
2074				addr = 0;
2075				m = PHYS_TO_VM_PAGE(pa);
2076				PMAP_LOCK(pmap);
2077				pte_enter(mmu, pmap, m, addr,
2078				    PTE_SR | PTE_VALID | PTE_UR);
2079				__syncicache((void *)addr, PAGE_SIZE);
2080				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2081				PMAP_UNLOCK(pmap);
2082			} else
2083				__syncicache((void *)va, PAGE_SIZE);
2084		}
2085		va += PAGE_SIZE;
2086		sz -= PAGE_SIZE;
2087	}
2088	rw_wunlock(&pvh_global_lock);
2089}
2090
2091/*
2092 * Atomically extract and hold the physical page with the given
2093 * pmap and virtual address pair if that mapping permits the given
2094 * protection.
2095 */
2096static vm_page_t
2097mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2098    vm_prot_t prot)
2099{
2100	pte_t *pte;
2101	vm_page_t m;
2102	uint32_t pte_wbit;
2103	vm_paddr_t pa;
2104
2105	m = NULL;
2106	pa = 0;
2107	PMAP_LOCK(pmap);
2108retry:
2109	pte = pte_find(mmu, pmap, va);
2110	if ((pte != NULL) && PTE_ISVALID(pte)) {
2111		if (pmap == kernel_pmap)
2112			pte_wbit = PTE_SW;
2113		else
2114			pte_wbit = PTE_UW;
2115
2116		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2117			if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
2118				goto retry;
2119			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2120			vm_page_hold(m);
2121		}
2122	}
2123
2124	PA_UNLOCK_COND(pa);
2125	PMAP_UNLOCK(pmap);
2126	return (m);
2127}
2128
2129/*
2130 * Initialize a vm_page's machine-dependent fields.
2131 */
2132static void
2133mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2134{
2135
2136	TAILQ_INIT(&m->md.pv_list);
2137}
2138
2139/*
2140 * mmu_booke_zero_page_area zeros the specified hardware page by
2141 * mapping it into virtual memory and using bzero to clear
2142 * its contents.
2143 *
2144 * off and size must reside within a single page.
2145 */
2146static void
2147mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2148{
2149	vm_offset_t va;
2150
2151	/* XXX KASSERT off and size are within a single page? */
2152
2153	mtx_lock(&zero_page_mutex);
2154	va = zero_page_va;
2155
2156	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2157	bzero((caddr_t)va + off, size);
2158	mmu_booke_kremove(mmu, va);
2159
2160	mtx_unlock(&zero_page_mutex);
2161}
2162
2163/*
2164 * mmu_booke_zero_page zeros the specified hardware page.
2165 */
2166static void
2167mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2168{
2169
2170	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2171}
2172
2173/*
2174 * mmu_booke_copy_page copies the specified (machine independent) page by
2175 * mapping the page into virtual memory and using memcopy to copy the page,
2176 * one machine dependent page at a time.
2177 */
2178static void
2179mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2180{
2181	vm_offset_t sva, dva;
2182
2183	sva = copy_page_src_va;
2184	dva = copy_page_dst_va;
2185
2186	mtx_lock(&copy_page_mutex);
2187	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2188	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2189	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2190	mmu_booke_kremove(mmu, dva);
2191	mmu_booke_kremove(mmu, sva);
2192	mtx_unlock(&copy_page_mutex);
2193}
2194
2195static inline void
2196mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
2197    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
2198{
2199	void *a_cp, *b_cp;
2200	vm_offset_t a_pg_offset, b_pg_offset;
2201	int cnt;
2202
2203	mtx_lock(&copy_page_mutex);
2204	while (xfersize > 0) {
2205		a_pg_offset = a_offset & PAGE_MASK;
2206		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2207		mmu_booke_kenter(mmu, copy_page_src_va,
2208		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
2209		a_cp = (char *)copy_page_src_va + a_pg_offset;
2210		b_pg_offset = b_offset & PAGE_MASK;
2211		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2212		mmu_booke_kenter(mmu, copy_page_dst_va,
2213		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
2214		b_cp = (char *)copy_page_dst_va + b_pg_offset;
2215		bcopy(a_cp, b_cp, cnt);
2216		mmu_booke_kremove(mmu, copy_page_dst_va);
2217		mmu_booke_kremove(mmu, copy_page_src_va);
2218		a_offset += cnt;
2219		b_offset += cnt;
2220		xfersize -= cnt;
2221	}
2222	mtx_unlock(&copy_page_mutex);
2223}
2224
2225/*
2226 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2227 * into virtual memory and using bzero to clear its contents. This is intended
2228 * to be called from the vm_pagezero process only and outside of Giant. No
2229 * lock is required.
2230 */
2231static void
2232mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2233{
2234	vm_offset_t va;
2235
2236	va = zero_page_idle_va;
2237	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2238	bzero((caddr_t)va, PAGE_SIZE);
2239	mmu_booke_kremove(mmu, va);
2240}
2241
2242/*
2243 * Return whether or not the specified physical page was modified
2244 * in any of physical maps.
2245 */
2246static boolean_t
2247mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2248{
2249	pte_t *pte;
2250	pv_entry_t pv;
2251	boolean_t rv;
2252
2253	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2254	    ("mmu_booke_is_modified: page %p is not managed", m));
2255	rv = FALSE;
2256
2257	/*
2258	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2259	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2260	 * is clear, no PTEs can be modified.
2261	 */
2262	VM_OBJECT_ASSERT_WLOCKED(m->object);
2263	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2264		return (rv);
2265	rw_wlock(&pvh_global_lock);
2266	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2267		PMAP_LOCK(pv->pv_pmap);
2268		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2269		    PTE_ISVALID(pte)) {
2270			if (PTE_ISMODIFIED(pte))
2271				rv = TRUE;
2272		}
2273		PMAP_UNLOCK(pv->pv_pmap);
2274		if (rv)
2275			break;
2276	}
2277	rw_wunlock(&pvh_global_lock);
2278	return (rv);
2279}
2280
2281/*
2282 * Return whether or not the specified virtual address is eligible
2283 * for prefault.
2284 */
2285static boolean_t
2286mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2287{
2288
2289	return (FALSE);
2290}
2291
2292/*
2293 * Return whether or not the specified physical page was referenced
2294 * in any physical maps.
2295 */
2296static boolean_t
2297mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
2298{
2299	pte_t *pte;
2300	pv_entry_t pv;
2301	boolean_t rv;
2302
2303	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2304	    ("mmu_booke_is_referenced: page %p is not managed", m));
2305	rv = FALSE;
2306	rw_wlock(&pvh_global_lock);
2307	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2308		PMAP_LOCK(pv->pv_pmap);
2309		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2310		    PTE_ISVALID(pte)) {
2311			if (PTE_ISREFERENCED(pte))
2312				rv = TRUE;
2313		}
2314		PMAP_UNLOCK(pv->pv_pmap);
2315		if (rv)
2316			break;
2317	}
2318	rw_wunlock(&pvh_global_lock);
2319	return (rv);
2320}
2321
2322/*
2323 * Clear the modify bits on the specified physical page.
2324 */
2325static void
2326mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2327{
2328	pte_t *pte;
2329	pv_entry_t pv;
2330
2331	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2332	    ("mmu_booke_clear_modify: page %p is not managed", m));
2333	VM_OBJECT_ASSERT_WLOCKED(m->object);
2334	KASSERT(!vm_page_xbusied(m),
2335	    ("mmu_booke_clear_modify: page %p is exclusive busied", m));
2336
2337	/*
2338	 * If the page is not PG_AWRITEABLE, then no PTEs can be modified.
2339	 * If the object containing the page is locked and the page is not
2340	 * exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
2341	 */
2342	if ((m->aflags & PGA_WRITEABLE) == 0)
2343		return;
2344	rw_wlock(&pvh_global_lock);
2345	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2346		PMAP_LOCK(pv->pv_pmap);
2347		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2348		    PTE_ISVALID(pte)) {
2349			mtx_lock_spin(&tlbivax_mutex);
2350			tlb_miss_lock();
2351
2352			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2353				tlb0_flush_entry(pv->pv_va);
2354				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2355				    PTE_REFERENCED);
2356			}
2357
2358			tlb_miss_unlock();
2359			mtx_unlock_spin(&tlbivax_mutex);
2360		}
2361		PMAP_UNLOCK(pv->pv_pmap);
2362	}
2363	rw_wunlock(&pvh_global_lock);
2364}
2365
2366/*
2367 * Return a count of reference bits for a page, clearing those bits.
2368 * It is not necessary for every reference bit to be cleared, but it
2369 * is necessary that 0 only be returned when there are truly no
2370 * reference bits set.
2371 *
2372 * XXX: The exact number of bits to check and clear is a matter that
2373 * should be tested and standardized at some point in the future for
2374 * optimal aging of shared pages.
2375 */
2376static int
2377mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2378{
2379	pte_t *pte;
2380	pv_entry_t pv;
2381	int count;
2382
2383	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2384	    ("mmu_booke_ts_referenced: page %p is not managed", m));
2385	count = 0;
2386	rw_wlock(&pvh_global_lock);
2387	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2388		PMAP_LOCK(pv->pv_pmap);
2389		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
2390		    PTE_ISVALID(pte)) {
2391			if (PTE_ISREFERENCED(pte)) {
2392				mtx_lock_spin(&tlbivax_mutex);
2393				tlb_miss_lock();
2394
2395				tlb0_flush_entry(pv->pv_va);
2396				pte->flags &= ~PTE_REFERENCED;
2397
2398				tlb_miss_unlock();
2399				mtx_unlock_spin(&tlbivax_mutex);
2400
2401				if (++count > 4) {
2402					PMAP_UNLOCK(pv->pv_pmap);
2403					break;
2404				}
2405			}
2406		}
2407		PMAP_UNLOCK(pv->pv_pmap);
2408	}
2409	rw_wunlock(&pvh_global_lock);
2410	return (count);
2411}
2412
2413/*
2414 * Change wiring attribute for a map/virtual-address pair.
2415 */
2416static void
2417mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2418{
2419	pte_t *pte;
2420
2421	PMAP_LOCK(pmap);
2422	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2423		if (wired) {
2424			if (!PTE_ISWIRED(pte)) {
2425				pte->flags |= PTE_WIRED;
2426				pmap->pm_stats.wired_count++;
2427			}
2428		} else {
2429			if (PTE_ISWIRED(pte)) {
2430				pte->flags &= ~PTE_WIRED;
2431				pmap->pm_stats.wired_count--;
2432			}
2433		}
2434	}
2435	PMAP_UNLOCK(pmap);
2436}
2437
2438/*
2439 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2440 * page.  This count may be changed upwards or downwards in the future; it is
2441 * only necessary that true be returned for a small subset of pmaps for proper
2442 * page aging.
2443 */
2444static boolean_t
2445mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2446{
2447	pv_entry_t pv;
2448	int loops;
2449	boolean_t rv;
2450
2451	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2452	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
2453	loops = 0;
2454	rv = FALSE;
2455	rw_wlock(&pvh_global_lock);
2456	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2457		if (pv->pv_pmap == pmap) {
2458			rv = TRUE;
2459			break;
2460		}
2461		if (++loops >= 16)
2462			break;
2463	}
2464	rw_wunlock(&pvh_global_lock);
2465	return (rv);
2466}
2467
2468/*
2469 * Return the number of managed mappings to the given physical page that are
2470 * wired.
2471 */
2472static int
2473mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2474{
2475	pv_entry_t pv;
2476	pte_t *pte;
2477	int count = 0;
2478
2479	if ((m->oflags & VPO_UNMANAGED) != 0)
2480		return (count);
2481	rw_wlock(&pvh_global_lock);
2482	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2483		PMAP_LOCK(pv->pv_pmap);
2484		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2485			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2486				count++;
2487		PMAP_UNLOCK(pv->pv_pmap);
2488	}
2489	rw_wunlock(&pvh_global_lock);
2490	return (count);
2491}
2492
2493static int
2494mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2495{
2496	int i;
2497	vm_offset_t va;
2498
2499	/*
2500	 * This currently does not work for entries that
2501	 * overlap TLB1 entries.
2502	 */
2503	for (i = 0; i < tlb1_idx; i ++) {
2504		if (tlb1_iomapped(i, pa, size, &va) == 0)
2505			return (0);
2506	}
2507
2508	return (EFAULT);
2509}
2510
2511vm_offset_t
2512mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2513    vm_size_t *sz)
2514{
2515	vm_paddr_t pa, ppa;
2516	vm_offset_t va;
2517	vm_size_t gran;
2518
2519	/* Raw physical memory dumps don't have a virtual address. */
2520	if (md->md_vaddr == ~0UL) {
2521		/* We always map a 256MB page at 256M. */
2522		gran = 256 * 1024 * 1024;
2523		pa = md->md_paddr + ofs;
2524		ppa = pa & ~(gran - 1);
2525		ofs = pa - ppa;
2526		va = gran;
2527		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2528		if (*sz > (gran - ofs))
2529			*sz = gran - ofs;
2530		return (va + ofs);
2531	}
2532
2533	/* Minidumps are based on virtual memory addresses. */
2534	va = md->md_vaddr + ofs;
2535	if (va >= kernstart + kernsize) {
2536		gran = PAGE_SIZE - (va & PAGE_MASK);
2537		if (*sz > gran)
2538			*sz = gran;
2539	}
2540	return (va);
2541}
2542
2543void
2544mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2545    vm_offset_t va)
2546{
2547
2548	/* Raw physical memory dumps don't have a virtual address. */
2549	if (md->md_vaddr == ~0UL) {
2550		tlb1_idx--;
2551		tlb1[tlb1_idx].mas1 = 0;
2552		tlb1[tlb1_idx].mas2 = 0;
2553		tlb1[tlb1_idx].mas3 = 0;
2554		tlb1_write_entry(tlb1_idx);
2555		return;
2556	}
2557
2558	/* Minidumps are based on virtual memory addresses. */
2559	/* Nothing to do... */
2560}
2561
2562struct pmap_md *
2563mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2564{
2565	static struct pmap_md md;
2566	pte_t *pte;
2567	vm_offset_t va;
2568
2569	if (dumpsys_minidump) {
2570		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2571		if (prev == NULL) {
2572			/* 1st: kernel .data and .bss. */
2573			md.md_index = 1;
2574			md.md_vaddr = trunc_page((uintptr_t)_etext);
2575			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2576			return (&md);
2577		}
2578		switch (prev->md_index) {
2579		case 1:
2580			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2581			md.md_index = 2;
2582			md.md_vaddr = data_start;
2583			md.md_size = data_end - data_start;
2584			break;
2585		case 2:
2586			/* 3rd: kernel VM. */
2587			va = prev->md_vaddr + prev->md_size;
2588			/* Find start of next chunk (from va). */
2589			while (va < virtual_end) {
2590				/* Don't dump the buffer cache. */
2591				if (va >= kmi.buffer_sva &&
2592				    va < kmi.buffer_eva) {
2593					va = kmi.buffer_eva;
2594					continue;
2595				}
2596				pte = pte_find(mmu, kernel_pmap, va);
2597				if (pte != NULL && PTE_ISVALID(pte))
2598					break;
2599				va += PAGE_SIZE;
2600			}
2601			if (va < virtual_end) {
2602				md.md_vaddr = va;
2603				va += PAGE_SIZE;
2604				/* Find last page in chunk. */
2605				while (va < virtual_end) {
2606					/* Don't run into the buffer cache. */
2607					if (va == kmi.buffer_sva)
2608						break;
2609					pte = pte_find(mmu, kernel_pmap, va);
2610					if (pte == NULL || !PTE_ISVALID(pte))
2611						break;
2612					va += PAGE_SIZE;
2613				}
2614				md.md_size = va - md.md_vaddr;
2615				break;
2616			}
2617			md.md_index = 3;
2618			/* FALLTHROUGH */
2619		default:
2620			return (NULL);
2621		}
2622	} else { /* minidumps */
2623		mem_regions(&physmem_regions, &physmem_regions_sz,
2624		    &availmem_regions, &availmem_regions_sz);
2625
2626		if (prev == NULL) {
2627			/* first physical chunk. */
2628			md.md_paddr = physmem_regions[0].mr_start;
2629			md.md_size = physmem_regions[0].mr_size;
2630			md.md_vaddr = ~0UL;
2631			md.md_index = 1;
2632		} else if (md.md_index < physmem_regions_sz) {
2633			md.md_paddr = physmem_regions[md.md_index].mr_start;
2634			md.md_size = physmem_regions[md.md_index].mr_size;
2635			md.md_vaddr = ~0UL;
2636			md.md_index++;
2637		} else {
2638			/* There's no next physical chunk. */
2639			return (NULL);
2640		}
2641	}
2642
2643	return (&md);
2644}
2645
2646/*
2647 * Map a set of physical memory pages into the kernel virtual address space.
2648 * Return a pointer to where it is mapped. This routine is intended to be used
2649 * for mapping device memory, NOT real memory.
2650 */
2651static void *
2652mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2653{
2654
2655	return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2656}
2657
2658static void *
2659mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2660{
2661	void *res;
2662	uintptr_t va;
2663	vm_size_t sz;
2664	int i;
2665
2666	/*
2667	 * Check if this is premapped in TLB1. Note: this should probably also
2668	 * check whether a sequence of TLB1 entries exist that match the
2669	 * requirement, but now only checks the easy case.
2670	 */
2671	if (ma == VM_MEMATTR_DEFAULT) {
2672		for (i = 0; i < tlb1_idx; i++) {
2673			if (!(tlb1[i].mas1 & MAS1_VALID))
2674				continue;
2675			if (pa >= tlb1[i].phys &&
2676			    (pa + size) <= (tlb1[i].phys + tlb1[i].size))
2677				return (void *)(tlb1[i].virt +
2678				    (pa - tlb1[i].phys));
2679		}
2680	}
2681
2682	size = roundup(size, PAGE_SIZE);
2683
2684	if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) &&
2685	    (pa + size - 1) < VM_MIN_KERNEL_ADDRESS)
2686		va = pa;
2687	else
2688		va = kva_alloc(size);
2689	res = (void *)va;
2690
2691	do {
2692		sz = 1 << (ilog2(size) & ~1);
2693		if (bootverbose)
2694			printf("Wiring VA=%x to PA=%x (size=%x), "
2695			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2696		tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma));
2697		size -= sz;
2698		pa += sz;
2699		va += sz;
2700	} while (size > 0);
2701
2702	return (res);
2703}
2704
2705/*
2706 * 'Unmap' a range mapped by mmu_booke_mapdev().
2707 */
2708static void
2709mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2710{
2711#ifdef SUPPORTS_SHRINKING_TLB1
2712	vm_offset_t base, offset;
2713
2714	/*
2715	 * Unmap only if this is inside kernel virtual space.
2716	 */
2717	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2718		base = trunc_page(va);
2719		offset = va & PAGE_MASK;
2720		size = roundup(offset + size, PAGE_SIZE);
2721		kva_free(base, size);
2722	}
2723#endif
2724}
2725
2726/*
2727 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2728 * specified pmap. This eliminates the blast of soft faults on process startup
2729 * and immediately after an mmap.
2730 */
2731static void
2732mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2733    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2734{
2735
2736	VM_OBJECT_ASSERT_WLOCKED(object);
2737	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2738	    ("mmu_booke_object_init_pt: non-device object"));
2739}
2740
2741/*
2742 * Perform the pmap work for mincore.
2743 */
2744static int
2745mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2746    vm_paddr_t *locked_pa)
2747{
2748
2749	TODO;
2750	return (0);
2751}
2752
2753/**************************************************************************/
2754/* TID handling */
2755/**************************************************************************/
2756
2757/*
2758 * Allocate a TID. If necessary, steal one from someone else.
2759 * The new TID is flushed from the TLB before returning.
2760 */
2761static tlbtid_t
2762tid_alloc(pmap_t pmap)
2763{
2764	tlbtid_t tid;
2765	int thiscpu;
2766
2767	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2768
2769	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2770
2771	thiscpu = PCPU_GET(cpuid);
2772
2773	tid = PCPU_GET(tid_next);
2774	if (tid > TID_MAX)
2775		tid = TID_MIN;
2776	PCPU_SET(tid_next, tid + 1);
2777
2778	/* If we are stealing TID then clear the relevant pmap's field */
2779	if (tidbusy[thiscpu][tid] != NULL) {
2780
2781		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2782
2783		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2784
2785		/* Flush all entries from TLB0 matching this TID. */
2786		tid_flush(tid);
2787	}
2788
2789	tidbusy[thiscpu][tid] = pmap;
2790	pmap->pm_tid[thiscpu] = tid;
2791	__asm __volatile("msync; isync");
2792
2793	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2794	    PCPU_GET(tid_next));
2795
2796	return (tid);
2797}
2798
2799/**************************************************************************/
2800/* TLB0 handling */
2801/**************************************************************************/
2802
2803static void
2804tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2805    uint32_t mas7)
2806{
2807	int as;
2808	char desc[3];
2809	tlbtid_t tid;
2810	vm_size_t size;
2811	unsigned int tsize;
2812
2813	desc[2] = '\0';
2814	if (mas1 & MAS1_VALID)
2815		desc[0] = 'V';
2816	else
2817		desc[0] = ' ';
2818
2819	if (mas1 & MAS1_IPROT)
2820		desc[1] = 'P';
2821	else
2822		desc[1] = ' ';
2823
2824	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2825	tid = MAS1_GETTID(mas1);
2826
2827	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2828	size = 0;
2829	if (tsize)
2830		size = tsize2size(tsize);
2831
2832	debugf("%3d: (%s) [AS=%d] "
2833	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2834	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2835	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2836}
2837
2838/* Convert TLB0 va and way number to tlb0[] table index. */
2839static inline unsigned int
2840tlb0_tableidx(vm_offset_t va, unsigned int way)
2841{
2842	unsigned int idx;
2843
2844	idx = (way * TLB0_ENTRIES_PER_WAY);
2845	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2846	return (idx);
2847}
2848
2849/*
2850 * Invalidate TLB0 entry.
2851 */
2852static inline void
2853tlb0_flush_entry(vm_offset_t va)
2854{
2855
2856	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2857
2858	mtx_assert(&tlbivax_mutex, MA_OWNED);
2859
2860	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2861	__asm __volatile("isync; msync");
2862	__asm __volatile("tlbsync; msync");
2863
2864	CTR1(KTR_PMAP, "%s: e", __func__);
2865}
2866
2867/* Print out contents of the MAS registers for each TLB0 entry */
2868void
2869tlb0_print_tlbentries(void)
2870{
2871	uint32_t mas0, mas1, mas2, mas3, mas7;
2872	int entryidx, way, idx;
2873
2874	debugf("TLB0 entries:\n");
2875	for (way = 0; way < TLB0_WAYS; way ++)
2876		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2877
2878			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2879			mtspr(SPR_MAS0, mas0);
2880			__asm __volatile("isync");
2881
2882			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2883			mtspr(SPR_MAS2, mas2);
2884
2885			__asm __volatile("isync; tlbre");
2886
2887			mas1 = mfspr(SPR_MAS1);
2888			mas2 = mfspr(SPR_MAS2);
2889			mas3 = mfspr(SPR_MAS3);
2890			mas7 = mfspr(SPR_MAS7);
2891
2892			idx = tlb0_tableidx(mas2, way);
2893			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2894		}
2895}
2896
2897/**************************************************************************/
2898/* TLB1 handling */
2899/**************************************************************************/
2900
2901/*
2902 * TLB1 mapping notes:
2903 *
2904 * TLB1[0]	Kernel text and data.
2905 * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2906 *		windows, other devices mappings.
2907 */
2908
2909/*
2910 * Write given entry to TLB1 hardware.
2911 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2912 */
2913static void
2914tlb1_write_entry(unsigned int idx)
2915{
2916	uint32_t mas0, mas7;
2917
2918	//debugf("tlb1_write_entry: s\n");
2919
2920	/* Clear high order RPN bits */
2921	mas7 = 0;
2922
2923	/* Select entry */
2924	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2925	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2926
2927	mtspr(SPR_MAS0, mas0);
2928	__asm __volatile("isync");
2929	mtspr(SPR_MAS1, tlb1[idx].mas1);
2930	__asm __volatile("isync");
2931	mtspr(SPR_MAS2, tlb1[idx].mas2);
2932	__asm __volatile("isync");
2933	mtspr(SPR_MAS3, tlb1[idx].mas3);
2934	__asm __volatile("isync");
2935	mtspr(SPR_MAS7, mas7);
2936	__asm __volatile("isync; tlbwe; isync; msync");
2937
2938	//debugf("tlb1_write_entry: e\n");
2939}
2940
2941/*
2942 * Return the largest uint value log such that 2^log <= num.
2943 */
2944static unsigned int
2945ilog2(unsigned int num)
2946{
2947	int lz;
2948
2949	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2950	return (31 - lz);
2951}
2952
2953/*
2954 * Convert TLB TSIZE value to mapped region size.
2955 */
2956static vm_size_t
2957tsize2size(unsigned int tsize)
2958{
2959
2960	/*
2961	 * size = 4^tsize KB
2962	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2963	 */
2964
2965	return ((1 << (2 * tsize)) * 1024);
2966}
2967
2968/*
2969 * Convert region size (must be power of 4) to TLB TSIZE value.
2970 */
2971static unsigned int
2972size2tsize(vm_size_t size)
2973{
2974
2975	return (ilog2(size) / 2 - 5);
2976}
2977
2978/*
2979 * Register permanent kernel mapping in TLB1.
2980 *
2981 * Entries are created starting from index 0 (current free entry is
2982 * kept in tlb1_idx) and are not supposed to be invalidated.
2983 */
2984static int
2985tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2986    uint32_t flags)
2987{
2988	uint32_t ts, tid;
2989	int tsize, index;
2990
2991	index = atomic_fetchadd_int(&tlb1_idx, 1);
2992	if (index >= TLB1_ENTRIES) {
2993		printf("tlb1_set_entry: TLB1 full!\n");
2994		return (-1);
2995	}
2996
2997	/* Convert size to TSIZE */
2998	tsize = size2tsize(size);
2999
3000	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
3001	/* XXX TS is hard coded to 0 for now as we only use single address space */
3002	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
3003
3004	/*
3005	 * Atomicity is preserved by the atomic increment above since nothing
3006	 * is ever removed from tlb1.
3007	 */
3008
3009	tlb1[index].phys = pa;
3010	tlb1[index].virt = va;
3011	tlb1[index].size = size;
3012	tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
3013	tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
3014	tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags;
3015
3016	/* Set supervisor RWX permission bits */
3017	tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
3018
3019	tlb1_write_entry(index);
3020
3021	/*
3022	 * XXX in general TLB1 updates should be propagated between CPUs,
3023	 * since current design assumes to have the same TLB1 set-up on all
3024	 * cores.
3025	 */
3026	return (0);
3027}
3028
3029/*
3030 * Map in contiguous RAM region into the TLB1 using maximum of
3031 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
3032 *
3033 * If necessary round up last entry size and return total size
3034 * used by all allocated entries.
3035 */
3036vm_size_t
3037tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
3038{
3039	vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
3040	vm_size_t mapped, pgsz, base, mask;
3041	int idx, nents;
3042
3043	/* Round up to the next 1M */
3044	size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
3045
3046	mapped = 0;
3047	idx = 0;
3048	base = va;
3049	pgsz = 64*1024*1024;
3050	while (mapped < size) {
3051		while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
3052			while (pgsz > (size - mapped))
3053				pgsz >>= 2;
3054			pgs[idx++] = pgsz;
3055			mapped += pgsz;
3056		}
3057
3058		/* We under-map. Correct for this. */
3059		if (mapped < size) {
3060			while (pgs[idx - 1] == pgsz) {
3061				idx--;
3062				mapped -= pgsz;
3063			}
3064			/* XXX We may increase beyond out starting point. */
3065			pgsz <<= 2;
3066			pgs[idx++] = pgsz;
3067			mapped += pgsz;
3068		}
3069	}
3070
3071	nents = idx;
3072	mask = pgs[0] - 1;
3073	/* Align address to the boundary */
3074	if (va & mask) {
3075		va = (va + mask) & ~mask;
3076		pa = (pa + mask) & ~mask;
3077	}
3078
3079	for (idx = 0; idx < nents; idx++) {
3080		pgsz = pgs[idx];
3081		debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
3082		tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
3083		pa += pgsz;
3084		va += pgsz;
3085	}
3086
3087	mapped = (va - base);
3088	debugf("mapped size 0x%08x (wasted space 0x%08x)\n",
3089	    mapped, mapped - size);
3090	return (mapped);
3091}
3092
3093/*
3094 * TLB1 initialization routine, to be called after the very first
3095 * assembler level setup done in locore.S.
3096 */
3097void
3098tlb1_init()
3099{
3100	uint32_t mas0, mas1, mas2, mas3;
3101	uint32_t tsz;
3102	u_int i;
3103
3104	if (bootinfo != NULL && bootinfo[0] != 1) {
3105		tlb1_idx = *((uint16_t *)(bootinfo + 8));
3106	} else
3107		tlb1_idx = 1;
3108
3109	/* The first entry/entries are used to map the kernel. */
3110	for (i = 0; i < tlb1_idx; i++) {
3111		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3112		mtspr(SPR_MAS0, mas0);
3113		__asm __volatile("isync; tlbre");
3114
3115		mas1 = mfspr(SPR_MAS1);
3116		if ((mas1 & MAS1_VALID) == 0)
3117			continue;
3118
3119		mas2 = mfspr(SPR_MAS2);
3120		mas3 = mfspr(SPR_MAS3);
3121
3122		tlb1[i].mas1 = mas1;
3123		tlb1[i].mas2 = mfspr(SPR_MAS2);
3124		tlb1[i].mas3 = mas3;
3125		tlb1[i].virt = mas2 & MAS2_EPN_MASK;
3126		tlb1[i].phys = mas3 & MAS3_RPN;
3127
3128		if (i == 0)
3129			kernload = mas3 & MAS3_RPN;
3130
3131		tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3132		tlb1[i].size = (tsz > 0) ? tsize2size(tsz) : 0;
3133		kernsize += tlb1[i].size;
3134	}
3135
3136#ifdef SMP
3137	bp_ntlb1s = tlb1_idx;
3138#endif
3139
3140	/* Purge the remaining entries */
3141	for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
3142		tlb1_write_entry(i);
3143
3144	/* Setup TLB miss defaults */
3145	set_mas4_defaults();
3146}
3147
3148vm_offset_t
3149pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
3150{
3151	static vm_offset_t early_io_map_base = VM_MAX_KERNEL_ADDRESS;
3152	vm_paddr_t pa_base;
3153	vm_offset_t va, sz;
3154	int i;
3155
3156	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
3157
3158	for (i = 0; i < tlb1_idx; i++) {
3159		if (!(tlb1[i].mas1 & MAS1_VALID))
3160			continue;
3161		if (pa >= tlb1[i].phys && (pa + size) <=
3162		    (tlb1[i].phys + tlb1[i].size))
3163			return (tlb1[i].virt + (pa - tlb1[i].phys));
3164	}
3165
3166	pa_base = trunc_page(pa);
3167	size = roundup(size + (pa - pa_base), PAGE_SIZE);
3168	va = early_io_map_base + (pa - pa_base);
3169
3170	do {
3171		sz = 1 << (ilog2(size) & ~1);
3172		tlb1_set_entry(early_io_map_base, pa_base, sz, _TLB_ENTRY_IO);
3173		size -= sz;
3174		pa_base += sz;
3175		early_io_map_base += sz;
3176	} while (size > 0);
3177
3178#ifdef SMP
3179	bp_ntlb1s = tlb1_idx;
3180#endif
3181
3182	return (va);
3183}
3184
3185/*
3186 * Setup MAS4 defaults.
3187 * These values are loaded to MAS0-2 on a TLB miss.
3188 */
3189static void
3190set_mas4_defaults(void)
3191{
3192	uint32_t mas4;
3193
3194	/* Defaults: TLB0, PID0, TSIZED=4K */
3195	mas4 = MAS4_TLBSELD0;
3196	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3197#ifdef SMP
3198	mas4 |= MAS4_MD;
3199#endif
3200	mtspr(SPR_MAS4, mas4);
3201	__asm __volatile("isync");
3202}
3203
3204/*
3205 * Print out contents of the MAS registers for each TLB1 entry
3206 */
3207void
3208tlb1_print_tlbentries(void)
3209{
3210	uint32_t mas0, mas1, mas2, mas3, mas7;
3211	int i;
3212
3213	debugf("TLB1 entries:\n");
3214	for (i = 0; i < TLB1_ENTRIES; i++) {
3215
3216		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3217		mtspr(SPR_MAS0, mas0);
3218
3219		__asm __volatile("isync; tlbre");
3220
3221		mas1 = mfspr(SPR_MAS1);
3222		mas2 = mfspr(SPR_MAS2);
3223		mas3 = mfspr(SPR_MAS3);
3224		mas7 = mfspr(SPR_MAS7);
3225
3226		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3227	}
3228}
3229
3230/*
3231 * Print out contents of the in-ram tlb1 table.
3232 */
3233void
3234tlb1_print_entries(void)
3235{
3236	int i;
3237
3238	debugf("tlb1[] table entries:\n");
3239	for (i = 0; i < TLB1_ENTRIES; i++)
3240		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3241}
3242
3243/*
3244 * Return 0 if the physical IO range is encompassed by one of the
3245 * the TLB1 entries, otherwise return related error code.
3246 */
3247static int
3248tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3249{
3250	uint32_t prot;
3251	vm_paddr_t pa_start;
3252	vm_paddr_t pa_end;
3253	unsigned int entry_tsize;
3254	vm_size_t entry_size;
3255
3256	*va = (vm_offset_t)NULL;
3257
3258	/* Skip invalid entries */
3259	if (!(tlb1[i].mas1 & MAS1_VALID))
3260		return (EINVAL);
3261
3262	/*
3263	 * The entry must be cache-inhibited, guarded, and r/w
3264	 * so it can function as an i/o page
3265	 */
3266	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3267	if (prot != (MAS2_I | MAS2_G))
3268		return (EPERM);
3269
3270	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3271	if (prot != (MAS3_SR | MAS3_SW))
3272		return (EPERM);
3273
3274	/* The address should be within the entry range. */
3275	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3276	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3277
3278	entry_size = tsize2size(entry_tsize);
3279	pa_start = tlb1[i].mas3 & MAS3_RPN;
3280	pa_end = pa_start + entry_size - 1;
3281
3282	if ((pa < pa_start) || ((pa + size) > pa_end))
3283		return (ERANGE);
3284
3285	/* Return virtual address of this mapping. */
3286	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3287	return (0);
3288}
3289