trap.c revision 275794
1/*-
2 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
3 * Copyright (C) 1995, 1996 TooLs GmbH.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by TooLs GmbH.
17 * 4. The name of TooLs GmbH may not be used to endorse or promote products
18 *    derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
29 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * $NetBSD: trap.c,v 1.58 2002/03/04 04:07:35 dbj Exp $
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: stable/10/sys/powerpc/aim/trap.c 275794 2014-12-15 10:46:07Z kib $");
36
37#include "opt_kdtrace.h"
38
39#include <sys/param.h>
40#include <sys/kdb.h>
41#include <sys/proc.h>
42#include <sys/ktr.h>
43#include <sys/lock.h>
44#include <sys/mutex.h>
45#include <sys/pioctl.h>
46#include <sys/ptrace.h>
47#include <sys/reboot.h>
48#include <sys/syscall.h>
49#include <sys/sysent.h>
50#include <sys/systm.h>
51#include <sys/kernel.h>
52#include <sys/uio.h>
53#include <sys/signalvar.h>
54#include <sys/vmmeter.h>
55
56#include <security/audit/audit.h>
57
58#include <vm/vm.h>
59#include <vm/pmap.h>
60#include <vm/vm_extern.h>
61#include <vm/vm_param.h>
62#include <vm/vm_kern.h>
63#include <vm/vm_map.h>
64#include <vm/vm_page.h>
65
66#include <machine/_inttypes.h>
67#include <machine/altivec.h>
68#include <machine/cpu.h>
69#include <machine/db_machdep.h>
70#include <machine/fpu.h>
71#include <machine/frame.h>
72#include <machine/pcb.h>
73#include <machine/pmap.h>
74#include <machine/psl.h>
75#include <machine/trap.h>
76#include <machine/spr.h>
77#include <machine/sr.h>
78
79static void	trap_fatal(struct trapframe *frame);
80static void	printtrap(u_int vector, struct trapframe *frame, int isfatal,
81		    int user);
82static int	trap_pfault(struct trapframe *frame, int user);
83static int	fix_unaligned(struct thread *td, struct trapframe *frame);
84static int	handle_onfault(struct trapframe *frame);
85static void	syscall(struct trapframe *frame);
86
87#ifdef __powerpc64__
88       void	handle_kernel_slb_spill(int, register_t, register_t);
89static int	handle_user_slb_spill(pmap_t pm, vm_offset_t addr);
90extern int	n_slbs;
91#endif
92
93struct powerpc_exception {
94	u_int	vector;
95	char	*name;
96};
97
98#ifdef KDTRACE_HOOKS
99#include <sys/dtrace_bsd.h>
100
101int (*dtrace_invop_jump_addr)(struct trapframe *);
102#endif
103
104static struct powerpc_exception powerpc_exceptions[] = {
105	{ 0x0100, "system reset" },
106	{ 0x0200, "machine check" },
107	{ 0x0300, "data storage interrupt" },
108	{ 0x0380, "data segment exception" },
109	{ 0x0400, "instruction storage interrupt" },
110	{ 0x0480, "instruction segment exception" },
111	{ 0x0500, "external interrupt" },
112	{ 0x0600, "alignment" },
113	{ 0x0700, "program" },
114	{ 0x0800, "floating-point unavailable" },
115	{ 0x0900, "decrementer" },
116	{ 0x0c00, "system call" },
117	{ 0x0d00, "trace" },
118	{ 0x0e00, "floating-point assist" },
119	{ 0x0f00, "performance monitoring" },
120	{ 0x0f20, "altivec unavailable" },
121	{ 0x1000, "instruction tlb miss" },
122	{ 0x1100, "data load tlb miss" },
123	{ 0x1200, "data store tlb miss" },
124	{ 0x1300, "instruction breakpoint" },
125	{ 0x1400, "system management" },
126	{ 0x1600, "altivec assist" },
127	{ 0x1700, "thermal management" },
128	{ 0x2000, "run mode/trace" },
129	{ 0x3000, NULL }
130};
131
132static const char *
133trapname(u_int vector)
134{
135	struct	powerpc_exception *pe;
136
137	for (pe = powerpc_exceptions; pe->vector != 0x3000; pe++) {
138		if (pe->vector == vector)
139			return (pe->name);
140	}
141
142	return ("unknown");
143}
144
145void
146trap(struct trapframe *frame)
147{
148	struct thread	*td;
149	struct proc	*p;
150#ifdef KDTRACE_HOOKS
151	uint32_t inst;
152#endif
153	int		sig, type, user;
154	u_int		ucode;
155	ksiginfo_t	ksi;
156
157	PCPU_INC(cnt.v_trap);
158
159	td = curthread;
160	p = td->td_proc;
161
162	type = ucode = frame->exc;
163	sig = 0;
164	user = frame->srr1 & PSL_PR;
165
166	CTR3(KTR_TRAP, "trap: %s type=%s (%s)", td->td_name,
167	    trapname(type), user ? "user" : "kernel");
168
169#ifdef KDTRACE_HOOKS
170	/*
171	 * A trap can occur while DTrace executes a probe. Before
172	 * executing the probe, DTrace blocks re-scheduling and sets
173	 * a flag in it's per-cpu flags to indicate that it doesn't
174	 * want to fault. On returning from the probe, the no-fault
175	 * flag is cleared and finally re-scheduling is enabled.
176	 *
177	 * If the DTrace kernel module has registered a trap handler,
178	 * call it and if it returns non-zero, assume that it has
179	 * handled the trap and modified the trap frame so that this
180	 * function can return normally.
181	 */
182	/*
183	 * XXXDTRACE: add pid probe handler here (if ever)
184	 */
185	if (dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, type))
186		return;
187#endif
188
189	if (user) {
190		td->td_pticks = 0;
191		td->td_frame = frame;
192		if (td->td_ucred != p->p_ucred)
193			cred_update_thread(td);
194
195		/* User Mode Traps */
196		switch (type) {
197		case EXC_RUNMODETRC:
198		case EXC_TRC:
199			frame->srr1 &= ~PSL_SE;
200			sig = SIGTRAP;
201			ucode = TRAP_TRACE;
202			break;
203
204#ifdef __powerpc64__
205		case EXC_ISE:
206		case EXC_DSE:
207			if (handle_user_slb_spill(&p->p_vmspace->vm_pmap,
208			    (type == EXC_ISE) ? frame->srr0 :
209			    frame->cpu.aim.dar) != 0) {
210				sig = SIGSEGV;
211				ucode = SEGV_MAPERR;
212			}
213			break;
214#endif
215		case EXC_DSI:
216		case EXC_ISI:
217			sig = trap_pfault(frame, 1);
218			if (sig == SIGSEGV)
219				ucode = SEGV_MAPERR;
220			break;
221
222		case EXC_SC:
223			syscall(frame);
224			break;
225
226		case EXC_FPU:
227			KASSERT((td->td_pcb->pcb_flags & PCB_FPU) != PCB_FPU,
228			    ("FPU already enabled for thread"));
229			enable_fpu(td);
230			break;
231
232		case EXC_VEC:
233			KASSERT((td->td_pcb->pcb_flags & PCB_VEC) != PCB_VEC,
234			    ("Altivec already enabled for thread"));
235			enable_vec(td);
236			break;
237
238		case EXC_VECAST_G4:
239		case EXC_VECAST_G5:
240			/*
241			 * We get a VPU assist exception for IEEE mode
242			 * vector operations on denormalized floats.
243			 * Emulating this is a giant pain, so for now,
244			 * just switch off IEEE mode and treat them as
245			 * zero.
246			 */
247
248			save_vec(td);
249			td->td_pcb->pcb_vec.vscr |= ALTIVEC_VSCR_NJ;
250			enable_vec(td);
251			break;
252
253		case EXC_ALI:
254			if (fix_unaligned(td, frame) != 0) {
255				sig = SIGBUS;
256				ucode = BUS_ADRALN;
257			}
258			else
259				frame->srr0 += 4;
260			break;
261
262		case EXC_PGM:
263			/* Identify the trap reason */
264			if (frame->srr1 & EXC_PGM_TRAP) {
265#ifdef KDTRACE_HOOKS
266				inst = fuword32((const void *)frame->srr0);
267				if (inst == 0x0FFFDDDD && dtrace_pid_probe_ptr != NULL) {
268					struct reg regs;
269					fill_regs(td, &regs);
270					(*dtrace_pid_probe_ptr)(&regs);
271					break;
272				}
273#endif
274 				sig = SIGTRAP;
275				ucode = TRAP_BRKPT;
276			} else {
277				sig = ppc_instr_emulate(frame, td->td_pcb);
278				if (sig == SIGILL) {
279					if (frame->srr1 & EXC_PGM_PRIV)
280						ucode = ILL_PRVOPC;
281					else if (frame->srr1 & EXC_PGM_ILLEGAL)
282						ucode = ILL_ILLOPC;
283				} else if (sig == SIGFPE)
284					ucode = FPE_FLTINV;	/* Punt for now, invalid operation. */
285			}
286			break;
287
288		case EXC_MCHK:
289			/*
290			 * Note that this may not be recoverable for the user
291			 * process, depending on the type of machine check,
292			 * but it at least prevents the kernel from dying.
293			 */
294			sig = SIGBUS;
295			ucode = BUS_OBJERR;
296			break;
297
298		default:
299			trap_fatal(frame);
300		}
301	} else {
302		/* Kernel Mode Traps */
303
304		KASSERT(cold || td->td_ucred != NULL,
305		    ("kernel trap doesn't have ucred"));
306		switch (type) {
307#ifdef KDTRACE_HOOKS
308		case EXC_PGM:
309			if (frame->srr1 & EXC_PGM_TRAP) {
310				if (*(uint32_t *)frame->srr0 == 0x7c810808) {
311					if (dtrace_invop_jump_addr != NULL) {
312						dtrace_invop_jump_addr(frame);
313						return;
314					}
315				}
316			}
317			break;
318#endif
319#ifdef __powerpc64__
320		case EXC_DSE:
321			if ((frame->cpu.aim.dar & SEGMENT_MASK) == USER_ADDR) {
322				__asm __volatile ("slbmte %0, %1" ::
323					"r"(td->td_pcb->pcb_cpu.aim.usr_vsid),
324					"r"(USER_SLB_SLBE));
325				return;
326			}
327			break;
328#endif
329		case EXC_DSI:
330			if (trap_pfault(frame, 0) == 0)
331 				return;
332			break;
333		case EXC_MCHK:
334			if (handle_onfault(frame))
335 				return;
336			break;
337		default:
338			break;
339		}
340		trap_fatal(frame);
341	}
342
343	if (sig != 0) {
344		if (p->p_sysent->sv_transtrap != NULL)
345			sig = (p->p_sysent->sv_transtrap)(sig, type);
346		ksiginfo_init_trap(&ksi);
347		ksi.ksi_signo = sig;
348		ksi.ksi_code = (int) ucode; /* XXX, not POSIX */
349		/* ksi.ksi_addr = ? */
350		ksi.ksi_trapno = type;
351		trapsignal(td, &ksi);
352	}
353
354	userret(td, frame);
355}
356
357static void
358trap_fatal(struct trapframe *frame)
359{
360
361	printtrap(frame->exc, frame, 1, (frame->srr1 & PSL_PR));
362#ifdef KDB
363	if ((debugger_on_panic || kdb_active) &&
364	    kdb_trap(frame->exc, 0, frame))
365		return;
366#endif
367	panic("%s trap", trapname(frame->exc));
368}
369
370static void
371printtrap(u_int vector, struct trapframe *frame, int isfatal, int user)
372{
373
374	printf("\n");
375	printf("%s %s trap:\n", isfatal ? "fatal" : "handled",
376	    user ? "user" : "kernel");
377	printf("\n");
378	printf("   exception       = 0x%x (%s)\n", vector, trapname(vector));
379	switch (vector) {
380	case EXC_DSE:
381	case EXC_DSI:
382		printf("   virtual address = 0x%" PRIxPTR "\n",
383		    frame->cpu.aim.dar);
384		printf("   dsisr           = 0x%" PRIxPTR "\n",
385		    frame->cpu.aim.dsisr);
386		break;
387	case EXC_ISE:
388	case EXC_ISI:
389		printf("   virtual address = 0x%" PRIxPTR "\n", frame->srr0);
390		break;
391	}
392	printf("   srr0            = 0x%" PRIxPTR "\n", frame->srr0);
393	printf("   srr1            = 0x%" PRIxPTR "\n", frame->srr1);
394	printf("   lr              = 0x%" PRIxPTR "\n", frame->lr);
395	printf("   curthread       = %p\n", curthread);
396	if (curthread != NULL)
397		printf("          pid = %d, comm = %s\n",
398		    curthread->td_proc->p_pid, curthread->td_name);
399	printf("\n");
400}
401
402/*
403 * Handles a fatal fault when we have onfault state to recover.  Returns
404 * non-zero if there was onfault recovery state available.
405 */
406static int
407handle_onfault(struct trapframe *frame)
408{
409	struct		thread *td;
410	faultbuf	*fb;
411
412	td = curthread;
413	fb = td->td_pcb->pcb_onfault;
414	if (fb != NULL) {
415		frame->srr0 = (*fb)[0];
416		frame->fixreg[1] = (*fb)[1];
417		frame->fixreg[2] = (*fb)[2];
418		frame->fixreg[3] = 1;
419		frame->cr = (*fb)[3];
420		bcopy(&(*fb)[4], &frame->fixreg[13],
421		    19 * sizeof(register_t));
422		return (1);
423	}
424	return (0);
425}
426
427int
428cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa)
429{
430	struct proc *p;
431	struct trapframe *frame;
432	caddr_t	params;
433	size_t argsz;
434	int error, n, i;
435
436	p = td->td_proc;
437	frame = td->td_frame;
438
439	sa->code = frame->fixreg[0];
440	params = (caddr_t)(frame->fixreg + FIRSTARG);
441	n = NARGREG;
442
443	if (sa->code == SYS_syscall) {
444		/*
445		 * code is first argument,
446		 * followed by actual args.
447		 */
448		sa->code = *(register_t *) params;
449		params += sizeof(register_t);
450		n -= 1;
451	} else if (sa->code == SYS___syscall) {
452		/*
453		 * Like syscall, but code is a quad,
454		 * so as to maintain quad alignment
455		 * for the rest of the args.
456		 */
457		if (SV_PROC_FLAG(p, SV_ILP32)) {
458			params += sizeof(register_t);
459			sa->code = *(register_t *) params;
460			params += sizeof(register_t);
461			n -= 2;
462		} else {
463			sa->code = *(register_t *) params;
464			params += sizeof(register_t);
465			n -= 1;
466		}
467	}
468
469 	if (p->p_sysent->sv_mask)
470		sa->code &= p->p_sysent->sv_mask;
471	if (sa->code >= p->p_sysent->sv_size)
472		sa->callp = &p->p_sysent->sv_table[0];
473	else
474		sa->callp = &p->p_sysent->sv_table[sa->code];
475
476	sa->narg = sa->callp->sy_narg;
477
478	if (SV_PROC_FLAG(p, SV_ILP32)) {
479		argsz = sizeof(uint32_t);
480
481		for (i = 0; i < n; i++)
482			sa->args[i] = ((u_register_t *)(params))[i] &
483			    0xffffffff;
484	} else {
485		argsz = sizeof(uint64_t);
486
487		for (i = 0; i < n; i++)
488			sa->args[i] = ((u_register_t *)(params))[i];
489	}
490
491	if (sa->narg > n)
492		error = copyin(MOREARGS(frame->fixreg[1]), sa->args + n,
493			       (sa->narg - n) * argsz);
494	else
495		error = 0;
496
497#ifdef __powerpc64__
498	if (SV_PROC_FLAG(p, SV_ILP32) && sa->narg > n) {
499		/* Expand the size of arguments copied from the stack */
500
501		for (i = sa->narg; i >= n; i--)
502			sa->args[i] = ((uint32_t *)(&sa->args[n]))[i-n];
503	}
504#endif
505
506	if (error == 0) {
507		td->td_retval[0] = 0;
508		td->td_retval[1] = frame->fixreg[FIRSTARG + 1];
509	}
510	return (error);
511}
512
513#include "../../kern/subr_syscall.c"
514
515void
516syscall(struct trapframe *frame)
517{
518	struct thread *td;
519	struct syscall_args sa;
520	int error;
521
522	td = curthread;
523	td->td_frame = frame;
524
525#ifdef __powerpc64__
526	/*
527	 * Speculatively restore last user SLB segment, which we know is
528	 * invalid already, since we are likely to do copyin()/copyout().
529	 */
530	__asm __volatile ("slbmte %0, %1; isync" ::
531            "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
532#endif
533
534	error = syscallenter(td, &sa);
535	syscallret(td, error, &sa);
536}
537
538#ifdef __powerpc64__
539/* Handle kernel SLB faults -- runs in real mode, all seat belts off */
540void
541handle_kernel_slb_spill(int type, register_t dar, register_t srr0)
542{
543	struct slb *slbcache;
544	uint64_t slbe, slbv;
545	uint64_t esid, addr;
546	int i;
547
548	addr = (type == EXC_ISE) ? srr0 : dar;
549	slbcache = PCPU_GET(slb);
550	esid = (uintptr_t)addr >> ADDR_SR_SHFT;
551	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
552
553	/* See if the hardware flushed this somehow (can happen in LPARs) */
554	for (i = 0; i < n_slbs; i++)
555		if (slbcache[i].slbe == (slbe | (uint64_t)i))
556			return;
557
558	/* Not in the map, needs to actually be added */
559	slbv = kernel_va_to_slbv(addr);
560	if (slbcache[USER_SLB_SLOT].slbe == 0) {
561		for (i = 0; i < n_slbs; i++) {
562			if (i == USER_SLB_SLOT)
563				continue;
564			if (!(slbcache[i].slbe & SLBE_VALID))
565				goto fillkernslb;
566		}
567
568		if (i == n_slbs)
569			slbcache[USER_SLB_SLOT].slbe = 1;
570	}
571
572	/* Sacrifice a random SLB entry that is not the user entry */
573	i = mftb() % n_slbs;
574	if (i == USER_SLB_SLOT)
575		i = (i+1) % n_slbs;
576
577fillkernslb:
578	/* Write new entry */
579	slbcache[i].slbv = slbv;
580	slbcache[i].slbe = slbe | (uint64_t)i;
581
582	/* Trap handler will restore from cache on exit */
583}
584
585static int
586handle_user_slb_spill(pmap_t pm, vm_offset_t addr)
587{
588	struct slb *user_entry;
589	uint64_t esid;
590	int i;
591
592	esid = (uintptr_t)addr >> ADDR_SR_SHFT;
593
594	PMAP_LOCK(pm);
595	user_entry = user_va_to_slb_entry(pm, addr);
596
597	if (user_entry == NULL) {
598		/* allocate_vsid auto-spills it */
599		(void)allocate_user_vsid(pm, esid, 0);
600	} else {
601		/*
602		 * Check that another CPU has not already mapped this.
603		 * XXX: Per-thread SLB caches would be better.
604		 */
605		for (i = 0; i < pm->pm_slb_len; i++)
606			if (pm->pm_slb[i] == user_entry)
607				break;
608
609		if (i == pm->pm_slb_len)
610			slb_insert_user(pm, user_entry);
611	}
612	PMAP_UNLOCK(pm);
613
614	return (0);
615}
616#endif
617
618static int
619trap_pfault(struct trapframe *frame, int user)
620{
621	vm_offset_t	eva, va;
622	struct		thread *td;
623	struct		proc *p;
624	vm_map_t	map;
625	vm_prot_t	ftype;
626	int		rv;
627	register_t	user_sr;
628
629	td = curthread;
630	p = td->td_proc;
631	if (frame->exc == EXC_ISI) {
632		eva = frame->srr0;
633		ftype = VM_PROT_EXECUTE;
634		if (frame->srr1 & SRR1_ISI_PFAULT)
635			ftype |= VM_PROT_READ;
636	} else {
637		eva = frame->cpu.aim.dar;
638		if (frame->cpu.aim.dsisr & DSISR_STORE)
639			ftype = VM_PROT_WRITE;
640		else
641			ftype = VM_PROT_READ;
642	}
643
644	if (user) {
645		map = &p->p_vmspace->vm_map;
646	} else {
647		if ((eva >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
648			if (p->p_vmspace == NULL)
649				return (SIGSEGV);
650
651			map = &p->p_vmspace->vm_map;
652
653			user_sr = td->td_pcb->pcb_cpu.aim.usr_segm;
654			eva &= ADDR_PIDX | ADDR_POFF;
655			eva |= user_sr << ADDR_SR_SHFT;
656		} else {
657			map = kernel_map;
658		}
659	}
660	va = trunc_page(eva);
661
662	if (map != kernel_map) {
663		/*
664		 * Keep swapout from messing with us during this
665		 *	critical time.
666		 */
667		PROC_LOCK(p);
668		++p->p_lock;
669		PROC_UNLOCK(p);
670
671		/* Fault in the user page: */
672		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
673
674		PROC_LOCK(p);
675		--p->p_lock;
676		PROC_UNLOCK(p);
677		/*
678		 * XXXDTRACE: add dtrace_doubletrap_func here?
679		 */
680	} else {
681		/*
682		 * Don't have to worry about process locking or stacks in the
683		 * kernel.
684		 */
685		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
686	}
687
688	if (rv == KERN_SUCCESS)
689		return (0);
690
691	if (!user && handle_onfault(frame))
692		return (0);
693
694	return (SIGSEGV);
695}
696
697/*
698 * For now, this only deals with the particular unaligned access case
699 * that gcc tends to generate.  Eventually it should handle all of the
700 * possibilities that can happen on a 32-bit PowerPC in big-endian mode.
701 */
702
703static int
704fix_unaligned(struct thread *td, struct trapframe *frame)
705{
706	struct thread	*fputhread;
707	int		indicator, reg;
708	double		*fpr;
709
710	indicator = EXC_ALI_OPCODE_INDICATOR(frame->cpu.aim.dsisr);
711
712	switch (indicator) {
713	case EXC_ALI_LFD:
714	case EXC_ALI_STFD:
715		reg = EXC_ALI_RST(frame->cpu.aim.dsisr);
716		fpr = &td->td_pcb->pcb_fpu.fpr[reg];
717		fputhread = PCPU_GET(fputhread);
718
719		/* Juggle the FPU to ensure that we've initialized
720		 * the FPRs, and that their current state is in
721		 * the PCB.
722		 */
723		if (fputhread != td) {
724			if (fputhread)
725				save_fpu(fputhread);
726			enable_fpu(td);
727		}
728		save_fpu(td);
729
730		if (indicator == EXC_ALI_LFD) {
731			if (copyin((void *)frame->cpu.aim.dar, fpr,
732			    sizeof(double)) != 0)
733				return -1;
734			enable_fpu(td);
735		} else {
736			if (copyout(fpr, (void *)frame->cpu.aim.dar,
737			    sizeof(double)) != 0)
738				return -1;
739		}
740		return 0;
741		break;
742	}
743
744	return -1;
745}
746
747